Science.gov

Sample records for intensity modulated photon

  1. Intensity modulated neutron radiotherapy optimization by photon proxy

    SciTech Connect

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd; Spink, Robyn; Burmeister, Jay

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodology and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning

  2. Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination.

    PubMed

    Yeh, Chia-Hua; Chen, Szu-Yu

    2015-03-20

    Conventional structured illumination microscopy (SIM) with wide-field illumination is an applicable tool to provide resolution enhancement. And yet its applications in thick specimens are still full of challenges. By combing the structured illumination concept with two-photon excitation, a laser scanning two-photon structured illumination microscope (LSTP-SIM) was constructed to gain ∼1.42-fold lateral resolution enhancement in contrast to two-photon fluorescence microscopy. With a point-scanning geometry, an acoustic-optical modulator was used to modulate temporally the excitation intensity in order to produce the structured illumination pattern. The theoretical models of image formation and image reconstruction were clearly established. Simulation and experiments were both performed to show the capability of this system to enhance the lateral resolution. Combined with the inherent optical sectioning power of the two-photon excitation, LSTP-SIM would have the potential for applications in optically-thick specimens. PMID:25968516

  3. Modulation of defect modes intensity by controlled light scattering in photonic crystal with liquid crystal domain structure

    NASA Astrophysics Data System (ADS)

    Gunyakov, V. A.; Krakhalev, M. N.; Zyryanov, V. Ya.; Shabanov, V. F.; Loiko, V. A.

    2016-07-01

    A method to modulate the defect modes intensity in a multilayer photonic crystal with a nematic liquid crystal layer arranged midmost has been proposed. The various electrohydrodynamic domain structures (Williams domains, oblique rolls and grid pattern) were formed in the nematic layer under the action of ac electric field. The domains cause a polarization-sensitive light scattering which leads to an anisotropic reduction of the defect modes intensity. Thus by varying the applied voltage, we can tune gradually the transmittance spectrum of photonic crystal. In addition, the spectrum strongly depends on the light polarization direction above threshold voltage.

  4. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    SciTech Connect

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.; Tarbell, Nancy J.; Yock, Torunn I.

    2009-05-01

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with at least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.

  5. Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Taddei, Phillip J.; Howell, Rebecca M.; Krishnan, Sunil; Scarboro, Sarah B.; Mirkovic, Dragan; Newhauser, Wayne D.

    2010-12-01

    Hepatocellular carcinoma (HCC), the sixth most common cancer in the world, is a global health concern. Radiotherapy for HCC is uncommon, largely because of the likelihood of radiation-induced liver disease, an acute side effect that is often fatal. Proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) may offer HCC patients a better option for treating the diseased liver tissue while largely sparing the surrounding tissues, especially the non-tumor liver. However, even advanced radiotherapies carry a risk of late effects, including second malignant neoplasms (SMNs). It is unclear whether PBT or IMRT confers less risk of an SMN than the other. The purpose of this study was to compare the predicted risk of developing an SMN for a patient with HCC between PBT and IMRT. For both treatments, radiation doses in organs and tissues from primary radiation were determined using a treatment planning system; doses in organs and tissues from stray radiation from PBT were determined using Monte Carlo simulations and from IMRT using thermo-luminescent dosimeter measurements. Risk models of SMN incidence were taken from the literature. The predicted absolute lifetime attributable risks of SMN incidence were 11.4% after PBT and 19.2% after IMRT. The results of this study suggest that using proton beams instead of photon beams for radiotherapy may reduce the risk of SMN incidence for some HCC patients.

  6. Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma.

    PubMed

    Taddei, Phillip J; Howell, Rebecca M; Krishnan, Sunil; Scarboro, Sarah B; Mirkovic, Dragan; Newhauser, Wayne D

    2010-12-01

    Hepatocellular carcinoma (HCC), the sixth most common cancer in the world, is a global health concern. Radiotherapy for HCC is uncommon, largely because of the likelihood of radiation-induced liver disease, an acute side effect that is often fatal. Proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) may offer HCC patients a better option for treating the diseased liver tissue while largely sparing the surrounding tissues, especially the non-tumor liver. However, even advanced radiotherapies carry a risk of late effects, including second malignant neoplasms (SMNs). It is unclear whether PBT or IMRT confers less risk of an SMN than the other. The purpose of this study was to compare the predicted risk of developing an SMN for a patient with HCC between PBT and IMRT. For both treatments, radiation doses in organs and tissues from primary radiation were determined using a treatment planning system; doses in organs and tissues from stray radiation from PBT were determined using Monte Carlo simulations and from IMRT using thermo-luminescent dosimeter measurements. Risk models of SMN incidence were taken from the literature. The predicted absolute lifetime attributable risks of SMN incidence were 11.4% after PBT and 19.2% after IMRT. The results of this study suggest that using proton beams instead of photon beams for radiotherapy may reduce the risk of SMN incidence for some HCC patients.

  7. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  8. The effect of photon energy on intensity-modulated radiation therapy (IMRT) plans for prostate cancer

    PubMed Central

    Sung, Wonmo; Park, Jong Min; Choi, Chang Heon; Ha, Sung Whan

    2012-01-01

    Purpose To evaluate the effect of common three photon energies (6-MV, 10-MV, and 15-MV) on intensity-modulated radiation therapy (IMRT) plans to treat prostate cancer patients. Materials and Methods Twenty patients with prostate cancer treated locally to 81.0 Gy were retrospectively studied. 6-MV, 10-MV, and 15-MV IMRT plans for each patient were generated using suitable planning objectives, dose constraints, and 8-field setting. The plans were analyzed in terms of dose-volume histogram for the target coverage, dose conformity, organs at risk (OAR) sparing, and normal tissue integral dose. Results Regardless of the energies chosen at the plans, the target coverage, conformity, and homogeneity of the plans were similar. However, there was a significant dose increase in rectal wall and femoral heads for 6-MV compared to those for 10-MV and 15-MV. The V20 Gy of rectal wall with 6-MV, 10-MV, and 15-MV were 95.6%, 88.4%, and 89.4% while the mean dose to femoral heads were 31.7, 25.9, and 26.3 Gy, respectively. Integral doses to the normal tissues in higher energy (10-MV and 15-MV) plans were reduced by about 7%. Overall, integral doses in mid and low dose regions in 6-MV plans were increased by up to 13%. Conclusion In this study, 10-MV prostate IMRT plans showed better OAR sparing and less integral doses than the 6-MV. The biological and clinical significance of this finding remains to be determined afterward, considering neutron dose contribution. PMID:23120741

  9. SU-E-T-234: Modulated Photon Radiotherapy (XMRT):The Impact of Incorporating Energy Modulation Into Intensity Modulated Radiotherapy (IMRT) Optimization

    SciTech Connect

    McGeachy, P; Khan, R

    2014-06-01

    Purpose: To develop a new radiotherapy plan optimization technique that, for a given organ geometry, will find the optimal photon beam energies and fluences to produce a desirable dose distribution. This new modulated (both in energy and fluence) photon radiotherapy (XMRT) was compared with intensity modulated radiotherapy (IMRT) for a simple organ geometry. Methods: The XMRT optimization was formulated using a linear programming approach where the objective function is the mean dose to the healthy organs and dose-point constraints were assigned to each organ of interest. The organ geometry consisted of a target, two organs at risk (OARs), and normal tissue. A seven-equispaced-coplanar beam arrangement was used. For conventional IMRT, only 6 MV beams were available, while XMRT was optimized using 6 and 18 MV beams. A prescribed dose (PD) of 72 GY was assigned to the target, with upper and lower bounds of 110% and 95% of the PD, respectively. Both OARs were assigned a maximum dose of 64 Gy, while the normal tissue was assigned a maximum dose of 66 Gy. A numerical solver, Gurobi, generated solutions for the XMRT and IMRT problems. The dose-volume histograms from IMRT and XMRT solutions were compared. Results: The maximum, minimum, mean, and homogeneity of the dose to the target were comparable between IMRT and XMRT. Though IMRT had improved dose conformity relative to XMRT, XMRT reduced the mean dose to both OARs by more than 1 Gy. For normal tissue, an increase of 5 Gy in mean dose and 27 percent in integral dose was seen for IMRT relative to XMRT. Conclusion: This work demonstrates the benefits of simultaneously modulating photon beam energy and fluence using our XMRT approach in a given phantom geometry. While target coverage was comparable, dose to healthy structures was reduced using XMRT.

  10. Modeling secondary cancer risk following paediatric radiotherapy: a comparison of intensity modulated proton therapy and photon therapy

    NASA Astrophysics Data System (ADS)

    Shin, Naomi

    Proton radiotherapy is known to reduce the radiation dose delivered to normal healthy tissue compared to photon techniques. The increase in normal tissue sparing could result in fewer acute and late effects from radiation therapy. In this work proton therapy plans were created for patients previously treated using photon therapy. Intensity modulated proton therapy (IMPT) plans were planned using inverse planning in VarianRTM's Eclipse(TM) treatment planning system with a scanning proton beam model to the same relative biological effectiveness (RBE)-weighted prescription dose as the photon plan. Proton and photon plans were compared for target dose conformity and homogeneity, body volumes receiving 2 Gy and 5 Gy, integral dose, dose to normal tissues and second cancer risk. Secondary cancer risk was determined using two methods. The relative risk of secondary cancer was found using the method described by Nguyen et al. 1 by applying a linear relationship between integral dose and relative risk of secondary cancer. The second approach used Schneider et al. 's organ equivalent dose concept to describe the dose in the body and then calculate the excess absolute risk and cumulative risk for solid cancers in the body. IMPT and photon plans had similar target conformity and homogeneity. However IMPT plans had reduced integral dose and volumes of the body receiving low dose. Overall the risk of radiation induced secondary cancer was lower for IMPT plans compared to the corresponding photon plans with a reduction of ~36% using the integral dose model and ˜50% using the organ equivalent dose model. *Please refer to dissertation for footnotes.

  11. Characterization of an Indirect-Detection Amorphous Silicon Detector for Dosimetric Measurement of Intensity Modulated Photon Fields

    NASA Astrophysics Data System (ADS)

    Bailey, Daniel Wayne

    Indirect-detection amorphous silicon electronic imagers show much promise for measurement of radiation dose, particularly for pre-treatment verification of patient-specific intensity modulated radiotherapy plans. These instruments, commonly known as Electronic Portal Imaging Devices (EPIDs), have high data density, large detecting area, convenient electronic read-out, excellent positional reproducibility, and are quickly becoming standard equipment on today's medical megavoltage linear accelerators. However, because these devices were originally intended to be digital radiograph imagers and not dosimeters, the modeling, calibration, and prediction of their response to dose carries a number of challenges. For instance, EPID dose images exhibit off-axis dose errors of up to 18% with increasing distance from the central axis of the imager (as compared to dose predictions calculated by a commercially available treatment planning system). Furthermore, these off-axis errors are asymmetric, with higher errors in the in-plane direction than in the cross-plane direction. In this work, methods are proposed to account for EPID off-axis effects by precisely calculating off-axis output factors from experimental measurements to increase the accuracy of EPID absolute dose measurement. Using these methods, dose readings acquired over the entire surface of the detector agree to within 2% accuracy as compared to respective EPID dose predictions. Similarly, the percentage of measured dose points that agree with respective calculated dose points (using 3%, 3 mm criteria) improves by as much as 60% for off-axis intensity modulated photon fields. Furthermore, a number of clinical applications of EPID dosimetry are investigated, including pixel response constancy, the effect of data density on a common metric for quantitatively comparing measured vs. calculated dose, and the implementation of an electronic portal dosimetry program for radiotherapy quality assurance.

  12. Modulated photon radiotherapy (XMRT): an algorithm for the simultaneous optimization of photon beamlet energy and intensity in external beam radiotherapy (EBRT) planning.

    PubMed

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-02-21

    This is a proof of principle study on an algorithm for optimizing external beam radiotherapy in terms of both photon beamlet energy and fluence. This simultaneous beamlet energy and fluence optimization is denoted modulated photon radiotherapy (XMRT). XMRT is compared with single-energy intensity modulated radiotherapy (IMRT) for five clinically relevant test geometries to determine whether treating beamlet energy as a decision variable improves the dose distributions. All test geometries were modelled in a cylindrical water phantom. XMRT optimized the fluence for 6 and 18 MV beamlets while IMRT optimized with only 6 MV and only 18 MV. CERR (computational environment for radiotherapy research) was used to calculate the dose deposition matrices and the resulting dose for XMRT and IMRT solutions. Solutions were compared via their dose volume histograms and dose metrics, such as the mean, maximum, and minimum doses for each structure. The homogeneity index (HI) and conformity number (CN) were calculated to assess the quality of the target dose coverage. Complexity of the resulting fluence maps was minimized using the sum of positive gradients technique. The results showed XMRT's ability to improve healthy-organ dose reduction while yielding comparable coverage of the target relative to IMRT for all geometries. All three energy-optimization approaches yielded similar HI and CNs for all geometries, as well as a similar degree of fluence map complexity. The dose reduction provided by XMRT was demonstrated by the relative decrease in the dose metrics for the majority of the organs at risk (OARs) in all geometries. Largest reductions ranged between 5% to 10% in the mean dose to OARs for two of the geometries when compared with both single-energy IMRT schemes. XMRT has shown potential dosimetric benefits through improved OAR sparing by allowing beam energy to act as a degree of freedom in the EBRT optimization process.

  13. Silicon photonic heater-modulator

    DOEpatents

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  14. Influence of photon energy on the quality of prostate intensity modulated radiation therapy plans based on analysis of physical indices.

    PubMed

    Thangavelu, Sundaram; Jayakumar, S; Govindarajan, K N; Supe, Sanjay S; Nagarajan, V; Nagarajan, M

    2011-01-01

    The goal of the present study was to study the effects of low- and high-energy intensity-modulated photon beams on the planning of target volume and the critical organs in cases of localized prostate tumors in a cohort of 8 patients. To ensure that the difference between the plans is due to energy alone, all other parameters were kept constant. A mean dose volume histogram (DVH) for each value of energy and for each contoured structure was created and was considered as completely representative for all patients. To facilitate comparison between 6-MV and 15-MV beams, the DVH-s were normalized. The different parameters that were compared for 6-MV and 15-MV beams included mean DVH, different homogeneity indices, conformity index, etc. Analysis of several indices depicts more homogeneous dose for 15-MV beam and more conformity for 6-MV beam. Comparison of all these parameters showed that there was little difference between the 6-MV and 15-MV beams. For rectum, 2 to 4 % more volume received high dose with the 6-MV beam in comparison with the 15-MV beam, which was not clinically significant, since in practice much tighter constraints are maintained, such that Normal Tissue Complication Probability (NTCP) is kept within 5 %. Such tighter constraints might increase the dose to other regions and other critical organs but are unlikely to increase their complication probabilities. Hence the slight advantages of 15-MV beam in providing benefits of better normal-tissue sparing and better coverage cannot be considered to outweigh its well-known risk of non-negligible neutron production.

  15. Potential Benefits of Scanned Intensity-Modulated Proton Therapy Versus Advanced Photon Therapy With Regard to Sparing of the Salivary Glands in Oropharyngeal Cancer

    SciTech Connect

    Water, Tara A. van de; Bijl, Hendrik P.; Jong, Marije E. de; Schilstra, Cornelis; Langendijk, Johannes A.

    2011-03-15

    Purpose: To test the hypothesis that scanned intensity-modulated proton therapy (IMPT) results in a significant dose reduction to the parotid and submandibular glands as compared with intensity-modulated radiotherapy with photons (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for oropharyngeal cancer. In addition, we investigated whether the achieved dose reductions would theoretically translate into a reduction of salivary dysfunction and xerostomia. Methods and Materials: Ten patients with N0 oropharyngeal carcinoma were used. The intensity-modulated plans delivered simultaneously 70 Gy to the boost planning target volume (PTV2) and 54 Gy to the elective nodal areas (PTV1). The 3D-CRT technique delivered sequentially 70 Gy and 46 Gy to PTV2 and PTV1, respectively. Normal tissue complication probabilities were calculated for salivary dysfunction and xerostomia. Results: Planning target volume coverage results were similar for IMPT and IMRT. Intensity-modulated proton therapy clearly improved the conformity. The 3D-CRT results were inferior to these results. The mean dose to the parotid glands by 3D-CRT (50.8 Gy), IMRT (25.5 Gy), and IMPT (16.8 Gy) differed significantly. For the submandibular glands no significant differences between IMRT and IMPT were found. The dose reductions obtained with IMPT theoretically translated into a significant reduction in normal tissue complication probability. Conclusion: Compared with IMRT and 3D-CRT, IMPT improved sparing of the organs at risk, while keeping similar target coverage results. The dose reductions obtained with IMPT vs. IMRT and 3D-CRT varied widely per individual patient. Intensity-modulated proton therapy theoretically translated into a clinical benefit for most cases, but this requires clinical validation.

  16. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC

    SciTech Connect

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-04-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields.

  17. Dependences of mucosal dose on photon beams in head-and-neck intensity-modulated radiation therapy: a Monte Carlo study

    SciTech Connect

    Chow, James C.L.; Owrangi, Amir M.

    2012-07-01

    Dependences of mucosal dose in the oral or nasal cavity on the beam energy, beam angle, multibeam configuration, and mucosal thickness were studied for small photon fields using Monte Carlo simulations (EGSnrc-based code), which were validated by measurements. Cylindrical mucosa phantoms (mucosal thickness = 1, 2, and 3 mm) with and without the bone and air inhomogeneities were irradiated by the 6- and 18-MV photon beams (field size = 1 Multiplication-Sign 1 cm{sup 2}) with gantry angles equal to 0 Degree-Sign , 90 Degree-Sign , and 180 Degree-Sign , and multibeam configurations using 2, 4, and 8 photon beams in different orientations around the phantom. Doses along the central beam axis in the mucosal tissue were calculated. The mucosal surface doses were found to decrease slightly (1% for the 6-MV photon beam and 3% for the 18-MV beam) with an increase of mucosal thickness from 1-3 mm, when the beam angle is 0 Degree-Sign . The variation of mucosal surface dose with its thickness became insignificant when the beam angle was changed to 180 Degree-Sign , but the dose at the bone-mucosa interface was found to increase (28% for the 6-MV photon beam and 20% for the 18-MV beam) with the mucosal thickness. For different multibeam configurations, the dependence of mucosal dose on its thickness became insignificant when the number of photon beams around the mucosal tissue was increased. The mucosal dose with bone was varied with the beam energy, beam angle, multibeam configuration and mucosal thickness for a small segmental photon field. These dosimetric variations are important to consider improving the treatment strategy, so the mucosal complications in head-and-neck intensity-modulated radiation therapy can be minimized.

  18. Image-Guided Intensity-Modulated Photon Radiotherapy Using Multifractionated Regimen to Paraspinal Chordomas and Rare Sarcomas

    SciTech Connect

    Terezakis, Stephanie A. Lovelock, D. Michael; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan N.P.; Yamada, Yoshiya

    2007-12-01

    Purpose: Image-guided intensity-modulated radiotherapy enables delivery of high-dose radiation to tumors close to the spinal cord. We report our experience with multifractionated regimens using image-guided intensity-modulated radiotherapy to treat gross paraspinal disease to doses beyond cord tolerance. Methods and Materials: We performed a retrospective review of 27 consecutive patients with partially resected or unresectable paraspinal tumors irradiated to >5,300 cGy in standard fractionation. Results: The median follow-up was 17.4 months (range, 2.1-47.3). Eighteen sarcomas, seven chordomas, and two ependymomas were treated. The median dose to the planning target volume was 6,600 cGy (range, 5,396-7,080) in 180- or 200-cGy fractions. The median planning target volume was 164 cm{sup 3} (range, 29-1,116). Seven patients developed recurrence at the treatment site (26%), and 6 of these patients had high-grade tumors. Three patients with recurrence had metastatic disease at the time of radiotherapy. The 2-year local control rate was 65%, and the 2-year overall survival rate was 79%. Of the 5 patients who died, 4 had metastatic disease at death. Twenty-three patients (84%) reported either no pain or improved pain at the last follow-up visit. Sixteen patients discontinued narcotic use after treatment (62.5%). Twenty-three patients (89%) had a stable or improved American Spine Injury Association score at the last follow-up visit. No patient experienced radiation-induced myelopathy. Conclusions: The dose to paraspinal tumors has traditionally been limited to respect cord tolerance. With image-guided intensity-modulated radiotherapy, greater doses of radiation delivered in multiple fractions can be prescribed with excellent target coverage, effective palliation, and acceptable toxicity and local control.

  19. Intensity modulated proton therapy.

    PubMed

    Kooy, H M; Grassberger, C

    2015-07-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed "pencil beams" of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak-the characteristic peak of dose at the end of range-combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose "painting" within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the highest level of

  20. Intensity modulated proton therapy

    PubMed Central

    Grassberger, C

    2015-01-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed “pencil beams” of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak—the characteristic peak of dose at the end of range—combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose “painting” within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the

  1. Poster — Thur Eve — 35: The impact of intensity- and energy-modulated photon radiotherapy (XMRT) optimization on a variety of organ geometries

    SciTech Connect

    McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.; Zinchenko, Y.

    2014-08-15

    We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plans consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.

  2. Comparison of Three-Dimensional (3D) Conformal Proton Radiotherapy (RT), 3D Conformal Photon RT, and Intensity-Modulated RT for Retroperitoneal and Intra-Abdominal Sarcomas

    SciTech Connect

    Swanson, Erika L.; Indelicato, Daniel J.; Louis, Debbie; Flampouri, Stella; Li, Zuofeng; Morris, Christopher G.; Paryani, Nitesh; Slopsema, Roelf

    2012-08-01

    Purpose: To compare three-dimensional conformal proton radiotherapy (3DCPT), intensity-modulated photon radiotherapy (IMRT), and 3D conformal photon radiotherapy (3DCRT) to predict the optimal RT technique for retroperitoneal sarcomas. Methods and Materials: 3DCRT, IMRT, and 3DCPT plans were created for treating eight patients with retroperitoneal or intra-abdominal sarcomas. The clinical target volume (CTV) included the gross tumor plus a 2-cm margin, limited by bone and intact fascial planes. For photon plans, the planning target volume (PTV) included a uniform expansion of 5 mm. For the proton plans, the PTV was nonuniform and beam-specific. The prescription dose was 50.4 Gy/Cobalt gray equivalent CGE. Plans were normalized so that >95% of the CTV received 100% of the dose. Results: The CTV was covered adequately by all techniques. The median conformity index was 0.69 for 3DCPT, 0.75 for IMRT, and 0.51 for 3DCRT. The median inhomogeneity coefficient was 0.062 for 3DCPT, 0.066 for IMRT, and 0.073 for 3DCRT. The bowel median volume receiving 15 Gy (V15) was 16.4% for 3DCPT, 52.2% for IMRT, and 66.1% for 3DCRT. The bowel median V45 was 6.3% for 3DCPT, 4.7% for IMRT, and 15.6% for 3DCRT. The median ipsilateral mean kidney dose was 22.5 CGE for 3DCPT, 34.1 Gy for IMRT, and 37.8 Gy for 3DCRT. The median contralateral mean kidney dose was 0 CGE for 3DCPT, 6.4 Gy for IMRT, and 11 Gy for 3DCRT. The median contralateral kidney V5 was 0% for 3DCPT, 49.9% for IMRT, and 99.7% for 3DCRT. Regardless of technique, the median mean liver dose was <30 Gy, and the median cord V50 was 0%. The median integral dose was 126 J for 3DCPT, 400 J for IMRT, and 432 J for 3DCRT. Conclusions: IMRT and 3DCPT result in plans that are more conformal and homogenous than 3DCRT. Based on Quantitative Analysis of Normal Tissue Effects in Clinic benchmarks, the dosimetric advantage of proton therapy may be less gastrointestinal and genitourinary toxicity.

  3. Optical modulator based on coupled photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Serafimovich, Pavel G.; Kazanskiy, Nikolay L.

    2016-07-01

    We propose and numerically investigate an optical signal modulator based on two-photonic crystal nanobeam cavities coupled through a waveguide. The suggested modulator shifts the resonant frequency over a scalable range. We design a compact optical modulator based on photonic crystal nanobeams cavities that exhibits high stability to manufacturing. Photonic crystal waveguide tuning in the low-intensity region of the resonant mode is demonstrated. The advantages of the suggested approach over the single-resonator optical modulator approaches include the possibilities to shift the modulator frequency over a scalable range that depends on switching energy level and to effectively electrically tune the device in the low-intensity region of the resonant mode.

  4. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    SciTech Connect

    Matney, Jason; Park, Peter C.; Bluett, Jaques; Chen, Yi Pei; Liu, Wei; Court, Laurence E.; Liao, Zhongxing; Li, Heng; Mohan, Radhe

    2013-11-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  5. Nuclear astrophysics with intense photon beam

    SciTech Connect

    Shizuma, Toshiyuki

    2012-07-09

    Quasi-monochromatic photon beams generated by inverse Compton scattering of laser light with high energy electrons can be used for precise measurements of photoneutrons and resonant scattered {gamma} rays. Extremely high intensity and small energy spreading width of the photon beam expected at the ELI Nuclear Physics facility would increase the experimental sensitivities considerably. Possible photonuclear reaction measurements relevant to the p-process nucleosynthesis are discussed.

  6. Light intensity modulation in phototherapy

    NASA Astrophysics Data System (ADS)

    Lukyanovich, P. A.; Zon, B. A.; Kunin, A. A.; Pankova, S. N.

    2015-04-01

    A hypothesis that blocking ATP synthesis is one of the main causes of the stimulating effect is considered based on analysis of the primary photostimulation mechanisms. The light radiation intensity modulation is substantiated and the estimates of such modulation parameters are made. An explanation is offered to the stimulation efficiency decrease phenomenon at the increase of the radiation dose during the therapy. The results of clinical research of the medical treatment in preventive dentistry are presented depending on the spectrum and parameters of the light flux modulation.

  7. Photonic module: An on-demand resource for photonic entanglement

    SciTech Connect

    Devitt, Simon J.; Greentree, Andrew D.; Hollenberg, Lloyd C. L.; Ionicioiu, Radu; O'Brien, Jeremy L.; Munro, William J.

    2007-11-15

    Photonic entanglement has a wide range of applications in quantum computation and communication. Here we introduce a device: the photonic module, which allows for the rapid, deterministic preparation of a large class of entangled photon states. The module is an application independent, ''plug and play'' device, with sufficient flexibility to prepare entanglement for all major quantum computation and communication applications in a completely deterministic fashion without number-discriminated photon detection. We present two alternative constructions for the module, one using free-space components and one in a photonic band-gap structure. The natural operation of the module is to generate states within the stabilizer formalism and we present an analysis on the cavity requirements to experimentally realize this device.

  8. Phase Modulation of Photonic Band Gap Signal

    PubMed Central

    Wang, Zhiguo; Gao, Mengqin; Mahesar, Abdul Rasheed; Zhang, Yanpeng

    2016-01-01

    We first investigate the probe transmission signal (PTS) and the four wave mixing band gap signal (FWM BGS) modulated simultaneously by the relative phase and the nonlinear phase shift in the photonic band gap (PBG) structure. The switch between the absorption enhancement of PTS and the transmission enhancement of PTS with the help of changing the relative phase and the nonlinear phase shift is obtained in inverted Y-type four level atomic system experimentally and theoretically. The corresponding switch in PTS can be used to realize all optical switches. On other hand, the relative phase and the nonlinear phase shift also play the vital role to modulate the intensity of FWM BGS reflected from the PBG structure. And it can be potentially used to realize the optical amplifier. PMID:27323849

  9. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    SciTech Connect

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  10. Nonlocal hyperconcentration on entangled photons using photonic module system

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan

    2016-06-01

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  11. Intensity Modulated Proton and Photon Therapy for Early Prostate Cancer With or Without Transperineal Injection of a Polyethylen Glycol Spacer: A Treatment Planning Comparison Study

    SciTech Connect

    Weber, Damien C.; Zilli, Thomas; Vallee, Jean Paul; Rouzaud, Michel; Miralbell, Raymond; Cozzi, Luca

    2012-11-01

    Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipse treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no observed

  12. Single-energy intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  13. Single-energy intensity modulated proton therapy.

    PubMed

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT. PMID:26352616

  14. The Evaluation and Study of Modern Radiation Dosimetry Methods as Applied to Advanced Radiation Therapy Treatments Using Intensity Modulated Megavoltage Photon Beams

    NASA Astrophysics Data System (ADS)

    Stambaugh, Cassandra K. K.

    The purpose of this work is to evaluate quasi-3D arrays for use with intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and to determine their clinical relevance. This is achieved using a Delta4 from Scandidos and ArcCheck from Sun Nuclear and the associated software. While certain aspects of these devices and software have been previously evaluated, the main goal of this work is to evaluate the new aspects, such as reconstructing dose on a patient CT set, and extending the capabilities. This includes the capability to reconstruct the dose based on a helical delivery as well as studying the dose to a moving target using measurement-guided motion simulations. It was found that Sun Nuclear's ArcCheck/3DVH system exhibited excellent agreement for dose reconstruction for IMRT/VMAT using a traditional C-arm linear accelerator and stringent 2%/2mm comparison constraints. It also is a powerful tool for measurement-guided dose estimates for moving targets, allowing for many simulations to be performed based on one measurement and the target motion data. For dose reconstruction for a helical delivery, the agreement was not as good for the stringent comparison but was reasonable for the clinically acceptable 3%/3mm comparison. Scandidos' Delta4 shows good agreement with stringent 2%/2mm constraints for its dose reconstruction on the phantom. However, the dose reconstruction on the patient CT set was poor and needs more work. Overall, it was found that quasi-3D arrays are powerful tools for dose reconstruction and treatment plan comparisons. The ability to reconstruct the dose allows for a dose resolution comparable to the treatment plan, which negates the previous issues with inadequate sampling and resolution issues found when just comparing the diodes. The ability to quickly and accurately compare many plans and target motions with minimum setup makes the quasi-3D array an attractive tool for both commissioning and patient specific

  15. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... modulating—or controlling—the intensity of the radiation beam in multiple small volumes. IMRT also allows higher ... of multiple intensity-modulated fields coming from different beam directions produce a custom tailored radiation dose that ...

  16. Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy

    NASA Astrophysics Data System (ADS)

    Fontenot, Jonas D.; Bloch, Charles; Followill, David; Titt, Uwe; Newhauser, Wayne D.

    2010-12-01

    Theoretical calculations have shown that proton therapy can reduce the incidence of radiation-induced secondary malignant neoplasms (SMN) compared with photon therapy for patients with prostate cancer. However, the uncertainties associated with calculations of SMN risk had not been assessed. The objective of this study was to quantify the uncertainties in projected risks of secondary cancer following contemporary proton and photon radiotherapies for prostate cancer. We performed a rigorous propagation of errors and several sensitivity tests to estimate the uncertainty in the ratio of relative risk (RRR) due to the largest contributors to the uncertainty: the radiation weighting factor for neutrons, the dose-response model for radiation carcinogenesis and interpatient variations in absorbed dose. The interval of values for the radiation weighting factor for neutrons and the dose-response model were derived from the literature, while interpatient variations in absorbed dose were taken from actual patient data. The influence of each parameter on a baseline RRR value was quantified. Our analysis revealed that the calculated RRR was insensitive to the largest contributors to the uncertainty. Uncertainties in the radiation weighting factor for neutrons, the shape of the dose-risk model and interpatient variations in therapeutic and stray doses introduced a total uncertainty of 33% to the baseline RRR calculation.

  17. Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy

    PubMed Central

    Fontenot, Jonas D; Bloch, Charles; Followill, David; Titt, Uwe; Newhauser, Wayne D

    2014-01-01

    Theoretical calculations have shown that proton therapy can reduce the incidence of radiation-induced secondary malignant neoplasms (SMN) compared with photon therapy for patients with prostate cancer. However, the uncertainties associated with calculations of SMN risk had not been assessed. The objective of this study was to quantify the uncertainties in projected risks of secondary cancer following contemporary proton and photon radiotherapies for prostate cancer. We performed a rigorous propagation of errors and several sensitivity tests to estimate the uncertainty in the ratio of relative risk (RRR) due to the largest contributors to the uncertainty: the radiation weighting factor for neutrons, the dose-response model for radiation carcinogenesis and interpatient variations in absorbed dose. The interval of values for the radiation weighting factor for neutrons and the dose-response model were derived from the literature, while interpatient variations in absorbed dose were taken from actual patient data. The influence of each parameter on a baseline RRR value was quantified. Our analysis revealed that the calculated RRR was insensitive to the largest contributors to the uncertainty. Uncertainties in the radiation weighting factor for neutrons, the shape of the dose-risk model and interpatient variations in therapeutic and stray doses introduced a total uncertainty of 33% to the baseline RRR calculation. PMID:21076196

  18. Plasma optical modulators for intense lasers.

    PubMed

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D A; Mori, W B; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 10(16) W cm(-2) to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  19. Plasma optical modulators for intense lasers

    NASA Astrophysics Data System (ADS)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-06-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm-2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

  20. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  1. Intensity-intensity and intensity-amplitude correlation of microwave photons from a superconducting artificial atom

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Feng, Xunli; Oh, C. H.

    2016-10-01

    We investigate the dynamics of the microwave-frequency nonclassical correlations in a three-level Δ -configuration artificial atom, which is realized by superconducting quantum circuits. The intensity-intensity correlation and intensity field are strongly dependent on the relative phase Φ of the driven fields. It is found that two interference loops are formed in the dressed state picture at Φ =0 or π, which are responsible for the generation of nonclassical microwave photons. When the phase is changed into Φ =π /2 or 3π /2 , the temporal correlation functions exhibit different oscillating behaviors. The phase-sensitive nonclassical correlations of fluorescence photons may find practical application in the design of all-optical switches and quantum information processing.

  2. Photon-counting phase-modulation fluorometer for lifetime measurements

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsuo; Hori, Akio; Kamada, Takeshi

    2001-05-01

    We propose a phase-modulation fluorometer that is applicable to a very weak fluorescence intensity level. In order to counter the single-photon event situation, we have introduced a combination of a time-to-amplitude converter (TAC) and a pulse height analyzer (PHA) to the phase- modulation fluorometer, the combination of which is usually used in the single-photon correlation method to measure fluorescence decay waveforms by pulsed excitation. In the proposed fluorometer, a sinusoidal response waveform that is shifted in phase over the reference one is obtained statistically as a histogram in the PHA memory and then the fluorescence lifetime can be calculated by the same procedure as the conventional analog phase-modulation method. The excitation light source used was a current- modulated ultraviolet light-emitting diode (UV LED), whose center wavelength was 370 nm and its spectral bandwidth was 10 nm. Fluorescence lifetimes of 17.6 ns and 5.7 ns obtained for 10 ppb quinine sulfate in 0.1 N H2SO4 and for 10 ppb rhodamine 6G in ethanol, respectively, agreed well with those reported in the literature.

  3. Validation of modulated electron radiotherapy delivered with photon multileaf collimation

    NASA Astrophysics Data System (ADS)

    Klein, Eric E.

    There is a challenge in radiotherapy to treat shallow targets due to the inability to provide dose heterogeneity while simultaneously minimizing dose to distal critical organs. There is a niche for Modulated Electron Radiotherapy (MERT) to complement a photon IMRT program. Disease sites such as post-mastectomy chest wall, and subcutaneous lymphoma of the scalp, etc. are better suited for modulated electrons rather than photons, or perhaps a combination. Inherent collimation systems are not conducive for electron beam delivery (in lieu of extended applicators), nor do commercial treatment planning systems model electrons collimated without applicators. The purpose of this study is to evaluate modulation of electrons by inherent photon multileaf collimators, and calculated and optimized by means of Monte Carlo. Modulated electron radiotherapy (MERT) evaluation was conducted with a Trilogy 120 leaf MLC for 6-20 MeV. To provide a sharp penumbra, modulated beams were delivered with short SSDs (70-85cm). Segment widths (SW) ranging from 1 to 10cm were configured for delivery and planning, using BEAMnrc MC code with 109 particles, and DOSXYZnrc calculations. Calculations were set with: voxel size 0.2 x 0.2 x 0.1cm3, and photon/electron transport energy cutoffs of 0.01 MeV/0.521 MeV. Dosimetry was performed with film and micro chambers. Calculated and measured data were analyzed in MatLab. Once validation of static fields was successfully completed, modulated portals (segmented and dynamic) were configured for treatment and calculations. Optimization for target coverage and OAR sparing was achieved by choosing energies according to target depth, and SW according to spatial coverage. Intensity for each segment was optimized by MC methods. Beam sharpness (penumbra) degraded with: decreasing energy and SW, and increasing SSD. PDD decreased significantly with decreasing SW. We have demonstrated excellent calculation/measurement agreement (<3mm). Equal dose profiles were

  4. Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study

    PubMed Central

    Zhang, Ying; Feng, Yuanming; Ming, Xin

    2016-01-01

    A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413

  5. Reconfigurable microwave photonic filter based on polarization modulation

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Pan, Shilong; Li, Peili

    2016-03-01

    A reconfigurable microwave photonic filter based on a polarization modulator (PolM) is proposed and experimentally demonstrated. The PolM together with a polarization controller (PC) and a polarization beam splitter (PBS) implements two complementary intensity modulations in two separated branches. Then, optical components are inserted in the two branches to realize a bandpass filter and an allpass filter, respectively. When the two branches are combined by a second PBS, a filter with a frequency response that equals the subtraction of the frequency responses of the allpass filter and bandpass filter is achieved. By adjusting the PCs placed before the second PBS, a notch filter with a tunable notch depth or a bandpass filter can be achieved.

  6. Relative fine-structure intensities in two-photon excitation

    NASA Technical Reports Server (NTRS)

    Crosley, D. R.; Bischel, W. K.

    1984-01-01

    A discrepancy is pointed out between experimental determinations of the relative intensities for different fine-structure components of the two-photon transitions 2p3P 3p3P in oxygen and 2p3 4S0 - 2p2 3p4D0 in nitrogen, which agreed well with calculations involving a single virtual intermediate level, and a two-photon selection rule dJ not equal to one, derived in a purely theoretical and erroneous treatment of these transitions. Five other experiments are also briefly examined, with the conclusion that relative fine-structure intensities in two-photon transitions are well understood as straightforward extensions of angular momentum coupling in single-photon cases, in accordance with allowed dJ = 0, + or -1, and + or -2 transitions.

  7. Reversibly phototunable TiO{sub 2} photonic crystal modulated by Ag nanoparticles' oxidation/reduction

    SciTech Connect

    Liu Jian; Zhou Jinming; Ye Changqing; Li Mingzhu; Wang Jingxia; Jiang Lei; Song Yanlin

    2011-01-10

    We report a reversibly phototunable photonic crystal system whose reflectance at the stop band position can be modulated by alternating UV/visible (UV/Vis) irradiation. The phototunable system consists of Ag nanoparticles and TiO{sub 2} photonic crystal. The stop bands intensity of Ag loaded TiO{sub 2} photonic crystals were found to be dependent on the redox states of Ag nanoparticles. The quasi 'on' and 'off' states of the stop band were reversibly modulated by the Ag nanoparticles' oxidation/reduction through alternating UV/Vis light irradiation.

  8. Progress toward photon force-based sensors: a system identification approach based on laser intensity modulation for measurement of the axial force constant of a single-beam gradient photon force t

    NASA Astrophysics Data System (ADS)

    Brenan, Colin J. H.; David, Robert; Graham, Matthew R.; Hunter, Ian W.

    1999-08-01

    New sensor technologies with the sensitivity and specificity capable of detecting biological and chemical agents at low concentration are of increasing importance for many environmental monitoring applications. We propose a potentially new class of microsensors that exploits the mechanical dynamics of a micrometer-sized particle held in a 3D optical force trap formed by a focused laser beam. Modulation of the laser trapping power axially perturbs the microparticle from its equilibrium position and permits measurement of the mechanical compliance transfer function (force input, displacement output) characterizing the particle micromechanical dynamics. In a mechanically homogeneous and isotropic environment, the particle motion is readily modeled as a forced harmonic oscillator; however, physico-chemical interactions between the particle and its surroundings impose external forces that modify the compliance transfer function. Our preliminary measurements indicate < 10 ppm changes in mass of a trapped microparticle can be detected with this method, suggesting possible applications as a chemical/biological sensor or for solubility measurements of microparticles.

  9. Intense harmonics generation with customized photon frequency and optical vortex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki

    2016-08-01

    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre-Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  10. Intense harmonics generation with customized photon frequency and optical vortex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki

    2016-08-01

    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre–Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  11. International exercise on 124Sb photon emission intensities determination.

    PubMed

    Bé, M-M; Chauvenet, B; Amiot, M-N; Bobin, C; Lépy, M-C; Branger, T; Lanièce, I; Luca, A; Sahagia, M; Wätjen, A C; Kossert, K; Ott, O; Nähle, O; Dryák, P; Sochorovà, J; Kovar, P; Auerbach, P; Altzitzoglou, T; Pommé, S; Sibbens, G; Van Ammel, R; Paepen, J; Iwahara, A; Delgado, J U; Poledna, R

    2010-10-01

    An international exercise, registered as EUROMET project no. 907, was launched to measure both the activity of a solution of (124)Sb and the photon emission intensities of its decay. The same solution was sent by LNE-LNHB to eight participating laboratories, six of which sent results for photon emission intensities both in absolute and in relative terms. From these results and including previous published values, a consistent decay scheme was worked out, proving that problems in activity measurements have not been due to decay scheme data.

  12. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.

    PubMed

    Wang, Gang; Huang, Ji Ping; Yu, Kin Wah

    2008-10-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.

  13. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  14. A fast profile monitor with scintillating fiber hodoscopes for high-intensity photon beams

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Hamano, H.; Hashimoto, R.; Honda, Y.; Ishida, T.; Kaida, S.; Kanda, H.; Kido, S.; Matsumura, Y.; Miyabe, M.; Mizutani, K.; Nagasawa, I.; Nakamura, A.; Nanbu, K.; Nawa, K.; Ogushi, S.; Shibasaki, Y.; Shimizu, H.; Sugai, H.; Suzuki, K.; Takahashi, K.; Takahashi, S.; Taniguchi, Y.; Tokiyasu, A. O.; Tsuchikawa, Y.; Yamazaki, H.

    2016-03-01

    A fast beam-profile monitor has been developed for high-energy photon beamlines at the Research Center for Electron Photon Science, Tohoku University. The position of the photon converted into an electron-positron pair in a 0.5 mm-thick aluminum plate is measured with two hodoscopes made of scintillating fibers with cross-sections of 3 × 3mm2. Events in which charged particles are produced upstream are rejected with a charge veto plastic scintillator placed in front of the plate, and pair-production events are identified with a trigger plastic scintillator placed behind the plate. The position is determined by a developed logic module with a field-programmable gate array. The dead time for processing an event is 35 ns, and a high data acquisition efficiency (~ 100 %) can be achieved with this monitor for high-intensity photon beams corresponding to 20 MHz tagging signals.

  15. Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusing media.

    PubMed

    Panigrahi, Swapnesh; Fade, Julien; Ramachandran, Hema; Alouini, Mehdi

    2016-07-11

    The efficiency of using intensity modulated light for the estimation of scattering properties of a turbid medium and for ballistic photon discrimination is theoretically quantified in this article. Using the diffusion model for modulated photon transport and considering a noisy quadrature demodulation scheme, the minimum-variance bounds on estimation of parameters of interest are analytically derived and analyzed. The existence of a variance-minimizing optimal modulation frequency is shown and its evolution with the properties of the intervening medium is derived and studied. Furthermore, a metric is defined to quantify the efficiency of ballistic photon filtering which may be sought when imaging through turbid media. The analytical derivation of this metric shows that the minimum modulation frequency required to attain significant ballistic discrimination depends only on the reduced scattering coefficient of the medium in a linear fashion for a highly scattering medium.

  16. Fast-switching bistable cholesteric intensity modulator.

    PubMed

    Hsiao, Yu-Cheng; Tang, Chen-Yu; Lee, Wei

    2011-05-01

    A fast-switching bistable optical intensity modulator is demonstrated. Using a dual-frequency cholesteric liquid crystal, the direct switching is achieved from the scattering focal conic state to the transparent long-pitch planar state. In comparison with the bistable cholesteric devices proposed previously, our device, characterized by its capability of direct two-way transitions between the two bistable states, possesses a very short transition time from the focal conic state to the planar state as short as 10 ms. No voltage has to be applied to sustain the optical states, making the device low energy consuming. Potential applications of this device are addressed.

  17. Fast-switching bistable cholesteric intensity modulator.

    PubMed

    Hsiao, Yu-Cheng; Tang, Chen-Yu; Lee, Wei

    2011-05-01

    A fast-switching bistable optical intensity modulator is demonstrated. Using a dual-frequency cholesteric liquid crystal, the direct switching is achieved from the scattering focal conic state to the transparent long-pitch planar state. In comparison with the bistable cholesteric devices proposed previously, our device, characterized by its capability of direct two-way transitions between the two bistable states, possesses a very short transition time from the focal conic state to the planar state as short as 10 ms. No voltage has to be applied to sustain the optical states, making the device low energy consuming. Potential applications of this device are addressed. PMID:21643231

  18. Two-photon Compton process in pulsed intense laser fields

    NASA Astrophysics Data System (ADS)

    Seipt, Daniel; Kämpfer, Burkhard

    2012-05-01

    Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact expression for the differential emission probability of the two-photon Compton process in a pulsed intense laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is 2 orders of magnitude stronger than expected from a perturbative estimate.

  19. Towards a Graphene-Based Low Intensity Photon Counting Photodetector.

    PubMed

    Williams, Jamie O D; Alexander-Webber, Jack A; Lapington, Jon S; Roy, Mervyn; Hutchinson, Ian B; Sagade, Abhay A; Martin, Marie-Blandine; Braeuninger-Weimer, Philipp; Cabrero-Vilatela, Andrea; Wang, Ruizhi; De Luca, Andrea; Udrea, Florin; Hofmann, Stephan

    2016-01-01

    Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies. PMID:27563903

  20. Towards a Graphene-Based Low Intensity Photon Counting Photodetector

    PubMed Central

    Williams, Jamie O. D.; Alexander-Webber, Jack A.; Lapington, Jon S.; Roy, Mervyn; Hutchinson, Ian B.; Sagade, Abhay A.; Martin, Marie-Blandine; Braeuninger-Weimer, Philipp; Cabrero-Vilatela, Andrea; Wang, Ruizhi; De Luca, Andrea; Udrea, Florin; Hofmann, Stephan

    2016-01-01

    Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies. PMID:27563903

  1. Towards a Graphene-Based Low Intensity Photon Counting Photodetector.

    PubMed

    Williams, Jamie O D; Alexander-Webber, Jack A; Lapington, Jon S; Roy, Mervyn; Hutchinson, Ian B; Sagade, Abhay A; Martin, Marie-Blandine; Braeuninger-Weimer, Philipp; Cabrero-Vilatela, Andrea; Wang, Ruizhi; De Luca, Andrea; Udrea, Florin; Hofmann, Stephan

    2016-08-23

    Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies.

  2. Electro-optic modulation for high-speed characterization of entangled photon pairs

    SciTech Connect

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; Weiner, Andrew M.

    2015-11-10

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currently available.

  3. Electro-optic modulation for high-speed characterization of entangled photon pairs

    DOE PAGESBeta

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; Weiner, Andrew M.

    2015-11-10

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less

  4. Large conditional single-photon cross-phase modulation.

    PubMed

    Beck, Kristin M; Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-08-30

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of [Formula: see text] (and up to [Formula: see text] by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic.

  5. Large conditional single-photon cross-phase modulation.

    PubMed

    Beck, Kristin M; Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-08-30

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of [Formula: see text] (and up to [Formula: see text] by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  6. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  7. Ultrafast modulators based on nonlinear photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Li, Jianheng; Tu, Yongming; Ho, Seng-Tiong; Wessels, Bruce W.

    2011-03-01

    Nonlinear photonic crystal (PhC) waveguides are being developed for ultrafast modulators. To enable phase velocity matching we have investigated one- and two-dimensional structures. Photonic crystal (PhC) waveguides based on epitaxial barium titanate (BTO) thin film in a Si3N4/BTO/MgO multilayer structure were fabricated by electron beam lithography or focused ion beam (FIB) milling. For both one- and two-dimensional PhCs, simulation shows that sufficient refractive index contrast is achieved to form a stop band. For one-dimensional Bragg reflector, we measured its slow light properties and the group refractive index of optical wave. For a millimeter long waveguide a 27 nm wide stop band was obtained at 1550 nm. A slowing of the light was observed, the group refractive indices at the mid band gap and at the band edges were estimated to be between 8.0 and 12 for the transverse electric (TE) mode, and 6.9 and 13 for the transverse magnetic (TM) mode. For TE optical modes, the enhancement factor of EO coefficient ranges from 7 to 13, and for the TM mode, the factor ranges from 5.9 to 15. Measurements indicate that near velocity phase matching can be realized. Upon realizing the phase velocity matching condition, devices with a small foot print with bandwidths at 490 GHz can be attained. Two-dimensional PhC crystal with a hexagonal lattice was also investigated. The PhCs were fabricated from epitaxial BTO thin film multilayers using focused ion beam milling. The PhCs are based on BTO slab waveguide and air hole arrays defined within Si3N4 and BTO thin films. A refractive index contrast of 0.4 between the barium titanate thin film multilayers and the air holes enables strong light confinement. For the TE optical mode, the hexagonal photonic crystal lattice with a diameter of 155 nm and a lattice constant of 740 nm yields a photonic bandgap over the wavelength range from 1525 to 1575 nm. The transmission spectrum of the PhC waveguide exhibits stronger Fabry Perot

  8. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan

    2016-05-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph

  9. Standardization of xenon-127 and measurement of photon emission intensities.

    PubMed

    Rodrigues, M; Lépy, M-C; Cassette, P; Mougeot, X; Bé, M M

    2014-05-01

    Xenon-127 was standardized by internal gas counting using three proportional counters in a differential arrangement to eliminate edge effects. The detection efficiency of the proportional counters was calculated by considering the cascade of events following the electron capture and associated gamma transitions. Activity per unit volume was measured with 0.7% relative standard uncertainty. Gamma-ray spectrometry was performed and absolute photon emission intensities were derived. This study shows that (127)Xe could be a surrogate for (133)Xe for the calibration of remote radio-xenon monitoring stations.

  10. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  11. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  12. Frequency and intensity modulation characteristics of GaAs lasers in an external cavity

    SciTech Connect

    Carter, G.M.; Huang, Kao Yang . Dept. of Electrical Engineering); Brotman, J.; Grober, R.; Mandelberg, H. )

    1993-12-01

    Frequency and intensity modulation characteristics were measured for external cavity GaAs diode lasers as a function of modulation frequency. The data, displayed as a Chirp-to-Power (CPR) ratio, showed at low modulation frequencies a flat response and a zero or 180 degree relative phase depending on laser structure. A model incorporating a carrier density dependent imaginary part of the differential gain (Henry alpha factor) was developed to explain the data. The model yields simple scaling of the CPR with injection current and photon lifetime. The agreement between the model and data including scaling is excellent. These results provide strong evidence for transverse spatial hole burning'' in these lasers.

  13. Phase noise measurement of phase modulation microwave photonic links

    NASA Astrophysics Data System (ADS)

    Ye, Quanyi; Chen, Zhengyu; Xu, Zhiguo; Gao, Yingjie

    2015-10-01

    Microwave photonic links (MPLs) can provide many advantages over traditional coaxial and waveguide solutions due to its low loss, small size, lightweight, large bandwidth, superior stability and immunity to external interference. It has been considered in various applications such as: the transmission of radio frequency (RF) signal over optical carriers, video television transmission, radar and communication systems. Stability of phase of the microwave photonic links is a critical issue in several realistic applications. The delay line technique for phase noise measurement of phase modulation microwave photonic links is measured for the first time. Using this approach, the input signal noise and power supply noise can be effectively cancelled, and it does not require phase locking. The phase noise of a microwave photonic links with a 10 GHz sinusoidal signal is experimentally demonstrated.

  14. Modules and methods for all photonic computing

    DOEpatents

    Schultz, David R.; Ma, Chao Hung

    2001-01-01

    A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.

  15. High-speed photonic modulator designs

    DOEpatents

    DeRose, Christopher; Zortman, William A

    2015-02-03

    An optical device includes a microdisk optical resonator element. The microdisk resonator element is formed on a substrate and has upper and lower portions respectively distal and proximal the substrate. An arcuate semiconductor contact region partially surrounds the microdisk resonator element. A first modulator electrode is centrally formed on the upper portion of the microdisk resonator element, and a second modulator electrode is formed on the arcuate contact region. A laminar semiconductor region smaller in thickness than the microdisk resonator element separates the arcuate contact region from the microdisk resonator element and is formed on the substrate so as to electrically connect the arcuate contact region to the lower portion of the microdisk resonator element.

  16. Robust optimization of intensity modulated proton therapy

    SciTech Connect

    Liu Wei; Zhang Xiaodong; Li Yupeng; Mohan, Radhe

    2012-02-15

    Purpose: Intensity modulated proton therapy (IMPT) is highly sensitive to range uncertainties and uncertainties caused by setup variation. The conventional inverse treatment planning of IMPT optimized based on the planning target volume (PTV) is not often sufficient to ensure robustness of treatment plans. In this paper, a method that takes the uncertainties into account during plan optimization is used to mitigate the influence of uncertainties in IMPT. Methods: The authors use the so-called ''worst-case robust optimization'' to render IMPT plans robust in the face of uncertainties. For each iteration, nine different dose distributions are computed--one each for {+-} setup uncertainties along anteroposterior (A-P), lateral (R-L) and superior-inferior (S-I) directions, for {+-} range uncertainty, and the nominal dose distribution. The worst-case dose distribution is obtained by assigning the lowest dose among the nine doses to each voxel in the clinical target volume (CTV) and the highest dose to each voxel outside the CTV. Conceptually, the use of worst-case dose distribution is similar to the dose distribution achieved based on the use of PTV in traditional planning. The objective function value for a given iteration is computed using this worst-case dose distribution. The objective function used has been extended to further constrain the target dose inhomogeneity. Results: The worst-case robust optimization method is applied to a lung case, a skull base case, and a prostate case. Compared with IMPT plans optimized using conventional methods based on the PTV, our method yields plans that are considerably less sensitive to range and setup uncertainties. An interesting finding of the work presented here is that, in addition to reducing sensitivity to uncertainties, robust optimization also leads to improved optimality of treatment plans compared to the PTV-based optimization. This is reflected in reduction in plan scores and in the lower normal tissue doses for the

  17. Modulation of the pupil function of microscope objective lens for multifocal multi-photon microscopy using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu

    2014-02-01

    We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.

  18. Solar power conversion efficiency in modulated silicon nanowire photonic crystals

    NASA Astrophysics Data System (ADS)

    Deinega, Alexei; John, Sajeev

    2012-10-01

    It is suggested that using only 1 μm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power conversion efficiency in the range of 15%-20% can be achieved. Choosing a specific modulation profile provides antireflection, light trapping, and back-reflection over broad angles in targeted spectral regions for high efficiency power conversion without solar tracking. Solving both Maxwell's equations in the 3D photonic crystal and the semiconductor drift-diffusion equations in each nanowire, we identify optimal junction and contact geometries and study the influence of the nanowire surface curvature on solar cell efficiency. We demonstrate that suitably modulated nanowires enable 20% efficiency improvement over their straight counterparts made of an equivalent amount of silicon. We also discuss the efficiency of a tandem amorphous and crystalline silicon nanowire photonic crystal solar cell. Opportunities for "hot carrier" collection and up-conversion of infrared light, enhanced by photonic crystal geometry, facilitate further improvements in power efficiency.

  19. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin M.; Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-08-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6π/6 (and up to π/3π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic.

  20. Program EPICP: Electron photon interaction code, photon test module. Version 94.2

    SciTech Connect

    Cullen, D.E.

    1994-09-01

    The computer code EPICP performs Monte Carlo photon transport calculations in a simple one zone cylindrical detector. Results include deposition within the detector, transmission, reflection and lateral leakage from the detector, as well as events and energy deposition as a function of the depth into the detector. EPICP is part of the EPIC (Electron Photon Interaction Code) system. EPICP is designed to perform both normal transport calculations and diagnostic calculations involving only photons, with the objective of developing optimum algorithms for later use in EPIC. The EPIC system includes other modules that are designed to develop optimum algorithms for later use in EPIC; this includes electron and positron transport (EPICE), neutron transport (EPICN), charged particle transport (EPICC), geometry (EPICG), source sampling (EPICS). This is a modular system that once optimized can be linked together to consider a wide variety of particles, geometries, sources, etc. By design EPICP only considers photon transport. In particular it does not consider electron transport so that later EPICP and EPICE can be used to quantitatively evaluate the importance of electron transport when starting from photon sources. In this report I will merely mention where we expect the results to significantly differ from those obtained considering only photon transport from that obtained using coupled electron-photon transport.

  1. Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities.

    PubMed

    Tlidi, M; Mussot, A; Louvergneaux, E; Kozyreff, G; Vladimirov, A G; Taki, M

    2007-03-15

    Taking up to fourth-order dispersion effects into account, we show that fiber resonators become stable for a large intensity regime. The range of pump intensities leading to modulational instability becomes finite and controllable. Moreover, by computing analytically the thresholds and frequencies of these instabilities, we demonstrate the existence of a new unstable frequency at the primary threshold. This frequency exists for an arbitrary small but nonzero fourth-order dispersion coefficient. Numerical simulations for a low and flattened dispersion photonic crystal fiber resonator confirm analytical predictions and open the way to experimental implementation. PMID:17308594

  2. Effect of reducing temporal intensity modulations on sentence intelligibility.

    PubMed

    Noordhoek, I M; Drullman, R

    1997-01-01

    Modulations in the temporal intensity envelope of 24 1/4-octave bands were reduced by proportionally raising the troughs and lowering the peaks relative to the mean intensity in each band. The effect on intelligibility of various degrees of modulation reduction was investigated by measuring the speech-reception threshold (SRT) in noise. For conditions of severe modulation reduction, the number of correctly received sentences in quiet was scored. The effect of this deterministic modulation reduction was compared to the effect of stochastic modulation reduction obtained with addition of noise. Results for 12 normal-hearing subjects show that in the case of deterministic modulation reduction, intelligibility is reduced to 50% when the modulation-transfer factor equals 0.10, whereas in the case of modulation reduction by addition of noise, this intelligibility is reached already at a modulation-transfer factor of 0.27. This confirms that the effect of additive noise on intelligibility cannot be understood completely as a result of only modulation reduction. As suggested by Drullman [J. Acoust. Soc. Am. 97, 585-592 (1995)] two other factors associated with the addition of noise have to be taken into account: (1) the introduction of nonrelevant modulations, and (2) the corruption of the fine structure.

  3. How photons modulate wound healing via the immune system

    NASA Astrophysics Data System (ADS)

    Dyson, Mary

    2009-02-01

    The immune system is a diverse group of cells that recognize and attack foreign substances, pathogenic organisms and cancer cells. It also produces inflammation, an essential component of the wound healing process and, following the resolution of inflammation, plays a crucial role in the control of granulation tissue formation. Granulation tissue is the precursor of scar tissue. Injured skin and mucous membranes generally heal rapidly. However, some wounds are either slow to heal or fail to heal while in others overgrowth of scar tissue occurs, resulting in the production of either hypertophic or keloid scars. The modulation of wound healing in such conditions is clinically important and may even be vital. Evidence will be presented that phototherapy can modulate wound healing, and that changes induced in the immune system, in particular the secretion of soluble protein mediators including cytokines, may be involved in this modulation. The immune system has peripheral and deep components. The former, being located mainly in the skin and mucous membranes, are readily accessible to photons, which can affect them directly. The components of the immune system are linked by lymphatic vessels and blood vessels, which include many capillaries located in the sub-epithelial connective tissues of the skin and mucous membranes. The superficial location of these capillaries provides the immune cells and molecules in transit through them with ready access to photons. When these cells and molecules, some modified by exposure to photons, reach susceptible cells such as lymphocytes in the deeper parts of the immune system and cells of injured tissues, they can modify their activity. In addition to having direct effects on peripheral cells, photons can thus also produce indirect effects on cells too distant for the photons to reach them. For example, cytokines released from peripheral macrophages in response to the direct action of photons can be transported to and affect other

  4. Influence of large signal modulation on photonic UWB generation based on electro-optic modulator.

    PubMed

    Gu, Rong; Pan, Shilong; Chen, Xiangfei; Pan, Minghai; Ben, De

    2011-07-01

    Various schemes based on electro-optic modulators have been reported to generate ultra-wideband (UWB) signals in the optical domain, but the availability of these methods always relies on small signal modulation. In this paper, the influence of large signal modulation on two typical schemes, representing two major categories of external-modulator-based photonic UWB generation schemes, is analytically and numerically studied. While the quasi single-sideband UWB (QSSB-UWB) pulse can maintain its shape, the Gaussian UWB (GUWB) generation scheme suffers serious modulation distortion when the phase modulation index is greater than π/6. The modulation distortion would have negative impact on the receiver sensitivity when the signal is sent to a correlation receiver.

  5. A computational implementation and comparison of several intensity modulated proton therapy treatment planning algorithms

    SciTech Connect

    Li, Haisen S.; Romeijn, H. Edwin; Fox, Christopher; Palta, Jatinder R.; Dempsey, James F.

    2008-03-15

    The authors present a comparative study of intensity modulated proton therapy (IMPT) treatment planning employing algorithms of three-dimensional (3D) modulation, and 2.5-dimensional (2.5D) modulation, and intensity modulated distal edge tracking (DET) [A. Lomax, Phys. Med. Biol. 44, 185-205 (1999)] applied to the treatment of head-and-neck cancer radiotherapy. These three approaches were also compared with 6 MV photon intensity modulated radiation therapy (IMRT). All algorithms were implemented in the University of Florida Optimized Radiation Therapy system using a finite sized pencil beam dose model and a convex fluence map optimization model. The 3D IMPT and the DET algorithms showed considerable advantages over the photon IMRT in terms of dose conformity and sparing of organs at risk when the beam number was not constrained. The 2.5D algorithm did not show an advantage over the photon IMRT except in the dose reduction to the distant healthy tissues, which is inherent in proton beam delivery. The influences of proton beam number and pencil beam size on the IMPT plan quality were also studied. Out of 24 cases studied, three cases could be adequately planned with one beam and 12 cases could be adequately planned with two beams, but the dose uniformity was often marginally acceptable. Adding one or two more beams in each case dramatically improved the dose uniformity. The finite pencil beam size had more influence on the plan quality of the 2.5D and DET algorithms than that of the 3D IMPT. To obtain a satisfactory plan quality, a 0.5 cm pencil beam size was required for the 3D IMPT and a 0.3 cm size was required for the 2.5D and the DET algorithms. Delivery of the IMPT plans produced in this study would require a proton beam spot scanning technique that has yet to be developed clinically.

  6. Silicon photomultiplier based photon detector module as a detector of Cherenkov photons

    NASA Astrophysics Data System (ADS)

    Korpar, Samo; Chagani, Hassan; Dolenec, Rok; Križan, Peter; Pestotnik, Rok; Stanovnik, Aleš

    2010-11-01

    We have constructed and tested a module, consisting of 64 (= 8×8) Hamamatsu MPPC S10362-11-100P silicon photomultipliers, for position sensitive detection of Cherenkov photons. Suitable light concentrators were produced to increase the efficiency and to improve the signal to noise ratio. The results of our measurements indicate that the performance of such a Cherenkov counter with aerogel radiator could meet the requirements of particle identification at the foreseen upgraded Belle detector.

  7. Extending the direct laser modulation bandwidth by exploiting the photon-photon resonance: modeling, simulations and experiments

    NASA Astrophysics Data System (ADS)

    Dumitrescu, M.; Laakso, A.; Viheriala, J.; Kamp, M.; Bardella, P.; Eisenstein, G.

    2013-03-01

    The direct laser modulation bandwidth can be extended substantially by introducing a supplementary photon-photon resonance (PPR) at a higher frequency than the carrier-photon resonance (CPR). The paper presents a modified rate equation model that takes into account the PPR by treating the longitudinal confinement factor as a dynamic variable. The conditions required for obtaining a strong PPR and an enhancement of the small-signal modulation bandwidth are analyzed and experimental results confirming the model are presented. Since the small-signal modulation bandwidth may not be indicative of the large-signal modulation capability, particularly in case of a small-signal modulation response with substantial variations across the bandwidth, we have also analyzed the influence of the PPR-enhanced small-signal modulation response shape on the large-signal modulation capability as well as the methods that can be employed to flatten the small-signal modulation transfer function between the CPR and PPR.

  8. WGM-Based Photonic Local Oscillators and Modulators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Iltchenko, Vladimir; Savchenkov, Anatoliy

    2007-01-01

    Photonic local oscillators and modulators that include whispering-gallery mode (WGM) optical resonators have been proposed as power-efficient devices for generating and detecting radiation at frequencies of the order of a terahertz. These devices are intended especially to satisfy anticipated needs for receivers capable of detecting lowpower, narrow-band terahertz signals to be used for sensing substances of interest in scientific and military applications. At present, available terahertz-signal detectors are power-inefficient and do not afford the spectral and amplitude resolution needed for detecting such signals. The proposed devices would not be designed according to the conventional approach of direct detection of terahertz radiation. Instead, terahertz radiation would first be up-converted into the optical domain, wherein signals could be processed efficiently by photonic means and detected by optical photodetectors, which are more efficient than are photodetectors used in conventional direct detection of terahertz radiation. The photonic devices used to effect the up-conversion would include a tunable optical local oscillator and a novel electro-optical modulator. A local oscillator according to the proposal would be a WGM-based modelocked laser operating at a desired pulserepetition rate of the order of a terahertz. The oscillator would include a terahertz optical filter based on a WGM microresonator, a fiber-optic delay line, an optical amplifier (which could be either a semiconductor optical amplifier or an erbium-doped optical fiberamplifier), and a WGM Ka-band modulator. The terahertz repetition rate would be obtained through harmonic mode locking: for example, by modulating the light at a frequency of 33 GHz and locking each 33d optical mode, one would create a 1.089-THz pulse train. The high resonance quality factors (Q values) of WGM optical resonators should make it possible to decrease signal-generation threshold power levels significantly below

  9. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach-Zehnder modulator.

    PubMed

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach-Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated.

  10. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator

    PubMed Central

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305

  11. Thomson scattering of polarized photons in an intense laser beam

    SciTech Connect

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  12. Photonic aided bandpass sampling in coherent phase modulated radio-over-fiber links

    NASA Astrophysics Data System (ADS)

    Cao, Minghua; Li, Jianqiang; Dai, Jian; Dai, Yitang; Yin, Feifei; Zhou, Yue; Xu, Kun

    2016-06-01

    We have experimentally presented a digital coherent receiver employing photonic aided bandpass sampling technology for phase-modulated radio-over-fiber (RoF) links. An optical intensity modulator (IM) is utilized as the bandpass sampler which performs encoded on-off keyed pulse sequence on the optical local oscillator. Quaternary Phase Shift Keying (QPSK) modulated data signal with 20 MHz bandwidth at 5.2 GHz, 10.2 GHz and 15.2 GHz RF carrier frequency is experimentally demonstrated to be successfully detected by using balanced photodiodes (BPDs) with only 800 MHz analog bandwidth. It demonstrates that the required analog bandwidth of BPDs and ADCs can be dramatically reduced in a direct sampled coherent RoF communications system.

  13. Equatorial noise emissions with quasiperiodic modulation of wave intensity

    NASA Astrophysics Data System (ADS)

    Němec, F.; Santolík, O.; Hrbáčková, Z.; Pickett, J. S.; Cornilleau-Wehrlin, N.

    2015-04-01

    Equatorial noise (EN) emissions are electromagnetic wave events at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed in the equatorial region of the inner magnetosphere. They propagate nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic line structure characteristic of the proton cyclotron frequency in the source region. However, they were generally believed to be continuous in time. We investigate more than 2000 EN events observed by the Spatio-Temporal Analysis of Field Fluctuations and Wide-Band Data Plasma Wave investigation instruments on board the Cluster spacecraft, and we show that this is not always the case. A clear quasiperiodic (QP) time modulation of the wave intensity is present in more than 5% of events. We perform a systematic analysis of these EN events with QP modulation of the wave intensity. Such events occur usually in the noon-to-dawn magnetic local time sector. Their occurrence seems to be related to the increased geomagnetic activity, and it is associated with the time intervals of enhanced solar wind flow speeds. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN wave intensity and magnitudes on the order of a few tenths of nanotesla were identified in about 46% of events. We suggest that these compressional magnetic field pulsations might be responsible for the observed QP modulation of EN wave intensity, in analogy to formerly reported VLF whistler mode QP events.

  14. Performance of single-photon-counting PILATUS detector modules

    PubMed Central

    Kraft, P.; Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E. F.; Henrich, B.; Johnson, I.; Mozzanica, A.; Schlepütz, C. M.; Willmott, P. R.; Schmitt, B.

    2009-01-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition. PMID:19395800

  15. Light induced modulation instability of surfaces under intense illumination

    SciTech Connect

    Burlakov, V. M. Goriely, A.; Foulds, I.

    2013-12-16

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  16. High-speed coherent silicon modulator module using photonic integrated circuits: from circuit design to packaged module

    NASA Astrophysics Data System (ADS)

    Bernabé, S.; Olivier, S.; Myko, A.; Fournier, M.; Blampey, B.; Abraham, A.; Menezo, S.; Hauden, J.; Mottet, A.; Frigui, K.; Ngoho, S.; Frigui, B.; Bila, S.; Marris-Morini, D.; Pérez-Galacho, D.; Brindel, P.; Charlet, G.

    2016-05-01

    Silicon photonics technology is an enabler for the integration of complex circuits on a single chip, for various optical link applications such as routing, optical networks on chip, short range links and long haul transmitters. Quadrature Phase Shift Keying (QPSK) transmitters is one of the typical circuits that can be achieved using silicon photonics integrated circuits. The achievement of 25GBd QPSK transmitter modules requires several building blocks to be optimized: the pn junction used to build a BPSK (Binary Shift Phase Keying) modulator, the RF access and the optical interconnect at the package level. In this paper, we describe the various design steps of a BPSK module and the related tests that are needed at every stage of the fabrication process.

  17. High-security communication by coherence modulation at the photon-counting level.

    PubMed

    Rhodes, William T; Boughanmi, Abdellatif; Moreno, Yezid Torres

    2016-05-20

    We show that key-specified interferometer path-length difference modulation (often referred to as coherence modulation), operating in the photon-counting regime with a broadband source, can provide a quantifiably high level of physics-guaranteed security for binary signal transmission. Each signal bit is associated with many photocounts, perhaps numbering in the thousands. Of great importance, the presence of an eavesdropper can be quickly detected. We first review the operation of key-specified coherence modulation at high light levels, illustrating by means of an example its lack of security against attack. We then show, using the same example, that, through the reduction of light intensities to photon-counting levels, a high level of security can be attained. A particular attack on the system is analyzed to demonstrate the quantifiability of the scheme's security, and various remaining research issues are discussed. A potential weakness of the scheme lies in a possible vulnerability to light amplification by an attacker. PMID:27411120

  18. Photon-counting 1.0 GHz-phase-modulation fluorometer

    SciTech Connect

    Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T.

    2015-04-15

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method.

  19. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study

    SciTech Connect

    Park, Jong Min; Kim, Jung-in; Heon Choi, Chang; Chie, Eui Kyu; Kim, Il Han; Ye, Sung-Joon

    2012-03-15

    Purpose: To demonstrate the feasibility of photon energy-modulated radiotherapy during beam-on time. Methods: A cylindrical device made of aluminum was conceptually proposed as an energy modulator. The frame of the device was connected with 20 tubes through which mercury could be injected or drained to adjust the thickness of mercury along the beam axis. In Monte Carlo (MC) simulations, a flattening filter of 6 or 10 MV linac was replaced with the device. The thickness of mercury inside the device varied from 0 to 40 mm at the field sizes of 5 x 5 cm{sup 2} (FS5), 10 x 10 cm{sup 2} (FS10), and 20 x 20 cm{sup 2} (FS20). At least 5 billion histories were followed for each simulation to create phase space files at 100 cm source to surface distance (SSD). In-water beam data were acquired by additional MC simulations using the above phase space files. A treatment planning system (TPS) was commissioned to generate a virtual machine using the MC-generated beam data. Intensity modulated radiation therapy (IMRT) plans for six clinical cases were generated using conventional 6 MV, 6 MV flattening filter free, and energy-modulated photon beams of the virtual machine. Results: As increasing the thickness of mercury, Percentage depth doses (PDD) of modulated 6 and 10 MV after the depth of dose maximum were continuously increased. The amount of PDD increase at the depth of 10 and 20 cm for modulated 6 MV was 4.8% and 5.2% at FS5, 3.9% and 5.0% at FS10 and 3.2%-4.9% at FS20 as increasing the thickness of mercury from 0 to 20 mm. The same for modulated 10 MV was 4.5% and 5.0% at FS5, 3.8% and 4.7% at FS10 and 4.1% and 4.8% at FS20 as increasing the thickness of mercury from 0 to 25 mm. The outputs of modulated 6 MV with 20 mm mercury and of modulated 10 MV with 25 mm mercury were reduced into 30%, and 56% of conventional linac, respectively. The energy-modulated IMRT plans had less integral doses than 6 MV IMRT or 6 MV flattening filter free plans for tumors located in the

  20. Influence of the modulation index of Mach-Zehnder modulator on intersatellite microwave photonics links with multiple RF signals

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Yongjun; Chu, Xingchun; Hou, Rui

    2013-04-01

    A generalized intersatellite microwave photonics links model to study the influence of the modulation index of Mach-Zehnder modulator on the receiver sensitivity with multiple radio frequency (RF) signals is presented. An exact analytical solution of signal-to-noise and distortion ratio (SNDR) for optical double-sideband (ODSB) and optical single-sideband (OSSB) modulation is deduced with Bessel expansion and Graf's addition theorem. Numerical results show that the receiver sensitivity increases and then decreases as the increase in modulation index, there is an optimum modulation index that maximizes the receiver sensitivity and the larger channel numbers lead to lower receiver sensitivity for maintaining the SNDR at the desired level. In addition, ODSB modulation can be more attractive than OSSB modulation in intersatellite microwave photonics links, since the maximum receiver sensitivity for ODSB modulation is better than that for OSSB modulation.

  1. Generation of pure electrical quadrature amplitude modulation with photonic vector modulator.

    PubMed

    Corral, Juan L; Sambaraju, Rakesh; Piqueras, Miguel A; Polo, Valentín

    2008-06-15

    A photonic vector modulator architecture for generating pure quadrature amplitude modulation (QAM) signals is presented. An electrical quadrature-modulated signal at microwave-millimeter-wave frequencies is generated from its corresponding baseband in-phase (I) and quadrature (Q) components. In the proposed scheme, no electrical devices apart from the electrical tone oscillator are needed in the generation process. In addition, the purity of the generated signal is increased, and the hardware requirements are reduced when compared with previously proposed architectures so a highly compact low-cost architecture can be implemented. A pure 1.25 Gbit/s 4-QAM signal has been experimentally generated at a 42 GHz carrier frequency.

  2. A simple intensity modulation based fiber-optic accelerometer

    NASA Astrophysics Data System (ADS)

    Guozhen, Yao; Yongqian, Li; Zhi, Yang

    2016-05-01

    A fiber-optic accelerometer with simple structure and high performance based on intensity modulation is proposed. Using only a length of single mode fiber compressed by a cantilever, the intensity of reflected light is modulated by the vibration acceleration applied to it. The effects of the fiber location, the dimension parameters of the cantilever on frequency response and sensitivity are investigated. The experimental results demonstrate that the accelerometer has a flat frequency response over a 4700 Hz bandwidth and a sensitivity of 21.24 mV/g with a cantilever dimension of 30 × 8 × 1.6 mm3 and a distance of 5 mm between the fiber location and the suspended cantilever end; the coefficient of determination is better than 0.999. In addition, the effect of temperature and the stability of the sensing system are investigated.

  3. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording

    PubMed Central

    Li, Xiangping; Zhang, Qiming; Chen, Xi; Gu, Min

    2013-01-01

    Graphene oxides (GOs) have emerged as precursors offering the potential of a cost-effective and large-scale production of graphene-based materials. Despite that their intrinsic fluorescence property has already brought interest of researchers for optical applications, to date, refractive-index modulation as one of the fundamental aspects of optical properties of GOs has received less attention. Here we reported on a giant refractive-index modulation on the order of 10−2 to 10−1, accompanied by a fluorescence intensity change, through the two-photon reduction of GOs. These features enabled a mechanism for multimode optical recording with the fluorescence contrast and the hologram-encoded refractive-index modulation in GO-dispersed polymers for security-enhanced high-capacity information technologies. Our results show that GO-polymer composites may provide a new material platform enabling flexible micro-/nano-photonic information devices. PMID:24085266

  4. Light labeling with temporal intensity modulations for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Domingue, Scott R.; Winters, David G.; Bartels, Randy A.

    2016-04-01

    We discuss the theoretical framework of a new method of performing spectroscopy: labeling a unique intensity modulation frequency onto the optical frequencies of an incident or illumination power spectrum. In a manner similar to Fourier transform spectroscopy, we rescale the optical angular frequencies of the power spectrum down to readily measured frequencies on a square-law detector enabling rapid spectral update rates on a single element detector.

  5. Intensity-modulated radiotherapy—what is it?

    PubMed Central

    Taylor, A; Powell, M E B

    2004-01-01

    Intensity-modulated radiotherapy (IMRT) is one of the most important recent developments in oncology. It enables precise conformation of the radiation dose to the target volume. It has the potential to significantly reduce long-term morbidity and improve local control. This article explains the basic principles of IMRT in comparison to other planning techniques. The current clinical data are presented and future lines of research are discussed. PMID:18250011

  6. Time domain referencing in intensity modulation fiber optic sensing systems

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.

    1986-01-01

    Intensity modulation sensors are classified depending on the way in which the reference and signal channels are separated: in space, wavelength (frequency), or time domains. To implement the time domain referencing different types of fiber optic (FO) loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  7. Intensity modulated arc therapy (IMAT) with centrally blocked rotational fields.

    PubMed

    Cotrutz, C; Kappas, C; Webb, S

    2000-08-01

    A new technique for intensity-modulated beam (IMB) delivery that combines the features of intensity modulated arc therapy (IMAT) with the use of 'classical blocks' is proposed. The role of the blocks is to realize the high-gradient modulation of the intensity profile corresponding to the region to be protected within the body contour, while the MLC leaves or the secondary collimator defines the rest of the field and delivers intensity-modulated multiple rotational segments. The centrally blocked radiation fields are applied sequentially, in several rotations. Each rotation of the gantry is responsible for delivering one segment of the optimal intensity profile. The new IMAT technique is applied for a treatment geometry represented by an annular target volume centrally located within a circular body contour. The annulus encompasses a circular critical structure, which is to be protected. The beam opening and corresponding weight of each segment are determined in two ways. The first method applies a linear optimization algorithm to precalculated centrally blocked radial dose profiles. These radial profiles are calculated for a set of beam openings, ranging from the largest field that covers the whole planning target volume (PTV) to the smallest, which is 1 cm larger than the width of the central block. The optimization is subjected to dose homogeneity constraints imposed on a linear combination of these profiles and finally delivers the dimensions and weights of the rotational beams to be used in combination. The second method decomposes into several subfields the fluence profile of a rotational beam known to deliver a constant dose level to PTV. This fluence profile is determined by using the analytical method proposed by Brahme for the case of the annular PTV and the concentric organ at risk (OAR). The proper segmentation of this intensity profile provides the field sizes and corresponding weights of the subfields to be used in combination. Both methods show that

  8. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms.

    PubMed

    Giovagnetti, Vasco; Flori, Serena; Tramontano, Ferdinando; Lavaud, Johann; Brunet, Christophe

    2014-01-01

    In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC) and non-photochemical fluorescence quenching (NPQ), to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events) with that of a slower increase (corresponding to the light diel cycle) on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD) progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m-2 s-1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek) is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective 'safety valves' in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.

  9. Effects of the plasma profiles on photon and pair production in ultrahigh intensity laser solid interaction

    SciTech Connect

    Tian, Y. X.; Jin, X. L. Yan, W. Z.; Li, J. Q.; Li, B.; Yu, J. Q.

    2015-12-15

    The model of photon and pair production in strong field quantum electrodynamics is implemented into our 1D3V particle-in-cell code with Monte Carlo algorithm. Using this code, the evolution of the particles in ultrahigh intensity laser (∼10{sup 23} W/cm{sup 2}) interaction with aluminum foil target is observed. Four different initial plasma profiles are considered in the simulations. The effects of initial plasma profiles on photon and pair production, energy spectra, and energy evolution are analyzed. The results imply that one can set an optimal initial plasma profile to obtain the desired photon distributions.

  10. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  11. Estimation of photoneutron intensities around radiotherapy linear accelerator 23-MV photon beam.

    PubMed

    Shweikani, R; Anjak, O

    2015-05-01

    CR-39 solid-state nuclear track detectors (SSNTDs) were used to study the variations of fast neutron relative intensities around a high-energy (23MV) linear accelerator (Varian 21EX) photon beam. The variations were determined on the patient plane at 0, 50, 100, 150 and 200cm from the isocenter of the photon beam. In addition, photoneutron intensities and distributions at isocenter level with field size of 40×40cm(2) at Source Axis Distance (SAD)=100cm around 23MV photon beam were also determined. The results showed that the photoneutron intensities decreased rapidly by increasing the distance from the center of the x-ray beam towards the periphery, for the open fields.

  12. Chemical modulation of the ultra-weak photon emission from Saccharomyces cerevisiae and differentiated HL-60 cells

    NASA Astrophysics Data System (ADS)

    Červinková, Kateřina; Nerudová, Michaela; Hašek, Jiří; Cifra, Michal

    2015-01-01

    The ultra-weak photon emission (UPE) is a universal phenomenon common to all cells with active oxidative metabolism. Generally accepted mechanism of the origin of the ultra-weak photon emission considers reactions of radical or nonradical reactive oxygen species (ROS) with biomolecules such as lipids and proteins which lead to the formation of electron excited species. During the transition to the ground state the excess energy is released as a photon with a wavelength in the visible range of the electromagnetic spectrum. Since the intensity of the light is very low it is possible to be measured only by highly sensitive devices. We used Hamamatsu Photonics PMT module H7360-01 mounted into a light-tight chamber for the purposes of this work. The goal of our research is to delineate an origin of UPE from two model organisms; differentiated HL-60 cells (human promyelocytic leukemia) and yeast cells Saccharomyces cerevisiae. While the UPE from the yeast cells arises spontaneously during the growth without any external stimuli, UPE from HL-60 is induced by phorbol 12-myristate, 13-acetate (PMA). It is possible to modulate the UPE production by certain antioxidants which scavenge ROS formed during the metabolism (yeast cells) or respiratory burst (HL-60 cells). The experiments are focused on the description of effects caused by antioxidants. Several kinds of antioxidants (ascorbic acid, mannitol, glutathione) with different concentration were used and we studied the changes in the UPE intensities of and the temporal developments of the optical signal.

  13. Similarities between static and rotational intensity-modulated plans

    NASA Astrophysics Data System (ADS)

    Wu, Q. Jackie; Yin, Fang-Fang; McMahon, Ryan; Zhu, Xiaofeng; Das, Shiva K.

    2010-01-01

    The aim of this study was to explore similarities between intensity-modulated radiotherapy (IMRT) and intensity-modulated arc therapy (IMAT) techniques in the context of the number of multi-leaf collimator (MLC) segments required to achieve plan objectives, the major factor influencing plan quality. Three clinical cases with increasing complexity were studied: (a) prostate only, (b) prostate and seminal vesicles and (c) prostate and pelvic lymph nodes. Initial 'gold-standard' plans with the maximum possible organ-at-risk sparing were generated for all three cases. For each case, multiple IMRT and IMAT plans were generated with varying intensity levels (IMRT) and arc control points (IMAT), which translate into varying MLC segments in both modalities. The IMAT/IMRT plans were forced to mimic the organ-at-risk sparing and target coverage in the gold-standard plans, thereby only allowing the target dose inhomogeneity to be variable. A higher target dose inhomogeneity (quantified as D5—dose to the highest 5% of target volume) implies that the plan is less capable of modulation. For each case, given a similar number of MLC segments, both IMRT and IMAT plans exhibit similar target dose inhomogeneity, indicating that there is no difference in their ability to provide dose painting. Target dose inhomogeneity remained approximately constant with decreasing segments, but sharply increased below a specific critical number of segments (70, 100, 110 for cases a, b, c, respectively). For the cases studied, IMAT and IMRT plans are similar in their dependence on the number of MLC segments. A minimum critical number of segments are required to ensure adequate plan quality. Future studies are needed to establish the range of minimum critical number of segments for different treatment sites and target-organ geometries.

  14. Segmentation and leaf sequencing for intensity modulated arc therapy

    SciTech Connect

    Gladwish, Adam; Oliver, Mike; Craig, Jeff; Chen, Jeff; Bauman, Glenn; Fisher, Barbara; Wong, Eugene

    2007-05-15

    A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for each beam is generated via inverse planning, this IM is then segmented into discrete levels, and finally, the segmented map is translated into a set of MLC apertures via a leaf sequencing algorithm. To date, limited work has been done on this approach as it pertains to intensity modulated arc therapy (IMAT), specifically in regards to the latter two steps. There are two determining factors that separate IMAT segmentation and leaf sequencing from their IMRT equivalents: (1) the intrinsic 3D nature of the intensity maps (standard 2D maps plus the angular component), and (2) that the dynamic multileaf collimator (MLC) constraints be met using a minimum number of arcs. In this work, we illustrate a technique to create an IMAT plan that replicates Tomotherapy deliveries by applying IMAT specific segmentation and leaf-sequencing algorithms to Tomotherapy output sinograms. We propose and compare two alternative segmentation techniques, a clustering method, and a bottom-up segmentation method (BUS). We also introduce a novel IMAT leaf-sequencing algorithm that explicitly takes leaf movement constraints into consideration. These algorithms were tested with 51 angular projections of the output leaf-open sinograms generated on the Hi-ART II treatment planning system (Tomotherapy Inc.). We present two geometric phantoms and 2 clinical scenarios as sample test cases. In each case 12 IMAT plans were created, ranging from 2 to 7 intensity levels. Half were generated using the BUS segmentation and half with the clustering method. We report on the number of arcs produced as well as differences between Tomotherapy output sinograms and segmented IMAT intensity maps. For each case one plan for each segmentation method is chosen for full Monte Carlo dose calculation (NumeriX LLC) and dose volume histograms (DVH) are calculated

  15. Rate equation analysis of high-speed photon-lifetime-modulated strongly injection-locked semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Kalagara, Hemashilpa; Smolyakov, Gennady A.; Osiński, Marek

    2013-02-01

    A novel method for modulation bandwidth enhancement is presented, involving strongly injection-locked whistle-geometry semiconductor ring laser modulated through photon lifetime. Advantages of photon-lifetime modulation over conventional injection-current modulation are confirmed through numerical modeling.

  16. Intensity-Modulated Arc Therapy for Pediatric Posterior Fossa Tumors

    SciTech Connect

    Beltran, Chris; Gray, Jonathan; Merchant, Thomas E.

    2012-02-01

    Purpose: To compare intensity-modulated arc therapy (IMAT) to noncoplanar intensity-modulated radiation therapy (IMRT) in the treatment of pediatric posterior fossa tumors. Methods and Materials: Nine pediatric patients with posterior fossa tumors, mean age 9 years (range, 6-15 years), treated using IMRT were chosen for this comparative planning study because of their tumor location. Each patient's treatment was replanned to receive 54 Gy to the planning target volume (PTV) using five different methods: eight-field noncoplanar IMRT, single coplanar IMAT, double coplanar IMAT, single noncoplanar IMAT, and double noncoplanar IMAT. For each method, the dose to 95% of the PTV was held constant, and the doses to surrounding critical structures were minimized. The different plans were compared based on conformity, total linear accelerator dose monitor units, and dose to surrounding normal tissues, including the entire body, whole brain, temporal lobes, brainstem, and cochleae. Results: The doses to the target and critical structures for the various IMAT methods were not statistically different in comparison with the noncoplanar IMRT plan, with the following exceptions: the cochlear doses were higher and whole brain dose was lower for coplanar IMAT plans; the cochleae and temporal lobe doses were lower and conformity increased for noncoplanar IMAT plans. The advantage of the noncoplanar IMAT plan was enhanced by doubling the treatment arc. Conclusion: Noncoplanar IMAT results in superior treatment plans when compared to noncoplanar IMRT for the treatment of posterior fossa tumors. IMAT should be considered alongside IMRT when treatment of this site is indicated.

  17. Photon-counting 1.0 GHz-phase-modulation fluorometer.

    PubMed

    Mizuno, T; Nakao, S; Mizutani, Y; Iwata, T

    2015-04-01

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method. PMID:25933844

  18. Influence of an externally modulated photonic link on a microwave communications system

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1994-01-01

    We analyze the influence of an externally modulated photonic link on the performance of a microwave communications system. From the analysis, we deduce limitations on the photocurrent, magnitude of the relaxation oscillation noise of the laser, third-order intercept point of the preamplifier, and other parameters in order for the photonic link to function according to the system specifications. Based on this, we outline a procedure for designing a photonic link that can be integrated in a system with minimal performance degradation.

  19. Intensity-modulated radiotherapy in the treatment of gynaecological cancers.

    PubMed

    D'Souza, D P; Rumble, R B; Fyles, A; Yaremko, B; Warde, P

    2012-09-01

    Intensity-modulated radiotherapy (IMRT) is a newer method of radiotherapy that uses intensity-modulated beams that can provide multiple intensity levels for any single beam direction and any single source position allowing concave dose distributions and dose gradients with narrower margins than those possible using conventional methods. IMRT is ideal for treating complex treatment volumes and avoiding close proximity organs at risk that may be dose limiting and provides increased tumour control through an escalated dose and reduces normal tissue complications through organ at risk sparing. Given the potential advantages of IMRT and the availability of IMRT-enabled treatment planning systems and linear accelerators, IMRT has been introduced in a number of disease sites. This systematic review examined the evidence for IMRT in the treatment of gynaecological cancers to quantify the potential benefits of this new technology and to make recommendations for radiation treatment programmes considering adopting this technique. Findings were based on a review of four cohort studies, one of which was prospective, including a total of 619 patients. If reducing acute and chronic toxicity are the main outcomes of interest, then IMRT may be considered over three-dimensional conformal radiotherapy for women with gynaecological cancers; if disease-related outcomes are the main outcomes of interest, there are insufficient data to recommend IMRT over three-dimensional conformal radiotherapy. Future research should focus on prospective multicentre studies reporting on both acute and chronic toxicity as well as survival and recurrence. Dose escalation studies should be carried out to investigate the effect of higher doses on disease.

  20. Intensity-modulated radiotherapy in the treatment of prostate cancer.

    PubMed

    Bauman, G; Rumble, R B; Chen, J; Loblaw, A; Warde, P

    2012-09-01

    Three-dimensional conformal radiotherapy (3DCRT) as the primary treatment for prostate cancer has improved outcomes compared with conventional radiotherapy, but with an associated increase in toxicity due to radiation effects on the bladder and rectum. Intensity-modulated radiotherapy (IMRT) is a newer method of radiotherapy that uses intensity-modulated beams that can provide multiple intensity levels for any single beam direction and any single source position allowing concave dose distributions and dose gradients with narrower margins than those possible using conventional methods. IMRT is ideal for treating complex treatment volumes and avoiding close proximity organs at risk that may be dose limiting and provides increased tumour control through an escalated dose and reduces normal tissue complications through organ at risk sparing. Given the potential advantages of IMRT and the availability of IMRT-enabled treatment planning systems and linear accelerators, IMRT has been introduced in a number of disease sites, including prostate cancer. This systematic review examined the evidence for IMRT in the treatment of prostate cancer in order to quantify the potential benefits of this new technology and to make recommendations for radiation treatment programmes considering adopting this technique. The findings were in favour of recommending IMRT over 3DCRT in the radical treatment of localised prostate cancer where doses greater than 70 Gy are required, based on a review of 11 published reports including 4559 patients. There were insufficient data to recommend IMRT over 3DCRT in the postoperative setting. Future research should examine image-guided IMRT in the post-prostatectomy setting, with altered fractionation, and in combination with hormone and chemotherapy.

  1. Study of the intensity noise and intensity modulation in a of hybrid soliton pulsed source

    SciTech Connect

    Dogru, Nuran; Oziazisi, M Sadetin

    2005-10-31

    The relative intensity noise (RIN) and small-signal intensity modulation (IM) of a hybrid soliton pulsed source (HSPS) with a linearly chirped Gaussian apodised fibre Bragg grating (FBG) are considered in the electric-field approximation. The HSPS is described by solving the dynamic coupled-mode equations. It is shown that consideration of the carrier density noise in the HSPS in addition to the spontaneous noise is necessary to analyse accurately noise in the mode-locked HSPS. It is also shown that the resonance peak spectral splitting (RPSS) of the IM near the frequency inverse to the round-trip time of light in the external cavity can be eliminated by selecting an appropriate linear chirp rate in the Gaussian apodised FBG. (laser applications and other topics in quantum electronics)

  2. Flattening Filter-Free Beams in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Sinonasal Cancer

    PubMed Central

    Huang, Bao-Tian

    2016-01-01

    Purpose To evaluate the dosimetric impacts of flattening filter-free (FFF) beams in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for sinonasal cancer. Methods For fourteen cases, IMRT and VMAT planning was performed using 6-MV photon beams with both conventional flattened and FFF modes. The four types of plans were compared in terms of target dose homogeneity and conformity, organ-at-risk (OAR) sparing, number of monitor units (MUs) per fraction, treatment time and pure beam-on time. Results FFF beams led to comparable target dose homogeneity, conformity, increased number of MUs and lower doses to the spinal cord, brainstem and normal tissue, compared with flattened beams in both IMRT and VMAT. FFF beams in IMRT resulted in improvements by up to 5.4% for sparing of the contralateral optic structures, with shortened treatment time by 9.5%. However, FFF beams provided comparable overall OAR sparing and treatment time in VMAT. With FFF mode, VMAT yielded inferior homogeneity and superior conformity compared with IMRT, with comparable overall OAR sparing and significantly shorter treatment time. Conclusions Using FFF beams in IMRT and VMAT is feasible for the treatment of sinonasal cancer. Our results suggest that the delivery mode of FFF beams may play an encouraging role with better sparing of contralateral optic OARs and treatment efficiency in IMRT, but yield comparable results in VMAT. PMID:26734731

  3. TH-A-BRE-01: The Status of Intensity Modulated Proton and Ion Therapy

    SciTech Connect

    Dong, L; Zhu, X; Unkelbach, J; Schulte, R

    2014-06-15

    IMRT with photons has become a radiation therapy standard of care for many cancer treatment sites. The situation is quite different with intensity modulated particle (protons and ion) radiation therapy (IMPT). With the rapid development of beam scanning techniques and many of the newer proton facilities exclusively offering active beam scanning as their radiation delivery technique, it is timely to give an update on the status and challenges of IMPT. The leading principle in IMPT is to aim at the target from several, not necessarily coplanar, directions with multiple pencil beams that are modulated in their intensity and adjusted in their energy such that a desired dose distribution or, more generally, a desired bio-effective dose distribution is achieved. Different from low-LET photons, the varying relative biological effectiveness (RBE) along the beam path adds an additional dimension to the treatment planning process and will require biophysical modeling at least for carbon ion therapy. IMPT involves computationally challenging tasks, yet it needs to be very fast in order to be clinically relevant. To make IMPT computationally tractable, robust and efficient optimization methods are required. Lastly, IMPT planning is very sensitive to accurate knowledge of relative stopping and scattering powers of the intervening tissues as well as intra- and inter-fraction motion. Robust planning methods are being developed in order to obtain IMPT plans that are less sensitive against such uncertainties. This therapy symposium will present an update on the current status and emerging developments of IMPT from the medical physics perspective. Learning Objectives: Become familiar with current delivery techniques for IMPT and their limitations. Understand the basics of dose calculational algorithms and commissioning of IMPT. Learn how to assess the accuracy of planning and delivery of IMPT treatments. Get an overview of currently used and emerging optimization techniques. Learn

  4. Intensity-modulated radiation therapy: supportive data for prostate cancer.

    PubMed

    Cahlon, Oren; Hunt, Margie; Zelefsky, Michael J

    2008-01-01

    Since its introduction into clinical use in the mid-1990s, intensity-modulated radiation therapy (IMRT) has emerged as the most effective and widely used form of external-beam radiotherapy for localized prostate cancer. Multiple studies have confirmed the importance of delivering sufficiently high doses to the prostate to achieve cure. The dosimetric superiority of IMRT over conventional techniques to produce conformal dose distributions that allow for organ sparing has been shown. A growing number of reports have confirmed that IMRT is the safest way to deliver high doses of external-beam irradiation to the prostate and the regional lymph nodes. Advances in imaging and onboard verification systems continue to advance the capabilities of IMRT and have potential implications with regards to further dose escalation and hypofractionated regimens. The clinical data in support of IMRT and the associated technical aspects of IMRT treatment planning and implementation are highlighted in this review.

  5. Production of heralded pure single photons from imperfect sources using cross-phase-modulation

    SciTech Connect

    Konrad, Thomas; Nock, Michael; Scherer, Artur; Audretsch, Juergen

    2006-09-15

    Realistic single-photon sources do not generate single photons with certainty. Instead they produce statistical mixtures of photons in Fock states |1> and vacuum (noise). We describe how to eliminate the noise in the output of the sources by means of another noisy source or a coherent state and cross-phase-modulation (XPM). We present a scheme that announces the production of pure single photons and thus eliminates the vacuum contribution. This is done by verifying a XPM-related phase shift with a Mach-Zehnder interferometer.

  6. Intensity correlations and mesoscopic fluctuations of diffusing photons in cold atoms.

    PubMed

    Assaf, O; Akkermans, E

    2007-02-23

    We study the angular correlation function of speckle patterns that result from multiple scattering of photons by cold atomic clouds. We show that this correlation function becomes larger than the value given by Rayleigh law for classical scatterers. These large intensity fluctuations constitute a new mesoscopic effect specific to atom-photon interactions, that could not be observed in other systems such as weakly disordered metals. We provide a complete description of this behavior and expressions that allow for a quantitative comparison with experiments.

  7. Enhancement of photon intensity in forced coupled quantum wells inside a semiconductor microcavity.

    PubMed

    Eleuch, Hichem; Prasad, Awadhesh; Rotter, Ingrid

    2013-02-01

    We study numerically the photon emission from a semiconductor microcavity containing N≥2 quantum wells under the influence of a periodic external forcing. The emission is determined by the interplay between external forcing and internal interaction between the wells. While the external forcing synchronizes the periodic motion, the internal interaction destroys it. The nonlinear term of the Hamiltonian supports the synchronization. The numerical results show a jump of the photon intensity to very large values at a certain critical value of the external forcing when the number of quantum wells is not too large. We discuss the dynamics of the system across this transition. PMID:23496600

  8. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation

    PubMed Central

    Ates, Serkan; Agha, Imad; Gulinatti, Angelo; Rech, Ivan; Badolato, Antonio; Srinivasan, Kartik

    2013-01-01

    Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit nonideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of systems based on single solid-state quantum emitters, which often suffer from excess dephasing and multi-photon background emission. PMID:23466520

  9. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    NASA Technical Reports Server (NTRS)

    Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  10. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning.

    PubMed

    Andrieu, Patrice; Billot, Pierre-Édouard; Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  11. Intensity modulating and other radiation therapy devices for dose painting.

    PubMed

    Galvin, James M; De Neve, Wilfried

    2007-03-10

    The introduction of intensity-modulated radiation therapy (IMRT) in the early 1990s created the possibility of generating dramatically improved dose distributions that could be tailored to fit a complex geometric arrangement of targets that push against or even surround healthy critical structures. IMRT is a new treatment paradigm that goes beyond the capabilities of the earlier technology called three-dimensional radiation therapy (3DCRT). IMRT took the older approach of using fields that conformed to the silhouette of the target to deliver a relatively homogeneous intensity of radiation and separated the conformal fields into many subfields so that intensity could be varied to better control the final dose distribution. This technique makes it possible to generate radiation dose clouds that have indentations in their surface. Initially, this technology was mainly used to avoid and thus control the dose delivered to critical structures so that they are not seriously damaged in the process of irradiating nearby targets to an appropriately high dose. Avoidance of critical structures allowed homogeneous dose escalation that led to improved local control for small tumors. However, the normal tissue component of large tumors often prohibits homogeneous dose escalation. A newer concept of dose-painting IMRT is aimed at exploiting inhomogeneous dose distributions adapted to tumor heterogeneity. Tumor regions of increased radiation resistance receive escalated dose levels, whereas radiation-sensitive regions receive conventional or even de-escalated dose levels. Dose painting relies on biologic imaging such as positron emission tomography, functional magnetic resonance imaging, and magnetic resonance spectroscopy. This review will describe the competing techologies for dose painting with an emphasis on their commonalities.

  12. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning

    PubMed Central

    Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  13. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    SciTech Connect

    Le Nguyen, An-Dien

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO{sub 4}, NdVO{sub 4}, ErVO{sub 4}, and TmVO{sub 4} crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F{sub 1}/F{sub 2} ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F{sub 1}/F{sub 2} and the predicted values using the second-order theory has been found.

  14. Silicon photonics WDM interconnects based on resonant ring modulators and semiconductor mode locked laser

    NASA Astrophysics Data System (ADS)

    Müller, J.; Hauck, J.; Shen, B.; Romero-García, S.; Islamova, E.; Sharif Azadeh, S.; Joshi, S.; Chimot, N.; Moscoso-Mártir, A.; Merget, F.; Lelarge, F.; Witzens, J.

    2015-03-01

    We demonstrate wavelength domain multiplexed (WDM) data transmission with a data rate of 14 Gbps based on optical carrier generation with a single-section semiconductor mode-locked laser (SS-MLL) and modulation with a Silicon Photonics (SiP) resonant ring modulator (RRM). 18 channels are sequentially measured, whereas the best recorded eye diagrams feature signal quality factors (Q-factors) above 7. While optical re-amplification was necessary to maintain the link budgets and therefore system measurements were performed with an erbium doped fiber amplifier (EDFA), preliminary characterization done with a semiconductor optical amplifier (SOA) indicates compatibility with the latter pending the integration of an additional optical filter to select a subset of carriers and prevent SOA saturation. A systematic analysis of the relative intensity noise (RIN) of isolated comb lines and of signal Q-factors indicates that the link is primarily limited by amplified spontaneous emission (ASE) from the EDFA rather than laser RIN. Measured RIN for single comb components is below -120 dBc/Hz in the range from 7 MHz to 4 GHz and drops to the shot noise level at higher frequencies.

  15. Photonic DPASK/QAM signal generation at microwave/millimeter-wave band based on an electro-optic phase modulator.

    PubMed

    Zhang, Ye; Xu, Kun; Zhu, Ran; Li, Jianqiang; Wu, Jian; Hong, Xiaobin; Lin, Jintong

    2008-10-15

    We have proposed and experimentally demonstrated two novel photonic architectures to generate differential-phase amplitude-shift keying and circular quadrature amplitude modulation signals at microwave/millimeter-wave band based on an electro-optic phase modulator. In our proposed schemes, the electronic driven circuits were greatly simplified by employing the photonic vector modulation technique.

  16. Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Tsalach, A.; Metzger, Y.; Breskin, I.; Zeitak, R.; Shechter, R.

    2014-03-01

    Development of techniques for continuous measurement of regional blood flow, and in particular cerebral blood flow (CBF), is essential for monitoring critical care patients. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133 Xe SPECT1 and laser Doppler2. Coherent light is introduced into the tissue concurrently with an Ultrasound (US) field. Displacement of scattering centers within the sampled volume induced by Brownian motion, blood flow and the US field affects the photons' temporal correlation. Hence, the temporal fluctuations of the obtained speckle pattern provide dynamic information about the blood flow. We developed a comprehensive simulation, combining the effects of Brownian motion, US and flow on the obtained speckle pattern. Photons trajectories within the tissue are generated using a Monte-Carlo based model. Then, the temporal changes in the optical path due to displacement of scattering centers are determined, and the corresponding interference pattern over time is derived. Finally, the light intensity autocorrelation function of a single speckle is calculated, from which the tissue decorrelation time is determined. The simulation's results are compared with in-vitro experiments, using a digital correlator, demonstrating decorrelation time prediction within the 95% confidence interval. This model may assist in the development of optical based methods for blood flow measurements and particularly, in methods using the acousto-optic effect.

  17. A comparison of three optimization algorithms for intensity modulated radiation therapy.

    PubMed

    Pflugfelder, Daniel; Wilkens, Jan J; Nill, Simeon; Oelfke, Uwe

    2008-01-01

    In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%.

  18. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    SciTech Connect

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  19. Clinical Implementation of Intensity Modulated Proton Therapy for Thoracic Malignancies

    SciTech Connect

    Chang, Joe Y.; Li, Heng; Zhu, X. Ronald; Liao, Zhongxing; Zhao, Lina; Liu, Amy; Li, Yupeng; Sahoo, Narayan; Poenisch, Falk; Gomez, Daniel R.; Wu, Richard; Gillin, Michael; Zhang, Xiaodong

    2014-11-15

    Purpose: Intensity modulated proton therapy (IMPT) can improve dose conformality and better spare normal tissue over passive scattering techniques, but range uncertainties complicate its use, particularly for moving targets. We report our early experience with IMPT for thoracic malignancies in terms of motion analysis and management, plan optimization and robustness, and quality assurance. Methods and Materials: Thirty-four consecutive patients with lung/mediastinal cancers received IMPT to a median 66 Gy(relative biological equivalence [RBE]). All patients were able to undergo definitive radiation therapy. IMPT was used when the treating physician judged that IMPT conferred a dosimetric advantage; all patients had minimal tumor motion (<5 mm) and underwent individualized tumor-motion dose-uncertainty analysis and 4-dimensional (4D) computed tomographic (CT)-based treatment simulation and motion analysis. Plan robustness was optimized by using a worst-case scenario method. All patients had 4D CT repeated simulation during treatment. Results: IMPT produced lower mean lung dose (MLD), lung V{sub 5} and V{sub 20}, heart V{sub 40}, and esophageal V{sub 60} than did IMRT (P<.05) and lower MLD, lung V{sub 20}, and esophageal V{sub 60} than did passive scattering proton therapy (PSPT) (P<.05). D{sub 5} to the gross tumor volume and clinical target volume was higher with IMPT than with intensity modulated radiation therapy or PSPT (P<.05). All cases were analyzed for beam-angle-specific motion, water-equivalent thickness, and robustness. Beam angles were chosen to minimize the effect of respiratory motion and avoid previously treated regions, and the maximum deviation from the nominal dose-volume histogram values was kept at <5% for the target dose and met the normal tissue constraints under a worst-case scenario. Patient-specific quality assurance measurements showed that a median 99% (range, 95% to 100%) of the pixels met the 3% dose/3 mm distance criteria for the

  20. L X-ray satellite effects on the determination of photon emission intensities of radionuclides.

    PubMed

    Rodrigues, M; Loidl, M

    2016-03-01

    L X-ray satellites are usually not considered during the fitting procedure of L X-ray spectra obtained with semiconductor detectors. Based on a high energy resolution spectrum of X-rays of (241)Am obtained with a metallic magnetic calorimeter, it has been demonstrated that satellites are intense with respect to their parent diagram line. In addition, it has been shown that the presence of satellites involves significant systematic errors on the determined photon intensities when they are ignored in the spectrum processing. PMID:26701657

  1. Simplified architecture for photonic analog-to-digital conversion, utilizing an array of optical modulators

    NASA Astrophysics Data System (ADS)

    Gevorgyan, Hayk; Khilo, Anatol

    2016-03-01

    In this work a novel photonic sampled and electronically quantized analog-to-digital converter (ADC) system is introduced. High overall sampling rate and relaxed analog bandwidth requirements for photodetectors and electronic quantizers are attained by multichannel architecture. The proposed scheme, with a dedicated electro-optic modulator for each of the channels, is much simpler and has a perspective to outreach the performance of a similar time- wavelength demultiplexed photonic ADC. Absolute optical power isolation between the channels completely eliminates the issue of channel crosstalk, resulting in increased power efficiency of the system. Owing to small number of wavelength demultiplexers less wavelength alignment is required, which reduces the complexity of both photonic and electronic subsystems. Due to the significance of having compact, on-chip photonic ADCs, the analysis of integration of proposed system on a silicon platform is performed. The availability of high performance devices in various Si platforms, such as low loss Si waveguides, microring resonator filters, modulators, photodetectors, necessary for building the system, proves that the photonic ADC is well suited for integration on a silicon chip. For integrated version of proposed architecture Si microring resonator modulators are suitable. They are compact, and can have shorter total length of diode phase shifters as compared to Mach-Zehnder modulators, used in time-wavelength demultiplexed photonic ADCs. To achieve large modulation depth and lower nonlinear distortions, the choice of optimum optical bandwidth of microring modulator is analyzed. Finally, the nonlinearity analysis of ring modulators is performed and the influence of nonlinearities on the ADC performance is discussed.

  2. A demonstration of beam intensity modulation without loss of charge

    SciTech Connect

    Mackenzie, G.H.; Rawnsley, W.R.; Lee, R.

    1995-09-01

    The large acceptance and the simplicity of H{sup {minus}} extraction makes practical unusual modes of cyclotron operation. RF equipment, initially installed for H{sup {minus}} extraction at TRIUMF, has been used to modulate the beam intensity at the extraction radius. This equipment consists of a 92 MHz, 150 kV cavity (AAC) and an RFD (11.5 MHz, 20 kV). The AAC augments the acceleration provided by the main 23 MHz, RF system; the RFD excites radial betatron oscillations. These devices may be operated at frequencies slightly different from their design multiple; their effect then beats with the main RF. In this mode the AAC, for example, alternately reduces the rate of acceleration, thus increasing the overlap of turns, then enhances it, sweeping the clustered turns onto a probe or foil. Operating the AAC or RFD in this manner gathers the bulk of the charge into peaks a few microseconds wide and spaced between 6 and 50 {micro}s. Changing the frequency offset alters the spacing. The peak to valley ratio was 23:1 and all beam was transmitted to the extraction radius.

  3. Signal restoration in intensity-modulated optical OFDM access systems.

    PubMed

    Vanin, Evgeny

    2011-11-15

    It is well known that deliberate signal clipping in an intensity-modulated (IM) laser transmitter helps to overcome the optical orthogonal frequency division multiplexing (OFDM) system performance limitation that is related to the signal high peak-to-average power ratio. The amplitude of a clipped OFDM signal has to be optimized in order to minimize the optical power that is required to achieve a specified system performance. However, the signal clipping introduces nonlinear distortion (so-called clipping noise) and leads to a system performance penalty. In this Letter, the performance of the IM optical OFDM system with digital baseband clipping distortion in the transmitter and clipping noise compensation by means of signal restoration in the digital signal processing unit of the system receiver is analytically evaluated. It is demonstrated that the system bit-error ratio can be reduced by more than an order of magnitude, from 10(-3) to 3.5×10(-5), by applying only the first iteration of the signal restoration algorithm proposed in this Letter. The results of the analytical analysis are verified with brute-force numerical simulations based on direct error counting. PMID:22089556

  4. Intensity-Modulated Radiation Therapy in Childhood Ependymoma

    SciTech Connect

    Schroeder, Thomas M.; Chintagumpala, Murali; Okcu, M. Fatih; Chiu, J. Kam; Teh, Bin S.; Woo, Shiao Y.; Paulino, Arnold C.

    2008-07-15

    Purpose: To determine the patterns of failure after intensity-modulated radiation therapy (IMRT) for localized intracranial ependymoma. Methods and Materials: From 1994 to 2005, 22 children with pathologically proven, localized, intracranial ependymoma were treated with adjuvant IMRT. Of the patients, 12 (55%) had an infratentorial tumor and 14 (64%) had anaplastic histology. Five patients had a subtotal resection (STR), as evidenced by postoperative magnetic resonance imaging. The clinical target volume encompassed the tumor bed and any residual disease plus margin (median dose 54 Gy). Median follow-up for surviving patients was 39.8 months. Results: The 3-year overall survival rate was 87% {+-} 9%. The 3-year local control rate was 68% {+-} 12%. There were six local recurrences, all in the high-dose region of the treatment field. Median time to recurrence was 21.7 months. Of the 5 STR patients, 4 experienced recurrence and 3 died. Patients with a gross total resection had significantly better local control (p = 0.024) and overall survival (p = 0.008) than those with an STR. At last follow-up, no patient had developed visual loss, brain necrosis, myelitis, or a second malignancy. Conclusions: Treatment with IMRT provides local control and survival rates comparable with those in historic publications using larger treatment volumes. All failures were within the high-dose region, suggesting that IMRT does not diminish local control. The degree of surgical resection was shown to be significant for local control and survival.

  5. Intensity-modulated radiation therapy for head and neck carcinoma.

    PubMed

    Grégoire, Vincent; De Neve, Wilfried; Eisbruch, Avraham; Lee, Nancy; Van den Weyngaert, Danielle; Van Gestel, Dirk

    2007-05-01

    Intensity-modulated radiation therapy (IMRT) for head and neck tumors refers to a new approach that aims at increasing the radiation dose gradient between the target tissues and the surrounding normal tissues at risk, thus offering the prospect of increasing the locoregional control probability while decreasing the complication rate. As a prerequisite, IMRT requires a proper selection and delineation of target volumes. For the latter, recent data indicate the potential of functional imaging to complement anatomic imaging modalities. Nonrandomized clinical series in paranasal sinuses and pharyngolaryngeal carcinoma have shown that IMRT was able to achieve a very high rate of locoregional control with less morbidity, such as dry-eye syndrome, xerostomia, and swallowing dysfunction. The promising results of IMRT are likely to be achieved when many treatment conditions are met, for example, optimal selection and delineation of the target volumes and organs at risk, appropriate physical quality control of the irradiation, and accurate patient setup with the use of onboard imaging. Because of the complexity of the various tasks, it is thus likely that these conditions will only be met in institutions having large patient throughput and experience with IMRT. Therefore, patient referral to those institutions is recommended.

  6. Advances in silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices

    NASA Astrophysics Data System (ADS)

    Sharif Azadeh, S.; Müller, J.; Merget, F.; Romero-García, S.; Shen, B.; Witzens, J.

    2014-09-01

    We report recent progress made in our laboratory on travelling wave Mach-Zehnder Interferometer based Silicon Photonics modulators with segmented transmission lines, as well as on resonant ring modulators and add-drop multiplexers with peaking enhanced bandwidth extended beyond the photon lifetime limit. In our segmented transmission lines, microstructuring of the electrodes results in radio-frequency modes significantly deviating from the transverse electromagnetic (TEM) condition and allows for additional design freedom to jointly achieve phase matching, impedance matching and minimizing resistive losses. This technique was found to be particularly useful to achieve the aforementioned objectives in simple back-end processes with one or two metallization layers. Peaking results from intrinsic time dynamics in ring resonator based modulators and add-drop multiplexers and allows extending the bandwidth of the devices beyond the limit predicted from the photon lifetime. Simple closed form expressions allow incorporating peaking into system level modeling.

  7. Siemens Multileaf Collimator Characterization and Quality Assurance Approaches for Intensity-Modulated Radiotherapy

    SciTech Connect

    Bayouth, John E.

    2008-05-01

    Application of the multileaf collimator (MLC) has evolved from replacing blocks to create treatment fields to creating photon fluence modulation for intensity-modulated radiotherapy (IMRT). Multileaf collimator system performance requirements are far more stringent for such applications and will require increased performance for future applications, such as motion tracking. This article reviews Siemens MLC systems, including a technical description and dosimetric characteristics of 56-, 82-, and 160-leaf designs. Routine quality assurance of MLC for IMRT necessitates frequent and critical assessment of MLC leaf position calibration errors that can present in many different ways (e.g., accuracy, reproducibility, longevity, hysteresis, and collimator/gantry angle dependencies). Several techniques for measuring these errors are presented, along with qualitative and quantitative techniques for analyzing results. In particular, increased accuracy of leaf position measurement at variable gantry angles is enabled by spatial transformations to electronic portal imaging device position quantified by calibration protocols introduced with megavoltage cone beam. Measured values of X-ray transmission (intra-leaf, inter-leaf, and through abutting leaf pairs) and penumbra (leaf end, leaf tongue, leaf groove) are presented with an evaluation of their characterization by a treatment-planning system. The dosimetric impact of planning system model inadequacies is demonstrated for collimator scatter, dose profile values within 30 mm of the field edge, and the resultant effect demonstrated on clinical cases. Finally, a description of automated quality assurance delivery, analysis, and calibration protocols applicable for the specific vendor's system is provided.

  8. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-01

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current. PMID:22273682

  9. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.

    PubMed

    Akimov, A V; Tanaka, Y; Pevtsov, A B; Kaplan, S F; Golubev, V G; Tamura, S; Yakovlev, D R; Bayer, M

    2008-07-18

    The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets generated in a metal transducer by subpicosecond laser pulses. These studies show that light with energies close to the photonic band gap can be efficiently modulated by hypersonic waves.

  10. Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography.

    PubMed

    Behera, Saraswati; Kumar, Manish; Joseph, Joby

    2016-04-15

    We present a large-area and single-step fabrication approach based on phase spatial light modulator (SLM)-assisted interference lithography for the realization of submicrometer photonic structures on photoresist. A multimirror beam steering unit is used to reflect the SLM-generated phase-engineered beams leading to a large angle between interfering beams while also preserving the large area of the interfering plane beams. Both translational and rotational periodic submicrometer structures are experimentally realized. This approach increases the flexibility of interference lithography to fabricate more complex submicrometer photonic structures and photonic metamaterial structures for future applications. PMID:27082372

  11. Zero photon dissociation of CS2+ in intense ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Severt, Travis; Betsch, K. J.; Zohrabi, M.; Ablikim, U.; Jochim, Bethany; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2013-05-01

    We measured the dissociation of a CS2+ molecular ion beam in intense laser pulses (<50 fs, <1015 W/cm2), focusing on the zero photon dissociation (ZPD) and above threshold dissociation (ATD) mechanisms. The ZPD mechanism leads to dissociation with the net absorption of zero photons in a strong field. The present work extends the idea of ZPD to more complex molecules than the H2+ discussed in literature. Preliminary data suggests that ZPD is larger than ATD for CS2+ --> C+ + S+. We speculate that a pump-dump process occurs whereby the vibrational wavepacket in the electronic ground state of CS2+ is pumped into the electronic first excited state's continuum by a single photon during the laser pulse. Once this continuum vibrational wavepacket passes the potential barrier in the ground electronic potential, the emission of a second photon is stimulated by the same laser pulse, most likely when the wavepacket moves through the internuclear distance where the two electronic states are in resonance with the driving field. A comparison is made to ZPD and ATD in the isovalent CO2+ species. Curiously, ATD is the favored mechanism in CO2+. The underlying molecular structure and dynamics determining this preference will be discussed. Supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  12. Vertically integrated photonic multichip module architecture for vision applications

    NASA Astrophysics Data System (ADS)

    Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong

    2000-05-01

    The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.

  13. Broadband linearized analog intersatellite microwave photonic link using a polarization modulator in a Sagnac loop.

    PubMed

    Zhu, Zihang; Li, Yongjun; Zhao, Shanghong; Li, Xuan; Qu, Kun; Ma, Jiajun

    2016-02-10

    A novel orthogonal polarization optical carrier suppression with carrier (OCS+C) modulation and a coherent balanced detection intersatellite microwave photonic link with improved signal-to-noise and distortion ratio (SNDR) is proposed. By bidirectional use of a polarization modulator in a Sagnac loop in conjunction with a polarization beam splitter and two polarization controllers, only the light wave along the clockwise direction is effectively modulated while the counterclockwise light wave is not modulated due to the velocity mismatch, which generates the orthogonal polarization OCS+C modulation signal to mitigate the third-order intermodulation distortion (IMD3) and the signal-amplifier spontaneous emission beating noise. By demultiplexing and adjusting the polarization of the orthogonal polarization OCS+C modulation signal, coherent balanced detection can be realized without a local oscillator signal in the receiver, which suppresses the second-order distortions. Thus, a broadband linearized intersatellite microwave photonic link with high SNDR is achieved. Simulation results show that the maximum SNDR of 36.2 dB can be obtained when the optimum modulation index is 0.26, which is 8 dB higher than our previously proposed intersatellite microwave photonic link with an optical preamplifier. PMID:26906370

  14. Approaching Oxygen-Guided Intensity-Modulated Radiation Therapy.

    PubMed

    Epel, Boris; Redler, Gage; Pelizzari, Charles; Tormyshev, Victor M; Halpern, Howard J

    2016-01-01

    The outcome of cancer radiation treatment is strongly correlated with tumor oxygenation. The aim of this study is to use oxygen tension distributions in tumors obtained using Electron Paramagnetic Resonance (EPR) imaging to devise better tumor radiation treatment. The proposed radiation plan is delivered in two steps. In the first step, a uniform 50% tumor control dose (TCD50) is delivered to the whole tumor. For the second step an additional dose boost is delivered to radioresistant, hypoxic tumor regions. FSa fibrosarcomas grown in the gastrocnemius of the legs of C3H mice were used. Oxygen tension images were obtained using a 250 MHz pulse imager and injectable partially deuterated trityl OX63 (OX71) spin probe. Radiation was delivered with a novel animal intensity modulated radiation therapy (IMRT) XRAD225Cx microCT/radiation therapy delivery system. In a simplified scheme for boost dose delivery, the boost area is approximated by a sphere, whose radius and position are determined using an EPR O2 image. The sphere that irradiates the largest fraction of hypoxic voxels in the tumor was chosen using an algorithm based on Receiver Operator Characteristic (ROC) analysis. We used the fraction of irradiated hypoxic volume as the true positive determinant and the fraction of irradiated normoxic volume as the false positive determinant in the terms of that analysis. The most efficient treatment is the one that demonstrates the shortest distance from the ROC curve to the upper left corner of the ROC plot. The boost dose corresponds to the difference between TCD90 and TCD50 values. For the control experiment an identical radiation dose to the normoxic tumor area is delivered.

  15. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  16. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  17. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    SciTech Connect

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-09-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  18. Prospective Trial of Accelerated Partial Breast Intensity-Modulated Radiotherapy

    SciTech Connect

    Leonard, Charles . E-mail: charles.leonard@usoncology.com; Carter, Dennis; Kercher, Jane; Howell, Kathryn; Henkenberns, Phyllis; Tallhamer, Michael; Cornish, Patricia C.; Hunter, Kari C.; Kondrat, Janis

    2007-04-01

    Purpose: To examine the feasibility and acute toxicities of an accelerated, partial breast, intensity-modulated radiotherapy (IMRT) protocol. Methods and Materials: Between February 2004 and August 2005, 55 patients with Stage I breast cancer and initial follow-up were enrolled at four facilities on a HealthONE and Western institutional review board-approved accelerated partial breast IMRT protocol. All patients were treated in 10 equal fractions delivered twice daily within 5 consecutive days. The first 7 patients were treated to 34 Gy, and the remaining 48 patients were treated to 38.5 Gy. Results: The median follow-up after IMRT was 10 months (range, <1-19) and after diagnosis was 11.5 months (range, 2-21). No local or distant recurrences developed. The T stage distribution was as follows: T1a in 11 patients, T1b in 24, and T1c in 20. The median tumor size was 9 mm (range, 1-20 mm). Breast cosmesis was judged by the patient as poor by 2, good by 12, and excellent by 40 (1 patient was legally blind) and by the physician as poor for 1, good for 10, and excellent for 44 patients. Breast pain, as judged by patient, was none in 34, mild in 19, moderate in 2, and severe in 0 patients. There was a single report of telangiectasia but no incidents of significant edema. Compared with historic controls for whom three-dimensional treatment planning techniques were used, IMRT provided similar dose delivery to the target while reducing the volume of normal breast included in the 100%, 75%, and 50% isodose lines. Conclusion: This initial report prospectively explored the feasibility of accelerated partial breast IMRT. After short-term follow-up, the dose delivery and clinical outcomes were very acceptable. We believe this regimen deserves additional investigation under institutional review board guidance.

  19. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    SciTech Connect

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C; Fan, J; Zhang, C

    2014-06-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing.

  20. Ultrasound-based guidance of intensity-modulated radiation therapy.

    PubMed

    Fung, Albert Y C; Ayyangar, Komanduri M; Djajaputra, David; Nehru, Ramasamy M; Enke, Charles A

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  1. Ultrasound-based guidance of intensity-modulated radiation therapy

    SciTech Connect

    Fung, Albert Y.C. . E-mail: afung@unmc.edu; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-04-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  2. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Löf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  3. Two-photon double ionization of H2 in intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.

    2010-10-01

    Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully ab initio, nonperturbative approach to the time-dependent Schrödinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan [J. Phys. BJPAPEH0953-407510.1088/0953-4075/41/12/121002 41, 121002 (2008)] and Morales [J. Phys. BJPAPEH0953-407510.1088/0953-4075/42/13/134013 42, 134013 (2009)]. However, we argue that these individual predictions should not be compared directly with each other, but preferably with experimental data generated under well-defined conditions.

  4. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  5. Injection-locked semiconductor laser-based frequency comb for modulation applications in RF analog photonics.

    PubMed

    Sarailou, Edris; Delfyett, Peter

    2016-07-01

    A linearized intensity modulator for periodic and pulsed light is proposed and demonstrated. The free carrier plasma effect has been used to modulate the refractive index of the phase section of a three-section mode-locked laser. If injection locked, the modulation induces an arcsine phase response on the three-section mode-locked laser. By introducing this mode-locked laser into a Mach-Zehnder interferometer biased at quadrature, one can realize a true linear intensity modulation. This novel laser suppresses any unwanted amplitude modulation and increases the performance of the linearized intensity modulator. Experimental results have provided a record low static Iπ of 0.39 mA and a spur-free dynamic range of 75  dB.Hz2/3. PMID:27367083

  6. [Modalities of breast cancer irradiation in 2016: Aims and indications of intensity modulated radiation therapy].

    PubMed

    Bourgier, C; Fenoglietto, P; Lemanski, C; Ducteil, A; Charissoux, M; Draghici, R; Azria, D

    2016-10-01

    Irradiation techniques for breast cancer (arctherapy, tomotherapy) are evolving and intensity-modulated radiation therapy is being increasingly considered for the management of these tumours. Here, we propose a review of intensity-modulated radiation therapy planning issues, clinical toxicities and indications for breast cancer. PMID:27614497

  7. Measuring spatial correlations of photon pairs by automated raster scanning with spatial light modulators

    PubMed Central

    Paul, E. C.; Hor-Meyll, M.; Ribeiro, P. H. Souto; Walborn, S. P.

    2014-01-01

    We demonstrate the use of a phase-only spatial light modulator for the measurement of transverse spatial distributions of coincidence counts between twin photon beams, in a fully automated fashion. This is accomplished by means of the polarization dependence of the modulator, which allows the conversion of a phase pattern into an amplitude pattern. We also present a correction procedure, that accounts for unwanted coincidence counts due to polarization decoherence effects. PMID:24939691

  8. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    SciTech Connect

    Vaezzadeh, Seyedali; Allahverdi, Mahmoud; Nedaie, Hasan A.; Ay, Mohammadreza; Shirazi, Alireza; Yarahmadi, Mehran

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose

  9. Leakage-Penumbra effect in intensity modulated radiation therapy step-and-shoot dose delivery

    PubMed Central

    Grigorov, Grigor N; Chow, James CL

    2016-01-01

    AIM: To study the leakage-penumbra (LP) effect with a proposed correction method for the step-and-shoot intensity modulated radiation therapy (IMRT). METHODS: Leakage-penumbra dose profiles from 10 randomly selected prostate IMRT plans were studied. The IMRT plans were delivered by a Varian 21 EX linear accelerator equipped with a 120-leaf multileaf collimator (MLC). For each treatment plan created by the Pinnacle3 treatment planning system, a 3-dimensional LP dose distribution generated by 5 coplanar photon beams, starting from 0o with equal separation of 72o, was investigated. For each photon beam used in the step-and-shoot IMRT plans, the first beam segment was set to have the largest area in the MLC leaf-sequencing, and was equal to the planning target volume (PTV). The overshoot effect (OSE) and the segment positional errors were measured using a solid water phantom with Kodak (TL and X-OMAT V) radiographic films. Film dosimetric analysis and calibration were carried out using a film scanner (Vidar VXR-16). The LP dose profiles were determined by eliminating the OSE and segment positional errors with specific individual irradiations. RESULTS: A non-uniformly distributed leaf LP dose ranging from 3% to 5% of the beam dose was measured in clinical IMRT beams. An overdose at the gap between neighboring segments, represented as dose peaks of up to 10% of the total BP, was measured. The LP effect increased the dose to the PTV and surrounding critical tissues. In addition, the effect depends on the number of beams and segments for each beam. Segment positional error was less than the maximum tolerance of 1 mm under a dose rate of 600 monitor units per minute in the treatment plans. The OSE varying with the dose rate was observed in all photon beams, and the effect increased from 1 to 1.3 Gy per treatment of the rectal intersection. As the dosimetric impacts from the LP effect and OSE may increase the rectal post-radiation effects, a correction of LP was proposed and

  10. Volumetric Arc Intensity-Modulated Therapy for Spine Body Radiotherapy: Comparison With Static Intensity-Modulated Treatment

    SciTech Connect

    Wu, Q. Jackie; Yoo, Sua; Kirkpatrick, John P.; Thongphiew, Danthai; Yin Fangfang

    2009-12-01

    Purpose: This clinical study evaluates the feasibility of using volumetric arc-modulated treatment (VMAT) for spine stereotactic body radiotherapy (SBRT) to achieve highly conformal dose distributions that spare adjacent organs at risk (OAR) with reduced treatment time. Methods and Materials: Ten spine SBRT patients were studied retrospectively. The intensity-modulated radiotherapy (IMRT) and VMAT plans were generated using either one or two arcs. Planning target volume (PTV) dose coverage, OAR dose sparing, and normal tissue integral dose were measured and compared. Differences in treatment delivery were also analyzed. Results: The PTV DVHs were comparable between VMAT and IMRT plans in the shoulder (D{sub 99%}-D{sub 90%}), slope (D{sub 90%}-D{sub 10%}), and tail (D{sub 10%}-D{sub 1%}) regions. Only VMAT{sub 2arc} had a better conformity index than IMRT (1.09 vs. 1.15, p = 0.007). For cord sparing, IMRT was the best, and VMAT{sub 1arc} was the worst. Use of IMRT achieved greater than 10% more D{sub 1%} sparing for six of 10 cases and 7% to 15% more D{sub 10%} sparing over the VAMT{sub 1arc}. The differences between IMRT and VAMT{sub 2arc} were smaller and statistically nonsignificant at all dose levels. The differences were also small and statistically nonsignificant for other OAR sparing. The mean monitor units (MUs) were 8711, 7730, and 6317 for IMRT, VMAT{sub 1arc}, and VMAT{sub 2arc} plans, respectively, with a 26% reduction from IMRT to VMAT{sub 2arc}. The mean treatment time was 15.86, 8.56, and 7.88 min for IMRT, VMAT{sub 1arc,} and VMAT{sub 2arc}. The difference in integral dose was statistically nonsignificant. Conclusions: Although VMAT provided comparable PTV coverage for spine SBRT, 1arc showed significantly worse spinal cord sparing compared with IMRT, whereas 2arc was comparable to IMRT. Treatment efficiency is substantially improved with the VMAT.

  11. Intensity-resolved IR multiple photon ionization and fragmentation of C60.

    PubMed

    Bakker, Joost M; Lapoutre, Vivike J F; Redlich, Britta; Oomens, Jos; Sartakov, Boris G; Fielicke, André; von Helden, Gert; Meijer, Gerard; van der Meer, Alexander F G

    2010-02-21

    The sequential absorption of multiple infrared (IR) photons by isolated gas-phase species can lead to their dissociation and/or ionization. Using the newly constructed "Free-Electron Laser for IntraCavity Experiments" (FELICE) beam line at the FELIX facility, neutral C(60) molecules have been exposed to an extremely high number (approximately 10(23)) of photons/cm(2) for a total time duration of up to 5 micros. At wavelengths around 20 microm, resonant with allowed IR transitions of C(60), ionization and extensive fragmentation of the fullerenes are observed. The resulting photofragment distributions are attributed to absorption in fragmentation products formed once C(60) is excited to internal energies at which fragmentation or ionization takes place within the duration of the laser pulse. The high IR intensities available combined with the large interaction volume permit spatially resolved detection of the ions inside the laser beam, thereby disentangling the contributions from different IR intensities. The use of spatial imaging reveals intensity dependent mass distributions that are substantially narrower than what has been observed previously, indicating rather narrow energy distributions. A simple rate-equation modeling of the excitation process supports the experimental observations.

  12. An electro-optic polymer modulator for radio photonics

    NASA Astrophysics Data System (ADS)

    Denisyuk, I. Yu.; Burunkova, Yu. E.; Pozdnyakova, S. A.; Balya, V. K.; Zhuk, D. I.; Fokina, M. I.

    2015-10-01

    A method for developing an electro-optic polymer Mach‒Zehnder modulator based on polymethylmethacrylate- disperse red copolymer has been investigated. The inverse scheme is chosen as the basis for preparing a microstrip structure. This scheme entails the formation of microgrooves in the lower cladding layer by combining photolithography and reactive-ion etching (RIE), with subsequent deposition of an active electro-optic layer by centrifugation. The processes of forming layers and electrodes, the interaction between layers, the light transmission through the microstrip structure, and the modulator characteristics are considered.

  13. The determination of minority carrier lifetimes in direct band-gap semiconductors by monitoring intensity-modulated luminescence radiation

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1985-01-01

    When an extrinsic, direct band-gap semiconductor sample is irradiated by photons of an energy higher than the energy of the band gap between valence and conduction bands, excess electron-hole pairs are generated which, while diffusing through the sample, produce luminescence via radiative recombination. If, furthermore, the intensity of the impinging beam of photons is modulated sinusoidally, the luminescence radiation escaping from the sample will be phase shifted with respect to the original photon beam in a characteristic way. It will be shown that by measuring the phase shift at different modulation frequencies, the Shockley-Read-Hall lifetime of minority carriers may be ascertained. The method is nondestructive inasmuch as there is no need to fabricate p-n junctions or Ohmic contacts, nor is it necessary to remove already existing Ohmic contacts of angle lap the surface, etc., procedures often needed when determining lifetimes with the scanning electron microscope (in which case a p-n junction must be present).

  14. Photon emission intensities in the decay of 108mAg and 110mAg.

    PubMed

    Ferreux, L; Lépy, M-C; Bé, M-M; Isnard, H; Lourenço, V

    2014-05-01

    This study focuses on two radioisotopes of silver, (108m)Ag and (110m)Ag, characterized by a complex decay scheme. Each isotope has two disintegration modes, the isomeric transition leading to the daughter isotope ((108)Ag and (110)Ag, respectively) with a short half-life. The radioactive solution was obtained by neutron activation on silver powder enriched in (109)Ag. Gamma-spectrometry was carried out using a calibrated high purity germanium detector. The main relative photon emission intensities for both radionuclides were obtained and compared with previously published values.

  15. Photonic and plasmonic modulators based on optical switching in VO2

    NASA Astrophysics Data System (ADS)

    Haglund, Richard F.; Weiss, Sharon M.; Appavoo, Kannatassen

    2015-01-01

    Researchers all over the world are competing in a technology-driven quest to develop the next generation of ultrasmall, low-power photonic and plasmonic devices. One route to this objective involves hybrid structures that incorporate a phase-changing material into the structure, creating a nanocomposite material in which the optical response of a plasmonic or photonic structure is modulated by a change in phase, crystallinity or dielectric function induced by thermal, optical or electrical stimulus. Vanadium dioxide (VO2) has been considered as a potential electro-optic switching material for electronic and photonic applications ever since its semiconductor-to-metal transition (SMT) was first described half a century ago. This review describes the application of vanadium dioxide as the switching element in (i) a hybrid silicon ring resonator and (ii) a polarization-sensitive, multifunctional plasmonic modulator in the form of a nanoscale heterodimer. As is now widely known, the SMT in VO2 is also accompanied by a structural phase transition (SPT) from the M1 (monoclinic) to a rutile (tetragonal, R) crystalline form that was believed to prevent a fast recovery after switching. However, recent research has shown that this picture is oversimplified, and that there is a monoclinic metallic state that enables true ultrafast switching. That understanding, in turn, is leading to new concepts in developing hybrid nanocomposites that incorporate VO2 in silicon photonics and plasmonic modulators, enabling the construction of ultrafast optical switches, modulators and memory elements.

  16. Inverse planning optimization method for intensity modulated radiation therapy.

    PubMed

    Lan, Yihua; Ren, Haozheng; Li, Cunhua; Min, Zhifang; Wan, Jinxin; Ma, Jianxin; Hung, Chih-Cheng

    2013-10-01

    In order to facilitate the leaf sequencing process in intensity modulated radiation therapy (IMRT), and design of a practical leaf sequencing algorithm, it is an important issue to smooth the planned fluence maps. The objective is to achieve both high-efficiency and high-precision dose delivering by considering characteristics of leaf sequencing process. The key factor which affects total number of monitor units for the leaf sequencing optimization process is the max flow value of the digraph which formulated from the fluence maps. Therefore, we believe that one strategy for compromising dose conformity and total number of monitor units in dose delivery is to balance the dose distribution function and the max flow value mentioned above. However, there are too many paths in the digraph, and we don't know the flow value of which path is the maximum. The maximum flow value among the horizontal paths was selected and used in the objective function of the fluence map optimization to formulate the model. The model is a traditional linear constrained quadratic optimization model which can be solved by interior point method easily. We believe that the smoothed maps from this model are more suitable for leaf sequencing optimization process than other smoothing models. A clinical head-neck case and a prostate case were tested and compared using our proposed model and the smoothing model which is based on the minimization of total variance. The optimization results with the same level of total number of monitor units (TNMU) show that the fluence maps obtained from our model have much better dose performance for the target/non-target region than the maps from total variance based on the smoothing model. This indicates that our model achieves better dose distribution when the algorithm suppresses the TNMU at the same level. Although we have just used the max flow value of the horizontal paths in the diagraph in the objective function, a good balance has been achieved between

  17. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  18. Dosimetric comparison of stereotactic radiosurgery to intensity modulated radiotherapy.

    PubMed

    Kramer, B A; Wazer, D E; Engler, M J; Tsai, J S; Ling, M N

    1998-01-01

    To compare the dosimetry achievable with an intensity modulated radiotherapy (IMR) system to that of stereotactic radiosurgery (SRS) for an irregularly shaped moderate size target. A treatment plan was selected from 109 single fraction SRS cases having had multiple non-coplanar arc therapy using a 6 MV linear accelerator fitted with circular tertiary collimators 1.00 to 4.00 cm in diameter at isocenter. The CT scan with delineated regions of interest was then entered into an IMR treatment planning system and optimized dose distributions, using a back projection technique for dynamic multileaf collimator delivery, were generated with a stimulated annealing algorithm. Dose volume histograms (DVH), homogeneity indices (HI), conformity indices (CI), minimum and maximum doses to surrounding highly sensitive intracranial structures, as well as the volume of tissue treated to > 80, 50, and 20% of the prescription dose from the IMR plan were then compared to those from the single isocenter SRS plan used and a hypothetical three isocenter SRS plan. For an irregularly shaped target, the IMR plan produced a HI of 1.08 and CI of 1.50 compared to 1.75 and 4.41, respectively, for the single isocenter SRS plan (SRS1) and 3.33 and 3.43 for the triple isocenter SRS plan (SRS3). The maximum and minimum doses to surrounding critical structures were less with the IMR plan in comparison to both SRS plans. However, the volume of non-target tissue treated to > 80, 50, and 20% of the prescription dose with the IMR plan was 137, 170, and 163%, respectively, of that treated with the SRS1 plan and 85, 100, and 123% of the volume when compared to SRS3 plan. The IMR system provided more conformal target doses than were provided by the single isocenter or three isocenter SRS plans. IMR delivered less dose to critical normal tissues and provided increased homogeneity within the target volume for a moderate size irregularly shaped target, at the cost of a larger penumbra. PMID:9503486

  19. Volumetric Modulation Arc Radiotherapy Compared With Static Gantry Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma Tumor: A Feasibility Study

    SciTech Connect

    Scorsetti, Marta; Bignardi, Mario; Clivio, Alessandro

    2010-07-01

    Purpose: A planning study was performed to evaluate RapidArc (RA), a volumetric modulated arc technique, on malignant pleural mesothelioma. The benchmark was conventional fixed-field intensity-modulated radiotherapy (IMRT). Methods and materials: The computed tomography data sets of 6 patients were included. The plans for IMRT with nine fixed beams were compared against double-modulated arcs with a single isocenter. All plans were optimized for 15-MV photon beams. The dose prescription was 54 Gy to the planning target volume. The planning objectives for the planning target volume were a minimal dose of >95% and maximal dose of <107%. For the organs at risk, the parameters were as follows: contralateral lung, percentage of volume receiving 5 Gy (V{sub 5Gy}) <60%, V{sub 20Gy} < 10%, mean <10.0 Gy; liver, V{sub 30Gy} <33%, mean <31 Gy; heart, V{sub 45Gy} <30%, V{sub 50Gy} <20%, dose received by 1% of the volume (D{sub 1%}) <60 Gy; contralateral kidney, V{sub 15Gy} <20%; spine, D{sub 1%} <45 Gy; esophagus, V{sub 55Gy} <30%; and spleen, V{sub 40Gy} <50%. The monitor units (MUs) and delivery time were scored to measure the treatment efficiency. The pretreatment portal dosimetry scored delivery to the calculation agreement with the Gamma Agreement Index. Results: RA and IMRT provided equivalent coverage and homogeneity. Both techniques fulfilled objectives on organs at risk with a tendency of RA to improve sparing. The conformity index was 1.9 {+-} 0.1 for RA and IMRT. The number of MU/2Gy was 734 {+-} 82 for RA and 2,195 {+-} 317 for IMRT. The planning vs. delivery agreement revealed a Gamma Agreement Index for IMRT of 96.0% {+-} 2.6% and for RA of 95.7% {+-} 1.5%. The treatment time was 3.7 {+-} 0.3min for RA and 13.4 {+-} 0.1min for IMRT. Conclusion: RA demonstrated compared with conventional IMRT, similar target coverage and better dose sparing to the organs at risks. The number of MUs and the time required to deliver a 2-Gy fraction were much lower for RA, allowing

  20. Modulation of coupling in a photonic switch by resonant interference.

    PubMed

    Attard, A E

    1998-04-20

    A novel photonic switch structure is described in which the coupling of light between two fiber waveguides is controlled by the resonant interference of a third waveguide. The switching action is controlled by a small variation of the index of refraction of the control waveguide by the application of either photo-optical (Kerr) techniques or electro-optical (Pockels) techniques. The control waveguide can be either a fiber waveguide or a slab waveguide. The equations for the waveguide coupling were obtained by analytical approximations from coupled-mode theory. A beam-propagation simulation was also used. The results of the two models were compared. Multiple resonant interferences were observed in the case of a slab waveguide. PMID:18273156

  1. Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.

    PubMed

    Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V

    2008-12-22

    A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.

  2. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  3. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    SciTech Connect

    Tadesse, Semere A.; Li, Huan; Liu, Qiyu; Li, Mo

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  4. A method to engineer phase-encoded photon sieve for intensity pattern generations

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Ma, Li; Gao, Yaru; Liu, Chunxiang; Xu, Shicai; Zhang, Meina; Cheng, Chuanfu

    2015-11-01

    We propose a novel type of photon sieve where phases of its sieved waves are encoded as radial positions of the pinholes and use such phase-encoded sieves for generating designed intensity patterns in Fresnel domain. The sieve pinholes are arranged around Fresnel-rings to eliminate the quadratic Fresnel phase factor of diffraction of the sieved waves, leading the wave propagation to be equivalent to Fraunhofer diffraction. The pinholes take constant size in this paper and realize equal amplitude in the multiple sieved waves. Their positions are adjusted radially from corresponding rings to encode wave phases, taking effect by resulting in different optical paths from them to the observation plane origin. Then along with wave propagation, the encoded phases are decoded and the required phase differences are obtained in the discrete waves. We first conduct numerical simulations to show satisfactory performance of such phase-encoded photon sieves in generating arbitrarily designed intensity patterns and describe the quality of the reconstructed patterns. Then for qualitatively verifying the phase-encoding method, we experimentally fabricate three such sieves with relatively small pinhole number and obtain the designed patterns.

  5. Reduced acute toxicity and improved efficacy from intensity-modulated proton therapy (IMPT) for the management of head and neck cancer.

    PubMed

    McKeever, Matthew R; Sio, Terence T; Gunn, G Brandon; Holliday, Emma B; Blanchard, Pierre; Kies, Merrill S; Weber, Randal S; Frank, Steven J

    2016-08-01

    Cancers in the head and neck area are usually close to several critical organ structures. Traditional external-beam photon radiation therapy unavoidably exposes these structures to significant doses of radiation, which can lead to serious acute and chronic toxicity. Intensity-modulated proton therapy (IMPT), however, has dosimetric advantages that allow it to deposit high doses within the target while largely sparing surrounding structures. Because of this advantage, IMPT has the potential to improve both tumor control and toxicity. To determine the degree to which IMPT can reduce toxicity and improve tumor control, more randomized trials are needed that directly compare IMPT with intensity-modulated photon therapy. Here we examine the existing evidence on the efficacy and toxicity of IMPT for treating cancers at several anatomic subsites of the head and neck. We also report on the ability of IMPT to reduce malnutrition, and gastrostomy tube dependence and improve patient-reported outcomes (PROs). PMID:27506808

  6. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  7. Deterministic reshaping of single-photon spectra using cross-phase modulation.

    PubMed

    Matsuda, Nobuyuki

    2016-03-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.

  8. Deterministic reshaping of single-photon spectra using cross-phase modulation

    PubMed Central

    Matsuda, Nobuyuki

    2016-01-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing. PMID:27051862

  9. Quantum statistics in a time-modulated exciton-photon system

    NASA Astrophysics Data System (ADS)

    Kryuchkyan, G. Yu.; Shahinyan, A. R.; Shelykh, I. A.

    2016-04-01

    We consider a system consisting of a large individual quantum dot with excitonic resonance coupled to a single-mode photonic cavity in the nonlinear regime when exciton-exciton interaction becomes important. Quantum statistics of coupled exciton-photon modes is studied for two regimes of driving: a monochromatic input field and a field with periodically time-modulated amplitude. We show that sub-Poissonian statistics for both modes are realized in the case of monochromatic driving for transient and steady-state regimes in the presence of decoherence and cavity-induced feedback. We also demonstrate that variances of quantum fluctuations of photon and exciton numbers display oscillations in the case of modulated input. In this case, we show an improvement of the degree of sub-Poissonian statistics and antibunching for both modes at periodic sequence of definite time intervals in comparison with the case of the steady-state regime for monochromatic driving. We also observe the Wigner functions with negative values in phase space for a time-modulated exciton-photon system.

  10. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  11. Intensity-modulated optical fiber sensors based on chirped-fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Dong, Xinyong

    2011-09-01

    Intensity-modulated fiber Bragg grating (FBG) sensors, compared with normal wavelength-encoding FBG sensors, can reduce the cost of sensor system significantly by using cost-efficient optical power detection devices, instead of expensive wavelength measurement instruments. Chirped-FBG (CFBG) based intensity-modulated sensors show potential applications in various sensing areas due to their many advantages, including inherent independence of temperature, high measurement speed, and low cost, in addition to the merits of all fiber-optic sensors. This paper theoretically studies the sensing principle of CFBG-based intensity-modulated sensors and briefly reviews their recent progress in measurement of displacement, acceleration, and tilt angle.

  12. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Sengbusch, Evan R.

    , beamlet weight, the number of delivered beamlets, and the number of delivery angles. These methods are evaluated via treatment planning studies including left-sided whole breast irradiation, lung stereotactic body radiotherapy, nasopharyngeal carcinoma, and whole brain radiotherapy with hippocampal avoidance. Improvements in efficiency and efficacy relative to traditional proton therapy and intensity modulated photon radiation therapy are discussed.

  13. Clinical applications of IMRT to adenocarcinoma of the prostate: Portal dose verification and intensity modulated neutron radiotherapy

    SciTech Connect

    Santanam, Lakshmi

    2005-01-01

    Intensity modulated radiotherapy (IMRT) provides an improvement in the conformality of radiotherapy dose distributions. Its application to photon radiotherapy for prostate adenocarcinoma is well established. A quality assurance tool for verifying photon IMRT treatment and the potential application of intensity modulation to neutron radiotherapy (IMNRT) to prostate cancer are investigated here. This study evaluates the use of an amorphous silicon flat panel imager for dose verification of photon IMRT fields. Various correction factors were developed to allow accurate estimation of the absorbed dose using this portal imager. The ratio of the dose measured with the portal imager to that measured using an ionization chamber was found to be 0.991{+-}0.026 for 23 measured IMRT fields. The study also yielded an accurate estimate of the relative beamlet intensity (fluence) at the plane of the detector. The raw difference between the relative beamlet intensity predicted by the EPID and that of the planning system for 23 IMRT fields was found to be -0.65{+-}2.69. These results demonstrate the capabilities of this imager as a robust IMRT quality assurance tool. An in-house optimization algorithm was used to optimize forward planned segments for the treatment of prostate cancer using IMNRT. The applicability of two different algorithms was investigated for IMNRT dose calculation, namely, the differential scatter air ratio (DSAR) and the finite size pencil beam (FSPB) algorithms. Measured profiles and absolute point doses were compared to results calculated by the treatment planning system. Dual ion-chamber measurements were performed to determine the individual neutron and gamma doses and to estimate the whole body dose equivalent. IMNRT plans retrospectively calculated for five prostate cancer patients provided dose distributions superior to conventional fast neutron therapy. When normalized to provide equivalent target coverage, the volume of the rectum and bladder receiving

  14. Silicon photonic Mach Zehnder modulators for next-generation short-reach optical communication networks

    NASA Astrophysics Data System (ADS)

    Lacava, C.; Liu, Z.; Thomson, D.; Ke, Li; Fedeli, J. M.; Richardson, D. J.; Reed, G. T.; Petropoulos, P.

    2016-02-01

    Communication traffic grows relentlessly in today's networks, and with ever more machines connected to the network, this trend is set to continue for the foreseeable future. It is widely accepted that increasingly faster communications are required at the point of the end users, and consequently optical transmission plays a progressively greater role even in short- and medium-reach networks. Silicon photonic technologies are becoming increasingly attractive for such networks, due to their potential for low cost, energetically efficient, high-speed optical components. A representative example is the silicon-based optical modulator, which has been actively studied. Researchers have demonstrated silicon modulators in different types of structures, such as ring resonators or slow light based devices. These approaches have shown remarkably good performance in terms of modulation efficiency, however their operation could be severely affected by temperature drifts or fabrication errors. Mach-Zehnder modulators (MZM), on the other hand, show good performance and resilience to different environmental conditions. In this paper we present a CMOS-compatible compact silicon MZM. We study the application of the modulator to short-reach interconnects by realizing data modulation using some relevant advanced modulation formats, such as 4-level Pulse Amplitude Modulation (PAM-4) and Discrete Multi-Tone (DMT) modulation and compare the performance of the different systems in transmission.

  15. New multiwavelength phase modulation system for photon diffusion studies

    NASA Astrophysics Data System (ADS)

    Guan, Bin; Zhang, Yutao; Chance, Britton

    1997-08-01

    The recent improvement in medical devices that are safe, economical and efficacious has led to significant interests in the near infrared (NIR) optical characteristics of strongly scattering medium such as human tissues, particularly breast tissue, brian and skeletal muscles. Since the frequency domain equipment involves lower peak powers, slower rise times and hence smaller bandwidths than the time domain circuits, they appear to be more economic and portable as medical device. We have developed a 50 MHz time-sharing 3-wavelength (754 nm, 790 nm, 830 nm) single sideband (SSB) phase modulation system, which measures the essential characteristics of light propagation in strongly scattering medium. Some new techniques, such as phase locked loop (PLL), dynode feedback are used to get high accuracy (better than 0.05 degrees in a 1 Hz bandwidth), high sensitivity (6 cm separation on forehead), low noise (less than 0.05 degrees), low drift (less than 0.01 degrees/hr within 11 hours) and low phase-amplitude cross-talk (less than plus or minus 0.038 degrees/dB). A blood model test has been given. Significant results of hemoglobin oxy/deoxygenation measurements re shown in this paper.

  16. [Feasibility of Automatic Treatment Planning in Intensity-modulated Radiotherapy of Nasopharyngeal Carcinoma].

    PubMed

    He, Yinbo; Zhang, Longbin; Xiao, Jianghong; Duan, Baofeng

    2015-12-01

    Intensity-modulated radiotherapy planning for nasopharyngeal carcinoma is very complex. The quality of plan is often closely linked to the experience of the treatment planner. In this study, 10 nasopharyngeal carcinoma patients at different stages were enrolled. Based on the scripting of Pinnacle 9. 2 treatment planning system, the computer program was used to set the basic parameters and objective parameters of the plans. At last, the nasopharyngeal carcinoma intensity-modulated radiotherapy plans were completed automatically. Then, the automatical and manual intensity-modulated radiotherapy plans were statistically compared and clinically evaluated. The results showed that there were no significant differences between those two kinds of plans with respect to the dosimetry parameters of most targets and organs at risk. The automatical nasopharyngeal carcinoma intensity-modulated radiotherapy plans can meet the requirements of clinical radiotherapy, significantly reduce planning time, and avoid the influence of human factors such as lack of experience to the quality of plan. PMID:27079103

  17. Analysis on fluorescence intensity reverse photonic phenomenon between red and green fluorescence of oxyfluoride nanophase vitroceramics.

    PubMed

    Chen, Xiaobo; Song, Zengfu; Zhang, Junjie; Hu, Lili; Wen, Lei; Wang, Ce; Li, Song

    2007-10-01

    An interesting fluorescence intensity reverse photonic phenomenon between red and green fluorescence is investigated. The dynamic range Sigma of intensity reverse between red and green fluorescence of Er(0.5)Yb(3):FOV oxyfluoride nanophase vitroceramics, when excited by 378.5nm and 522.5nm light respectively, is about 4.32x10(2). It is calculated that the phonon-assistant energy transfer rate of the electric multi-dipole interaction of {(4)G(11/2)(Er(3+))?(4)F(9/2)(Er(3+)), (2)F(7/2)(Yb(3+))?(2)F(5/2)(Yb(3+))} energy transfer of Er(0.5)Yb(3):FOV is around 1.380x10(8)s(-1), which is much larger than the relative multiphonon nonradiative relaxation rates 3.20x10(5)s(-1). That energy transfer rate for general material with same rare earth ion's concentration is about 1.194x10(5)s(-1). These are the reason to emerge the unusual intensity reverse phenomenon in Er(0.5)Yb(3):FOV.

  18. Lighting direction and visual field modulate perceived intensity of illumination

    PubMed Central

    McCourt, Mark E.; Blakeslee, Barbara; Padmanabhan, Ganesh

    2013-01-01

    When interpreting object shape from shading the visual system exhibits a strong bias that illumination comes from above and slightly from the left. We asked whether such biases in the perceived direction of illumination might also influence its perceived intensity. Arrays of nine cubes were stereoscopically rendered where individual cubes varied in their 3D pose, but possessed identical triplets of visible faces. Arrays were virtually illuminated from one of four directions: Above-Left, Above-Right, Below-Left, and Below-Right (±24.4° azimuth; ±90° elevation). Illumination intensity possessed 15 levels, resulting in mean cube array luminances ranging from 1.31–3.45 cd/m2. A “reference” array was consistently illuminated from Above-Left at mid-intensity (mean array luminance = 2.38 cd/m2). The reference array's illumination was compared to that of matching arrays which were illuminated from all four directions at all intensities. Reference and matching arrays appeared in the left and right visual field, respectively, or vice versa. Subjects judged which cube array appeared to be under more intense illumination. Using the method of constant stimuli we determined the illumination level of matching arrays required to establish subjective equality with the reference array as a function of matching cube visual field, illumination elevation, and illumination azimuth. Cube arrays appeared significantly more intensely illuminated when they were situated in the left visual field (p = 0.017), and when they were illuminated from below (p = 0.001), and from the left (p = 0.001). An interaction of modest strength was that the effect of illumination azimuth was greater for matching arrays situated in the left visual field (p = 0.042). We propose that objects lit from below appear more intensely illuminated than identical objects lit from above due to long-term adaptation to downward lighting. The amplification of perceived intensity of illumination for stimuli situated

  19. Realization of the single photon Talbot effect with a spatial light modulator.

    PubMed

    Deachapunya, Sarayut; Srisuphaphon, Sorakrai; Panthong, Pituk; Photia, Thanarwut; Boonkham, Kitisak; Chiangga, Surasak

    2016-09-01

    We demonstrate the quantum Talbot effect using a beam of single photons produced by parametric down conversion. In contrast to the previous works, we use a programmable spatial light modulator to behave as a diffraction grating. Thus, the investigation of the Talbot diffraction patterns under the variation of grating structure can be easily performed. The influence of spectral bandwidth of the down-converted photons on the diffraction pattern is also investigated. A theoretical model based on the wave nature of photons is presented to explain the Talbot diffraction patterns under varying conditions. The measured diffraction patterns are in good agreement with the theoretical prediction. We are convinced that our study improves the understanding of the quantum Talbot effect. PMID:27607611

  20. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    PubMed

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  1. Low-frequency analog signal distribution on digital photonic networks by optical delta-sigma modulation

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kawanishi, Tetsuya

    2013-12-01

    We propose a delta-sigma modulation scheme for low- and medium-frequency signal transmission in a digital photonic network system. A 10-Gb/s-class optical transceiver with a delta-sigma modulator utilized as a high-speed analog-to-digital converter (ADC) provides a binary optical signal. On the signal reception side, a low-cost and slow-speed photonic receiver directly converts the binary signal into an analog signal at frequencies from several hundreds of kilohertz several tens of megahertz. Further, by using a clock and data recovery circuit at the receiver to reduce jitters, the single-sideband phase noise of the generated signals can be significantly reduced.

  2. Combination of current-integrating/photon-counting detector modules for spectral CT.

    PubMed

    Chu, Jiyang; Cong, Wenxiang; Li, Liang; Wang, Ge

    2013-10-01

    Inspired by compressive sensing theory and spectral detection technology, here we propose a novel design of a CT detector array that uses current-integrating/photon-counting modules in an interlacing fashion so that strengths of each detector type can be synergistically combined. For geometrical symmetry, an evenly alternating pattern is initially assumed for these detector modules to form a hybrid detector array. While grayscale detector modules acquire regular raw data in a large dynamic range cost-effectively, spectral detector modules simultaneously sense energy-discriminative data in multiple energy bins. A split Bregman iterative algorithm is developed for spectral CT reconstruction from projection data of an object collected with the hybrid detector array. With mathematical phantoms, an optimal ratio of the number of the spectral elements over the number of grayscale elements is determined based on classic image quality evaluation. This hybrid detector array is capable of delivering a performance comparable with that of a full spectral detector array.

  3. A novel readout module for single photon solid state detectors (SiPMD, GAPD, MPPC, MAPC)

    SciTech Connect

    Kushpil, V.; Kushpil, S.; Huna, Z.

    2011-07-01

    In this paper a novel, Readout Module (RM) for Single Photon Detector (SiPD has been described. The electronics design is based on the concept of virtual instrumentation RM consists of SiPD preamplifier, shaping amplifier, discriminator, multi channel analyzer and control module connected to a PC through the USB bus and of PC application software. The RM can be used for investigation of different types of SiPD with maximum biasing voltage 90 V and maximal current 2 mA. The RM has fast digital output for triggering and 12 bit internal ADC for output digitizing. The RM uses USB bus as a power supply. It could be very useful for laboratory experiment. The small size of module allows easy integration of few modules into multi-channel system that can be used for PET application. (authors)

  4. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz.

  5. Photonic generation of triangular waveform signals by using a dual-parallel Mach-Zehnder modulator.

    PubMed

    Li, J; Ning, T; Pei, L; Peng, W; Jia, N; Zhou, Q; Wen, X

    2011-10-01

    A photonic approach to generate triangular waveform signals is proposed and analyzed. With active bias control, two sub-MZMs (MZ-a and MZ-b) of a dual-parallel Mach-Zehnder modulator (DP-MZM) operate at minimum transmission point, leaving the main MZM (MZ-c) at quadrature transmission point. Triangular waveform can be observed by a parameter setting of modulation index. The proposal is first analyzed and then validated by simulation. The key significance of the scheme is that it is capable of generating triangular waveform signals via a sinusoid local oscillator.

  6. Photonic RF vector signal generation with enhanced spectral efficiency using precoded double single-sideband modulation.

    PubMed

    Wang, Yuanquan; Chien, Hung-Chang; Guo, HaiChao; Yu, Jianjun; Chang, Gee-Kung; Chi, Nan

    2016-06-01

    In this study, a novel photonic vector signal at frequency (RF) bands generation scheme based on the beating of double single sidebands (SSBs) is proposed and experimentally demonstrated. The double SSBs carry separate constant- or multi-amplitude quadrature-amplitude-modulation vector signals are generated from a single I/Q modulator. By adopting phase and amplitude precoding, different constellations can be generated, such as 3-ary phase-shift keying (PSK), 4-PSK, 7-PSK, 8-PSK, and so on. In this work, 10-Gbaud 7-PSK vector signal generation at 20 GHz enabled by two precoded 4-PSK SSB signals via a single I/Q modulator is theoretically and experimentally investigated. Compared to a single-drive Mach-Zehnder modulator or conventional I/Q modulator-based photonic vector signal generation scheme, the spectrum efficiency can be doubled. Differential coding is also implemented at the transmitter side for accurate demodulation of 7-PSK into two 4-PSK signals. The bit-error ratio for 10-Gbaud 7-PSK vector signals can be under hard-decision forward-error-correction threshold of 3.8×10-3 after 10 km standard single-mode fiber transmission.

  7. Dosimetric comparison of volumetric modulated arc therapy and intensity-modulated radiation therapy for pancreatic malignancies

    SciTech Connect

    Ali, Arif N.; Dhabaan, Anees H.; Jarrio, Christie S.; Siddiqi, Arsalan K.; Landry, Jerome C.

    2012-10-01

    Volumetric-modulated arc therapy (VMAT) has been previously evaluated for several tumor sites and has been shown to provide significant dosimetric and delivery benefits when compared with intensity-modulated radiation therapy (IMRT). To date, there have been no published full reports on the benefits of VMAT use in pancreatic patients compared with IMRT. Ten patients with pancreatic malignancies treated with either IMRT or VMAT were retrospectively identified. Both a double-arc VMAT and a 7-field IMRT plan were generated for each of the 10 patients using the same defined tumor volumes, organs at risk (OAR) volumes, dose, fractionation, and optimization constraints. The planning tumor volume (PTV) maximum dose (55.8 Gy vs. 54.4 Gy), PTV mean dose (53.9 Gy vs. 52.1 Gy), and conformality index (1.11 vs. 0.99) were statistically similar between the IMRT and VMAT plans, respectively. The VMAT plans had a statistically significant reduction in monitor units compared with the IMRT plans (1109 vs. 498, p < 0.001). In addition, the doses to the liver, small bowel, and spinal cord were comparable between the IMRT and VMAT plans. However, the VMAT plans demonstrated a statistically significant reduction in the mean left kidney V{sub 25} (9.4 Gy vs. 2.3 Gy, p = 0.018), mean right kidney V{sub 15} (53.4 Gy vs. 45.9 Gy, p = 0.035), V{sub 20} (32.2 Gy vs. 25.5 Gy, p = 0.016), and V{sub 25} (21.7 Gy vs. 14.9 Gy, p = 0.001). VMAT was investigated in patients with pancreatic malignancies and compared with the current standard of IMRT. VMAT was found to have similar or improved dosimetric parameters for all endpoints considered. Specifically, VMAT provided reduced monitor units and improved bilateral kidney normal tissue dose. The clinical relevance of these benefits in the context of pancreatic cancer patients, however, is currently unclear and requires further investigation.

  8. Intensity modulation and direct detection quantum key distribution based on quantum noise

    NASA Astrophysics Data System (ADS)

    Ikuta, Takuya; Inoue, Kyo

    2016-01-01

    Quantum key distribution (QKD) has been studied for achieving perfectly secure cryptography based on quantum mechanics. This paper presents a novel QKD scheme that is based on an intensity-modulation and direct-detection system. Two slightly intensity-modulated pulses are sent from a transmitter, and a receiver determines key bits from the directly detected intensity. We analyzed the system performance for two typical eavesdropping methods, a beam splitting attack and an intercept-resend attack, with an assumption that the transmitting and receiving devices are fully trusted. Our brief analysis showed that short- or middle-range QKD systems are achievable with a simple setup.

  9. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal

  10. Integrated Photonics Research: Post-deadline papers

    NASA Astrophysics Data System (ADS)

    Quinn, Jarus W.

    1993-03-01

    The symposium was held on the following topics: advanced solid state lasers, compact blue-green lasers, integrated photonics research, nonlinear guide-wave optics, optical amplifiers and their applications, optical design for photonics, photonics in switching, quantum optoelectronics, short-wavelength -- physics with intense-laser pulses, soft x-ray protection lithography, ultrafast electronics and optoelectronics, optical computing, and spatial light modulators.

  11. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    PubMed

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  12. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    PubMed

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  13. Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Xia, Zhiyang; Chen, Lunjin; Dai, Lei; Claudepierre, Seth G.; Chan, Anthony A.; Soto-Chavez, A. R.; Reeves, G. D.

    2016-09-01

    Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <˜ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long.

  14. Organic-based electro-optic modulators for microwave photonic applications

    NASA Astrophysics Data System (ADS)

    Eng, David

    As cutting-edge microwave photonic systems with higher complexity and stringent device requirement are being developed, the demand higher performance modulators with lower drive voltages and higher bandwidth is beginning to overtake the physical limitations of existing modulators based in LiNbO3. To address this growing demand, groundbreaking work in the field of organic electro-optic materials has been achieved over the past 10--15 years that has resulted in materials with electro-optic coefficients up to 10 times that of LiNbO3 and with demonstrated response times into the THz regime. This dissertation details work towards developing low drive-voltage, high bandwidth organic-based electro-optic modulators to support next generation microwave photonic systems. Initial efforts were focused on designing an organic electro-optic material based low frequency phase modulator and developing a fabrication procedure that successfully integrates the material without compromising its electro optic activity. Additionally a procedure for inducing the high electro-optic activity in the waveguide core through a process known as 'poling' was developed. The phase modulators were then characterized to confirm the expected high electro-optic activity and correspondingly low drive voltages. To transition from low frequency modulation to broadband operation it was necessary to gather some dielectric information of the waveguide materials for RF design. Because traditional RF dielectric constant measurements assume thick substrates on the order of 100s of microns, a modified microstrip ring resonator technique was developed to measure the dielectric constant of thin, polymer waveguide films on the order of 10 mum out to 110 GHz. A high frequency traveling wave microstrip modulator was then designed and optimized for operation up to 50 GHz, and efforts were turned towards RF packaging of the microstrip modulators for practical utilization and integration. To feed the RF signals a

  15. Accelerated partial-breast irradiation using intensity-modulated proton radiotherapy: do uncertainties outweigh potential benefits?

    PubMed Central

    Wang, X; Zhang, X; Li, X; Amos, R A; Shaitelman, S F; Hoffman, K; Howell, R; Salehpour, M; Zhang, S X; Sun, T L; Smith, B; Tereffe, W; Perkins, G H; Buchholz, T A; Strom, E A

    2013-01-01

    Objective: Passive scattering proton beam (PSPB) radiotherapy for accelerated partial-breast irradiation (APBI) provides superior dosimetry for APBI three-dimensional conformal photon radiotherapy (3DCRT). Here we examine the potential incremental benefit of intensity-modulated proton radiotherapy (IMPT) for APBI and compare its dosimetry with PSPB and 3DCRT. Methods: Two theoretical IMPT plans, TANGENT_PAIR and TANGENT_ENFACE, were created for 11 patients previously treated with 3DCRT APBI and were compared with PSPB and 3DCRT plans for the same CT data sets. The impact of range, motion and set-up uncertainties as well as scanned spot mismatching between fields of IMPT plans was evaluated. Results: IMPT plans for APBI were significantly better regarding breast skin sparing (p<0.005) and other normal tissue sparing than 3DCRT plans (p<0.01) with comparable target coverage (p=ns). IMPT plans were statistically better than PSPB plans regarding breast skin (p<0.002) and non-target breast (p<0.007) in higher dose regions but worse or comparable in lower dose regions. IMPT plans using TANGENT_ENFACE were superior to that using TANGENT_PAIR in terms of target coverage (p<0.003) and normal tissue sparing (p<0.05) in low-dose regions. IMPT uncertainties were demonstrated for multiple causes. Qualitative comparison of dose–volume histogram confidence intervals for IMPT suggests that numeric gains may be offset by IMPT uncertainties. Conclusion: Using current clinical dosimetry, PSPB provides excellent dosimetry compared with 3DCRT with fewer uncertainties compared with IMPT. Advances in knowledge: As currently delivered in the clinic, PSPB planning for APBI provides as good or better dosimetry than IMPT with less uncertainty. PMID:23728947

  16. Dosimetric effects of jaw tracking in step-and-shoot intensity-modulated radiation therapy.

    PubMed

    Joy, Sarah; Starkschall, George; Kry, Stephen; Salehpour, Mohammed; White, R Allen; Lin, Steven H; Balter, Peter

    2012-03-08

    The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking the multi-leaf collimator (MLC) apertures with the photon jaws in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform. Radiation treatment plans for ten thoracic, three pediatric, and three head and neck cancer patients were converted to plans with the jaws tracking each segment's MLC apertures, and compared to the original plans in a commercial radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 (volumes receiving 5, 10 and 20 Gy, respectively) in the cumulative dose-volume histogram for the following structures: total lung minus gross target volume, heart, esophagus, spinal cord, liver, parotids, and brainstem. To validate the accuracy of our beam model, MLC transmission was measured and compared to that predicted by the TPS. The greatest changes between the original and new plans occurred at lower dose levels. In all patients, the reduction in V20 was never more than 6.3% and was typically less than 1%; the maximum reduction in V5 was 16.7% and was typically less than 3%. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1% and, thus, uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. We conclude that the amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT is probably not clinically significant.

  17. Intensity-Modulated Proton Therapy Versus Helical Tomotherapy in Nasopharynx Cancer: Planning Comparison and NTCP Evaluation

    SciTech Connect

    Widesott, Lamberto Pierelli, Alessio; Fiorino, Claudio; Dell'Oca, Italo; Broggi, Sara; Cattaneo, Giovanni Mauro; Di Muzio, Nadia; Fazio, Ferruccio; Calandrino, Riccardo; Schwarz, Marco

    2008-10-01

    Purpose: To compare intensity-modulated proton therapy (IMPT) and helical tomotherapy (HT) treatment plans for nasopharynx cancer using a simultaneous integrated boost approach. Methods and Materials: The data from 6 patients who had previously been treated with HT were used. A three-beam IMPT technique was optimized in the Hyperion treatment planning system, simulating a 'beam scanning' technique. HT was planned using the tomotherapy treatment planning system. Both techniques were optimized to simultaneously deliver 66 Gy in 30 fractions to planning target volume (PTV1; GTV and enlarged nodes) and 54 Gy to PTV2 subclinical, electively treated nodes. Normal tissue complication probability calculation was performed for the parotids and larynx. Results: Very similar PTVs coverage and homogeneity of the target dose distribution for IMPT and HT were found. The conformity index was significantly lower for protons than for photons (1.19 vs. 1.42, respectively). The mean dose to the ipsilateral and contralateral parotid glands decreased by 6.4 Gy and 5.6 Gy, respectively, with IMPT. The volume of mucosa and esophagus receiving {>=}20 Gy and {>=}30 Gy with IMPT was significantly lower than with HT. The average volume of larynx receiving {>=}50 Gy was significantly lower with HT, while for thyroid, it was comparable. The volume receiving {>=}30, {>=}20, and {>=}10 Gy in total body volume decreased with IMPT by 14.5%, 19.4%, and 23.1%, respectively. The normal tissue complication probability for the parotid glands was significantly lower with IMPT for all sets of parameters; however, we also estimated an almost full recovery of the contralateral parotid with HT. The normal tissue complication probability for the larynx was not significantly different between the two irradiation techniques. Conclusion: Excellent target coverage, homogeneity within the PTVs, and sparing of the organs at risk were reached with both modalities. IMPT allows for better sparing of most organs at

  18. Switching circuit to improve the frequency modulation difference-intensity THz quantum cascade laser imaging

    SciTech Connect

    Saat, N. K.; Dean, P.; Khanna, S. P.; Salih, M.; Linfield, E. H.; Davies, A. G.

    2015-04-24

    We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz.

  19. Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Hosseini, Amir; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K.; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L.; Lee, Charles Y.; Chen, Ray T.

    2015-03-01

    The detection and measurement of electromagnetic fields have attracted significant amounts of attention in recent years. Traditional electronic electromagnetic field sensors use large active conductive probes which perturb the field to be measured and also make the devices bulky. In order to address these problems, integrated photonic electromagnetic field sensors have been developed, in which an optical signal is modulated by an RF signal collected by a miniaturized antenna. In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300μm, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the

  20. Optical coherence photoacoustic microscopy (OC-PAM) with an intensity-modulated continuous-wave broadband light source

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Wen, Rong; Li, Yiwen; Jiao, Shuliang

    2016-06-01

    We developed an optical coherence photoacoustic microscopy system using an intensity-modulated continuous-wave superluminescent diode with a center wavelength of 840 nm. The system can accomplish optical coherence tomography (OCT) and photoacoustic microscopy (PAM) simultaneously. Compared to the system with a pulsed light source, this system is able to achieve OCT imaging with quality as high as conventional spectral-domain OCT. Since both of the OCT and PAM images are generated from the same group of photons, they are intrinsically registered in the lateral directions. The system was tested for multimodal imaging the vasculature of mouse ear in vivo by using gold nanorods as contrast agent for PAM, as well as excised porcine eyes ex vivo. The OCT and PAM images showed complimentary information of the sample.

  1. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating.

    PubMed

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-09

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  2. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  3. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  4. Quantum entanglement with acousto-optic modulators: Two-photon beats and Bell experiments with moving beam splitters

    SciTech Connect

    Stefanov, Andre; Zbinden, Hugo; Gisin, Nicolas; Suarez, Antoine

    2003-04-01

    We present an experiment testing quantum correlations with frequency shifted photons. We test Bell inequality with two-photon interferometry where we replace the beam splitters with acousto-optic modulators, which are equivalent to moving beam splitters. We measure the two-photon beats induced by the frequency shifts, and we propose a cryptographic scheme in relation. Finally, setting the experiment in a relativistic configuration, we demonstrate that the quantum correlations are not only independent of the distance but also of the time ordering between the two single-photon measurements.

  5. A topographic leaf-sequencing algorithm for delivering intensity modulated radiation therapy.

    PubMed

    Desai, Dharmin; Ramsey, Chester R; Breinig, Marianne; Mahan, Stephen L

    2006-08-01

    Topographic treatment is a radiation therapy delivery technique for fixed-gantry (nonrotational) treatments on a helical tomotherapy system. The intensity-modulated fields are created by moving the treatment couch relative to a fan-beam positioned at fixed gantry angles. The delivered dose distribution is controlled by moving multileaf collimator (MLC) leaves into and out of the fan beam. The purpose of this work was to develop a leaf-sequencing algorithm for creating topographic MLC sequences. Topographic delivery was modeled using the analogy of a water faucet moving over a collection of bottles. The flow rate per unit length of the water from the faucet represented the photon fluence per unit length along the width of the fan beam, the collection of bottles represented the pixels in the treatment planning fluence map, and the volume of water collected in each bottle represented the delivered fluence. The radiation fluence per unit length delivered to the target at a given position is given by the convolution of the intensity distribution per unit length over the width of the beam and the time per unit distance along the direction of travel that an MLC leaf is open. The MLC opening times for the desired dose profiles were determined using a technique based on deconvolution using a genetic algorithm. The MLC opening times were expanded in terms of a Fourier series, and a genetic algorithm was used to find the best expansion coefficients for a given dose distribution. A series of wedge shapes (15, 30, 45, and 60 deg) and "dose well" test fluence maps were created to test the algorithm's ability to generate topographic leaf sequences. The accuracy of the leaf-sequencing algorithm was measured on a helical tomotherapy system using radiographic film placed at depth in water equivalent material. The measured dose profiles were compared with the desired dose distributions. The agreement was within +/- 2% or 2 mm distance-to-agreement (DTA) in the high dose gradient

  6. A topographic leaf-sequencing algorithm for delivering intensity modulated radiation therapy

    SciTech Connect

    Desai, Dharmin; Ramsey, Chester R.; Breinig, Marianne; Mahan, Stephen L.

    2006-08-15

    Topographic treatment is a radiation therapy delivery technique for fixed-gantry (nonrotational) treatments on a helical tomotherapy system. The intensity-modulated fields are created by moving the treatment couch relative to a fan-beam positioned at fixed gantry angles. The delivered dose distribution is controlled by moving multileaf collimator (MLC) leaves into and out of the fan beam. The purpose of this work was to develop a leaf-sequencing algorithm for creating topographic MLC sequences. Topographic delivery was modeled using the analogy of a water faucet moving over a collection of bottles. The flow rate per unit length of the water from the faucet represented the photon fluence per unit length along the width of the fan beam, the collection of bottles represented the pixels in the treatment planning fluence map, and the volume of water collected in each bottle represented the delivered fluence. The radiation fluence per unit length delivered to the target at a given position is given by the convolution of the intensity distribution per unit length over the width of the beam and the time per unit distance along the direction of travel that an MLC leaf is open. The MLC opening times for the desired dose profiles were determined using a technique based on deconvolution using a genetic algorithm. The MLC opening times were expanded in terms of a Fourier series, and a genetic algorithm was used to find the best expansion coefficients for a given dose distribution. A series of wedge shapes (15, 30, 45, and 60 deg) and 'dose well' test fluence maps were created to test the algorithm's ability to generate topographic leaf sequences. The accuracy of the leaf-sequencing algorithm was measured on a helical tomotherapy system using radiographic film placed at depth in water equivalent material. The measured dose profiles were compared with the desired dose distributions. The agreement was within {+-}2% or 2 mm distance-to-agreement (DTA) in the high dose gradient

  7. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy.

    PubMed

    Achterberg, Nils; Müller, Reinhold G

    2007-10-01

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of +/- 36 degrees. Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of "step and shoot" MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as "multibeam tomotherapy." Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The "Multifocal MLC-positioning" algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  8. Multibeam tomotherapy: A new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy

    SciTech Connect

    Achterberg, Nils; Mueller, Reinhold G.

    2007-10-15

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of {+-}36 deg. . Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of 'step and shoot' MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as 'multibeam tomotherapy.' Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The 'Multifocal MLC-positioning' algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  9. Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles.

    PubMed

    Wang, Xiaoli; Morea, Roberta; Gonzalo, Jose; Palpant, Bruno

    2015-04-01

    Plasmonic nanoparticles offer a broad range of functionalities, owing to their ability to amplify light in the near-field or convert it into heat. However, their ultrafast nonlinear optical response remains too low to envisage all-optical high-rate photonic processing applications. Here, we tackle this challenge by coupling the localized plasmon mode in gold nanoparticles with a localized photonic mode in a 1D resonant cavity. Despite the nonradiative losses, we demonstrate that a strong, reversible, and ultrafast optical modulation can be achieved. By using a light pumping fluence of less than 1 mJ cm(-2), a change of signal transmittance of more than 100% is generated within a few picosecond time scale. The nanoparticle transient optical response is enhanced by a factor of 30 to 40 while its spectral profile is strongly sharpened. The large nonlinear response of such plasmonic cavities could open new opportunities for ultrafast light processing at the nanoscale.

  10. Module of silicon photomultipliers as a detector of individual Cherenkov photons

    NASA Astrophysics Data System (ADS)

    Pestotnik, Rok; Dolenec, Rok; Korpar, Samo; Križan, Peter; Stanovnik, Aleš

    2011-05-01

    We have studied the possibility of using silicon photomultipliers as single photon detectors in a proximity focusing RICH with aerogel radiator. Such a counter is considered for the upgrade of the Belle detector. The main advantage of silicon over conventional photomultiplier tubes is their operation in high magnetic fields. Their disadvantage is the relatively high dark noise count rate (≈MHz/mm2) which can be overcome by using a narrow time window in the data acquisition. A module, consisting of 64 (8×8) Hamamatsu MPPC S10362-11-100P silicon photomultipliers, has been designed, constructed and tested with Cherenkov photons emitted in an aerogel radiator by 120 GeV/ c pions from the CERN T4-H6 beam. To increase the signal-to-noise ratio, i.e. to increase the effective surface on which light is detected, light concentrators have been employed.

  11. A novel phase noise measurement of phase modulation microwave photonic links

    NASA Astrophysics Data System (ADS)

    Ye, Quanyi; Gao, Yingjie; Yang, Chun

    2016-07-01

    Microwave photonic links can provide many advantages over traditional coaxial due to its low loss, small size, lightweight, large bandwidth and immunity to external interference. In this paper, a novel phase noise measurement system is built, since the input signal and the power supply noise can be effectively cancelled by a two-arm configuration without the phase locking. Using this approach, the phase noise performance of the 10-GHz phase modulation photonic link has been measured for the first time, evaluated the values of -124 dBc/Hz at 1 kHz offset and -132 dBc/Hz at 10 kHz offset is obtained. Theoretical analysis on the phase noise measurement system calibration is also discussed.

  12. Delivery of modulated electron beams with conventional photon multi-leaf collimators

    NASA Astrophysics Data System (ADS)

    Klein, Eric E.; Mamalui-Hunter, Maria; Low, Daniel A.

    2009-01-01

    Electron beam radiotherapy is an accepted method to treat shallow tumors. However, modulation of electrons to customize dose distributions has not readily been achieved. Studies of bolus and tertiary collimation systems have been met with limitations. We pursue the use of photon multi-leaf collimators (MLC) for modulated electron radiotherapy (MERT) to achieve customized distributions for potential clinical use. As commercial planning systems do not support the use of MLC with electrons, planning was conducted using Monte Carlo calculations. Segmented and dynamic modulated delivery of multiple electron segments was configured, calculated and delivered for validation. Delivery of electrons with segmented or dynamic leaf motion was conducted. A phantom possessing an idealized stepped target was planned and optimized with subsequent validation by measurements. Finally, clinical treatment plans were conducted for post-mastectomy and cutaneous lymphoma of the scalp using forward optimization techniques. Comparison of calculations and measurements was successful with agreement of ±2%/2 mm for the energies, segment sizes, depths tested for delivered segments for the dynamic and segmented delivery. Clinical treatment plans performed provided optimal dose coverage of the target while sparing distal organs at risk. Execution of plans using an anthropomorphic phantom to ensure safe and efficient delivery was conducted. Our study validates that MERT is not only possible using the photon MLC, but the efficient and safe delivery inherent with the dynamic delivery provides an ideal technique for shallow tumor treatment.

  13. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals

    PubMed Central

    Jiménez‐Solano, Alberto; Delgado‐Sánchez, José‐Maria; Calvo, Mauricio E.; Miranda‐Muñoz, José M.; Lozano, Gabriel; Sancho, Diego; Sánchez‐Cortezón, Emilio

    2015-01-01

    Abstract Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.

  14. Stand-alone receiver module for near-infrared gated or nongated single-photon detection

    NASA Astrophysics Data System (ADS)

    Rochas, A.; Monat, L.; Page, J. B.; Legré, M.; Moraes, D.; Ribordy, G.

    2009-05-01

    A single photon receiver module combining an InGaAsP/InP avalanche photodiode with peak responsivity at 1064nm and a CMOS integrated electronic circuit for operation in both gated and free running modes is presented. The standalone module exhibits a single photon detection probability as high as 30% at 1064nm that is by far higher than silicon devices. The dark count rate mean value over eight devices cooled down to -40°C is about 100Hz at 7.5% detection probability and 1.2kHz at 30%. Dark count rate versus temperature measurements show that trap-assisted tunneling in the InP multiplication layer progressively dominates the total dark count rate when the device is cooled down. At medium cooling, the thermal generation in the absorber is the dominant mechanism. Afterpulsing rate is relatively high when compared to silicon devices. However, the integration of a dedicated pulser in close-proximity with the APD makes possible free-running operation. The timing resolution was measured at 430ps FWHM at 30% detection probability. Though comparing favorably with silicon reach-through avalanche photodiodes, we believe that a large uncertainty stands on this measurement. A timing resolution of less than 300ps is expected with the developed receiver module.

  15. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals

    PubMed Central

    Jiménez‐Solano, Alberto; Delgado‐Sánchez, José‐Maria; Calvo, Mauricio E.; Miranda‐Muñoz, José M.; Lozano, Gabriel; Sancho, Diego; Sánchez‐Cortezón, Emilio

    2015-01-01

    Abstract Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. PMID:27656090

  16. Local region statistics combining multi-parameter intensity fitting module for medical image segmentation with intensity inhomogeneity and complex composition

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Zhao, Jian; Zhao, Wenda; Qu, Feng; Sui, Long

    2016-08-01

    It is difficult to segment medical image with intensity inhomogeneity and complex composition, because most region-based modules relay on the intensity distributions. In this paper, we propose a novel method which uses local region statistics and multi-parameter intensity fitting as well. By replacing the original local region statistics with the novel local region statistics after bias field correction, the effect of intensity inhomogeneity can be eliminated. Then we devise a maximum likelihood energy function based on the distribution of each local region. Segmentation and bias field estimation can be jointly obtained by minimizing the proposed energy function. Furthermore, in order to characterize the features of each local region effectively, two parameters are used to fit the average intensity inside and outside of the counter, respectively. This can well handle the medical images with complex composition, such as larger gray difference even in the same region. Comparisons with several representative methods on synthetic and medical images demonstrate the superiority of the proposed method over other representative algorithms.

  17. Theory of phonon-modified spontaneous emission and photoluminescence intensity from quantum dots coupled to structured photonic reservoirs

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Kaushik; Hughes, S.

    2015-08-01

    We present a general theory for calculating the spontaneous emission (SE) rate and the photoluminescence intensity of a quantum dot (QD) exciton coupled to an arbitrary structured photonic reservoir and a bath of acoustic phonons. We describe a polaron master equation (ME) approach which includes phonon interaction nonperturbatively and assume a weak coupling with the photon reservoir which is valid in the Purcell coupling regime. As examples of structured photonic reservoirs, we choose the cases of a Lorentzian cavity and a slow-light coupled-cavity waveguide. In analogy with a simple atom, the SE rate of a QD is expected to be proportional to the local density of photon states (LDOS) of the structured reservoir at the resonant frequency of a QD exciton. However, using a polaron ME theory, we show how the phonon-dressed SE rate of a QD is determined by a broad bandwidth of the photonic LDOS, in violation of the well known Fermi's golden rule. This broadband frequency dependence results in rich spontaneous emission enhancement and suppression, manifesting in significant changes in the Purcell factor and photoluminescence intensity as a function of frequency.

  18. Experimental evidence and theoretical modeling of two-photon absorption dynamics in the reduction of intensity noise of solid-state Er:Yb lasers.

    PubMed

    El Amili, Abdelkrim; Kervella, Gaël; Alouini, Mehdi

    2013-04-01

    A theoretical and experimental investigation of the intensity noise reduction induced by two-photon absorption in a Er,Yb:Glass laser is reported. The time response of the two-photon absorption mechanism is shown to play an important role on the behavior of the intensity noise spectrum of the laser. A model including an additional rate equation for the two-photon-absorption losses is developed and allows the experimental observations to be predicted.

  19. Design and optimization of polymer ring resonator modulators for analog microwave photonic applications

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2016-02-01

    Efficient modulation of electrical signals onto an optical carrier remains the main challenge in full implementation of microwave photonic links (MPLs) for applications such as antenna remoting and wireless access networks. Current MPLs utilize Mach-Zehnder Interferometers (MZI) with sinusoidal transfer function as electro-optic modulators causing nonlinear distortions in the link. Recently ring resonator modulators (RRM) consisting of a ring resonator coupled to a base waveguide attracted interest to enhance linearity, reduce the size and power consumption in MPLs. Fabrication of a RRM is more challenging than the MZI not only in fabrication process but also in designing and optimization steps. Although RRM can be analyzed theoretically for MPLs, physical structures need to be designed and optimized utilizing simulation techniques in both optical and microwave regimes with consideration of specific material properties. Designing and optimization steps are conducted utilizing full-wave simulation software package and RRM function analyzed in both passive and active forms and confirmed through theoretical analysis. It is shown that RRM can be completely designed and analyzed utilizing full-wave simulation techniques and as a result linearity effect of the modulator on MPLs can be studied and optimized. The material nonlinearity response can be determined computationally and included in modulator design and readily adaptable for analyzing other materials such as silicon or structures where theoretical analysis is not easily achieved.

  20. Controllable photon source

    NASA Astrophysics Data System (ADS)

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  1. A comparison between cobalt and linear accelerator-based treatment plans for conformal and intensity-modulated radiotherapy.

    PubMed

    Adams, E J; Warrington, A P

    2008-04-01

    The simplicity of cobalt units gives them the advantage of reduced maintenance, running costs and downtime when compared with linear accelerators. However, treatments carried out on such units are typically limited to simple techniques. This study has explored the use of cobalt beams for conformal and intensity-modulated radiotherapy (IMRT). Six patients, covering a range of treatment sites, were planned using both X-ray photons (6/10 MV) and cobalt-60 gamma rays (1.17 and 1.33 MeV). A range of conformal and IMRT techniques were considered, as appropriate. Conformal plans created using cobalt beams for small breast, meningioma and parotid cases were found to compare well with those created using X-ray photons. By using additional fields, acceptable conformal plans were also created for oesophagus and prostate cases. IMRT plans were found to be of comparable quality for meningioma, parotid and thyroid cases on the basis of dose-volume histogram analysis. We conclude that it is possible to plan high-quality radical radiotherapy treatments for cobalt units. A well-designed beam blocking/compensation system would be required to enable a practical and efficient alternative to multileaf collimator (MLC)-based linac treatments to be offered. If cobalt units were to have such features incorporated into them, they could offer considerable benefits to the radiotherapy community.

  2. High-performance GaAs/AlGaAs optical phase modulators for microwave photonic integrated circuits

    SciTech Connect

    Hietala, V.M.; Kravitz, S.H.; Armendariz, M.G.; Vawter, G.A.; Carson, R.F.

    1994-03-01

    A high-performance high-speed optical phase modulator for photonic integrated circuit (PIC) use is described. Integration of these optical phase modulators into a real system (compass) is also discussed. The optical phase modulators are based on depletion-edge translation and have experimentally provided optical phase shifts in excess of 60{degrees}/V{center_dot}mm with approximately 4 dB/cm loss while simultaneously demonstrating bandwidths in excess of 10 GHz.

  3. An Amphiphilic BODIPY-Porphyrin Conjugate: Intense Two-Photon Absorption and Rapid Cellular Uptake for Two-Photon-Induced Imaging and Photodynamic Therapy.

    PubMed

    Zhang, Tao; Lan, Rongfeng; Gong, Longlong; Wu, Baoyan; Wang, Yuzhi; Kwong, Daniel W J; Wong, Wai-Kwok; Wong, Ka-Leung; Xing, Da

    2015-11-01

    The new amphiphilic BODPY-porphyrin conjugate BZnPP and its precursor BZnPH were synthesised, and their linear and two-photon photophysical properties, together with their cellular uptake and photo-cytotoxicity, were studied. This amphiphilic conjugate consists of a hydrophobic BODIPY moiety and a hydrophilic tetra(ethylene glycol) chain bridging a cationic triphenylphosphonium group to an amphiphilic porphyrin ZnP through acetylide linkers at its meso positions. A large two-photon absorption cross-section (σ=1725 GM) and a high singlet oxygen quantum yield (0.52) were recorded. Intense linear- and two-photon-induced red emissions were also observed for both BZnPP and BZnPH. Further in vitro studies showed that BZnPP exhibited very efficient cellular uptake and strong photocytotoxic but weak dark cytotoxic properties towards human breast carcinoma MCF-7 cells. In summary, the two-photon-induced emission and the potent photo-cytotoxicity of BZnPP make it an efficacious dual-purpose tumour-imaging and photodynamic therapeutic agent in the tissue-transparent spectral windows.

  4. Effects of excitation intensity on the photocurrent response of thin film silicon solar modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Shumka, A.; Trask, J.

    1986-01-01

    Photocurrent responses of amorphous thin film silicon solar modules at room temperature were studied at different excitation intensities using various monochromatic light sources. Photocurrent imaging techniques have been effectively used to locate rapidly, and non-destructively, failure and defect sites in the multilayer thin film device. Differences observed in the photocurrent response characteristics for two different cells in the same amorphous thin film silicon solar module suggest the possibility of the formation of dissimilarly active devices, even though the module is processed in the same fabrication process. Possible mechanisms are discussed.

  5. Performance analysis of communication links based on VCSEL and silicon photonics technology for high-capacity data-intensive scenario.

    PubMed

    Boletti, A; Boffi, P; Martelli, P; Ferrario, M; Martinelli, M

    2015-01-26

    To face the increased demand for bandwidth, cost-effectiveness and simplicity of future Ethernet data communications, a comparison between two different solutions based on directly-modulated VCSEL sources and Silicon Photonics technologies is carried out. Also by exploiting 4-PAM modulation, the transmission of 50-Gb/s and beyond capacity per channel is analyzed by means of BER performance. Applications for optical backplane, very short reach and in case of client-optics networks and intra and inter massive data centers communications (up to 10 km) are taken into account. A comparative analysis based on the power consumption is also proposed.

  6. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions

    SciTech Connect

    Ridgers, C.P.; Kirk, J.G.; Duclous, R.; Blackburn, T.G.; Brady, C.S.; Bennett, K.; Arber, T.D.; Bell, A.R.

    2014-03-01

    In high-intensity (>10{sup 21} Wcm{sup −2}) laser–matter interactions gamma-ray photon emission by the electrons can strongly affect the electron's dynamics and copious numbers of electron–positron pairs can be produced by the emitted photons. We show how these processes can be included in simulations by coupling a Monte Carlo algorithm describing the emission to a particle-in-cell code. The Monte Carlo algorithm includes quantum corrections to the photon emission, which we show must be included if the pair production rate is to be correctly determined. The accuracy, convergence and energy conservation properties of the Monte Carlo algorithm are analysed in simple test problems.

  7. SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators

    PubMed Central

    Nikolenko, Volodymyr; Watson, Brendon O.; Araya, Roberto; Woodruff, Alan; Peterka, Darcy S.; Yuste, Rafael

    2008-01-01

    Laser microscopy has generally poor temporal resolution, caused by the serial scanning of each pixel. This is a significant problem for imaging or optically manipulating neural circuits, since neuronal activity is fast. To help surmount this limitation, we have developed a “scanless” microscope that does not contain mechanically moving parts. This microscope uses a diffractive spatial light modulator (SLM) to shape an incoming two-photon laser beam into any arbitrary light pattern. This allows the simultaneous imaging or photostimulation of different regions of a sample with three-dimensional precision. To demonstrate the usefulness of this microscope, we perform two-photon uncaging of glutamate to activate dendritic spines and cortical neurons in brain slices. We also use it to carry out fast (60 Hz) two-photon calcium imaging of action potentials in neuronal populations. Thus, SLM microscopy appears to be a powerful tool for imaging and optically manipulating neurons and neuronal circuits. Moreover, the use of SLMs expands the flexibility of laser microscopy, as it can substitute traditional simple fixed lenses with any calculated lens function. PMID:19129923

  8. Bragg cell laser intensity modulation: effect on laser Doppler velocimetry measurements

    SciTech Connect

    Mychkovsky, Alexander G.; Chang, Natasha A.; Ceccio, Steven L.

    2009-06-20

    In most laser Doppler velocimetry (LDV) systems, the frequency of one of the two laser beams that intersect to create the probe volume is shifted with an acousto-optic element. It is shown here that Bragg shifting can impose a problematic fluctuation in intensity on the frequency-shifted beam, producing spurious velocity measurements. This fluctuation occurs at twice the Bragg cell frequency, and its relative amplitude to the time average intensity is a function of the ratio of the laser beam diameter to the Bragg cell acoustic wavelength. A physical model and a configuration procedure to minimize adverse effects of the intensity modulations are presented.

  9. Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits.

    PubMed

    Chen, Changming; Niu, Xiaoyan; Han, Chao; Shi, Zuosen; Wang, Xinbin; Sun, Xiaoqiang; Wang, Fei; Cui, Zhanchen; Zhang, Daming

    2014-08-25

    A transparent reconfigurable optical interleaver module composed of cascaded AWGs-based wavelength-channel-selector/interleaver monolithically integrated with multimode interference (MMI) variable optical attenuators (VOAs) and Mach-Zehnder interferometer (MZI) switch arrays was designed and fabricated using polymer photonic lightwave circuits. Highly fluorinated photopolymer and grafting modified organic-inorganic hybrid material were synthesized as the waveguide core and caldding, respectively. Thermo-optic (TO) tunable wavelength transfer matrix (WTM) function of the module can be achieved for optical routing network. The one-chip transmission loss is ~ 6 dB and crosstalk is less than ~25 dB for transverse-magnetic (TM) mode. The crosstalk and extinction ratio of the MMI VOAs were measured as -15.2 dB and 17.5 dB with driving current 8 mA, respectively. The modulation depth of the TO switches is obtained as ~18.2 dB with 2.2 V bias. Proposed novel interleaver module could be well suited for DWDM optical communication systems.

  10. Modulation of quantum dot photoluminescence in porous silicon photonic crystals as a function of the depth of their penetration

    NASA Astrophysics Data System (ADS)

    Dovzhenko, Dmitriy S.; Martynov, Igor L.; Samokhvalov, Pavel S.; Mochalov, Konstantin E.; Chistyakov, Alexander A.; Nabiev, Igor

    2016-04-01

    Photonic crystals doped with fluorescent nanoparticles offer a plenty of interesting applications in photonics, laser physics, and biosensing. Understanding of the mechanisms and effects of modulation of the photoluminescent properties of photonic crystals by varying the depth of nanoparticle penetration should promote targeted development of nanocrystal-doped photonic crystals with desired optical and morphological properties. Here, we have investigated the penetration of semiconductor quantum dots (QDs) into porous silicon photonic crystals and performed experimental analysis and theoretical modeling of the effects of the depth of nanoparticle penetration on the photoluminescent properties of this photonic system. For this purpose, we fabricated porous silicon microcavities with an eigenmode width not exceeding 10 nm at a wavelength of 620 nm. CdSe/CdS/ZnS QDs fluorescing at 617 nm with a quantum yield of about 70% and a width at half-height of about 40 nm were used in the study. Confocal microscopy and scanning electron microscopy were used to estimate the depth of penetration of QDs into the porous silicon structure; the photoluminescence spectra, kinetics, and angular fluorescence distribution were also analyzed. Enhancement of QD photoluminescence at the microcavity eigenmode wavelength was observed. Theoretical modeling of porous silicon photonic crystals doped with QDs was performed using the finite-difference time-domain (FDTD) approach. Theoretical modeling has predicted, and the experiments have confirmed, that even a very limited depth of nanoparticle penetration into photonic crystals, not exceeding the first Bragg mirror of the microcavity, leads to significant changes in the QD luminescence spectrum determined by the modulation of the local density of photonic states in the microcavity. At the same time, complete and uniform filling of a photonic crystal with nanoparticles does not enhance this effect, which is as strong as in the case of a very

  11. Liquid gallium cooling of silicon crystals in high intensity photon beams

    SciTech Connect

    Smither, R. K.; Forster, G. A.; Bilderback, D. H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L. E.; Stefan, P.; Oversluizen, T.; and others

    1989-07-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1--10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator.

  12. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    PubMed

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  13. Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity

    PubMed Central

    Kidgell, Dawson J.; Daly, Robin M.; Young, Kayleigh; Lum, Jarrod; Tooley, Gregory; Jaberzadeh, Shapour; Zoghi, Maryam; Pearce, Alan J.

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities. PMID:23577272

  14. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  15. FusionArc optimization: A hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy

    SciTech Connect

    Matuszak, Martha M.; McShan, Daniel L.; Ten Haken, Randall K.; Steers, Jennifer M.; Long, Troy; Edwin Romeijn, H.; Fraass, Benedick A.

    2013-07-15

    Purpose: To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT.Methods: A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT/hybrid beams.Results: The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achieved superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%-43.7% fewer MU/Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost-32.9%-55.2% compared to single-arc VMAT-the decrease in MU/Gy compared to IMRT was noticeably smaller at 12.2%-18.5%, when compared to IMRT.Conclusions: A hybrid VMAT/IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom. This

  16. FusionArc optimization: A hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy

    PubMed Central

    Matuszak, Martha M.; Steers, Jennifer M.; Long, Troy; McShan, Daniel L.; Fraass, Benedick A.; Edwin Romeijn, H.; Ten Haken, Randall K.

    2013-01-01

    Purpose: To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT. Methods: A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT/hybrid beams. Results: The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achieved superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%–43.7% fewer MU/Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost—32.9%–55.2% compared to single-arc VMAT—the decrease in MU/Gy compared to IMRT was noticeably smaller at 12.2%–18.5%, when compared to IMRT. Conclusions: A hybrid VMAT/IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom

  17. Randomization techniques for the intensity modulation-based quantum stream cipher and progress of experiment

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro; Hirota, Osamu

    2011-08-01

    The quantum noise based direct encryption protocol Y-OO is expected to provide physical complexity based security, which is thought to be comparable to information theoretic security in mathematical cryptography, for the. physical layer of fiber-optic communication systems. So far, several randomization techniques for the quantum stream cipher by Y-OO protocol have been proposed, but most of them were developed under the assumption that phase shift keying is used as the modulation format. On the other hand, the recent progress in the experimental study on the intensity modulation based quantum stream cipher by Y-OO protocol raises expectations for its realization. The purpose of this paper is to present design and implementation methods of a composite model of the intensity modulation based quantum stream cipher with some randomization techniques. As a result this paper gives a viewpoint of how the Y-OO cryptosystem is miniaturized.

  18. Comparison of various methods to enhance laser photon density in soft tissue: tissue temperature, laser pulse modulation, glycerol, and their combination

    NASA Astrophysics Data System (ADS)

    Yeo, Changmin; Kang, Heesung; Park, Hunjeong; Jung, Byungjo

    2011-03-01

    Recently, tissue optical clearing (TOC) has been considered as a useful tool in low level laser therapy due to the enhancement of photon density in deep tissue layer. In this study, glycerol injection, tissue temperature, laser pulse modulation, and their combination methods were investigated and compared by analyzing 2D and 3D laser beam profile. A thermal plate was built to control tissue temperature from 40°C through 10°C at 10°C decrement. A continuous laser of 660 nm was modulated at the frequencies of 1, 10, 25, and 50 Hz. 95% glycerol was injected into a region of interest of sample where laser is irradiated and its effect was analyzed after 5 min. Finally, their combination method was evaluated. Analysis was performed with the diffusion images acquired by CCD and the optical properties measured by double integrating sphere. Results demonstrated that average peak intensity of laser beam profile was 1) 1.57-fold higher at 10°C than 40°C, 2) 1.79-fold higher at 10 Hz than continuous wave, 3) 1.65-fold higher with 95% glycerol injection than no glycerol application, and 4) 2.52-fold higher at the combination method than independent methods. Average total intensity at FWHM was 1) 1.44-fold higher with tissue cooling, 2) 1.71-fold higher at 10 Hz, 3) 1.61-fold higher with glycerol injection, and 4) 2.19-fold higher with the combination method. In conclusion, this study implies that tissuecooling, pulse modulation, glycerol injection, and their combination method can effectively deliver laser photon in LLLT by enhancing the photon density in soft tissue.

  19. Gigascale Silicon Photonic Transmitters Integrating HBT-based Carrier-injection Electroabsorption Modulator Structures

    NASA Astrophysics Data System (ADS)

    Fu, Enjin

    Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier

  20. Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.

    2009-03-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.

  1. Photonics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.

  2. Bridging the gap between IMRT and VMAT: Dense angularly sampled and sparse intensity modulated radiation therapy

    SciTech Connect

    Li, Ruijiang; Xing, Lei

    2011-09-15

    Purpose: To propose an alternative radiation therapy (RT) planning and delivery scheme with optimal angular beam sampling and intrabeam modulation for improved dose distribution while maintaining high delivery efficiency. Methods: In the proposed approach, coined as dense angularly sampled and sparse intensity modulated RT (DASSIM-RT), a large number of beam angles are used to increase the angular sampling, leading to potentially more conformal dose distributions as compared to conventional IMRT. At the same time, intensity modulation of the incident beams is simplified to eliminate the dispensable segments, compensating the increase in delivery time caused by the increased number of beams and facilitating the plan delivery. In a sense, the proposed approach shifts and transforms, in an optimal fashion, some of the beam segments in conventional IMRT to the added beams. For newly available digital accelerators, the DASSIM-RT delivery can be made very efficient by concatenating the beams so that they can be delivered sequentially without operator's intervention. Different from VMAT, the level of intensity modulation in DASSIS-RT is field specific and optimized to meet the need of each beam direction. Three clinical cases (a head and neck (HN) case, a pancreas case, and a lung case) are used to evaluate the proposed RT scheme. DASSIM-RT, VMAT, and conventional IMRT plans are compared quantitatively in terms of the conformality index (CI) and delivery efficiency. Results: Plan quality improves generally with the number and intensity modulation of the incident beams. For a fixed number of beams or fixed level of intensity modulation, the improvement saturates after the intensity modulation or number of beams reaches to a certain level. An interplay between the two variables is observed and the saturation point depends on the values of both variables. For all the cases studied here, the CI of DASSIM-RT with 15 beams and 5 intensity levels (0.90, 0.79, and 0.84 for the HN

  3. Photon-counting chirped amplitude modulation lidar using a smart premixing method.

    PubMed

    Zhang, Zijing; Zhang, Jianlong; Wu, Long; Zhang, Yong; Zhao, Yuan; Su, Jianzhong

    2013-11-01

    We proposed a new premixing method for photon-counting chirped amplitude modulation lidar (PCCAML). Earlier studies used the counting results of the returned signal detected by a Geiger mode avalanche photodiode detector (Gm-APD) to mix with the reference signal, called the postmixing method. We use an alternative method known as the premixing method, in which the reference signal is used to directly modulate the sampling gate width of the Gm-APD, and the mixing of the returned signal and the reference signal is completed before the Gm-APD. This premixing method is more flexible and may perform better than the postmixing method in terms of signal-to-noise ratio by cutting down a separated mixer commonly used in the postmixing lidar system. Furthermore, this premixing method lowers the demand for the sampling frequency of the Gm-APD. It allows the use of a much wider modulation bandwidth to improve the range accuracy and resolution. To the best of our knowledge, this is the first report to use the premixing method in the PCCAML system, which will benefit future lidar applications.

  4. Nonlinearity modelling of an on-board microwave photonics system based on Mach-Zehnder modulator

    NASA Astrophysics Data System (ADS)

    Zhu, Zi-hang; Zhao, Shang-hong; Yao, Zhou-shi; Tan, Qing-gui; Li, Yong-jun; Chu, Xing-chun; Wang, Xiang; Zhao, Gu-hao

    2012-11-01

    For the nonlinearity distortion problem of Mach-Zehnder modulator (MZM) applied in the on-board microwave photonics system, the situation for two input radio frequency (RF) signals with different frequencies and phases is discussed, and an exact analytical solution is derived with the method of expanding Bessel series and Graf addition theory. According to the analytical expression, the nonlinearity characteristics of the modulator can be precisely predicted, and the system performance can be optimized. The correctness of the analytical solution is approved by simulation results. Analytical results indicate that the nonlinearity distortion is suppressed as the decrease of modulation index, the increase of direct current bias phase shift and phase difference between two input RF signals. When the phase difference equals zero or π and the direct current bias phase shift is π/2, there are only odd-order distortion terms. When the phase difference equals zero or π and the direct current bias phase shift is π, there are only even-order distortion terms.

  5. Liquid gallium cooling of silicon crystals in high intensity photon beams (invited)

    NASA Astrophysics Data System (ADS)

    Smither, R. K.; Forster, G. A.; Bilderback, D. H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L. E.; Stefan, P.; Oversluizen, T.

    1989-07-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1-10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator. Tests were performed on two new Ga-cooled Si crystals and compared with the standard water-cooled Si crystal. One of the crystals had cooling

  6. PDM-16QAM vector signal generation and detection based on intensity modulation and direct detection

    NASA Astrophysics Data System (ADS)

    Chen, Long; Yu, Jianjun; Li, Xinying

    2016-07-01

    We experimentally demonstrate a novel and simple method to generate and detect high speed polarization-division-multiplexing 16-ary quadrature-amplitude-modulation (PDM-16QAM) vector signal enabled by Mach-Zehnder modulator-based (MZM-based) optical-carrier-suppression (OCS) intensity modulation and direct detection. Due to the adoption of OCS intensity modulation, carrier beating can be avoided at the receiver, and thus polarization de-multiplexing can be implemented by digital-signal-processing-based (DSP-based) cascaded multi-modulus algorithm (CMMA) equalization instead of a polarization tracking system. The change of both amplitude and phase information due to the adoption of OCS modulation can be equalized by DSP-based amplitude and phase precoding at the transmitter. Up to 64-Gb/s PDM-16QAM vector signal is generated and detected after 2-km single-mode fiber-28 (SMF-28) or 20-km large-effective-area fiber (LEAF) transmission with a bit-error-ratio (BER) less than the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3.

  7. Local Field Modulation Induced Three-Order Upconversion Enhancement: Combining Surface Plasmon Effect and Photonic Crystal Effect.

    PubMed

    Yin, Ze; Li, Hang; Xu, Wen; Cui, Shaobo; Zhou, Donglei; Chen, Xu; Zhu, Yongsheng; Qin, Guanshi; Song, Hongwei

    2016-04-01

    A 2D surface plasmon photonic crystal (SPPC) is achieved by implanting gold nanorods onto the periodic surface apertures of the poly(methyl methacrylate) (PMMA) opal photonic crystals. On the surface of the SPPC, the overall upconversion luminescence intensity of NaYF4 :Yb(3+) , Er(3+) under 980 nm excitation is improved more than 10(3) fold. The device is easily shifted to a transparent flexible substrate, applied to flexible displays. PMID:26833556

  8. Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique.

    PubMed

    Batet, Oscar; Dios, Federico; Comeron, Adolfo; Agishev, Ravil

    2010-06-10

    We analyze the intensity-modulation frequency-modulated continuous-wave (FMCW) technique for lidar remote sensing in the context of its application to distributed media. The goal of the technique is the reproduction of the sounded-medium profile along the emission path. A conceptual analysis is carried out to show the problems the basic version of the method presents for this application. The principal point is the appearance of a bandpass filtering effect, which seems to hinder its use in this context. A modified version of the technique is proposed to overcome this problem. A number of computer simulations confirm the ability of the modified FMCW technique to sound distributed media. PMID:20539357

  9. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Zhang, Xiaoxia; Liu, Yong

    2016-08-01

    The two-tone intensity modulated optical stimulus is proposed and demonstrated for measuring the high-frequency response of photodetectors. The method provides a narrow linewidth and wide bandwidth optical stimulus based on the two-tone modulation of a Mach-Zehnder electro-optical intensity modulator, and achieves the self-referenced measurement of photodetectors without the need for correcting the power variation of optical stimulus. Moreover, the two-tone intensity modulation method allows bias-independent measurement with doubled measuring frequency range. In the experiment, the consistency between our method and the conventional methods verifies the simple but accurate measurement.

  10. Intensity-modulated scanning Kelvin probe microscopy for probing recombination in organic photovoltaics.

    PubMed

    Shao, Guozheng; Glaz, Micah S; Ma, Fei; Ju, Huanxin; Ginger, David S

    2014-10-28

    We study surface photovoltage decays on sub-millisecond time scales in organic solar cells using intensity-modulated scanning Kelvin probe microscopy (SKPM). Using polymer/fullerene (poly[N-9"-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]/[6,6]-phenyl C71-butyric acid methyl ester, PCDTBT/PC71BM) bulk heterojunction devices as a test case, we show that the decay lifetimes measured by SKPM depend on the intensity of the background illumination. We propose that this intensity dependence is related to the well-known carrier-density-dependent recombination kinetics in organic bulk heterojunction materials. We perform transient photovoltage (TPV) and charge extraction (CE) measurements on the PCDTBT/PC71BM blends to extract the carrier-density dependence of the recombination lifetime in our samples, and we find that the device TPV and CE data are in good agreement with the intensity and frequency dependence observed via SKPM. Finally, we demonstrate the capability of intensity-modulated SKPM to probe local recombination rates due to buried interfaces in organic photovoltaics (OPVs). We measure the differences in photovoltage decay lifetimes over regions of an OPV cell fabricated on an indium tin oxide electrode patterned with two different phosphonic acid monolayers known to affect carrier lifetime.

  11. Self-phase modulation and two-photon absorption imaging of cells and active neurons

    NASA Astrophysics Data System (ADS)

    Fischer, Martin C.; Liu, Henry; Piletic, Ivan R.; Ye, Tong; Yasuda, Ryohei; Warren, Warren S.

    2007-02-01

    Even though multi-photon fluorescence microscopy offers higher resolution and better penetration depth than traditional fluorescence microscopy, its use is restricted to the detection of molecules that fluoresce. Two-photon absorption (TPA) imaging can provide contrast in non-fluorescent molecules while retaining the high resolution and sectioning capabilities of nonlinear imaging modalities. In the long-wavelength water window, tissue TPA is dominated by the endogenous molecules melanin and hemoglobin with an almost complete absence of endogenous two-photon fluorescence. A complementary nonlinear contrast mechanism is self-phase modulation (SPM), which can provide intrinsic signatures that can depend on local tissue anisotropy, chemical environment, or other structural properties. We have developed a spectral hole refilling measurement technique for TPA and SPM measurements using shaped ultrafast laser pulses. Here we report on a microscopy setup to simultaneously acquire 3D, high-resolution TPA and SPM images. We have acquired data in mounted B16 melanoma cells with very modest laser power levels. We will also discuss the possible application of this measurement technique to neuronal imaging. Since SPM is sensitive to material structure we can expect SPM properties of neurons to change during neuronal firing. Using our hole-refilling technique we have now demonstrated strong novel intrinsic nonlinear signatures of neuronal activation in a hippocampal brain slice. The observed changes in nonlinear signal upon collective activation were up to factors of two, unlike other intrinsic optical signal changes on the percent level. These results show that TPA and SPM imaging can provide important novel functional contrast in tissue using very modest power levels suitable for in vivo applications.

  12. Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator

    PubMed Central

    Matsumoto, Naoya; Inoue, Takashi; Matsumoto, Akiyuki; Okazaki, Shigetoshi

    2015-01-01

    We demonstrate fluorescence imaging with high fluorescence intensity and depth resolution in which depth-induced spherical aberration (SA) caused by refractive-index mismatch between the medium and biological sample is corrected. To reduce the impact of SA, we incorporate a spatial light modulator into a two-photon excitation fluorescence microscope. Consequently, when fluorescent beads in epoxy resin were observed with this method of SA correction, the fluorescence signal of the observed images was ∼27 times higher and extension in the direction of the optical axes was ∼6.5 times shorter at a depth of ∼890 μm. Thus, the proposed method increases the depth observable at high resolution. Further, our results show that the method improved the fluorescence intensity of images of the fluorescent beads and the structure of a biological sample. PMID:26203383

  13. Two-Photon Microscopy with Diffractive Optical Elements and Spatial Light Modulators

    PubMed Central

    Watson, Brendon O.; Nikolenko, Volodymyr; Araya, Roberto; Peterka, Darcy S.; Woodruff, Alan; Yuste, Rafael

    2010-01-01

    Two-photon microscopy is often performed at slow frame rates due to the need to serially scan all points in a field of view with a single laser beam. To overcome this problem, we have developed two optical methods that split and multiplex a laser beam across the sample. In the first method a diffractive optical element (DOE) generates a fixed number of beamlets that are scanned in parallel resulting in a corresponding increase in speed or in signal-to-noise ratio in time-lapse measurements. The second method uses a computer-controlled spatial light modulator (SLM) to generate any arbitrary spatio-temporal light pattern. With an SLM one can image or photostimulate any predefined region of the image such as neurons or dendritic spines. In addition, SLMs can be used to mimic a large number of optical transfer functions including light path corrections as adaptive optics. PMID:20859526

  14. Single gain peak from modulation instability in As2Se3 chalcogenide glass photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, Helin; Yang, Aijun

    2016-09-01

    With the As2Se3 photonic crystal fiber (PCF), the effect of pump power and wavelength on modulation instability (MI) gain is studied in detail. Due to high Raman scattering effect and high nonlinearity of As2Se3 PCF, ultra-broadband MI gain is obtained when appropriate pump power and wavelength is chosen, and the optimal MI gain bandwidth reaches 2812 nm. More importantly, competing between Raman scattering and four-wave mixing results in a single gain peak observed in the anti-Stokes region of As2Se3 PCF when pump power is higher than about 3000 W, while there is no gain spectrum in the fiber Stokes region. The phenomenon is found for the first time, and the obtained single gain peak mainly results from Raman scattering effect.

  15. Ultrabroadband polarization splitter based on three-core photonic crystal fiber with a modulation core.

    PubMed

    Zhao, Tongtong; Lou, Shuqin; Wang, Xin; Zhou, Min; Lian, Zhenggang

    2016-08-10

    We design an ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF). A modulation core and two fluorine-doped cores are introduced to achieve an ultrawide bandwidth. The properties of three-core PCF are modeled by using the full-vector finite element method along with the full-vector beam propagation method. Numerical results demonstrate that an ultrabroadband splitter with 320 nm bandwidth with an extinction ratio as low as -20  dB can be achieved by using 52.8 mm long three-core PCF. This splitter also has high compatibility with standard single-mode fibers as the input and output ports due to low splicing loss of 0.02 dB. All the air holes in the proposed structure are circular holes and arranged in a triangular lattice that makes it easy to fabricate. PMID:27534489

  16. An analog of photon-assisted tunneling in a periodically modulated waveguide array

    PubMed Central

    Li, Liping; Luo, Xiaobing; Yang, Xiaoxue; Wang, Mei; Lü, Xinyou; Wu, Ying

    2016-01-01

    We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet state in a periodically driven lattice array without a static biased potential by studying a three-channel waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only periodically modulating the top waveguide and adjusting the distance between the bottom and its adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, but they will become weak as the number of waveguides increases. With origin different from traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy (dark) Floquet states. It is readily observable under currently accessible experimental conditions and may be useful for controlling light propagation in waveguide arrays. PMID:27767189

  17. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.; Brown, Craig; Christensen, Phil. A.; Condron, Cathie; Hernandez, Michael; Ingle, Mike; Johnson, William A.; Owen, Roger D.; Ross, Randy; Schonberg, Russell G.

    2011-06-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  18. MIMO Free-Space Optical Communication Employing Subcarrier Intensity Modulation in Atmospheric Turbulence Channels

    NASA Astrophysics Data System (ADS)

    Ghassemlooy, Zabih; Popoola, Wasiu O.; Ahmadi, Vahid; Leitgeb, Erich

    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects.

  19. Loss-compensation of intensity-modulating fiber-optic sensors

    NASA Technical Reports Server (NTRS)

    Beheim, G.; Anthan, D. J.

    1986-01-01

    This report describes a new type of intensity-modulating fiber-optic sensor which has high immunity to the effects of variations in the losses of the fiber-link. A variable-splitting-ratio transducer is used to differentially modulate the intensities of the light which it transmits and reflects. Using a four-fiber optical link, light is impinged onto the transducer from either direction, and, in each case, the transmitted and reflected signals are measured. These four signals are then processed to remove the effects of the fiber and connector losses. Loss-compensated sensors of angular position and displacement are described, and their outputs are shown to be highly stable despite considerable variations in the transmissivities of the fiber-link components.

  20. Impact of High-intensity Intermittent and Moderate-intensity Continuous Exercise on Autonomic Modulation in Young Men.

    PubMed

    Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S

    2016-06-01

    The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise. PMID:26951480

  1. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    SciTech Connect

    Seco, Joao; Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  2. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    PubMed Central

    Zhu, Zhengfei

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these two techniques are also discussed. PMID:26207214

  3. Review of studies on modulating enzyme activity by low intensity electromagnetic radiation.

    PubMed

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2010-01-01

    This paper is a compilation of our findings on non-thermal effects of electromagnetic radiation (EMR) at the molecular level. The outcomes of our studies revealed that that enzymes' activity can be modulated by external electromagnetic fields (EMFs) of selected frequencies. Here, we discuss the possibility of modulating protein activity using visible and infrared light based on the concepts of protein activation outlined in the resonant recognition model (RRM), and by low intensity microwaves. The theoretical basis behind the RRM model expounds a potential interaction mechanism between electromagnetic radiation and proteins as well as protein-protein interactions. Possibility of modulating protein activity by external EMR is experimentally validated by irradiation of the L-lactate Dehydrogenase enzyme.

  4. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    SciTech Connect

    Buttafava, Mauro Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto; Dalla Mora, Alberto

    2014-08-15

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.

  5. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity.

    PubMed

    Pan, Ting; Qiu, Ciyuan; Wu, Jiayang; Jiang, Xinhong; Liu, Boyu; Yang, Yuxing; Zhou, Huanying; Soref, Richard; Su, Yikai

    2015-09-01

    We propose and numerically study an on-chip graphene-silicon hybrid electro-optic (EO) modulator operating at the telecommunication band, which is implemented by a compact 1D photonic crystal nanobeam (PCN) cavity coupled to a bus waveguide with a graphene sheet on top. Through electrically tuning the Fermi level of the graphene, both the quality factor and the resonance wavelength can be significantly changed, thus the in-plane lightwave can be efficiently modulated. Based on finite-difference time-domain (FDTD) simulation results, the proposed modulator can provide a large free spectral range (FSR) of 125.6 nm, a high modulation speed of 133 GHz, and a large modulation depth of ~12.5 dB in a small modal volume, promising a high performance EO modulator for wavelength-division multiplexed (WDM) optical communication systems.

  6. Three-wave mixing with whispering-gallery modes for electro-optic modulation and photonic reception

    NASA Technical Reports Server (NTRS)

    Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2002-01-01

    We demonstrate an electro-optic microwave modulator with milliWatt control power and a sub-microWatt photonic receiver based on triply-resonant three-wave mixing in high-Q toroidal lithium niobate cavities with whispering-gallery (WG) modes.

  7. Third-order linearization for self-beating filtered microwave photonic systems using a dual parallel Mach-Zehnder modulator.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-09-01

    We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB). PMID:27607667

  8. Value of Intensity-Modulated Radiotherapy in Stage IV Head-and-Neck Squamous Cell Carcinoma

    SciTech Connect

    Dirix, Piet; Nuyts, Sandra

    2010-12-01

    Purpose: To review outcome and toxicity of Stage IVa and IVb head-and-neck squamous cell carcinoma patients treated with concomitant chemotherapy and intensity-modulated radiotherapy (IMRT) according to a hybrid fractionation schedule. Methods and Materials: Between 2006 and 2008, 42 patients with Stage IV head-and-neck squamous cell carcinoma were irradiated according to a hybrid fractionation schedule consisting of 20 fractions of 2 Gy (once daily), followed by 20 fractions of 1.6 Gy (twice daily), to a total dose of 72 Gy. Chemotherapy (cisplatinum, 100mg/m{sup 2}) was administered at the start of Weeks 1 and 4. Treatment outcome and toxicity were retrospectively compared with a previous patient group (n = 55), treated according to the same schedule, but without intensity modulation. Results: Locoregional control (LRC) and overall survival were 81% and 56% after 2 years, respectively. In comparison with the previous cohort, no significant differences were observed regarding either LRC (66%, p = 0.38) or overall survival (73%, p = 0.29). No Grade 4 or 5 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of late Grade 2 or 3 xerostomia (52.9% vs. 90.2%, p < 0.001). No difference was observed regarding late Grade 2 or 3 dysphagia (p = 0.66). Conclusions: Intensity-modulated chemoradiotherapy does not compromise LRC and significantly reduces late toxicity, especially regarding xerostomia.

  9. Volumetric Arc Therapy and Intensity-Modulated Radiotherapy for Primary Prostate Radiotherapy With Simultaneous Integrated Boost to Intraprostatic Lesion With 6 and 18 MV: A Planning Comparison Study

    SciTech Connect

    Ost, Piet; Speleers, Bruno; De Meerleer, Gert; De Neve, Wilfried; Fonteyne, Valerie; Villeirs, Geert; De Gersem, Werner

    2011-03-01

    Purpose: The aim of the present study was to compare intensity-modulated radiotherapy (IMRT) with volumetric arc therapy (VMAT), in the treatment of prostate cancer with maximal dose escalation to the intraprostatic lesion (IPL), without violating the organ-at-risk constraints. Additionally, the use of 6-MV photons was compared with 18-MV photons for all techniques. Methods and Materials: A total of 12 consecutive prostate cancer patients with an IPL on magnetic resonance imaging were selected for the present study. Plans were made for three IMRT field setups (three, five, and seven fields) and one VMAT field setup (single arc). First, optimal plans were created for every technique using biologic and physical planning aims. Next, an additional escalation to the IPL was planned as high as possible without violating the planning aims of the first step. Results: No interaction between the technique and photon energy (p = .928) occurred. No differences were found between the 6- and 18-MV photon beams, except for a reduction in the number of monitor units needed for 18 MV (p < .05). All techniques, except for three-field IMRT, allowed for dose escalation to a median dose of {>=}93 {+-} 6 Gy (mean {+-} standard deviation) to the IPL. VMAT was superior to IMRT for rectal volumes receiving 20-50 Gy (p < .05). Conclusion: VMAT allowed for dose escalation to the IPL with better sparing of the rectum than static three-, five-, and seven-field IMRT setups. High-energy photons had no advantage over low-energy photons.

  10. Breast Intensity-Modulated Radiation Therapy Reduces Time Spent With Acute Dermatitis for Women of All Breast Sizes During Radiation

    SciTech Connect

    Freedman, Gary M. Li Tianyu; Nicolaou, Nicos; Chen Yan; Ma, Charlie C.-M.; Anderson, Penny R.

    2009-07-01

    Purpose: To study the time spent with radiation-induced dermatitis during a course of radiation therapy for breast cancer in women treated with conventional or intensity-modulated radiation therapy (IMRT). Methods and Materials: The study population consisted of 804 consecutive women with early-stage breast cancer treated with breast-conserving surgery and radiation from 2001 to 2006. All patients were treated with whole-breast radiation followed by a boost to the tumor bed. Whole-breast radiation consisted of conventional wedged photon tangents (n = 405) earlier in the study period and mostly of photon IMRT (n = 399) in later years. All patients had acute dermatitis graded each week of treatment. Results: The breakdown of the cases of maximum acute dermatitis by grade was as follows: 3%, Grade 0; 34%, Grade 1; 61%, Grade 2; and 2%, Grade 3. The breakdown of cases of maximum toxicity by technique was as follows: 48%, Grade 0/1, and 52%, Grade 2/3, for IMRT; and 25%, Grade 0/1, and 75%, Grade 2/3, for conventional radiation therapy (p < 0.0001). The IMRT patients spent 82% of weeks during treatment with Grade 0/1 dermatitis and 18% with Grade 2/3 dermatitis, compared with 29% and 71% of patients, respectively, treated with conventional radiation (p < 0.0001). Furthermore, the time spent with Grade 2/3 toxicity was decreased in IMRT patients with small (p = 0.0015), medium (p < 0.0001), and large (p < 0.0001) breasts. Conclusions: Breast IMRT is associated with a significant decrease both in the time spent during treatment with Grade 2/3 dermatitis and in the maximum severity of dermatitis compared with that associated with conventional radiation, regardless of breast size.

  11. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    SciTech Connect

    Hoover, Douglas A. Chen, Jeff Z.; MacFarlane, Michael; Wong, Eugene; Battista, Jerry J.

    2015-02-15

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT.

  12. Research of photonic-assisted triangular-shaped pulses generation based on quadrupling RF modulation

    NASA Astrophysics Data System (ADS)

    Yuan, Jin; Ning, Ti-gang; Li, Jing; Li, Yue-qin; Chen, Hong-yao; Zhang, Chan

    2015-05-01

    We propose an approach to generate optical triangular-shaped pulse train with tunable repetition rate using quadrupling radio frequency (RF) modulation and optical grating dispersion-induced power fading. In this work, a piece of chirped fiber Bragg grating (FBG) is employed as the dispersive media to remove the undesired 8th harmonic in optical intensity. Thus, the generated harmonics of optical intensity can be corresponding to the first two Fourier components of typical periodic triangular pulses. This work also analyzes the impacts of the extinction ratio and the bias voltage drift on the harmonic distortion suppression ratio. After that, the value of the extinction ratio and the range of the bias voltage drift can be obtained. The advantage of this proposal is that it can generate high order frequency-multiplexed optical pulses train which can be applied in all optical signal processing and other fields.

  13. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    SciTech Connect

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  14. Diffuse neutrino intensity from the inner jets of active galactic nuclei: Impacts of external photon fields and the blazar sequence

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Inoue, Yoshiyuki; Dermer, Charles D.

    2014-07-01

    We study high-energy neutrino production in inner jets of radio-loud active galactic nuclei (AGN), taking into account effects of external photon fields and the blazar sequence. We show that the resulting diffuse neutrino intensity is dominated by quasar-hosted blazars, in particular, flat spectrum radio quasars, and that PeV-EeV neutrino production due to photohadronic interactions with broadline and dust radiation is unavoidable if the AGN inner jets are ultrahigh-energy cosmic-ray (UHECR) sources. Their neutrino spectrum has a cutoff feature around PeV energies since target photons are due to Lyα emission. Because of infrared photons provided by the dust torus, neutrino spectra above PeV energies are too hard to be consistent with the IceCube data unless the proton spectral index is steeper than 2.5, or the maximum proton energy is ≲100 PeV. Thus, the simple model has difficulty in explaining the IceCube data. For the cumulative neutrino intensity from blazars to exceed ˜10-8 GeV cm-2 s-1 sr-1, their local cosmic-ray energy generation rate would be ˜10-100 times larger than the local UHECR emissivity but is comparable to the averaged γ-ray blazar emissivity. Interestingly, future detectors such as the Askaryan Radio Array can detect ˜0.1-1 EeV neutrinos even in more conservative cases, allowing us to indirectly test the hypothesis that UHECRs are produced in the inner jets. We find that the diffuse neutrino intensity from radio-loud AGN is dominated by blazars with γ-ray luminosity of ≳1048 erg s-1, and the arrival directions of their ˜1-100 PeV neutrinos correlate with the luminous blazars detected by Fermi.

  15. Delivery confirmation of bolus electron conformal therapy combined with intensity modulated x-ray therapy

    SciTech Connect

    Kavanaugh, James A.; Hogstrom, Kenneth R.; Fontenot, Jonas P.; Henkelmann, Gregory; Chu, Connel; Carver, Robert A.

    2013-02-15

    Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively, whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94

  16. A case study of radiotherapy planning for Intensity Modulation Radiation Therapy for the whole scalp with matching electron treatment

    SciTech Connect

    Sponseller, Patricia; Paravathaneni, Upendra

    2013-07-01

    The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of the IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.

  17. Forward-planned intensity modulated radiation therapy using a cobalt source: A dosimetric study in breast cancer

    PubMed Central

    Cilla, Savino; Kigula-Mugambe, Joseph; Digesù, Cinzia; Macchia, Gabriella; Bogale, Solomon; Massaccesi, Mariangela; Dawotola, David; Deodato, Francesco; Buwenge, Milly; Caravatta, Luciana; Piermattei, Angelo; Valentini, Vincenzo; Morganti, Alessio G.

    2013-01-01

    This analysis evaluates the feasibility and dosimetric results of a simplified intensity-modulated radiotherapy (IMRT) treatment using a cobalt-therapy unit for post-operative breast cancer. Fourteen patients were included. Three plans per patient were produced by a cobalt-60 source: A standard plan with two wedged tangential beams, a standard tangential plan optimized without the use of wedges and a plan based on the forward-planned “field-in-field” IMRT technique (Co-FinF) where the dose on each of the two tangential beams was split into two different segments and the two segments weight was determined with an iterative process. For comparison purposes, a 6-MV photon standard wedged tangential treatment plan was generated. Dmean, D98%, D2%, V95%, V107%, homogeneity, and conformity indices were chosen as parameters for comparison. Co-FinF technique improved the planning target volume dose homogeneity compared to other cobalt-based techniques and reduced maximum doses (D2%) and high-dose volume (V110%). Moreover, it showed a better lung and heart dose sparing with respect to the standard approach. The higher dose homogeneity may encourage the adoption of accelerated-hypofractionated treatments also with the cobalt sources. This approach can promote the spread of breast conservative treatment in developing countries. PMID:24049319

  18. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint

    PubMed Central

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-01-01

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way. PMID:27698465

  19. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint

    NASA Astrophysics Data System (ADS)

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-10-01

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.

  20. Incorporating deliverable monitor unit constraints into spot intensity optimization in intensity-modulated proton therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Cao, Wenhua; Lim, Gino; Li, Xiaoqiang; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2013-08-01

    The purpose of this study is to investigate the feasibility and impact of incorporating deliverable monitor unit (MU) constraints into spot intensity optimization (SIO) in intensity-modulated proton therapy (IMPT) treatment planning. The current treatment planning system (TPS) for IMPT disregards deliverable MU constraints in the SIO routine. It performs a post-processing procedure on an optimized plan to enforce deliverable MU values that are required by the spot scanning proton delivery system. This procedure can create a significant dose distribution deviation between the optimized and post-processed deliverable plans, especially when small spot spacings are used. In this study, we introduce a two-stage linear programming approach to optimize spot intensities and constrain deliverable MU values simultaneously, i.e., a deliverable SIO (DSIO) model. Thus, the post-processing procedure is eliminated and the associated optimized plan deterioration can be avoided. Four prostate cancer cases at our institution were selected for study and two parallel opposed beam angles were planned for all cases. A quadratic programming based model without MU constraints, i.e., a conventional SIO (CSIO) model, was also implemented to emulate commercial TPS. Plans optimized by both the DSIO and CSIO models were evaluated for five different settings of spot spacing from 3 to 7 mm. For all spot spacings, the DSIO-optimized plans yielded better uniformity for the target dose coverage and critical structure sparing than did the CSIO-optimized plans. With reduced spot spacings, more significant improvements in target dose uniformity and critical structure sparing were observed in the DSIO than in the CSIO-optimized plans. Additionally, better sparing of the rectum and bladder was achieved when reduced spacings were used for the DSIO-optimized plans. The proposed DSIO approach ensures the deliverability of optimized IMPT plans that take into account MU constraints. This eliminates the post

  1. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    SciTech Connect

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.

  2. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    DOE PAGESBeta

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a shortmore » RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.« less

  3. H{sub 2}{sup +} photodissociation by an intense pulsed photonic Fock state

    SciTech Connect

    Paul, Amit K.; Adhikari, Satrajit; Baer, Michael; Baer, Roi

    2010-01-15

    We study the photodissociation of the H{sub 2}{sup +} molecule by ultrashort Fock-state electromagnetic pulses (EMPs). We use the Born-Oppenheimer treatment combined with an explicit photon number representation via diabatic electrophoton potential surfaces for simplification of the basic equations. We discuss the issue of the number of photon states required and show that six photon states enable good accuracy for photoproduct kinetic energies of up to 3 eV. We calculate photodissociation probabilities and nuclear kinetic-energy (KE) distributions of the photodissociation products for 800-nm, 50-TW/cm{sup 2} pulses. We show that KE distributions depend on three pulse durations of 10, 20, and 45 fs and on various initial vibrational states of the molecule. We compare the Fock-state results to those obtained by 'conventional', i.e., coherent-state, laser pulses of equivalent electric fields and durations. The effects of the quantum state of EMPs on the photodissociation dynamics are especially strong for high initial vibrational states of H{sub 2}{sup +}. While coherent-state pulses suppress photodissociation for the high initial vibrational states of H{sub 2}{sup +}, the Fock-state pulses enhance it.

  4. Intense Combined Source of Neutrons and Photons for Interrogation Based on Compact Deuteron RF Accelerator

    NASA Astrophysics Data System (ADS)

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements [Taddeucci et al. (2007)], indicate that the required fluxes of both neutrons and photons can be achieved at ∼1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full- system implementation.

  5. Combinational use of conformal and intensity-modulated beams in radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Coolens, Catherine; Webb, Steve; Evans, Phil M.; Seco, Joao

    2003-06-01

    Intensity-modulated (IM) beam profiles computed by inverse-planning systems tend to be complex and may have multiple spatial minima and maxima. In addition to the structure originating from the treatment objectives, beam profiles might contain stochastic structure or noise and numerical artefacts, which present certain practical difficulties. The combinational use of conformal and intensity-modulated beams could be a different method of making the total fluence distribution less noisy and deliverable without compromising the advantages of IMRT. The investigation of this possibility provided the basis for this paper. A treatment-planning study was performed to compare plans combining modulated and unmodulated beams with a 5-field, equally spaced, full IMRT plan for treating the prostate and seminal vesicles in three patients. Beam angles for this study were 0°, 72°, 144°, 216° and 288°. Additionally, a study was performed on a patient with a different beam arrangement (36°, 108°, 180°, 252°, 324°) from the first study to test the obtained results. This study has demonstrated that it is possible to substitute up to two conformal beams in the originally full IMRT plan when carefully selecting the conformal beam angles. Making the anterior beam (0°) and an anterior oblique beam (between 0° and 90°) conformal leads to a reduction in the total number of monitor units and segments of about 15% and 39%, respectively. Additionally, these two open fields can be used for simpler treatment verification.

  6. Comparing Radiation Treatments Using Intensity-Modulated Beams, Multiple Arcs, and Single Arcs

    SciTech Connect

    Tang, Grace; Earl, Matthew A.; Luan Shuang; Wang Chao; Mohiuddin, Majid M.; Yu, Cedric X.

    2010-04-15

    Purpose: A dosimetric comparison of multiple static-field intensity-modulated radiation therapy (IMRT), multiarc intensity-modulated arc therapy (IMAT), and single-arc arc-modulated radiation therapy (AMRT) was performed to evaluate their clinical advantages and shortcomings. Methods and Materials: Twelve cases were selected for this study, including three head-and-neck, three brain, three lung, and three prostate cases. An IMRT, IMAT, and AMRT plan was generated for each of the cases, with clinically relevant planning constraints. For a fair comparison, the same parameters were used for the IMRT, IMAT, and AMRT planning for each patient. Results: Multiarc IMAT provided the best plan quality, while single-arc AMRT achieved dose distributions comparable to those of IMRT, especially in the complicated head-and-neck and brain cases. Both AMRT and IMAT showed effective normal tissue sparing without compromising target coverage and delivered a lower total dose to the surrounding normal tissues in some cases. Conclusions: IMAT provides the most uniform and conformal dose distributions, especially for the cases with large and complex targets, but with a delivery time similar to that of IMRT; whereas AMRT achieves results comparable to IMRT with significantly faster treatment delivery.

  7. Description and operation of the LEDA beam-position/intensity measurement module

    SciTech Connect

    Rose, C.R.; Stettler, M.W.

    1997-10-01

    This paper describes the specification, design and preliminary operation of the beam-position/intensity measurement module being built for the Low Energy Demonstration Accelerator (LEDA) and Accelerator Production of Tritium (APT) projects at Los Alamos National Laboratory. The module, based on the VXI footprint, is divided into three sections: first, the analog front-end which consists of logarithmic amplifiers, anti-alias filters, and digitizers; second, the digital-to-analog section for monitoring signals on the front panel; and third, the DSP, error correction, and VXI-interface section. Beam position is calculated based on the log-ratio transfer function. The module has four, 2-MHz, IF inputs suitable for two-axis position measurements. It has outputs in both digital and analog format for x- and y-position and beam intensity. Real-time error-correction is performed on the four input signals after they are digitized and before calculating the beam position to compensate for drift, offsets, gain non-linearities, and other systematic errors. This paper also describes how the on-line error-correction is implemented digitally and algorithmically.

  8. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    PubMed Central

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670

  9. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    PubMed

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670

  10. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    NASA Astrophysics Data System (ADS)

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-02-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  11. System design of programmable 4f phase modulation techniques for rapid intensity shaping: a conceptual comparison

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2016-03-01

    The present study analyses three beam shaping approaches with respect to a light-efficient generation of i) patterns and ii) multiple spots by means of a generic optical 4f-setup. 4f approaches share the property that due to the one-to-one relationship between output intensity and input phase, the need for time-consuming, iterative calculation can be avoided. The resulting low computational complexity offers a particular advantage compared to the widely used holographic principles and makes them potential candidates for real-time applications. The increasing availability of high-speed phase modulators, e.g. on the basis of MEMS, calls for an evaluation of the performances of these concepts. Our second interest is the applicability of 4f methods to high-power applications. We discuss the variants of 4f intensity shaping by phase modulation from a system-level point of view which requires the consideration of application relevant boundary conditions. The discussion includes i) the micro mirror based phase manipulation combined with amplitude masking in the Fourier plane, ii) the Generalized Phase Contrast, and iii) matched phase-only correlation filtering combined with GPC. The conceptual comparison relies on comparative figures of merit for energy efficiency, pattern homogeneity, pattern image quality, maximum output intensity and flexibility with respect to the displayable pattern. Numerical simulations illustrate our findings.

  12. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    PubMed

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  13. Hippocampal-Brainstem Connectivity Associated with Vagal Modulation after an Intense Exercise Intervention in Healthy Men

    PubMed Central

    Bär, Karl-Jürgen; Herbsleb, Marco; Schumann, Andy; de la Cruz, Feliberto; Gabriel, Holger W.; Wagner, Gerd

    2016-01-01

    Regular physical exercise leads to increased vagal modulation of the cardiovascular system. A combination of peripheral and central processes has been proposed to underlie this adaptation. However, specific changes in the central autonomic network have not been described in human in more detail. We hypothesized that the anterior hippocampus known to be influenced by regular physical activity might be involved in the development of increased vagal modulation after a 6 weeks high intensity intervention in young healthy men (exercise group: n = 17, control group: n = 17). In addition to the determination of physical capacity before and after the intervention, we used resting state functional magnetic resonance imaging and simultaneous heart rate variability assessment. We detected a significant increase of the power output at the anaerobic threshold of 11.4% (p < 0.001), the maximum power output Pmax of 11.2% (p < 0.001), and VO2max adjusted for body weight of 4.7% (p < 0.001) in the exercise group (EG). Comparing baseline (T0) and post-exercise (T1) values of parasympathetic modulation of the exercise group, we observed a trend for a decrease in heart rate (p < 0.06) and a significant increase of vagal modulation as indicated by RMSSD (p < 0.026) during resting state. In the whole brain analysis, we found that the connectivity pattern of the right anterior hippocampus (aHC) was specifically altered to the ventromedial anterior cortex, the dorsal striatum and to the dorsal vagal complex (DVC) in the brainstem. Moreover, we observed a highly significant negative correlation between increased RMSSD after exercise and decreased functional connectivity from the right aHC to DVC (r = −0.69, p = 0.003). This indicates that increased vagal modulation was associated with functional connectivity between aHC and the DVC. In conclusion, our findings suggest that exercise associated changes in anterior hippocampal function might be involved in increased vagal modulation. PMID

  14. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    SciTech Connect

    Boehling, Nicholas S.; Grosshans, David R.; Bluett, Jaques B.; Palmer, Matthew T.; Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan; Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y.

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  15. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    SciTech Connect

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  16. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    PubMed

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-01

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency. PMID:25969323

  17. Intensity modulated SMF cascaded tapers with a hollow core PCF based microcavity for curvature sensing

    NASA Astrophysics Data System (ADS)

    Dass, Sumit; Narayan Dash, Jitendra; Jha, Rajan

    2016-03-01

    We propose a highly sensitive curvature sensor based on cascaded single mode fiber (SMF) tapers with a microcavity. The microcavity is created by splicing a small piece of hollow core photonic crystal fiber (HCPCF) at the end of an SMF to obtain a sharp interference pattern. Experimental results show that two SMF tapers enhance the curvature sensitivity of the system and by changing the tapering parameters of the second taper, the curvature sensitivity of the system can be tailored, together with the fringe contrast of the interference pattern. A maximum curvature sensitivity of 10.4 dB/m-1 is observed in the curvature range 0 to 1 m-1 for a second taper diameter of 18 μm. The sensing setup is highly stable and shows very low temperature sensitivity. As the interrogation is intensity based, a low cost optical power meter can be utilized to determine the curvature.

  18. Modulation transfer function of partial gating detector by liquid crystal auto-controlling light intensity

    NASA Astrophysics Data System (ADS)

    Yang, Xusan; Tang, Yuanhe; Liu, Kai; Liu, Hanchen; Gao, Haiyang; Li, Qing; Zhang, Ruixia; Ye, Na; Liang, Yuan; Zhao, Gaoxiang

    2008-12-01

    Based on the electro-optical properties of liquid crystal, we have designed a novel partial gating detector. Liquid crystal can be taken to change its own transmission according to the light intensity outside. Every single pixel of the image is real-time modulated by liquid crystal, thus the strong light is weakened and low light goes through the detector normally .The purpose of partial-gating strong light (>105lx) can be achieved by this detector. The modulation transfer function (MTF) equations of the main optical sub-systems are calculated in this paper, they are liquid crystal panels, linear fiber panel and CCD array detector. According to the relevant size, the MTF value of this system is fitted out. The result is MTF= 0.518 at Nyquist frequency.

  19. Ultrasound-modulated optical tomography: direct recovery of elasticity distribution from experimentally measured intensity autocorrelation.

    PubMed

    Mohanan, K P; Nandakumaran, A K; Roy, D; Vasu, R M

    2015-05-01

    Based on an ultrasound-modulated optical tomography experiment, a direct, quantitative recovery of Young's modulus (E) is achieved from the modulation depth (M) in the intensity autocorrelation. The number of detector locations is limited to two in orthogonal directions, reducing the complexity of the data gathering step whilst ensuring against an impoverishment of the measurement, by employing ultrasound frequency as a parameter to vary during data collection. The M and E are related via two partial differential equations. The first one connects M to the amplitude of vibration of the scattering centers in the focal volume and the other, this amplitude to E. A (composite) sensitivity matrix is arrived at mapping the variation of M with that of E and used in a (barely regularized) Gauss-Newton algorithm to iteratively recover E. The reconstruction results showing the variation of E are presented. PMID:26366922

  20. Synthetic single crystal diamond dosimeters for Intensity Modulated Radiation Therapy applications

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Ciancaglioni, I.; Consorti, R.; De Notaristefani, F.; Manfredotti, C.; Marinelli, Marco; Milani, E.; Petrucci, A.; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2009-09-01

    A synthetic single crystal diamond Schottky diode, in a p-type/intrinsic/metal structure, deposited by Chemical Vapour Deposition (CVD) and operating in photovoltaic regime, with no external bias voltage applied, was tested as a dosimeter for Intensity Modulated Radiation Therapy (IMRT) applications. The device response was compared with dose measurements from two commercial ionization chambers and a 2D diode array in an IMRT prostate cancer treatment plan. The obtained results indicate that CVD synthetic single crystal diamond-based dosimeters can successfully be used for highly conformed radiotherapy and IMRT dosimetry, due to their small size and high sensitivity per unit volume.

  1. Synchronous bilateral squamous cell carcinoma of the lung successfully treated using intensity-modulated radiotherapy

    PubMed Central

    Loo, S W; Smith, S; Promnitz, D A; Van Tornout, F

    2012-01-01

    We present a case of synchronous bilateral inoperable lung cancer which required treatment with external beam radiotherapy to a radical dose. Intensity-modulated radiotherapy (IMRT) was used. More conformal dose distribution within the planning target volume was obtained using IMRT than the conventional technique. Dose–volume constraints defined for the lungs were met. Treatment was subsequently delivered using a seven-field IMRT plan. The patient remains alive and disease-free 48 months after the completion of radiotherapy. IMRT can be considered an effective treatment for synchronous bilateral lung cancer. PMID:21937610

  2. Combining discrete cosine transform with clipping for PAPR reduction in intensity-modulated OFDM systems

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-peng; Chen, Shou-fa; Zhou, Yang; Chen, Ming; Tang, Jin; Chen, Lin

    2014-09-01

    In this paper, the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal is reduced by combining the discrete cosine transform (DCT) with clipping in optical intensity-modulated direct-detection (IM/DD) OFDM systems. First, the data are transformed into new modified data by DCT. Second, the proposed scheme utilizes the clipping technique to further reduce the PAPR of OFDM signal. We experimentally demonstrate that the optical OFDM transmission system with this proposed scheme can achieve significant performance improvement in terms of PAPR and bit error rate (BER) compared with the original optical OFDM systems.

  3. Cell-stimulation therapy of lateral epicondylitis with frequency-modulated low-intensity electric current.

    PubMed

    Aliyev, R M; Geiger, G

    2012-03-01

    In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.

  4. Performance of surface plasmon resonance imaging system based on angular modulation and intensity measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Lu-lu; Chen, Xing; Cui, Da-fu

    2016-05-01

    This paper presents a surface plasmon resonance (SPR) imaging system based on angular modulation (AM) and intensity measurement (IM) together to avoid the mechanical errors of the angle scanning device. The SPR resonant angle was found by angular scanning method and then the light intensity changes were collected at a fixed incident angle. Glycerol gradient solution (0%, 1%, 2%, 3% (weight percentage) glycerol dissolved in water) experiments were conducted, which indicate that the best fixed angle location is the middle of the linear range of SPR absorption peak and the central area signals are more uniform than those of the border areas. The sensitivity differences of different areas of SPR images are studied, and an optimized algorithm is developed.

  5. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  6. Communication: excitation band modulation with high-order photonic band gap in PMMA:Eu(TTA)3(TPPO)2 opals.

    PubMed

    Xu, Wen; Bai, Xue; Zhu, Yongsheng; Liu, Tong; Xu, Sai; Dong, Biao; Song, Hongwei

    2013-05-14

    Changes in the excitation spectra of luminescent species inserted in photorefractive crystals as a function of changes in the high-order photonic band gap (PBG) have not been previously observed. In this communication, we present our results monitoring the excitation band of Eu(TTA)3(TPPO)2 inserted in the PMMA opal photonic crystals as a function of the changes in the high-order PBG of the crystals. We find shifts in the complex excitation band and changes in the integrated emission intensity that correlates with shifts in the high-order PBG through coupling to the excitation transition. PMID:23676019

  7. Communication: Excitation band modulation with high-order photonic band gap in PMMA:Eu(TTA)3(TPPO)2 opals

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Bai, Xue; Zhu, Yongsheng; Liu, Tong; Xu, Sai; Dong, Biao; Song, Hongwei

    2013-05-01

    Changes in the excitation spectra of luminescent species inserted in photorefractive crystals as a function of changes in the high-order photonic band gap (PBG) have not been previously observed. In this communication, we present our results monitoring the excitation band of Eu(TTA)3(TPPO)2 inserted in the PMMA opal photonic crystals as a function of the changes in the high-order PBG of the crystals. We find shifts in the complex excitation band and changes in the integrated emission intensity that correlates with shifts in the high-order PBG through coupling to the excitation transition.

  8. Communication: excitation band modulation with high-order photonic band gap in PMMA:Eu(TTA)3(TPPO)2 opals.

    PubMed

    Xu, Wen; Bai, Xue; Zhu, Yongsheng; Liu, Tong; Xu, Sai; Dong, Biao; Song, Hongwei

    2013-05-14

    Changes in the excitation spectra of luminescent species inserted in photorefractive crystals as a function of changes in the high-order photonic band gap (PBG) have not been previously observed. In this communication, we present our results monitoring the excitation band of Eu(TTA)3(TPPO)2 inserted in the PMMA opal photonic crystals as a function of the changes in the high-order PBG of the crystals. We find shifts in the complex excitation band and changes in the integrated emission intensity that correlates with shifts in the high-order PBG through coupling to the excitation transition.

  9. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  10. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  11. Four-Week Course of Radiation for Breast Cancer Using Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost

    SciTech Connect

    Freedman, Gary M. . E-mail: Gary.Freedman@FCCC.edu; Anderson, Penny R.; Goldstein, Lori J.; Ma Changming; Li Jinsheng; Swaby, Ramona F.; Litwin, Samuel; Watkins-Bruner, Deborah; Sigurdson, Elin R.; Morrow, Monica

    2007-06-01

    Purpose: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. Methods and Materials: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age {>=}18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapy not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. Results: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. Conclusions: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules.

  12. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    PubMed

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  13. Feasibility study for linac-based intensity modulated total marrow irradiation.

    PubMed

    Wilkie, Joel R; Tiryaki, Hanifi; Smith, Brett D; Roeske, John C; Radosevich, James A; Aydogan, Bulent

    2008-12-01

    Total body irradiation (TBI) is used as a preconditioning regimen prior to bone marrow transplant for treatment of hematologic malignancies. During TBI, large volumes of normal tissue are irradiated, and this can lead to toxicities, most significantly in the lungs. Intensity modulated total marrow irradiation (IMTMI) may be able to reduce these toxicities by directly targeting the bone marrow while minimizing the dose to critical structures. The goal of this study was to assess the feasibility of IMTMI by following the planning and delivery process for a Rando phantom. A three isocenter technique was used to provide a full body plan for treatment on a linear accelerator. Thermoluminescent detectors (TLDs) were placed at 22 positions throughout the phantom to compare the delivered doses to the planned doses. Individual intensity modulated radiation therapy verification plans were delivered to a solid water phantom for the three isocenters, and doses measured from an ion chamber and film were compared to the planned doses. The treatment plan indicated that target coverage was achieved with this IMTMI technique, and that the doses to critical structures were reduced by 29%-65% compared to conventional TBI. TLD readings demonstrated accurate dose delivery, with an average difference of 3.5% from the calculated dose. Ion chamber readings for the verification plans were all within 3% of the expected dose, and film measurements showed accurate dose distributions. Results from this study suggest that IMTMI using the three isocenter technique can be accurately delivered and may result in substantial dose reductions to critical structures.

  14. Clinical Outcomes and Patterns of Failure After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma

    SciTech Connect

    Ng, Wai Tong; Lee, Michael C.H.; Hung, Wai Man; Choi, Cheuk Wai; Lee, Kin Chung; Chan, Oscar S.H.; Lee, Anne W.M.

    2011-02-01

    Purpose: To study and report the clinical outcomes and patterns of failure after intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC). Methods and Materials: The treatment outcomes of NPC patients treated with IMRT at Pamela Youde Nethersole Eastern Hospital between 2005 and 2007 were reviewed. The location and extent of locoregional failures were transferred to the pretreatment planning computed tomography for dosimetry analysis. Statistical analyses were performed on dose coverage and locoregional failures. Results: A total of 193 NPC patients were analyzed; 93% had Stage III/IV disease. Median follow-up was 30 months. Overall disease failure (at any site) developed in 35 patients. Among these, there were 23 distant metastases, 16 local failures, and 9 regional failures. Four of the locoregional failures were marginal. Dose conformity with IMRT was excellent. Patients with at least 66.5 Gy to their target volumes had significantly less locoregional failure. The 2-year local progression-free, regional progression-free, distant metastasis-free, and overall survival rates were 95%, 96%, 90%, and 92%, respectively. Conclusions: Intensity-modulated radiotherapy provides excellent locoregional control for NPC. Distant metastasis remains the most difficult challenge, and more effective systemic agents should be explored for patients presenting with advanced locoregional diseases.

  15. Does Intensity Modulation Improve Healthy Tissue Sparing in Stereotactic Radiosurgery of Complex Arteriovenous Malformations?

    SciTech Connect

    Clark, Brenda McKenzie, Michael; Robar, James; Vollans, Emily; Candish, Charlie; Toyota, Brian; Lee, Andrew; Ma, Roy; Goddard, Karen; Erridge, Sara

    2007-10-01

    This planning study evaluates the potential of intensity modulated treatment fields and inverse planning techniques in stereotactic radiosurgery to reduce healthy tissue dose. Twenty patients previously treated with stereotactic radiosurgery for arteriovenous malformation (AVM) were replanned with each of 4 techniques: circular non-coplanar arcs, dynamic arcs, static conformal fields, and intensity modulated radiosurgery (IMRS). Patients were selected having a maximum AVM dimension at least 20 mm, or volume greater than 10 cm{sup 3}. Target volumes ranged from 2.12 cm{sup 3} to 13.87 cm{sup 3} with a median of 6.03 cm{sup 3}. Resulting dose distributions show a statistically significant improvement in target conformality between circular arcs and all other techniques (p {<=} 0.001), between conformal and both dynamic arcs and IMRS (p {<=} 0.03) and with no difference between dynamic arcs and IMRS. However, for AVMs of volume greater than 5.5 cm{sup 3}, IMRS gives better conformality than dynamic arcs (p = 0.04). IMRS showed consistently lower dose inhomogeneity compared to both dynamic arcs and conformal fields (p < 0.001). At low dose levels, the dynamic arc technique irradiates less healthy tissue than the other techniques (p {<=} 0.001). Both dynamic arcs and IMRS provide increased ability to conform to the AVM, with IMRS showing greater ability to control dose at the periphery.

  16. Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery.

    PubMed

    Alber, M; Nüsslin, F

    2001-12-01

    Multi-leaf collimators (MLCs) are emerging as the prevalent modality to apply intensity modulated radiotherapy (IMRT). Both the principle and the particular design of MLCs stipulate complex constraints on the practically applicable intensity modulated radiation fields. Most consequentially, the distribution of exposure times across the maximum field outline is either a piecewise constant function in the static mode or a piecewise linear function in the dynamic mode of driving an MLC. In view of clinical utility, the total leaf movement should be minimized, which requires that MLC-related constraints be considered in the dose optimization process. A method is proposed to achieve this for both static MLC fields and dynamic leaf close-in application. The method is an amendment to a generic gradient-based IMRT dose optimization algorithm and solves numerical problems related to the non-convexity of the MLC constraints, which can cause erratic behaviour of a gradient-based algorithm. It employs bistable penalty functions to select preferrable leaf configurations from the configuration space of the MLC, which is limited by specific design features. Together with an 'annealing' escape mechanism from local minima, the algorithm is capable of finding the optimum of an IMRT problem as leaf sequences with minimized leaf travel. In particular, the efficiency of static IMRT can be raised to the levels of unmodulated fields with very few field segments, thereby increasing the utility of IMRT in clinical practice.

  17. Evaluation of Dose Distribution in Intensity Modulated Radiosurgery for Lung Cancer under Condition of Respiratory Motion

    PubMed Central

    Yoon, Mee Sun; Jeong, Jae-Uk; Nam, Taek-Keun; Ahn, Sung-Ja; Chung, Woong-Ki; Song, Ju-Young

    2016-01-01

    The dose of a real tumor target volume and surrounding organs at risk (OARs) under the effect of respiratory motion was calculated for a lung tumor plan, based on the target volume covering the whole tumor motion range for intensity modulated radiosurgery (IMRS). Two types of IMRS plans based on simulated respiratory motion were designed using humanoid and dynamic phantoms. Delivery quality assurance (DQA) was performed using ArcCHECK and MapCHECK2 for several moving conditions of the tumor and the real dose inside the humanoid phantom was evaluated using the 3DVH program. This evaluated dose in the tumor target and OAR using the 3DVH program was higher than the calculated dose in the plan, and a greater difference was seen for the RapidArc treatment than for the standard intensity modulated radiation therapy (IMRT) with fixed gantry angle beams. The results of this study show that for IMRS plans based on target volume, including the whole tumor motion range, tighter constraints of the OAR should be considered in the optimization process. The method devised in this study can be applied effectively to analyze the dose distribution in the real volume of tumor target and OARs in IMRT plans targeting the whole tumor motion range. PMID:27648949

  18. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    SciTech Connect

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-11-15

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  19. Evaluation of Dose Distribution in Intensity Modulated Radiosurgery for Lung Cancer under Condition of Respiratory Motion.

    PubMed

    Yoon, Mee Sun; Jeong, Jae-Uk; Nam, Taek-Keun; Ahn, Sung-Ja; Chung, Woong-Ki; Song, Ju-Young

    2016-01-01

    The dose of a real tumor target volume and surrounding organs at risk (OARs) under the effect of respiratory motion was calculated for a lung tumor plan, based on the target volume covering the whole tumor motion range for intensity modulated radiosurgery (IMRS). Two types of IMRS plans based on simulated respiratory motion were designed using humanoid and dynamic phantoms. Delivery quality assurance (DQA) was performed using ArcCHECK and MapCHECK2 for several moving conditions of the tumor and the real dose inside the humanoid phantom was evaluated using the 3DVH program. This evaluated dose in the tumor target and OAR using the 3DVH program was higher than the calculated dose in the plan, and a greater difference was seen for the RapidArc treatment than for the standard intensity modulated radiation therapy (IMRT) with fixed gantry angle beams. The results of this study show that for IMRS plans based on target volume, including the whole tumor motion range, tighter constraints of the OAR should be considered in the optimization process. The method devised in this study can be applied effectively to analyze the dose distribution in the real volume of tumor target and OARs in IMRT plans targeting the whole tumor motion range. PMID:27648949

  20. Subliminal action priming modulates the perceived intensity of sensory action consequences.

    PubMed

    Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J

    2014-02-01

    The sense of control over the consequences of one's actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime-target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. PMID:24333539

  1. Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers.

    PubMed

    Karagiannopoulos, Solon; Cheadle, Edward; Wright, Paul; Tsekenis, Stylianos; McCann, Hugh

    2012-12-01

    A novel opto-electronic scheme for line-of-sight Near-IR gas absorption measurement based on direct absorption spectroscopy (DAS) is reported. A diode-laser-based, multiwavelength system is designed for future application in nonintrusive, high temporal resolution tomographic imaging of H2O in internal combustion engines. DAS is implemented with semiconductor optical amplifiers (SOAs) to enable wavelength multiplexing and to induce external intensity modulation for phase-sensitive detection. Two overtone water transitions in the Near-IR have been selected for ratiometric temperature compensation to enable concentration measurements, and an additional wavelength is used to account for nonabsorbing attenuation. A wavelength scanning approach was used to evaluate the new modulation technique, and showed excellent absorption line recovery. Fixed-wavelength, time-division-multiplexing operation with SOAs has also been demonstrated. To the best of our knowledge this is the first time SOAs have been used for modulation and switching in a spectroscopic application. With appropriate diode laser selection this scheme can be also used for other chemical species absorption measurements. PMID:23207374

  2. Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers.

    PubMed

    Karagiannopoulos, Solon; Cheadle, Edward; Wright, Paul; Tsekenis, Stylianos; McCann, Hugh

    2012-12-01

    A novel opto-electronic scheme for line-of-sight Near-IR gas absorption measurement based on direct absorption spectroscopy (DAS) is reported. A diode-laser-based, multiwavelength system is designed for future application in nonintrusive, high temporal resolution tomographic imaging of H2O in internal combustion engines. DAS is implemented with semiconductor optical amplifiers (SOAs) to enable wavelength multiplexing and to induce external intensity modulation for phase-sensitive detection. Two overtone water transitions in the Near-IR have been selected for ratiometric temperature compensation to enable concentration measurements, and an additional wavelength is used to account for nonabsorbing attenuation. A wavelength scanning approach was used to evaluate the new modulation technique, and showed excellent absorption line recovery. Fixed-wavelength, time-division-multiplexing operation with SOAs has also been demonstrated. To the best of our knowledge this is the first time SOAs have been used for modulation and switching in a spectroscopic application. With appropriate diode laser selection this scheme can be also used for other chemical species absorption measurements.

  3. Spectroscopic and Intensity Modulated Photocurrent Imaging of Polymer/Fullerene Solar Cells.

    PubMed

    Gao, Yongqian; Wise, Adam J; Thomas, Alan K; Grey, John K

    2016-01-13

    Molecular spectroscopic and intensity modulated photocurrent spectroscopy (IMPS) imaging techniques are used to map morphology-dependent charge recombination in organic polymer/fullerene solar cells. IMPS uses a small (∼10%) sinusoidal modulation of an excitation light source and photocurrent responses are measured while modulation frequencies are swept over several decades (∼1 Hz-20 kHz). Solar cells consisting of either poly(3-hexylthiophene) (P3HT) and poly(2-methoxy-5-(3'-7'-dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO-PPV) blended with a soluble fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are used as targets. The morphologies of these polymer/fullerene systems are distinctly different due to PCBM miscibility in various polymer conformers. IMPS responses of both blend solar cells show unique morphology-dependent charge generation, transport and extraction signatures that can be spatially correlated to microscopic variations in local composition and packing by constructing IMPS images along with corresponding molecular spectroscopic imaging over the same scan area. We find that boundaries separating enriched polymer and fullerene domains promote nongeminate charge recombination appearing as positive phase shifts in the IMPS response. These zones are susceptible to degradation and we propose the approaches herein can be used to probe material and device degradation in situ under various conditions, such as oxygen content, temperature and ionizing radiation.

  4. Design and Analysis of Enhanced Modulation Response in Integrated Coupled Cavities DBR Lasers Using Photon-Photon Resonance

    DOE PAGESBeta

    Bardella, Paolo; Chow, Weng; Montrosset, Ivo

    2016-01-08

    In the last decades, various solutions have been proposed to increase the modulation bandwidth and consequently the transmission bit rate of integrated semiconductor lasers. In this manuscript we discuss a design procedure for a recently proposed laser structure realized with the integration of two DBR lasers. Design guidelines will be proposed and dynamic small and large signal simulations, calculated using a Finite Difference Traveling Wave numerical simulator, will be performed to confirm the design results and the effectiveness of the analyzed integrated configuration to achieve a direct modulation bandwidth up to 80 GHz

  5. Intensity-modulated radiation therapy, protons, and the risk of second cancers

    SciTech Connect

    Hall, Eric J. . E-mail: ejh1@columbia.edu

    2006-05-01

    Intensity-modulated radiation therapy (IMRT) allows dose to be concentrated in the tumor volume while sparing normal tissues. However, the downside to IMRT is the potential to increase the number of radiation-induced second cancers. The reasons for this potential are more monitor units and, therefore, a larger total-body dose because of leakage radiation and, because IMRT involves more fields, a bigger volume of normal tissue is exposed to lower radiation doses. Intensity-modulated radiation therapy may double the incidence of solid cancers in long-term survivors. This outcome may be acceptable in older patients if balanced by an improvement in local tumor control and reduced acute toxicity. On the other hand, the incidence of second cancers is much higher in children, so that doubling it may not be acceptable. IMRT represents a special case for children for three reasons. First, children are more sensitive to radiation-induced cancer than are adults. Second, radiation scattered from the treatment volume is more important in the small body of the child. Third, the question of genetic susceptibility arises because many childhood cancers involve a germline mutation. The levels of leakage radiation in current Linacs are not inevitable. Leakage can be reduced but at substantial cost. An alternative strategy is to replace X-rays with protons. However, this change is only an advantage if the proton machine employs a pencil scanning beam. Many proton facilities use passive modulation to produce a field of sufficient size, but the use of a scattering foil produces neutrons, which results in an effective dose to the patient higher than that characteristic of IMRT. The benefit of protons is only achieved if a scanning beam is used in which the doses are 10 times lower than with IMRT.

  6. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    SciTech Connect

    Holt, Andrea; Vliet-Vroegindeweij, Corine van; Mans, Anton; Belderbos, Jose S.; Damen, Eugene M.F.

    2011-12-01

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle{sup 3} and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by {<=}70% with VMAT.

  7. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. PMID:26235550

  8. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  9. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer

    PubMed Central

    Ming, Xin; Feng, Yuanming; Liu, Huan; Zhang, Ying; Zhou, Li; Deng, Jun

    2015-01-01

    Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated. Results The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2%) with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance. Conclusions Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin’s disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy. PMID:26630566

  10. Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical M(x) magnetometer.

    PubMed

    Schultze, Volkmar; Ijsselsteijn, Rob; Scholtes, Theo; Woetzel, Stefan; Meyer, Hans-Georg

    2012-06-18

    We compare the performance of two methods for the synchronization of the atomic spins in optically pumped magnetometers: intensity modulation of the pump light and the classical M(x) method using B(1) field modulation. Both techniques use the same set-up and measure the resulting features of the light after passing a micro-fabricated Cs cell. The intensity-modulated pumping shows several advantages: better noise-limited magnetic field sensitivity, misalignment between pumping and spin synchronization is excluded, and magnetometer arrays without any cross-talk can be easily set up.

  11. Clinical Realization of Sector Beam Intensity Modulation for Gamma Knife Radiosurgery: A Pilot Treatment Planning Study

    SciTech Connect

    Ma, Lijun; Mason, Erica; Sneed, Penny K.; McDermott, Michael; Polishchuk, Alexei; Larson, David A.; Sahgal, Arjun

    2015-03-01

    Purpose: To demonstrate the clinical feasibility and potential benefits of sector beam intensity modulation (SBIM) specific to Gamma Knife stereotactic radiosurgery (GKSRS). Methods and Materials: SBIM is based on modulating the confocal beam intensities from individual sectors surrounding an isocenter in a nearly 2π geometry. This is in contrast to conventional GKSRS delivery, in which the beam intensities from each sector are restricted to be either 0% or 100% and must be identical for any given isocenter. We developed a SBIM solution based on available clinical planning tools, and we tested it on a cohort of 12 clinical cases as a proof of concept study. The SBIM treatment plans were compared with the original clinically delivered treatment plans to determine dosimetric differences. The goal was to investigate whether SBIM would improve the dose conformity for these treatment plans without prohibitively lengthening the treatment time. Results: A SBIM technique was developed. On average, SBIM improved the Paddick conformity index (PCI) versus the clinically delivered plans (clinical plan PCI = 0.68 ± 0.11 vs SBIM plan PCI = 0.74 ± 0.10, P=.002; 2-tailed paired t test). The SBIM plans also resulted in nearly identical target volume coverage (mean, 97 ± 2%), total beam-on times (clinical plan 58.4 ± 38.9 minutes vs SBIM 63.5 ± 44.7 minutes, P=.057), and gradient indices (clinical plan 3.03 ± 0.27 vs SBIM 3.06 ± 0.29, P=.44) versus the original clinical plans. Conclusion: The SBIM method is clinically feasible with potential dosimetric gains when compared with conventional GKSRS.

  12. The BDNF Val66Met Polymorphism Modulates Sleep Intensity: EEG Frequency- and State-Specificity

    PubMed Central

    Bachmann, Valérie; Klein, Carina; Bodenmann, Sereina; Schäfer, Nikolaus; Berger, Wolfgang; Brugger, Peter; Landolt, Hans-Peter

    2012-01-01

    Study Objectives: EEG slow waves are the hallmark of deep NREM sleep and may reflect the restorative functions of sleep. Evidence suggests that increased sleep slow waves after sleep deprivation reflect plastic synaptic processes, and that brain-derived neurotrophic factor (BDNF) is causally involved in their homeostatic regulation. The functional Val66Met polymorphism of the gene encoding pro-BDNF causes impaired activity-dependent secretion of mature BDNF protein. We investigated whether this polymorphism contributes to the pronounced inter-individual variation in sleep slow wave activity (SWA) in humans. Setting: Sleep laboratory in temporal isolation unit. Participants: Eleven heterozygous Met allele carriers and 11 individually sex- and age-matched Val/Val homozygotes. Interventions: Forty hours prolonged wakefulness. Measurements and Results: Cognitive performance, subjective state, and waking and sleep EEG in baseline and after sleep deprivation were studied. Val/Val homozygotes showed better response accuracy than Met allele carriers on a verbal 2-back working memory task. This difference did not reflect genotype-dependent differences in sleepiness, well-being, or sustained attention. In baseline and recovery nights, deep stage 4 sleep and NREM sleep intensity as quantified by EEG SWA (0.75-4.5 Hz) were higher in Val/Val compared to Val/Met genotype. Similar to sleep deprivation, the difference was most pronounced in the first NREM sleep episode. By contrast, increased activity in higher EEG frequencies (> 6 Hz) in wakefulness and REM sleep was distinct from the effects of prolonged wakefulness. Conclusion: BDNF contributes to the regulation of sleep slow wave oscillations, suggesting that genetically determined variation in neuronal plasticity modulates NREM sleep intensity in humans. Citation: Bachmann V; Klein C; Bodenmann S; Schäfer N; Berger W; Brugger P; Landolt HP. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state

  13. Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy

    SciTech Connect

    Haertl, Petra M.; Pohl, Fabian; Weidner, Karin; Groeger, Christian; Koelbl, Oliver; Dobler, Barbara

    2013-04-01

    This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to the average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.

  14. An open-loop RFOG based on harmonic division technique to suppress LD's intensity modulation noise

    NASA Astrophysics Data System (ADS)

    Ying, Diqing; Wang, Zeyu; Mao, Jianmin; Jin, Zhonghe

    2016-11-01

    A harmonic division technique is proposed for an open-loop resonator fiber optic gyro (RFOG) to suppress semiconductor laser diode's (LD's) intensity modulation noise. The theoretical study indicates the RFOG with this technique is immune to the intensity noise. The simulation and experimental results show this technique would lead to a diminished linear region, which still could be acceptable for an RFOG applied to low rotation rate detection. The tests for the gyro output signal are carried out with/without noise suppressing methods, including the harmonic division technique and previously proposed signal compensation technique. With the harmonic division technique at the rotation rate of 10 deg/s, the stability of gyro output signal is improved from 1.07 deg/s to 0.0361 deg/s, whose noise suppressing ratio is more than 3 times as that of the signal compensation technique. And especially, a 3.12 deg/s signal jump is significantly removed with the harmonic division technique; in contrast, a residual 0.36 deg/s signal jump still exists with the signal compensation technique. It is concluded the harmonic division technique does work in intensity noise suppressing under dynamic condition, and it is superior to the signal compensation technique.

  15. The Effects of Odor Quality and Temporal Asynchrony on Modulation of Taste Intensity by Retronasal Odor.

    PubMed

    Isogai, Tomoyuki; Wise, Paul M

    2016-09-01

    The experiments had 2 main goals: 1) to add to the sparse literature on how retronasal aromas interact with bitter tastes, and 2) to determine whether modulation of taste intensity by aroma depends on temporal contiguity, as one might expect if flavor interactions depend on cross-modal binding (similar to object perception in other modalities). An olfactometer-gustometer allowed independent oral presentation of odorized air and liquid samples. First, using simultaneous presentation of odors and tastes (Experiments 1a-d) we found that a "sweet-smelling" aroma enhanced the rated sweetness of sucrose and decreased the rated bitterness of sucrose octaacetate (SOA), and that a "bitter-smelling" aroma enhanced the bitterness of SOA and decreased the sweetness of sucrose. Thus, with respect to effects on taste intensity, sweet and bitter aromas mimicked mixture-interactions between sweet and bitter tastes under current conditions. Next (Experiment 2), both odors were again paired with both tastes, with a parametric manipulation of odor onset. Odor presentation ranged from before taste delivery to after taste delivery. Enhancement of taste intensity was greatest with simultaneous onset, and greatly attenuated with offsets of 1s. These results are consistent with the idea that enhancement of taste by retronasal aroma depends on a temporal binding window like many other cross-modal interactions. The effects of temporal offsets on suppression of taste were inconclusive. These findings are discussed within the context of past work on odor-taste interactions. PMID:27143280

  16. N-annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption.

    PubMed

    Luo, Jie; Lee, Sangsu; Son, Minjung; Zheng, Bin; Huang, Kuo-Wei; Qi, Qingbiao; Zeng, Wangdong; Li, Gongqiang; Kim, Dongho; Wu, Jishan

    2015-02-23

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1 a/1 b with very intense absorption (ε>1.3×10(5) M(-1) cm(-1)) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10(-6) and 6.0×10(-6) for 1 a and 1 b, respectively. The NP-substituted porphyrin dimers 2 a/2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  17. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  18. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans

    SciTech Connect

    Du, Weiliang Cho, Sang Hyun; Zhang, Xiaodong; Kudchadker, Rajat J.; Hoffman, Karen E.

    2014-02-15

    Purpose: Excessive complexity in intensity-modulated radiation therapy (IMRT) plans increases the dose uncertainty, prolongs the treatment time, and increases the susceptibility to changes in patient or target geometry. To date, the tools for quantitative assessment of IMRT beam complexity are still lacking. In this study, The authors have sought to develop metrics to characterize different aspects of beam complexity and investigate the beam complexity for IMRT plans of different disease sites. Methods: The authors evaluated the beam complexity scores for 65 step-and-shoot IMRT plans from three sites (prostate, head and neck, and spine) and 26 volumetric-modulated arc therapy (VMAT) plans for the prostate. On the basis of the beam apertures and monitor unit weights of all segments, the authors calculated the mean aperture area, extent of aperture shape irregularity, and degree of beam modulation for each beam. Then the beam complexity values were averaged to obtain the complexity metrics of the IMRT plans. The authors studied the correlation between the beam complexity metrics and the quality assurance (QA) results. Finally, the effects of treatment planning parameters on beam complexity were studied. Results: The beam complexity scores were not uniform among the prostate IMRT beams from different gantry angles. The lateral beams had larger monitor units and smaller shape irregularity, while the anterior-posterior beams had larger modulation values. On average, the prostate IMRT plans had the smallest aperture irregularity, beam modulation, and normalized monitor units; the head and neck IMRT plans had large beam irregularity and beam modulation; and the spine stereotactic radiation therapy plans often had small beam apertures, which may have been associated with the relatively large discrepancies between planned and QA measured doses. There were weak correlations between the beam complexity scores and the measured dose errors. The prostate VMAT beams showed

  19. Single-sideband W-band photonic vector millimeter-wave signal generation by one single I/Q modulator.

    PubMed

    Li, Xinying; Xu, Yuming; Yu, Jianjun

    2016-09-15

    We propose a new scheme to generate single-sideband (SSB) photonic vector millimeter-wave (mm-wave) signal adopting asymmetrical SSB modulation enabled by a single in-phase/quadrature (I/Q) modulator. The driving signal for the I/Q modulator is generated by software-based digital signal processing (DSP) instead of a complicated transmitter electrical circuit, which significantly simplifies the system architecture and increases system stability. One vector-modulated optical sideband and one unmodulated optical sideband, with different sideband frequencies, located at two sides of a significantly suppressed central optical carrier, are generated by the I/Q modulator and used for heterodyne beating to generate the electrical vector mm-wave signal. The two optical sidebands are robust to fiber dispersion and can be transmitted over relatively long-haul fiber. We experimentally demonstrate the generation and transmission of 4-Gbaud 80-GHz quadrature-phase-shift-keying-modulated (QPSK-modulated) SSB vector mm-wave signal over 240-km single-mode fiber-28 without optical dispersion compensation.

  20. Single-sideband W-band photonic vector millimeter-wave signal generation by one single I/Q modulator.

    PubMed

    Li, Xinying; Xu, Yuming; Yu, Jianjun

    2016-09-15

    We propose a new scheme to generate single-sideband (SSB) photonic vector millimeter-wave (mm-wave) signal adopting asymmetrical SSB modulation enabled by a single in-phase/quadrature (I/Q) modulator. The driving signal for the I/Q modulator is generated by software-based digital signal processing (DSP) instead of a complicated transmitter electrical circuit, which significantly simplifies the system architecture and increases system stability. One vector-modulated optical sideband and one unmodulated optical sideband, with different sideband frequencies, located at two sides of a significantly suppressed central optical carrier, are generated by the I/Q modulator and used for heterodyne beating to generate the electrical vector mm-wave signal. The two optical sidebands are robust to fiber dispersion and can be transmitted over relatively long-haul fiber. We experimentally demonstrate the generation and transmission of 4-Gbaud 80-GHz quadrature-phase-shift-keying-modulated (QPSK-modulated) SSB vector mm-wave signal over 240-km single-mode fiber-28 without optical dispersion compensation. PMID:27628347

  1. Photon and electron collimator effects on electron output and abutting segments in energy modulated electron therapy

    SciTech Connect

    Olofsson, Lennart; Karlsson, Magnus G.; Karlsson, Mikael

    2005-10-15

    In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage. Two add-on electron collimator geometries have been analyzed using Monte Carlo simulations: One isocentric eMLC geometry with an isocentric clearance of 35 cm and air or helium in the treatment head, and one conventional proximity geometry with a clearance of 5 cm and air in the treatment head. The electron fluence output for 22.5 MeV electrons is not significantly affected by the xMLC if the shielding margins are larger than 2-3 cm. For small field sizes and 9.6 MeV electrons, the isocentric design with helium in the treatment head or shielding margins larger than 3 cm is needed to avoid a reduced electron output. Dose inhomogeneity in the matching region of electron segments is, in general, small when collimator positions are adjusted to account for divergence in the field. The effect of xMLC tracking on the electron output can be made negligible while still obtaining a substantially reduced x-ray leakage contribution. Collimator scattering effects do not interfere significantly when abutting beam techniques are properly applied.

  2. Liquid gallium cooling of silicon crystals in high intensity photon beam

    SciTech Connect

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L.E.; Stefan, P.; Oversluizen, T.

    1988-11-01

    The high-brilliance, insertion-device-based, photon beams of the next generation of synchrotron sources will deliver large thermal loads (1 kW to 10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and new cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in uhv conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium cooled silicon diffraction crystals with water cooled crystals. 2 refs., 16 figs., 1 tab.

  3. Hypofractionated Intensity-Modulated Arc Therapy for Lymph Node Metastasized Prostate Cancer

    SciTech Connect

    Fonteyne, Valerie; De Gersem, Werner; De Neve, Wilfried; Jacobs, Filip; Lumen, Nicolaas; Vandecasteele, Katrien; Villeirs, Geert; De Meerleer, Gert

    2009-11-15

    Purpose: To determine the planning results and acute toxicity after hypofractionated intensity-modulated arc radiotherapy and androgen deprivation for lymph node metastasized (Stage N1) prostate cancer. Methods and Materials: A total of 31 patients with Stage T1-T4N1M0 prostate cancer were treated with intensity-modulated arc radiotherapy and 3 years of androgen deprivation as primary treatment. The clinical target volume (CTV{sub p}) was the prostate and seminal vesicles. Elective lymph node areas ({sub e}) were delineated and expanded by 2 mm to create the CTV{sub e}. The planning target volumes (PTV{sub p} and PTV{sub e}) were created using a three-dimensional expansion of the CTV{sub p} and CTV{sub e}, respectively, of 7 mm. A median dose of 69.3 Gy and 50 Gy was prescribed to the PTV{sub p} and PTV{sub e} respectively, to be delivered in 25 fractions. Upper and lower gastrointestinal toxicity was scored using the Radiation Therapy Oncology Group toxicity and radiotherapy-induced lower intestinal toxicity scoring system. Genitourinary toxicity was scored using a combined Radiation Therapy Oncology Group, LENT-SOMA (late effects normal tissue-subjective, objective, management, analytic), and Common Toxicity Criteria toxicity scoring system. Results: The median follow-up time was 3 months. The mean prescription dose to the CTV{sub p} and PTV{sub p} was 70.4 Gy and 68.6 Gy, respectively. The minimal dose to the CTV{sub e} and PTV{sub e} was 49.0 Gy and 47.0 Gy, respectively. No acute Grade 2 or greater gastrointestinal toxicity occurred. Fourteen patients developed acute Grade 2 lower gastrointestinal toxicity. Acute Grade 3 and 2 genitourinary toxicity developed in 2 and 14 patients, respectively. Conclusion: The results of our study have shown that hypofractionated intensity-modulated arc radiotherapy as primary therapy for N1 prostate cancer is feasible with low toxicity.

  4. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    SciTech Connect

    Nakamura, Mitsuhiro; Shibuya, Keiko; Nakamura, Akira; Shiinoki, Takehiro; Matsuo, Yukinori; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports, was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  5. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy

    SciTech Connect

    Caglar, Hale B.; Tishler, Roy B.; Burke, Elaine; Li Yi; Goguen, Laura; Norris, Carl M.; Allen, Aaron M.

    2008-11-15

    Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessed with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving {>=}50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving {>=}50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects after

  6. Effect of Intensity-Modulated Pelvic Radiotherapy on Second Cancer Risk in the Postoperative Treatment of Endometrial and Cervical Cancer

    SciTech Connect

    Zwahlen, Daniel R. Ruben, Jeremy D.; Jones, Phillip; Gagliardi, Frank; Millar, Jeremy L.; Schneider, Uwe

    2009-06-01

    Purpose: To estimate and compare intensity-modulated radiotherapy (IMRT) with three-dimensional conformal radiotherapy (3DCRT) in terms of second cancer risk (SCR) for postoperative treatment of endometrial and cervical cancer. Methods and Materials: To estimate SCR, the organ equivalent dose concept with a linear-exponential, a plateau, and a linear dose-response model was applied to dose distributions, calculated in a planning computed tomography scan of a 68-year-old woman. Three plans were computed: four-field 18-MV 3DCRT and nine-field IMRT with 6- and 18-MV photons. SCR was estimated as a function of target dose (50.4 Gy/28 fractions) in organs of interest according to the International Commission on Radiological Protection Results: Cumulative SCR relative to 3DCRT was +6% (3% for a plateau model, -4% for a linear model) for 6-MV IMRT and +26% (25%, 4%) for the 18-MV IMRT plan. For an organ within the primary beam, SCR was +12% (0%, -12%) for 6-MV and +5% (-2%, -7%) for 18-MV IMRT. 18-MV IMRT increased SCR 6-7 times for organs away from the primary beam relative to 3DCRT and 6-MV IMRT. Skin SCR increased by 22-37% for 6-MV and 50-69% for 18-MV IMRT inasmuch as a larger volume of skin was exposed. Conclusion: Cancer risk after IMRT for cervical and endometrial cancer is dependent on treatment energy. 6-MV pelvic IMRT represents a safe alternative with respect to SCR relative to 3DCRT, independently of the dose-response model. 18-MV IMRT produces second neutrons that modestly increase the SCR.

  7. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    SciTech Connect

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali; Ketonen, Leena; Jones, Jeremy Y.; Allen, Pamela K.; Paulino, Arnold C.; Okcu, M. Fatih; Su, Jack M.; Weinberg, Jeffrey; Boehling, Nicholas S.; Khatua, Soumen; Adesina, Adekunle; Dauser, Robert; Whitehead, William E.; Mahajan, Anita

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  8. The rationale for intensity-modulated proton therapy in geometrically challenging cases

    NASA Astrophysics Data System (ADS)

    Safai, S.; Trofimov, A.; Adams, J. A.; Engelsman, M.; Bortfeld, T.

    2013-09-01

    Intensity-modulated proton therapy (IMPT) delivered with beam scanning is currently available at a limited number of proton centers. However, a simplified form of IMPT, the technique of field ‘patching’, has long been a standard practice in proton therapy centers. In field patching, different parts of the target volume are treated from different directions, i.e., a part of the tumor gets either full dose from a radiation field, or almost no dose. Thus, patching represents a form of binary intensity modulation. This study explores the limitations of the standard binary field patching technique, and evaluates possible dosimetric advantages of continuous dose modulations in IMPT. Specifics of the beam delivery technology, i.e., pencil beam scanning versus passive scattering and modulation, are not investigated. We have identified two geometries of target volumes and organs at risk (OAR) in which the use of field patching is severely challenged. We focused our investigations on two patient cases that exhibit these geometries: a paraspinal tumor case and a skull-base case. For those cases we performed treatment planning comparisons of three-dimensional conformal proton therapy (3DCPT) with field patching versus IMPT, using commercial and in-house software, respectively. We also analyzed the robustness of the resulting plans with respect to systematic setup errors of ±1 mm and range errors of ±2.5 mm. IMPT is able to better spare OAR while providing superior dose coverage for the challenging cases identified above. Both 3DCPT and IMPT are sensitive to setup errors and range uncertainties, with IMPT showing the largest effect. Nevertheless, when delivery uncertainties are taken into account IMPT plans remain superior regarding target coverage and OAR sparing. On the other hand, some clinical goals, such as the maximum dose to OAR, are more likely to be unmet with IMPT under large range errors. IMPT can potentially improve target coverage and OAR sparing in

  9. Focus modulation of cylindrical vector beams by using 1D photonic crystal lens with negative refraction effect.

    PubMed

    Xu, Ji; Zhong, Yi; Wang, Shengming; Lu, Yunqing; Wan, Hongdan; Jiang, Jian; Wang, Jin

    2015-10-19

    Sub-wavelength focusing of cylindrical vector beams (CVBs) has attracted great attention due to the specific physical effects and the applications in many areas. More powerful, flexible and effective ways to modulate the focus transversally and also longitudinally are always being pursued. In this paper, cylindrically symmetric lens composed of negative-index one-dimensional photonic crystal is proposed to make a breakthrough. By revealing the relationship between focal length and the exit surface shape of the lens, a quite simple and effective principle of designing the lens structure is presented to realize specific focus modulation. Plano-concave lenses are parameterized to modulate the focal length and the number of focuses. An axicon constructed by one-dimensional photonic crystal is proposed for the first time to obtain a large depth of focus and an optical needle focal field with almost a theoretical minimum FWHM of 0.362λ is achieved under radially polarized incident light. Because of the almost identical negative refractive index for TE and TM polarization states, all the modulation methods can be applied for any arbitrary polarized CVBs. This work offers a promising methodology for designing negative-index lenses in related application areas. PMID:26480359

  10. Vertical intensity modulation for improved radiographic penetration and reduced exclusion zone

    NASA Astrophysics Data System (ADS)

    Bendahan, J.; Langeveld, W. G. J.; Bharadwaj, V.; Amann, J.; Limborg, C.; Nosochkov, Y.

    2016-09-01

    In the present work, a method to direct the X-ray beam in real time to the desired locations in the cargo to increase penetration and reduce exclusion zone is presented. Cargo scanners employ high energy X-rays to produce radiographic images of the cargo. Most new scanners employ dual-energy to produce, in addition to attenuation maps, atomic number information in order to facilitate the detection of contraband. The electron beam producing the bremsstrahlung X-ray beam is usually directed approximately to the center of the container, concentrating the highest X-ray intensity to that area. Other parts of the container are exposed to lower radiation levels due to the large drop-off of the bremsstrahlung radiation intensity as a function of angle, especially for high energies (>6 MV). This results in lower penetration in these areas, requiring higher power sources that increase the dose and exclusion zone. The capability to modulate the X-ray source intensity on a pulse-by-pulse basis to deliver only as much radiation as required to the cargo has been reported previously. This method is, however, controlled by the most attenuating part of the inspected slice, resulting in excessive radiation to other areas of the cargo. A method to direct a dual-energy beam has been developed to provide a more precisely controlled level of required radiation to highly attenuating areas. The present method is based on steering the dual-energy electron beam using magnetic components on a pulse-to-pulse basis to a fixed location on the X-ray production target, but incident at different angles so as to direct the maximum intensity of the produced bremsstrahlung to the desired locations. The details of the technique and subsystem and simulation results are presented.

  11. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion.

    PubMed

    Hasan, Mehedi; Hall, Trevor

    2015-11-01

    A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.

  12. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    SciTech Connect

    Moro, Erik A.

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated

  13. Simple tool for prediction of parotid gland sparing in intensity-modulated radiation therapy

    SciTech Connect

    Gensheimer, Michael F.; Hummel-Kramer, Sharon M.; Cain, David; Quang, Tony S.

    2015-10-01

    Sparing one or both parotid glands is a key goal when planning head and neck cancer radiation treatment. If the planning target volume (PTV) overlaps one or both parotid glands substantially, it may not be possible to achieve adequate gland sparing. This finding results in physicians revising their PTV contours after an intensity-modulated radiation therapy (IMRT) plan has been run and reduces workflow efficiency. We devised a simple formula for predicting mean parotid gland dose from the overlap of the parotid gland and isotropically expanded PTV contours. We tested the tool using 44 patients from 2 institutions and found agreement between predicted and actual parotid gland doses (mean absolute error = 5.3 Gy). This simple method could increase treatment planning efficiency by improving the chance that the first plan presented to the physician will have optimal parotid gland sparing.

  14. Whole Pelvic Intensity-modulated Radiotherapy for Gynecological Malignancies: A Review of the Literature

    PubMed Central

    Hymel, Rockne; Jones, Guy C.; Simone, Charles B.

    2015-01-01

    Radiation therapy has long played a major role in the treatment of gynecological malignancies. There is increasing interest in the utility of intensity-modulated radiotherapy (IMRT) and its application to treat gynecological malignancies. Herein, we review the state-of-the-art use of IMRT for gynecological malignancies and report how it is being used alone as well as in combination with chemotherapy in both the adjuvant and definitive settings. Based on dosimetric and clinical evidence, IMRT can reduce gastrointestinal, genitourinary, and hematological toxicities compared with 3D conformal radiotherapy for gynecologic malignancies. We discuss how these attributes of IMRT may lead to improvements in disease outcomes by allowing for dose escalation of radiation therapy, intensification of chemotherapy, and limiting toxicity-related treatment breaks. Currently accruing trials investigating pelvic IMRT for cervical and endometrial cancers are discussed. PMID:25600840

  15. Synchronized delivery of DMLC intensity modulated radiation therapy for stationary and moving targets

    SciTech Connect

    Rangaraj, Dharanipathy; Papiez, Lech

    2005-06-15

    When delivering intensity modulated treatments the 'tongue-and-groove' underdosage effect is a concern that should not be ignored. Algorithms aimed at removing the tongue-and-groove underdosage have been investigated in the past for irradiation of stationary targets. This paper is devoted to algorithms that remove tongue and grove effect for stationary and moving targets. To this end this paper develops original mid-time based algorithms for leaf synchronization. These algorithms exhibit a few additional advantageous properties for DMLC IMRT delivery beyond the removal of tongue-and-grove underdosage. In particular, they safeguard the minimization of time of delivery (for mid-time synchronized algorithms). Moreover, they avoid iterative procedures for synchronization of delivery for multiple pairs of leaves.

  16. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    SciTech Connect

    Holmes, Timothy W. Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-07-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management.

  17. A new deconvolution approach to robust fluence for intensity modulation under geometrical uncertainty.

    PubMed

    Zhang, Pengcheng; De Crevoisier, Renaud; Simon, Antoine; Haigron, Pascal; Coatrieux, Jean-Louis; Li, Baosheng; Shu, Huazhong

    2013-09-01

    This work addresses random geometrical uncertainties that are intrinsically observed in radiation therapy by means of a new deconvolution method combining a series expansion and a Butterworth filter. The method efficiently suppresses high-frequency components by discarding the higher order terms of the series expansion and then filtering out deviations on the field edges. An additional approximation is made in order to set the fluence values outside the field to zero in the robust profiles. This method is compared to the deconvolution kernel method for a regular 2D fluence map, a real intensity-modulated radiation therapy field, and a prostate case. The results show that accuracy is improved while fulfilling clinical planning requirements.

  18. [Intensity-modulated radiotherapy for head and neck cancer. Dose constraint for salivary gland and mandible].

    PubMed

    Pointreau, Y; Lizée, T; Bensadoun, R-J; Boisselier, P; Racadot, S; Thariat, J; Graff, P

    2016-10-01

    Intensity-modulated radiation therapy (IMRT) is the gold standard for head and neck irradiation. It allows better protection to the organs at risk such as salivary glands and mandible, and can reduce the frequency of xerostomia, trismus and osteoradionecrosis. At the time of treatment planning, the mean dose to a single parotid gland should be kept below 26Gy, the mean dose to a single submandibular gland below 39Gy, the mean dose to the mandible below 60 to 65Gy and the D2% to a single temporomandibular joint below 65Gy. These dose constraints could be further improved with data extracted from cohorts of patients receiving IMRT exclusively. The dose administered to the target volumes should not be lessened to spare the salivary glands or mandible.

  19. The use of intensity modulated radiotherapy for the treatment of extensive and recurrent juvenile angiofibroma.

    PubMed

    Kuppersmith, R B; Teh, B S; Donovan, D T; Mai, W Y; Chiu, J K; Woo, S Y; Butler, E B

    2000-05-30

    These case series are presented to describe the application and advantages of intensity modulated radiotherapy (IMRT) for the treatment of extensive and/or recurrent juvenile angiofibroma. Two patients were diagnosed with recurrence at 11 and 13 months postoperatively, and one was surgically unresectable. The affected areas included the base of skull, cavernous sinus, pterygopalatine fossa, infratemporal fossa, posterior orbit and nasopharynx. Highly conformal IMRT was delivered with limited radiation doses to the optic nerves, optic chiasm, brainstem, brain, spinal cord, lens, retina, mandible, and parotid. The total dose delivered to the tumor varied from 3400 to 4500 cGy. The tumor shrunk radiographically in all three cases and there was no endoscopic evidence of disease in two cases at 15 months and 40 months. There was no acute toxicity. Late toxicity was limited to one episode of epistaxis and persistent rhinitis in one patient. In conclusion, IMRT provides several advantages over conventional radiotherapy in the treatment of recurrent juvenile angiofibroma.

  20. Clinical evaluation of intensity-modulated radiotherapy for head and neck cancers

    PubMed Central

    Bhide, S A; Newbold, K L; Harrington, K J; Nutting, C M

    2012-01-01

    Radiotherapy and surgery are the principal curative modalities in treatment of head and neck cancer. Conventional two-dimensional and three-dimensional conformal radiotherapy result in significant side effects and altered quality of life. Intensity-modulated radiotherapy (IMRT) can spare the normal tissues, while delivering a curative dose to the tumour-bearing tissues. This article reviews the current role of IMRT in head and neck cancer from the point of view of normal tissue sparing, and also reviews the current published literature by individual head and neck cancer subsites. In addition, we briefly discuss the role of image guidance in head and neck IMRT, and future directions in this area. PMID:22556403

  1. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    SciTech Connect

    Amdur, Robert J. Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-10-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction.

  2. Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy

    PubMed Central

    2014-01-01

    Intensity modulated brachytherapy (IMBT) is a modern development of classical interventional radiation therapy (brachytherapy), which allows the application of a high radiation dose sparing severe adverse events, thereby further improving the treatment outcome. Classical indications in head and neck (H&N) cancers are the face, the oral cavity, the naso- and oropharynx, the paranasal sinuses including base of skull, incomplete resections on important structures, and palliation. The application type can be curative, adjuvant or perioperative, as a boost to external beam radiation as well as without external beam radiation and with palliative intention. Due to the frequently used perioperative application method (intraoperative implantation of inactive applicators and postoperative performance of radiation), close interdisciplinary cooperation between surgical specialists (ENT-, dento-maxillary-facial-, neuro- and orbital surgeons), as well interventional radiotherapy (brachytherapy) experts are obligatory. Published results encourage the integration of IMBT into H&N therapy, thereby improving the prognosis and quality of life of patients. PMID:25834586

  3. Intensity-modulated stereotactic radiotherapy (IMSRT) for skull-base meningiomas

    SciTech Connect

    Yenice, Kamil M. . E-mail: kyenice@radonc.uchicago.edu; Narayana, Ashwatha; Chang, Jenghwa; Gutin, Philip H.; Amols, Howard I.

    2006-11-15

    Purpose: To investigate the potential benefits of a micromultileaf collimator ({mu}MLC) -based intensity-modulated stereotactic radiotherapy (IMSRT) in skull-base meningiomas. Methods and Materials: Seven patients with inoperable or recurrent small-volume (1.7-15.5 cc) skull-base meningiomas were treated with IMSRT to 54 Gy in 30 fractions using a {mu}MLC in the dynamic mode. IMSRT plan quality was evaluated in comparison with the conformal stereotactic radiotherapy technique, using the same beam arrangement and static delivery with the {mu}MLC. Plans were compared using multiple dose distributions and dose-volume histograms for the planning target volume and organs at risk. The conformity and uniformity metrics, as well as normal-tissue complication probabilities, were calculated for the two techniques. Follow-up with MRI and clinical examination was performed at regular intervals. Results: With a mean follow-up of 17 months, local control has been achieved in all cases, and no treatment-related toxicities have been noted. For cavernous sinus tumors overlapping with optic apparatus, IMSRT has improved the dose uniformity within the target on average by 8%, which resulted in a reduction of the estimated chiasm normal-tissue complication probability by up to 65%. Conclusions: Intensity-modulated stereotactic radiotherapy can be safely delivered to improve the dose distributions in select skull-base meningiomas with an appreciable concomitant dose reduction to involved critical structures. Longer follow-up with a larger patient group is necessary to demonstrate sustained tumor control and low morbidity with IMSRT for small inoperable, recurrent, or subtotally resected meningiomas.

  4. Predictors for Clinical Outcomes After Accelerated Partial Breast Intensity-Modulated Radiotherapy

    SciTech Connect

    Reeder, Reed; Carter, Dennis L. Howell, Kathryn; Henkenberns, Phyllis; Tallhamer, Michael; Johnson, Tim; Kercher, Jane; Widner, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Leonard, Charles E.

    2009-05-01

    Purpose: To correlate the treatment planning parameters with the clinical outcomes in patients treated with accelerated partial breast intensity-modulated radiotherapy. Methods and Materials: A total of 105 patients with Stage I breast cancer were treated between February 2004 and March 2007 in a Phase II prospective trial and had detailed information available on the planning target volume (PTV), ipsilateral breast volume (IBV), PTV/IBV ratio, lung volume, chest wall volume, surgery to radiotherapy interval, follow-up interval, breast pain, and cosmesis. The first 7 of these patients were treated to 34 Gy, and the remaining 98 were treated to 38.5 Gy. All patients were treated twice daily for 5 consecutive days. Univariate and multivariate analyses were performed. Results: The median follow-up was 13 months. No recurrences or deaths were observed. Of the 105 patients, 30 reported mild or moderate breast pain in their most recently recorded follow-up visit. The irradiated lung volume (p < 0.05) and chest wall volume receiving >35 Gy (p < 0.01) were associated with pain. The PTV, but not the PTV/IBV ratio, also correlated with pain (p < 0.01 and p = 0.42, respectively). A total of 72 patients reported excellent, 32 reported good, and 1 reported poor cosmesis. Physician-rated cosmesis reported 90 excellent and 15 good. None of the tested variables correlated with the cosmetic outcomes. Conclusion: Radiotherapy to the chest wall (chest wall volume receiving >35 Gy) and to lung correlated with reports of mild pain after accelerated partial breast intensity-modulated radiotherapy. Also, the PTV, but not the PTV/IBV ratio, was predictive of post-treatment reports of pain.

  5. Intensity-Modulated Radiotherapy for Head-and-Neck Cancer in the Community Setting

    SciTech Connect

    Seung, Steven Bae, Joseph; Solhjem, Matthew; Bader, Stephen; Gannett, David; Hansen, Eric K.; Louie, Jeannie; Underhill, Kelly Cha Christine

    2008-11-15

    Purpose: To review outcomes with intensity-modulated radiation therapy (IMRT) in the community setting for the treatment of nasopharyngeal and oropharyngeal cancer. Methods and Materials: Between April 2003 and April 2007, 69 patients with histologically confirmed cancer of the nasopharynx and oropharynx underwent IMRT in our practice. The primary sites included nasopharynx (11), base of tongue (18), and tonsil (40). The disease stage distribution was as follows: 2 Stage I, 11 Stage II, 16 Stage III, and 40 Stage IV. All were treated with a simultaneous integrated boost IMRT technique. The median prescribed doses were 70 Gy to the planning target volume, 59.4 Gy to the high-risk subclinical volume, and 54 Gy to the low-risk subclinical volume. Forty-five patients (65%) received concurrent chemotherapy. Toxicity was graded according to the Radiation Therapy Oncology Group toxicity criteria. Progression-free and overall survival rates were estimated with the Kaplan-Meier product-limit method. Results: Median duration of follow-up was 18 months. The estimated 2-year local control, regional control, distant control, and overall survival rates were 98%, 100%, 98%, and 90%, respectively. The most common acute toxicities were dermatitis (32 Grade 1, 32 Grade 2, 5 Grade 3), mucositis (8 Grade 1, 33 Grade 2, 28 Grade 3), and xerostomia (0 Grade 1, 29 Grade 2, 40 Grade 3). Conclusions: Intensity-modulated radiotherapy in the community setting can be accomplished safely and effectively. Systematic internal review systems are recommended for quality control until sufficient experience develops.

  6. Intensity Modulated Radiation Therapy for Primary Soft Tissue Sarcoma of the Extremity: Preliminary Results

    SciTech Connect

    Alektiar, Kaled M. . E-mail: alektiak@mskcc.org; Hong, Linda; Brennan, Murray F.; Della-Biancia, Cesar; Singer, Samuel

    2007-06-01

    Purpose: To report preliminary results on using intensity modulated radiation therapy (IMRT) as an adjuvant treatment in primary soft tissue sarcoma (STS) of the extremity. Methods and Materials: Between February 2002 and March 2005, 31 adult patients with primary STS of the extremity were treated with surgery and adjuvant IMRT. Tumor size was >10 cm in 74% of patients and grade was high in 77%. Preoperative IMRT was given to 7 patients (50 Gy) and postoperative IMRT (median dose, 63 Gy) was given to 24 patients. Complete gross resection including periosteal stripping or bone resection was required in 10, and neurolysis or nerve resection in 20. The margins were positive or within 1 mm in 17. Complications from surgery and radiation therapy (RT) were assessed using the Common Terminology Criteria for Adverse Events grading system. Results: Median follow-up time was 23 months. Grade 1 RT dermatitis developed in 71% of patients, Grade 2 in 16%, and Grade 3 in 10%. Infectious wound complications developed in 13% and noninfectious complications in 10%. Two patients (6.4%) developed fractures. Grade 1 neuropathy developed in 28% of patients and Grade 2 in 5%. The rates of Grade 1 and 2 joint stiffness were each 19%. Grade 1 edema was observed in 19% of patients and Grade 2 in 13%. The 2-year local control, distant control, and overall survival were 95%, 65%, and 81%, respectively. Conclusion: Intensity modulated RT appears to provide excellent local control in a difficult group of high-risk patients. The morbidity profile is also favorable, but longer follow-up is needed to confirm the results from this study.

  7. Fast intensity-modulated arc therapy based on 2-step beam segmentation

    SciTech Connect

    Bratengeier, Klaus; Gainey, Mark; Sauer, Otto A.; Richter, Anne; Flentje, Michael

    2011-01-15

    Purpose: Single or few arc intensity-modulated arc therapy (IMAT) is intended to be a time saving irradiation method, potentially replacing classical intensity-modulated radiotherapy (IMRT). The aim of this work was to evaluate the quality of different IMAT methods with the potential of fast delivery, which also has the possibility of adapting to the daily shape of the target volume. Methods: A planning study was performed. Novel double and triple IMAT techniques based on the geometrical analysis of the target organ at risk geometry (2-step IMAT) were evaluated. They were compared to step and shoot IMRT reference plans generated using direct machine parameter optimization (DMPO). Volumetric arc (VMAT) plans from commercial preclinical software (SMARTARC) were used as an additional benchmark to classify the quality of the novel techniques. Four cases with concave planning target volumes (PTV) with one dominating organ at risk (OAR), viz., the PTV/OAR combination of the ESTRO Quasimodo phantom, breast/lung, spine metastasis/spinal cord, and prostate/rectum, were used for the study. The composite objective value (COV) and other parameters representing the plan quality were studied. Results: The novel 2-step IMAT techniques with geometry based segment definition were as good as or better than DMPO and were superior to the SMARTARC VMAT techniques. For the spine metastasis, the quality measured by the COV differed only by 3%, whereas the COV of the 2-step IMAT for the other three cases decreased by a factor of 1.4-2.4 with respect to the reference plans. Conclusions: Rotational techniques based on geometrical analysis of the optimization problem (2-step IMAT) provide similar or better plan quality than DMPO or the research version of SMARTARC VMAT variants. The results justify pursuing the goal of fast IMAT adaptation based on 2-step IMAT techniques.

  8. Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Bangert, Mark; Oelfke, Uwe

    2010-10-01

    An intuitive heuristic to establish beam configurations for intensity-modulated radiation therapy is introduced as an extension of beam ensemble selection strategies applying scalar scoring functions. It is validated by treatment plan comparisons for three intra-cranial, pancreas, and prostate cases each. Based on a patient specific matrix listing the radiological quality of candidate beam directions individually for every target voxel, a set of locally ideal beam angles is generated. The spherical distribution of locally ideal beam angles is characteristic for every treatment site and patient: ideal beam angles typically cluster around distinct orientations. We interpret the cluster centroids, which are identified with a spherical K-means algorithm, as irradiation angles of an intensity-modulated radiation therapy treatment plan. The fluence profiles are subsequently optimized during a conventional inverse planning process. The average computation time for the pre-optimization of a beam ensemble is six minutes on a state-of-the-art work station. The treatment planning study demonstrates the potential benefit of the proposed beam angle optimization strategy. For the three prostate cases under investigation, the standard treatment plans applying nine coplanar equi-spaced beams and treatment plans applying an optimized non-coplanar nine-beam ensemble yield clinically comparable dose distributions. For symmetric patient geometries, the dose distribution formed by nine equi-spaced coplanar beams cannot be improved significantly. For the three pancreas and intra-cranial cases under investigation, the optimized non-coplanar beam ensembles enable better sparing of organs at risk while guaranteeing equivalent target coverage. Beam angle optimization by spherical cluster analysis shows the biggest impact for target volumes located asymmetrically within the patient and close to organs at risk.

  9. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  10. Patterns of Failure and Toxicity after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Schoenfeld, Gordon O.; Amdur, Robert J.; Morris, Christopher G.; Li, Jonathan G.; Hinerman, Russell W.; Mendenhall, William M.

    2008-06-01

    Purpose: To determine the outcome of patients treated with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: We reviewed the charts of 100 consecutive patients treated with IMRT for squamous cell carcinoma of the oropharynx (64%), nasopharynx (16%), hypopharynx (14%), and larynx (6%). Most patients were treated with a concomitant boost schedule to 72 Gy. Of the 100 patients, 54 (54%) received adjuvant chemotherapy, mostly concurrent cisplatin. The dosimetry plans for patients with either locoregional failure or Grade 4-5 complications were reviewed and fused over the computed tomography images corresponding with the location of the event. Marginal failures were defined as those that occurred at a region of high-dose falloff, where conventional fields would have provided better coverage. Results: The median follow-up of living patients was 3.1 years (range, 1-5.2 years). The 3-year rate of local control, locoregional control, freedom from relapse, cause-specific survival, and overall survival for all patients was 89%, 87%, 72%, 78%, and 71%, respectively. The 3-year rate of freedom from relapse, cause-specific survival, and overall survival for the 64 oropharynx patients was 86%, 92%, and 84%, respectively. Of the 10 local failures, 2 occurred at the margin of the high-dose planning target volume. Both regional failures occurred within the planning target volume. No locoregional failures occurred outside the planning target volume. Of the 100 patients, 8 and 5 had Grade 4 and 5 complications from treatment, respectively. All patients with Grade 5 complications had received adjuvant chemotherapy. No attempt was made to discriminate between the complications from IMRT and other aspects of the patients' treatment. Conclusion: Intensity-modulated radiotherapy did not compromise the outcome compared with what we have achieved with conventional techniques. The 2 cases of recurrence in the high-dose gradient region highlight the

  11. Feasibility of an online adaptive replanning method for cranial frameless intensity-modulated radiosurgery

    SciTech Connect

    Calvo, Juan Francisco; San José, Sol; Garrido, LLuís; Puertas, Enrique; Moragues, Sandra; Pozo, Miquel; Casals, Joan

    2013-10-01

    To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCT{sub setup}). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCT{sub setup}, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally was intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCT{sub setup}, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.

  12. Local Intensity Enhancements in Spherical Microcavities: Implications for Photonic Chemical and Biological Sensors

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.

    2005-01-01

    In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.

  13. Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes.

    PubMed

    Miyazaki, J; Kawasumi, K; Kobayashi, T

    2014-09-01

    We present a scheme for time-resolved pump-probe microscopy using intensity modulated laser diodes. The modulation frequencies of the pump and probe beams are varied up to 500 MHz with fixed frequency detuning typically set at 15 kHz. The frequency response of the pump-probe signal is detected using a lock-in amplifier referenced at the beat frequency. This frequency domain method is capable of characterizing the nanosecond to picosecond relaxation dynamics of sample species without the use of a high speed detector or a high frequency lock-in amplifier. Furthermore, as the pump-probe signal is based on the nonlinear interaction between the two laser beams and the sample, our scheme provides better spatial resolution than the conventional diffraction-limited optical microscopes. Time-resolved pump-probe imaging of fluorescence beads and aggregates of quantum dots demonstrates that this method is useful for the microscopic analysis of optoelectronic devices. The system is implemented using compact and low-cost laser diodes, and thus has a broad range of applications in the fields of photochemistry, optical physics, and biological imaging.

  14. Detection of light and vibration modulates bioluminescence intensity in the glowworm, Arachnocampa flava.

    PubMed

    Mills, Rebecca; Popple, Julie-Anne; Veidt, Martin; Merritt, David John

    2016-04-01

    Glowworms are larval fungus gnats that emit light from a specialised abdominal light organ. The light attracts small arthropod prey to their web-like silk snares. Larvae glow throughout the night and can modulate their bioluminescence in response to sensory input. To better understand light output regulation and its ecological significance, we examined the larvae's reaction to light exposure, vibration and sound. Exposure to a 5-min light pulse in the laboratory causes larvae to exponentially decrease their light output over 5-10 min until they completely switch off. They gradually return to pre-exposure levels but do not show a rebound. Larvae are most sensitive to ultraviolet light, then blue, green and red. Vibration of the larval snares results in a several-fold increase in bioluminescence over 20-30 s, followed by an exponential return to pre-exposure levels over 15-30 min. Under some conditions, larvae can respond to vibration by initiating bioluminescence when they are not glowing; however, the response is reduced compared to when they are glowing. We propose that inhibitory and excitatory mechanisms combine to modulate bioluminescence intensity by regulating biochemical reactions or gating the access of air to the light organ.

  15. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    SciTech Connect

    Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald

    2013-09-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  16. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  17. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Bedford, J. L.; Webb, S.

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans.

  18. Assessing software upgrades, plan properties and patient geometry using intensity modulated radiation therapy (IMRT) complexity metrics

    SciTech Connect

    McGarry, Conor K.; Chinneck, Candice D.; O'Toole, Monica M.; O'Sullivan, Joe M; Prise, Kevin M.; Hounsell, Alan R.

    2011-04-15

    Purpose: The aim of this study is to compare the sensitivity of different metrics to detect differences in complexity of intensity modulated radiation therapy (IMRT) plans following upgrades, changes to planning parameters, and patient geometry. Correlations between complexity metrics are also assessed. Method: A program was developed to calculate a series of metrics used to describe the complexity of IMRT fields using monitor units (MUs) and multileaf collimator files: Modulation index (MI), modulation complexity score (MCS), and plan intensity map variation (PIMV). Each metric, including the MUs, was used to assess changes in beam complexity for six prostate patients, following upgrades in the inverse planning optimization software designed to incorporate direct aperture optimization (DAO). All beams were delivered to a 2D ionization chamber array and compared to those calculated using gamma analysis. Each complexity metric was then calculated for all beams, on a different set of six prostate IMRT patients, to assess differences between plans calculated using different minimum field sizes and different maximum segment numbers. Different geometries, including CShape, prostate, and head and neck phantoms, were also assessed using the metrics. Correlations between complexity metrics were calculated for 20 prostate IMRT patients. Results: MU, MCS, MI, and PIMV could all detect reduced complexity following an upgrade to the optimization leaf sequencer, although only MI and MCS could detect a reduction in complexity when one-step optimization (DAO) was employed rather than two-step optimization. All metrics detected a reduction in complexity when the minimum field size was increased from 1 to 4 cm and all apart from PIMV detected reduced complexity when the number of segments was significantly reduced. All metrics apart from MI showed differences in complexity depending on the treatment site. Significant correlations exist between all metrics apart from MI and PIMV for

  19. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko

    2015-01-01

    Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal. PMID:25742866

  20. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming.

    PubMed

    Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin

    2006-08-01

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10 degrees greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  1. Theoretical and Experimental Study on Boron β-Diketonate Complexes with Intense Two-Photon-Induced Fluorescence in Solution and in the Solid State.

    PubMed

    Lanoë, Pierre-Henri; Mettra, Bastien; Liao, Yuan Yuan; Calin, Nathalie; D'Aléo, Anthony; Namikawa, Tomotaka; Kamada, Kenji; Fages, Fréderic; Monnereau, Cyrille; Andraud, Chantal

    2016-07-18

    Three boron diketonate chromophores with extended π-conjugated backbone were prepared and their spectroscopic features were investigated through a combined theoretical/experimental study. It was shown that these complexes, which undergo very large electronic reorganization upon photoexcitation, combine large two-photon absorption cross section with an emission energy and quantum efficiency in solution that is strongly dependent on solvent polarity. The strong positive influence of boron complexation on the magnitude of the two-photon absorption was clearly established, and it was shown that the two-photon absorption properties were dominated by the quadrupolar term. For one of the synthesized compounds, intense one- and two-photon-induced solid-state emission (fluorescence quantum yield of 0.65 with maximum wavelength of 610 nm) was obtained as a result of antiparallel J-aggregate crystal packing. PMID:26990918

  2. Modulation of carrier dynamics and threshold characteristics in 1.3-μm quantum dot photonic crystal nanocavity lasers

    NASA Astrophysics Data System (ADS)

    Xing, Enbo; Tong, Cunzhu; Rong, Jiamin; Shu, Shili; Wu, Hao; Wang, Lijie; Tian, Sicong; Wang, Lijun

    2016-08-01

    A self-consistent all-pathway quantum dot (QD) rate equation model, in which all possible relaxation pathways are considered, is used to investigate the influence of quality (Q) factor on the carrier dynamics of 1.3-μm InAs/GaAs QD photonic crystal (PhC) nanolasers. It is found that Q factor not only affects the photon lifetime, but also modulates the carrier occupation in QDs. About three times increases of carrier injection efficiency in QD ground state can be realized in nanocavity with high Q factor. However, it also reveals that over 90% improvement of threshold current happens when Q factor increases from 2000 to 7000, which means it might be not necessary to pursuit for ultrahigh Q factor for the purpose of low threshold current.

  3. Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser

    NASA Astrophysics Data System (ADS)

    Xiang, Shuiying; Pan, Wei; Zhang, Liyue; Wen, Aijun; Shang, Lei; Zhang, Huixing; Lin, Lin

    Phase-modulated dual-path feedback (PM-DPF) is proposed to conceal time delay (TD) signatures from both intensity chaos and phase chaos in semiconductor lasers (SLs). The TD signatures are evaluated via both auto-correlation function and permutation entropy function. For the purpose of comparison, we also consider three other feedback configurations: SL with single-path feedback (SPF), SL with phase-modulated single-path feedback (PM-SPF), and SL with dual-path feedback (DPF). It is found that, for four feedback configurations, under the condition of strong feedback, successful TD concealment from both intensity and phase chaos can only be realized in SL with PM-DPF, due to the joint contribution of dual path feedback structure and phase modulation. Furthermore, to check the key factor contributing to TD concealment in SL with PM-DPF, the effects of feedback strength, feedback delay, modulation depth and modulation frequency are examined carefully. It is shown that, to obtain successful TD concealment from both intensity and phase chaos under the condition of strong feedback, the modulation frequency close to or greater than the relaxation oscillation frequency is suggested, while the modulation depth is the most important factor contributing to TD concealment, and higher modulation depth is desired. Besides, similar feedback strengths for two feedback paths are suggested. The TD signatures of intensity chaos for SLs with different feedback configurations are also verified experimentally. The SL with PM-DPF is an excellent chaotic source for security-enhanced chaotic communication systems as well as random number of generators based on chaotic SLs.

  4. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care?

    PubMed Central

    Murray, Julia R; McNair, Helen A; Dearnaley, David P

    2015-01-01

    The indications for post-prostatectomy radiotherapy have evolved over the last decade, although the optimal timing, dose, and target volume remain to be well defined. The target volume is susceptible to anatomical variations with its borders interfacing with the rectum and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for radical prostate radiotherapy. Here we review the current evidence for image-guided techniques with intensity-modulated radiotherapy to the prostate bed and describe current strategies to reduce or account for interfraction and intrafraction motion. PMID:26635484

  5. Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields

    SciTech Connect

    Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2011-04-01

    Purpose: To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. Methods and Materials: Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. Results: Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the {alpha}-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. Conclusions: These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

  6. 293 W, GHz narrow-linewidth, polarization maintaining nanosecond fiber amplifier with SBS suppression employing simultaneous phase and intensity modulation.

    PubMed

    Ran, Yang; Su, Rongtao; Ma, Pengfei; Wang, Xiaolin; Lv, Haibin; Zhou, Pu; Si, Lei

    2015-10-01

    We present a new method of SBS suppression in fiber amplifier system by employing simultaneously phase and intensity modulation. In this way, a GHz narrow-linewidth polarization-maintaining (PM) all-fiber pulsed laser is obtained based on a master oscillator power amplifier (MOPA) configuration. The pulsed seed is generated from a single-frequency continuous wave (CW) laser at 1064 nm by simultaneous modulation using an electro-optic intensity modulator (EOIM) and an electro-optic phase modulator (EOPM). Theoretical model is built and simulation framework has been established to estimate the SBS threshold of the pulsed amplifier system before and after modulation. In experiment, in order to suppress SBS effectively, the pulse width is set to be 4 ns and the phase modulation voltage is set to be 5 V. After amplifying by the amplifier chain, a ~3.5 ns pulsed laser with average/peak power of 293 W/3.9 kW is obtained at intensity repetition rate of 20 MHz and phase repetition rate of 100MHz, showing good agreement with simulation results. The linewidth of the output laser is ~4.5 GHz, the M(2) factor at maximal output power is measured to be ~1.1 and the slope efficiency is ~86%.This method provides some references to suppress the SBS in narrow linewidth pulsed amplifier systems. PMID:26480104

  7. Modulation and multiplexing in ultra-broadband photonic internet: Part I

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  8. Modulation and multiplexing in ultra-broadband photonic internet: Part II

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  9. High-performance GaAs/AlGaAs optical phase modulators for microwave/photonic integrated circuits

    SciTech Connect

    Hietala, V.M.; Kravitz, S.H.; Armendariz, M.G.; Vawter, G.A.; Carson, R.F.; Leibenguth, R.E.

    1993-12-31

    High-speed high-performance optical phase modulators are being developed for use in a coherent Photonic Integrated Circuit (PIC) technology. These phase modulators are the critical component of a PIC program at Sandia National Laboratories targeted for microwave/millimeter-wave signal processing and control including phased-array antenna control. The primary design goals for these modulators are amenability for integration into PICs, high ``figure of merit`` (FOM -- phase shift per unit length-voltage), and large bandwidths allowing for operation at millimeter wave frequencies. Depletion-edge-translation optical phase modulators (GaAs/AlGaAs based) have been selected as the device technology of choice due to their high FOM (>60{degree}/V{center_dot}mm @ 1.3 {mu}m). These modulators unfortunately suffer from a large terminal capacitance which greatly limits speed. To overcome this problem, a distributed electrode design based on the use of slow-wave coplanar strips has been developed. Device design and measurements are presented in this paper.

  10. Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing.

    PubMed

    Ai, X; Pérez-Serrano, A; Quatrevalet, M; Nock, R W; Dahnoun, N; Ehret, G; Esquivias, I; Rarity, J G

    2016-09-01

    The ability to observe the Earth's carbon cycles from space provides scientists an important tool to analyze climate change. Current proposed systems are mainly based on pulsed integrated path differential absorption lidar, in which two high energy pulses at different wavelengths interrogate the atmosphere sequentially for its transmission properties and are back-scattered by the ground. In this work an alternative approach based on random modulation single photon counting is proposed and analyzed; this system can take advantage of a less power demanding semiconductor laser in intensity modulated continuous wave operation, benefiting from a better efficiency, reliability and radiation hardness. Our approach is validated via numerical simulations considering current technological readiness, demonstrating its potential to obtain a 1.5 ppm retrieval precision for 50 km averaging with 2.5 W average power in a space-borne scenario. A major limiting factor is the ambient shot noise, if ultra-narrow band filtering technology could be applied, 0.5 ppm retrieval precision would be attainable.

  11. Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing.

    PubMed

    Ai, X; Pérez-Serrano, A; Quatrevalet, M; Nock, R W; Dahnoun, N; Ehret, G; Esquivias, I; Rarity, J G

    2016-09-01

    The ability to observe the Earth's carbon cycles from space provides scientists an important tool to analyze climate change. Current proposed systems are mainly based on pulsed integrated path differential absorption lidar, in which two high energy pulses at different wavelengths interrogate the atmosphere sequentially for its transmission properties and are back-scattered by the ground. In this work an alternative approach based on random modulation single photon counting is proposed and analyzed; this system can take advantage of a less power demanding semiconductor laser in intensity modulated continuous wave operation, benefiting from a better efficiency, reliability and radiation hardness. Our approach is validated via numerical simulations considering current technological readiness, demonstrating its potential to obtain a 1.5 ppm retrieval precision for 50 km averaging with 2.5 W average power in a space-borne scenario. A major limiting factor is the ambient shot noise, if ultra-narrow band filtering technology could be applied, 0.5 ppm retrieval precision would be attainable. PMID:27607715

  12. A quantitative analysis of intensity-modulated radiation therapy plans and comparison of homogeneity indices for the treatment of gynecological cancers

    PubMed Central

    Pathak, Pushpraj; Vashisht, Sanjeev

    2013-01-01

    The aim of present study was to evaluate the intensity-modulated radiation therapy (IMRT) plans using different homogeneity and conformity indices in gynecological cancers, as well as to compare and find out the most reliable and accurate measure of the dose homogeneity among the available indices. In this study, a cohort of 12 patients were registered for evaluation, those receiving dynamic IMRT treatment on Clinac-2300C/D linear accelerator with 15-Mega Voltage (MV) photon beam. Dynamic IMRT plans were created on Eclipse treatment planning system with Helios dose volume optimization software. Homogeneity indices (HI) such as H index, modified H index, HI index, modified HI index, and S-index (sigma-index) proposed by M Yoon et al. (2007) were calculated and compared. The values of S-index vary from 1.63 to 2.99. The results indicate that the H and HI indices and their modified versions may not provide the correct dose homogeneity information, but the S-index provides accurate information about the dose homogeneity in the Planning Target Volume (PTV). Each plan was compared with 6-MV photon energy on the basis of S-index and conformity index (CI). Organs at risk (OAR) doses with 6-MV and 15-MV beams were also reported. PMID:23776309

  13. Application of plasma gas modulation technique for improvement of the measurement of Mn emission intensity in ICP-AES.

    PubMed

    Kubota, K; Wagatsuma, K

    2001-01-01

    A phase-sensitive detection technique associated with a digital lock-in amplifier was applied for an improvement of the detection in ICP-AES. The lock-in amplifier works as an extremely narrow band pass filter. It can pick up the modulated signal, which has the same frequency as the reference signal, from any noise and thus it can improve the signal-to-noise ratio. Modulation of the ICP can be performed by mixing small amounts of air to argon as the outer gas cyclically, because the emission intensities of ionic lines are enhanced by using the mixed gas. An electromagnetic valve, which is placed in the outer-gas flow path, causes periodic variation in the air gas in the outer-gas flow, and thus switching the valve on/off can modulate the ICP. By choosing the appropriate conditions, the addition of air gas enhances the emission intensity of ionic lines more than that of the background, thus leading to improved signal-to-background ratios. At the same time the lock-in amplifier further enhances the ionic emissions because it picks up only the modulated part of the signal. By applying the plasma gas flow modulation technique the detection and the determination limits of the Mn II 257.610 nm line are improved in comparison with the conventional method. A change in plasma shape corresponding to the modulation frequency is observed when the ICP is modulated. PMID:11225355

  14. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories

    NASA Astrophysics Data System (ADS)

    Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan

    2015-07-01

    Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans

  15. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    PubMed Central

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  16. Utility of Smart Arc CDR for intensity-modulated radiation therapy for prostate cancer.

    PubMed

    Hatanaka, Shogo; Tamaki, Seiichi; Endo, Haruna; Mizuno, Norifumi; Nakamura, Naoki

    2014-07-01

    Volumetric-modulated arc therapy (VMAT) is a widespread intensity-modulated radiation therapy (IMRT) method, however, VMAT requires adaptation of the radiation treatment planning system (RTPS) and linear accelerator (linac); these upgrades are quite expensive. The Smart Arc of Pinnacle(3) (Philips), which is the software used in VMAT calculations, can select constant dose rate (CDR) mode. This approach has a low initial cost because the linac upgrade is not required. The objective of this study was to clarify the utility of CDR mode for prostate IMRT. Pinnacle(3) and Clinac 21EX linac (Varian, 10 MV X-rays) were used for planning. The plans were created for 28 patients using a fixed multi-field IMRT (f-IMRT), VMAT and CDR techniques. The dose distribution results were classified into three groups: optimal, suboptimal and reject. For the f-IMRT, VMAT and CDR results, 25, 26 and 21 patients were classified as 'optimal', respectively. Our results show a significant reduction in the achievement rate of 'optimal' for a CDR when the bladder volume is <100 cm(3). The total numbers of monitoring units (MUs) (average ± 1σ) were 469 ± 53, 357 ± 35 and 365 ± 33; the average optimization times were ∼50 min, 2 h and 2 h 40 min, and the irradiation times were ∼280 s, 60 s and 110 s, respectively. CDR can reduce the total MUs and irradiation time compared with f-IMRT, and CDR has a lower initial cost compared with VMAT. Thus, for institutions that do not currently perform VMAT, CDR is a useful option. Additionally, in the context of patient identification, bladder volume may be useful.

  17. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories.

    PubMed

    Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan

    2015-07-01

    Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans

  18. The inaugural Frank Ellis Lecture--latrogenic cancer: the impact of intensity-modulated radiotherapy.

    PubMed

    Hall, E J

    2006-05-01

    It is an honour and personal pleasure to give the inaugural Frank Ellis Lecture to celebrate his 100th birthday, and to acknowledge his enormous contributions to radiation oncology. Intensity-modulated radiotherapy (IMRT) allows dose to be concentrated in the tumour volume while sparing normal tissues. However, the downside to IMRT is the potential to increase the number of radiation-induced second cancers because more fields are used which involves a bigger volume of normal tissue exposed to lower doses. It has been estimated that IMRT may double the incidence of solid cancers in long-term survivors. This may be acceptable in older patients if balanced by an improvement in local tumour control and reduced toxicity. On the other hand, the incidence of second cancers is higher in children, so that doubling it may not be acceptable. IMRT represents a special case for children. First, they are more sensitive to radiation-induced cancer than adults. Second, radiation scattered from the treatment volume is more important in the small body of the child. Third, there is the question of genetic susceptibility, as many childhood cancers involve a germline mutation. The levels of leakage radiation in current Linacs can be reduced, but the cost would be substantial. An alternative strategy is to replace X-rays with protons. This is an advantage only if the proton machine uses a pencil scanning beam, as passive modulation of a scattering foil produces neutrons, which results in an effective dose to the patient higher than that characteristic of IMRT.

  19. Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion.

    PubMed

    Vanin, Evgeny

    2011-02-28

    Bit-Error-Ratio (BER) of intensity modulated optical orthogonal frequency division multiplexing (OFDM) system is analytically evaluated accounting for nonlinear digital baseband distortion in the transmitter and additive noise in the photo receiver. The nonlinear distortion that is caused by signal clipping and quantization is taken into consideration. The signal clipping helps to overcome the system performance limitation related to high peak-to-average power ratio (PAPR) of the OFDM signal and to minimize the value of optical power that is required for achieving specified BER. The signal quantization due to a limited bit resolution of the digital to analog converter (DAC) causes an optical power penalty in the case when the bit resolution is too low. By introducing an effective signal to noise ratio (SNR) the optimum signal clipping ratio, system BER and required optical power at the input to the receiver is evaluated for the OFDM system with multi-level quadrature amplitude modulation (QAM) applied to the optical signal subcarriers. Minimum required DAC bit resolution versus the size of QAM constellation is identified. It is demonstrated that the bit resolution of 7 and higher causes negligibly small optical power penalty at the system BER=10⁻³ when 256-QAM and a constellation of lower size is applied. The performance of the optical OFDM system is compared to the performance of the multi-level amplitude-shift keying (M-ASK) system for the same number of information bits transmitted per signal sample. It is demonstrated that in the case of the matched receiver the M-ASK system outperforms OFDM and requires 3-3.5 dB less of optical power at BER=10⁻³ when 1-4 data bits are transmitted per signal sample. PMID:21369258

  20. Intensity-modulated stereotactic body radiotherapy for stage I non-small cell lung cancer.

    PubMed

    Kim, Min-Jeong; Yeo, Seung-Gu; Kim, Eun Seok; Min, Chul Kee; Se An, Pyung

    2013-03-01

    This study aimed to investigate the clinical outcomes of intensity-modulated radiotherapy (IMRT)-based stereotactic body radiotherapy (SBRT) for patients with stage I non-small cell lung cancer (NSCLC). A prospective database of 16 consecutive patients receiving SBRT for pathologically-proven and peripherally-located stage I NSCLC was reviewed. Fifteen patients were medically inoperable and one patient refused to undergo surgery. The median age of the patients was 76 years (range, 69-86). Treatment planning used four-dimensional computed tomography and fixed-field IMRT (n=11) or volumetric-modulated arc therapy (VMAT; n=5). The SBRT scheme was 48 Gy in four fractions (n=9) or 55 Gy in five fractions (n=7), delivered on consecutive days. The overall response rate at 6 months was 78.6%, including a complete response in three (21.4%) patients and a partial response in eight (57.1%). Three patients (21.4%) demonstrated a stable disease status. The median follow-up time was 14 months (range, 6-20) for the surviving patients. One patient developed local failure at 11 months, while another suffered from regional failure in a subcarinal lymph node at 4 months. Two patients did not survive within the first 6 months; one patient died during salvage chemotherapy for mediastinal lymph node metastasis and the other succumbed to a cause unrelated to lung cancer. The Kaplan-Meier estimates of local failure-free, progression-free and overall survival rates at 18 months were 91.0, 85.2 and 87.5%, respectively. The toxicity was mild; no severe (grade ≥3) toxicity was identified. IMRT-based (including VMAT) delivery of SBRT for patients with stage I NSCLC demonstrated favorable responses and local control without severe toxicity.

  1. Whole-Field Simultaneous Integrated-Boost Intensity-Modulated Radiotherapy for Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Wong, Frank C.S.; Ng, Alice W.Y.; Lee, Victor H.F.; Lui, Collin M.M.; Yuen, K.-K.; Sze, W.-K.; Leung, T.-W.; Tung, Stewart Y.

    2010-01-15

    Purpose: To retrospectively review the outcomes of our patients with newly diagnosed nondisseminated nasopharyngeal carcinoma treated with intensity-modulated radiotherapy using a whole-field simultaneous integrated-boost technique. Methods and Materials: A total of 175 patients treated with WF-SIB between mid-2004 and 2005 were eligible for study inclusion. The distribution of disease by stage was Stage IA in 10.9%, Stage IIA in 2.3%, Stage IIB in 21.7%, Stage III in 41.1%, Stage IVA in 14.9%, and Stage IVB in 9.1%. Of the 175 patients, 2 (1.2%), 10 (5.7%), and 163 (93.1%) had World Health Organization type I, II, and III histologic features, respectively. We prescribed 70 Gy, 60 Gy, and 54 Gy delivered in 33 fractions within 6.5 weeks at the periphery of three planning target volumes (PTV; PTV70, PTV60, and PTV54, respectively). Of the 175 patients, 46 with early T-stage disease received a brachytherapy boost, and 127 with advanced local or regional disease received chemotherapy. Results: The median follow-up period was 34 months. The overall 3-year local failure-free survival, regional failure-free survival, distant failure-free survival, and overall survival rate was 93.6%, 93.3%, 86.6%, and 87.2%, respectively. Cox regression analysis showed Stage N2-N3 disease (p = .029) and PTV (p = .024) to be independent factors predicting a greater risk of distant failure and poor overall survival, respectively. Grade 3 acute mucositis/pharyngitis occurred in 23.4% of patients, and Stage T4 disease was the only significant predictor of mucositis/pharyngitis (p = .021). Conclusion: Whole-field simultaneous integrated-boost intensity-modulated radiotherapy with a dose >70 Gy achieved excellent locoregional control, without an excess incidence of severe, acute mucositis/pharyngitis, in the present study. Strategies for using such highly conformal treatment for patients with a large tumor and late N-stage disease are potential areas of investigation for future studies.

  2. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    SciTech Connect

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  3. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    PubMed Central

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-01-01

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds. PMID:25362365

  4. Intensity-Modulated Whole Abdominal Radiotherapy After Surgery and Carboplatin/Taxane Chemotherapy for Advanced Ovarian Cancer: Phase I Study

    SciTech Connect

    Rochet, Nathalie; Sterzing, Florian; Jensen, Alexandra D.; Dinkel, Julien; Herfarth, Klaus K.; Schubert, Kai; Eichbaum, Michael H.; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2010-04-15

    Purpose: To assess the feasibility and toxicity of consolidative intensity-modulated whole abdominal radiotherapy (WAR) after surgery and chemotherapy in high-risk patients with advanced ovarian cancer. Methods and Materials: Ten patients with optimally debulked ovarian cancer International Federation of Gynecology and Obstetrics Stage IIIc were treated in a Phase I study with intensity-modulated WAR up to a total dose of 30 Gy in 1.5-Gy fractions as consolidation therapy after adjuvant carboplatin/taxane chemotherapy. Treatment was delivered using intensity-modulated radiotherapy in a step-and-shoot technique (n = 3) or a helical tomotherapy technique (n = 7). The planning target volume included the entire peritoneal cavity and the pelvic and para-aortal node regions. Organs at risk were kidneys, liver, heart, vertebral bodies, and pelvic bones. Results: Intensity-modulated WAR resulted in an excellent coverage of the planning target volume and an effective sparing of the organs at risk. The treatment was well tolerated, and no severe Grade 4 acute side effects occurred. Common Toxicity Criteria Grade III toxicities were as follows: diarrhea (n = 1), thrombocytopenia (n = 1), and leukopenia (n = 3). Radiotherapy could be completed by all the patients without any toxicity-related interruption. Median follow-up was 23 months, and 4 patients had tumor recurrence (intraperitoneal progression, n = 3; hepatic metastasis, n = 1). Small bowel obstruction caused by adhesions occurred in 3 patients. Conclusions: The results of this Phase I study showed for the first time, to our knowledge, the clinical feasibility of intensity-modulated whole abdominal radiotherapy, which could offer a new therapeutic option for consolidation treatment of advanced ovarian carcinoma after adjuvant chemotherapy in selected subgroups of patients. We initiated a Phase II study to further evaluate the toxicity of this intensive multimodal treatment.

  5. Rectal wall sparing by dosimetric effect of rectal balloon used during intensity-modulated radiation therapy (IMRT) for prostate cancer.

    PubMed

    Teh, Bin S; Dong, Lei; McGary, John E; Mai, Wei-Yuan; Grant, Walter; Butler, E Brian

    2005-01-01

    The use of an air-filled rectal balloon has been shown to decrease prostate motion during prostate radiotherapy. However, the perturbation of radiation dose near the air-tissue interfaces has raised clinical concerns of underdosing the prostate gland. The aim of this study was to investigate the dosimetric effects of an air-filled rectal balloon on the rectal wall/mucosa and prostate gland. Clinical rectal toxicity and dose-volume histogram (DVH) were also assessed to evaluate for any correlation. A film phantom was constructed to simulate the 4-cm diameter air cavity created by a rectal balloon. Kodak XV2 films were utilized to measure and compare dose distribution with and without air cavity. To study the effect in a typical clinical situation, the phantom was computed tomography (CT) scanned on a Siemens DR CT scanner for intensity-modulated radiation therapy (IMRT) treatment planning. A target object was drawn on the phantom CT images to simulate the treatment of prostate cancer. Because patients were treated in prone position, the air cavity was situated superiorly to the target. The treatment used a serial tomotherapy technique with the Multivane Intensity Modulating Collimator (MIMiC) in arc treatment mode. Rectal toxicity was assessed in 116 patients treated with IMRT to a mean dose of 76 Gy over 35 fractions (2.17-Gy fraction size). They were treated in the prone position, immobilized using a Vac-Loktrade mark bag and carrier-box system. Rectal balloon inflated with 100 cc of air was used for prostate gland immobilization during daily treatment. Rectal toxicity was assessed using modifications of the Radiation Therapy Oncology Group (RTOG) and late effects Normal Tissue Task Force (LENT) scales systems. DVH of the rectum was also evaluated. From film dosimetry, there was a dose reduction at the distal air-tissue interface as much as 60% compared with the same geometry without the air cavity for 15-MV photon beam and 2x2-cm field size. The dose beyond the

  6. Progress in Y-00 physical cipher for Giga bit/sec optical data communications (intensity modulation method)

    NASA Astrophysics Data System (ADS)

    Hirota, Osamu; Futami, Fumio

    2014-10-01

    To guarantee a security of Cloud Computing System is urgent problem. Although there are several threats in a security problem, the most serious problem is cyber attack against an optical fiber transmission among data centers. In such a network, an encryption scheme on Layer 1(physical layer) with an ultimately strong security, a small delay, and a very high speed should be employed, because a basic optical link is operated at 10 Gbit/sec/wavelength. We have developed a quantum noise randomied stream cipher so called Yuen- 2000 encryption scheme (Y-00) during a decade. This type of cipher is a completely new type random cipher in which ciphertext for a legitimate receiver and eavesdropper are different. This is a condition to break the Shannon limit in theory of cryptography. In addition, this scheme has a good balance on a security, a speed and a cost performance. To realize such an encryption, several modulation methods are candidates such as phase-modulation, intensity-modulation, quadrature amplitude modulation, and so on. Northwestern university group demonstrated a phase modulation system (α=η) in 2003. In 2005, we reported a demonstration of 1 Gbit/sec system based on intensity modulation scheme(ISK-Y00), and gave a design method for quadratic amplitude modulation (QAM-Y00) in 2005 and 2010. An intensity modulation scheme promises a real application to a secure fiber communication of current data centers. This paper presents a progress in quantum noise randomized stream cipher based on ISK-Y00, integrating our theoretical and experimental achievements in the past and recent 100 Gbit/sec(10Gbit/sec × 10 wavelengths) experiment.

  7. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy.

    PubMed

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-01

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation

  8. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-01

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 106 particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 105 particles per beamlet. Correspondingly, the computation time

  9. Single-photon modulation by the collective emission of an atomic chain

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Zubairy, M. Suhail

    2014-11-01

    We study the collective spontaneous emission of a linear atomic chain excited by a single photon. The interaction between the atoms and the common vacuum field can significantly change the eigenenergy and the spontaneous emission rate of the system. Due to the dipole-dipole interactions, the system prepared in a single-photon timed Dicke state is the superposition of superradiant and subradiant eigenstates that can have a nonexponential decay dynamics. We can tune the frequency and linewidth of the superradiant and subradiant emission from a timed Dicke state by changing the direction of the atomic dipole moment or the atomic separation. In addition, the emission direction of the superradiant and subradiant photons also depends on the polarization of the atoms.

  10. Supercontinuum and rogue soliton generation by induced modulational instability in photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Chen, Nengsong; Wang, Boyan; Tang, Pinghua; Zeng, Qilin

    2016-08-01

    We present an approach that enables active control of supercontinuum (SC) and rogue soliton (RS) generation through the modulation of a 500 fs input pulse by numerical simulations. The induced modulational instability contributes to the initial comb-like SC generation, which is fundamentally different from SC initiated by high-order soliton fission. The output spectrum shows great dependence on modulation frequencies and depths. It is interesting that we can manipulate the RS generation by adjusting the modulation parameters. And we also demonstrate the conditions which can be beneficial to RS generation: (i) very weak or large values of modulation depth; (ii) seeding in the vicinity of the peak of the modulational instability gain spectrum. Although RS degrades the smoothness of the SC, it is of great significance in the generation of tailored SC.

  11. Inverse planned stereotactic intensity modulated radiotherapy (IMRT) in the palliative treatment of malignant mesothelioma of the pleura: the Heidelberg experience.

    PubMed

    Münter, Marc W; Thieke, Christian; Christian, Thieke; Nikoghosyan, Anna; Anna, Nikoghosyan; Nill, Simeon; Simeon, Nill; Debus, Jürgen; Jürgen, Debus

    2005-07-01

    Intensity modulated radiation therapy (IMRT) is a new promising treatment technique, which allows a more conformal application of the dose to the tumor volume, as compared to conventional radio-oncological approaches, while protecting the surrounding normal tissue more accurately. This manuscript presents the final results of IMRT in the treatment of unresectable pleural mesothelioma in Heidelberg.

  12. Solar modulation of cosmic ray intensity and solar flare events inferred from (14)C contents in dated tree rings

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Chen, T. M.; Yun, S. X.; Dai, K. M.

    1985-01-01

    The delta 14C values in 42 rings of a white spruce grown in Mackenzie Delta was measured as a continuing effort of tracing the history of solar modulation of cosmic ray intensity. The delta 14C values in six rings were measured, in search of a 14C increase due to two large solar flares that occurred in 1942. The results are presented.

  13. Adenoid cystic carcinoma of the trachea treated with PET-CT based intensity modulated radiotherapy.

    PubMed

    Haresh, Kunhi Parambath; Prabhakar, Ramachandran; Rath, Goura K; Sharma, Daya Nand; Julka, Pramod K; Subramani, V

    2008-07-01

    Primary tumors of the trachea are rare and are usually malignant in adults and benign in children. Adenoid cystic carcinoma, which is of salivary gland origin, account for about one thirds of adult primary tracheal tumors. A 49-year-old gentleman presented to us after undergoing a pneumonectomy elsewhere. Computed tomography scan of the thorax at our hospital showed a residual disease in the primary site, size of which was same as that in the preoperative scan. Because there was a compromised respiratory reserve due to pneumonectomy we decided to keep the radiation dose to the remaining lung as low as possible. We treated him by positron emission tomography-computed tomography (PET-CT) directed intensity modulated radiation therapy to a dose of 60 Gy in 30 Fractions over 6 weeks on a linear accelerator. PET helped in exact localization of the target on the planning CT. He tolerated the treatment very well. PET-CT done 1 year posttreatment showed no residual disease. Presently he is disease free with good pulmonary reserve. PMID:18594327

  14. Dosimetric comparison of tools for intensity modulated radiation therapy with gamma analysis: a phantom study

    NASA Astrophysics Data System (ADS)

    Akbas, Ugur; Okutan, Murat; Demir, Bayram; Koksal, Canan

    2015-07-01

    Dosimetry of the Intensity Modulated Radiation Therapy (IMRT) is very important because of the complex dose distributions. Diode arrays are the most common and practical measurement tools for clinical usage for IMRT. Phantom selection is critical for QA process. IMRT treatment plans are recalculated for the phantom irradiation in QA. Phantoms are made in different geometrical shapes to measure the doses of different types of irradiation techniques. Comparison of measured and calculated dose distributions for IMRT can be made by using gamma analysis. In this study, 10 head-and-neck IMRT QA plans were created with Varian Eclipse 8.9 treatment planning system. Water equivalent RW3-slab phantoms, Octavius-2 phantom and PTW Seven29 2D-array were used for QA measurements. Gantry, collimator and couch positions set to 00 and QA plans were delivered to RW3 and Octavius phantoms. Then the positions set to original angles and QA plans irradiated again. Measured and calculated fluence maps were evaluated with gamma analysis for different DD and DTA criteria. The effect of different set-up conditions for RW3 and Octavius phantoms in QA plan delivery evaluated by gamma analysis. Results of gamma analysis show that using RW3-slab phantoms with setting parameters to 00 is more appropriate for IMRT QA.

  15. Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses

    SciTech Connect

    Daly, Megan E.; Chen, Allen M. . E-mail: allenmchen@yahoo.com; Bucci, M. Kara; El-Sayed, Ivan; Xia Ping; Kaplan, Michael J.; Eisele, David W.

    2007-01-01

    Purpose: To report the clinical outcome of patients treated with intensity-modulated radiation therapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 1998 and 2004, 36 patients with malignancies of the sinonasal region were treated with IMRT. Thirty-two patients (89%) were treated in the postoperative setting after gross total resection. Treatment plans were designed to provide a dose of 70 Gy to 95% or more of the gross tumor volume (GTV) and 60 Gy to 95% or more of the clinical tumor volume (CTV) while sparing neighboring critical structures including the optic chiasm, optic nerves, eyes, and brainstem. The primary sites were: 13 ethmoid sinus, 10 maxillary sinus, 7 nasal cavity, and 6 other. Histology was: 12 squamous cell, 7 esthesioneuroblastoma, 5 adenoid cystic, 5 undifferentiated, 5 adenocarcinoma, and 2 other. Median follow-up was 51 months among surviving patients (range, 9-82 months). Results: The 2-year and 5-year estimates of local control were 62% and 58%, respectively. One patient developed isolated distant metastasis, and none developed isolated regional failure. The 5-year rates of disease-free and overall survival were 55% and 45%, respectively. The incidence of ocular toxicity was minimal with no patients reporting decreased vision. Late complications included xerophthalmia (1 patient), lacrimal stenosis (1 patient), and cataract (1 patient). Conclusion: Although IMRT for malignancies of the sinonasal region does not appear to lead to significant improvements in disease control, the low incidence of complications is encouraging.

  16. The Accuracy of Inhomogeneity Corrections in Intensity Modulated Radiation Therapy Planning in Philips Pinnacle System

    SciTech Connect

    Alaei, Parham; Higgins, Patrick D.

    2011-10-01

    The degree of accuracy of inhomogeneity corrections in a treatment planning system is dependent on the algorithm used by the system. The choice of field size, however, could have an effect on the calculation accuracy as well. There have been several evaluation studies on the accuracy of inhomogeneity corrections used by different algorithms. Most of these studies, however, focus on evaluating the dose in phantom using simplified geometry and open/static fields. This work focuses on evaluating the degree of dose accuracy in calculations involving intensity-modulated radiation therapy (IMRT) fields incident on a phantom containing both lung- and bone-equivalent heterogeneities using 6 and 10 MV beams. IMRT treatment plans were generated using the Philips Pinnacle treatment planning system and delivered to a phantom containing 55 thermoluminescent dosimeter (TLD) locations within the lung and bone and near the lung and bone interfaces with solid water. The TLD readings were compared with the dose predicted by the planning system. We find satisfactory agreement between planned and delivered doses, with an overall absolute average difference between measurement and calculation of 1.2% for the 6 MV and 3.1% for the 10 MV beam with larger variations observed near the interfaces and in areas of high-dose gradient. The results presented here demonstrate that the convolution algorithm used in the Pinnacle treatment planning system produces accurate results in IMRT plans calculated and delivered to inhomogeneous media, even in regions that potentially lack electronic equilibrium.

  17. Dose to the intracranial arteries in stereotactic and intensity-modulated radiotherapy for skull base tumors

    SciTech Connect

    Nieder, Carsten . E-mail: cnied@hotmail.com; Grosu, Anca L.; Stark, Sybille; Wiedenmann, Nicole; Busch, Raymonde; Kneschaurek, Peter; Molls, Michael

    2006-03-15

    Purpose: To examine retrospectively the maximum dose to the large skull base/intracranial arteries in fractionated stereotactic radiotherapy (FSRT) and intensity-modulated radiotherapy (IMRT), because of the potential risk of perfusion disturbances. Methods and Materials: Overall, 56 patients with tumors adjacent to at least one major artery were analyzed. Our strategy was to perform FSRT with these criteria: 1.8 Gy per fraction, planning target volume (PTV) enclosed by the 95% isodose, maximum dose 107%. Dose limits were applied to established organs at risk, but not the vessels. If FSRT planning failed to meet any of these criteria, IMRT was planned with the same objectives. Results: In 31 patients (median PTV, 23 cm{sup 3}), the FSRT plan fulfilled all criteria. No artery received a dose {>=}105%. Twenty-five patients (median PTV, 39 cm{sup 3}) needed IMRT planning. In 11 of 25 patients (median PTV, 85 cm{sup 3}), no plan satisfying all our criteria could be calculated. Only in this group, moderately increased maximum vessel doses were observed (106-110%, n = 7, median PTV, 121 cm{sup 3}). The median PTV dose gradient was 29% (significantly different from the 14 patients with satisfactory IMRT plans). Three of the four patients in this group had paranasal sinus tumors. Conclusion: The doses to the major arteries should be calculated in IMRT planning for critical tumor locations if a dose gradient >13% within the PTV can not be avoided because the PTV is large or includes air cavities.

  18. Meningioma Causing Visual Impairment: Outcomes and Toxicity After Intensity Modulated Radiation Therapy

    SciTech Connect

    Maclean, Jillian; Fersht, Naomi; Bremner, Fion; Stacey, Chris; Sivabalasingham, Suganya; Short, Susan

    2013-03-15

    Purpose: To evaluate ophthalmologic outcomes and toxicity of intensity modulated radiation therapy (IMRT) in patients with meningiomas causing visual deficits. Methods and Materials: A prospective observational study with formal ophthalmologic and clinical assessment of 30 consecutive cases of meningioma affecting vision treated with IMRT from 2007 to 2011. Prescriptions were 50.4 Gy to mean target dose in 28 daily fractions. The median follow-up time was 28 months. Twenty-six meningiomas affected the anterior visual pathway (including 3 optic nerve sheath meningiomas); 4 were posterior to the chiasm. Results: Vision improved objectively in 12 patients (40%). Improvements were in visual field (5/16 patients), color vision (4/9 patients), acuity (1/15 patients), extraocular movements (3/11 patients), ptosis (1/5 patients), and proptosis (2/6 patients). No predictors of clinical response were found. Two patients had minor reductions in tumor dimensions on magnetic resonance imaging, 1 patient had radiological progression, and the other patients were stable. One patient experienced grade 2 keratitis, 1 patient had a minor visual field loss, and 5 patients had grade 1 dry eye. Conclusion: IMRT is an effective method for treating meningiomas causing ophthalmologic deficits, and toxicity is minimal. Thorough ophthalmologic assessment is important because clinical responses often occur in the absence of radiological change.

  19. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study.

    PubMed

    Yepes, Pablo P; Eley, John G; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe

    2016-04-01

    Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs. PMID:26961764

  20. Use of 3D-printers to create intensity-modulated radiotherapy compensator blocks.

    PubMed

    Avelino, Samuel R; Silva, Luis Felipe O; Miosso, Cristiano J

    2012-01-01

    Intensity-Modulated Radiotherapy (IMRT) is an important tool for cancer treatment. It concentrates high radiation doses in complex target volumes, while sparing the surrounding tissues. IMRT is traditionally performed using Multileaf Collimators (MLC) or Compensator Blocks. The conventional way used to manufacture IMRT compensator blocks, which uses milling machines, is an important drawback over the MLC method, due to high operational and production costs. In this research, we developed a simpler alternative method to manufacture an IMRT compensator block from a fluency map generated by a commercial treatment planning system (TPS). This map was converted into a mold, and then printed using a 3D printer. The final IMRT compensator block was achieved by filling the mold with cerrobend alloy. To validate this method a quality assurance was performed using dosimetric films to compare the measured dose distributions to those predicted by the TPS system. This comparison showed a good agreement among 8 dose profiles from each situation, with a maximum RMS error of 8.84 % for the tested profiles. This suggests that the 3D printers can be effectively used to manufacture IMRT compensator blocks. The main advantage to this approach is that it can be fully conducted inside a radiotherapy facility, which results in lower costs and production times.

  1. Risk of secondary cancers from scattered radiation during intensity-modulated radiotherapies for hepatocellular carcinoma

    PubMed Central

    2014-01-01

    Purpose To evaluate and compare the risks of secondary cancers from therapeutic doses received by patients with hepatocellular carcinoma (HCC) during intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT), and tomotherapy (TOMO). Methods Treatments for five patients with hepatocellular carcinoma (HCC) were planned using IMRT, VMAT, and TOMO. Based on the Biological Effects of Ionizing Radiation VII method, the excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) were evaluated from therapeutic doses, which were measured using radiophotoluminescence glass dosimeters (RPLGDs) for each organ inside a humanoid phantom. Results The average organ equivalent doses (OEDs) of 5 patients were measured as 0.23, 1.18, 0.91, 0.95, 0.97, 0.24, and 0.20 Gy for the thyroid, lung, stomach, liver, small intestine, prostate (or ovary), and rectum, respectively. From the OED measurements, LAR incidence were calculated as 83, 46, 22, 30, 2 and 6 per 104 person for the lung, stomach, normal liver, small intestine, prostate (or ovary), and rectum. Conclusions We estimated the secondary cancer risks at various organs for patients with HCC who received different treatment modalities. We found that HCC treatment is associated with a high secondary cancer risk in the lung and stomach. PMID:24886163

  2. Neutron intensity modulation and time-focusing with integrated Larmor and resonant frequency techniques

    SciTech Connect

    Zhao, Jinkui Hamilton, William A.; Robertson, J. L.; Crow, Lowell; Lee, Sung-Woo; Kang, Yoon W.

    2015-09-14

    The analysis of neutron diffraction experiments often assumes that neutrons are elastically scattered from the sample. However, there is growing evidence that a significant fraction of the detected neutrons is in fact inelastically scattered, especially from soft materials and aqueous samples. Ignoring these inelastic contributions gives rise to inaccurate experimental results. To date, there has been no simple method with broad applicability for inelastic signal separation in neutron diffraction experiments. Here, we present a simple and robust method that we believe could be suited for this purpose. We use two radio frequency resonant spin flippers integrated with a Larmor precession field to modulate the neutron intensity and to encode the inelastic scattering information into the neutron data. All three components contribute to the spin encoding. The Larmor field serves several additional purposes. Its usage facilitates neutron time-focusing, eliminates the need for stringent magnetic shielding, and allows for compact setups. The scheme is robust, simple, and flexible. We believe that, with further improvements, it has the potential of adding inelastic signal discrimination capabilities to many existing diffraction instruments in the future.

  3. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study.

    PubMed

    Yepes, Pablo P; Eley, John G; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe

    2016-04-01

    Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs.

  4. Diversity-optimal power loading for intensity modulated MIMO optical wireless communications.

    PubMed

    Zhang, Yan-Yu; Yu, Hong-Yi; Zhang, Jian-Kang; Zhu, Yi-Jun

    2016-04-18

    In this paper, we consider the design of space code for an intensity modulated direct detection multi-input-multi-output optical wireless communication (IM/DD MIMO-OWC) system, in which channel coefficients are independent and non-identically log-normal distributed, with variances and means known at the transmitter and channel state information available at the receiver. Utilizing the existing space code design criterion for IM/DD MIMO-OWC with a maximum likelihood (ML) detector, we design a diversity-optimal space code (DOSC) that maximizes both large-scale diversity and small-scale diversity gains and prove that the spatial repetition code (RC) with a diversity-optimized power allocation is diversity-optimal among all the high dimensional nonnegative space code schemes under a commonly used optical power constraint. In addition, we show that one of significant advantages of the DOSC is to allow low-complexity ML detection. Simulation results indicate that in high signal-to-noise ratio (SNR) regimes, our proposed DOSC significantly outperforms RC, which is the best space code currently available for such system.

  5. Organisational standards for the delivery of intensity-modulated radiation therapy in Ontario.

    PubMed

    Whitton, A; Warde, P; Sharpe, M; Oliver, T K; Bak, K; Leszczynski, K; Etheridge, S; Fleming, K; Gutierrez, E; Favell, L; Green, E

    2009-04-01

    By minimising the effect of irradiation on surrounding tissue, intensity-modulated radiation therapy (IMRT) can deliver higher, more effective doses to the targeted tumour site, minimising treatment-related morbidity and possibly improving cancer control and cure. A multidisciplinary IMRT Expert Panel was convened to develop the organisational standards for the delivery of IMRT. The systematic literature search used MEDLINE, EMBASE, the Cochrane Database, the National Guidelines Clearing House and the Health Technology Assessment Database. An environmental scan of unpublished literature used the Google search engine to review the websites of key organisations, cancer agencies/centres and vendor sites in Canada, the USA, Australia and Europe. In total, 22 relevant guidance documents were identified; 12 from the published literature and 10 from the environmental scan. Professional and organisational standards for the provision of IMRT were developed through the analysis of this evidence and the consensus opinion of the IMRT Expert Panel. The resulting standards address the following domains: planning of new IMRT programmes, practice setting requirements, tools, devices and equipment requirements; professional training requirements; role of personnel; and requirements for quality assurance and safety. Here the IMRT Expert Panel offers organisational and professional standards for the delivery of IMRT, with the intent of promoting innovation, improving access and enhancing patient care.

  6. Marginal Misses After Postoperative Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Chen, Leon M.; Vijayakumar, Srinivasan; Purdy, James A.

    2011-08-01

    Purpose: To describe the spatial distribution of local-regional recurrence (LRR) among patients treated postoperatively with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: The medical records of 90 consecutive patients treated by gross total resection and postoperative IMRT for squamous cell carcinoma of the head and neck from January 2003 to July 2009 were reviewed. Sites of disease were the oral cavity (43 patients), oropharynx (20 patients), larynx (15 patients), and hypopharynx (12 patients). Fifty patients (56%) received concurrent chemotherapy. Results: Seventeen of 90 patients treated with postoperative IMRT experienced LRR, yielding a 2-year estimate of local regional control of 80%. Among the LRR patients, 11 patients were classified as in-field recurrences, occurring within the physician-designated clinical target volume, and 6 patients were categorized as marginal recurrences. There were no out-of-field geographical misses. Sites of marginal LRRs included the contralateral neck adjacent to the spared parotid gland (3 patients), the dermal/subcutaneous surface (2 patients), and the retropharyngeal/retrostyloid lymph node region (1 patient). Conclusions: Although the incidence of geographical misses was relatively low, the possibility of this phenomenon should be considered in the design of target volumes among patients treated by postoperative IMRT for head and neck cancer.

  7. Intensity-Modulated Radiotherapy in Postoperative Treatment of Oral Cavity Cancers

    SciTech Connect

    Gomez, Daniel R. Zhung, Joanne E.; Gomez, Jennifer; Chan, Kelvin; Wu, Abraham J.; Wolden, Suzanne L.; Pfister, David G.; Shaha, Ashok; Shah, Jatin P.; Kraus, Dennis H.; Wong, Richard J.; Lee, Nancy Y.

    2009-03-15

    Purpose: To present our single-institution experience of intensity-modulated radiotherapy (IMRT) for oral cavity cancer. Methods and Materials: Between September 2000 and December 2006, 35 patients with histologically confirmed squamous cell carcinoma of the oral cavity underwent surgery followed by postoperative IMRT. The sites included were buccal mucosa in 8, oral tongue in 11, floor of the mouth in 9, gingiva in 4, hard palate in 2, and retromolar trigone in 1. Most patients had Stage III-IV disease (80%). Ten patients (29%) also received concurrent postoperative chemotherapy with IMRT. The median prescribed radiation dose was 60 Gy. Results: The median follow-up for surviving patients was 28.1 months (range, 11.9-85.1). Treatment failure occurred in 11 cases as follows: local in 4, regional in 2, and distant metastases in 5. Of the 5 patients with distant metastases, 2 presented with dermal metastases. The 2- and 3-year estimates of locoregional progression-free survival, distant metastasis-free survival, disease-free survival, and overall survival were 84% and 77%, 85% and 85%, 70% and 64%, and 74% and 74%, respectively. Acute Grade 2 or greater dermatitis, mucositis, and esophageal reactions were experienced by 54%, 66%, and 40% of the patients, respectively. Documented late complications included trismus (17%) and osteoradionecrosis (5%). Conclusion: IMRT as an adjuvant treatment after surgical resection for oral cavity tumors is feasible and effective, with promising results and acceptable toxicity.

  8. Intensity-modulated radiation therapy for the treatment of nonanaplastic thyroid cancer

    SciTech Connect

    Rosenbluth, Benjamin D.; Serrano, Victoria B.S.; Happersett, Laura; Shaha, Ashok R.; Tuttle, R. Michael; Narayana, Ashwatha; Wolden, Suzanne L.; Rosenzweig, Kenneth E.; Chong, Lanceford M.; Lee, Nancy Y. . E-mail: leen2@mskcc.org

    2005-12-01

    Purpose: Intensity-modulated radiation therapy (IMRT) enables highly conformal treatment for thyroid cancer (TC). In this study, we review outcomes/toxicity in a series of TC patients treated with IMRT. Methods and Materials: Between July 2001 and January 2004, 20 nonanaplastic TC patients underwent IMRT. Mean age was 55. There were 3 T2 and 17 T4 patients. Sixteen patients had N1 disease. Seven patients had metastases before RT. Fifteen underwent surgery before RT. Radioactive iodine (RAI) and chemotherapy were used in 70% and 40%, respectively. Median total RT dose was 63 Gy. Results: With two local failures, 2-year local progression-free rate was 85%. There were six deaths, with a 2-year overall survival rate of 60%. For patients with M0 disease, the 2-year distant metastases-free rate was 46%. The worst acute mucositis and pharyngitis was Grade 3 (n = 7 and 3, respectively). Two patients had Grade 3 acute skin toxicity and 2 had Grade 3 acute laryngeal toxicity. No significant radiation-related late effects were reported. Conclusions: IMRT for TC is feasible and effective in appropriately selected cases. Acute toxicity is manageable with proactive clinical care. Ideal planning target volume doses have yet to be determined. Additional patients and long-term follow-up are needed to confirm these preliminary findings and to clarify late toxicities.

  9. Dosimetric comparison of intensity modulated radiotherapy techniques and standard wedged tangents for whole breast radiotherapy.

    PubMed

    Fong, Andrew; Bromley, Regina; Beat, Mardi; Vien, Din; Dineley, Jude; Morgan, Graeme

    2009-02-01

    Prior to introducing intensity modulated radiotherapy (IMRT) for whole breast radiotherapy (WBRT) into our department we undertook a comparison of the dose parameters of several IMRT techniques and standard wedged tangents (SWT). Our aim was to improve the dose distribution to the breast and to decrease the dose to organs at risk (OAR): heart, lung and contralateral breast (Contra Br). Treatment plans for 20 women (10 right-sided and 10 left-sided) previously treated with SWT for WBRT were used to compare (a) SWT; (b) electronic compensators IMRT (E-IMRT); (c) tangential beam IMRT (T-IMRT); (d) coplanar multi-field IMRT (CP-IMRT); and (e) non-coplanar multi-field IMRT (NCP-IMRT). Plans for the breast were compared for (i) dose homogeneity (DH); (ii) conformity index (CI); (iii) mean dose; (iv) maximum dose; (v) minimum dose; and dose to OAR were calculated (vi) heart; (vii) lung and (viii) Contra Br. Compared with SWT, all plans except CP-IMRT gave improvement in at least two of the seven parameters evaluated. T-IMRT and NCP-IMRT resulted in significant improvement in all parameters except DH and both gave significant reduction in doses to OAR. As on initial evaluation NCP-IMRT is likely to be too time consuming to introduce on a large scale, T-IMRT is the preferred technique for WBRT for use in our department. PMID:19453534

  10. Dosimetric evaluations of the interplay effect in respiratory-gated intensity-modulated radiation therapy

    SciTech Connect

    Chen Hungcheng; Wu, Andrew; Brandner, Edward D.; Heron, Dwight E.; Huq, M. Saiful; Yue, Ning J.; Chen Wencheng

    2009-03-15

    The interplay between a mobile target and a dynamic multileaf collimator can compromise the accuracy of intensity-modulated radiation therapy (IMRT). Our goal in this study is to investigate the dosimetric effects caused by the respiratory motion during IMRT. A moving phantom was built to simulate the typical breathing motion. Different sizes of the gating windows were selected for gated deliveries. The residual motions during the beam-on period ranged from 0.5 to 3 cm. An IMRT plan with five treatment fields from different gantry angles were delivered to the moving phantom for three irradiation conditions: Stationary condition, moving with the use of gating system, and moving without the use of gating system. When the residual motion was 3 cm, the results showed significant differences in dose distributions between the stationary condition and the moving phantom without gating beam control. The overdosed or underdosed areas enclosed about 33% of the treatment area. In contrast, the dose distribution on the moving phantom with gating window set to 0.5 cm showed no significant differences from the stationary phantom. With the appropriate setting of the gating window, the deviation of dose from the respiratory motion can be minimized. It appeals that limiting the residual motion to less than 0.5 cm is critical for the treatments of mobile structures.

  11. A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations.

    PubMed

    Soukup, Martin; Fippel, Matthias; Alber, Markus

    2005-11-01

    A pencil beam algorithm as a component of an optimization algorithm for intensity modulated proton therapy (IMPT) is presented. The pencil beam algorithm is tuned to the special accuracy requirements of IMPT, where in heterogeneous geometries both the position and distortion of the Bragg peak and the lateral scatter pose problems which are amplified by the spot weight optimization. Heterogeneity corrections are implemented by a multiple raytracing approach using fluence-weighted sub-spots. In order to derive nuclear interaction corrections, Monte Carlo simulations were performed. The contribution of long ranged products of nuclear interactions is taken into account by a fit to the Monte Carlo results. Energy-dependent stopping power ratios are also implemented. Scatter in optional beam line accessories such as range shifters or ripple filters is taken into account. The collimator can also be included, but without additional scattering. Finally, dose distributions are benchmarked against Monte Carlo simulations, showing 3%/1 mm agreement for simple heterogeneous phantoms. In the case of more complicated phantoms, principal shortcomings of pencil beam algorithms are evident. The influence of these effects on IMPT dose distributions is shown in clinical examples. PMID:16237243

  12. Intensity-modulated radiosurgery with rapidarc for multiple brain metastases and comparison with static approach

    SciTech Connect

    Wang Jiazhu; Pawlicki, Todd; Rice, Roger; Mundt, Arno J.; Sandhu, Ajay; Lawson, Joshua; Murphy, Kevin T.

    2012-04-01

    Rotational RapidArc (RA) and static intensity-modulated radiosurgery (IMRS) have been used for brain radiosurgery. This study compares the 2 techniques from beam delivery parameters and dosimetry aspects for multiple brain metastases. Twelve patients with 2-12 brain lesions treated with IMRS were replanned using RA. For each patient, an optimal 2-arc RA plan from several trials was chosen for comparison with IMRS. Homogeneity, conformity, and gradient indexes have been calculated. The mean dose to normal brain and maximal dose to other critical organs were evaluated. It was found that monitor unit (MU) reduction by RA is more pronounced for cases with larger number of brain lesions. The MU-ratio of RA and IMRS is reduced from 104% to 39% when lesions increase from 2 to 12. The dose homogeneities are comparable in both techniques and the conformity and gradient indexes and critical organ doses are higher in RA. Treatment time is greatly reduced by RA in intracranial radiosurgery, because RA uses fewer MUs, fewer beams, and fewer couch angles.

  13. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning

    SciTech Connect

    Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.

    2010-09-15

    Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  14. Possible fractionated regimens for image-guided intensity-modulated radiation therapy of large arteriovenous malformations

    NASA Astrophysics Data System (ADS)

    Qi, X. Sharon; Schultz, Christopher J.; Li, X. Allen

    2007-09-01

    The aim of this study was to estimate a plausible α/β ratio for arteriovenous malformations (AVMs) based on reported clinical data, and to design possible fractionation regimens suitable for image-guided intensity-modulated radiation therapy (IG-IMRT) for large AVMs based on the newly obtained α/β ratio. The commonly used obliteration rate (OR) for AVMs with a three year angiographic follow-up from many institutes was fitted to linear-quadratic (LQ) formalism and the Poisson OR model. The determined parameters were then used to calculate possible fractionation regimens for IG-IMRT based on the concept of a biologically effective dose (BED) and an equivalent uniform dose (EUD). The radiobiological analysis yields a α/β ratio of 2.2 ± 1.6 Gy for AVMs. Three sets of possible fractionated schemes were designed to achieve equal or better biological effectiveness than the single-fraction treatments while maintaining the same probability of normal brain complications. A plausible α/β ratio was derived for AVMs and possible fractionation regimens that may be suitable for IG-IMRT for large AVM treatment are proposed. The sensitivity of parameters on the calculation was also studied. The information may be useful to design new clinical trials that use IG-IMRT for the treatment of large AVMs.

  15. Treatment of Nasopharyngeal Carcinoma Using Intensity-Modulated Radiotherapy-The National Cancer Centre Singapore Experience

    SciTech Connect

    Tham, Ivan Weng-Keong; Hee, Siew Wan; Yeo, Richard Ming-Chert; Salleh, Patemah; Lee, James; Tan, Terence Wee-Kiat; Fong, Kam Weng; Chua, Eu Tiong; Wee, Joseph Tien-Seng

    2009-12-01

    Purpose: The aim of this study was to determine the efficacy and acute toxicity of our early experience with treating nasopharyngeal carcinoma (NPC) patients with intensity-modulated radiotherapy (IMRT). Methods and materials: A review was conducted on case records of 195 patients with histologically proven, nonmetastatic NPC treated with IMRT between 2002 and 2005. MRI of the head and neck was fused with CT simulation images. All plans had target volumes at three dose levels, with a prescribed dose of 70 Gy to the gross disease, in 2.0-2.12 Gy/fraction over 33-35 fractions. Cisplatin-based chemotherapy was offered to Stage III/IV patients. Results: Median patient age was 52 years, and 69% were male. Median follow-up was 36.5 months. One hundred and twenty-three patients had Stage III/IV disease (63%); 50 (26%) had T4 disease. One hundred and eighty-eight (96%) had complete response; 7 (4%) had partial response. Of the complete responders, 10 (5.3%) had local recurrence, giving a 3-year local recurrence-free survival estimate of 93.1% and a 3-year disease-free survival of 82.1%. Fifty-one patients (26%) had at least one Grade 3 toxicity. Conclusions: Results from our series are comparable to those reported by other centers. Acute toxicity is common. Local failure or persistent disease, especially in patients with bulky T4 disease, are issues that must be addressed in future trials.

  16. Intensity modulation under geometrical uncertainty: a deconvolution approach to robust fluence.

    PubMed

    Fan, Yankhua; Nath, Ravinder

    2010-07-21

    A deconvolution algorithm has been developed to obtain robust fluence for external beam radiation treatment under geometrical uncertainties. Usually, the geometrical uncertainty is incorporated in the dose optimization process for inverse treatment planning to determine the additional intensity modulation of the beam to counter the geometrical uncertainty. Most of these approaches rely on dose convolution which is subject to the error caused by patient surface curvature and internal inhomogeneity. In this work, based on an 1D deconvolution algorithm developed by Ulmer and Kaissl, a fluence-deconvolution approach was developed to obtain robust fluence through the deconvolution of the nominal static one given by any treatment planning system. It incorporates the geometrical uncertainty outside the dose optimization procedure and therefore avoids the error of dose convolution. Robust fluences were calculated for a 4 x 4 cm flat field, a prostate IMRT and a head and neck IMRT plan in a commercial treatment planning system. The corresponding doses were simulated for 30 fractions with the random Gaussian distribution of the iso-centers showing good agreement with the nominal static doses. The feasibility of this deconvolution approach for clinical IMRT planning has been demonstrated. Because it is separated from the optimization procedure, this method is more flexible and easier to integrate into different existing treatment planning systems to obtain robust fluence.

  17. SU-E-P-18: Intensity-Modulated Radiation Therapy for Cervical Esophageal Squamous Cell Carcinoma

    SciTech Connect

    Bai, W; Qiao, X; Zhou, Z; Song, Y; Zhang, R; Zhen, C

    2015-06-15

    Purpose: To retrospectively analyze the outcomes and prognostic factors of cervical esophageal squamous cell carcinoma (SCC) treated with intensity modulated radiation therapy (IMRT). Methods: Thirty-seven patients with cervical esophageal SCC treated with IMRT were analyzed retrospectively. They received 54–66 Gy in 27–32 fractions. Nineteen patients received concurrent (n=12) or sequential (n=7) platinum-based two drugs chemoradiotherapy. Overall survival (OS), local control rates (LCR) and prognostic factors were evaluated. Acute toxicities and patterns of first failures were observed. Results: The median follow-up was 46 months for alive patients. The l-, 3-, 4- and 5-year OS of the all patients were 83.8%, 59.1%, 47.5% and 32.6% respectively. The median survival time was 46 months. The l-, 3-,4- and 5-year LCR were 82.9%, 63.0%, 54.5% and 54.5%, respectively. Univariate and Multivariate analysis all showed that size of GTV was an independent prognostic factor (p=0.033, p=0.039). There were no patients with Grade 3 acute radiation esophagitis and Grade 2–4 acute pneumonitis. The local failure accounted for 70.0% of all treatment-related failures. Conclusion: IMRT is safe and effective in the treatment of cervical esophageal squamous cell carcinoma. Size of GTV is an independent prognostic factor. Local failure still remains the main reason of treatment failures. The authors declare no conflicts of interest in preparing this article.

  18. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy.

    PubMed

    D'Souza, Warren D; Zhang, Hao H; Nazareth, Daryl P; Shi, Leyuan; Meyer, Robert R

    2008-06-21

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods. PMID:18523351

  19. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    D'Souza, Warren D.; Zhang, Hao H.; Nazareth, Daryl P.; Shi, Leyuan; Meyer, Robert R.

    2008-06-01

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods.

  20. Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII] Intensity Mapping Experiment

    NASA Astrophysics Data System (ADS)

    Hunacek, J.; Bock, J.; Bradford, C. M.; Bumble, B.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Hailey-Dunsheath, S.; Gong, Y.; Kenyon, M.; Koch, P.; Li, C.-T.; O'Brient, R.; Shirokoff, E.; Shiu, C.; Staniszewski, Z.; Uzgil, B.; Zemcov, M.

    2016-08-01

    We are developing a series of close-packed modular detector arrays for TIME-Pilot, a new mm-wavelength grating spectrometer array that will map the intensity fluctuations of the redshifted 157.7 \\upmu m emission line of singly ionized carbon ([CII]) from redshift z ˜ 5 to 9. TIME-Pilot's two banks of 16 parallel-plate waveguide spectrometers (one bank per polarization) will have a spectral range of 183-326 GHz and a resolving power of R ˜ 100. The spectrometers use a curved diffraction grating to disperse and focus the light on a series of output arcs, each sampled by 60 transition edge sensor (TES) bolometers with gold micro-mesh absorbers. These low-noise detectors will be operated from a 250 mK base temperature and are designed to have a background-limited NEP of {˜ }10^{-17} mathrm {W}/mathrm {Hz}^{1/2}. This proceeding presents an overview of the detector design in the context of the TIME-Pilot instrument. Additionally, a prototype detector module produced at the Microdevices Laboratory at JPL is shown.

  1. In vivo measurements with MOSFET detectors in oropharynx and nasopharynx intensity-modulated radiation therapy

    SciTech Connect

    Marcie, Serge . E-mail: serge.marcie@cal.nice.fnclcc.fr; Charpiot, Elisabeth; Bensadoun, Rene-Jean; Ciais, Gaston; Herault, Joel; Costa, Andre; Gerard, Jean-Pierre

    2005-04-01

    Purpose: To evaluate the feasibility of in vivo measurements with metal oxide semiconductor field effect transistor (MOSFET) dosimeters for oropharynx and nasopharynx intensity-modulated radiation therapy (IMRT). Methods and Materials: During a 1-year period, in vivo measurements of the dose delivered to one or two points of the oral cavity by IMRT were obtained with MOSFET dosimeters. Measurements were obtained during each session of 48 treatment plans for 21 patients, all of whom were fitted with a custom-made mouth plate. Calculated and measured values were compared. Results: A total of 344 and 452 measurements were performed for the right and left sides, respectively, of the oral cavity. Seventy percent of the discrepancies between calculated and measured values were within {+-}5%. Uncertainties were due to interfraction patient positions, intrafraction patient movements, and interfraction MOSFET positions. Nevertheless, the discrepancies between the measured and calculated means were within {+-}5% for 92% and 95% of the right and left sides, respectively. Comparison of these discrepancies and the discrepancies between calculated values and measurements made on a phantom revealed that all differences were within {+-}5%. Conclusion: Our experience demonstrates the feasibility of in vivo measurements with MOSFET dosimeters for oropharynx and nasopharynx IMRT.

  2. Accuracy of inhomogeneity correction algorithm in intensity-modulated radiotherapy of head-and-neck tumors

    SciTech Connect

    Yoon, Myonggeun; Lee, Doo-Hyun; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong . E-mail: cool_park@ncc.re.kr; Cho, Kwan Ho

    2007-04-01

    We examined the degree of calculated-to-measured dose difference for nasopharyngeal target volume in intensity-modulated radiotherapy (IMRT) based on the observed/expected ratio using patient anatomy with humanoid head-and-neck phantom. The plans were designed with a clinical treatment planning system that uses a measurement-based pencil beam dose-calculation algorithm. Two kinds of IMRT plans, which give a direct indication of the error introduced in routine treatment planning, were categorized and evaluated. The experimental results show that when the beams pass through the oral cavity in anthropomorphic head-and-neck phantom, the average dose difference becomes significant, revealing about 10% dose difference to prescribed dose at isocenter. To investigate both the physical reasons of the dose discrepancy and the inhomogeneity effect, we performed the 10 cases of IMRT quality assurance (QA) with plastic and humanoid phantoms. Our result suggests that the transient electronic disequilibrium with the increased lateral electron range may cause the inaccuracy of dose calculation algorithm, and the effectiveness of the inhomogeneity corrections used in IMRT plans should be evaluated to ensure meaningful quality assurance and delivery.

  3. Risk of second cancer from scattered radiation of intensity-modulated radiotherapies with lung cancer

    PubMed Central

    2013-01-01

    Purpose To compare the risk of secondary cancer from scattered and leakage doses following intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT) and tomotherapy (TOMO) in patients with lung cancer. Methods IMRT, VMAT and TOMO were planned for five lung cancer patients. Organ equivalent doses (OEDs) are estimated from the measured corresponding secondary doses during irradiation at various points 20 to 80 cm from the iso-center by using radio-photoluminescence glass dosimeter (RPLGD). Results The secondary dose per Gy from IMRT, VMAT and TOMO for lung cancer, measured 20 to 80 cm from the iso-center, are 0.02~2.03, 0.03~1.35 and 0.04~0.46 cGy, respectively. The mean values of relative OED of secondary dose of VMAT and TOMO, which is normalized by IMRT, ranged between 88.63% and 41.59% revealing 88.63% and 41.59% for thyroid, 82.33% and 41.85% for pancreas, 77.97% and 49.41% for bowel, 73.42% and 72.55% for rectum, 74.16% and 81.51% for prostate. The secondary dose and OED from TOMO became similar to those from IMRT and VMAT as the distance from the field edge increased. Conclusions OED based estimation suggests that the secondary cancer risk from TOMO is less than or comparable to the risks from conventional IMRT and VMAT. PMID:23452670

  4. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study

    NASA Astrophysics Data System (ADS)

    Yepes, Pablo P.; Eley, John G.; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe

    2016-04-01

    Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs.

  5. Neutron intensity modulation and time-focusing with integrated Larmor and resonant frequency techniques

    NASA Astrophysics Data System (ADS)

    Zhao, Jinkui; Hamilton, William A.; Lee, Sung-Woo; Robertson, J. L.; Crow, Lowell; Kang, Yoon W.

    2015-09-01

    The analysis of neutron diffraction experiments often assumes that neutrons are elastically scattered from the sample. However, there is growing evidence that a significant fraction of the detected neutrons is in fact inelastically scattered, especially from soft materials and aqueous samples. Ignoring these inelastic contributions gives rise to inaccurate experimental results. To date, there has been no simple method with broad applicability for inelastic signal separation in neutron diffraction experiments. Here, we present a simple and robust method that we believe could be suited for this purpose. We use two radio frequency resonant spin flippers integrated with a Larmor precession field to modulate the neutron intensity and to encode the inelastic scattering information into the neutron data. All three components contribute to the spin encoding. The Larmor field serves several additional purposes. Its usage facilitates neutron time-focusing, eliminates the need for stringent magnetic shielding, and allows for compact setups. The scheme is robust, simple, and flexible. We believe that, with further improvements, it has the potential of adding inelastic signal discrimination capabilities to many existing diffraction instruments in the future.

  6. Accounting for range uncertainties in the optimization of intensity modulated proton therapy.

    PubMed

    Unkelbach, Jan; Chan, Timothy C Y; Bortfeld, Thomas

    2007-05-21

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be sensitive to range variations. The dose distribution may deteriorate substantially when the actual range of a pencil beam does not match the assumed range. We present two treatment planning concepts for IMPT which incorporate range uncertainties into the optimization. The first method is a probabilistic approach. The range of a pencil beam is assumed to be a random variable, which makes the delivered dose and the value of the objective function a random variable too. We then propose to optimize the expectation value of the objective function. The second approach is a robust formulation that applies methods developed in the field of robust linear programming. This approach optimizes the worst case dose distribution that may occur, assuming that the ranges of the pencil beams may vary within some interval. Both methods yield treatment plans that are considerably less sensitive to range variations compared to conventional treatment plans optimized without accounting for range uncertainties. In addition, both approaches--although conceptually different--yield very similar results on a qualitative level. PMID:17473350

  7. Analysis of Factors Influencing the Development of Xerostomia during Intensity-Modulated Radiotherapy

    PubMed Central

    Randall, Ken; Stevens, Jason; Yepes, Juan Fernando; Randall, Marcus E.; Kudrimoti, Mahesh; Feddock, Jonathan; Xi, Jing; Kryscio, Richard J.; Miller, Craig S.

    2013-01-01

    OBJECTIVES Factors influencing xerostomia during intensity-modulated radiation therapy (IMRT) were assessed. METHODS A 6-week study of 32 head and neck cancer (HNC) patients was performed. Subjects completed the Xerostomia Inventory (XI) and provided stimulated saliva (SS) at baseline, week two and at end of IMRT. Influence of SS flow rate (SSFR), calcium and mucin 5b (MUC5b) concentrations and radiation dose on xerostomia was determined. RESULTS HNC subjects experienced mean SSFR decline of 36% by visit two (N=27; p=0.012) and 57% by visit three (N=20; p=0.0004), Concentrations of calcium and MUC5b increased, but not significantly during IMRT (p>0.05). Xerostomia correlated most with decreasing salivary flow rate as determined by Spearman correlations (p<0.04) and linear mixed models (p<0.0001). CONCLUSIONS Although IMRT is sparing to the parotid glands, it has an early effect on SSFR and the constituents in saliva in a manner that is associated with the perception of xerostomia. PMID:23523462

  8. Application of Histogram Analysis in Radiation Therapy (HART) in Intensity Modulation Radiation Therapy (IMRT) Treatments

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-03-01

    A carcinoma is a malignant cancer that emerges from epithelial cells in structures through out the body.It invades the critical organs, could metastasize or spread to lymph nodes.IMRT is an advanced mode of radiation therapy treatment for cancer. It delivers more conformal doses to malignant tumors sparing the critical organs by modulating the intensity of radiation beam.An automated software, HART (S. Jang et al.,2008,Med Phys 35,p.2812) was used for efficient analysis of dose volume histograms (DVH) for multiple targets and critical organs in four IMRT treatment plans for each patient. IMRT data for ten head and neck cancer patients were exported as AAPM/RTOG format files from a commercial treatment planning system at Northwestern Memorial Hospital (NMH).HART extracted DVH statistics were used to evaluate plan indices and to analyze dose tolerance of critical structures at prescription dose (PD) for each patient. Mean plan indices (n=10) were found to be in good agreement with published results for Linac based plans. The least irradiated volume at tolerance dose (TD50) was observed for brainstem and the highest volume for larynx in SIB treatment techniques. Thus HART, an open source platform, has extensive clinical implications in IMRT treatments.

  9. Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: electromechanical design and validation.

    PubMed

    Farr, J B; Maughan, R L; Yudelev, M; Blosser, E; Brandon, J; Horste, T; Forman, J D

    2006-09-01

    The electromechanical properties of a 120-leaf, high-resolution, computer-controlled, fast neutron multileaf collimator (MLC) are presented. The MLC replaces an aging, manually operated multirod collimator. The MLC leaves project 5 mm in the isocentric plane perpendicular to the beam axis. A taper is included on the leaves matching beam divergence along one axis. The 5-mm leaf projection width is chosen to give high-resolution conformality across the entire field. The maximum field size provided is 30 x 30 cm2. To reduce the interleaf transmission a 0.254-mm blocking step is included. End-leaf steps totaling 0.762 mm are also provided allowing opposing leaves to close off within the primary radiation beam. The neutron MLC also includes individual 45 degrees and 60 degrees automated universal tungsten wedges. The automated high-resolution neutron collimation provides an increase in patient throughput capacity, enables a new modality, intensity modulated neutron therapy, and limits occupational radiation exposure by providing remote operation from a shielded console area. PMID:17022226

  10. Intensity-modulated radiation therapy to bilateral lower limb extremities concurrently: a planning case study

    SciTech Connect

    Fitzgerald, Emma Miles, Wesley; Fenton, Paul; Frantzis, Jim

    2014-09-15

    Non-melanomatous skin cancers represent 80% of all newly diagnosed cancers in Australia with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being the most common. A previously healthy 71-year-old woman presented with widespread and tender superficial skin cancers on the lower bilateral limbs. External beam radiation therapy through the use of intensity-modulated radiation therapy (IMRT) was employed as the treatment modality of choice as this technique provides conformal dose distribution to a three-dimensional treatment volume while reducing toxicity to surrounding tissues. The patient was prescribed a dose of 60 Gy to the planning target volume (PTV) with 1.0 cm bolus over the ventral surface of each limb. The beam arrangement consisted of six treatment fields that avoided entry and exit through the contralateral limb. The treatment plans met the International Commission on Radiation Units and Measurements (ICRU) guidelines and produced highly conformal dosimetric results. Skin toxicity was measured against the National Cancer Institute: Common Terminology Criteria for Adverse Events (NCI: CTCAE) version 3. A well-tolerated treatment was delivered with excellent results given the initial extent of the disease. This case study has demonstrated the feasibility and effectiveness of IMRT for skin cancers as an alternative to surgery and traditional superficial radiation therapy, utilising a complex PTV of the extremities for patients with similar presentations.

  11. Racial Differences in Diffusion of Intensity-Modulated Radiation Therapy for Localized Prostate Cancer.

    PubMed

    Cobran, Ewan K; Chen, Ronald C; Overman, Robert; Meyer, Anne-Marie; Kuo, Tzy-Mey; O'Brien, Jonathon; Sturmer, Til; Sheets, Nathan C; Goldin, Gregg H; Penn, Dolly C; Godley, Paul A; Carpenter, William R

    2016-09-01

    Intensity-modulated radiation therapy (IMRT), an innovative treatment option for prostate cancer, has rapidly diffused over the past decade. To inform our understanding of racial disparities in prostate cancer treatment and outcomes, this study compared diffusion of IMRT in African American (AA) and Caucasian American (CA) prostate cancer patients during the early years of IMRT diffusion using the Surveillance, Epidemiology and End Results (SEER)-Medicare linked database. A retrospective cohort of 947 AA and 10,028 CA patients diagnosed with localized prostate cancer from 2002 through 2006, who were treated with either IMRT or non-IMRT as primary treatment within 1 year of diagnoses was constructed. Logistic regression was used to examine potential differences in diffusion of IMRT in AA and CA patients, while adjusting for socioeconomic and clinical covariates. A significantly smaller proportion of AA compared with CA patients received IMRT for localized prostate cancer (45% vs. 53%, p < .0001). Racial differences were apparent in multivariable analysis though did not achieve statistical significance, as time and factors associated with race (socioeconomic, geographic, and tumor related factors) explained the preponderance of variance in use of IMRT. Further research examining improved access to innovative cancer treatment and technologies is essential to reducing racial disparities in cancer care.

  12. Radiochromic film based transit dosimetry for verification of dose delivery with intensity modulated radiotherapy

    SciTech Connect

    Chung, Kwangzoo; Lee, Kiho; Shin, Dongho; Kyung Lim, Young; Byeong Lee, Se; Yoon, Myonggeun; Son, Jaeman; Yong Park, Sung

    2013-02-15

    Purpose: To evaluate the transit dose based patient specific quality assurance (QA) of intensity modulated radiation therapy (IMRT) for verification of the accuracy of dose delivered to the patient. Methods: Five IMRT plans were selected and utilized to irradiate a homogeneous plastic water phantom and an inhomogeneous anthropomorphic phantom. The transit dose distribution was measured with radiochromic film and was compared with the computed dose map on the same plane using a gamma index with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit. Results: While the average gamma index for comparisons of dose distributions was less than one for 98.9% of all pixels from the transit dose with the homogeneous phantom, the passing rate was reduced to 95.0% for the transit dose with the inhomogeneous phantom. Transit doses due to a 5 mm setup error may cause up to a 50% failure rate of the gamma index. Conclusions: Transit dose based IMRT QA may be superior to the traditional QA method since the former can show whether the inhomogeneity correction algorithm from TPS is accurate. In addition, transit dose based IMRT QA can be used to verify the accuracy of the dose delivered to the patient during treatment by revealing significant increases in the failure rate of the gamma index resulting from errors in patient positioning during treatment.

  13. Forward-planning intensity-modulated radiotherapy technique for prostate cancer.

    PubMed

    Metwaly, Mohamed; Awaad, Awaad Mousa; El-Sayed, El-Sayed Mahmoud; Sallam, Abdel Sattar Mohamed

    2007-11-05

    In this study, we present an intensity-modulated radiotherapy technique based on forward planning dose calculations to provide a concave dose distribution to the prostate and seminal vesicles by means of modified dynamic arc therapy (M-DAT). Dynamic arcs (350 degrees) conforming to the beam's eye view of the prostate and seminal vesicles while shielding the rectum, combined with two lateral oblique conformal fields (15 degrees with respect to laterals) fitting the prostate only,were applied to deliver doses of 78 Gy and 61.23 Gy in 39 fractions to the prostate and seminal vesicles respectively. Dynamic wedges (45 degrees of thick end, anteriorly oriented) were used with conformal beams to adjust the dose homogeneity to the prostate, although in some cases, hard wedges (30 degrees of thick part,inferiorly oriented) were used with arcs to adjust the dose coverage to the seminal vesicles. The M-DAT was applied to 10 patients in supine and 10 patients in prone positioning to determine the proper patient positioning for optimum protection of the rectum. The M-DAT was compared with the simplified intensity-modulated arc therapy (SIMAT) technique, composed of three phases of bilateral dynamic arcs. The mean rectal dose in M-DAT for prone patients was 22.5 +/- 5.1 Gy; in M-DAT and SIMAT for supine patients, it was 30.2 +/- 5.1 Gy and 39.4 +/- 6.0 Gy respectively. The doses to 15%, 25%, 35%, and 50% of the rectum volume in M-DAT for prone patients were 44.5 +/- 10.2 Gy, 33.0 +/- 8.2 Gy, 25.3 +/- 6.4 Gy, and 16.3 +/- 5.6 Gy respectively. These values were lower than those in M-DAT and in SIMAT for supine patients by 7.7%, 18.2%, 22.4%, and 28.5% and by 25.0%, 32.1%, 34.9%, and 41.9% of the prescribed dose (78 Gy) respectively. Ion chamber measurements showed good agreement of the calculated and measured isocentric dose (maximum deviation of 3.5%). Accuracy of the dose distribution calculation was evaluated by film dosimetry using a gamma index, allowing 3% dose variation and

  14. Quasi-phase-matched four-wave-mixing of optical pulses in periodically modulated silicon photonic wires

    NASA Astrophysics Data System (ADS)

    Lavdas, Spyros; Driscoll, Jeffrey B.; Grote, Richard R.; Osgood, Richard M.; Panoiu, Nicolae C.

    2014-05-01

    We demonstrate enhanced conversion efficiency (CE) and parametric amplification of optical pulses via quasiphase- matched four-wave-mixing (FWM) in long-period Bragg waveguides made of silicon. Our study is based on a rigorous theoretical model that describes optical pulse dynamics in a periodically, adiabatically modulated silicon photonic waveguide and a comprehensive set of numerical simulations of pulse interaction in such gratings. More specifically, our theoretical model takes into account all of the relevant linear and nonlinear optical effects, including free-carriers generation, two-photon absorption, and self-phase modulation, as well as modal frequency dispersion up to the fourth-order. Due to its relevance to practical applications, a key issue investigated in our work is the dependence of the efficiency of the FWM process on the waveguide parameters and the operating wavelength. In particular, our analysis suggests that by varying the waveguide width by just a few tens of nanometers the wavelengths of the phase-matched waves can be shifted by hundreds of nanometers. Our numerical simulations show also that, in the anomalous group-velocity dispersion regime, a CE enhancement of more than 20 dB, as compared to the case of a waveguide with constant width, can be easily achieved.

  15. Full-duplex lightwave transport systems employing phase-modulated RoF and intensity-remodulated CATV signals

    NASA Astrophysics Data System (ADS)

    Li, Chung-Yi; Su, Heng-Sheng; Chen, Chia-Yi; Lu, Hai-Han; Chen, Hwan-Wen; Chang, Ching-Hung; Jiang, Chang-Han

    2011-07-01

    A full-duplex lightwave transport system employing phase-modulated radio-over-fiber (RoF) and intensity-remodulated CATV signals in two-way transmission is proposed and experimentally demonstrated. The transmission performances of RoF and CATV signals are investigated in bidirectional way, with the assistance of only one optical sideband and optical single sideband (SSB) schemes at the receiving sites. The experimental results show that the limitation on the optical modulation index (OMI) of the downlink RoF signal can be relaxed due to the constant intensity of phase modulation scheme. Impressive transmission performances of bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) were obtained over two 20-km single-mode fiber (SMF) links. This proposed system reveals an outstanding one with economy and convenience to be installed.

  16. Pelvic Lymph Node Irradiation Including Pararectal Sentinel Nodes for Prostate Cancer Patients: Treatment Optimization Comparing Intensity Modulated X-rays, Volumetric Modulated Arc Therapy, and Intensity Modulated Proton Therapy.

    PubMed

    Vees, Hansjörg; Dipasquale, Giovanna; Nouet, Philippe; Zilli, Thomas; Cozzi, Luca; Miralbell, Raymond

    2015-04-01

    We aimed to assess the dosimetric impact of advanced delivery radiotherapy techniques using either intensity modulated x-ray beams (IMXT), volumetric modulated arc therapy (VMAT), or intensity modulated proton therapy (IMPT), for high-risk prostate cancer patients with sentinel nodes in the pararectal region. Twenty high-risk prostate cancer patients were included in a prospective trial evaluating sentinel nodes on pelvic SPECT acquisition. To be eligible for the dosimetric study, patients had to present with pararectal sentinel nodes usually not included in the clinical target volume encompassing the pelvic lymph nodes. Radiotherapy-plans including the prostate, the seminal vesicles, and the pelvic lymph nodes with the pararectal sentinel nodes were optimized for 6 eligible patients. IMXT and IMPT were delivered with 7 and 3 beams respectively and VMAT with 2 arcs. Results were assessed with Dose-Volume Histograms and predictive normal tissue complication probabilities (NTCPs) models between the three competing treatment modalities aiming to deliver a total dose of 50.4 Gy in 1.8 Gy daily fractions. Target coverage was optimized with IMPT when compared to IMXT and VMAT. Coverage of the sentinel node was slightly better with IMXT (D98% 5 57.3 ± 5.1 Gy) when compared with VMAT (D98% 5 56.2 ± 4.1 Gy). The irradiation of rectal, bladder, small bowel, and femoral heads volumes was significantly reduced with IMPT when compared to IMXT and VMAT. NTCPs rates for rectal and bladder ≥ grade-3 late toxicity were better with IMPT (0.4 ± 0.0% and 0.0 ± 0.0%) compared with IMXT (4.6 ± 3.3% and 1.4 ± 1.1%), and VMAT (4.5 ± 4.0% and 1.6 ± 1.6%), respectively. Acceptable dose-volume distributions and low rectal and urinary NTCPs were estimated to geometrically complex pelvic volumes such as the ones proposed in this study using IMXT, VMAT and IMPT. IMPT succeeded, however, to propose the best physical and biological treatment plans compared to both X-ray derived plans.

  17. On the performances of Intensity Modulated Protons, RapidArc and Helical Tomotherapy for selected paediatric cases

    PubMed Central

    Fogliata, Antonella; Yartsev, Slav; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Wyttenbach, Rolf; Bauman, Glenn; Cozzi, Luca

    2009-01-01

    Background To evaluate the performance of three different advanced treatment techniques on a group of complex paediatric cancer cases. Methods CT images and volumes of interest of five patients were used to design plans for Helical Tomotherapy (HT), RapidArc (RA) and Intensity Modulated Proton therapy (IMP). The tumour types were: extraosseous, intrathoracic Ewing Sarcoma; mediastinal Rhabdomyosarcoma; metastastis of base of skull with bone, para-nasal and left eye infiltration from Nephroblastoma of right kidney; metastatic Rhabdomyosarcoma of the anus; Wilm's tumour of the left kidney with multiple liver metastases. Cases were selected for their complexity regardless the treatment intent and stage. Prescribed doses ranged from 18 to 53.2 Gy, with four cases planned using a Simultaneous Integrated Boost strategy. Results were analysed in terms of dose distributions and dose volume histograms. Results For all patients, IMP plans lead to superior sparing of organs at risk and normal healthy tissue, where in particular the integral dose is halved with respect to photon techniques. In terms of conformity and of spillage of high doses outside targets (external index (EI)), all three techniques were comparable; CI90% ranged from 1.0 to 2.3 and EI from 0 to 5%. Concerning target homogeneity, IMP showed a variance (D5%–D95%) measured on the inner target volume (highest dose prescription) ranging from 5.9 to 13.3%, RA from 5.3 to 11.8%, and HT from 4.0 to 12.2%. The range of minimum significant dose to the same target was: (72.2%, 89.9%) for IMP, (86.7%, 94.1%) for RA, and (79.4%, 94.8%) for HT. Similarly, for maximum significant doses: (103.8%, 109.4%) for IMP, (103.2%, 107.4%) for RA, and (102.4%, 117.2%) for HT. Treatment times (beam-on time) ranged from 123 to 129 s for RA and from 146 to 387 s for HT. Conclusion Five complex pediatric cases were selected as representative examples to compare three advanced radiation delivery techniques. While differences were noted

  18. Laser-induced damage of fused silica on high-power laser: beam intensity modulation, optics defect, contamination

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfeng; Sun, Mingyin; Wu, Rong; Lu, Xinqiang; Lin, Zunqi; Zhu, Jianqiang

    2015-11-01

    The wedged focus lens of fused silica, one of the final optics assembly's optics, focuses the 351 nm beam onto target and separates the residual 1053 and 527 nm light with 351 nm light. After the experiment with beam energies at 3ω range from 3 to 5KJ, and pulse shapes about 3ns, the wedged focus lens has laser-induced damage at particular area. Analysis the damage result, there are three reasons to induce these damages. These reasons are beam intensity modulation, optics defect and contamination that cause different damage morphologies. The 3ω beam intensity modulation, one of three factors, is the mostly import factor to induce damage. Here, the n2 nonlinear coefficient of fused silica material can lead to small-scale self-focusing filament because of optics thickness and beam intensity. And some damage-filaments' tails are bulk damage spots because there are subsurface scratches or metal contaminations.

  19. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    SciTech Connect

    Clivio, Alessandro; Kluge, Anne; Cozzi, Luca; Köhler, Christhardt; Neumann, Oliver; Vanetti, Eugenio; Wlodarczyk, Waldemar; Marnitz, Simone

    2013-12-01

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D{sub 98%} was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm{sup 3} of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost

  20. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    SciTech Connect

    Liang, Jian; Hu, Weida Ye, Zhenhua; Li, Zhifeng; Chen, Xiaoshuang Lu, Wei; Liao, Lei

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infrared focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.

  1. Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy, and intensity-modulated radiation therapy for left-sided early breast cancer

    SciTech Connect

    Lin, Jia-Fu; Yeh, Dah-Cherng; Yeh, Hui-Ling; Chang, Chen-Fa; Lin, Jin-Ching

    2015-10-01

    To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results in dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.

  2. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  3. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Choi, Kyoung-Sik

    2014-04-01

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ%≤1, γ avg <0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  4. Intensity-modulated radiosurgery treatment planning by fluence mapping optimized multi-isocenter plans

    NASA Astrophysics Data System (ADS)

    St. John, Theodore Jeffrey

    Stereotactic radiosurgery (SRS) is a non-invasive surgical technique of using a high intensity beam of x rays to obliterate intracranial lesions. The multiple-isocenter, circular-collimator, arc technique has been used successfully at the University of Florida since the inception of their radiosurgery program in 1988. This technique has been shown to produce highly conformal radiation dose distributions with steep dose gradients, which are key factors in delivering high dose to the tumor and low dose to surrounding healthy tissue. However, the time required to deliver the treatment to a complex target requiring many isocenters may exceed several hours. In this investigation, a unique method of intensity modulation that approximates the fluence map produced by the multiple-isocenter arc technique is employed. An algorithm was created that reads the dosimetry file from the multiple-isocenter treatment plan, segments each arc into a set of static beams and combines all of the beams from a set of table and gantry angles so that they can be delivered using a miniature multi-leaf collimator (mMLC). The mMLC shapes each beam, in such a way as to closely approximate the original dose distribution, alleviating the need to reposition the patient or manually change the collimator for each isocenter. The purpose of this research is to determine how well a mMLC, which has a set number of leaves with finite leaf widths, can approximate the dose distribution produced by the standard circular collimator, arc technique. The investigation begins with a study of how the dose distribution is changed by using a set of static beams in place of arcs, followed by a study of the effect of MLC leaf width and the development and application of the experimental fluence-mapped MLC treatment technique. The development and testing of the fluence-mapping algorithm, a dosimetry program, and several graphicaluser-interface tools are described. These tools were used to calculate and compare the dose

  5. Threshold intensity and coefficient of raman scattering amplification in a high- Q bilayer microresonator during the formation of internal and external submicron photonic jets: A photonic nanojet in the near field

    NASA Astrophysics Data System (ADS)

    Zhuravlev, M. V.; Solis, N. W.; Peretyagin, P. Yu.; Okun'kova, A. A.; Torrecillas, R.

    2016-04-01

    Using quantum and semiclassical approaches, the energy excitation threshold for induced Raman scattering is estimated and a relationship between the excitation threshold and the concentration of optically active molecules in a bilayer microresonator is established. Estimates are made during the formation of specially configured optical fields: internal and external photonic nanojets. Based on the amount of stored energy per mode and the value of the threshold intensity, an additional generalized selection rule for whispering gallery modes is suggested. It is shown that the bilayer microresonator can focus incident radiation (laser pumping) into a submicron focal volume at a low threshold intensity.

  6. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy

    SciTech Connect

    Islam, Mohammad K.; Norrlinger, Bernhard D.; Smale, Jason R.; Heaton, Robert K.; Galbraith, Duncan; Fan, Cary; Jaffray, David A.

    2009-12-15

    Purpose: To develop an independent and on-line beam monitoring system, which can validate the accuracy of segment-by-segment energy fluence delivery for each treatment field. The system is also intended to be utilized for pretreatment dosimetric quality assurance of intensity modulated radiation therapy (IMRT), on-line image-guided adaptive radiation therapy, and volumetric modulated arc therapy. Methods: The system, referred to as the integral quality monitor (IQM), utilizes an area integrating energy fluence monitoring sensor (AIMS) positioned between the final beam shaping device [i.e., multileaf collimator (MLC)] and the patient. The prototype AIMS consists of a novel spatially sensitive large area ionization chamber with a gradient along the direction of the MLC motion. The signal from the AIMS provides a simple output for each beam segment, which is compared in real time to the expected value. The prototype ionization chamber, with a physical area of 22x22 cm{sup 2}, has been constructed out of aluminum with the electrode separations varying linearly from 2 to 20 mm. A calculation method has been developed to predict AIMS signals based on an elementwise integration technique, which takes into account various predetermined factors, including the spatial response function of the chamber, MLC characteristics, beam transmission through the secondary jaws, and field size factors. The influence of the ionization chamber on the beam has been evaluated in terms of transmission, surface dose, beam profiles, and depth dose. The sensitivity of the system was tested by introducing small deviations in leaf positions. A small set of IMRT fields for prostate and head and neck plans was used to evaluate the system. The ionization chamber and the data acquisition software systems were interfaced to two different types of linear accelerators: Elekta Synergy and Varian iX. Results: For a 10x10 cm{sup 2} field, the chamber attenuates the beam intensity by 7% and 5% for 6 and 18

  7. Feasibility of dose escalation using intensity-modulated radiotherapy in posthysterectomy cervical carcinoma

    SciTech Connect

    D'Souza, Warren D. . E-mail: wdsou001@umaryland.edu; Ahamad, Anesa A.; Iyer, Revathy B.; Salehpour, Mohammad R.; Jhingran, Anuja; Eifel, Patricia J.

    2005-03-15

    Purpose: To evaluate retrospectively the utility of intensity-modulated radiotherapy (IMRT) in reducing the volume of normal tissues receiving radiation at varying dose levels when the female pelvis after hysterectomy is treated to doses of 50.4 Gy and 54 Gy. Methods and materials: Computed tomography scans from 10 patients who had previously undergone conventional postoperative RT were selected. The clinical tumor volume (vaginal apex and iliac nodes) and organs at risk were contoured. Margins were added to generate the planning tumor volume. The Pinnacle and Corvus planning systems were used to develop conventional and IMRT plans, respectively. Conventional four-field plans were prescribed to deliver 45 Gy (4F{sub 45Gy}) or 50.4 Gy; eight-field IMRT plans were prescribed to deliver 50.4 Gy (IMRT{sub 50.4Gy}) or 54 Gy (IMRT{sub 54Gy}) to the planning tumor volume. All plans were normalized so that {>=}97% of the planning tumor volume received the prescribed dose. Student's t test was used to compare the volumes of organs at risk receiving the same doses with different plans. Results: The mean volume of bowel receiving {>=}45 Gy was lower with the IMRT{sub 50.4Gy} (33% lower) and IMRT{sub 54Gy} (18% lower) plans than with the 4F{sub 45Gy} plan. The mean volume of rectum receiving {>=}45 Gy or {>=}50 Gy was also significantly reduced with the IMRT plans despite an escalation of the prescribed dose from 45 Gy with the conventional plans to 54 Gy with IMRT. The mean volume of bladder treated to 45 Gy was the same or slightly lower with the IMRT{sub 50.4Gy} and IMRT{sub 54Gy} plans compared with the 4F{sub 45Gy} plan. Compared with the 4F{sub 45Gy} plan, the IMRT{sub 50.4Gy} plan resulted in a smaller volume of bowel receiving 35-45 Gy and a larger volume of bowel receiving 50-55 Gy. Compared with the 4F{sub 45Gy} plan, the IMRT{sub 54Gy} plan resulted in smaller volumes of bowel receiving 45-50 Gy; however, small volumes of bowel received 55-60 Gy with the IMRT plan

  8. Kilovoltage Intrafraction Monitoring for Prostate Intensity Modulated Arc Therapy: First Clinical Results

    SciTech Connect

    Ng, Jin Aun; Booth, Jeremy T.; Poulsen, Per R.; Fledelius, Walther; Worm, Esben Schjodt; Eade, Thomas; Hegi, Fiona; Kneebone, Andrew; Kuncic, Zdenka; Keall, Paul J.

    2012-12-01

    Purpose: Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT). Methods and Materials: Ten prostate cancer patients with implanted fiducial markers undergoing conventionally fractionated IMAT (RapidArc) were enrolled in an ethics-approved study of KIM. KIM involves acquiring kV images as the gantry rotates around the patient during treatment. Post-treatment, markers in these images were segmented to obtain 2D positions. From the 2D positions, a maximum likelihood estimation of a probability density function was used to obtain 3D prostate trajectories. The trajectories were analyzed to determine the motion type and the percentage of time the prostate was displaced {>=}3, 5, 7, and 10 mm. Independent verification of KIM positional accuracy was performed using kV/MV triangulation. Results: KIM was performed for 268 fractions. Various prostate trajectories were observed (ie, continuous target drift, transient excursion, stable target position, persistent excursion, high-frequency excursions, and erratic behavior). For all patients, 3D displacements of {>=}3, 5, 7, and 10 mm were observed 5.6%, 2.2%, 0.7% and 0.4% of the time, respectively. The average systematic accuracy of KIM was measured at 0.46 mm. Conclusions: KIM for prostate IMAT was successfully implemented clinically for the first time. Key advantages of this method are (1) submillimeter accuracy, (2) widespread applicability, and (3) a low barrier to clinical implementation. A disadvantage is that KIM delivers additional imaging dose to the patient.

  9. Is Planned Neck Dissection Necessary for Head and Neck Cancer After Intensity-Modulated Radiotherapy?

    SciTech Connect

    Yao Min |. E-mail: min-yao@uiowa.edu; Hoffman, Henry T.; Funk, Gerry F. |; Chang, Kristi; Smith, Russell B. |; Tan Huaming; Clamon, Gerald H.; Dornfeld, Ken |; Buatti, John M. |

    2007-07-01

    Purpose: The objective of this study was to determine regional control of local regional advanced head and neck squamous cell carcinoma (HNSCC) treated with intensity-modulated radiotherapy (IMRT), along with the role and selection criteria for neck dissection after IMRT. Methods and Materials: A total of 90 patients with stage N2A or greater HNSCC were treated with definitive IMRT from December 1999 to July 2005. Three clinical target volumes were defined and were treated to 70 to 74 Gy, 60 Gy, and 54 Gy, respectively. Neck dissection was performed for selected patients after IMRT. Selection criteria evolved during this period with emphasis on post-IMRT [{sup 18}F] fluorodeoxyglucose positron e