Sample records for intensity modulation radiotherapy

  1. Clinical experience with image-guided radiotherapy in an accelerated partial breast intensity-modulated radiotherapy protocol.

    PubMed

    Leonard, Charles E; Tallhamer, Michael; Johnson, Tim; Hunter, Kari; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L

    2010-02-01

    To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Reproducible deep-inspiration breath-hold irradiation with forward intensity-modulated radiotherapy for left-sided breast cancer significantly reduces cardiac radiation exposure compared to inverse intensity-modulated radiotherapy.

    PubMed

    Bolukbasi, Yasemin; Saglam, Yucel; Selek, Ugur; Topkan, Erkan; Kataria, Anglina; Unal, Zeynep; Alpan, Vildan

    2014-01-01

    To investigate the objective utility of our clinical routine of reproducible deep-inspiration breath-hold irradiation for left-sided breast cancer patients on reducing cardiac exposure. Free-breathing and reproducible deep-inspiration breath-hold scans were evaluated for our 10 consecutive left-sided breast cancer patients treated with reproducible deep-inspiration breath-hold. The study was based on the adjuvant dose of 50 Gy in 25 fractions of 2 Gy/fraction. Both inverse and forward intensity-modulated radiotherapy plans were generated for each computed tomography dataset. Reproducible deep-inspiration breath-hold plans with forward intensity-modulated radiotherapy significantly spared the heart and left anterior descending artery compared to generated free-breathing plans based on mean doses - free-breathing vs reproducible deep-inspiration breath-hold, left ventricle (296.1 vs 94.5 cGy, P = 0.005), right ventricle (158.3 vs 59.2 cGy, P = 0.005), left anterior descending artery (171.1 vs 78.1 cGy, P = 0.005), and whole heart (173.9 vs 66 cGy, P = 0.005), heart V20 (2.2% vs 0%, P = 0.007) and heart V10 (4.2% vs 0.3%, P = 0.007) - whereas they revealed no additional burden on the ipsilateral lung. Reproducible deep-inspiration breath-hold and free-breathing plans with inverse intensity-modulated radiotherapy provided similar organ at risk sparing by reducing the mean doses to the left ventricle, left anterior descending artery, heart, V10-V20 of the heart and right ventricle. However, forward intensity-modulated radiotherapy showed significant reduction in doses to the left ventricle, left anterior descending artery, heart, right ventricle, and contralateral breast (mean dose, 248.9 to 12.3 cGy, P = 0.005). The mean doses for free-breathing vs reproducible deep-inspiration breath-hold of the proximal left anterior descending artery were 1.78 vs 1.08 Gy and of the distal left anterior descending artery were 8.11 vs 3.89 Gy, whereas mean distances to the 50 Gy

  3. Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.

    PubMed

    Xi, Mian; Lin, Steven H

    2017-07-01

    Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.

  4. Locoregional control after intensity-modulated radiotherapy for nasopharyngeal carcinoma with an anatomy-based target definition.

    PubMed

    Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru; Ueda, Takashi; Kohno, Ryosuke; Nishio, Teiji; Arahira, Satoko; Motegi, Atsushi; Zenda, Sadamoto; Akimoto, Tetsuo; Tahara, Makoto; Hayashi, Ryuichi

    2013-12-01

    The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n = 21) and/or N2/3 (n = 24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer.

  5. Clinical evaluation of intensity-modulated radiotherapy for head and neck cancers

    PubMed Central

    Bhide, S A; Newbold, K L; Harrington, K J; Nutting, C M

    2012-01-01

    Radiotherapy and surgery are the principal curative modalities in treatment of head and neck cancer. Conventional two-dimensional and three-dimensional conformal radiotherapy result in significant side effects and altered quality of life. Intensity-modulated radiotherapy (IMRT) can spare the normal tissues, while delivering a curative dose to the tumour-bearing tissues. This article reviews the current role of IMRT in head and neck cancer from the point of view of normal tissue sparing, and also reviews the current published literature by individual head and neck cancer subsites. In addition, we briefly discuss the role of image guidance in head and neck IMRT, and future directions in this area. PMID:22556403

  6. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is

  7. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation.

    PubMed

    Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B

    2017-01-01

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is

  8. Travelling for treatment; does distance and deprivation affect travel for intensity-modulated radiotherapy in the rural setting for head and neck cancer?

    PubMed

    Cosway, B; Douglas, L; Armstrong, N; Robson, A

    2017-06-01

    NHS England has commissioned intensity-modulated radiotherapy for head and neck cancers from Newcastle hospitals for patients in North Cumbria. This study assessed whether travel distances affected the decision to travel to Newcastle (to receive intensity-modulated radiotherapy) or Carlisle (to receive conformal radiotherapy). All patients for whom the multidisciplinary team recommended intensity-modulated radiotherapy between December 2013 and January 2016 were included. Index of multiple deprivation scores and travel distances were calculated. Patients were also asked why they chose their treating centre. Sixty-nine patients were included in this study. There were no significant differences in travel distance (p = 0.53) or index of multiple deprivation scores (p = 0.47) between patients opting for treatment in Carlisle or Newcastle. However, 29 of the 33 patients gave travel distance as their main reason for not travelling for treatment. Quantitatively, travel distance and deprivation does not impact on whether patients accept intensity-modulated radiotherapy. However, patients say distance is a major barrier for access. Future research should explore how to reduce this.

  9. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, David I., E-mail: dirosenthal@mdanderson.or; Fuller, Clifton D.; Barker, Jerry L.

    2010-06-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapymore » consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.« less

  10. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caglar, Hale B.; Tishler, Roy B.; Othus, Megan

    2008-11-15

    Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessedmore » with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving {>=}50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving {>=}50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects

  11. Intensity Modulated Radiotherapy (IMRT) in head and neck cancers - an overview.

    PubMed

    Nutting, C M

    2012-07-01

    Radiotherapy (RT) is effective in head and neck cancers. Following RT, dryness and dysphagia are the 2 major sequelae which alter the quality of life (QOL) significantly in these patients. There is randomized evidence that Intensity Modulated Radiotherapy (IMRT) effectively spares the parotid glands. IMRT has been attempted in all head and neck subsites with encouraging results (discussed below). Role of IMRT in swallowing structure (constrictor muscles) sparing is less clear.Further improvement in results may be possible by using functional imaging at the time of RT planning and by image guidance/verification at the time of treatment delivery. The following text discusses these issues in detail. Head and neck cancer, IMRT.

  12. Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution.

    PubMed

    Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng

    2014-08-01

    During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.

  13. Clinical and dosimetric implications of intensity-modulated radiotherapy for early-stage glottic carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Matthew Christopher, E-mail: wardm3@ccf.org; Pham, Yvonne D.; Kotecha, Rupesh

    2016-04-01

    Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literaturemore » are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.« less

  14. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario.

    PubMed

    Yong, J H E; McGowan, T; Redmond-Misner, R; Beca, J; Warde, P; Gutierrez, E; Hoch, J S

    2016-06-01

    Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.

  15. Dosimetric analysis of testicular doses in prostate intensity-modulated and volumetric-modulated arc radiation therapy at different energy levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha

    2016-01-01

    The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from themore » intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.« less

  16. Postoperative Intensity-Modulated Radiotherapy in Low-Risk Endometrial Cancers: Final Results of a Phase I Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.i; Cilla, Savino M.P.; Ferrandina, Gabriella

    2010-04-15

    Purpose: To determine the maximum tolerated dose of short-course radiotherapy (intensity-modulated radiotherapy technique) to the upper two thirds of the vagina in endometrial cancers with low risk of local recurrence. Patients and Methods: A Phase I clinical trial was performed. Eligible patients had low-risk resected primary endometrial adenocarcinomas. Radiotherapy was delivered in 5 fractions over 1 week. The planning target volume was the clinical target volume plus 5 mm. The clinical target volume was defined as the upper two thirds of the vagina as evidenced at CT simulation by a vaginal radio-opaque device. The planning target volume was irradiated bymore » a seven-field intensity-modulated radiotherapy technique, planned by the Plato Sunrise inverse planning system. A first cohort of 6 patients received 25 Gy (5-Gy fractions), and a subsequent cohort received 30 Gy (6-Gy fractions). The Common Toxicity Criteria scale, version 3.0, was used to score toxicity. Results: Twelve patients with endometrial cancer were enrolled. Median age was 58 years (range, 49-74 years). Pathologic stage was IB (83.3%) and IC (16.7%). Median tumor size was 30 mm (range, 15-50 mm). All patients completed the prescribed radiotherapy. No patient experienced a dose-limiting toxicity at the first level, and the radiotherapy dose was escalated from 25 to 30 Gy. No patients at the second dose level experienced dose-limiting toxicity. The most common Grade 2 toxicity was gastrointestinal, which was tolerable and manageable. Conclusions: The maximum tolerated dose of short-course radiotherapy was 30 Gy at 6 Gy per fraction. On the basis of this result, we are conducting a Phase II study with radiotherapy delivered at 30 Gy.« less

  17. Dosimetric comparison between modulated arc therapy and static intensity modulated radiotherapy in thoracic esophageal cancer: a single institutional experience.

    PubMed

    Choi, Kyu Hye; Kim, Jina; Lee, Sea-Won; Kang, Young-Nam; Jang, HongSeok

    2018-03-01

    The objective of this study was to compare dosimetric characteristics of three-dimensional conformal radiotherapy (3D-CRT) and two types of intensity-modulated radiotherapy (IMRT) which are step-and-shoot intensity modulated radiotherapy (s-IMRT) and modulated arc therapy (mARC) for thoracic esophageal cancer and analyze whether IMRT could reduce organ-at-risk (OAR) dose. We performed 3D-CRT, s-IMRT, and mARC planning for ten patients with thoracic esophageal cancer. The dose-volume histogram for each plan was extracted and the mean dose and clinically significant parameters were analyzed. Analysis of target coverage showed that the conformity index (CI) and conformation number (CN) in mARC were superior to the other two plans (CI, p = 0.050; CN, p = 0.042). For the comparison of OAR, lung V 5 was lowest in s-IMRT, followed by 3D-CRT, and mARC (p = 0.033). s-IMRT and mARC had lower values than 3D-CRT for heart V 30 (p = 0.039), V 40 (p = 0.040), and V 50 (p = 0.032). Effective conservation of the lung and heart in thoracic esophageal cancer could be expected when using s-IMRT. The mARC was lower in lung V 10 , V 20 , and V 30 than in 3D-CRT, but could not be proven superior in lung V 5 . In conclusion, low-dose exposure to the lung and heart were expected to be lower in s-IMRT, reducing complications such as radiation pneumonitis or heart-related toxicities.

  18. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer.

    PubMed

    Kole, Thomas P; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D; Goodman, Karyn A

    2012-08-01

    To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this

  19. Intensity-Modulated Radiotherapy for Cervical Lymph Node Metastases From Unknown Primary Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madani, Indira; Vakaet, Luc; Bonte, Katrien

    2008-07-15

    Purpose: To compare the effectiveness of intensity-modulated radiotherapy (IMRT) and conventional (two-dimensional) radiotherapy in the treatment of cervical lymph node metastases from unknown primary cancer (UPC). Methods and Materials: Between February 2003 and September 2006, 23 patients with UPC of squamous cell carcinoma were treated with IMRT. Extended putative mucosal and bilateral nodal sites were irradiated to a median dose of 66 Gy. In 19 patients, IMRT was performed after lymph node dissection, and in 4 patients primary radiotherapy was given. The conventional radiotherapy group (historical control group) comprised 18 patients treated to a median dose of 66 Gy betweenmore » August 1994 and October 2003. Results: Twenty patients completed treatment. As compared with conventional radiotherapy, the incidence of Grade 3 acute dysphagia was significantly lower in the IMRT group (4.5% vs. 50%, p = 0.003). By 6 months, Grade 3 xerostomia was detected in 11.8% patients in the IMRT group vs. 53.4% in the historical control group (p = 0.03). No Grade 3 dysphagia or skin fibrosis was observed after IMRT but these were noted after conventional radiotherapy (26.7%, p = 0.01) and 26.7%, p = 0.03) respectively). With median follow-up of living patients of 17 months, there was no emergence of primary cancer. One patient had persistent nodal disease and another had nodal relapse at 5 months. Distant metastases were detected in 4 patients. The 2-year overall survival and distant disease-free probability after IMRT did not differ significantly from those for conventional radiotherapy (74.8% vs. 61.1% and 76.3% vs. 68.4%, respectively). Conclusions: Use of IMRT for UPC resulted in lower toxicity than conventional radiotherapy, and was similar in efficacy.« less

  20. Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Si Young; Liu, H. Helen; Mohan, Radhe

    2008-08-01

    Purpose: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). Methods and Materials: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculationsmore » were analyzed. Results: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. Conclusions: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.« less

  1. Bladder radiotherapy treatment: A retrospective comparison of 3-dimensional conformal radiotherapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it; Kuthpady, Shrinivas; Anderson, Anne

    To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results.more » Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.« less

  2. Prospective Trial of High-Dose Reirradiation Using Daily Image Guidance With Intensity-Modulated Radiotherapy for Recurrent and Second Primary Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Allen M., E-mail: allen.chen@ucdmc.ucdavis.edu; Farwell, D. Gregory; Luu, Quang

    2011-07-01

    Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651more » daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 {+-} 1.25 mm, 1.79 {+-} 1.45 mm, and 1.98 {+-} 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.« less

  3. Image-Guided Intensity-Modulated Radiotherapy for Pancreatic Carcinoma

    PubMed Central

    Fuss, Martin; Wong, Adrian; Fuller, Clifton D.; Salter, Bill J.; Fuss, Cristina; Thomas, Charles R.

    2007-01-01

    Purpose To present the techniques and preliminary outcomes of ultrasound-based image-guided intensity-modulated radiotherapy (IG-IMRT) for pancreatic cancer. Materials and Methods Retrospective analysis of 41 patients treated between November 2000 and March 2005 with IG-IMRT to mean total doses of 55 Gy (range, 45–64 Gy). We analyzed the clinical feasibility of IG-IMRT, dosimetric parameters, and outcomes, including acute gastrointestinal toxicity (RTOG grading). Survival was assessed for adenocarcinoma (n = 35) and other histologies. Results Mean daily image-guidance corrective shifts were 4.8 ± 4.3 mm, 7.5 ± 7.2 mm, and 4.6 ± 5.9 mm along the x-, y-, and z-axes, respectively (mean 3D correction vector, 11.7 ± 8.4 mm). Acute upper gastrointestinal toxicity was grade 0–1 in 22 patients (53.7%), grade 2 in 16 patients (39%), and grade 3 in 3 patients (7.3%). Lower gastrointestinal toxicity was grade 0–1 in 32 patients (78%), grade 2 in 7 patients (17.1%), and grade 4 in 2 patients (4.9%). Treatment was stopped early in 4 patients following administration of 30 to 54 Gy. Median survival for adenocarcinoma histology was 10.3 months (18.6 months in patients alive at analysis; n = 8) with actuarial 1- and 2-year survivals of 38% and 25%, respectively. Conclusion Daily image-guidance during delivery of IMRT for pancreatic carcinoma is clinically feasible. The data presented support the conclusion that safety margin reduction and moderate dose escalation afforded by implementation of these new radiotherapy technologies yields preliminary outcomes at least comparable with published survival data. PMID:19262697

  4. Tumor Control Outcomes After Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases From Renal Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelefsky, Michael J., E-mail: zelefskm@mskcc.org; Greco, Carlo; Motzer, Robert

    2012-04-01

    Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a highmore » single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.« less

  5. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    PubMed Central

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-01-01

    Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621

  6. SU-F-T-349: Dosimetric Comparison of Three Different Simultaneous Integrated Boost Irradiation Techniques for Multiple Brain Metastases: Intensity-Modulatedradiotherapy, Hybrid Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, X; Sun, T; Yin, Y

    Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less

  7. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer

    PubMed Central

    Ming, Xin; Feng, Yuanming; Liu, Huan; Zhang, Ying; Zhou, Li; Deng, Jun

    2015-01-01

    Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated. Results The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2%) with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance. Conclusions Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin’s disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy. PMID:26630566

  8. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Poonam; Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI; Yan, Yue, E-mail: yyan5@mdanderson.org

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to themore » helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.« less

  9. Radiotherapy for gastric lymphoma: a planning study of 3D conformal radiotherapy, the half-beam method, and intensity-modulated radiotherapy.

    PubMed

    Inaba, Koji; Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Kobayashi, Kazuma; Harada, Ken; Kitaguchi, Mayuka; Sekii, Shuhei; Takahashi, Kana; Yoshio, Kotaro; Murakami, Naoya; Morota, Madoka; Ito, Yoshinori; Sumi, Minako; Uno, Takashi; Itami, Jun

    2014-11-01

    During radiotherapy for gastric lymphoma, it is difficult to protect the liver and kidneys in cases where there is considerable overlap between these organs and the target volume. This study was conducted to compare the three radiotherapy planning techniques of four-fields 3D conformal radiotherapy (3DCRT), half-field radiotherapy (the half-beam method) and intensity-modulated radiotherapy (IMRT) used to treat primary gastric lymphoma in which the planning target volume (PTV) had a large overlap with the left kidney. A total of 17 patients with gastric diffuse large B-cell lymphoma (DLBCL) were included. In DLBCL, immunochemotherapy (Rituximab + CHOP) was followed by radiotherapy of 40 Gy to the whole stomach and peri-gastric lymph nodes. 3DCRT, the half-field method, and IMRT were compared with respect to the dose-volume histogram (DVH) parameters and generalized equivalent uniform dose (gEUD) to the kidneys, liver and PTV. The mean dose and gEUD for 3DCRT was higher than for IMRT and the half-beam method in the left kidney and both kidneys. The mean dose and gEUD of the left kidney was 2117 cGy and 2224 cGy for 3DCRT, 1520 cGy and 1637 cGy for IMRT, and 1100 cGy and 1357 cGy for the half-beam method, respectively. The mean dose and gEUD of both kidneys was 1335 cGy and 1559 cGy for 3DCRT, 1184 cGy and 1311 cGy for IMRT, and 700 cGy and 937 cGy for the half-beam method, respectively. Dose-volume histograms (DVHs) of the liver revealed a larger volume was irradiated in the dose range <25 Gy with 3DCRT, while the half-beam method irradiated a larger volume of liver with the higher dose range (>25 Gy). IMRT and the half-beam method had the advantages of dose reduction for the kidneys and liver. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Prostate-specific antigen bounce after intensity-modulated radiotherapy for prostate cancer.

    PubMed

    Sheinbein, Courtney; Teh, Bin S; Mai, Wei Y; Grant, Walter; Paulino, Arnold; Butler, E Brian

    2010-09-01

    To report prostate-specific antigen (PSA) bounce in patients treated with intensity-modulated radiotherapy (IMRT) alone. Previous studies have reported PSA bounce in prostate cancer patients treated with conventional radiotherapy, 3D conformal radiotherapy, and permanent seed brachytherapy. From January 1997 to July 2002, 102 patients with clinically localized prostate cancer were treated with IMRT alone. No patients received androgen ablation. PSA bounce was defined as a PSA increase of at least 0.4 ng/mL, followed by any PSA decrease. Biochemical failure was defined by both the American Society for Therapeutic Radiology and Oncology 1996 and 2006 consensus definitions. The median follow-up was 76 months. The median length of time until the first PSA bounce was 13.6 months. Thirty-three patients (32.4%) had at least 1 PSA bounce, with 25 (24.5%) having 1 bounce; 6 (5.9%), 2 bounces; and 2 (2.0%), 4 bounces. PSA bounce was not significantly associated with biochemical no evidence of disease survival, clinical stage, pretreatment PSA, Gleason combined score, prostate planning target volume, PSA nadir, or mean dose to the prostate. The rate of PSA bounce in patients aged ≤ 70 and > 70 years was 44.4% and 22.8%, respectively (P = .032). Our patient series is the first report on PSA bounce in patients treated with IMRT. Our study confirms that the majority of patients with a bouncing PSA remain biochemically and clinically free of disease with extended follow-up. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    PubMed Central

    Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan

    2013-01-01

    Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069

  12. SU-E-T-302: Dosimetric Comparison Between Volumetric Modulated Arc Radiotherapy and Intensity-Modulated Radiotherapy for Locally Recurrent Nasopharyngeal Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J-Y; Huang, B-T; Zhang, J-Y

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally recurrent nasopharyngeal carcinoma. Methods: CT datasets of eleven nasopharyngeal-carcinoma patients were included. Dual-arc VMAT and seven-field IMRT plans were created for each case, and were then compared in terms of conformity index (CI), homogeneity index (HI) of the planning target volume (PTV), organ-at-risk (OAR) sparing, monitor unit (MU) and delivery time. Results: The D98% (near-minimal dose) of PTV in the VMAT plans was slightly lower than that of the IMRT plans (P < 0.05), while the CI was higher than that of themore » IMRT plans (P < 0.05). No significant difference was found in the HI between the two plans (P > 0.05). Compared with the IMRT plans, the VMAT plans demonstrated lower Dmean (mean dose) of the bilateral temporal lobes and the whole surrounding normal tissue (P < 0.05), but slightly higher Dmean of brainstem (P < 0.05). In terms of the other OARs, no significant differences were found (P > 0.05). The MUs of the VMAT plans (672 ± 112) was significantly lower than that of the IMRT plans (917 ± 206), by 25 ± 13% (P < 0.05). The average delivery time of the VMAT plans (2.3 ± 0.1 min) was less than that of the IMRT plans (5.1 ± 0.4 min), by 54 ± 3%. Conclusion: For locally recurrent nasopharyngeal carcinoma, the VMAT technique could achieve equivalent or superior dose distribution of the target and better protect the bilateral temporal lobes, compared with the IMRT technique. Moreover, it could reduce the MU and delivery time effectively.« less

  13. The impact of introducing intensity modulated radiotherapy into routine clinical practice.

    PubMed

    Miles, Elizabeth A; Clark, Catharine H; Urbano, M Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P; Harrington, Kevin J; A'Hern, Roger; Nutting, Christopher M

    2005-12-01

    Intensity modulated radiotherapy (IMRT) at the Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8h was recorded whereas physics time was increased by 4.9h per patient. IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources.

  14. Value of Intensity-Modulated Radiotherapy in Stage IV Head-and-Neck Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirix, Piet, E-mail: piet.dirix@uzleuven.b; Nuyts, Sandra

    2010-12-01

    Purpose: To review outcome and toxicity of Stage IVa and IVb head-and-neck squamous cell carcinoma patients treated with concomitant chemotherapy and intensity-modulated radiotherapy (IMRT) according to a hybrid fractionation schedule. Methods and Materials: Between 2006 and 2008, 42 patients with Stage IV head-and-neck squamous cell carcinoma were irradiated according to a hybrid fractionation schedule consisting of 20 fractions of 2 Gy (once daily), followed by 20 fractions of 1.6 Gy (twice daily), to a total dose of 72 Gy. Chemotherapy (cisplatinum, 100mg/m{sup 2}) was administered at the start of Weeks 1 and 4. Treatment outcome and toxicity were retrospectively comparedmore » with a previous patient group (n = 55), treated according to the same schedule, but without intensity modulation. Results: Locoregional control (LRC) and overall survival were 81% and 56% after 2 years, respectively. In comparison with the previous cohort, no significant differences were observed regarding either LRC (66%, p = 0.38) or overall survival (73%, p = 0.29). No Grade 4 or 5 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of late Grade 2 or 3 xerostomia (52.9% vs. 90.2%, p < 0.001). No difference was observed regarding late Grade 2 or 3 dysphagia (p = 0.66). Conclusions: Intensity-modulated chemoradiotherapy does not compromise LRC and significantly reduces late toxicity, especially regarding xerostomia.« less

  15. Intensity-modulated radiotherapy as primary treatment for prostate cancer: acute toxicity in 114 patients.

    PubMed

    De Meerleer, Gert; Vakaet, Luc; Meersschout, Sabine; Villeirs, Geert; Verbaeys, Antony; Oosterlinck, Wim; De Neve, Wilfried

    2004-11-01

    Dose escalation improves local control in prostate cancer. At Ghent University Hospital, intensity-modulated radiotherapy (IMRT) is used to increase the dose to the prostate and/or seminal vesicles. We report on acute toxicity in 114 patients who received IMRT for prostate cancer. Intensity-modulated radiotherapy was initiated after approval of our ethics committee. A class solution was used to plan all cases. Three beams (gantry 0 degrees , 116 degrees , and 244 degrees ) and anatomy-based segmentation were used to create an intensity-modulated dose distribution. Maximal rectal dose was set at 2 Gy per fraction. Detailed dose-volume histograms for all relevant structures were present. For all patients, we determined the pretreatment morbidity by a detailed preradiotherapy, in-house developed symptom scale. All patients were treated with 18 MV photons of an Elekta linear accelerator. Patients were seen on a weekly basis during treatment, and 1 month (M1) and 3 months (M3) thereafter. The registration of acute toxicity was standardized by a fixed questionnaire. The Radiation Therapy Oncology Group (RTOG) toxicity scale served as a basis, but additional symptoms, such as rectal blood loss, urgency, and incontinence, were scored as well. All 114 IMRT plans were delivered successfully without any interruption or technical problem. Daily treatment time was always less than 8 min and less than 6 min in 90% of the cases. Grade 1 and Grade 2 gastrointestinal (GI) toxicities were observed in 44% and 29% of the patients, respectively, during the whole period. If only the RTOG scale was used, Grade 1 and Grade 2 GI toxicities were noted in 39% and 27% of the patients, respectively, leaving 34% free of acute RTOG-scaled toxicity. Grade 3 genitourinary (GU) toxicity was seen in 8 patients (7%), all but 1 during treatment. Grade 2 and Grade 1 GU toxicities were seen in 36% and 47% of the patients, respectively, leaving only 10% free of acute GU toxicity. Anatomy-based IMRT to

  16. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Jackie; Suttie, Clare; Bromley, Regina

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with themore » 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.« less

  17. Long-term decision regret after post-prostatectomy image-guided intensity-modulated radiotherapy.

    PubMed

    Shakespeare, Thomas P; Chin, Stephen; Manuel, Lucy; Wen, Shelly; Hoffman, Matthew; Wilcox, Shea W; Aherne, Noel J

    2017-02-01

    Decision regret (DR) may occur when a patient believes their outcome would have been better if they had decided differently about their management. Although some studies investigate DR after treatment for localised prostate cancer, none report DR in patients undergoing surgery and post-prostatectomy radiotherapy. We evaluated DR in this group of patients overall, and for specific components of therapy. We surveyed 83 patients, with minimum 5 years follow-up, treated with radical prostatectomy (RP) and post-prostatectomy image-guided intensity-modulated radiotherapy (IG-IMRT) to 64-66 Gy following www.EviQ.org.au protocols. A validated questionnaire identified DR if men either indicated that they would have been better off had they chosen another treatment, or they wished they could change their mind about treatment. There was an 85.5% response rate, with median follow-up post-IMRT 78 months. Adjuvant IG-IMRT was used in 28% of patients, salvage in 72% and ADT in 48%. A total of 70% of patients remained disease-free. Overall, 16.9% of patients expressed DR for treatment, with fourfold more regret for the RP component of treatment compared to radiotherapy (16.9% vs 4.2%, P = 0.01). DR for androgen deprivation was 14.3%. Patients were regretful of surgery due to toxicity, not being adequately informed about radiotherapy as an alternative, positive margins and surgery costs (83%, 33%, 25% and 8% of regretful patients respectively). Toxicity caused DR in the three radiotherapy-regretful and four ADT-regretful patients. Patients were twice as regretful overall, and of surgery, for salvage vs adjuvant approaches (both 19.6% vs 10.0%). Decision regret after RP and post-prostatectomy IG-IMRT is uncommon, although patients regret RP more than post-operative IG-IMRT. This should reassure urologists referring patients for post-prostatectomy IG-IMRT, particularly in the immediate adjuvant setting. Other implications include appropriate patient selection for RP (and

  18. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William; Filion, Edith; Roberge, David

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less

  19. Is "pelvic radiation disease" always the cause of bowel symptoms following prostate cancer intensity-modulated radiotherapy?

    PubMed

    Min, Myo; Chua, Benjamin; Guttner, Yvonne; Abraham, Ned; Aherne, Noel J; Hoffmann, Matthew; McKay, Michael J; Shakespeare, Thomas P

    2014-02-01

    Pelvic radiation disease (PRD) also widely known as "radiation proctopathy" is a well recognised late side-effect following conventional prostate radiotherapy. However, endoscopic evaluation and/or specialist referral for new or persistent post-prostate radiotherapy bowel symptoms is not routine and serious diagnoses may potentially be missed. Here we report a policy of endoscopic evaluation of bowel symptoms persisting >90 days post radiotherapy for prostate cancer. A consecutive series of 102 patients who had radical prostate intensity-modulated radiotherapy (IMRT)/image-guided radiotherapy (IGRT) and who had new or ongoing bowel symptoms or positive faecal occult blood tests (FOBT) on follow up visits more than three months after treatment, were referred for endoscopic examination. All but one (99%) had full colonoscopic investigation. Endoscopic findings included gastric/colonic/rectal polyps (56%), diverticular disease (49%), haemorrhoids (38%), radiation proctopathy (29%), gastritis/oesophagitis (8%) and rarer diagnoses, including bowel cancer which was found in 3%. Only four patients (4%) had radiation proctopathy without associated pathology and 65 patients (63%) had more than one diagnosis. If flexible sigmoidoscopy alone were used, 36.6% of patients and 46.6% patients with polyp(s) would have had their diagnoses missed. Our study has shown that bowel symptoms following prostate IMRT/IGRT are due to numerous diagnoses other than PRD, including malignancy. Routine referral pathways should be developed for endoscopic evaluation/specialist review for patients with new or persistent bowel symptoms (or positive FOBT) following prostate radiotherapy. This recommendation should be considered for incorporation into national guidelines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Use of stereotactic intensity-modulated radiotherapy in thyroid-related ophthalmopathy. Case report.

    PubMed

    Espinoza, Salvador; Saboori, Mehran; Forman, Scott; Moorthy, Chitti R; Benzil, Deborah L

    2004-11-01

    Thyroid-related ophthalmopathy (TRO), a debilitating condition involving a range of visual and orbital symptoms, occurs in up to 40% of patients with Graves disease. The goals of treatment include correcting thyroid dysfunction, relieving ocular pain, preserving vision, and improving cosmetic appearance. Options for therapy include symptomatic treatment, glucocorticoid medication, radiation therapy, and surgery. Traditional radiation treatment uses small opposed bilateral fields consisting of retrobulbar volumes and customized blocks to shield periorbital structures. The combination of intensity-modulated radiotherapy (IMRT) and stereotactic technology facilitates the administration of radiation to patients suffering from TRO and provides greater safety and efficacy than traditional treatment. The authors present the case of a patient with severe TRO whose symptoms resolved rapidly after treatment with stereotactic IMRT. The outcome in this case supports stereotactic IMRT as an effective treatment option for patients with TRO who also undergo radiation therapy.

  1. High dose chemoradiation for unresectable hilar cholangiocarcinomas using intensity modulated external beam radiotherapy: a single tertiary care centre experience

    PubMed Central

    Mehta, Shaesta; Kalyani, Nikhil; Chaudhari, Suresh; Dharia, Tejas; Shetty, Nitin; Chopra, Supriya; Goel, Mahesh; Kulkarni, Suyash; Shrivastava, Shyam Kishore

    2017-01-01

    Background We present results of patients diagnosed with unresectable hilar cholangiocarcinomas treated with high dose radiotherapy and concurrent chemotherapy. Methods From Aug 2005 to Dec 2012, 68 consecutive patients were treated. Fifty patients (group 1) presenting to us with obstructive jaundice were planned for endobiliary brachytherapy (EBBT 14 Gy) followed external beam radiotherapy (EBRT 45 Gy). Twenty-two patients (group 2) who had previously undergone biliary drainage underwent EBRT (57 Gy). All patients received injection Gemcitabine 300 mg/m2/weekly along with EBRT. Results Twenty-nine patients in group 1 and 22 patients in group 2 completed the treatment. Twenty-six (55%) patients achieved complete radiological response, 16 (64%) belonging to group 1 and 8 (44%) of group 2 (P=0.05). The median overall survival (MOS) was 17.5 and 16 months for group 1 and 2 respectively (P=0.07). The 1- and 2-year survival was 63%, and 18% for group I and 61% and 22% for group II respectively. The MOS was 5 months and 1 year survival was 14% for patients receiving EBBT only. MOS was significantly better after complete response (P=0.001). Conclusions Intensity modulated radiotherapy (IMRT) modulated high dose radiotherapy used either alone or with brachytherapy demonstrates potential to prolonged overall survival in unresectable hilar cholangiocarcinomas. PMID:28280622

  2. Intensity modulated neutron radiotherapy optimization by photon proxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment

  3. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less

  4. SU-E-T-449: Hippocampal Sparing Radiotherapy Using Intensity Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, S; Kyung Hee University Hospital at Gangdong, Gangdong-gu; Kim, D

    2015-06-15

    Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion aroundmore » the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.« less

  5. The potential of intensity-modulated proton radiotherapy to reduce swallowing dysfunction in the treatment of head and neck cancer: A planning comparative study.

    PubMed

    van der Laan, Hans Paul; van de Water, Tara A; van Herpt, Heleen E; Christianen, Miranda E M C; Bijl, Hendrik P; Korevaar, Erik W; Rasch, Coen R; van 't Veld, Aart A; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A

    2013-04-01

    Predictive models for swallowing dysfunction were developed previously and showed the potential of improved intensity-modulated radiotherapy to reduce the risk of swallowing dysfunction. Still the risk is high. The aim of this study was to determine the potential of swallowing-sparing (SW) intensity-modulated proton therapy (IMPT) in head and neck cancer (HNC) for reducing the risk of swallowing dysfunction relative to currently used photon therapy. Twenty-five patients with oropharyngeal (n = 21) and hypopharyngeal (n = 4) cancer received primary radiotherapy, including bilateral neck irradiation, using standard (ST) intensity-modulated photon therapy (IMRT). Prophylactic (54 Gy) and therapeutic (70 Gy) target volumes were defined. The dose to the parotid and submandibular glands was reduced as much as possible. Four additional radiotherapy plans were created for each patient: SW-IMRT, ST-IMPT, 3-beam SW-IMPT (3B-SW-IMPT) and 7-beam SW-IMPT (7B-SW-IMPT). All plans were optimized similarly, with additional attempts to spare the swallowing organs at risk (SWOARs) in the SW plans. Probabilities of swallowing dysfunction were calculated with recently developed predictive models. All plans complied with standard HNC radiotherapy objectives. The mean parotid gland doses were similar for the ST and SW photon plans, but clearly lower in all IMPT plans (ipsilateral parotid gland ST-IMRT: 46 Gy, 7B-SW-IMPT: 29 Gy). The mean dose in the SWOARs was lowest with SW-IMPT, in particular with 7B-SW-IMPT (supraglottic larynx ST-IMRT: 60 Gy, 7B-SW-IMPT: 40 Gy). The observed dose reductions to the SWOARs translated into substantial overall reductions in normal tissue complication risks for different swallowing dysfunction endpoints. Compared with ST-IMRT, the risk of physician-rated grade 2-4 swallowing dysfunction was reduced on average by 8.8% (95% CI 6.5-11.1%) with SW-IMRT, and by 17.2% (95% CI: 12.7-21.7%) with 7B-SW-IMPT. SWOAR-sparing with proton therapy has the potential to

  6. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy in Postoperative Treatment of Endometrial and Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, William; Mell, Loren K.; Anderson, Penny

    2008-06-01

    Purpose: To develop an atlas of the clinical target volume (CTV) definitions for postoperative radiotherapy of endometrial and cervical cancer to be used for planning pelvic intensity-modulated radiotherapy. Methods and Materials: The Radiation Therapy Oncology Group led an international collaberation of cooperative groups in the development of the atlas. The groups included the Radiation Therapy Oncology Group, Gynecologic Oncology Group, National Cancer Institute of Canada, European Society of Therapeutic Radiology and Oncology, and American College of Radiology Imaging Network. The members of the group were asked by questionnaire to define the areas that were to be included in the CTVmore » and to outline theses areas on individual computed tomography images. The initial formulation of the group began in late 2004 and culminated with a formal consensus conference in June 2005. Results: The committee achieved a consensus CTV definition for postoperative therapy for endometrial and cervical cancer. The CTV should include the common, external, and internal iliac lymph node regions. The upper 3.0 cm of the vagina and paravaginal soft tissue lateral to the vagina should also be included. For patients with cervical cancer, or endometrial cancer with cervical stromal invasion, it is also recommended that the CTV include the presacral lymph node region. Conclusion: This report serves as an international template for the definition of the CTV for postoperative intensity-modulated radiotherapy for endometrial and cervical cancer.« less

  7. DEMAT: A multi-institutional dosimetry audit of rotational and static intensity-modulated radiotherapy.

    PubMed

    Lafond, Caroline; Chiavassa, Sophie; Bertaut, Cindy; Boussion, Nicolas; Chapel, Nathalie; Chapron, Lucie; Coste, Frédéric; Crespin, Sylvain; Dy, Gilles; Faye, Papa Abdoulaye; Leleu, Cyril; Bouvier, Jeanne; Madec, Ludovic; Mesgouez, Jérôme; Palisson, Jérémy; Vela, Anthony; Delpon, Grégory

    2016-05-01

    Static beam intensity-modulated-radiation-therapy (IMRT) and/or Volumetric-Modulated-Arc-Therapy (VMAT) are now available in many regional radiotherapy departments. The aim of this multi-institutional audit was to design a new methodology based on radiochromic films to perform an independent quality control. A set of data were sent to all participating centres for two clinical localizations: prostate and Head and Neck (H&N) cancers. The agreement between calculations and measurements was verified in the Octavius phantom (PTW) by point measurements using ionization chambers and by 2D measurements using EBT3 radiochromic films. Due to uncertainties in the whole procedure, criteria were set to 5% and 3% in local dose and 3mm in distance excluding doses lower than 10% of the maximum doses. No normalization point or area was used for the quantitative analysis. 13 radiotherapy centres participated in this audit involving 28 plans (12 IMRT, 16 VMAT). For point measurements, mean errors were -0.18±1.54% and 0.00±1.58% for prostate and H&N cases respectively. For 2D measurements with 5%/3mm criteria, gamma map analysis showed a pixel pass rate higher than 95% for prostate and H&N. Mean gamma index was lower than 0.4 for prostate and 0.5 for H&N. Both techniques yielded similar results. This study showed the feasibility of an independent quality control by peers for conventional IMRT and VMAT. Results from all participating centres were found to be in good agreement. This regional study demonstrated the feasibility of our new methodology based on radiochromic films without dose normalization on a specific point. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Intensity modulated radiotherapy for elderly bladder cancer patients

    PubMed Central

    2011-01-01

    Background To review our experience and evaluate treatment planning using intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) for the treatment of elderly patients with bladder cancer. Methods From November 2006 through November 2009, we enrolled 19 elderly patients with histologically confirmed bladder cancer, 9 in the IMRT and 10 in the HT group. The patients received 64.8 Gy to the bladder with or without concurrent chemotherapy. Conventional 4-field "box" pelvic radiation therapy (2DRT) plans were generated for comparison. Results The median patient age was 80 years old (range, 65-90 years old). The median survival was 21 months (5 to 26 months). The actuarial 2-year overall survival (OS) for the IMRT vs. the HT group was 26.3% vs .37.5%, respectively; the corresponding values for disease-free survival were 58.3% vs. 83.3%, respectively; for locoregional progression-free survival (LRPFS), the values were 87.5% vs. 83.3%, respectively; and for metastases-free survival, the values were 66.7% vs. 60.0%, respectively. The 2-year OS rates for T1, 2 vs. T3, 4 were 66.7% vs. 35.4%, respectively (p = 0.046). The 2-year OS rate was poor for those whose RT completion time greater than 8 weeks when compared with the RT completed within 8 wks (37.9% vs. 0%, p = 0.004). Conclusion IMRT and HT provide good LRPFS with tolerable toxicity for elderly patients with invasive bladder cancer. IMRT and HT dosimetry and organ sparing capability were superior to that of 2DRT, and HT provides better sparing ability than IMRT. The T category and the RT completion time influence OS rate. PMID:21679408

  9. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelius, Ivan S.; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Radiation Oncology, Rigshospitalet

    2011-07-01

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeledmore » as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.« less

  10. Growth Of High-Cost Intensity-Modulated Radiotherapy For Prostate Cancer Raises Concerns About Overuse

    PubMed Central

    Jacobs, Bruce L.; Zhang, Yun; Skolarus, Ted A.; Hollenbeck, Brent K.

    2012-01-01

    To study the impact of new, expensive, and unproven therapies to treat prostate cancer, we investigated the dissemination of intensity-modulated radiotherapy (IMRT). IMRT is an innovative treatment for prostate cancer that delivers higher doses of radiation with improved precision compared to alternative radiotherapies. We observed rapid adoption of this new treatment among men diagnosed with prostate cancer from 2001 through 2007, despite uncertainty about its relative effectiveness. We compared patient and disease characteristics of those receiving IMRT and the previous radiation standard of care, three-dimensional conformal therapy; assessed intermediate-term outcomes; and examined potential factors associated with the increased use of IMRT. We found that in the early period of IMRT adoption (2001–03) men with high-risk disease were more likely to receive IMRT, whereas after IMRT’s initial dissemination (2004–07) men with low-risk disease had fairly similar likelihoods of receiving IMRT as men with high-risk disease. This raises concerns about overtreatment, as well as considerable health care costs, because treatment with IMRT costs $15,000–$20,000 more than other standard therapies. As health care delivery reforms gain traction, policy makers must balance the promotion of new, yet unproven, technology with the risk of overuse. PMID:22492892

  11. Commissioning of intensity modulated neutron radiotherapy (IMNRT).

    PubMed

    Burmeister, Jay; Spink, Robyn; Liang, Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan; Snyder, Michael

    2013-02-01

    Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center∕Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate∕five head and neck) agreed to within -0.8 ± 1.4% and 5.0 ± 6.0% within and outside the target, respectively. Nearly all (22∕24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)∕prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max = 7.0%) and 1.4% (max = 4

  12. Positron Emission Tomography-Guided, Focal-Dose Escalation Using Intensity-Modulated Radiotherapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madani, Indira; Duthoy, Wim; Derie, Cristina R.N.

    2007-05-01

    Purpose: To assess the feasibility of intensity-modulated radiotherapy (IMRT) using positron emission tomography (PET)-guided dose escalation, and to determine the maximum tolerated dose in head and neck cancer. Methods and Materials: A Phase I clinical trial was designed to escalate the dose limited to the [{sup 18}-F]fluoro-2-deoxy-D-glucose positron emission tomography ({sup 18}F-FDG-PET)-delineated subvolume within the gross tumor volume. Positron emission tomography scanning was performed in the treatment position. Intensity-modulated radiotherapy with an upfront simultaneously integrated boost was employed. Two dose levels were planned: 25 Gy (level I) and 30 Gy (level II), delivered in 10 fractions. Standard IMRT was appliedmore » for the remaining 22 fractions of 2.16 Gy. Results: Between 2003 and 2005, 41 patients were enrolled, with 23 at dose level I, and 18 at dose level II; 39 patients completed the planned therapy. The median follow-up for surviving patients was 14 months. Two cases of dose-limiting toxicity occurred at dose level I (Grade 4 dermitis and Grade 4 dysphagia). One treatment-related death at dose level II halted the study. Complete response was observed in 18 of 21 (86%) and 13 of 16 (81%) evaluated patients at dose levels I and II (p < 0.7), respectively, with actuarial 1-year local control at 85% and 87% (p n.s.), and 1-year overall survival at 82% and 54% (p = 0.06), at dose levels I and II, respectively. In 4 of 9 patients, the site of relapse was in the boosted {sup 18}F-FDG-PET-delineated region. Conclusions: For head and neck cancer, PET-guided dose escalation appears to be well-tolerated. The maximum tolerated dose was not reached at the investigated dose levels.« less

  13. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume wasmore » 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.« less

  14. Concurrent chemoradiotherapy versus radiotherapy alone for locoregionally advanced nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy: a meta-analysis.

    PubMed

    He, Yan; Guo, Tao; Guan, Hui; Wang, Jingjing; Sun, Yu; Peng, Xingchen

    2018-01-01

    In this study, we attempted to compare the efficacy and toxicity of concurrent chemoradiotherapy (CCRT) with radiotherapy alone (RT) for locoregionally advanced nasopharyngeal carcinoma (LANPC) in the era of intensity-modulated radiotherapy (IMRT) by meta-analysis. We searched databases, and all randomized controlled trials meeting the inclusion criteria were utilized for a meta-analysis with RevMan 5.3 based on the Cochrane methodology. Fifteen studies were found suitable based on the inclusion criteria. CCRT not only significantly improved the overall response rate (risk ratio [RR]=0.53, 95% CI 0.43-0.66) and the complete response rate (RR=0.60, 95% CI 0.51-0.71) but also contributed to longer overall survival. The incidence of grade 3-4 adverse events from CCRT group increased in hematologic toxicity (RR 2.25, 95% CI 1.54-3.29), radiation-induced oral mucositis (RR 1.64, 95% CI 1.14-2.35), and radiodermatitis (RR 1.80, 95% CI 1.13-2.88). Compared with IMRT alone, CCRT provided survival benefit with acceptable toxicity in patients with LANPC. However, we need multicenter randomized controlled trials and long-term follow-up to evaluate the eventual efficacy and toxicity of concurrent chemotherapy plus IMRT.

  15. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bedmore » displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.« less

  16. A comparison between cobalt and linear accelerator-based treatment plans for conformal and intensity-modulated radiotherapy.

    PubMed

    Adams, E J; Warrington, A P

    2008-04-01

    The simplicity of cobalt units gives them the advantage of reduced maintenance, running costs and downtime when compared with linear accelerators. However, treatments carried out on such units are typically limited to simple techniques. This study has explored the use of cobalt beams for conformal and intensity-modulated radiotherapy (IMRT). Six patients, covering a range of treatment sites, were planned using both X-ray photons (6/10 MV) and cobalt-60 gamma rays (1.17 and 1.33 MeV). A range of conformal and IMRT techniques were considered, as appropriate. Conformal plans created using cobalt beams for small breast, meningioma and parotid cases were found to compare well with those created using X-ray photons. By using additional fields, acceptable conformal plans were also created for oesophagus and prostate cases. IMRT plans were found to be of comparable quality for meningioma, parotid and thyroid cases on the basis of dose-volume histogram analysis. We conclude that it is possible to plan high-quality radical radiotherapy treatments for cobalt units. A well-designed beam blocking/compensation system would be required to enable a practical and efficient alternative to multileaf collimator (MLC)-based linac treatments to be offered. If cobalt units were to have such features incorporated into them, they could offer considerable benefits to the radiotherapy community.

  17. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Mitsuhiro; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Nakamura, Akira

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports,more » was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  18. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less

  19. Comparative planning evaluation of intensity-modulated radiotherapy techniques for complex lung cancer cases.

    PubMed

    Yartsev, Slav; Chen, Jeff; Yu, Edward; Kron, Tomas; Rodrigues, George; Coad, Terry; Trenka, Kristina; Wong, Eugene; Bauman, Glenn; Dyk, Jake Van

    2006-02-01

    Lung cancer treatment can be one of the most challenging fields in radiotherapy. The aim of the present study was to compare different modalities of radiation delivery based on a balanced scoring scheme for target coverage and normal tissue avoidance. Treatment plans were developed for 15 patients with stage III inoperable non-small cell lung cancer using 3D conformal technique and intensity-modulated radiotherapy (IMRT). Elective nodal irradiation was included for all cases to create the most challenging scenarios with large target volumes. A 2 cm margin was used around the gross tumour volume (GTV) to generate PTV2 and 1cm margin around elective nodes for PTV1 resulting in PTV1 volumes larger than 1000 cm(3) in 13 of the 15 patients. 3D conformal and IMRT plans were generated on a commercial treatment planning system (TheraPlan Plus, Nucletron) with various combinations of beam energies and gantry angles. A 'dose quality factor' (DQF) was introduced to correlate the plan quality with patient specific parameters. A good correlation was found between the quality of the plans and the overlap between PTV1 and lungs. The patient feature factor (PFF), which is a product of several pertinent characteristics, was introduced to facilitate the choice of a particular technique for a particular patient. This approach may allow the evaluation of different treatment options prior to actual planning, subject to validation in larger prospective data sets.

  20. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.

    PubMed

    Smeenk, Robert Jan; van Lin, Emile N J Th; van Kollenburg, Peter; Kunze-Busch, Martina; Kaanders, Johannes H A M

    2009-10-01

    To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78Gy. In 144 treatment plans, the minimum dose (D(min)), maximum dose (D(max)), and mean dose (D(mean)) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from >or=20Gy to >or=70Gy (V(20)-V(70), respectively). In the 3D-CRT plans, an ERB significantly reduced D(mean), D(max), and V(30)-V(70). For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D(mean) was 12Gy in 3D-CRT and was 7.5Gy in IMRT for both methods of Awall delineation. Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy.

  1. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pow, Edmond; Kwong, Dora; McMillan, Anne S.

    2006-11-15

    Purpose: To compare directly the effect of intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) on salivary flow and quality of life (QoL) in patients with early-stage nasopharyngeal carcinoma (NPC). Methods and Materials: Fifty-one patients with T2, N0/N1, M0 NPC took part in a randomized controlled clinical study and received IMRT or CRT. Stimulated whole (SWS) and parotid (SPS) saliva flow were measured and Medical Outcomes Short Form 36 (SF-36), European Organization for Research and Treatment of Cancer (EORTC) core quetionnaire, and EORTC head-and-neck module (QLQ-H and N35) were completed at baseline and 2, 6, and 12 months after radiotherapy. Results:more » Forty-six patients (88%) were in disease remission 12 months after radiotherapy. At 12 months postradiotherapy, 12 (50.0%) and 20 patients (83.3%) in the IMRT group had recovered at least 25% of preradiotherapy SWS and SPS flow respectively, compared with 1 (4.8%) and 2 patients (9.5%), respectively, in the CRT group. Global health scores showed continuous improvement in QoL after both treatments (p < 0.001). However, after 12 months subscale scores for role-physical, bodily pain, and physical function were significantly higher in the IMRT group, indicating a better condition (p < 0.05). Dry mouth and sticky saliva were problems in both groups 2 months after treatment. In the IMRT group, there was consistent improvement over time with xerostomia-related symptoms significantly less common than in the CRT group at 12 months postradiotherapy. Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach.« less

  2. Effects of intensity-modulated radiotherapy and chemoradiotherapy on attention in patients with nasopharyngeal cancer

    PubMed Central

    Wei, Qing; Li, Ling; Zhu, Xiao-Dong; Qin, Ling; Mo, Yan-Lin; Liang, Zheng-You; Deng, Jia-Li; Tao, Su-Ping

    2017-01-01

    This study evaluated the short-term effects of intensity-modulated radiotherapy (IMRT) and cisplatin concurrent chemo-radiotherapy (CCRT) on attention in patients with nasopharyngeal cancer (NPC). Timely detection and early prevention of cognitive decline are important in cancer patients, because long-term cognitive effects may be permanent and irreversible. Thirty-eight NPC patients treated with IMRT (17/38) or CCRT (21/38) and 38 healthy controls were recruited for the study. Neuropsychological tests were administered to each patient before treatment initiation and within a week after treatment completion. Changes in attention performance over time were evaluated using difference values (D-values). Decreased attention was already observable in patients with NPC prior to treatment. Baseline quotient scores for auditory attention, auditory and visual vigilance, and auditory speed were lower in patients treated with CCRT than in healthy controls (P=0.037, P=0.001, P=0.007, P=0.032, respectively). Auditory stamina D-values were higher in patients treated with IMRT alone (P=0.042), while full-scale response control quotient D-values were lower in patients treated with CCRT (P=0.030) than in healthy controls. Gender, depression, education, and sleep quality were each related to decreased attention and response control. Our results showed that IMRT had no negative acute effects on attention in NPC patients, while CCRT decreased response control. PMID:28947979

  3. Intensity modulated radiotherapy with fixed collimator jaws for locoregional left-sided breast cancer irradiation.

    PubMed

    Wang, Juanqi; Yang, Zhaozhi; Hu, Weigang; Chen, Zhi; Yu, Xiaoli; Guo, Xiaomao

    2017-05-16

    The purpose of this study is to evaluate the intensity modulated radiotherapy (IMRT) with the fixed collimator jaws technique (FJT) for the left breast and regional lymph node. The targeted breast tissue and the lymph nodes, and the normal tissues were contoured for 16 left-sided breast cancer patients previously treated with radiotherapy after lumpectomy. For each patient, treatment plans using different planning techniques, i.e., volumetric modulated arc therapy (VMAT), tangential IMRT (tangential-IMRT), and IMRT with FJT (FJT-IMRT) were developed for dosimetric comparisons. A dose of 50Gy was prescribed to the planning target volume. The dose-volume histograms were generated, and the paired t-test was used to analyze the dose differences. FJT-IMRT had similar mean heart volume receiving 30Gy (V30 Gy) with tangential-IMRT (1.5% and 1.6%, p = 0.41), but inferior to the VMAT (0.8%, p < 0.001). In the average heart mean dose comparison, FJT-IMRT had the lowest value, and it was 0.6Gy lower than that for the VMAT plans (p < 0.01). A significant dose increase in the contralateral breast and lung was observed in VMAT plans. Compared with tangential-IMRT and VMAT plans, FJT-IMRT reduced the mean dose of thyroid, humeral head and cervical esophageal by 47.6% (p < 0.01) and 45.7% (p < 0.01), 74.3% (p =< 0.01) and 73% (p =< 0.01), and 26.7% (p =< 0.01) and 29.2% (p =< 0.01). In conclusion, compared with tangential-IMRT and VMAT, FJT-IMRT plan has the lowest thyroid, humeral head and cervical esophageal mean dose and it can be a reasonable treatment option for a certain subgroup of patients, such as young left-breast cancer patients and/or patients with previous thyroid disease.

  4. Managed care and the diffusion of intensity-modulated radiotherapy for prostate cancer.

    PubMed

    Jacobs, Bruce L; Zhang, Yun; Skolarus, Ted A; Wei, John T; Montie, James E; Schroeck, Florian R; Hollenbeck, Brent K

    2012-12-01

    To better understand associations between managed care penetration in health care markets and the adoption of intensity-modulated radiotherapy (IMRT). We used Surveillance, Epidemiology, and End Results-Medicare data to identify men diagnosed with prostate cancer between 2001 and 2007 who were treated with radiotherapy (n = 55,162). We categorized managed care penetration in Health Service Areas (HSAs) as low (<3%), intermediate (3%-10%), and high (>10%), and assessed our main outcomes (ie, probability of IMRT adoption, which is the ability of a health care market to deliver IMRT, and IMRT utilization in HSA markets) using a Cox proportional hazards model and Poisson regression model, respectively. Compared with markets with low managed care penetration, populations in highly penetrated HSAs were more racially diverse (25% vs 15% non-white, P <.01), densely populated (2110 vs 145 people/square mile, P <.01), and wealthier (median income, $48,500 vs $31,900, P <.01). The probability of IMRT adoption was greatest in markets with the highest managed care penetration (eg, 0.82 [high] vs 0.72 [low] in 2007, P = .05). Among adopting markets, the use of IMRT increased in all HSA categories. However, relative to markets with low managed care penetration, IMRT use was constrained in markets with the highest penetration (0.69 [high] vs 0.76 [low] in 2007, P <.01). Markets with higher managed care penetration demonstrated a greater propensity for acquiring IMRT technology. However, after adopting IMRT, more highly penetrated markets had roughly 7% slower growth in IMRT use during the study period. These findings provide insight into the implications of delivery system reforms for cancer-related technologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Hypothyroidism as a Consequence of Intensity-Modulated Radiotherapy With Concurrent Taxane-Based Chemotherapy for Locally Advanced Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel

    Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroidmore » was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.« less

  6. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Linda J., E-mail: Linda.Bell1@health.nsw.gov.au; Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales; Cox, Jennifer

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle changemore » between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by

  7. Surface dose measurement with Gafchromic EBT3 film for intensity modulated radiotherapy technique

    NASA Astrophysics Data System (ADS)

    Akbas, Ugur; Kesen, Nazmiye Donmez; Koksal, Canan; Okutan, Murat; Demir, Bayram; Becerir, Hatice Bilge

    2017-09-01

    Accurate dose measurement in the buildup region is extremely difficult. Studies have reported that treatment planning systems (TPS) cannot calculate surface dose accurately. The aim of the study was to compare the film measurements and TPS calculations for surface dose in head and neck cancer treatment using intensity modulated radiation therapy (IMRT). IMRT plans were generated for 5 head and neck cancer patients by using Varian Eclipse TPS. Quality assurance (QA) plans of these IMRT plans were created on rando phantoms for surface dose measurements. EBT3 films were cut in size of 2.5 x 2.5 cm2 and placed on the left side, right side and the center of larynx and then the films were irradiated with 6 MV photon beams. The measured doses were compared with TPS. The results of TPS calculations were found to be lower compared to the EBT3 film measurements at all selected points. The lack of surface dose calculation in TPS should be considered while evaluating the radiotherapy plans.

  8. The Dosimetric Consequences of Intensity Modulated Radiotherapy for Cervix Cancer: The Impact of Organ Motion, Deformation and Tumour Regression

    NASA Astrophysics Data System (ADS)

    Lim, Karen Siah Huey

    Hypothesis: In intensity modulated radiotherapy (IMRT) for cervix cancer, the dose received by the tumour target and surrounding normal tissues is significantly different to that indicated by a single static plan. Rationale: The optimal use of IMRT in cervix cancer requires a greater attention to clinical target volume (CTV) definition and tumour & normal organ motion to assure maximum tumour control with the fewest side effects. Research Aims: 1) Generate consensus CTV contouring guidelines for cervix cancer; 2) Evaluate intra-pelvic tumour and organ dynamics during radiotherapy; 3) Analyze the dose consequences of intra-pelvic organ dynamics on different radiotherapy strategies. Results: Consensus CTV definitions were generated using experts-in-the-field. Substantial changes in tumour volume and organ motion, resulted in significant reductions in accumulated dose to tumour targets and variability in accumulated dose to surrounding normal tissues. Significance: Formalized CTV definitions for cervix cancer is important in ensuring consistent standards of practice. Complex and unpredictable tumour and organ dynamics mandates daily soft-tissue image guidance if IMRT is used. To maximize the benefits of IMRT for cervix cancer, a strategy of adaptation is necessary.

  9. Toxicity and dosimetric analysis of non-small cell lung cancer patients undergoing radiotherapy with 4DCT and image-guided intensity modulated radiotherapy: a regional centre's experience.

    PubMed

    Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart

    2016-09-01

    For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.

  10. SU-F-T-342: Dosimetric Constraint Prediction Guided Automatic Mulit-Objective Optimization for Intensity Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, T; Zhou, L; Li, Y

    Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specificmore » dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with

  11. SU-F-P-52: A Meta-Analysis of Controlled Clinical Trials Comparing Elective Nodal Irradiation with Involved-Field Irradiation for Conformal Or Intensity-Modulated Radiotherapy in Patients with Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, W; Zhang, R; Zhou, Z

    Purpose: To compare elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer by a metaanalysis. Methods: Wanfang, CNKI, VIP, CBM databases, PubMed, Embase and Cochrane Library were searched to identify the controlled clinical trials of elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. The obtained data were analyzed using Stata 11.0. The difference between two groups was estimated by calculating the odds ratio (OR) with 95% confidence interval (95% CI). Results: A total of 12 controlled clinical trials involving 1095 esophagealmore » cancer patients, which were selected according to inclusion and exclusion criteria, were included in this meta-analysis. The meta-analysis showed that the elective nodal irradiation group reduced the rates of out-field failure comparing with involved-field irradiation group (OR=3.727, P=0.007). However, the rates of ≥grades 3 acute radiation pneumonitis and esophagitis were significantly higher in the elective nodal irradiation group than in the involved-field irradiation group (OR=0.348, P=0.001, OR=0.385, P=0.000). 1-, 2-, 3-year local control rates (OR=0.966, P=0.837, OR=0.946, P=0.781; OR=0.732P=0.098) and 1-, 3-, 5-year survival rates were similar in the two groups ( OR=0.966, P=0.837; OR=0.946, P=0.781; OR=0.732, P=0.098; OR=0.952, P=0.756; OR=1.149, P=0.422; OR=0.768, P=0.120). It is the same with the rates of distant metastasis (OR=0.986, P=0.937). Conclusion: Compared with involved-field irradiation, the elective nodal irradiation can reduce the rates of out-field failure for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. However, its advantage of local control and survival rates is not obvious and it increases the

  12. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pow, Edmond H.N., E-mail: ehnpow@hku.hk; Kwong, Dora L.W.; Sham, Jonathan S.T.

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months aftermore » IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.« less

  13. Comparison of Toxicity Between Intensity-Modulated Radiotherapy and 3-Dimensional Conformal Radiotherapy for Locally Advanced Non-small-cell Lung Cancer.

    PubMed

    Ling, Diane C; Hess, Clayton B; Chen, Allen M; Daly, Megan E

    2016-01-01

    The role of intensity-modulated radiotherapy (IMRT) in reducing treatment-related toxicity for locally advanced non-small-cell lung cancer (NSCLC) remains incompletely defined. We compared acute toxicity and oncologic outcomes in a large cohort of patients treated with IMRT or 3-dimensional conformal radiotherapy (3-DCRT), with or without elective nodal irradiation (ENI). A single-institution retrospective review was performed evaluating 145 consecutive patients with histologically confirmed stage III NSCLC treated with definitive chemoradiotherapy. Sixty-five (44.8%) were treated with 3-DCRT using ENI, 43 (30.0%) with 3-DCRT using involved-field radiotherapy (IFRT), and 37 (25.5%) with IMRT using IFRT. All patients received concurrent chemotherapy. Comparison of acute toxicities by treatment technique (IMRT vs. 3-DCRT) and extent of nodal irradiation (3-DCRT-IFRT vs. 3-DCRT-ENI) was performed for grade 2 or higher esophagitis or pneumonitis, number of acute hospitalizations, incidence of opioid requirement, percutaneous endoscopic gastrostomy utilization, and percentage weight loss during treatment. Local control and overall survival were analyzed by the Kaplan-Meier method. We identified no significant differences in any measures of acute toxicity by treatment technique or extent of nodal irradiation. There was a trend toward lower rates of grade 2 or higher pneumonitis among IMRT patients compared to 3-DCRT patients (5.4% vs. 23.0%; P = .065). Local control and overall survival were similar between cohorts. Acute and subacute toxicities were similar for patients treated with IMRT and with 3-DCRT with or without ENI, with a nonsignificant trend toward a reduction in pneumonitis with IMRT. Larger studies are needed to better define which patients will benefit from IMRT. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Accelerated hyperfractionated intensity-modulated radiotherapy for recurrent/unresectable rectal cancer in patients with previous pelvic irradiation: results of a phase II study.

    PubMed

    Cai, Gang; Zhu, Ji; Hu, Weigang; Zhang, Zhen

    2014-12-11

    This study was conducted to investigate the local effects and toxicity of accelerated hyperfractionated intensity-modulated radiotherapy for recurrent/unresectable rectal cancer in patients with previous pelvic irradiation. Twenty-two patients with recurrent/unresectable rectal cancer who previously received pelvic irradiation were enrolled in our single-center trial between January 2007 and August 2012. Reirradiation was scheduled for up to 39 Gy in 30 fractions using intensity-modulated radiotherapy plans. The dose was delivered via a hyperfractionation schedule of 1.3 Gy twice daily. Patient follow-up was performed by clinical examination, CT/MRI, or PET/CT every 3 months for the first 2 years and every 6 months thereafter. Tumor response was evaluated 1 month after reirradiation by CT/MRI based on the RECIST criteria. Adverse events were assessed using the National Cancer Institute (NCI) common toxicity criteria (version 3.0). The median time from the end of the initial radiation therapy to reirradiation was 30 months (range, 18-93 months). Overall local responses were observed in 9 patients (40.9%). None of the patients achieved a complete response (CR), and 9 patients (40.9%) had a partial response (PR). Thirteen patients failed to achieve a clinical response: 12 (54.5%) presented with stable disease (SD) and 1 (4.5%) with progressive disease (PD). Among all the patients who underwent reirradiation, partial or complete symptomatic relief was achieved in 6 patients (27.3%) and 13 patients (59.1%), respectively. Grade 4 acute toxicity and treatment-related deaths were not observed. The following grade 3 acute toxicities were observed: diarrhea (2 patients, 9.1%), cystitis (1 patient, 4.5%), dermatitis (1 patient, 4.5%), and intestinal obstruction (1 patient, 4.5%). Late toxicity was infrequent. Chronic severe diarrhea, small bowel obstruction, and dysuria were observed in 2 (9.1%), 1 (4.5%) and 2 (9.1%) of the patients, respectively. This study showed that

  15. Poster — Thur Eve — 35: The impact of intensity- and energy-modulated photon radiotherapy (XMRT) optimization on a variety of organ geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.

    2014-08-15

    We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plansmore » consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.« less

  16. Intensity-modulated radiotherapy in the standard management of head and neck cancer: promises and pitfalls.

    PubMed

    Mendenhall, William M; Amdur, Robert J; Palta, Jatinder R

    2006-06-10

    The purpose of this article is to review the role of intensity-modulated radiotherapy (IMRT) in the standard management of patients with head and neck cancer through a critical review of the pertinent literature. IMRT may result in a dose distribution that is more conformal than that achieved with three-dimensional conformal radiotherapy (3D CRT), allowing dose reduction to normal structures and thus decreasing toxicity and possibly enhancing locoregional control through dose escalation. Disadvantages associated with IMRT include increased risk of a marginal miss, decreased dose homogeneity, increased total body dose, and increased labor and expense. Outcomes data after IMRT are limited, and follow-up is relatively short. Locoregional control rates appear to be comparable to those achieved with 3D CRT and, depending on the location and extent of the tumor, late toxicity may be lower. Despite limited data on clinical outcomes, IMRT has been widely adopted as a standard technique in routine practice and clinical trials. The use of IMRT involves a learning curve for the practitioner and will continue to evolve, requiring continuing education and monitoring of outcomes from routine practice. Additional standards pertaining to a variety of issues, including target definitions and dose specification, need to be developed. Phase III trials will better define the role of IMRT in coming years.

  17. Intensity-Modulated and 3D-Conformal Radiotherapy for Whole-Ventricular Irradiation as Compared With Conventional Whole-Brain Irradiation in the Management of Localized Central Nervous System Germ Cell Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Michael Jenwei, E-mail: michaelchen@einstein.b; Silva Santos, Adriana da; Sakuraba, Roberto Kenji

    Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluatedmore » at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.« less

  18. Quality of Life After Hypofractionated Concomitant Intensity-Modulated Radiotherapy Boost for High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quon, Harvey; Department of Radiation Oncology, University of Toronto, Toronto, ON; Cheung, Patrick C.F., E-mail: patrick.cheung@sunnybrook.ca

    Purpose: To evaluate the change in health-related quality of life (QOL) of patients with high-risk prostate cancer treated using hypofractionated radiotherapy combined with long-term androgen deprivation therapy. Methods and Materials: A prospective Phase I-II study enrolled patients with any of the following: clinical Stage T3 disease, prostate-specific antigen level {>=}20 ng/mL, or Gleason score 8-10. Radiotherapy consisted of 45 Gy (1.8 Gy per fraction) to the pelvic lymph nodes with a concomitant 22.5 Gy intensity-modulated radiotherapy boost to the prostate, for a total of 67.5 Gy (2.7 Gy per fraction) in 25 fractions over 5 weeks. Daily image guidance wasmore » performed using three gold seed fiducials. Quality of life was measured using the Expanded Prostate Cancer Index Composite (EPIC), a validated tool that assesses four primary domains (urinary, bowel, sexual, and hormonal). Results: From 2004 to 2007, 97 patients were treated. Median follow-up was 39 months. Compared with baseline, at 24 months there was no statistically significant change in the mean urinary domain score (p = 0.99), whereas there were decreases in the bowel (p < 0.01), sexual (p < 0.01), and hormonal (p < 0.01) domains. The proportion of patients reporting a clinically significant difference in EPIC urinary, bowel, sexual, and hormonal scores at 24 months was 27%, 31%, 55%, and 60%, respectively. However, moderate and severe distress related to these symptoms was minimal, with increases of only 3% and 5% in the urinary and bowel domains, respectively. Conclusions: Hypofractionated radiotherapy combined with long-term androgen deprivation therapy was well tolerated. Although there were modest rates of clinically significant patient-reported urinary and bowel toxicity, most of this caused only mild distress, and moderate and severe effects on QOL were limited. Additional follow-up is ongoing to characterize long-term QOL.« less

  19. Intensity-modulated radiotherapy (IMRT) in pediatric low-grade glioma.

    PubMed

    Paulino, Arnold C; Mazloom, Ali; Terashima, Keita; Su, Jack; Adesina, Adekunle M; Okcu, M Faith; Teh, Bin S; Chintagumpala, Murali

    2013-07-15

    The objective of this study was to evaluate local control and patterns of failure in pediatric patients with low-grade glioma (LGG) who received treatment with intensity-modulated radiation therapy (IMRT). In total, 39 children received IMRT after incomplete resection or disease progression. Three methods of target delineation were used. The first was to delineate the gross tumor volume (GTV) and add a 1-cm margin to create the clinical target volume (CTV) (Method 1; n = 19). The second was to add a 0.5-cm margin around the GTV to create the CTV (Method 2; n = 6). The prescribed dose to the GTV was the same as dose to the CTV for both Methods 1 and 2 (median, 50.4 grays [Gy]). The final method was dose painting, in which a GTV was delineated with a second target volume (2TV) created by adding 1 cm to the GTV (Method 3; n = 14). Different doses were prescribed to the GTV (median, 50.4 Gy) and the 2TV (median, 41.4 Gy). The 8-year progression-free and overall survival rates were 78.2% and 93.7%, respectively. Seven failures occurred, all of which were local in the high-dose (≥95%) region of the IMRT field. On multivariate analysis, age ≤5 years at time of IMRT had a detrimental impact on progression-free survival. IMRT provided local control rates comparable to those provided by 2-dimensional and 3-dimensional radiotherapy. Margins ≥1 cm added to the GTV may not be necessary, because excellent local control was achieved by adding a 0.5-cm margin (Method 2) and by dose painting (Method 3). © 2013 American Cancer Society.

  20. Intensity-modulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Raef S.; Ove, Roger; Duan, Jun

    2006-10-01

    The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanarmore » beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams.« less

  1. Intensity modulated radiotherapy with simultaneous integrated boost vs. conventional radiotherapy with sequential boost for breast cancer - A preliminary result.

    PubMed

    Lee, Hsin-Hua; Hou, Ming-Feng; Chuang, Hung-Yi; Huang, Ming-Yii; Tsuei, Le-Ping; Chen, Fang-Ming; Ou-Yang, Fu; Huang, Chih-Jen

    2015-10-01

    This study was aimed to assess the acute dermatological adverse effect from two distinct RT techniques for breast cancer patients. We compared intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and conventional radiotherapy followed by sequential boost (CRT-SB). The study population was composed of 126 consecutive female breast cancer patients treated with breast conserving surgery. Sixty-six patients received IMRT-SIB to 2 dose levels simultaneously. They received 50.4 Gy at 1.8 Gy per fraction to the whole breast and 60.2 Gy at 2.15 Gy per fraction to the tumor bed by integral boost. Sixty patients in the CRT-SB group received 50 Gy in 25 fractions to the whole breast followed by a boost irradiation to tumor bed in 5-7 fractions to a total dose of 60-64 Gy. Acute skin toxicities were documented in agreement with the Common Terminology Criteria for Adverse Events version 3 (CTCAE v.3.0). Ninety-eight patients had grade 1 radiation dermatitis while 14 patients had grade 2. Among those with grade 2, there were 3 patients in IMRT-SIB group (4.5%) while 11 in CRT-SB group (18.3%). (P = 0.048) There was no patient with higher than grade 2 toxicity. Three year local control was 99.2%, 3-year disease free survival was 97.5% and 3-year overall survival was 99.2%. A significant reduction in the severity of acute radiation dermatitis from IMRT-SIB comparing with CRT-SB is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Retrospective estimate of the quality of intensity-modulated radiotherapy plans for lung cancer

    NASA Astrophysics Data System (ADS)

    Koo, Jihye; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook

    2015-07-01

    This study estimated the planning quality of intensity-modulated radiotherapy in 42 lung cancer cases to provide preliminary data for the development of a planning quality assurance algorithm. Organs in or near the thoracic cavity (ipsilateral lung, contralateral lung, heart, liver, esophagus, spinal cord, and bronchus) were selected as organs at risk (OARs). Radiotherapy plans were compared by using the conformity index (CI), coverage index (CVI), and homogeneity index (HI) of the planning target volume (PTV), the OAR-PTV distance and the OAR-PTV overlap volume, and the V10 Gy , V20 Gy , and equivalent uniform dose (EUD) of the OARs. The CI, CVI, and HI of the PTV were 0.54-0.89 (0.77 ± 0.08), 0.90-1.00 (0.98 ± 0.02), and 0.11-0.41, (0.15 ± 0.05), respectively. The mean EUDs (V10 Gy , V20 Gy ) of the ipsilateral lung, contralateral lung, esophagus, cord, liver, heart, and bronchus were 8.07 Gy (28.06, 13.17), 2.59 Gy (6.53, 1.18), 7.02 Gy (26.17, 12.32), 3.56 Gy (13.56, 4.48), 0.72 Gy (2.15, 0.91), 5.14 Gy (19.68, 8.62), and 10.56 Gy (36.08, 19.79), respectively. EUDs tended to decrease as the OAR-PTV distance increased and the OAR-PTV overlap volume decreased. Because the plans in this study were from a single department, relatively few people were involved in treatment planning. Differences in treatment results for a given patient would be much more pronounced if many departments were involved.

  3. Dosimetric Comparison of Combined Intensity-Modulated Radiotherapy (IMRT) and Proton Therapy Versus IMRT Alone for Pelvic and Para-Aortic Radiotherapy in Gynecologic Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman Milby, Abigail; Both, Stefan, E-mail: both@uphs.upenn.edu; Ingram, Mark

    2012-03-01

    Purpose: To perform a dosimetric comparison of intensity-modulated radiotherapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT) to the para-aortic (PA) nodal region in women with locally advanced gynecologic malignancies. Methods and Materials: The CT treatment planning scans of 10 consecutive patients treated with IMRT to the pelvis and PA nodes were identified. The clinical target volume was defined by the primary tumor for patients with cervical cancer and by the vagina and paravaginal tissues for patients with endometrial cancer, in addition to the regional lymph nodes. The IMRT, PSPT, and IMPT plans were generated using themore » Eclipse Treatment Planning System and were analyzed for various dosimetric endpoints. Two groups of treatment plans including proton radiotherapy were created: IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT), and IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT). The IMRT and proton RT plans were optimized to deliver 50.4 Gy or Gy (relative biologic effectiveness [RBE)), respectively. Dose-volume histograms were analyzed for all of the organs at risk. The paired t test was used for all statistical comparison. Results: The small-bowel V{sub 20}, V{sub 30}, V{sub 35}, andV{sub 40} were reduced in PSPT/IMRT by 11%, 18%, 27%, and 43%, respectively (p < 0.01). Treatment with IMPT/IMRT demonstrated a 32% decrease in the small-bowel V{sub 20}. Treatment with PSPT/IMRT showed statistically significant reductions in the body V{sub 5-20}; IMPT/IMRT showed reductions in the body V{sub 5-15}. The dose received by half of both kidneys was reduced by PSPT/IMRT and by IMPT/IMRT. All plans maintained excellent coverage of the planning target volume. Conclusions: Compared with IMRT alone, PSPT/IMRT and IMPT/IMRT had a statistically significant decrease in dose to the small and large bowel and kidneys, while maintaining excellent planning target volume coverage. Further studies should be

  4. Dosimetric and efficiency comparison of high-dose radiotherapy for esophageal cancer: volumetric modulated arc therapy versus fixed-field intensity-modulated radiotherapy.

    PubMed

    Lin, C-Y; Huang, W-Y; Jen, Y-M; Chen, C-M; Su, Y-F; Chao, H-L; Lin, C-S

    2014-08-01

    The aim of this study was to compare high-dose volumetric modulated arc therapy (VMAT) and fixed-field intensity-modulated radiotherapy (ff-IMRT) plans for the treatment of patients with middle-thoracic esophageal cancer. Eight patients with cT2-3N0M0 middle-thoracic esophageal cancer were enrolled. The treatment planning system was the version 9 of the Pinnacle(3) with SmartArc (Philips Healthcare, Fitchburg, WI, USA). VMAT and ff-IMRT treatment plans were generated for each case, and both techniques were used to deliver 50 Gy to the planning target volume (PTV(50)) and then provided a 16-Gy boost (PTV(66)). The VMAT plans provided superior PTV(66) coverage compared with the ff-IMRT plans (P = 0.034), whereas the ff-IMRT plans provided more appropriate dose homogeneity to the PTV(50) (P = 0.017). In the lung, the V(5) and V(10) were lower for the ff-IMRT plans than for the VMAT plans, whereas the V(20) was lower for the VMAT plans. The delivery time was significantly shorter for the VMAT plans than for the ff-IMRT plans (P = 0.012). In addition, the VMAT plans delivered fewer monitor units. The VMAT technique required a shorter planning time than the ff-IMRT technique (3.8 ± 0.8 hours vs. 5.4 ± 0.6 hours, P = 0.011). The major advantages of VMAT plans are higher efficiency and an approximately 50% reduction in delivery time compared with the ff-IMRT plans, with comparable plan quality. Further clinical investigations to evaluate the use of high-dose VMAT for the treatment of esophageal cancer are warranted. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  5. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda

    2010-10-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less

  6. Temporal lobe injury after re-irradiation of locally recurrent nasopharyngeal carcinoma using intensity modulated radiotherapy: clinical characteristics and prognostic factors.

    PubMed

    Liu, Shuai; Lu, Taixiang; Zhao, Chong; Shen, Jingxian; Tian, Yunming; Guan, Ying; Zeng, Lei; Xiao, Weiwei; Huang, Shaomin; Han, Fei

    2014-09-01

    Temporal lobe injury (TLI) is a debilitating complication after radiotherapy for nasopharyngeal carcinoma (NPC), especially in patients who suffer treatment relapses and receive re-irradiation. We explored the clinical characteristics and prognostic factors of TLI in locally recurrent NPC (rNPC) patients after re-irradiation using intensity modulated radiotherapy (IMRT). A total of 454 temporal lobes (TLs) from 227 locally rNPC patients were reviewed. The clinical characteristics of TLI were analyzed. In the two radiotherapy courses, the equivalent dose in 2 Gy per fraction (EQD2) for the TLs was recalculated to facilitate comparison of the individual data. The median follow-up time was 31 (range, 3-127) months. After re-irradiation using IMRT, 31.3 % (71/227) of patients developed TLI. The median latency of TLI was 15 (range, 4-100) months. Univariate and multivariate analysis showed that the interval time (IT) between the two courses of radiotherapy and the summation of the maximum doses of the two radiotherapy courses (EQD2 - ∑max) were independent factors influencing TLI. The 5-year incidence of TLI for an IT ≤26 or >26 months was 35.9 and 53.7 % respectively (p = 0.024). The median maximum doses delivered to the injured TLs were significantly higher than was the case for the uninjured TLs after two courses of radiotherapy (135.3 and 129.8 Gy, respectively: p < 0.001). The incidence of TLI with an EQD2 - ∑max < 125 Gy was <5 %, and with an EQD2 - ∑max <145 Gy it was <50 %. A treatment mode limiting EQD2 - ∑max <125 Gy with a >2-year interval was found to be relatively safe.

  7. Local control after intensity-modulated radiotherapy for head-and-neck rhabdomyosarcoma.

    PubMed

    Curtis, Amarinthia E; Okcu, M Fatih; Chintagumpala, Murali; Teh, Bin S; Paulino, Arnold C

    2009-01-01

    To examine the patterns of failure in patients treated with intensity-modulated radiotherapy (IMRT) for head-and-neck rhabdomyosarcoma (RMS). Between 1998 and 2005, 19 patients with a diagnosis of head-and-neck RMS received IMRT at The Methodist Hospital. There were 11 male and 8 female patients, with a median age of 6 years at time of irradiation. Tumor location was parameningeal in 7, orbital in 6, and other head-and-neck RMS in 6. Chemotherapy was given to all patients, with vincristine, actinomycin D, and cyclophosphamide being the most common regimen (n = 18). The median prescribed dose was 5040 cGy. The clinical target volume included the gross tumor volume with a 1.5-cm margin. The median duration of follow-up for surviving patients was 56 months. The 4-year overall survival and local control rates were 76% and 92.9%, respectively. One patient developed a local failure in the high-dose region of the radiation field; there were no marginal failures. Distant metastasis was seen in 4 patients. Overall survival was 42.9% for parameningeal sites and 100% for other sites (p < 0.01). Late toxicities were seen in 7 patients. Two secondary malignancies occurred in 1 child with embryonal RMS of the face and a p53 mutation. Local control was excellent in patients receiving IMRT for head-and-neck RMS. Patterns of local failure reveal no marginal failures in this group of patients.

  8. Dose-Dependent Pulmonary Toxicity After Postoperative Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, David C.; Smythe, W. Roy; Liao Zhongxing

    Purpose: To determine the incidence of fatal pulmonary events after extrapleural pneumonectomy and hemithoracic intensity-modulated radiotherapy (IMRT) for malignant pleural mesothelioma. Methods and Materials: We retrospectively reviewed the records of 63 consecutive patients with malignant pleural mesothelioma who underwent extrapleural pneumonectomy and IMRT at University of Texas M. D. Anderson Cancer Center. The endpoints studied were pulmonary-related death (PRD) and non-cancer-related death within 6 months of IMRT. Results: Of the 63 patients, 23 (37%) had died within 6 months of IMRT (10 of recurrent cancer, 6 of pulmonary causes [pneumonia in 4 and pneumonitis in 2], and 7 of othermore » noncancer causes [pulmonary embolus in 2, sepsis after bronchopleural fistula in 1, and cause unknown but without pulmonary symptoms or recurrent disease in 4]). On univariate analysis, the factors that predicted for PRD were a lower preoperative ejection fraction (p = 0.021), absolute volume of lung spared at 10 Gy (p = 0.025), percentage of lung volume receiving {>=}20 Gy (V{sub 20}; p 0.002), and mean lung dose (p = 0.013). On multivariate analysis, only V{sub 20} was predictive of PRD (p = 0.017; odds ratio, 1.50; 95% confidence interval, 1.08-2.08) or non-cancer-related death (p = 0.033; odds ratio, 1.21; 95% confidence interval, 1.02-1.45). Conclusion: The results of our study have shown that fatal pulmonary toxicities were associated with radiation to the contralateral lung. V{sub 20} was the only independent determinant for risk of PRD or non-cancer-related death. The mean V{sub 20} of the non-PRD patients was considerably lower than that accepted during standard thoracic radiotherapy, implying that the V{sub 20} should be kept as low as possible after extrapleural pneumonectomy.« less

  9. Accelerated partial breast intensity-modulated radiotherapy in women who have prior breast augmentation.

    PubMed

    Leonard, Charles E; Johnson, Tim; Tallhamer, Michael; Howell, Kathryn; Kercher, Jane; Kaske, Terese; Barke, Lora; Sedlacek, Scot; Hobart, Tracy; Carter, Dennis L

    2011-06-01

    To examine the outcome of breast cancer patients who have prior breast augmentation treated with lumpectomy followed by accelerated partial breast external intensity-modulated radiotherapy (APBIMRT) with image-guided radiotherapy (IGRT). Four patients with previous elective subpectoral breast augmentation were enrolled on this APBIMRT trial. These four patients were treated with 10 equal twice daily 3.85 Gy fractions over 5 consecutive days (total dose of 38.5 Gy) using APBIMRT and IGRT. Patients were assessed for pain and cosmetic outcome (physician and a patient self-assessment). At last follow-up, two patients reported an excellent cosmetic results (at 2 years and at 8 months, respectively), one reported good cosmetic results (at 2 years), and one reported poor cosmetic results (at 20 months). Physicians rated the cosmetic outcomes as excellent in two (CEL; at 2 years and 8 months, respectively), good in one (CEL; at 20 months) and excellent in one (KTH; at 2 years). Three patients reported no breast/chest wall pain (two at 2 years and one at 1 year) and the fourth reported mild pain (at 20 months). The mean percent volume of ipsilateral breast receiving 100%, 75%, 50%, and 25% of the prescribed dose was 7.28%, 17.55%, 24.33%, and 33.1%, respectively. The mean breast, planning target volume (PTV), and implant volumes were 399.88 cc, 43.55 cc, and 313.36 cc, respectively. The mean breast prosthesis/total volume (breast tissue plus prosthesis) ratio was 44.55%. The mean PTV/ipsilateral breast and PTV/total volume ratios were 11.1% and 6.1%, respectively. The results show that a regimen of APBIMRT with IGRT is possible in patients who have prior breast augmentation. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Adaptive intensity modulated radiotherapy for advanced prostate cancer

    NASA Astrophysics Data System (ADS)

    Ludlum, Erica Marie

    The purpose of this research is to develop and evaluate improvements in intensity modulated radiotherapy (IMRT) for concurrent treatment of prostate and pelvic lymph nodes. The first objective is to decrease delivery time while maintaining treatment quality, and evaluate the effectiveness and efficiency of novel one-step optimization compared to conventional two-step optimization. Both planning methods are examined at multiple levels of complexity by comparing the number of beam apertures, or segments, the amount of radiation delivered as measured by monitor units (MUs), and delivery time. One-step optimization is demonstrated to simplify IMRT planning and reduce segments (from 160 to 40), MUs (from 911 to 746), and delivery time (from 22 to 7 min) with comparable plan quality. The second objective is to examine the capability of three commercial dose calculation engines employing different levels of accuracy and efficiency to handle high--Z materials, such as metallic hip prostheses, included in the treatment field. Pencil beam, convolution superposition, and Monte Carlo dose calculation engines are compared by examining the dose differences for patient plans with unilateral and bilateral hip prostheses, and for phantom plans with a metal insert for comparison with film measurements. Convolution superposition and Monte Carlo methods calculate doses that are 1.3% and 34.5% less than the pencil beam method, respectively. Film results demonstrate that Monte Carlo most closely represents actual radiation delivery, but none of the three engines accurately predict the dose distribution when high-Z heterogeneities exist in the treatment fields. The final objective is to improve the accuracy of IMRT delivery by accounting for independent organ motion during concurrent treatment of the prostate and pelvic lymph nodes. A leaf-shifting algorithm is developed to track daily prostate position without requiring online dose calculation. Compared to conventional methods of

  11. Dosimetric and radiobiological characterizations of prostate intensity-modulated radiotherapy and volumetric-modulated arc therapy: A single-institution review of ninety cases

    PubMed Central

    Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.

    2016-01-01

    This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562

  12. Protocol for the isotoxic intensity modulated radiotherapy (IMRT) in stage III non-small cell lung cancer (NSCLC): a feasibility study.

    PubMed

    Haslett, Kate; Franks, Kevin; Hanna, Gerard G; Harden, Susan; Hatton, Matthew; Harrow, Stephen; McDonald, Fiona; Ashcroft, Linda; Falk, Sally; Groom, Nicki; Harris, Catherine; McCloskey, Paula; Whitehurst, Philip; Bayman, Neil; Faivre-Finn, Corinne

    2016-04-15

    The majority of stage III patients with non-small cell lung cancer (NSCLC) are unsuitable for concurrent chemoradiotherapy, the non-surgical gold standard of care. As the alternative treatment options of sequential chemoradiotherapy and radiotherapy alone are associated with high local failure rates, various intensification strategies have been employed. There is evidence to suggest that altered fractionation using hyperfractionation, acceleration, dose escalation, and individualisation may be of benefit. The MAASTRO group have pioneered the concept of 'isotoxic' radiotherapy allowing for individualised dose escalation using hyperfractionated accelerated radiotherapy based on predefined normal tissue constraints. This study aims to evaluate whether delivering isotoxic radiotherapy using intensity modulated radiotherapy (IMRT) is achievable. Isotoxic IMRT is a multicentre feasibility study. From June 2014, a total of 35 patients from 7 UK centres, with a proven histological or cytological diagnosis of inoperable NSCLC, unsuitable for concurrent chemoradiotherapy will be recruited. A minimum of 2 cycles of induction chemotherapy is mandated before starting isotoxic radiotherapy. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 79.2 Gy is reached. The primary end point is feasibility, with accrual rates, local control and overall survival our secondary end points. Patients will be followed up for 5 years. The study has received ethical approval (REC reference: 13/NW/0480) from the National Research Ethics Service (NRES) Committee North West-Greater Manchester South. The trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practice (GCP). The trial results will be published in a peer-reviewed journal and presented internationally. NCT01836692; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  13. Intensity-Modulated Radiotherapy for Resected Mesothelioma: The Duke Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Edward F.; Larrier, Nicole A.; Kelsey, Christopher R.

    2008-07-15

    Purpose: To assess the safety and efficacy of intensity-modulated radiotherapy (IMRT) after extrapleural pneumonectomy for malignant pleural mesothelioma. Methods and Materials: Thirteen patients underwent IMRT after extrapleural pneumonectomy between July 2005 and February 2007 at Duke University Medical Center. The clinical target volume was defined as the entire ipsilateral hemithorax, chest wall incisions, including drain sites, and involved nodal stations. The dose prescribed to the planning target volume was 40-55 Gy (median, 45). Toxicity was graded using the modified Common Toxicity Criteria, and the lung dosimetric parameters from the subgroups with and without pneumonitis were compared. Local control and survivalmore » were assessed. Results: The median follow-up after IMRT was 9.5 months. Of the 13 patients, 3 (23%) developed Grade 2 or greater acute pulmonary toxicity (during or within 30 days of IMRT). The median dosimetric parameters for those with and without symptomatic pneumonitis were a mean lung dose (MLD) of 7.9 vs. 7.5 Gy (p = 0.40), percentage of lung volume receiving 20 Gy (V{sub 20}) of 0.2% vs. 2.3% (p = 0.51), and percentage of lung volume receiving 5 Gy (V{sub 20}) of 92% vs. 66% (p = 0.36). One patient died of fatal pulmonary toxicity. This patient received a greater MLD (11.4 vs. 7.6 Gy) and had a greater V{sub 20} (6.9% vs. 1.9%), and V{sub 5} (92% vs. 66%) compared with the median of those without fatal pulmonary toxicity. Local and/or distant failure occurred in 6 patients (46%), and 6 patients (46%) were alive without evidence of recurrence at last follow-up. Conclusions: With limited follow-up, 45-Gy IMRT provides reasonable local control for mesothelioma after extrapleural pneumonectomy. However, treatment-related pulmonary toxicity remains a significant concern. Care should be taken to minimize the dose to the remaining lung to achieve an acceptable therapeutic ratio.« less

  14. Carotid-Sparing Intensity-Modulated Radiotherapy for Early-Stage Squamous Cell Carcinoma of the True Vocal Cord

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chera, Bhishamjit S.; Amdur, Robert J., E-mail: amdurr@shands.ufl.ed; Morris, Christopher G.

    2010-08-01

    Purpose: To compare radiation doses to carotid arteries among various radiotherapy techniques for treatment of early-stage squamous cell carcinoma (SCC) of the true vocal cords. Methods and Materials: Five patients were simulated using computed tomography (CT). Clinical and planning target volumes (PTV) were created for bilateral and unilateral stage T1 vocal cord cancers. Planning risk volumes for the carotid arteries and spinal cord were delineated. For each patient, three treatment plans were designed for bilateral and unilateral target volumes: opposed laterals (LATS), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT), for a total of 30 plans. More than 95% ofmore » the PTV received the prescription dose (63Gy at 2.25 Gy per treatment). Results: Carotid dose was lowest with IMRT. With a bilateral vocal cord target, the median carotid dose was 10Gy with IMRT vs. 25 Gy with 3DCRT and 38 Gy with LATS (p < 0.05); with a unilateral target, the median carotid dose was 4 Gy with IMRT vs. 19 Gy with 3DCRT and 39 Gy with LATS (p < 0.05). The dosimetric tradeoff with IMRT is a small area of high dose in the PTV. The worst heterogeneity results were at a maximum point dose of 80 Gy (127%) in a unilateral target that was close to the carotid. Conclusions: There is no question that IMRT can reduce the dose to the carotid arteries in patients with early-stage vocal cord cancer. The question is whether the potential advantage of reducing the carotid dose outweighs the risk of tumor recurrence due to contouring errors and organ motion and the risk of complications from dose heterogeneity.« less

  15. Intensity-modulated radiotherapy for locally advanced non-small-cell lung cancer: a dose-escalation planning study.

    PubMed

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-05-01

    To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p ≤.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashmore, Jason, E-mail: Jason.cashmore@uhb.nhs.uk; Ramtohul, Mark; Ford, Dan

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery ofmore » pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.« less

  17. Intensity-Modulated Radiotherapy for Sinonasal Tumors: Ghent University Hospital Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madani, Indira; Bonte, Katrien; Vakaet, Luc

    2009-02-01

    Purpose: To report the long-term outcome of intensity-modulated radiotherapy (IMRT) for sinonasal tumors. Methods and Materials: Between July 1998 and November 2006, 84 patients with sinonasal tumors were treated with IMRT to a median dose of 70 Gy in 35 fractions. Of the 84 patients, 73 had a primary tumor and 11 had local recurrence. The tumor histologic type was adenocarcinoma in 54, squamous cell carcinoma in 17, esthesioneuroblastoma in 9, and adenoid cystic carcinoma in 4. The tumors were located in the ethmoid sinus in 47, maxillary sinus in 19, nasal cavity in 16, and multiple sites in 2.more » Postoperative IMRT was performed in 75 patients and 9 patients received primary IMRT. Results: The median follow-up of living patients was 40 months (range, 8-106). The 5-year local control, overall survival, disease-specific survival, disease-free survival, and freedom from distant metastasis rate was 70.7%, 58.5%, 67%, 59.3%, and 82.2%, respectively. No difference was found in local control and survival between patients with primary or recurrent tumors. On multivariate analysis, invasion of the cribriform plate was significantly associated with lower local control (p = 0.0001) and overall survival (p = 0.0001). Local and distant recurrence was detected in 19 and 10 patients, respectively. Radiation-induced blindness was not observed. One patient developed Grade 3 radiation-induced retinopathy and neovascular glaucoma. Nonocular late radiation-induced toxicity comprised complete lacrimal duct stenosis in 1 patient and brain necrosis in 3 patients. Osteoradionecrosis of the maxilla and brain necrosis were detected in 1 of the 5 reirradiated patients. Conclusion: IMRT for sinonasal tumors provides low rates of radiation-induced toxicity without blindness with high local control and survival. IMRT could be considered as the treatment of choi0008.« less

  18. Proton Radiotherapy for Pediatric Bladder/Prostate Rhabdomyosarcoma: Clinical Outcomes and Dosimetry Compared to Intensity-Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotter, Shane E.; Herrup, David A.; Friedmann, Alison

    Purpose: In this study, we report the clinical outcomes of 7 children with bladder/prostate rhabdomyosarcoma (RMS) treated with proton radiation and compare proton treatment plans with matched intensity-modulated radiation therapy (IMRT) plans, with an emphasis on dose savings to reproductive and skeletal structures. Methods and Materials: Follow-up consisted of scheduled clinic appointments at our institution or direct communication with the treating physicians for referred patients. Each proton radiotherapy plan used for treatment was directly compared to an IMRT plan generated for the study. Clinical target volumes and normal tissue volumes were held constant to facilitate dosimetric comparisons. Each plan wasmore » optimized for target coverage and normal tissue sparing. Results: Seven male patients were treated with proton radiotherapy for bladder/prostate RMS at the Massachusetts General Hospital between 2002 and 2008. Median age at treatment was 30 months (11-70 months). Median follow-up was 27 months (10-90 months). Four patients underwent a gross total resection prior to radiation, and all patients received concurrent chemotherapy. Radiation doses ranged from 36 cobalt Gray equivalent (CGE) to 50.4 CGE. Five of 7 patients were without evidence of disease and with intact bladders at study completion. Target volume dosimetry was equivalent between the two modalities for all 7 patients. Proton radiotherapy led to a significant decrease in mean organ dose to the bladder (25.1 CGE vs. 33.2 Gy; p = 0.03), testes (0.0 CGE vs. 0.6 Gy; p = 0.016), femoral heads (1.6 CGE vs. 10.6 Gy; p = 0.016), growth plates (21.7 CGE vs. 32.4 Gy; p = 0.016), and pelvic bones (8.8 CGE vs. 13.5 Gy; p = 0.016) compared to IMRT. Conclusions: This study provides evidence of significant dose savings to normal structures with proton radiotherapy compared to IMRT and is well tolerated in this patient population. The long-term impact of these reduced doses can be tested in future studies

  19. Dosimetric studies of cadmium free alloy used in compensator based intensity modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Kaushik, Sandeep; Punia, Rajesh; Tyagi, Atul; Singh, Mann P.

    2017-10-01

    Aim of this study was to investigate dosimetric properties of cadmium free alloy which is used in compensator based intensity modulated radiotherapy (cIMRT). A mixture of lead, bismuth and tin was used to prepare the alloy whose melting point is 90-95 °C. Slabs of different thicknesses ranging from 0.71 cm to 6.14 cm were prepared. Density of alloy was measured by Archimedes' principle using water. For six megavolt (6 MV) photon beam energy transmission, linear effective attenuation coefficient (μeff), tissue phantom ratio (TPR1020), beam hardening, surface dose (Ds), percentage depth dose (PDD) and effect of scatter has been measured and analyzed for different field sizes and different thickness of compensator. Effect of extended source to detector distance (SDD) on transmissions and μeff was measured. The density of alloy was found to be 9.5456 g/cm3. At SDD of 100 cm, μeff was observed 0.4253 cm-1 for a field size of 10×10 cm 2. Calculated TPR1020 was found to be within 3% of experimental TPR1020 . It was found to be increasing with increasing thickness of compensator. Ds was found to decrease with thickness of compensator and increase with wider collimator opening due to increased scattered dose. Compensator slabs of 1 cm, 1.98 cm and 4.16 cm decreased surface dose by 4.2%, 6.1% and 9.5% respectively for a field size of 10×10 cm2 at 100 cm SDD. For small field size of 3×3 cm2 and 5×5 cm2 PDDs are increased from 3.0% to 5.5% of open beam PDDs as compensator thickness increased from 1 cm to 6.14 cm at a depth of 10 cm in water while variation in PDD is insignificant in for larger field sizes 10×10 cm2 to 20×20 cm2. A high degree of intensity modulation is essential in cIMRT and it can be achieved with this compensator material. Dosimetric properties analyzed in this study establish this alloy as a reliable, reusable, optimally dense and cost effective compensator material.

  20. Late recurrence of nonseminomatous germ cell tumor successfully treated with intensity-modulated radiation therapy.

    PubMed

    Kita, Yuki; Imamura, Masaaki; Mizowaki, Takashi; Norihisa, Yoshiki; Yoshimura, Koji; Hiraoka, Masahiro; Ogawa, Osamu

    2013-08-01

    We report the case of a 41-year-old man with a late recurrence of nonseminomatous germ cell tumor, which was successfully treated with intensity-modulated radiation therapy. For the residual retrocrural tumor invading the 11th and 12th thoracic vertebrae with an abnormal level of tumor marker (α-fetoprotein: 23.2 ng/ml) after salvage chemotherapy, chemotherapy could not be continued due to its neurotoxicity, and surgery could not be performed due to the location. In this situation, intensity-modulated radiation therapy achieved a complete response of tumor marker. The patient remained in complete clinical remission after 3 years. The efficacy of radiotherapy, especially intensity-modulated radiation therapy, for a nonseminomatous germ cell tumor is discussed.

  1. Coplanar intensity-modulated radiotherapy class solution for patients with prostate cancer with bilateral hip prostheses with and without nodal involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; McVey, Gerard P.; South, Chris P.

    2013-07-01

    Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beammore » angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm{sup 3}) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V{sub 50} {sub Gy} objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.« less

  2. Comparing treatment plan in all locations of esophageal cancer: volumetric modulated arc therapy versus intensity-modulated radiotherapy.

    PubMed

    Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu

    2015-05-01

    The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations.This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume.In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques.IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted.

  3. Changes Mimicking New Leptomeningeal Disease After Intensity-Modulated Radiotherapy for Medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscal, Jodi A.; Jones, Jeremy Y.; Paulino, Arnold C.

    2009-01-01

    Purpose: Acute and late changes in magnetic resonance imaging of the pediatric brain have been described after radiotherapy (RT). We report the post-RT neuroimaging changes in the posterior fossa after intensity-modulated RT (IMRT) in children with medulloblastoma and contrast them with those of leptomeningeal disease. Methods and Materials: We performed a retrospective review of 53 consecutive children with medulloblastoma who were treated with craniospinal RT followed by IMRT to the posterior fossa and chemotherapy between 1997 and 2006. Results: After IMRT to the posterior fossa, 8 (15%) of 53 patients developed increased fluid-attenuated inversion-recovery signal changes in the brainstem ormore » cerebellum and patchy, multifocal, nodular contrast enhancement at a median of 6 months. The enhancement superficially resembled leptomeningeal disease. However, the enhancement resolved without intervention at a median of 6 months later. The accompanying fluid-attenuated inversion-recovery signal changes occasionally preceded the enhancement, were often parenchymal in location, and resolved or persisted to a lesser degree. All 8 patients with transient magnetic resonance imaging changes in the posterior fossa were alive at last follow-up. In contrast, leptomeningeal disease occurred in 8 (15%) of our 53 patients at a median of 19.5 months after IMRT completion. Of these 8 patients, 7 demonstrated initial nodular enhancement outside the conformal field, and 7 patients died. Conclusion: Magnetic resonance imaging changes can occur in the posterior fossa of children treated with IMRT for medulloblastoma. In our experience, these transient changes occur at a characteristic time and location after RT, allowing them to be distinguished from leptomeningeal disease.« less

  4. Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mell, Loren K.; Kochanski, Joel D.; Department of Radiation and Cellular Oncology, University of Illinois at Chicago, Chicago, IL

    Purpose: To identify dosimetric parameters associated with acute hematologic toxicity (HT) and chemotherapy delivery in cervical cancer patients undergoing concurrent chemotherapy and intensity-modulated pelvic radiotherapy. Methods and Materials: We analyzed 37 cervical cancer patients receiving concurrent cisplatin (40 mg/m{sup 2}/wk) and intensity-modulated pelvic radiotherapy. Pelvic bone marrow (BM) was contoured for each patient and divided into three subsites: lumbosacral spine, ilium, and lower pelvis. The volume of each region receiving 10, 20, 30, and {>=}40 Gy (V{sub 1}, V{sub 2}, V{sub 3}, and V{sub 4}, respectively) was calculated. HT was graded according to Radiation Therapy Oncology Group system. Multivariate regressionmore » models were used to test associations between dosimetric parameters and HT and chemotherapy delivery. Results: Increased pelvic BM V{sub 1} (BM-V{sub 1}) was associated with an increased Grade 2 or worse leukopenia and neutropenia (odds ratio [OR], 2.09; 95% confidence interval [CI], 1.24-3.53; p = 0.006; and OR, 1.41; 95% CI, 1.02-1.94; p = 0.037, respectively). Patients with BM-V{sub 1} {>=}90% had higher rates of Grade 2 or worse leukopenia and neutropenia than did patients with BM-V{sub 1} <90% (11.1% vs. 73.7%, p < 0.01; and 5.6% vs. 31.6%, p = 0.09) and were more likely to have chemotherapy held on univariate (16.7% vs. 47.4%, p = 0.08) and multivariate (OR, 32.2; 95% CI, 1.67-622; p = 0.02) analysis. No associations between HT and V{sub 3} and V{sub 4} were observed. Dosimetric parameters involving the lumbosacral spine and lower pelvis had stronger associations with HT than did those involving the ilium. Conclusion: The volume of pelvic BM receiving low-dose radiation is associated with HT and chemotherapy delivery in cervical cancer patients undergoing concurrent chemoradiotherapy.« less

  5. Optimal field-splitting algorithm in intensity-modulated radiotherapy: Evaluations using head-and-neck and female pelvic IMRT cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.

    2013-04-01

    To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less

  6. Impact of xerostomia on dysphagia after chemotherapy-intensity-modulated radiotherapy for oropharyngeal cancer: Prospective longitudinal study.

    PubMed

    Vainshtein, Jeffrey M; Samuels, Stuart; Tao, Yebin; Lyden, Teresa; Haxer, Marc; Spector, Matthew; Schipper, Matthew; Eisbruch, Avraham

    2016-04-01

    The purpose of this study was to assess how xerostomia affects dysphagia. Prospective longitudinal studies of 93 patients with oropharyngeal cancer treated with definitive chemotherapy-intensity-modulated radiotherapy (IMRT). Observer-rated dysphagia (ORD), patient-reported dysphagia (PRD), and patient-reported xerostomia (PRX) assessment of the swallowing mechanics by videofluoroscopy (videofluoroscopy score), and salivary flow rates, were prospectively assessed from pretherapy through 2 years. ORD grades ≥2 were rare and therefore not modeled. Of patients with no/mild videofluoroscopy abnormalities, a substantial proportion had PRD that peaked 3 months posttherapy and subsequently improved. Through 2 years, highly significant correlations were observed between PRX and PRD scores for all patients, including those with no/mild videofluoroscopy abnormalities. Both PRX and videofluoroscopy scores were highly significantly associated with PRD. On multivariate analysis, PRX score was a stronger predictor of PRD than the videofluoroscopy score. Xerostomia contributes significantly to PRD. Efforts to further decrease xerostomia, in addition to sparing parotid glands, may translate into improvements in PRD. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1605-E1612, 2016. © 2015 Wiley Periodicals, Inc.

  7. Urethra sparing - potential of combined Nickel-Titanium stent and intensity modulated radiation therapy in prostate cancer.

    PubMed

    Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper

    2012-05-01

    To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel-Titanium (Ni-Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. A new concept for urethra dose reduction is presented. The method relies on the use of a Ni-Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    PubMed

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  9. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer.

    PubMed

    Chandra, Anurag; Guerrero, Thomas M; Liu, H Helen; Tucker, Susan L; Liao, Zhongxing; Wang, Xiaochun; Murshed, Hasan; Bonnen, Mark D; Garg, Amit K; Stevens, Craig W; Chang, Joe Y; Jeter, Melinda D; Mohan, Radhe; Cox, James D; Komaki, Ritsuko

    2005-12-01

    To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3 DCRT) in treating distal esophageal malignancies. Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3 DCRT plan used clinically. IMRT and 3 DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V(10)), 20 Gy (V(20)), mean lung dose (MLD), biological effective volume (V(eff)), and lung integral dose (P<0.05). The median absolute improvement with IMRT over 3DCRT was approximately 10% for V(10), 5% for V(20), and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers.

  10. Automated planning of tangential breast intensity-modulated radiotherapy using heuristic optimization.

    PubMed

    Purdie, Thomas G; Dinniwell, Robert E; Letourneau, Daniel; Hill, Christine; Sharpe, Michael B

    2011-10-01

    To present an automated technique for two-field tangential breast intensity-modulated radiotherapy (IMRT) treatment planning. A total of 158 planned patients with Stage 0, I, and II breast cancer treated using whole-breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are integrated into the existing clinical treatment planning system (Pinnacle(3)) and are designed to perform the manual volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically delineated whole-breast volume. The mean time to generate a complete treatment plan was 6 min, 50 s ± 1 min 12 s. For the automated plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87%) were deemed clinically improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equivalent to the clinical plans when scored for target coverage and lung and heart doses. We have developed robust and efficient automated tools for fully inversed planned tangential breast IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools will improve patient access to high-quality IMRT treatment by simplifying the planning process and will reduce the effort and cost of incorporating more advanced planning into clinical practice. Crown Copyright © 2011. Published by Elsevier Inc

  11. Risk Factors for Hearing Loss in Patients Treated With Intensity-Modulated Radiotherapy for Head-and-Neck Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuur, Charlotte L.; Simis, Yvonne J.; Lamers, Emmy A.

    2009-06-01

    Purpose: Radiotherapy (RT) is a common treatment of head-and-neck carcinoma. The objective of this study was to perform a prospective multivariate assessment of the dose-effect relationship between intensity-modulated RT and hearing loss. Methods and Materials: Pure tone audiometry at 0.250-16 kHz was obtained before and after treatment in 101 patients (202 ears). All patients received full-course intensity-modulated RT (range, 56-70 Gy), with a median cochlear dose of 11.4 Gy (range, 0.2-69.7). Results: Audiometry was performed 1 week before and a median of 9 weeks (range, 1-112) after treatment. The mean hearing deterioration at pure tone average air-conduction 1-2-4 kHz wasmore » small (from 28.6 dB HL to 30.1 dB HL). However, individual patients showed clinically significant hearing loss, with 10-dB threshold shift incidences of 13% and 18% at pure tone averages air-conduction 1-2-4 kHz and 8-10-12.5 kHz, respectively. Post-treatment hearing capability was unfavorable in the case of greater inner ear radiation doses (p <0.0001), unfavorable baseline hearing capability (p <0.0001), green-eyed patients (p <0.0001), and older age (p <0.0001). Using multivariate analysis, a prediction of individual hearing capabiltity after treatment was made. Conclusion: RT-induced hearing loss in the mean population is modest. However, clinically significant hearing loss was observed in older patients with green eyes and unfavorable pretreatment hearing. In these patients, the intended radiation dose may be adjusted according to the proposed predictive model, aiming to decrease the risk of ototoxicity.« less

  12. Comparison of intensity-modulated radiotherapy and volumetric-modulated arc therapy dose measurement for head and neck cancer using optical stimulated luminescence dosimeter

    NASA Astrophysics Data System (ADS)

    Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng

    2017-11-01

    The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8-13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours.

  13. Implementation of an image guided intensity-modulated protocol for post-prostatectomy radiotherapy: planning data and acute toxicity outcomes.

    PubMed

    Chua, Benjamin; Min, Myo; Wood, Maree; Edwards, Sarah; Hoffmann, Matthew; Greenham, Stuart; Kovendy, Andrew; McKay, Michael J; Shakespeare, Thomas P

    2013-08-01

    There is substantial interest in implementation of image-guided intensity-modulated radiotherapy (IG-IMRT) in the post-prostatectomy setting. We describe our implementation of IG-IMRT, and examine how often published organ-at-risk (OAR) constraints were met. Furthermore, we evaluate the incidence of acute genitourinary and gastrointestinal toxicities when patients were treated according to our protocol. Patients were eligible if they received post-prostatectomy radiotherapy (PPRT). Planning data were collected prospectively, and toxicity assessments were collected before, during and after treatment. Seventy-five eligible patients received either 64 Gy (19%) or 66 Gy (81%) in a single phase to the prostate bed. Suggested rectal dose-constraints of V40Gy < 60% and V60Gy < 40% were met in 64 (85%) and 75 (100%) patients, respectively. IMRT-specific rectal dose-constraints of V40Gy < 35% and V65Gy < 17% were achieved in 5 (7%) and 57 (76%) of patients. Bladder dose-constraint (V50Gy < 50%) was met in 58 (77%) patients. Two patients (3%) experienced new grade 3 genitourinary toxicity and one patient (1%) experienced new grade 3 gastroinestinal toxicity. All grade 3 toxicities had improved by 3-month review. Overall deterioration in urinary and gastrointestinal symptoms occurred in 33 (44%) and 35 (47%) of patients respectively. We report on our implementation of PPRT which takes into account nationally adopted guidelines, with a margin reduction supported by use of daily image guidance. Non-IMRT OAR constraints were met in most cases. IMRT-specific constraints were less often achieved despite margin reductions, suggesting the need for review of guidelines. Severe toxicity was rare, and most patients did not experience deterioration in urinary or bowel function attributable to radiotherapy. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  14. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    PubMed Central

    2013-01-01

    Background To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Methods Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. Results The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV Dmin and PTV Dmin pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel Dmax (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and Dmax by 25% (0.022). Conclusions TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors

  15. Dosimetric Comparison of Intensity-Modulated Stereotactic Radiotherapy With Other Stereotactic Techniques for Locally Recurrent Nasopharyngeal Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming, E-mail: kamkm@yahoo.co

    2011-01-01

    Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrievedmore » from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.« less

  16. Efficacy and Toxicity of Chemoradiotherapy Using Intensity-Modulated Radiotherapy for Unknown Primary of Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sher, David J., E-mail: dsher@lroc.harvard.edu; Balboni, Tracy A.; Haddad, Robert I.

    2011-08-01

    Purpose: No single standard treatment paradigm is available for head-and-neck squamous cell carcinoma of an unknown primary (HNCUP). Bilateral neck radiotherapy with mucosal axis irradiation is widely used, with or without chemotherapy and/or surgical resection. Intensity-modulated radiotherapy (IMRT) is a highly conformal method for delivering radiation that is becoming the standard of care and might reduce the long-term treatment-related sequelae. We report the Dana-Farber Cancer Institute experience with IMRT-based treatment for HNCUP. Patients and Materials: A retrospective study of all patients treated at the Dana-Farber Cancer Institute for HNCUP with IMRT between August 2004 and January 2009. The primary endpointmore » was overall survival; the secondary endpoints were locoregional and distant control, and acute and chronic toxicity. Results: A total of 24 patients with HNCUP were included. Of these patients, 22 had Stage N2 disease or greater. All patients underwent neck computed tomography, positron emission tomography-computed tomography, and examination under anesthesia with directed biopsies. Of the 24 patients, 22 received concurrent chemotherapy, and 7 (29%) also underwent induction chemotherapy. The median involved nodal dose was 70 Gy, and the median mucosal dose was 60 Gy. With a median follow-up of 2.1 years, the 2-year actuarial overall survival and locoregional control rate was 92% and 100%, respectively. Only 25% of the patients had Grade 2 xerostomia, although 11 patients (46%) required esophageal dilation for stricture. Conclusion: In a single-institution series, IMRT-based chemoradiotherapy for HNCUP was associated with superb overall survival and locoregional control. The xerostomia rates were promising, but the aggressive therapy was associated with significant rates of esophageal stenosis.« less

  17. Toxicity after post-prostatectomy image-guided intensity-modulated radiotherapy using Australian guidelines.

    PubMed

    Chin, Stephen; Aherne, Noel J; Last, Andrew; Assareh, Hassan; Shakespeare, Thomas P

    2017-12-01

    We evaluated single institution toxicity outcomes after post-prostatectomy radiotherapy (PPRT) via image-guided intensity-modulated radiation therapy (IG-IMRT) with implanted fiducial markers following national eviQ guidelines, for which late toxicity outcomes have not been published. Prospectively collected toxicity data were retrospectively reviewed for 293 men who underwent 64-66 Gy IG-IMRT to the prostate bed between 2007 and 2015. Median follow-up after PPRT was 39 months. Baseline grade ≥2 genitourinary (GU), gastrointestinal (GI) and sexual toxicities were 20.5%, 2.7% and 43.7%, respectively, reflecting ongoing toxicity after radical prostatectomy. Incidence of new (compared to baseline) acute grade ≥2 GU and GI toxicity was 5.8% and 10.6%, respectively. New late grade ≥2 GU, GI and sexual toxicity occurred in 19.1%, 4.7% and 20.2%, respectively. However, many patients also experienced improvements in toxicities. For this reason, prevalence of grade ≥2 GU, GI and sexual toxicities 4 years after PPRT was similar to or lower than baseline (21.7%, 2.6% and 17.4%, respectively). There were no grade ≥4 toxicities. Post-prostatectomy IG-IMRT using Australian contouring guidelines appears to have tolerable acute and late toxicity. The 4-year prevalence of grade ≥2 GU and GI toxicity was virtually unchanged compared to baseline, and sexual toxicity improved over baseline. This should reassure radiation oncologists following these guidelines. Late toxicity rates of surgery and PPRT are higher than following definitive IG-IMRT, and this should be taken into account if patients are considering surgery and likely to require PPRT. © 2017 The Royal Australian and New Zealand College of Radiologists.

  18. SU-E-T-810: Volumetric Modulated Arc Therapy and Conventional Intensity-Modulated Radiotherapy for Non-Small-Cell Lung Cancer with Simultaneously Integrated Boost Radiation Therapy: A Planning Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Chen, J; Zhang, G

    2015-06-15

    Purpose: To compare and analyze the characteristics of intensity-modulated arc therapy(IMAT) versus fixed-gantry intensity-modulated radiotherapy(IMRT) in treatment of non-small-cell lung cancer. Methods: Twelve patients treated in our radiotherapy center were selected for this study. The patient subsequently underwent 4D-CT simulation.Margins of 5mm and 10mm were added to the ITV to generate the CTV and PTV respectively. Three treatment plans (IMRT,one single arc (RA1),double arcs (RA2))were generated with Eclipse ver.8.6 planning systems. Using a dose level of 75Gy in 15fractions to the ITV,60Gy in 15fractions to the CTV and 45Gy in 15fractions to the PTV respectively. The target and normol tissuemore » volumes were compared,as were the dosimetry parameters. Results: There were no significant differences in CI of ITV,PTV,HI of ITV,CTV and PTV, V5,V10,V15,V20,V25,V30,V45,V50 of total-lung and mean lung dose (all p>0.05). However, the differences were significant in terms of CI of CTV,V5 of B-P (all p<0.05). On the MU, IMRT=1540MU,RA1=1006 MU and RA2=1096 MU. (F=12.00,P=0.000).On the treatment time, IMRT= 13.5min,RA1= 1.5min,and RA2=2.5 min (F= 30.11,P=0.000 ). Conclusion: IMAT is equal to IMRT in dosimetril evaluation. Due to much less Mu and delivery time,IMAT is an ideal technique in treating patients by reduceing the uncomfortable influnce which could effect the treatment.« less

  19. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Jennifer L., E-mail: peterson.jennifer2@mayo.edu; Buskirk, Steven J.; Heckman, Michael G.

    2014-04-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminologymore » Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm{sup 3} of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications.« less

  20. Recurrence in Region of Spared Parotid Gland After Definitive Intensity-Modulated Radiotherapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, Donald M.; Lee, Nancy Y.

    2008-03-01

    Purpose: To discuss the implications of three examples of periparotid recurrence after definitive intensity-modulated radiotherapy (IMRT) for head and neck cancer (HNC). Methods and Materials: We present 3 patients with HNC who underwent definitive IMRT with concurrent chemotherapy and later had treatment failure in or near a spared parotid gland. Two patients had bilateral multilevel nodal disease, and all had Level II nodal disease ipsilateral to the site of recurrence. The patients were treated using dose-painting IMRT with a dose of 70 Gy to the gross tumor volume and 59.4 Gy or 54 Gy to the high-risk or low-risk clinicalmore » tumor volume, respectively. The parotid glands were spared bilaterally. The patients had not undergone any surgical treatment for HNC before radiotherapy. Results: All patients had treatment failure in the region of a spared parotid gland. Failure in the 2 patients with bilateral multilevel nodal involvement occurred in the periparotid lymph nodes. The third patient developed a dermal metastasis near the tail of a spared parotid gland. On pretreatment imaging, the 2 patients with nodal failure had small nonspecific periparotid nodules that showed no hypermetabolic activity on positron emission tomography. Conclusion: For HNC patients receiving definitive IMRT, nonspecific positron emission tomography-negative periparotid nodules on pretreatment imaging should raise the index of suspicion for subclinical disease in the presence of multilevel or Level II nodal metastases. Additional evaluation of such nodules might be indicated before sparing the ipsilateral parotid gland.« less

  1. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    PubMed

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT.The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  2. Using individual patient anatomy to predict protocol compliance for prostate intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caine, Hannah; Whalley, Deborah; Kneebone, Andrew

    If a prostate intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) plan has protocol violations, it is often a challenge knowing whether this is due to unfavorable anatomy or suboptimal planning. This study aimed to create a model to predict protocol violations based on patient anatomical variables and their potential relationship to target and organ at risk (OAR) end points in the setting of definitive, dose-escalated IMRT/VMAT prostate planning. Radiotherapy plans from 200 consecutive patients treated with definitive radiation for prostate cancer using IMRT or VMAT were analyzed. The first 100 patient plans (hypothesis-generating cohort) were examined to identifymore » anatomical variables that predict for dosimetric outcome, in particular OAR end points. Variables that scored significance were further assessed for their ability to predict protocol violations using a Classification and Regression Tree (CART) analysis. These results were then validated in a second group of 100 patients (validation cohort). In the initial analysis of the hypothesis-generating cohort, percentage of rectum overlap in the planning target volume (PTV) (%OR) and percentage of bladder overlap in the PTV (%OB) were highlighted as significant predictors of rectal and bladder dosimetry. Lymph node treatment was also significant for bladder outcomes. For the validation cohort, CART analysis showed that %OR of < 6%, 6% to 9% and > 9% predicted a 13%, 63%, and 100% rate of rectal protocol violations respectively. For the bladder, %OB of < 9% vs > 9% is associated with 13% vs 88% rate of bladder constraint violations when lymph nodes were not treated. If nodal irradiation was delivered, plans with a %OB of < 9% had a 59% risk of violations. Percentage of rectum and bladder within the PTV can be used to identify individual plan potential to achieve dose-volume histogram (DVH) constraints. A model based on these factors could be used to reduce planning time

  3. Propensity Score-based Comparison of Long-term Outcomes With 3-Dimensional Conformal Radiotherapy vs Intensity-Modulated Radiotherapy for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Steven H., E-mail: SHLin@mdanderson.org; Wang Lu; Myles, Bevan

    2012-12-01

    Purpose: Although 3-dimensional conformal radiotherapy (3D-CRT) is the worldwide standard for the treatment of esophageal cancer, intensity modulated radiotherapy (IMRT) improves dose conformality and reduces the radiation exposure to normal tissues. We hypothesized that the dosimetric advantages of IMRT should translate to substantive benefits in clinical outcomes compared with 3D-CRT. Methods and Materials: An analysis was performed of 676 nonrandomized patients (3D-CRT, n=413; IMRT, n=263) with stage Ib-IVa (American Joint Committee on Cancer 2002) esophageal cancers treated with chemoradiotherapy at a single institution from 1998-2008. An inverse probability of treatment weighting and inclusion of propensity score (treatment probability) as amore » covariate were used to compare overall survival time, interval to local failure, and interval to distant metastasis, while accounting for the effects of other clinically relevant covariates. The propensity scores were estimated using logistic regression analysis. Results: A fitted multivariate inverse probability weighted-adjusted Cox model showed that the overall survival time was significantly associated with several well-known prognostic factors, along with the treatment modality (IMRT vs 3D-CRT, hazard ratio 0.72, P<.001). Compared with IMRT, 3D-CRT patients had a significantly greater risk of dying (72.6% vs 52.9%, inverse probability of treatment weighting, log-rank test, P<.0001) and of locoregional recurrence (P=.0038). No difference was seen in cancer-specific mortality (Gray's test, P=.86) or distant metastasis (P=.99) between the 2 groups. An increased cumulative incidence of cardiac death was seen in the 3D-CRT group (P=.049), but most deaths were undocumented (5-year estimate, 11.7% in 3D-CRT vs 5.4% in IMRT group, Gray's test, P=.0029). Conclusions: Overall survival, locoregional control, and noncancer-related death were significantly better after IMRT than after 3D-CRT. Although these results need

  4. [Intensity-modulated or 3-D conformal radiotherapy combined with chemotherapy with docetaxel and cisplatin for locally advanced esophageal carcinoma].

    PubMed

    Lin, Xiao-dan; Shi, Xing-yuan; Zhou, Tong-chong; Zhang, Wei-jun

    2011-06-01

    To evaluate the therapeutic effect and toxicity of intensity-modulated radiation therapy (IMRT) or three-dimensional conformal radiotherapy combined with chemotherapy (3-DCRT) with docetaxel and cisplatin in the treatment of locally advanced esophageal carcinoma. Sixty patients with locally advanced esophageal carcinoma were randomly assigned in two equal groups to receive IMRT or 3-DCRT, both combined with the chemotherapy with docetaxel and cisplatin. The total dose of radiotherapy was 64 Gy, administered in 30 fractions in 6 weeks. The complete response rate (complete and partial remissions) of IMRT group was 90.0%, significantly higher than the rate of 80.0% in 3-DCRT group (P>0.05). The 1-, 2-, and 3-year survival rates of IMRT group were 86.7%, 70.0%, and 66.7%, as compared to 70.0%, 63.3%, and 63.3% in 3-DCRT group, respectively, showing no significant differences between the two groups (P>0.05). IMRT showed advantages over 3-DCRT in terms of the V20 and V30 parameters of the lung (P<0.05), and the incidences of radiation-induced esophagitis were comparable between the two groups (P>0.05). When combined with the chemotherapy with docetaxel and cisplatin, IMRT appears to be a more effective treatment than 3-DCRT for locally advanced esophageal cancer.

  5. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial

    PubMed Central

    Nutting, Christopher M; Morden, James P; Harrington, Kevin J; Urbano, Teresa Guerrero; Bhide, Shreerang A; Clark, Catharine; Miles, Elizabeth A; Miah, Aisha B; Newbold, Kate; Tanay, MaryAnne; Adab, Fawzi; Jefferies, Sarah J; Scrase, Christopher; Yap, Beng K; A'Hern, Roger P; Sydenham, Mark A; Emson, Marie; Hall, Emma

    2011-01-01

    Summary Background Xerostomia is the most common late side-effect of radiotherapy to the head and neck. Compared with conventional radiotherapy, intensity-modulated radiotherapy (IMRT) can reduce irradiation of the parotid glands. We assessed the hypothesis that parotid-sparing IMRT reduces the incidence of severe xerostomia. Methods We undertook a randomised controlled trial between Jan 21, 2003, and Dec 7, 2007, that compared conventional radiotherapy (control) with parotid-sparing IMRT. We randomly assigned patients with histologically confirmed pharyngeal squamous-cell carcinoma (T1–4, N0–3, M0) at six UK radiotherapy centres between the two radiotherapy techniques (1:1 ratio). A dose of 60 or 65 Gy was prescribed in 30 daily fractions given Monday to Friday. Treatment was not masked. Randomisation was by computer-generated permuted blocks and was stratified by centre and tumour site. Our primary endpoint was the proportion of patients with grade 2 or worse xerostomia at 12 months, as assessed by the Late Effects of Normal Tissue (LENT SOMA) scale. Analyses were done on an intention-to-treat basis, with all patients who had assessments included. Long-term follow-up of patients is ongoing. This study is registered with the International Standard Randomised Controlled Trial register, number ISRCTN48243537. Findings 47 patients were assigned to each treatment arm. Median follow-up was 44·0 months (IQR 30·0–59·7). Six patients from each group died before 12 months and seven patients from the conventional radiotherapy and two from the IMRT group were not assessed at 12 months. At 12 months xerostomia side-effects were reported in 73 of 82 alive patients; grade 2 or worse xerostomia at 12 months was significantly lower in the IMRT group than in the conventional radiotherapy group (25 [74%; 95% CI 56–87] of 34 patients given conventional radiotherapy vs 15 [38%; 23–55] of 39 given IMRT, p=0·0027). The only recorded acute adverse event of grade 2 or worse

  6. Study for reducing lung dose of upper thoracic esophageal cancer radiotherapy by auto-planning: volumetric-modulated arc therapy vs intensity-modulated radiation therapy.

    PubMed

    Chen, Hua; Wang, Hao; Gu, Hengle; Shao, Yan; Cai, Xuwei; Fu, Xiaolong; Xu, Zhiyong

    2017-10-27

    This study aimed to investigate the dosimetric differences and lung sparing between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of upper thoracic esophageal cancer with T3N0M0 for preoperative radiotherapy by auto-planning (AP). Sixteen patient cases diagnosed with upper thoracic esophageal cancer T3N0M0 for preoperative radiotherapy were retrospectively studied, and 3 plans were generated for each patient: full arc VMAT AP plan with double arcs, partial arc VMAT AP plan with 6 partial arcs, and conventional IMRT AP plan. A simultaneous integrated boost with 2 levels was planned in all patients. Target coverage, organ at risk sparing, treatment parameters including monitor units and treatment time (TT) were evaluated. Wilcoxon signed-rank test was used to check for significant differences (p < 0.05) between datasets. VMAT plans (pVMAT and fVMAT) significantly reduced total lung volume treated above 20 Gy (V 20 ), 25 Gy (V 25 ), 30 Gy (V 30 ), 35 Gy (V 35 ), 40 Gy (V 40 ), and without increasing the value of V 10 , V 13 , and V 15 . For V 5 of total lung value, pVMAT was similar to aIMRT, and it was better than fVMAT. Both pVMAT and fVMAT improved the target dose coverage and significantly decreased maximum dose for the spinal cord, monitor unit, and TT. No significant difference was observed with respect to V 10 and V 15 of body. VMAT AP plan was a good option for treating upper thoracic esophageal cancer with T3N0M0, especially partial arc VMAT AP plan. It had the potential to effectively reduce lung dose in a shorter TT and with superior target coverage and dose homogeneity. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  7. Experience-based quality control of clinical intensity-modulated radiotherapy planning.

    PubMed

    Moore, Kevin L; Brame, R Scott; Low, Daniel A; Mutic, Sasa

    2011-10-01

    To incorporate a quality control tool, according to previous planning experience and patient-specific anatomic information, into the intensity-modulated radiotherapy (IMRT) plan generation process and to determine whether the tool improved treatment plan quality. A retrospective study of 42 IMRT plans demonstrated a correlation between the fraction of organs at risk (OARs) overlapping the planning target volume and the mean dose. This yielded a model, predicted dose = prescription dose (0.2 + 0.8 [1 - exp(-3 overlapping planning target volume/volume of OAR)]), that predicted the achievable mean doses according to the planning target volume overlap/volume of OAR and the prescription dose. The model was incorporated into the planning process by way of a user-executable script that reported the predicted dose for any OAR. The script was introduced to clinicians engaged in IMRT planning and deployed thereafter. The script's effect was evaluated by tracking δ = (mean dose-predicted dose)/predicted dose, the fraction by which the mean dose exceeded the model. All OARs under investigation (rectum and bladder in prostate cancer; parotid glands, esophagus, and larynx in head-and-neck cancer) exhibited both smaller δ and reduced variability after script implementation. These effects were substantial for the parotid glands, for which the previous δ = 0.28 ± 0.24 was reduced to δ = 0.13 ± 0.10. The clinical relevance was most evident in the subset of cases in which the parotid glands were potentially salvageable (predicted dose <30 Gy). Before script implementation, an average of 30.1 Gy was delivered to the salvageable cases, with an average predicted dose of 20.3 Gy. After implementation, an average of 18.7 Gy was delivered to salvageable cases, with an average predicted dose of 17.2 Gy. In the prostate cases, the rectum model excess was reduced from δ = 0.28 ± 0.20 to δ = 0.07 ± 0.15. On surveying dosimetrists at the end of the study, most reported that the script

  8. Dosimetric comparison of intensity modulated radiotherapy and three-dimensional conformal radiotherapy in patients with gynecologic malignancies: a systematic review and meta-analysis

    PubMed Central

    2012-01-01

    Background To quantitatively evaluate the safety and related-toxicities of intensity modulated radiotherapy (IMRT) dose–volume histograms (DVHs), as compared to the conventional three-dimensional conformal radiotherapy (3D-CRT), in gynecologic malignancy patients by systematic review of the related publications and meta-analysis. Methods Relevant articles were retrieved from the PubMed, Embase, and Cochrane Library databases up to August 2011. Two independent reviewers assessed the included studies and extracted data. Pooled average percent irradiated volumes of adjacent non-cancerous tissues were calculated and compared between IMRT and 3D-CRT for a range of common radiation doses (5-45Gy). Results In total, 13 articles comprised of 222 IMRT-treated and 233 3D-CRT-treated patients were included. For rectum receiving doses ≥30 Gy, the IMRT pooled average irradiated volumes were less than those from 3D-CRT by 26.40% (30 Gy, p = 0.004), 27.00% (35 Gy, p = 0.040), 37.30% (40 Gy, p = 0.006), and 39.50% (45 Gy, p = 0.002). Reduction in irradiated small bowel was also observed for IMRT-delivered 40 Gy and 45 Gy (by 17.80% (p = 0.043) and 17.30% (p = 0.012), respectively), as compared with 3D-CRT. However, there were no significant differences in the IMRT and 3D-CRT pooled average percent volumes of irradiated small bowel or rectum from lower doses, or in the bladder or bone marrow from any of the doses. IMRT-treated patients did not experience more severe acute or chronic toxicities than 3D-CRT-treated patients. Conclusions IMRT-delivered high radiation dose produced significantly less average percent volumes of irradiated rectum and small bowel than 3D-CRT, but did not differentially affect the average percent volumes in the bladder and bone marrow. PMID:23176540

  9. Predictive factors for acute radiation pneumonitis in postoperative intensity modulated radiation therapy and volumetric modulated arc therapy of esophageal cancer.

    PubMed

    Zhao, Yaqin; Chen, Lu; Zhang, Shu; Wu, Qiang; Jiang, Xiaoqin; Zhu, Hong; Wang, Jin; Li, Zhiping; Xu, Yong; Zhang, Ying Jie; Bai, Sen; Xu, Feng

    2015-01-01

    Radiation pneumonitis (RP) is a common side reaction in radiotherapy for esophageal cancer. There are few reports about RP in esophageal cancer patients receiving postoperative intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). This study aims to analyze clinical or dosimetric factors associated with RP, and provides data for radiotherapy planning. We reviewed 68 postoperative esophageal cancer patients who were treated with radiotherapy at the West China Hospital from October 2010 to November 2012 to identify any correlation between the clinical or dosimetric parameters and acute radiation pneumonitis (ARP) or severe acute radiation pneumonitis (SARP) by t-test, chi-square test, and logistic regression analysis. Of the 68 patients, 33 patients (48.5%) developed ARP, 13 of which (19.1%) developed SARP. Of these 33 patients, 8 (11.8%), 12 (17.6%), 11 (16.2%), and 2 (2.9%) patients were grade 1, 2, 3, and 4 ARP, respectively. Univariate analysis showed that lung infection during radiotherapy, use of VMAT, mean lung dose (MLD), and dosimetric parameters (e.g. V20, V30) are significantly correlated with RP. Multivariate analysis found that lung infection during radiotherapy, MLD ≥ 12 Gy, and V30 ≥ 13% are significantly correlated with an increased risk of RP. Lung infection during radiotherapy and low radiation dose volume distribution were predictive factors associated with RP and should be accounted for during radiation planning.

  10. Nasopharyngeal Carcinoma in Children: Comparison of Conventional and Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskar, Siddhartha; Bahl, Gaurav; Muckaden, MaryAnn

    2008-11-01

    Purpose: To evaluate the efficacy of intensity-modulated radiotherapy (IMRT) in reducing the acute toxicities associated with conventional RT (CRT) in children with nasopharyngeal carcinoma. Patients and Methods: A total of 36 children with nonmetastatic nasopharyngeal carcinoma, treated at the Tata Memorial Hospital between June 2003 and December 2006, were included in this study. Of the 36 patients, 28 were boys and 8 were girls, with a median age of 14 years; 4 (11%) had Stage II and 10 (28%) Stage III disease at presentation. All patients had undifferentiated carcinoma and were treated with a combination of chemotherapy and RT. Ofmore » the 36 patients, 19 underwent IMRT and 17 underwent CRT. Results: After a median follow-up of 27 months, the 2-year locoregional control, disease-free, and overall survival rate was 76.5%, 60.6%, and 71.3%, respectively. A significant reduction in acute Grade 3 toxicities of the skin (p = 0.006), mucous membrane (p = 0.033), and pharynx (p = 0.035) was noted with the use of IMRT. The median time to the development of Grade 2 toxicity was delayed with IMRT (skin, 35 vs. 25 days, p = 0.016; mucous-membrane, 39 vs. 27 days, p = 0.002; and larynx, 50 vs. 28 days, p = 0.009). The duration of RT significantly influenced disease-free survival on multivariate analysis (RT duration >52 days, hazard ratio = 5.49, 95% confidence interval, 1.14-26.45, p = 0.034). The average mean dose to the first and second planning target volume was 71.8 Gy and 62.5 Gy with IMRT compared with 66.3 Gy (p = 0.001) and 64.4 Gy (p = 0.046) with CRT, respectively. Conclusion: The results of our study have shown that IMRT significantly reduces and delays the onset of acute toxicity, resulting in improved tolerance and treatment compliance for children with nasopharyngeal carcinoma. Also, IMRT provided superior target coverage and normal tissue sparing compared with CRT.« less

  11. Reduced toxicity with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy compared with conventional two-dimensional radiotherapy for esophageal squamous cell carcinoma: a secondary analysis of data from four prospective clinical trials.

    PubMed

    Deng, J-Y; Wang, C; Shi, X-H; Jiang, G-L; Wang, Y; Liu, Y; Zhao, K-L

    2016-11-01

    We conducted a retrospective analysis to assess the toxicity and long-term survival of esophageal squamous cell carcinoma patients treated with three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT) versus conventional two-dimensional radiotherapy (2DRT). All data in the present study were based on four prospective clinical trials conducted at our institution from 1996 to 2004 and included 308 esophageal squamous cell carcinoma patients treated with 2DRT or 3DCRT/IMRT. Based on the inclusion and exclusion criteria, 254 patients were included in the analysis. Of these patients, 158 were treated with 2DRT, whereas 96 were treated with 3DCRT/IMRT. The rates of ≥Grade3 acute toxicity of the esophagus and lung were 11.5% versus 28.5% (P = 0.002) and 5.2% versus 10.8% (P = 0.127) in the 3DCRT/IMRT and 2DRT groups, respectively. The incidences of ≥Grade 3 late toxicity of the esophagus and lungs were 3.1% versus 10.7% (P = 0.028) and 3.1% versus 5.7% (P = 0.127) in the 3DCRT/IMRT and 2DRT groups, respectively. The 1-year, 3-year and 5-year estimated overall survival rates were 81%, 38% and 34% in the 3DCRT/IMRT group and 79%, 44% and 31% in the 2DRT group, respectively (P = 0.628). The 1-year, 3-year and 5-year local control rates were 88%, 71% and 66% in the 3DCRT/IMRT group and 84%, 66% and 60% in the 2DRT group, respectively (P = 0.412). Fewer incidences of acute and late toxicities were observed in esophageal squamous cell carcinoma patients treated with 3DCRT/IMRT compared with those treated with 2DRT. No significant survival benefit was observed with the use of 3DCRT/IMRT. © 2015 International Society for Diseases of the Esophagus.

  12. SU-E-P-51: Dosimetric Comparison to Organs at Risk Sparing Using Volumetric-Modulated Arc Therapy Versus Intensity-Modulated Radiotherapy in Postoperative Radiotherapy of Left-Sided Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, L; Deng, G; Xie, J

    2015-06-15

    Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Bothmore » VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.« less

  13. Changes in salivary gland function after radiotherapy of head and neck tumors measured by quantitative pertechnetate scintigraphy: Comparison of intensity-modulated radiotherapy and conventional radiation therapy with and without Amifostine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muenter, Marc W.; Hoffner, Simone; Department of Nuclear Medicine, University of Heidelberg, Heidelberg

    2007-03-01

    Purpose: The aim of this study was to compare changes in salivary gland function after intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (RT), with or without Amifostine, for tumors of the head-and-neck region using quantitative salivary gland scintigraphy (QSGS). Methods and Materials: A total of 75 patients received pre- and post-therapeutic QSGS to quantify the salivary gland function. In all, 251 salivary glands were independently evaluated. Changes in the maximum uptake ({delta}U) and relative excretion rate ({delta}F) both pre- and post-RT were determined to characterize radiation-induced changes in the salivary gland function. In addition, dose-response curves were calculated. Results: In allmore » groups, maximum uptake and relative excretion rate were reduced after RT ({delta}U {<=}0 and {delta}F {<=}0). The reduction was significantly lower for IMRT than for conventional RT. For the parotid glands, the reduction was smaller for the IMRT-low than for the IMRT-high group. For the Amifostine-high and the conventional group the difference was significant only for one parameter ({delta}U, parotid and submandibular glands, p < 0.05). In contrast to this, the difference between the Amifostine-low and the conventional group was always significant or at least showed a clear trend for both changes in U and F. In regard to the endpoint 'reduction of the salivary gland excretion rate of more than 50%,' the dose-response curves yielded D{sub 50}-values of 34.2 {+-} 12.2 Gy for the conventionally treated group and 36.8 {+-} 2.9 Gy for the IMRT group. For the Amifostine group, an increased D{sub 50}-values of 46.3 {+-} 2.3 Gy was obtained. Conclusion: Intensity-modulated RT can significantly reduce the loss of parotid gland function when respecting a certain dose threshold. Conventional RT plus Amifostine prevents reduced salivary gland function only in the patient group treated with <40.6 Gy.« less

  14. Quality of Life and Survival Outcome for Patients With Nasopharyngeal Carcinoma Receiving Three-Dimensional Conformal Radiotherapy vs. Intensity-Modulated Radiotherapy-A Longitudinal Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, F.-M.; Kaohsiung Chang Gung Head and Neck Oncology Group, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung Hsien, Taiwan; Chien, C.-Y.

    2008-10-01

    Purpose: To investigate the changes of quality of life (QoL) and survival outcomes for patients with nasopharyngeal carcinoma (NPC) treated by three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT). Methods and Materials: Two hundred and three newly diagnosed NPC patients, who were curatively treated by 3D-CRT (n = 93) or IMRT (n = 110) between March 2002 and July 2004, were analyzed. The distributions of clinical stage according to American Joint Committee on Cancer 1997 were I: 15 (7.4%), II: 78 (38.4%), III: 74 (36.5%), and IV: 36 (17.7%). QoL was longitudinally assessed by the European Organization for Research andmore » Treatment of Cancer (EORTC) QLQ-C30 and the EORTC QLQ-H and N35 questionnaires at the five time points: before RT, during RT (36 Gy), and 3 months, 12 months, and 24 months after RT. Results: The 3-year locoregional control, metastasis-free survival, and overall survival rates were 84.8%, 76.7%, and 81.7% for the 3D-CRT group, respectively, compared with 84.2%, 82.6%, and 85.4% for the IMRT group (p value > 0.05). A general trend of maximal deterioration in most QoL scales was observed during RT, followed by a gradual recovery thereafter. There was no significant difference in most scales between the two groups at each time point. The exception was that patients treated by IMRT had a both statistically and clinically significant improvement in global QoL, fatigue, taste/smell, dry mouth, and feeling ill at the time point of 3 months after RT. Conclusions: The potential advantage of IMRT over 3D-CRT in treating NPC patients might occur in QoL outcome during the recovery phase of acute toxicity.« less

  15. Dosimetric effect of Elekta Beam Modulator micromultileaf in three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carosi, Alessandra, E-mail: alessandra.carosi@katamail.com; Ingrosso, Gianluca; Ponti, Elisabetta

    2014-07-01

    The purpose of this study is to analyze the dosimetric effect of Elekta Beam Modulator in 3-dimensional conformal radiation therapy (3DCRT) and in intensity-modulated radiation therapy (IMRT) for localized prostate cancer. We compared treatment plans developed with 2 different Elekta multileaf collimators (MLC): Beam Modulator micro-MLC (mMLC) (4-mm leaf width at the isocenter) and standard MLC (10-mm leaf width at the isocenter). The comparison was performed for 15 patients with localized prostate cancer in 3DCRT and IMRT delivery; a total of 60 treatment plans were processed. The dose-volume histograms were used to provide the quantitative comparison between plans. In particular,more » we analyzed differences between rectum and bladder sparing in terms of a set of appropriate Vx (percentage of organ at risk [OAR] volume receiving the x dose) and differences between target conformity and coverage in terms of coverage factor and conformation number. Our analysis demonstrates that in 3DCRT there is an advantage in the use of Elekta Beam Modulator mMLC in terms of organ sparing; in particular, a significant decrease in rectal V{sub 60} and V{sub 50} (p = 0.001) and in bladder V{sub 70} and V{sub 65} (p = 0.007 and 0.002, respectively) was found. Moreover, a better target dose conformity was obtained (p = 0.002). IMRT plans comparison demonstrated no significant differences between the use of the 4 or 10-mm MLCs. Our analysis shows that in 3DCRT the use of the Elekta Beam Modulator mMLC gives a gain in target conformity and in OARs dose sparing whereas in IMRT plans there is no advantage.« less

  16. Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study.

    PubMed

    Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria

    2017-03-01

    To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

  17. Cardiac Side-effects From Breast Cancer Radiotherapy.

    PubMed

    Taylor, C W; Kirby, A M

    2015-11-01

    Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Intensity-modulated radiation therapy: a review with a physics perspective.

    PubMed

    Cho, Byungchul

    2018-03-01

    Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

  19. Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Hussien, Mohammad

    Purpose: Quality assurance (QA) for intensity modulated radiotherapy (IMRT) has evolved substantially. In recent years, various ionization chamber or diode detector arrays have become commercially available, allowing pre-treatment absolute dose verification with near real-time results. This has led to a wide uptake of this technology to replace point dose and film dosimetry and to facilitate QA streamlining. However, arrays are limited by their spatial resolution giving rise to concerns about their response to clinically relevant deviations. The common factor in all commercial array systems is the reliance on the gamma index (γ) method to provide the quantitative evaluation of the measured dose distribution against the Treatment Planning System (TPS) calculated dose distribution. The mathematical definition of the gamma index presents computational challenges that can cause a variation in the calculation in different systems. The purpose of this thesis was to evaluate the suitability of detector array systems, combined with their implementation of the gamma index, in the verification and dosimetry audit of advanced IMRT. Method: The response of various commercial detector array systems (Delta4®, ArcCHECK®, and the PTW 2D-Array seven29™ and OCTAVIUS II™ phantom combination, Gafchromic® EBT2 and composite EPID measurements) to simulated deliberate changes in clinical IMRT and VMAT plans was evaluated. The variability of the gamma index calculation in the different systems was also evaluated by comparing against a bespoke Matlab-based gamma index analysis software. A novel methodology for using a commercial detector array in a dosimetry audit of rotational radiotherapy was then developed. Comparison was made between measurements using the detector array and those performed using ionization chambers, alanine and radiochromic film. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were

  20. Limiting the risk of cardiac toxicity with esophageal-sparing intensity modulated radiotherapy for locally advanced lung cancers.

    PubMed

    Woodford, Katrina; Panettieri, Vanessa; Ruben, Jeremy D; Senthi, Sashendra

    2016-05-01

    Intensity modulated radiotherapy (IMRT) is routinely utilized in the treatment of locally advanced non-small cell lung cancer (NSCLC). RTOG 0617 found that overall survival was impacted by increased low (5 Gy) and intermediate (30 Gy) cardiac doses. We evaluated the impact of esophageal-sparing IMRT on cardiac doses with and without the heart considered in the planning process and predicted toxicity compared to 3D-conventional radiotherapy (3DCRT). Ten consecutive patients with N2 Stage III NSCLC treated to 60 Gy in 30 fractions, between February 2012 and September 2014, were evaluated. For each patient, 3DCRT and esophageal-sparing IMRT plans were generated. IMRT plans were then created with and without the heart considered in the optimization process. To compare plans, the dose delivered to 95% and 99% of the target (D95% and D99%), and doses to the esophagus, lung and heart were compared by determining the volume receiving X dose (VXGy) and the normal tissue complication probability (NTCP) calculated. IMRT reduced maximum esophagus dose to below 60 Gy in all patients and produced significant reductions to V50Gy, V40Gy and esophageal NTCP. The cost of this reduction was a non-statistically, non-clinically significant increase in low dose (5 Gy) lung exposure that did not worsen lung NTCP. IMRT plans produced significant cardiac sparing, with the amount of improvement correlating to the amount of heart overlapping with the target. When included in plan optimization, for selected patients further sparing of the heart and improvement in heart NTCP was possible. Esophageal-sparing IMRT can significantly spare the heart even if it is not considered in the optimization process. Further sparing can be achieved if plan optimization constrains low and intermediate heart doses, without compromising lung doses.

  1. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with atmore » least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.« less

  2. Improved Dosimetric and Clinical Outcomes With Intensity-Modulated Radiotherapy for Head-and-Neck Cancer of Unknown Primary Origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Allen M., E-mail: allen.chen@ucdmc.ucdavis.ed; Li Baoqing; Farwell, D. Gregory

    2011-03-01

    Purpose: To compare differences in dosimetric, clinical, and quality-of-life endpoints among a cohort of patients treated by intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CRT) for head-and-neck cancer of unknown primary origin. Methods and Materials: The medical records of 51 patients treated by radiation therapy for squamous cell carcinoma of the head and neck presenting as cervical lymph node metastasis of occult primary origin were reviewed. Twenty-four patients (47%) were treated using CRT, and 27 (53%) were treated using IMRT. The proportions of patients receiving concurrent chemotherapy were 54% and 63%, respectively. Results: The 2-year estimates of overall survival, local-regional control,more » and disease-specific survival for the entire patient population were 86%, 89%, and84%, respectively. There were no significant differences in any of these endpoints with respect to radiation therapy technique (p > 0.05 for all). Dosimetric analysis revealed that the use of IMRT resulted in significant improvements with respect to mean dose and V30 to the contralateral (spared) parotid gland. In addition, mean doses to the ipsilateral inner and middle ear structures were significantly reduced with IMRT (p < 0.05 for all). The incidence of severe xerostomia in the late setting was 58% and 11% among patients treated by CRT and IMRT, respectively (p < 0.001). The percentages of patients who were G-tube dependent at 6 months after treatment were 42% and 11%, respectively (p < 0.001). Conclusions: IMRT results in significant improvements in the therapeutic ratio among patients treated by radiation therapy for head-and-neck cancer of unknown primary origin.« less

  3. Impact of obesity on outcomes after definitive dose-escalated intensity-modulated radiotherapy for localized prostate cancer.

    PubMed

    Wang, Lora S; Murphy, Colin T; Ruth, Karen; Zaorsky, Nicholas G; Smaldone, Marc C; Sobczak, Mark L; Kutikov, Alexander; Viterbo, Rosalia; Horwitz, Eric M

    2015-09-01

    Previous publications have demonstrated conflicting results regarding body mass index (BMI) and prostate cancer (CaP) outcomes after definitive radiotherapy (RT) before the dose escalation era. The goal of the current study was to determine whether increasing BMI was associated with outcomes in men with localized CaP who were treated with dose-escalated RT. The authors identified patients with localized (T1b-T4N0M0) CaP who were treated with definitive intensity-modulated RT and image-guided RT from 2001 through 2010. BMI was analyzed as a continuous variable. Adjusting for confounders, multivariable competing risk and Cox proportional hazards regression models were used to assess the association between BMI and the risk of biochemical failure (BF), distant metastases (DM), cause-specific mortality (CSM), and overall mortality. Of the 1442 patients identified, approximately 20% had a BMI <25 kg/m(2) , 48% had a BMI of 25 to 29.9 kg/m(2) , 23% had a BMI of 30 to 34.9 kg/m(2) , 6% had a BMI of 35 to 39.9 kg/m(2) , and 4% had a BMI of ≥40 kg/m(2) . The median follow-up was 47.6 months (range, 1-145 months), with a median age of 68 years (range, 36-89 years). The median dose was 78 grays (range, 76-80 grays) and 30% of patients received androgen deprivation therapy. Increasing BMI was found to be inversely associated with age (P<.001) and pretreatment prostate-specific antigen level (P = .018). On multivariable analysis, increasing BMI was associated with an increased risk of BF (hazard ratio [HR], 1.03; 95% confidence interval [95% CI], 1.00-1.07 [P = .042]), DM (HR, 1.07; 95% CI, 1.02-1.11 [P = .004]), CSM (HR, 1.15; 95% CI, 1.07-1.23 [P<.001]), and overall mortality (HR, 1.05; 95% CI, 1.02-1.08 [P = .004]). For patients with CaP receiving dose-escalated intensity-modulated RT with daily image-guidance, increasing BMI appears to be associated with an increased risk of BF, DM, CSM, and overall mortality. © 2015 American Cancer Society.

  4. Feasibility of intensity-modulated radiotherapy for esophageal cancer in definite chemoradiotherapy.

    PubMed

    Hsieh, He-Yuan; Yeh, Hui-Ling; Hsu, Chung-Ping; Lin, Jin-Ching; Chuang, Cheng-Yen; Lin, Jai-Fu; Chang, Chen-Fa

    2016-07-01

    Esophageal cancer is a highly lethal malignancy, and its treatment has undergone a major evolution over the past 15 years. The objective of this study was to report our experience on the efficacy of definite chemoradiotherapy with the intensity-modulated radiotherapy (IMRT) technique in treating locally advanced esophageal cancer. From September 2004 to November 2011, 39 patients with biopsy-proven esophageal cancer, clinical stage T1-4N0-3M0 according to the American Joint Committee on Cancer 7(th) edition were enrolled. In these enrolled cases, either the tumor was unresectable or the patients refused surgery. All patients received a total radiation dose of 40-56 Gy in 20-28 fractions using IMRT planning. Five to seven radiation beam angles were designed according to the specific shape of the clinical target volume (CTV) and were delivered by a linear accelerator with photons of 6-10 MV energy. The gross tumor volume, CTV, planning target volume, and the organs at risk were outlined, and the homogeneity index (HI) and the conformity index (CI) were calculated. The treatment-related toxicities were also reviewed. The mean follow-up time was 22.4 months (range, 2.0-91.0 months). The 2- and 3-year overall survival rates were 30% and 28%, respectively. The most common Grade 3/4 toxicity was hematologic toxicity (43.6%). The IMRT plans showed high-dose homogeneity to the target, with a calculated HI of 0.9. The calculated CI of 0.8 also showed high conformity treatment dose to target within an acceptable dose range. For the total lungs, the average mean dose was 1313.7 cGy. The V5 and V20 of the total lungs were 67.8% and 23.4%, respectively. For the heart, the average mean dose was 2319.2 cGy. The V30 and V35 of the heart were 30.2% and 21.5%, respectively. Concurrent chemoradiotherapy using the IMRT technique for treating locally advanced unresectable esophageal cancer is feasible, with better conformity of target volume as well as improved sparing of organs

  5. Candidate Dosimetric Predictors of Long-Term Swallowing Dysfunction After Oropharyngeal Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, David L., E-mail: docdls@mdanderson.or; Department of Experimental Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, TX; Hutcheson, Katherine

    2010-12-01

    Purpose: To investigate long-term swallowing function in oropharyngeal cancer patients treated with intensity-modulated radiotherapy (IMRT), and to identify novel dose-limiting criteria predictive for dysphagia. Methods and Materials: Thirty-one patients with Stage IV oropharyngeal squamous carcinoma enrolled on a Phase II trial were prospectively evaluated by modified barium swallow studies at baseline, and 6, 12, and 24 months post-IMRT treatment. Candidate dysphagia-associated organs at risk were retrospectively contoured into original treatment plans. Twenty-one (68%) cases were base of tongue and 10 (32%) were tonsil. Stage distribution was T1 (12 patients), T2 (10), T3 (4), T4 (2), and TX (3), and N2more » (24), N3 (5), and NX (2). Median age was 52.8 years (range, 42-78 years). Thirteen patients (42%) received concurrent chemotherapy during IMRT. Thirteen (42%) were former smokers. Mean dose to glottic larynx for the cohort was limited to 18 Gy (range, 6-39 Gy) by matching IMRT to conventional low-neck fields. Results: Dose-volume constraints (V30 < 65% and V35 < 35% for anterior oral cavity and V55 < 80% and V65 < 30% for high superior pharyngeal constrictors) predictive for objective swallowing dysfunction were identified by univariate and multivariate analyses. Aspiration and feeding tube dependence were observed in only 1 patient at 24 months. Conclusions: In the context of glottic laryngeal shielding, we describe candidate oral cavity and superior pharyngeal constrictor organs at risk and dose-volume constraints associated with preserved long-term swallowing function; these constraints are currently undergoing prospective validation. Strict protection of the glottic larynx via beam-split IMRT techniques promises to make chronic aspiration an uncommon outcome.« less

  6. Intensity-Modulated Radiotherapy Reduces Gastrointestinal Toxicity in Patients Treated With Androgen Deprivation Therapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Navesh K.; Li Tianyu; Chen, David Y.

    Purpose: Androgen deprivation therapy (AD) has been shown to increase late Grade 2 or greater rectal toxicity when used concurrently with three-dimensional conformal radiotherapy (3D-CRT). Intensity-modulated radiotherapy (IMRT) has the potential to reduce toxicity by limiting the radiation dose received by the bowel and bladder. The present study compared the genitourinary and gastrointestinal (GI) toxicity in men treated with 3D-CRT+AD vs. IMRT+AD. Methods and Materials: Between July 1992 and July 2004, 293 men underwent 3D-CRT (n = 170) or IMRT (n = 123) with concurrent AD (<6 months, n = 123; {>=}6 months, n = 170). The median radiation dosemore » was 76 Gy for 3D-CRT (International Commission on Radiation Units and Measurements) and 76 Gy for IMRT (95% to the planning target volume). Toxicity was assessed by a patient symptom questionnaire that was completed at each visit and recorded using a Fox Chase Modified Late Effects Normal Tissue Task radiation morbidity scale. Results: The mean follow-up was 86 months (standard deviation, 29.3) for the 3D-CRT group and 40 months (standard deviation, 9.7) for the IMRT group. Acute GI toxicity (odds ratio, 4; 95% confidence interval, 1.6-11.7; p = .005) was significantly greater with 3D-CRT than with IMRT and was independent of the AD duration (i.e., <6 vs. {>=}6 months). The interval to the development of late GI toxicity was significantly longer in the IMRT group. The 5-year Kaplan-Meier estimate for Grade 2 or greater GI toxicity was 20% for 3D-CRT and 8% for IMRT (p = .01). On multivariate analysis, Grade 2 or greater late GI toxicity (hazard ratio, 2.1; 95% confidence interval, 1.1-4.3; p = .04) was more prevalent in the 3D-CRT patients. Conclusion: Compared with 3D-CRT, IMRT significantly decreased the acute and late GI toxicity in patients treated with AD.« less

  7. Pretreatment risk stratification of feeding tube use in patients treated with intensity-modulated radiotherapy for head and neck cancer.

    PubMed

    Anderson, Nigel J; Jackson, James E; Smith, Jennifer G; Wada, Morikatsu; Schneider, Michal; Poulsen, Michael; Rolfo, Maureen; Fahandej, Maziar; Gan, Hui; Joon, Daryl Lim; Khoo, Vincent

    2018-05-13

    The purpose of this study was to establish a risk stratification model for feeding tube use in patients who undergo intensity-modulated radiotherapy (IMRT) for head and neck cancers. One hundred thirty-nine patients treated with definitive IMRT (+/- concurrent chemotherapy) for head and neck mucosal cancers were included in this study. Patients were recommended a prophylactic feeding tube and followed up by a dietician for at least 8 weeks postradiotherapy (post-RT). Potential prognostic factors were analyzed for risk and duration of feeding tube use for at least 25% of dietary requirements. Many variables had significant effects on risk and/or duration of feeding tube use in univariate analyses. Subsequent multivariable analysis showed that T classification ≥3 and level 2 lymphadenopathy were the best independent significant predictors of higher risk and duration of feeding tube use, respectively, in oral cavity, pharyngeal, and supraglottic primaries. In patients treated with definitive IMRT, T classification ≥3 and level 2 lymphadenopathy can potentially stratify patients into 4 risk groups for developing severe dysphagia requiring feeding tube use. © 2018 Wiley Periodicals, Inc.

  8. Radical chemo-irradiation using intensity-modulated radiotherapy for locally advanced head and neck cancer in elderly patients: Experience from a tertiary care center in South India.

    PubMed

    Chalissery, J R; Sudheeran, P C; Varghese, K M; Venkatesan, K

    2016-01-01

    To assess the feasibility, tolerance and response of radical chemo irradiation using Intensity modulated Radiotherapy [IMRT] in elderly patients [age >65] with locally advanced head and neck cancer. Patients aged 65 and above [range 65 to 84years] registered in oncology outpatient unit in our institution between December 2011 to 2014, with stage III and IV head and neck cancer were treated with radical dose of radiotherapy using IMRT and concurrent chemotherapy with cisplatin 40mg/sq.m weekly. Response evaluation and toxicity profile assessment was done 6 to 8 weeks after completion of treatment and 3 monthly thereafter with median follow up of 3 years. Total number of patients analysed were 47. 43(91.5%) patients tolerated 66-.70Gy of radiotherapy and 4 or more cycles of weekly chemotherapy with cisplatin. First follow up evaluation at 6 to 8 weeks showed 81% patients having complete loco regional response. Grade III skin reaction and mucositis was noticed in 24% and 47% respectively. No grade III neutropenia observed. Median follow up of 3 years showed a complete local control in 53% and overall survival of 60%. Radical chemo irradiation with IMRT in elderly patients is a feasible option. Long term local control and overall survival benefits needs to be followed up.

  9. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report.

    PubMed

    Yamada, Yoshiya; Lovelock, D Michael; Yenice, Kamil M; Bilsky, Mark H; Hunt, Margaret A; Zatcky, Joan; Leibel, Steven A

    2005-05-01

    The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never irradiated patients, respectively. More than 90

  10. Dosimetric comparison of normal structures associated with accelerated partial breast irradiation and whole breast irradiation delivered by intensity modulated radiotherapy for early breast cancer after breast conserving surgery.

    PubMed

    Wu, S; He, Z; Guo, J; Li, F; Lin, Q; Guan, X

    2014-01-01

    To assess the heart and lung dosimetry results associated with accelerated partial breast irradiation intensity-modulated radiotherapy (APBI-IMRT) and whole breast field-in-field intensity-modulated radiotherapy (WBI-FIF-IMRT). A total of 29 patients with early-stage breast cancer after lumpectomy were included in this study. APBI-IMRT and WBI-FIF-IMRT plans were generated for each patient. The dosimetric parameters of ipsilateral lung and heart in both plans were then compared with and without radiobiological correction. With and without radiobiological correction, the volume of ipsilateral lung showed a substantially lower radiation exposure in APBI-IMRT with moderate to high doses (P < 0.05) but non-significant increases in volume of ipsilateral lung in 2.5 Gy than WBI-FIF-IMRT (P > 0.905).There was no significant difference in volume of ipsilateral lung receiving 1, 2.5, and 5 Gy between APBI-IMRT and WBI (P > 0.05) in patients with medial tumor location, although APBI-IMRT exposed more lung to 2.5 and 5 Gy. APBI-IMRT significantly decreases the volume of heart receiving low to high doses in left-sided breast cancer (P < 0.05). APBI-IMRT can significantly spare the volume of heart and ipsilateral lung receiving moderate and high dose. Non-significant increases in volume of the ipsilateral lung exposed to low doses of radiation were observed for APBI-IMRT in comparison to WBI-FIF-IMRT, particularly in patients with medial tumor location. With the increasing interest in APBI-IMRT, our data may help clinicians individualize patient treatment decisions.

  11. Clinical results of conformal versus intensity-modulated radiotherapy using a focal simultaneous boost for muscle-invasive bladder cancer in elderly or medically unfit patients.

    PubMed

    Lutkenhaus, Lotte J; van Os, Rob M; Bel, Arjan; Hulshof, Maarten C C M

    2016-03-18

    For elderly or medically unfit patients with muscle-invasive bladder cancer, cystectomy or chemotherapy are contraindicated. This leaves radical radiotherapy as the only treatment option. It was the aim of this study to retrospectively analyze the treatment outcome and associated toxicity of conformal versus intensity-modulated radiotherapy (IMRT) using a focal simultaneous tumor boost for muscle-invasive bladder cancer in patients not suitable for cystectomy. One hundred eighteen patients with T2-4 N0-1 M0 bladder cancer were analyzed retrospectively. Median age was 80 years. Treatment consisted of either a conformal box technique or IMRT and included a simultaneous boost to the tumor. To enable an accurate boost delivery, fiducial markers were placed around the tumor. Patients were treated with 40 Gy in 20 fractions to the elective treatment volumes, and a daily tumor boost up to 55-60 Gy. Clinical complete response was seen in 87 % of patients. Three-year overall survival was 44 %, with a locoregional control rate of 73 % at 3 years. Toxicity was low, with late urinary and intestinal toxicity rates grade ≥ 2 of 14 and 5 %, respectively. The use of IMRT reduced late intestinal toxicity, whereas fiducial markers reduced acute urinary toxicity. Radical radiotherapy using a focal boost is feasible and effective for elderly or unfit patients, with a 3-year locoregional control of 73 %. Toxicity rates were low, and were reduced by the use of IMRT and fiducial markers.

  12. Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haertl, Petra M., E-mail: petra.haertl@klinik.uni-regensburg.de; Pohl, Fabian; Weidner, Karin

    2013-04-01

    This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to themore » average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.« less

  13. Impact of pelvic nodal irradiation with intensity-modulated radiotherapy on treatment of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Robert A.; Hannoun-Levi, Jean-Michel; Horwitz, Eric

    2006-10-01

    Purpose: The aim of this study was to evaluate the feasibility of treating the pelvic lymphatic regions during prostate intensity-modulated radiotherapy (IMRT) with respect to our routine acceptance criteria. Methods and Materials: A series of 10 previously treated prostate patients were randomly selected and the pelvic lymphatic regions delineated on the fused magnetic resonance/computed tomography data sets. A targeting progression was formed from the prostate and proximal seminal vesicles only to the inclusion of all pelvic lymphatic regions and presacral region resulting in 5 planning scenarios of increasing geometric difficulty. IMRT plans were generated for each stage for two acceleratormore » manufacturers. Dose volume histogram data were analyzed with respect to dose to the planning target volumes, rectum, bladder, bowel, and normal tissue. Analysis was performed for the number of segments required, monitor units, 'hot spots,' and treatment time. Results: Both rectal endpoints were met for all targets. Bladder endpoints were not met and the bowel endpoint was met in 40% of cases with the inclusion of the extended and presacral lymphatics. A significant difference was found in the number of segments and monitor units with targeting progression and between accelerators, with the smaller beamlets yielding poorer results. Treatment times between the 2 linacs did not exhibit a clinically significant difference when compared. Conclusions: Many issues should be considered with pelvic lymphatic irradiation during IMRT delivery for prostate cancer including dose per fraction, normal structure dose/volume limits, planning target volumes generation, localization, treatment time, and increased radiation leakage. We would suggest that, at a minimum, the endpoints used in this work be evaluated before beginning IMRT pelvic nodal irradiation.« less

  14. Optimization and quality assurance of an image-guided radiation therapy system for intensity-modulated radiation therapy radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Jen-San, E-mail: jen-san.tsai@verizon.net; Micaily, Bizhan; Miyamoto, Curtis

    2012-10-01

    To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotationalmore » axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement {+-} 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 {+-} 3.0 mm, 0.5 {+-} 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 {+-} 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of

  15. Patient-reported outcomes following parotid-sparing intensity-modulated radiotherapy for head and neck cancer. How important is dysphagia?

    PubMed

    Roe, Justin W G; Drinnan, Michael J; Carding, Paul N; Harrington, Kevin J; Nutting, Christopher M

    2014-12-01

    Swallowing can be significantly affected during and following radiotherapy for head and neck cancer (HNC). The purpose of this study was to understand: (1) the trajectory of swallowing recovery following parotid-sparing intensity-modulated radiotherapy (IMRT) and (2) overall physical and social-emotional wellbeing and how patients prioritise swallowing following treatment. Sixty-one HNC patients completed questionnaires as part of a prospective study exploring patient-reported swallowing outcomes following parotid-sparing IMRT. Participants were asked to complete the M.D. Anderson Dysphagia Inventory (MDADI) and University of Washington Quality of Life Questionnaire (UW-QoL) v.04 before treatment and 3, 6 and 12months after treatment. Given the rise in human papilloma virus (HPV) and associated oropharyngeal cancers, we completed a sub analysis of the data in those participants. There was a significant reduction in the MDADI composite scores 3months after completion of treatment. Improvements were observed by 12months, however, scores did not recover to baseline. The recovery in physical function was limited in comparison to social-emotional recovery at 12months. When oropharyngeal cancer scores were analysed, there was not a substantial difference to the whole group results. There was a shift in priorities following treatment. Swallowing was highlighted as a concern by 44% of HNC patients up to 12months after treatment with swallowing-related factors (saliva, taste and chewing) rated highly. Patient reported swallowing outcomes were significantly affected from baseline to all follow-up time points and remained a priority concern at 12months following treatment. Overall social-emotional functioning does improve, suggesting that patients have the potential to adapt to their "new normal" following IMRT for HNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Comparison of survival rates between 3D conformal radiotherapy and intensity-modulated radiotherapy in patients with stage III non-small cell lung cancer.

    PubMed

    Kong, Moonkyoo; Hong, Seong Eon

    2016-01-01

    Randomized trials showing a clear survival benefit of intensity-modulated radiotherapy (IMRT) over 3-dimensional conformal radiotherapy (3D-CRT) in the treatment of lung cancer are lacking. This study compared the survival rates of patients with stage III non-small cell lung cancer who were treated with either 3D-CRT or IMRT and analyzed the prognostic factors for survival. From January 2008 to July 2015, 19 patients were treated with IMRT and 30 were treated with 3D-CRT in our institution. The choice between 3D-CRT and IMRT was determined by the physician based on tumor extent and general condition of the patients. The primary endpoint of this study was overall survival. The secondary endpoints were loco-regional recurrence-free survival, distant metastasis-free survival, and the incidence of radiation-induced lung and esophageal toxicities. The 1- and 2-year overall survival rates were 94.7% and 77.1% in the IMRT group and 76.7% and 52.5% in the 3D-CRT group, respectively. The overall survival rates of the IMRT group were higher than those of the 3D-CRT group; however, these differences were not statistically significant ( P =0.072). Gross tumor volume was significantly associated with the overall survival rate. The 1- and 2-year loco-regional recurrence-free survival rates were 63.2% and 51% in the IMRT group and 67.5% and 48.1% in the 3D-CRT group ( P =0.897), respectively. The 1- and 2-year distant metastasis-free survival rates were 78.9% and 68.4% in the IMRT group and 62.6% and 40.9% in the 3D-CRT group ( P =0.120), respectively. Chemotherapy and treatment interruption were significantly associated with distant metastasis-free survival. IMRT showed comparable or better overall survival compared with 3D-CRT in patients with stage III non-small cell lung cancer. To confirm the results of this study, further randomized prospective trials comparing IMRT with 3D-CRT are warranted.

  17. A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiayun; Chen, Xinyuan; Huang, Manni, E-mail: dai_jianrong@163.com

    2014-01-01

    Intensity-modulated radiotherapy (IMRT) plays an important role in cancer radiotherapy. For some patients being treated with IMRT, the extremely low tolerances of critical organs (such as lens, ovaries, and testicles) cannot be met during treatment planning. The aim of this article is to introduce a new planning method to overcome that problem. In current planning practice, jaw positions are automatically set to cover all target volumes by the planning system (e.g., Pinnacle{sup 3} system). Because of such settings, critical organs may be fully blocked by the multileaf collimator (MLC), but they still sit in the field that is shaped bymore » collimator jaws. These critical organs receive doses from the transmission and leakage of MLC leaves. We manually fixed jaw positions to block them to further reduce such doses. This method has been used for different treatment sites in our clinic, and it was thoroughly evaluated in patients with radical hysterectomy plus ovarian transposition after surgery. For each patient, 2 treatment plans were designed with the same optimization parameters: the original plan with automatically chosen jaw positions (called O-plan) and the plan with fixed-jaw positions (named F-plan). In the F-plan, the jaws were manually fixed to block the ovaries. For target coverage, the mean conformity index (CI) of the F-plan (1.28 ± 0.02) was remarkably lower than that of the O-plan (1.53 ± 0.09) (p < 0.05). The F-plan and the O-plan performed similarly in target dose homogeneity. Meanwhile, for the critical organ sparing, the mean dose of both ovaries were much lower in the F-plan than that in the O-plan (p < 0.05). The V{sub 20}, V{sub 30}, and V{sub 40} of bladder were also lower in the F-plan (93.57 ± 1.98, 73.99 ± 5.76, and 42.33 ± 3.7, respectively) than those in the O-plan (97.98 ± 1.11, 85.07 ± 4.04, and 49.71 ± 3.63, respectively) (p < 0.05). The maximum dose to the spinal cord planning organ at risk (OAR) volume (PRV) in the O

  18. Dosimetric Comparison between Single and Dual Arc-Volumetric Modulated Arc Radiotherapy and Intensity Modulated Radiotherapy for Nasopharyngeal Carcinoma Using a Simultaneous Integrated Boost Technique

    PubMed Central

    Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan

    2017-01-01

    Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT), single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F-IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis I3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter

  19. Dosimetric Comparison between Single and Dual Arc-Volumetric Modulated Arc Radiotherapy and Intensity Modulated Radiotherapy for Nasopharyngeal Carcinoma Using a Simultaneous Integrated Boost Technique

    PubMed

    Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan

    2017-05-01

    Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT) , single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F- IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis Ґ3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter

  20. Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: A planning comparison study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Sato, Sayaka

    This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor unitsmore » were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.« less

  1. Effect of Intensity-Modulated Pelvic Radiotherapy on Second Cancer Risk in the Postoperative Treatment of Endometrial and Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwahlen, Daniel R.; Department of Radiation Oncology, University Hospital Zurich, Zurich; Ruben, Jeremy D.

    2009-06-01

    Purpose: To estimate and compare intensity-modulated radiotherapy (IMRT) with three-dimensional conformal radiotherapy (3DCRT) in terms of second cancer risk (SCR) for postoperative treatment of endometrial and cervical cancer. Methods and Materials: To estimate SCR, the organ equivalent dose concept with a linear-exponential, a plateau, and a linear dose-response model was applied to dose distributions, calculated in a planning computed tomography scan of a 68-year-old woman. Three plans were computed: four-field 18-MV 3DCRT and nine-field IMRT with 6- and 18-MV photons. SCR was estimated as a function of target dose (50.4 Gy/28 fractions) in organs of interest according to the Internationalmore » Commission on Radiological Protection Results: Cumulative SCR relative to 3DCRT was +6% (3% for a plateau model, -4% for a linear model) for 6-MV IMRT and +26% (25%, 4%) for the 18-MV IMRT plan. For an organ within the primary beam, SCR was +12% (0%, -12%) for 6-MV and +5% (-2%, -7%) for 18-MV IMRT. 18-MV IMRT increased SCR 6-7 times for organs away from the primary beam relative to 3DCRT and 6-MV IMRT. Skin SCR increased by 22-37% for 6-MV and 50-69% for 18-MV IMRT inasmuch as a larger volume of skin was exposed. Conclusion: Cancer risk after IMRT for cervical and endometrial cancer is dependent on treatment energy. 6-MV pelvic IMRT represents a safe alternative with respect to SCR relative to 3DCRT, independently of the dose-response model. 18-MV IMRT produces second neutrons that modestly increase the SCR.« less

  2. SU-E-T-617: Plan Quality Estimation of Intensity-Modulated Radiotherapy Cases for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koo, J; Yoon, M; Chung, W

    Purpose: To estimate the planning quality of intensity-modulated radiotherapy in lung cancer cases and to provide preliminary data for the development of a planning quality assurance algorithm. Methods: 42 IMRT plans previously used in cases of solitary lung cancers were collected. Organs in or near the thoracic cavity, such as lung (ipsilateral, contralateral), heart, liver, esophagus, cord and bronchus were considered as organs at risk (OARs) in this study. The coverage index (CVI), conformity index (CI), homogeneity index (HI), volume, irregularity (standard deviation of center-surface distance) were used to compare PTV dose characteristics. The effective uniform dose (EUD), V10Gy, andmore » V20Gy of the OARs were used to compare OAR dose characteristics. Results: Average CVI, CI, HI values were 0.9, 0.8, 0.1, respectively. CVI and CI had narrow Gaussian distribution curves without a singular value, but one case had a relatively high (0.25) HI because of location and irregular shape (Irregularity of 18.5 when average was 12.5) of PTV. EUDs tended to decrease as OAR-PTV distance increased and OAR-PTV overlap volume decreased. Conclusion: This work indicates the potential for significant plan quality deviation of similar lung cancer cases. Considering that this study were from a single department, differences in the treatment results for a given patient would be much more pronounced if multiple departments (and therefore more planners) were involved. Therefore, further examination of QA protocols is needed to reduce deviations in radiation treatment planning.« less

  3. Inverse planning in three-dimensional conformal and intensity-modulated radiotherapy of mid-thoracic oesophageal cancer.

    PubMed

    Wu, V W C; Sham, J S T; Kwong, D L W

    2004-07-01

    The aim of this study is to demonstrate the use of inverse planning in three-dimensional conformal radiation therapy (3DCRT) of oesophageal cancer patients and to evaluate its dosimetric results by comparing them with forward planning of 3DCRT and inverse planning of intensity-modulated radiotherapy (IMRT). For each of the 15 oesophageal cancer patients in this study, the forward 3DCRT, inverse 3DCRT and inverse IMRT plans were produced using the FOCUS treatment planning system. The dosimetric results and the planner's time associated with each of the treatment plans were recorded for comparison. The inverse 3DCRT plans showed similar dosimetric results to the forward plans in the planning target volume (PTV) and organs at risk (OARs). However, they were inferior to that of the IMRT plans in terms of tumour control probability and target dose conformity. Furthermore, the inverse 3DCRT plans were less effective in reducing the percentage lung volume receiving a dose below 25 Gy when compared with the IMRT plans. The inverse 3DCRT plans delivered a similar heart dose as in the forward plans, but higher dose than the IMRT plans. The inverse 3DCRT plans significantly reduced the operator's time by 2.5 fold relative to the forward plans. In conclusion, inverse planning for 3DCRT is a reasonable alternative to the forward planning for oesophageal cancer patients with reduction of the operator's time. However, IMRT has the better potential to allow further dose escalation and improvement of tumour control.

  4. Definitive intensity-modulated radiotherapy concurrent with systemic therapy for oropharyngeal squamous cell carcinoma: Outcomes from an integrated regional Australian cancer centre.

    PubMed

    Masoud Rahbari, Reza; Winkley, Lauren; Hill, Jacques; Tahir, Abdul Rahim Mohammed; McKay, Michael; Last, Andrew; Shakespeare, Thomas P; Dwyer, Patrick

    2016-06-01

    Oropharyngeal squamous cell carcinoma (OPSCC) incidence has increased over the past two decades largely because of an increase in human papilloma virus (HPV)-related OPSCC. We report here outcomes of definitive radiation therapy for OPSCC with simultaneous integrated boost intensity-modulated radiotherapy (IMRT) in a regional Australian cancer centre. We retrospectively reviewed electronic medical records (EMR) of all patients treated with IMRT for head and neck cancer. We included patients who received a curative intent IMRT for OPSCC (2010-2014). Of 61 patients, 80% were men, and the median age was 57 years. Ninety percent of our patients received concurrent systemic therapy, and 68% were p16 positive. The median radiotherapy dose received was 70 Gy in 35 fractions. The median follow up for surviving patients was 22 months. Twenty-four month actuarial data show that the loco-regional recurrence free, metastasis-free MFS, cancer-specific (CaSS) and overall survival percentages were 98.3%, 92.6%, 91% and 90.3%, respectively. We did not observe grades 4 or 5 acute or late toxicities, and 10 patients (16.2%) exhibited persistent grade 3 toxicity 6 months after completing the treatment. The results from curative IMRTs for OPSCC delivered in a regional cancer centre are comparable with results published by tertiary referral centres. A long-term follow up of this patient cohort will continue for further analyses and comparisons with tertiary centres. © 2016 The Royal Australian and New Zealand College of Radiologists.

  5. Swallowing performance and tube feeding status in patients treated with parotid-sparing intensity-modulated radiotherapy for head and neck cancer.

    PubMed

    Roe, Justin W G; Carding, Paul N; Drinnan, Michael J; Harrington, Kevin J; Nutting, Christopher M

    2016-04-01

    The purpose of this prospective study was to evaluate the swallowing performance of patients with head and neck cancer treated with parotid-sparing intensity-modulated radiotherapy (IMRT). Sixty-two patients were recruited. Data were collected before and up to 12 months after treatment. Measures included the Performance Status Scale for head and neck cancer (PSS-HN Normalcy of Diet and Eating in Public subscales), tube feeding status, and 100 mL water swallow test (WST) volume and capacity scores. There was a significant reduction in PSS-HN and WST scores from baseline to 3 months (p < .001). Significant improvements were observed up to 12 months on the PSS-HN. Swallowing volume and capacity scores recovered but did not reach statistical significance. Tube feeding was not required in 47% of the patients. IMRT significantly impacts on swallowing performance, although there is a trend for improvement up to 12 months after treatment. Our data support a case-by-case approach to tube feeding. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1436-E1444, 2016. © 2015 Wiley Periodicals, Inc.

  6. SU-E-T-608: Performance Comparison of Four Commercial Treatment Planning Systems Applied to Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y; Li, R; Chi, Z

    Purpose: To compare the performances of four commercial treatment planning systems (TPS) used for the intensity-modulated radiotherapy (IMRT). Methods: Ten patients of nasopharyngeal (4 cases), esophageal (3 cases) and cervical (3 cases) cancer were randomly selected from a 3-month IMRT plan pool at one radiotherapy center. For each patient, four IMRT plans were newly generated by using four commercial TPS (Corvus, Monaco, Pinnacle and Xio), and then verified with Matrixx (two-dimensional array/IBA Company) on Varian23EX accelerator. A pass rate (PR) calculated from the Gamma index by OminiPro IMRT 1.5 software was evaluated at four plan verification standards (1%/1mm, 2%/2mm, 3%/3mm,more » 4%/4mm and 5%/5mm) for each treatment plan. Overall and multiple pairwise comparisons of PRs were statistically conducted by analysis of covariance (ANOVA) F and LSD tests among four TPSs. Results: Overall significant (p>0.05) differences of PRs were found among four TPSs with F test values of 3.8 (p=0.02), 21.1(>0.01), 14.0 (>0.01), 8.3(>0.01) at standards of 1%/1mm to 4%/4mm respectively, except at 5%/5mm standard with 2.6 (p=0.06). All means (standard deviation) of PRs at 3%/3mm of 94.3 ± 3.3 (Corvus), 98.8 ± 0.8 (Monaco), 97.5± 1.7 (Pinnacle), 98.4 ± 1.0 (Xio) were above 90% and met clinical requirement. Multiple pairwise comparisons had not demonstrated a consistent low or high pattern on either TPS. Conclusion: Matrixx dose verification results show that the validation pass rates of Monaco and Xio plans are relatively higher than those of the other two; Pinnacle plan shows slight higher pass rate than Corvus plan; lowest pass rate was achieved by the Corvus plan among these four kinds of TPS.« less

  7. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    PubMed

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  8. Outcomes After Intensity-Modulated Versus Conformal Radiotherapy in Older Men With Nonmetastatic Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA

    Purpose: There is little evidence comparing complications after intensity-modulated (IMRT) vs. three-dimensional conformal radiotherapy (CRT) for prostate cancer. The study objective was to test the hypothesis that IMRT, compared with CRT, is associated with a reduction in bowel, urinary, and erectile complications in elderly men with nonmetastatic prostate cancer. Methods and Materials: We undertook an observational cohort study using registry and administrative claims data from the SEER-Medicare database. We identified men aged 65 years or older diagnosed with nonmetastatic prostate cancer in the United States between 2002 and 2004 who received IMRT (n = 5,845) or CRT (n = 6,753).more » The primary outcome was a composite measure of bowel complications. Secondary outcomes were composite measures of urinary and erectile complications. We also examined specific subsets of bowel (proctitis/hemorrhage) and urinary (cystitis/hematuria) events within the composite complication measures. Results: IMRT was associated with reductions in composite bowel complications (24-month cumulative incidence 18.8% vs. 22.5%; hazard ratio [HR] 0.86; 95% confidence interval [CI], 0.79-0.93) and proctitis/hemorrhage (HR 0.78; 95% CI, 0.64-0.95). IMRT was not associated with rates of composite urinary complications (HR 0.93; 95% CI, 0.83-1.04) or cystitis/hematuria (HR 0.94; 95% CI, 0.83-1.07). The incidence of erectile complications involving invasive procedures was low and did not differ significantly between groups, although IMRT was associated with an increase in new diagnoses of impotence (HR 1.27, 95% CI, 1.14-1.42). Conclusion: IMRT is associated with a small reduction in composite bowel complications and proctitis/hemorrhage compared with CRT in elderly men with nonmetastatic prostate cancer.« less

  9. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices.

    PubMed

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-05-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan.

  10. Lowering whole-body radiation doses in pediatric intensity-modulated radiotherapy through the use of unflattened photon beams.

    PubMed

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Cost of New Technologies in Prostate Cancer Treatment: Systematic Review of Costs and Cost Effectiveness of Robotic-assisted Laparoscopic Prostatectomy, Intensity-modulated Radiotherapy, and Proton Beam Therapy.

    PubMed

    Schroeck, Florian Rudolf; Jacobs, Bruce L; Bhayani, Sam B; Nguyen, Paul L; Penson, David; Hu, Jim

    2017-11-01

    Some of the high costs of robot-assisted radical prostatectomy (RARP), intensity-modulated radiotherapy (IMRT), and proton beam therapy may be offset by better outcomes or less resource use during the treatment episode. To systematically review the literature to identify the key economic trade-offs implicit in a particular treatment choice for prostate cancer. We systematically reviewed the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement and protocol. We searched Medline, Embase, and Web of Science for articles published between January 2001 and July 2016, which compared the treatment costs of RARP, IMRT, or proton beam therapy to the standard treatment. We identified 37, nine, and three studies, respectively. RARP is costlier than radical retropubic prostatectomy for hospitals and payers. However, RARP has the potential for a moderate cost advantage for payers and society over a longer time horizon when optimal cancer and quality-of-life outcomes are achieved. IMRT is more expensive from a payer's perspective compared with three-dimensional conformal radiotherapy, but also more cost effective when defined by an incremental cost effectiveness ratio <$50 000 per quality-adjusted life year. Proton beam therapy is costlier than IMRT and its cost effectiveness remains unclear given the limited comparative data on outcomes. Using the Grades of Recommendation, Assessment, Development and Evaluation approach, the quality of evidence was low for RARP and IMRT, and very low for proton beam therapy. Treatment with new versus traditional technologies is costlier. However, given the low quality of evidence and the inconsistencies across studies, the precise difference in costs remains unclear. Attempts to estimate whether this increased cost is worth the expense are hampered by the uncertainty surrounding improvements in outcomes, such as cancer control and side effects of treatment. If the new technologies can

  12. Epithelioid hemangioendothelioma of the spine treated with RapidArc volumetric-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, Jean-Baptiste; Trone, Jane-Chloé; Chargari, Cyrus

    2014-10-01

    Radiotherapy for epithelioid hemangioendothelioma (EHE) using volumetric intensity-modulated arc radiotherapy (VMAT). A 48-year-old woman was referred for curative irradiation of a vertebral EHE after failure of surgery. A comparison between VMAT and conventional conformal tridimensional (3D) dosimetry was performed and potential advantage of VMAT for sparing critical organs from irradiation's side effects was discussed. The total delivered dose on the planning target volume was 54 Gy in 27 fractions. The patient was finally treated with VMAT. The tolerance was excellent. There was no acute toxicity, including no increase in pain. With a follow-up of 18 months, no delayed toxicity wasmore » reported. The clinical response consisted of a decrease in the dorsal pain. The D{sub max} for the spinal cord was reduced from 55 Gy (3D-radiotherapy [RT]) (which would be an unacceptable dose to the spine because of the risk of myelopathy) to 42.8 Gy (VMAT), which remains below the recommended dose threshold (45 Gy). The dose delivered to 20% of organ volume (D{sub 20}) was reduced from 47 Gy (3D-RT) to 3 Gy (VMAT) for the spinal cord. The study shows that VMAT allows the delivery of curative treatment for vertebral EHEs because of critical organ sparing.« less

  13. Concurrent Chemotherapy and Intensity-Modulated Radiotherapy for Locoregionally Advanced Laryngeal and Hypopharyngeal Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Nancy Y.; O'Meara, William; Chan, Kelvin

    2007-10-01

    Purpose: To perform a retrospective review of laryngeal/hypopharyngeal carcinomas treated with concurrent chemotherapy and intensity-modulated radiotherapy (IMRT). Methods and Materials: Between January 2002 and June 2005, 20 laryngeal and 11 hypopharyngeal carcinoma patients underwent IMRT with concurrent platinum-based chemotherapy; most patients had Stage IV disease. The prescription of the planning target volume for gross, high-risk, and low-risk subclinical disease was 70, 59.4, and 54 Gy, respectively. Acute/late toxicities were retrospectively scored using the Common Toxicity Criteria scale. The 2-year local progression-free, regional progression-free, laryngectomy-free, distant metastasis-free, and overall survival rates were calculated using the Kaplan-Meier method. Results: The median follow-upmore » of the living patients was 26 months (range, 17-58 months). The 2-year local progression-free, regional progression-free, laryngectomy-free, distant metastasis-free, and overall survival rate was 86%, 94%, 89%, 92%, and 63%, respectively. Grade 2 mucositis or higher occurred in 48% of patients, and all experienced Grade 2 or higher pharyngitis during treatment. Xerostomia continued to decrease over time from the end of RT, with none complaining of Grade 2 toxicity at this analysis. The 2-year post-treatment percutaneous endoscopic gastrostomy-dependency rate for those with hypopharyngeal and laryngeal tumors was 31% and 15%, respectively. The most severe late complications were laryngeal necrosis, necrotizing fascitis, and a carotid rupture resulting in death 3 weeks after salvage laryngectomy. Conclusion: These preliminary results have shown that IMRT achieved encouraging locoregional control of locoregionally advanced laryngeal and hypopharyngeal carcinomas. Xerostomia improved over time. Pharyngoesophageal stricture with percutaneous endoscopic gastrostomy dependency remains a problem, particularly for patients with hypopharyngeal carcinoma and, to a

  14. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer

    PubMed Central

    Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2014-01-01

    Purpose Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Methods and materials Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Results Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. Conclusion There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses

  15. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer.

    PubMed

    Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2014-01-01

    Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for

  16. [Feasibility and short-term efficacy of simplified intensity-modulated radiotherapy and concurrent chemotherapy for neck and upper thoracic esophageal carcinoma].

    PubMed

    Zhu, Wei-Guo; Yu, Chang-Hua; Han, Ji-Hua; Li, Tao; Zhou, Xi-Lei; Tao, Guang-Zhou

    2009-12-01

    For neck and upper thoracic esophageal carcinoma, three dimensional conformal radiation therapy (3D-CRT) does not necessarily meet all clinical requirements while intensity modulated radiation therapy (IMRT) may take up a lot of labour power and material resources. This study was to explore the feasibility of simplified IMPT(sIMRT) and concurrent chemotherapy for neck and upper thoracic esophageal carcinoma, and to investigate the acute toxicities and short-term efficacy of this treatment modality. sIMRT plans were designed for 30 patients with neck and upper thoracic esophageal carcinoma. Two target volumes were defined: PTV1, which was designed to irradiate to 64 Gy (2.13 Gy x 30 fractions); PTV2, which was given to 54 Gy (1.8 Gy x 30). The sIMRT plan included five equiangular coplanar beams. All patients concurrently received DDP+5-FU regimen with radiotherapy on d1-5 and d29-33. Chemotherapy was repeated for two cycles 28 days after radiotherapy. The treatment was completed for all patients within 6 weeks, and only one patient had Grade 3 acute bronchitis. The complete response (CR) rate was 90.0% (27/30) and the partial response (PR) rate 10.0% (3/30). Overall response was 100% for esophageal lesions and the CR rate 76.5% (13/17). The PR rate was 23.5% (4/17) in lymph node lesions. The major toxicities observed were Grades I-II leukocytopenia. sIMRT can generate desirable dose distribution for neck and upper thoracic esophageal carcinoma, which is similar to sophisticated IMRT but obviously better than 3D-CRT. The short-term efficacy of sIMRT is satisfactory and its acute toxicities are tolerable.

  17. Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect?

    PubMed

    Siker, Malika L; Tomé, Wolfgang A; Mehta, Minesh P

    2006-09-01

    Adaptive radiotherapy allows treatment plan modification based on data obtained during treatment. Assessing volume changes during treatment is now possible with intratreatment imaging capabilities on radiotherapy devices. This study assesses non-small-cell lung cancer (NSCLC) volume changes during treatment with conformal intensity-modulated radiotherapy by evaluating serial megavoltage computed tomography (MVCT) scans, with a specific emphasis on the frequency, reliability, and meaningfulness of these changes. Megavoltage CTs were retrospectively reviewed for 25 patients treated with the TomoTherapy Hi-Art system at the University of Wisconsin. Twenty-one patients received definitive radiotherapy, 4 with extracranial stereotactic radioablation (60 Gy in five fractions) and 17 on a dose-per-fraction escalation protocol (57-80.5 Gy in 25 fractions). Four patients were treated palliatively (22-30 Gy in 8 to 10 fractions). Gross tumor volumes were contoured on serial MVCTs at weekly intervals. Each patient had 4 to 25 scans, including at least one at the beginning, midway, and one at the end of treatment. At completion of treatment, no patient demonstrated a complete response. Partial response occurred in 3 (12%) and marginal response was noted in 5 (20%). The remaining 17 patients (68%) showed stable disease. The minimum "scorable threshold" for volume discrepancy between scans to account for interscan assessment variability was set at >25% volume change; 10 patients (40%) had >25% tumor regression. None of the patients treated ablatively or palliatively showed tumor regression during treatment. Although gross tumor regression during treatment may be objectively measured using MVCTs, substantial volumetric decrease occurs only in a minority. The clinical significance of this regression is questionable, because there is no way to document histologic tumor clearance, and therefore field reductions during radiotherapy cannot be recommended.

  18. Prone breast forward intensity-modulated radiotherapy for Asian women with early left breast cancer: factors for cardiac sparing and clinical outcomes

    PubMed Central

    Chen, Jenny Ling-Yu; Cheng, Jason Chia-Hsien; Kuo, Sung-Hsin; Chan, Hsing-Min; Huang, Yu-Sen; Chen, Yu-Hsuan

    2013-01-01

    Since December 2009, after breast-conserving surgery for Stage 0–I cancer of the left breast, 21 women with relatively pendulous breasts underwent computed tomography prone and supine simulations. The adjuvant radiotherapy was 50 Gy in 25 fractions to the left breast alone. Four plans—conventional wedged tangents and forward intensity-modulated radiotherapy (fIMRT) in supine and prone positions—were generated. fIMRT generated better homogeneity in both positions. Prone position centralized the breast tissue by gravity and also shortened the breast width which led to better conformity in both planning techniques. Prone fIMRT significantly reduced doses to left lung, Level I and Level II axilla. The mean cardiac doses did not differ between positions. Among the four plans, prone fIMRT produced the best target dosimetry and normal organ sparing. In subgroup analysis, patients with absolute breast depth > 7 cm in the prone position or breast depth difference > 3 cm between positions had significant cardiac sparing with prone fIMRT. Sixteen patients with significant cardiac sparing in prone position were treated using prone fIMRT and the others using supine fIMRT. All patients received a supine electron tumor bed boost of 10 Gy in 5 fractions. No patients developed Grade 2 or worse acute or late toxicities. There was no difference in the number of segments or beams, monitor units, treatment time, or positioning reproducibility between prone and supine positions. At a median follow-up time of 26.8 months, no locoregional or distant recurrence or death was noted. PMID:23504450

  19. Can a peri-rectal hydrogel spaceOAR programme for prostate cancer intensity-modulated radiotherapy be successfully implemented in a regional setting?

    PubMed

    Te Velde, Bridget L; Westhuyzen, Justin; Awad, Nader; Wood, Maree; Shakespeare, Thomas P

    2017-08-01

    The aim of this study was to investigate whether the implementation of a hydrogel spacer (SpaceOAR) programme for patients treated with 81 Gy prostate intensity-modulated radiotherapy (IMRT) in a regional setting can reduce rectal doses and toxicity. In this retrospective study, 125 patients with localised prostate cancer treated between April 2014 (programme commencement) and June 2015 were compared: 65 with SpaceOAR (inserted by five different urologists) and 60 patients treated over the same time period without SpaceOAR. Patients were treated with 81 Gy in 45Fx of IMRT over 9 weeks. Planning aims included restricting rectal doses to V40 Gy < 35%, V65 Gy < 17%, V75 Gy < 10%. Acute toxicity was assessed weekly during radiotherapy and at 12 weeks. Rectal volume parameters were all significantly lower in the SpaceOAR group, with an associated reduction in acute diarrhoea (13.8% vs 31.7%). There were no significant differences in the very low rates of acute and late faecal incontinence or proctitis, however, there was a trend towards increased haemorrhoid rate in the SpaceOAR group (11.7% vs 3.1%, P = 0.09). A SpaceOAR programme in a regional setting with urologists performing low volumes of insertions (<1 per month on average) is of clinical benefit, and was associated with significantly lower radiation doses to the rectum and lower rates of acute diarrhoea. © 2017 The Royal Australian and New Zealand College of Radiologists.

  20. Prospective study of neoadjuvant chemoradiotherapy using intensity-modulated radiotherapy and 5 fluorouracil for locally advanced rectal cancer - toxicities and response assessment.

    PubMed

    Simson, David K; Mitra, Swarupa; Ahlawat, Parveen; Saxena, Upasna; Sharma, Manoj Kumar; Rawat, Sheh; Singh, Harpreet; Bansal, Babita; Sripathi, Lalitha Kameshwari; Tanwar, Aditi

    2018-01-01

    The past 2 decades witnessed the strengthening of evidence favoring the role of neoadjuvant chemoradiation (CHRT) in the treatment of locally advanced rectal cancer. The study aims to evaluate the response and acute toxicities to neoadjuvant CHRT using intensity-modulated radiotherapy (IMRT) in the treatment of rectal cancer. Predictive factors to achieve pathological complete response (pCR) were analyzed, as a secondary endpoint. All consecutive patients who underwent IMRT as part of neoadjuvant CHRT in the treatment of rectal cancer between August 2014 and December 2016 at a tertiary cancer care center were accrued for the study. The cohort underwent CHRT with IMRT technique at a dose of 50.4 Gy in 28 fractions concurrent with continuous infusion of 5 fluorouracil during the first and the last 4 days of CHRT. Surgery was performed 6 weeks later and the pathological response to CHRT was noted. Forty-three subjects were accrued for the study. Radiation dermatitis and diarrhea were the only observed grade ≥3 acute toxicities. Sphincter preservation rate (SPR) was 43.3%. pCR was observed in 32.6%. Univariate and multivariate logistic regression showed that carcinoembryonic antigen was the only independent predictive factor to achieve pCR. IMRT as part of neoadjuvant CHRT in the treatment of locally advanced rectal cancer is well tolerated and gives comparable results with respect to earlier studies in terms of pathological response and SPR. Further randomized controlled studies are needed to firmly state that IMRT is superior to 3-dimensional conformal radiotherapy.

  1. Prostate intensity-modulated radiotherapy planning in seven mouse clicks: Development of a class solution for cancer.

    PubMed

    Wood, Maree; Fonseca, Amara; Sampson, David; Kovendy, Andrew; Westhuyzen, Justin; Shakespeare, Thomas; Turnbull, Kirsty

    2016-01-01

    The aim of the retrospective study was to develop a planning class solution for prostate intensity-modulated radiotherapy (IMRT) that achieved target and organs-at-risk (OAR) doses within acceptable departmental protocol criteria using the Monaco treatment planning system (Elekta-CMS Software, MO, USA). Advances in radiation therapy technology have led to a re-evaluation of work practices. Class solutions have the potential to produce highly conformal plans in a time-efficient manner. Using data from intermediate and high risk prostate cancer patients, a stepwise quality improvement model was employed. Stage 1 involved the development of a broadly based treatment template developed across 10 patients. Stage 2 involved template refinement and clinical audit ( n  = 20); Stage 3, template review ( n  = 50) and Stage 4 an assessment of a revised template against the actual treatment plan involving 72 patients. The computer algorithm that comprised the Stage 4 template met clinical treatment criteria for 82% of patients. Minor template changes were required for a further 13% of patients. Major changes were required in 4%; one patient could not be assessed. The average calculation time was 13 min and involved seven mouse clicks by the planner. Thus, the new template met treatment criteria or required only minor changes in 95% of prostate patients; this is an encouraging result suggesting improvements in planning efficiency and consistency. It is feasible to develop a class solution for prostate IMRT using a stepwise quality improvement model which delivers clinically acceptable plans in the great majority of prostate cases.

  2. Comparison of individual and composite field analysis using array detector for Intensity Modulated Radiotherapy dose verification.

    PubMed

    Saminathan, Sathiyan; Chandraraj, Varatharaj; Sridhar, C H; Manickam, Ravikumar

    2012-01-01

    To compare the measured and calculated individual and composite field planar dose distribution of Intensity Modulated Radiotherapy plans. The measurements were performed in Clinac DHX linear accelerator with 6 MV photons using Matrixx device and a solid water phantom. The 20 brain tumor patients were selected for this study. The IMRT plan was carried out for all the patients using Eclipse treatment planning system. The verification plan was produced for every original plan using CT scan of Matrixx embedded in the phantom. Every verification field was measured by the Matrixx. The TPS calculated and measured dose distributions were compared for individual and composite fields. The percentage of gamma pixel match for the dose distribution patterns were evaluated using gamma histogram. The gamma pixel match was 95-98% for 41 fields (39%) and 98% for 59 fields (61%) with individual fields. The percentage of gamma pixel match was 95-98% for 5 patients and 98% for other 12 patients with composite fields. Three patients showed a gamma pixel match of less than 95%. The comparison of percentage gamma pixel match for individual and composite fields showed more than 2.5% variation for 6 patients, more than 1% variation for 4 patients, while the remaining 10 patients showed less than 1% variation. The individual and composite field measurements showed good agreement with TPS calculated dose distribution for the studied patients. The measurement and data analysis for individual fields is a time consuming process, the composite field analysis may be sufficient enough for smaller field dose distribution analysis with array detectors.

  3. Multibeam inverse intensity-modulated radiotherapy (IMRT) for whole breast irradiation: a single center experience in China.

    PubMed

    Yang, Zhaozhi; Zhang, Li; Chen, Xingxing; Ma, Jinli; Mei, Xin; Chen, Jiayi; Yu, Xiaoli; Guo, Xiaomao

    2015-10-27

    To present the clinical experience in our cancer center with multibeam inverse intensity-modulated radiotherapy (IMRT) for early stage breast cancer (BC) patients with whole breast irradiation (WBI). We retrospectively analyzed 622 patients with Stage 0 to III BC treated from 2008 to 2011 with wide local excision and WBI, using an inverse IMRT technique. All of the patients were prescribed a total dose of 50 Gy to the whole breast in 2-Gy fractions, followed by a tumor bed boost of 10 Gy in 5 fractions using an electron beam. Of all of the patients, 132 (21.2%) received whole breast plus regional lymph node (RLN) irradiation. 438 of 622 patients had records of acute skin toxicity based on common terminology criteria (CTC) for adverse events. Two hundred eighty (64%) patients had Grade 0/1 toxicity, 153 (35%) had Grade 2 and only 4 patients experienced grade 3 toxicity. Seventy patients (16%) had moist desquamation. Univariate analysis revealed that breast planning target volume was the only predictive factor for Grade ≥2 acute dermatitis (P = 0.002). After 4 years, 170 patients reported cosmetic results by self-assessment, of whom 151 (89%) patients reported good/excellent cosmetic results, and 17 (11%) patients reported fair assessments. For invasive cancer, the four-year rate of freedom from locoregional recurrence survival was 98.3%. Regarding carcinoma in situ, no patients experienced recurrence. BC patients who underwent conservative surgery followed by inverse IMRT plan exhibited acceptable acute toxicities and clinical outcomes. Longer follow-up is needed.

  4. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; OBrien, R; Shieh, C

    2014-06-15

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development

  5. Effect of Radiotherapy and Chemotherapy on the Risk of Mucositis During Intensity-Modulated Radiation Therapy for Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanguineti, Giuseppe, E-mail: gsangui1@jhmi.edu; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD; Sormani, Maria Pia

    2012-05-01

    Purpose: To define the roles of radiotherapy and chemotherapy on the risk of Grade 3+ mucositis during intensity-modulated radiation therapy (IMRT) for oropharyngeal cancer. Methods and Materials: 164 consecutive patients treated with IMRT at two institutions in nonoverlapping treatment eras were selected. All patients were treated with a dose painting approach, three dose levels, and comprehensive bilateral neck treatment under the supervision of the same radiation oncologist. Ninety-three patients received concomitant chemotherapy (cCHT) and 14 received induction chemotherapy (iCHT). Individual information of the dose received by the oral mucosa (OM) was extracted as absolute cumulative dose-volume histogram (DVH), corrected formore » the elapsed treatment days and reported as weekly (w) DVH. Patients were seen weekly during treatment, and peak acute toxicity equal to or greater than confluent mucositis at any point during the course of IMRT was considered the endpoint. Results: Overall, 129 patients (78.7%) reached the endpoint. The regions that best discriminated between patients with/without Grade 3+ mucositis were found at 10.1 Gy/w (V10.1) and 21 cc (D21), along the x-axis and y-axis of the OM-wDVH, respectively. On multivariate analysis, D21 (odds ratio [OR] = 1.016, 95% confidence interval [CI], 1.009-1.023, p < 0.001) and cCHT (OR = 4.118, 95% CI, 1.659-10.217, p = 0.002) were the only independent predictors. However, V10.1 and D21 were highly correlated (rho = 0.954, p < 0.001) and mutually interchangeable. cCHT would correspond to 88.4 cGy/w to at least 21 cc of OM. Conclusions: Radiotherapy and chemotherapy act independently in determining acute mucosal toxicity; cCHT increases the risk of mucosal Grade 3 toxicity Almost-Equal-To 4 times over radiation therapy alone, and it is equivalent to an extra Almost-Equal-To 6.2 Gy to 21 cc of OM over a 7-week course.« less

  6. Dosimetric comparison using different multileaf collimeters in intensity-modulated radiotherapy for upper thoracic esophageal cancer.

    PubMed

    Gong, Youling; Wang, Shichao; Zhou, Lin; Liu, Yongmei; Xu, Yong; Lu, You; Bai, Sen; Fu, Yuchuan; Xu, Qingfeng; Jiang, Qingfeng

    2010-07-15

    To study the impacts of multileaf collimators (MLC) width [standard MLC width of 10 mm (sMLC) and micro-MLC width of 4 mm (mMLC)] in the intensity-modulated radiotherapy (IMRT) planning for the upper thoracic esophageal cancer (UTEC). 10 patients with UTEC were retrospectively planned with the sMLC and the mMLC. The monitor unites (MUs) and dose volume histogram-based parameters [conformity index (CI) and homogeneous index (HI)] were compared between the IMRT plans with sMLC and with mMLC. The IMRT plans with the mMLC were more efficient (average MUs: 703.1 +/- 68.3) than plans with the sMLC (average MUs: 833.4 +/- 73.8) (p < 0.05). Also, compared to plans with the sMLC, the plans with the mMLC showed advantages in dose coverage of the planning gross tumor volume (Pgtv) (CI 0.706 +/- 0.056/HI 1.093 +/- 0.021) and the planning target volume (PTV) (CI 0.707 +/- 0.029/HI 1.315 +/- 0.013) (p < 0.05). In addition, the significant dose sparing in the D5 (3260.3 +/- 374.0 vs 3404.5 +/- 374.4)/gEUD (1815.1 +/- 281.7 vs 1849.2 +/- 297.6) of the spinal cord, the V10 (33.2 +/- 6.5 vs 34.0 +/- 6.7), V20 (16.0 +/- 4.6 vs 16.6 +/- 4.7), MLD (866.2 +/- 174.1 vs 887.9 +/- 172.1) and gEUD (938.6 +/- 175.2 vs 956.8 +/- 171.0) of the lungs were observed in the plans with the mMLC, respectively (p < 0.05). Comparing to the sMLC, the mMLC not only demonstrated higher efficiencies and more optimal target coverage, but also considerably improved the dose sparing of OARs in the IMRT planning for UTEC.

  7. Role of belly board device in the age of intensity modulated radiotherapy for pelvic irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estabrook, Neil C.; Bartlett, Gregory K.; Compton, Julia J.

    Small bowel dose often represents a limiting factor for radiation treatment of pelvic malignancies. To reduce small bowel toxicity, a belly board device (BBD) with a prone position is often recommended. Intensity modulated radiotherapy (IMRT) could reduce dose to small bowel based on the desired dose-volume constraints. We investigated the efficacy of BBD in conjunction with IMRT. A total of 11 consecutive patients with the diagnosis of rectal cancer, who were candidates for definitive therapy, were selected. Patients were immobilized with BBD in prone position for simulation and treatment. Supine position computed tomography (CT) data were either acquired at themore » same time or during a diagnostic scan, and if existed was used. Target volumes (TV) as well as organs at risk (OAR) were delineated in both studies. Three-dimensional conformal treatment (3DCRT) and IMRT plans were made for both scans. Thus for each patient, 4 plans were generated. Statistical analysis was conducted for maximum, minimum, and mean dose to each structure. When comparing the normalized mean Gross TV dose for the different plans, there was no statistical difference found between the planning types. There was a significant difference in small bowel sparing when using prone position on BBD comparing 3DCRT and IMRT plans, favoring IMRT with a 29.6% reduction in dose (p = 0.007). There was also a statistically significant difference in small bowel sparing when comparing supine position IMRT to prone-BBD IMRT favoring prone-BBD IMRT with a reduction of 30.3% (p = 0.002). For rectal cancer when small bowel could be a limiting factor, prone position using BBD along with IMRT provides the best sparing. We conclude that whenever a dose escalation in rectal cancer is desired where small bowel could be limiting factor, IMRT in conjunction with BBD should be selected.« less

  8. Early Clinical Outcome With Concurrent Chemotherapy and Extended-Field, Intensity-Modulated Radiotherapy for Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beriwal, Sushil; Gan, Gregory N.; Heron, Dwight E.

    2007-05-01

    Purpose: To assess the early clinical outcomes with concurrent cisplatin and extended-field intensity-modulated radiotherapy (EF-IMRT) for carcinoma of the cervix. Methods and Materials: Thirty-six patients with Stage IB2-IVA cervical cancer treated with EF-IMRT were evaluated. The pelvic lymph nodes were involved in 19 patients, and of these 19 patients, 10 also had para-aortic nodal disease. The treatment volume included the cervix, uterus, parametria, presacral space, upper vagina, and pelvic, common iliac, and para-aortic nodes to the superior border of L1. Patients were assessed for acute toxicities according to the National Cancer Institute Common Toxicity Criteria for Adverse Events, version 3.0.more » All late toxicities were scored with the Radiation Therapy Oncology Group late toxicity score. Results: All patients completed the prescribed course of EF-IMRT. All but 2 patients received brachytherapy. Median length of treatment was 53 days. The median follow-up was 18 months. Acute Grade {>=}3 gastrointestinal, genitourinary, and myelotoxicity were seen in 1, 1, and 10 patients, respectively. Thirty-four patients had complete response to treatment. Of these 34 patients, 11 developed recurrences. The first site of recurrence was in-field in 2 patients (pelvis in 1, pelvis and para-aortic in 1) and distant in 9 patients. The 2-year actuarial locoregional control, disease-free survival, overall survival, and Grade {>=}3 toxicity rates for the entire cohort were 80%, 51%, 65%, and 10%, respectively. Conclusion: Extended-field IMRT with concurrent chemotherapy was tolerated well, with acceptable acute and early late toxicities. The locoregional control rate was good, with distant metastases being the predominant mode of failure. We are continuing to accrue a larger number of patients and longer follow-up data to further extend our initial observations with this approach.« less

  9. SU-E-T-275: Radiobiological Evaluation of Intensity Modulated Radiotherapy Treatment for Locally Advanced Head and Neck Squamous Cell Carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rekha Reddy, B.; Ravikumar, M.; Tanvir Pasha, C.R

    2014-06-01

    Purpose: To evaluate the radiobiological outcome of Intensity Modulated Radiotherapy Treatment (IMRT) for locally advanced head and neck squamous cell carcinomas using HART (Histogram Analysis in Radiation Therapy; J Appl Clin Med Phys 11(1): 137–157, 2010) program and compare with the clinical outcomes. Methods: We have treated 20 patients of stage III and IV HNSCC Oropharynx and hypopharynx with accelerated IMRT technique and concurrent chemotherapy. Delineation of tumor and normal tissues were done using Danish Head and Neck Cancer Group (DAHANCA) contouring guidelines and radiotherapy was delivered to a dose of 70Gy in 35 fractions to the primary and involvedmore » lymph nodes, 63Gy to intermediate risk areas and 56 Gy to lower risk areas, Monday to Saturday, 6 Days/week using 6 MV Photons with an expected overall treatment time of 6 weeks. The TCP and NTCP's were calculated from the dose-volume histogram (DVH) statistics using the Poisson Statistics (PS) and JT Lyman models respectively and the Resultwas correlated with clinical outcomes of the patients with mean follow up of 24 months. Results: Using HART program, the TCP (0.89± 0.01) of primary tumor and the NTCP for parotids (0.20±0.12), spinal cord (0.05±0.01), esophagus (0.30±0.2), mandible (0.35±0.21), Oral cavity (0.37±0.18), Larynx (0.30±0.15) were estimated and correlated with clinical outcome of the patients. Conclusion: Accelerated IMRT with Chemotherapy is a clinical feasible option in the treatment of locally advanced HNSCC with encouraging initial tumour response and acceptable acute toxicities. The correlation between the clinical outcomes and radiobiological model estimated parameters using HART programs are found to be satisfactory.« less

  10. Predicting two-year longitudinal MD Anderson Dysphagia Inventory outcomes after intensity modulated radiotherapy for locoregionally advanced oropharyngeal carcinoma.

    PubMed

    Goepfert, Ryan P; Lewin, Jan S; Barrow, Martha P; Fuller, C David; Lai, Stephen Y; Song, Juhee; Hobbs, Brian P; Gunn, G Brandon; Beadle, Beth M; Rosenthal, David I; Garden, Adam S; Kies, Merrill S; Papadimitrakopoulou, Vali A; Schwartz, David L; Hutcheson, Katherine A

    2017-04-01

    To determine the factors associated with longitudinal patient-reported dysphagia as measured by the MD Anderson Dysphagia Inventory (MDADI) in locoregionally advanced oropharyngeal carcinoma (OPC) survivors treated with split-field intensity modulated radiotherapy (IMRT). Retrospective patient analysis. A retrospective analysis combined data from three single-institution clinical trials for stage III/IV head and neck carcinoma. According to trial protocols, patients had prospectively collected MDADI at baseline, 6, 12, and 24 months after treatment. OPC patients with baseline and at least one post-treatment MDADI were included. Longitudinal analysis was completed with multivariate linear mixed effects modeling. There were 116 patients who met inclusion criteria. Mean baseline MDADI composite was 88.3, dropping to 73.8 at 6 months, and rising to 78.6 and 83.3 by 12 and 24 months, respectively (compared to baseline, all P < .0001). Tumor stage and smoking status were significant predictors of longitudinal MDADI composite scores. Patients with T1, T2, and T3 tumors had 15.9 (P = .0001), 10.9 (P = .0049), and 7.5 (P = .0615), respectively, higher mean MDADI composite than those with T4 tumors, and current smokers had a 9.4 (P = .0007) lower mean MDADI composite than never smokers. Patients report clinically meaningful dysphagia early after split-field IMRT for locoregionally advanced OPC that remains apparent 6 months after treatment. MDADI scores recover slowly thereafter, but remain depressed at 24 months compared to baseline. Higher tumor stage and smoking status are important markers of patient-reported function through the course of treatment, suggesting these are important groups for heightened surveillance and more intensive interventions to optimize swallowing outcomes. 4 Laryngoscope, 127:842-848, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Prospective study of neoadjuvant chemoradiotherapy using intensity-modulated radiotherapy and 5 fluorouracil for locally advanced rectal cancer – toxicities and response assessment

    PubMed Central

    Simson, David K; Mitra, Swarupa; Ahlawat, Parveen; Saxena, Upasna; Sharma, Manoj Kumar; Rawat, Sheh; Singh, Harpreet; Bansal, Babita; Sripathi, Lalitha Kameshwari; Tanwar, Aditi

    2018-01-01

    Aims and objectives The past 2 decades witnessed the strengthening of evidence favoring the role of neoadjuvant chemoradiation (CHRT) in the treatment of locally advanced rectal cancer. The study aims to evaluate the response and acute toxicities to neoadjuvant CHRT using intensity-modulated radiotherapy (IMRT) in the treatment of rectal cancer. Predictive factors to achieve pathological complete response (pCR) were analyzed, as a secondary endpoint. Materials and methods All consecutive patients who underwent IMRT as part of neoadjuvant CHRT in the treatment of rectal cancer between August 2014 and December 2016 at a tertiary cancer care center were accrued for the study. The cohort underwent CHRT with IMRT technique at a dose of 50.4 Gy in 28 fractions concurrent with continuous infusion of 5 fluorouracil during the first and the last 4 days of CHRT. Surgery was performed 6 weeks later and the pathological response to CHRT was noted. Results Forty-three subjects were accrued for the study. Radiation dermatitis and diarrhea were the only observed grade ≥3 acute toxicities. Sphincter preservation rate (SPR) was 43.3%. pCR was observed in 32.6%. Univariate and multivariate logistic regression showed that carcinoembryonic antigen was the only independent predictive factor to achieve pCR. Conclusion IMRT as part of neoadjuvant CHRT in the treatment of locally advanced rectal cancer is well tolerated and gives comparable results with respect to earlier studies in terms of pathological response and SPR. Further randomized controlled studies are needed to firmly state that IMRT is superior to 3-dimensional conformal radiotherapy. PMID:29593430

  12. [Statistical process control applied to intensity modulated radiotherapy pretreatment controls with portal dosimetry].

    PubMed

    Villani, N; Gérard, K; Marchesi, V; Huger, S; François, P; Noël, A

    2010-06-01

    The first purpose of this study was to illustrate the contribution of statistical process control for a better security in intensity modulated radiotherapy (IMRT) treatments. This improvement is possible by controlling the dose delivery process, characterized by pretreatment quality control results. So, it is necessary to put under control portal dosimetry measurements (currently, the ionisation chamber measurements were already monitored by statistical process control thanks to statistical process control tools). The second objective was to state whether it is possible to substitute ionisation chamber with portal dosimetry in order to optimize time devoted to pretreatment quality control. At Alexis-Vautrin center, pretreatment quality controls in IMRT for prostate and head and neck treatments were performed for each beam of each patient. These controls were made with an ionisation chamber, which is the reference detector for the absolute dose measurement, and with portal dosimetry for the verification of dose distribution. Statistical process control is a statistical analysis method, coming from industry, used to control and improve the studied process quality. It uses graphic tools as control maps to follow-up process, warning the operator in case of failure, and quantitative tools to evaluate the process toward its ability to respect guidelines: this is the capability study. The study was performed on 450 head and neck beams and on 100 prostate beams. Control charts, showing drifts, both slow and weak, and also both strong and fast, of mean and standard deviation have been established and have shown special cause introduced (manual shift of the leaf gap of the multileaf collimator). Correlation between dose measured at one point, given with the EPID and the ionisation chamber has been evaluated at more than 97% and disagreement cases between the two measurements were identified. The study allowed to demonstrate the feasibility to reduce the time devoted to

  13. Dosimetric advantages of generalised equivalent uniform dose-based optimisation on dose–volume objectives in intensity-modulated radiotherapy planning for bilateral breast cancer

    PubMed Central

    Lee, T-F; Ting, H-M; Chao, P-J; Wang, H-Y; Shieh, C-S; Horng, M-F; Wu, J-M; Yeh, S-A; Cho, M-Y; Huang, E-Y; Huang, Y-J; Chen, H-C; Fang, F-M

    2012-01-01

    Objective We compared and evaluated the differences between two models for treating bilateral breast cancer (BBC): (i) dose–volume-based intensity-modulated radiation treatment (DV plan), and (ii) dose–volume-based intensity-modulated radiotherapy with generalised equivalent uniform dose-based optimisation (DV-gEUD plan). Methods The quality and performance of the DV plan and DV-gEUD plan using the Pinnacle3® system (Philips, Fitchburg, WI) were evaluated and compared in 10 patients with stage T2–T4 BBC. The plans were delivered on a Varian 21EX linear accelerator (Varian Medical Systems, Milpitas, CA) equipped with a Millennium 120 leaf multileaf collimator (Varian Medical Systems). The parameters analysed included the conformity index, homogeneity index, tumour control probability of the planning target volume (PTV), the volumes V20 Gy and V30 Gy of the organs at risk (OAR, including the heart and lungs), mean dose and the normal tissue complication probability. Results Both plans met the requirements for the coverage of PTV with similar conformity and homogeneity indices. However, the DV-gEUD plan had the advantage of dose sparing for OAR: the mean doses of the heart and lungs, lung V20 Gy, and heart V30 Gy in the DV-gEUD plan were lower than those in the DV plan (p<0.05). Conclusions A better result can be obtained by starting with a DV-generated plan and then improving it by adding gEUD-based improvements to reduce the number of iterations and to improve the optimum dose distribution. Advances to knowledge The DV-gEUD plan provided superior dosimetric results for treating BBC in terms of PTV coverage and OAR sparing than the DV plan, without sacrificing the homogeneity of dose distribution in the PTV. PMID:23091290

  14. DOSIMETRIC CONSEQUENCES OF USING CONTRAST-ENHANCED COMPUTED TOMOGRAPHIC IMAGES FOR INTENSITY-MODULATED STEREOTACTIC BODY RADIOTHERAPY PLANNING.

    PubMed

    Yoshikawa, Hiroto; Roback, Donald M; Larue, Susan M; Nolan, Michael W

    2015-01-01

    Potential benefits of planning radiation therapy on a contrast-enhanced computed tomography scan (ceCT) should be weighed against the possibility that this practice may be associated with an inadvertent risk of overdosing nearby normal tissues. This study investigated the influence of ceCT on intensity-modulated stereotactic body radiotherapy (IM-SBRT) planning. Dogs with head and neck, pelvic, or appendicular tumors were included in this retrospective cross-sectional study. All IM-SBRT plans were constructed on a pre- or ceCT. Contours for tumor and organs at risk (OAR) were manually constructed and copied onto both CT's; IM-SBRT plans were calculated on each CT in a manner that resulted in equal radiation fluence. The maximum and mean doses for OAR, and minimum, maximum, and mean doses for targets were compared. Data were collected from 40 dogs per anatomic site (head and neck, pelvis, and limbs). The average dose difference between minimum, maximum, and mean doses as calculated on pre- and ceCT plans for the gross tumor volume was less than 1% for all anatomic sites. Similarly, the differences between mean and maximum doses for OAR were less than 1%. The difference in dose distribution between plans made on CTs with and without contrast enhancement was tolerable at all treatment sites. Therefore, although caution would be recommended when planning IM-SBRT for tumors near "reservoirs" for contrast media (such as the heart and urinary bladder), findings supported the use of ceCT with this dose calculation algorithm for both target delineation and IM-SBRT treatment planning. © 2015 American College of Veterinary Radiology.

  15. No increase in toxicity of pelvic irradiation when intensity modulation is employed: clinical and dosimetric data of 208 patients treated with post-prostatectomy radiotherapy.

    PubMed

    Jereczek-Fossa, Barbara A; Ciardo, Delia; Ferrario, Silvia; Fossati, Piero; Fanetti, Giuseppe; Zerini, Dario; Zannoni, Davide; Fodor, Cristiana; Gerardi, Marianna A; Surgo, Alessia; Muto, Matteo; Cambria, Raffaella; De Cobelli, Ottavio; Orecchia, Roberto

    2016-07-01

    To compare the toxicity of image-guided intensity-modulated radiotherapy (IG-IMRT) to the pelvis or prostate bed (PB) only. To test the hypothesis that the potentially injurious effect of pelvic irradiation can be counterbalanced by reduced irradiated normal tissue volume using IG-IMRT. Between February 2010 and February 2012, 208 patients with prostate cancer were treated with adjuvant or salvage IG-IMRT to the PB (102 patients, Group PB) or the pelvis and prostate bed (P) (106 patients, Group P). The Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria were used to evaluate toxicity. Median follow-up was 27 months. Toxicity G ≥ 2 in Group PB: in the bowel acute and late toxicities were 11.8% and 10%, respectively; urinary acute and late toxicities were 10.8% and 15%, respectively. Toxicity G ≥ 2 in Group P: in the bowel acute and late toxicities were both 13.2%; urinary acute and late toxicities were 13.2% and 15.1%, respectively. No statistical difference in acute or late toxicity between the groups was found (bowel: p = 0.23 and p = 0.89 for acute and late toxicity, respectively; urinary: p = 0.39 and p = 0.66 for acute and late toxicity, respectively). Of the clinical variables, only previous abdominal surgery was correlated with acute bowel toxicity. Dosimetric parameters that correlated with bowel toxicity were identified. The toxicity rates were low and similar in both groups, suggesting that IG-IMRT allows for a safe post-operative irradiation of larger volumes. Further investigation is warranted to exclude bias owing to non-randomized character of the study. Our report shows that modern radiotherapy technology and careful planning allow maintaining the toxicity of pelvic lymph node treatment at the acceptable level, as it is in the case of PB radiotherapy.

  16. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature upmore » to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.« less

  17. Evaluation of the Dosimetric Feasibility of Hippocampal Sparing Intensity-Modulated Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma

    PubMed Central

    Gan, Hua; Denniston, Kyle A.; Li, Sicong; Tan, Wenyong; Wang, Zhaohua

    2014-01-01

    Purpose The objective of this study was to evaluate the dosimetric feasibility of using hippocampus (HPC) sparing intensity-modulated radiotherapy (IMRT) in patients with locally advanced nasopharyngeal carcinoma (NPC). Materials/Methods Eight cases of either T3 or T4 NPC were selected for this study. Standard IMRT treatment plans were constructed using the volume and dose constraints for the targets and organs at risk (OAR) per Radiation Therapy Oncology Group (RTOG) 0615 protocol. Experimental plans were constructed using the same criteria, with the addition of the HPC as an OAR. The two dose-volume histograms for each case were compared for the targets and OARs. Results All plans achieved the protocol dose criteria. The homogeneity index, conformity index, and coverage index for the planning target volumes (PTVs) were not significantly compromised by the avoidance of the HPC. The doses to all OARs, excluding the HPC, were similar. Both the dose (Dmax, D2%, D40%, Dmean, Dmedian, D98% and Dmin) and volume (V5, V10, V15, V20, V30, V40 and V50) parameters for the HPC were significantly lower in the HPC sparing plans (p<0.05), except for Dmin (P = 0.06) and V5 (P = 0.12). Conclusions IMRT for patients with locally advanced NPC exposes the HPC to a significant radiation dose. HPC sparing IMRT planning significantly decreases this dose, with minimal impact on the therapeutic targets and other OARs. PMID:24587184

  18. Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.

    2013-11-01

    Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.

  19. Multivariable normal-tissue complication modeling of acute esophageal toxicity in advanced stage non-small cell lung cancer patients treated with intensity-modulated (chemo-)radiotherapy.

    PubMed

    Wijsman, Robin; Dankers, Frank; Troost, Esther G C; Hoffmann, Aswin L; van der Heijden, Erik H F M; de Geus-Oei, Lioe-Fee; Bussink, Johan

    2015-10-01

    The majority of normal-tissue complication probability (NTCP) models for acute esophageal toxicity (AET) in advanced stage non-small cell lung cancer (AS-NSCLC) patients treated with (chemo-)radiotherapy are based on three-dimensional conformal radiotherapy (3D-CRT). Due to distinct dosimetric characteristics of intensity-modulated radiation therapy (IMRT), 3D-CRT based models need revision. We established a multivariable NTCP model for AET in 149 AS-NSCLC patients undergoing IMRT. An established model selection procedure was used to develop an NTCP model for Grade ⩾2 AET (53 patients) including clinical and esophageal dose-volume histogram parameters. The NTCP model predicted an increased risk of Grade ⩾2 AET in case of: concurrent chemoradiotherapy (CCR) [adjusted odds ratio (OR) 14.08, 95% confidence interval (CI) 4.70-42.19; p<0.001], increasing mean esophageal dose [Dmean; OR 1.12 per Gy increase, 95% CI 1.06-1.19; p<0.001], female patients (OR 3.33, 95% CI 1.36-8.17; p=0.008), and ⩾cT3 (OR 2.7, 95% CI 1.12-6.50; p=0.026). The AUC was 0.82 and the model showed good calibration. A multivariable NTCP model including CCR, Dmean, clinical tumor stage and gender predicts Grade ⩾2 AET after IMRT for AS-NSCLC. Prior to clinical introduction, the model needs validation in an independent patient cohort. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. A multi-institutional dosimetry audit of rotational intensity-modulated radiotherapy.

    PubMed

    Clark, Catharine H; Hussein, Mohammad; Tsang, Yatman; Thomas, Russell; Wilkinson, Dean; Bass, Graham; Snaith, Julia; Gouldstone, Clare; Bolton, Steve; Nutbrown, Rebecca; Venables, Karen; Nisbet, Andrew

    2014-11-01

    Rotational IMRT (VMAT and Tomotherapy) has now been implemented in many radiotherapy centres. An audit to verify treatment planning system modelling and treatment delivery has been undertaken to ensure accurate clinical implementation. 34 institutions with 43 treatment delivery systems took part in the audit. A virtual phantom planning exercise (3DTPS test) and a clinical trial planning exercise were planned and independently measured in each institution using a phantom and array combination. Point dose differences and global gamma index (γ) were calculated in regions corresponding to PTVs and OARs. Point dose differences gave a mean (±sd) of 0.1±2.6% and 0.2±2.0% for the 3DTPS test and clinical trial plans, respectively. 34/43 planning and delivery combinations achieved all measured planes with >95% pixels passing γ<1 at 3%/3mm and rose to 42/43 for clinical trial plans. A statistically significant difference in γ pass rates (p<0.01) was seen between planning systems where rotational IMRT modelling had been designed for the manufacturer's own treatment delivery system and those designed independently of rotational IMRT delivery. A dosimetry audit of rotational radiotherapy has shown that TPS modelling and delivery for rotational IMRT can achieve high accuracy of plan delivery. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Toxicity Assessment of Pelvic Intensity-Modulated Radiotherapy With Hypofractionated Simultaneous Integrated Boost to Prostate for Intermediate- and High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, Robert; Rusthoven, Kyle E.; Kavanagh, Brian

    Purpose: To evaluate the toxicity of pelvic intensity-modulated radiotherapy (IMRT) with hypofractionated simultaneous integrated boost (SIB) to the prostate for patients with intermediate- to high-risk prostate cancer. Methods and Materials: A retrospective toxicity analysis was performed in 30 consecutive patients treated definitively with pelvic SIB-IMRT, all of whom also received androgen suppression. The IMRT plans were designed to deliver 70 Gy in 28 fractions (2.5 Gy/fraction) to the prostate while simultaneously delivering 50.4 Gy in 28 fractions (1.8 Gy/fraction) to the pelvic lymph nodes. The National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to scoremore » toxicity. Results: The most common acute Grade 2 events were cystitis (36.7%) and urinary frequency/urgency (26.7%). At a median follow-up of 24 months, late toxicity exceeding Grade 2 in severity was uncommon, with two Grade 3 events and one Grade 4 event. Grade 2 or greater acute bowel toxicity was associated with signficantly greater bowel volume receiving {>=}25 Gy (p = .04); Grade 2 or greater late bowel toxicity was associated with a higher bowel maximal dose (p = .04) and volume receiving {>=}50 Gy (p = .02). Acute or late bladder and rectal toxicity did not correlate with any of the dosimetric parameters examined. Conclusion: Pelvic IMRT with SIB to the prostate was well tolerated in this series, with low rates of Grade 3 or greater acute and late toxicity. SIB-IMRT combines pelvic radiotherapy and hypofractionation to the primary site and offers an accelerated approach to treating intermediate- to high-risk disease. Additional follow-up is necessary to fully define the long-term toxicity after hypofractionated, whole pelvic treatment combined with androgen suppression.« less

  2. Clinical Implications of the Tumor Volume Reduction Rate in Head-and-Neck Cancer During Definitive Intensity-Modulated Radiotherapy for Organ Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shih-Neng; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Liao, Chih-Ying

    2011-03-15

    Purpose: To investigate the prognostic value of the volume reduction rate (VRR) in patients with head-and-neck cancer treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Seventy-six patients with oropharyngeal cancer (OPC) and another 76 with hypopharyngeal cancer (HPC) were enrolled in volumetric analysis. All patients received allocated radiotherapy courses. Adaptive computed tomography was done 4 to 5 weeks after the start of IMRT. Primary tumor volume measurement was derived using separate images for the pretreatment gross tumor volume (pGTV) and the interval gross tumor volume. Results: In the OPC group, the pGTV ranged from 6.6 to 242.6 mL (mean, 49.9more » mL), whereas the value of the VRR ranged from 0.014 to 0.74 (mean, 0.43). In HPC patients, the pGTV ranged from 4.1 to 152.4 mL (mean, 35.6 mL), whereas the VRR ranged from -1.15 to 0.79 (mean, 0.33). Multivariate analysis of the primary tumor relapse-free survival for OPC revealed three prognostic factors: T4 tumor (p = 0.0001, hazard ratio 7.38), pGTV {>=}20 mL (p = 0.01, hazard ratio 10.61), and VRR <0.5 (p = 0.001, hazard ratio 6.49). Multivariate analysis of the primary tumor relapse-free survival for HPC showed two prognostic factors: pGTV {>=}30 mL (p = 0.001, hazard ratio 2.87) and VRR <0.5 (p = 0.03, hazard ratio 2.25). Conclusion: The VRR is an outcome predictor for local control in OPC and HPC patients treated with IMRT. Those with large tumor volumes or a VRR <0.5 should be considered for a salvage operation or a dose-escalation scheme.« less

  3. Predictors of Local Control After Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greco, Carlo; Zelefsky, Michael J., E-mail: zelefskm@mskcc.or; Lovelock, Michael

    2011-03-15

    Purpose: To report tumor local control after treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) to extracranial metastatic sites. Methods and Materials: A total of 126 metastases in 103 patients were treated with SD-IGRT to prescription doses of 18-24 Gy (median, 24 Gy) between 2004 and 2007. Results: The overall actuarial local relapse-free survival (LRFS) rate was 64% at a median follow-up of 18 months (range, 2-45 months). The median time to failure was 9.6 months (range, 1-23 months). On univariate analysis, LRFS was significantly correlated with prescription dose (p = 0.029). Stratification by dose into high (23 to 24 Gy),more » intermediate (21 to 22 Gy), and low (18 to 20 Gy) dose levels revealed highly significant differences in LRFS between high (82%) and low doses (25%) (p < 0.0001). Overall, histology had no significant effect on LRFS (p = 0.16). Renal cell histology displayed a profound dose-response effect, with 80% LRFS at the high dose level (23 to 24 Gy) vs. 37% with low doses ({<=}22 Gy) (p = 0.04). However, for patients who received the high dose level, histology was not a statistically significant predictor of LRFS (p = 0.90). Target organ (bone vs. lymph node vs. soft tissues) (p = 0.5) and planning target volume size (p = 0.55) were not found to be associated with long-term LRFS probability. Multivariate Cox regression analysis confirmed prescription dose to be a significant predictor of LRFS (p = 0.003). Conclusion: High-dose SD-IGRT is a noninvasive procedure resulting in high probability of local tumor control. Single-dose IGRT may be effectively used to locally control metastatic deposits regardless of histology and target organ, provided sufficiently high doses (> 22 Gy) of radiation are delivered.« less

  4. Stereotactic body radiotherapy for lung cancer: how much does it really cost?

    PubMed

    Lievens, Yolande; Obyn, Caroline; Mertens, Anne-Sophie; Van Halewyck, Dries; Hulstaert, Frank

    2015-03-01

    Despite the lack of randomized evidence, stereotactic body radiotherapy (SBRT) is being accepted as superior to conventional radiotherapy for patients with T1-2N0 non-small-cell lung cancer in the periphery of the lung and unfit or unwilling to undergo surgery. To introduce SBRT in a system of coverage with evidence development, a correct financing had to be determined. A time-driven activity-based costing model for radiotherapy was developed. Resource cost calculation of all radiotherapy treatments, standard and innovative, was conducted in 10 Belgian radiotherapy centers in the second half of 2012. The average cost of lung SBRT across the 10 centers (6221&OV0556;) is in the range of the average costs of standard fractionated 3D-conformal radiotherapy (5919&OV0556;) and intensity-modulated radiotherapy (7379&OV0556;) for lung cancer. Hypofractionated 3D-conformal radiotherapy and intensity-modulated radiotherapy schemes are less costly (3993&OV0556; respectively 4730&OV0556;). The SBRT cost increases with the number of fractions and is highly dependent of personnel and equipment use. SBRT cost varies more by centre than conventional radiotherapy cost, reflecting different technologies, stages in the learning curve and a lack of clear guidance in this field. Time-driven activity-based costing of radiotherapy is feasible in a multicentre setup, resulting in real-life resource costs that can form the basis for correct reimbursement schemes, supporting an early yet controlled introduction of innovative radiotherapy techniques in clinical practice.

  5. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  6. Salivary Gland Tumors Treated With Adjuvant Intensity-Modulated Radiotherapy With or Without Concurrent Chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenfeld, Jonathan D., E-mail: jdschoenfeld@partners.org; Sher, David J.; Norris, Charles M.

    Purpose: To analyze the recent single-institution experience of patients with salivary gland tumors who had undergone adjuvant intensity-modulated radiotherapy (IMRT), with or without concurrent chemotherapy. Patients and Methods: We performed a retrospective analysis of 35 salivary gland carcinoma patients treated primarily at the Dana-Farber Cancer Institute between 2005 and 2010 with surgery and adjuvant IMRT. The primary endpoints were local control, progression-free survival, and overall survival. The secondary endpoints were acute and chronic toxicity. The median follow-up was 2.3 years (interquartile range, 1.2-2.8) among the surviving patients. Results: The histologic types included adenoid cystic carcinoma in 15 (43%), mucoepidermoid carcinomamore » in 6 (17%), adenocarcinoma in 3 (9%), acinic cell carcinoma in 3 (9%), and other in 8 (23%). The primary sites were the parotid gland in 17 (49%), submandibular glands in 6 (17%), tongue in 4 (11%), palate in 4 (11%), and other in 4 (11%). The median radiation dose was 66 Gy, and 22 patients (63%) received CRT. The most common chemotherapy regimen was carboplatin and paclitaxel (n = 14, 64%). A trend was seen for patients undergoing CRT to have more adverse prognostic factors, including Stage T3-T4 disease (CRT, n = 12, 55% vs. n = 4, 31%, p = .29), nodal positivity (CRT, n = 8, 36% vs. n = 1, 8%, p = .10), and positive margins (n = 13, 59% vs. n = 5, 38%, p = .30). One patient who had undergone CRT developed an in-field recurrence, resulting in an overall actuarial 3-year local control rate of 92%. Five patients (14%) developed distant metastases (1 who had undergone IMRT only and 4 who had undergone CRT). Acute Grade 3 mucositis, esophagitis, and dermatitis occurred in 8%, 8%, and 8% (1 each) of IMRT patients and in 18%, 5%, and 14% (4, 1, and 3 patients) of the CRT group, respectively. No acute Grade 4 toxicity occurred. The most common late toxicity was Grade 1 xerostomia (n = 8, 23%). Conclusions

  7. Treatment of folliculitis decalvans using intensity-modulated radiation via tomotherapy.

    PubMed

    Elsayad, Khaled; Kriz, Jan; Haverkamp, Uwe; Plachouri, Kerasia-Maria; Jeskowiak, Antonia; Sunderkötter, Cord; Eich, Hans Theodor

    2015-11-01

    Folliculitis decalvans (FD) is a form of primary neutrophilic scarring alopecia that is characterized clinically by chronic suppurative folliculitis and often associated with pruritus or even pain. Treatment of FD is often difficult. Herein, we report a case of recalcitrant and painful folliculitis decalvans refractory to antibiotic and anti-inflammatory therapies, which was successfully treated by intensity-modulated radiotherapy (IMRT) in order to irreversibly eliminate hair follicles that prove to be one etiological trigger. A 45-year-old male patient with a refractory FD presented with a crusting suppurative folliculitis and atrophic scarring patches on the scalp associated with pain and pruritus. We attempted relief of symptoms by reducing scalp inflammation and eliminating hair follicles through radiation. We delivered 11.0 Gy in two radiation series using tomotherapy, 5.0 Gy in 5 equivalent fractions as a first radiation course. The symptoms markedly decreased but did not totally disappear. Therefore, we delivered a second radiation series 4 months later with an additional 6 Gy. This led to almost complete epilation on the scalp and abolished pain and pruritus on the capillitium. The patient was regularly followed up until 26 months after radiotherapy. Draining lesions or exudation did not recur. He only experienced discrete hair regrowth in the occipital region with folliculitis 12 months after radiotherapy. These residual lesions are currently treated with laser epilation therapy. A radical approach to eliminating hair follicles by repeated radiation therapy may induce lasting relief of symptoms in chronic suppurative FD associated with persistent trichodynia.

  8. Intensity-modulated versus 3-dimensional conformal radiotherapy in the definitive treatment of esophageal cancer: comparison of outcomes and acute toxicity.

    PubMed

    Haefner, Matthias Felix; Lang, Kristin; Verma, Vivek; Koerber, Stefan Alexander; Uhlmann, Lorenz; Debus, Juergen; Sterzing, Florian

    2017-08-15

    Though the vast majority of seminal trials for locally advanced esophageal cancer (EC) utilized three-dimensional conformal radiotherapy (3DCRT), the advanced and highly conformal technology known as intensity-modulated radiotherapy (IMRT) can decrease doses to critical cardiopulmonary organs. To date, there have been no studies comparing both modalities as part of definitive chemoradiation (dCRT) for EC. Herein, we investigated local control and survival and evaluated clinical factors associated with these endpoints between cohorts. We retrospectively analyzed 93 patients (3DCRT n = 49, IMRT n = 44) who received dCRT at our institution between 2000 and 2012 with the histologic diagnosis of nonmetastatic EC, a Karnofsky performance status of ≥70, curative treatment intent, and receipt of concomitant CRT. Patients were excluded if receiving <50 Gy. Kaplan-Meier analysis was used to evaluate the endpoints of local relapse rate (LR), progression-free survival (PFS), and overall survival (OS). Cox proportional hazards modeling addressed factors associated with outcomes with univariate and multivariate approaches. Rates of acute toxicities and basic dosimetric parameters were compared between 3DCRT and IMRT patients. Mean follow-up was 34.7 months. The 3-year LR was 28.6% in the 3DCRT group and 22.7% in the IMRT group (p = 0.620). Median PFS were 13.8 and 16.6 months, respectively (p = 0.448). Median OS were 18.4 and 42.0 months, respectively (p = 0.198). On univariate analysis, only cumulative radiation dose was associated with superior LR (hazard ratio (HR) 0.736; 95% confidence interval (CI) 0.635 - 0.916, p = 0.004). Factors clearly affecting survival were not observed. When comparing 3DCRT- versus IMRT-based dCRT, no survival benefits were observed. However, we found a lower local recurrence rate in the IMRT group potentially owing to dose-escalation. Prospective data are needed to verify the presented results herein.

  9. A comparison of volumetric modulated arc therapy and sliding-window intensity-modulated radiotherapy in the treatment of Stage I-II nasal natural killer/T-cell lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xianfeng; Yang, Yong; Jin, Fu

    This article is aimed to compare the dosimetric differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for Stage I-II nasal natural killer/T-cell lymphoma (NNKTL). Ten patients with Stage I-II NNKTL treated with IMRT were replanned with VMAT (2 arcs). The prescribed dose of the planning target volume (PTV) was 50 Gy in 25 fractions. The VMAT plans with the Anisotropic Analytical Algorithm (Version 8.6.15) were based on an Eclipse treatment planning system; the monitor units (MUs) and treatment time (T) were scored to measure the expected treatment efficiency. All the 10 patients under the study were subjectmore » to comparisons regarding the quality of target coverage, the efficiency of delivery, and the exposure of normal adjacent organs at risk (OARs). The study shows that VMAT was associated with a better conformal index (CI) and homogeneity index (HI) (both p < 0.05) but slightly higher dose to OARs than IMRT. The MUs with VMAT (650.80 ± 24.59) were fewer than with IMRT (1300.10 ± 57.12) (relative reduction of 49.94%, p = 0.00) when using 2-Gy dose fractions. The treatment time with VMAT (3.20 ± 0.02 minutes) was shorter than with IMRT (7.38 ± 0.18 minutes) (relative reduction of 56.64%, p = 0.00). We found that VMAT and IMRT both provide satisfactory target dosimetric coverage and OARs sparing clinically. Likely to deliver a bit higher dose to OARs, VMAT in comparison with IMRT, is still a better choice for treatment of patients with Stage I-II NNKTL, thanks to better dose distribution, fewer MUs, and shorter delivery time.« less

  10. On Voxel based Iso-Tumor Control Probabilty and Iso-Complication Maps for Selective Boosting and Selective Avoidance Intensity Modulated Radiotherapy.

    PubMed

    Kim, Yusung; Tomé, Wolfgang A

    2008-01-01

    Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans.

  11. On Voxel based Iso-Tumor Control Probabilty and Iso-Complication Maps for Selective Boosting and Selective Avoidance Intensity Modulated Radiotherapy

    PubMed Central

    Kim, Yusung; Tomé, Wolfgang A.

    2010-01-01

    Summary Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans. PMID:21151734

  12. Xerostomia, salivary characteristics and gland volumes following intensity-modulated radiotherapy for nasopharyngeal carcinoma: a two-year follow up.

    PubMed

    Sim, Cpc; Soong, Y L; Pang, Epp; Lim, C; Walker, G D; Manton, D J; Reynolds, E C; Wee, Jts

    2018-06-01

    To evaluate changes in xerostomia status, salivary characteristics and gland volumes 2 years following radiotherapy in nasopharyngeal carcinoma patients. Xerostomia scores, salivary flow rates, pH and buffering capacity were measured at pre-radiotherapy, mid-radiotherapy, 2 weeks, 3 months and 2 years post-radiotherapy. Salivary gland volumes and their correlation with radiation dose were also assessed. Mean radiation dose to oral cavity, parotid and submandibular glands (SMG) was 44.5, 65.0 and 38.6 Gy respectively. Parotid and SMG volumes decreased 33% at 3 months post-radiotherapy; volumes at 2 years post-radiotherapy were 84% and 51% of pre-radiotherapy levels, respectively. Correlations were observed between parotid gland volume per cent reduction and its radiation dose and between resting salivary flow rate reduction and post-radiotherapy/pre-radiotherapy SMG volume ratio. Salivary flow rates and resting saliva pH remained significantly low at 2 years post-radiotherapy (both flow rates, P = 0.001; resting saliva pH, P = 0.005). Similarly, xerostomia scores remained significantly higher compared with pre-radiotherapy levels. Submandibular gland volumetric shrinkage persisted 2 years after radiotherapy. Xerostomia scores remained significantly higher, and salivary flow rates and resting saliva pH remained significantly lower, suggesting that study participants were still at risk for hyposalivation-related oral diseases. © 2018 Australian Dental Association.

  13. Intensity-modulated radiotherapy improves lymph node coverage and dose to critical structures compared with three-dimensional conformal radiation therapy in clinically localized prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang-Chesebro, Alice; Xia Ping; Coleman, Joy

    2006-11-01

    Purpose: The aim of this study was to quantify gains in lymph node coverage and critical structure dose reduction for whole-pelvis (WP) and extended-field (EF) radiotherapy in prostate cancer using intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3DCRT) for the first treatment phase of 45 Gy in the concurrent treatment of lymph nodes and prostate. Methods and Materials: From January to August 2005, 35 patients with localized prostate cancer were treated with pelvic IMRT; 7 had nodes defined up to L5-S1 (Group 1), and 28 had nodes defined above L5-S1 (Group 2). Each patient had 2 plans retrospectively generated:more » 1 WP 3DCRT plan using bony landmarks, and 1 EF 3DCRT plan to cover the vascular defined volumes. Dose-volume histograms for the lymph nodes, rectum, bladder, small bowel, and penile bulb were compared by group. Results: For Group 1, WP 3DCRT missed 25% of pelvic nodes with the prescribed dose 45 Gy and missed 18% with the 95% prescribed dose 42.75 Gy, whereas WP IMRT achieved V{sub 45Gy} = 98% and V{sub 42.75Gy} = 100%. Compared with WP 3DCRT, IMRT reduced bladder V{sub 45Gy} by 78%, rectum V{sub 45Gy} by 48%, and small bowel V{sub 45Gy} by 232 cm{sup 3}. EF 3DCRT achieved 95% coverage of nodes for all patients at high cost to critical structures. For Group 2, IMRT decreased bladder V{sub 45Gy} by 90%, rectum V{sub 45Gy} by 54% and small bowel V{sub 45Gy} by 455 cm{sup 3} compared with EF 3DCRT. Conclusion: In this study WP 3DCRT missed a significant percentage of pelvic nodes. Although EF 3DCRT achieved 95% pelvic nodal coverage, it increased critical structure doses. IMRT improved pelvic nodal coverage while decreasing dose to bladder, rectum, small bowel, and penile bulb. For patients with extended node involvement, IMRT especially decreases small bowel dose.« less

  14. The intensity of radiotherapy-elicited immune response is associated with esophageal cancer clearance.

    PubMed

    Ma, Jin-lu; Jin, Long; Li, Yao-Dong; He, Chen-chen; Guo, Xi-jing; Liu, Rui; Yang, Yun-Yi; Han, Su-xia

    2014-01-01

    Radiation therapy is one of the standard therapeutic modalities for esophageal cancer, achieving its main antitumor efficacy through DNA damage. However, accumulating evidence shows that radiotherapy can substantially alter the tumor microenvironment, particularly with respect to its effects on immune cells. We hypothesized that the immune response elicited by radiotherapy may be as important as the radiation itself for successful treatment. More specifically, immunomodulatory cytokines may enhance the effectiveness of radiotherapy. To investigate this hypothesis, we measured changes in the serum interferon-gamma (IFN- γ ) and interleukin-2 (IL-2) concentrations during radiotherapy and compared these modifications with outcomes. We found that serum concentrations of IL-2 and IFN- γ were positively associated with local response to radiotherapy in esophageal cancer. More generally, the intensity of the radiotherapy-elicited immune response was positively associated with local response to radiotherapy in esophageal cancer. Changes in serum IL-2 and IFN- γ concentrations were further associated with increased risks of acute hematologic toxicity and acute organ toxicity of the esophagus, lung, and skin. These results suggest that deciphering the mechanisms of radiotherapy-elicited immune response may help in the development of therapeutic interventions that would enhance the efficacy of radiotherapy and convert some ineffective responses to effective responses.

  15. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Michael, E-mail: mng@radoncvic.com.au; Leong, Trevor; University of Melbourne

    2012-08-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steeringmore » committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.« less

  16. Volumetric tumor burden and its effect on brachial plexus dosimetry in head and neck intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya

    2014-07-01

    To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy.more » Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.« less

  17. Establishment of postal audit system in intensity-modulated radiotherapy by radiophotoluminescent glass dosimeters and a radiochromic film.

    PubMed

    Okamoto, Hiroyuki; Minemura, Toshiyuki; Nakamura, Mitsuhiro; Mizuno, Hideyuki; Tohyama, Naoki; Nishio, Teiji; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Iijima, Kotaro; Fujiyama, Daisuke; Itami, Jun; Nishimura, Yasumasa

    2018-04-01

    We developed an efficient postal audit system to independently assess the delivered dose using radiophotoluminescent glass dosimeters (RPLDs) and the positional differences of fields using EBT3 film at the axial plane for intensity-modulated radiotherapy (IMRT). The audit phantom had a C-shaped target structure as a planning target volume (PTV) with four measurement points for the RPLDs and a cylindrical structure as the organ at risk (OAR) for one measurement point. The phantoms were sent to 24 institutions. Point dose measurements with a 0.6 cm 3 PTW farmer chamber were also performed to justify glass dosimetry in IMRT. The measured dose with the RPLDs was compared to the calculated dose in the institution's treatment planning system (TPS). The mean ± 1.96σ of the ratio of the measured dose with the RPLDs to the farmer chamber was 0.997 ± 0.024 with no significant difference (p = .175). The investigations demonstrated that glass dosimetry was reliable with a high measurement accuracy comparable to the chamber. The mean ± 1.96σ for the dose differences with a reference of the TPS dose for the PTV and the OAR was 0.1 ± 2.5% and -2.1 ± 17.8%, respectively. The mean ± 1.96σ for the right-left and the anterior-posterior direction was -0.9 ± 2.8 and 0.5 ± 1.4 mm, respectively. This study is the first report to justify glass dosimetry for implementation in IMRT audit in Japan. We demonstrate that our postal audit system has high accuracy with a high-level criterion of 3%/3 mm. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun

    2008-08-01

    Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprisedmore » the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.« less

  19. The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial.

    PubMed

    Sultanem, Khalil; Patrocinio, Horacio; Lambert, Christine; Corns, Robert; Leblanc, Richard; Parker, William; Shenouda, George; Souhami, Luis

    2004-01-01

    Despite major advances in treatment modalities, the prognosis of patients with glioblastoma multiforme (GBM) remains poor. Exploring hypofractionated regimens to replace the standard 6-week radiotherapy schedule is an attractive strategy as an attempt to prevent accelerated tumor cell repopulation. There is equally interest in dose escalation to the gross tumor volume where the majority of failures occur. We report our preliminary results using hypofractionated intensity-modulated accelerated radiotherapy regimen in the treatment of patients with GBM. Between July 1998 and December 2001, 25 patients with histologically proven diagnosis of GBM, Karnofsky performance status > or =60, and a postoperative tumor volume < or =110 cm3 were treated with a hypofractionated accelerated course of radiotherapy. The gross tumor volume (GTV) was defined as the contrast-enhancing lesion on the postoperative MRI T1-weighted images with the latter fused with computed tomography images for treatment planning. The planning target volume was defined as GTV + 1.5-cm margin. Using forward-planning intensity modulation (step-and-shoot technique), 60 Gy in 20 daily fractions of 3 Gy each were given to the GTV, whereas the planning target volume received a minimum of 40 Gy in 20 fractions of 2 Gy each at its periphery. Treatments were delivered over a 4-week period using 5 daily fractions per week. Dose was prescribed at the isocenter (ICRU point). Three beam angles were used in all of the cases. Treatments were well tolerated. Acute toxicity was limited to increased brain edema during radiotherapy in 2 patients who were on tapering doses of corticosteroids. This was corrected by increasing the steroid dose. At a median follow-up of 8.8 months, no late toxicity was observed. One patient experienced visual loss at 9 months after completion of treatment. MRI suggested nonspecific changes to the optic chiasm. On review of the treatment plan, the total dose to the optic chiasm was confirmed to

  20. Simultaneous integrated boost to intraprostatic lesions using different energy levels of intensity-modulated radiotherapy and volumetric-arc therapy

    PubMed Central

    Sonmez, S; Erbay, G; Guler, O C; Arslan, G

    2014-01-01

    Objective: This study compared the dosimetry of volumetric-arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) with a dynamic multileaf collimator using the Monte Carlo algorithm in the treatment of prostate cancer with and without simultaneous integrated boost (SIB) at different energy levels. Methods: The data of 15 biopsy-proven prostate cancer patients were evaluated. The prescribed dose was 78 Gy to the planning target volume (PTV78) including the prostate and seminal vesicles and 86 Gy (PTV86) in 39 fractions to the intraprostatic lesion, which was delineated by MRI or MR-spectroscopy. Results: PTV dose homogeneity was better for IMRT than VMAT at all energy levels for both PTV78 and PTV86. Lower rectum doses (V30–V50) were significantly higher with SIB compared with PTV78 plans in both IMRT and VMAT plans at all energy levels. The bladder doses at high dose level (V60–V80) were significantly higher in IMRT plans with SIB at all energy levels compared with PTV78 plans, but no significant difference was observed in VMAT plans. VMAT plans resulted in a significant decrease in the mean monitor units (MUs) for 6, 10, and 15 MV energy levels both in plans with and those without SIB. Conclusion: Dose escalation to intraprostatic lesions with 86 Gy is safe without causing serious increase in organs at risk (OARs) doses. VMAT is advantageous in sparing OARs and requiring less MU than IMRT. Advances in knowledge: VMAT with SIB to intraprostatic lesion is a feasible method in treating prostate cancer. Additionally, no dosimetric advantage of higher energy is observed. PMID:24319009

  1. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  2. Total Mucosal Irradiation with Intensity-modulated Radiotherapy in Patients with Head and Neck Carcinoma of Unknown Primary: A Pooled Analysis of Two Prospective Studies.

    PubMed

    Richards, T M; Bhide, S A; Miah, A B; Del Rosario, L; Bodla, S; Thway, K; Gujral, D M; Rooney, K P; Schick, U; McGovern, T; Grove, L; Newbold, K L; Harrington, K J; Nutting, C M

    2016-09-01

    To determine the clinical outcomes of an intensity-modulated radiotherapy technique for total mucosal irradiation (TM-IMRT) in patients with head and neck carcinoma of unknown primary (HNCUP). A single-centre prospective phase II trial design was used in two sequential studies to evaluate TM-IMRT for HNCUP. Patients were investigated for primary tumour site using examination under anaesthetic and biopsies, computed tomography ± magnetic resonance imaging (MRI) or 18-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT). Patients received IMRT to the potential primary tumour sites and elective cervical nodes. Concomitant chemotherapy was used in patients who received primary radiotherapy or those with nodal extracapsular extension. Thirty-six patients with HNCUP were recruited; 72% male. Twenty-five patients (69.4%) had p16-positive disease. Two year mucosal and local nodal control rates were 97.1% (95% confidence interval 91.4-100) and 89.8% (78.4-100), respectively. One mucosal primary was detected 7.3 months after TM-IMRT and three patients died from recurrent/metastatic squamous cell carcinoma of the head and neck. Twelve patients (33%) developed grade 3 (Late Effects in Normal Tissue-Subjective, Objective, Management and Analytical; LENT-SOMA) dysphagia with a 1 year enteric tube feeding rate of 2.7%. The high-grade subjective xerostomia rate (LENT-SOMA) at 24 months after IMRT was 15%. At a median follow-up of 36.1 months, the use of TM-IMRT was associated with good local control. Toxicity was comparable with previously reported TM-IMRT regimens encompassing similar mucosal volumes. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Cervical lymph node metastases from unknown primary cancer: a single-institution experience with intensity-modulated radiotherapy.

    PubMed

    Villeneuve, Hugo; Després, Philippe; Fortin, Bernard; Filion, Edith; Donath, David; Soulières, Denis; Guertin, Louis; Ayad, Tarek; Christopoulos, Apostolos; Nguyen-Tan, Phuc Felix

    2012-04-01

    To determine the effectiveness and rate of complications of intensity-modulated radiotherapy (IMRT) in the treatment of cervical lymph node metastases from unknown primary cancer. Between February 2005 and November 2008, 25 patients with an unknown primary cancer underwent IMRT, with a median radiation dose of 70 Gy. The bilateral neck and ipsilateral putative pharyngeal mucosa were included in the target volume. All patients had squamous cell carcinoma, except for 1 patient who had adenosquamous differentiation. They were all treated with curative intent. Of the 25 included patients, 20 were men and 5 were women, with a median age of 54 years. Of these patients, 3 had Stage III, 18 had Stage IVa, and 4 had Stage IVb. Of the 25 patients, 18 (72%) received platinum-based chemotherapy in a combined-modality setting. Neck dissection was reserved for residual disease after definitive IMRT. Overall survival, disease-free survival, and locoregional control were calculated using the Kaplan-Meier method. With a median follow-up of 38 months, the overall survival, disease-free survival, and locoregional control rates were all 100% at 3 years. No occurrence of primary cancer was observed during the follow-up period. The reported rates of xerostomia reduced with the interval from the completion of treatment. Nine patients (36%) reported Grade 2 or greater xerostomia at 6 months, and only 2 (8%) of them reported the same grade of salivary function toxicity after 24 months of follow-up. In our institution, IMRT for unknown primary cancer has provided good overall and disease-free survival in all the patients with an acceptable rate of complications. IMRT allowed us to address the bilateral neck and ipsilateral putative pharyngeal mucosa with minimal late salivary function toxicity. The use of concurrent chemotherapy and IMRT for more advanced disease led to good clinical results with reasonable toxicities. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Clinical outcome of extended-field irradiation vs. pelvic irradiation using intensity-modulated radiotherapy for cervical cancer.

    PubMed

    Ouyang, Yi; Wang, Yanhong; Chen, Kai; Cao, Xinping; Zeng, Yiming

    2017-12-01

    The aim of the present study was to evaluate the distinctions in survival and toxicity between patients with cervical cancer with common iliac node or para-aortic node involvement, who were treated with extended-field intensity-modulated radiotherapy (EF-IMRT) and patients with or without lower involved pelvic nodes, who were treated with pelvic IMRT. A total of 55 patients treated with EF-IMRT and 52 patients treated with pelvic IMRT at the Sun Yat-Sen University Cancer Center (Guangzhou, China) were retrospectively analyzed. Patients treated with EF-IMRT had the highest level of lymph node involvement to the para-aortic or common iliac nodes, while patients treated with pelvic IMRT had no para-aortic or common iliac nodes involved (P<0.001). The median follow-up time was 29.5 months. The 3-year overall survival (OS) rates of EF-IMRT and pelvic IMRT were 79.4 and 82.3% (P=0.45), respectively, and the 3-year disease-free survival (DFS) rates of EF-IMRT and pelvic IMRT were 61.0 and 73.7% (P=0.55), respectively. Cox's regression analysis revealed that EF irradiation was a protective prognostic factor for OS and DFS. A total of 16 patients in the EF-IMRT group and 13 patients in the pelvic IMRT group experienced treatment failure (P=0.67), with the patterns of failure being the same for the two groups (P=0.88). The cumulative incidence of grade 3 and 4 acute toxicities in the EF-IMRT group was 34.5%, in comparison with 19.2% in the pelvic group (P=0.048). The results of the present study suggest that patients with cervical cancer with grossly involved common iliac or para-aortic nodes should be electively subjected to EF irradiation to improve the survival and alter patterns of recurrence. Notably, EF irradiation delivered via IMRT exhibits an increased toxicity incidence, however, this remains within an acceptable range.

  5. Clinical outcome of extended-field irradiation vs. pelvic irradiation using intensity-modulated radiotherapy for cervical cancer

    PubMed Central

    Ouyang, Yi; Wang, Yanhong; Chen, Kai; Cao, Xinping; Zeng, Yiming

    2017-01-01

    The aim of the present study was to evaluate the distinctions in survival and toxicity between patients with cervical cancer with common iliac node or para-aortic node involvement, who were treated with extended-field intensity-modulated radiotherapy (EF-IMRT) and patients with or without lower involved pelvic nodes, who were treated with pelvic IMRT. A total of 55 patients treated with EF-IMRT and 52 patients treated with pelvic IMRT at the Sun Yat-Sen University Cancer Center (Guangzhou, China) were retrospectively analyzed. Patients treated with EF-IMRT had the highest level of lymph node involvement to the para-aortic or common iliac nodes, while patients treated with pelvic IMRT had no para-aortic or common iliac nodes involved (P<0.001). The median follow-up time was 29.5 months. The 3-year overall survival (OS) rates of EF-IMRT and pelvic IMRT were 79.4 and 82.3% (P=0.45), respectively, and the 3-year disease-free survival (DFS) rates of EF-IMRT and pelvic IMRT were 61.0 and 73.7% (P=0.55), respectively. Cox's regression analysis revealed that EF irradiation was a protective prognostic factor for OS and DFS. A total of 16 patients in the EF-IMRT group and 13 patients in the pelvic IMRT group experienced treatment failure (P=0.67), with the patterns of failure being the same for the two groups (P=0.88). The cumulative incidence of grade 3 and 4 acute toxicities in the EF-IMRT group was 34.5%, in comparison with 19.2% in the pelvic group (P=0.048). The results of the present study suggest that patients with cervical cancer with grossly involved common iliac or para-aortic nodes should be electively subjected to EF irradiation to improve the survival and alter patterns of recurrence. Notably, EF irradiation delivered via IMRT exhibits an increased toxicity incidence, however, this remains within an acceptable range. PMID:29344136

  6. Tumor Control Outcomes Following Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases from Renal Cell Carcinoma

    PubMed Central

    Zelefsky, Michael J; Greco, Carlo; Motzer, Robert; Magsanoc, Juan Martin; Pei, Xin; Lovelock, Michael; Mechalakos, Jim; Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya

    2014-01-01

    Purpose To report tumor local progression-free outcomes following treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Methods and Materials Between 2004 and 2010, a total of 105 lesions from renal cell carcinomas were treated with either SD-IGRT to prescription doses of 18–24 Gy (median, 24 Gy) or hypofractionation (3 or 5 fractions) with prescription doses ranging between 20 and 30 Gy. The median follow-up was 12 months (range, 1–48 months). Results The overall 3-year actuarial local progression-free survival (LPFS) for all lesions was 44%. The 3-year LPFS for those who received high single-dose (24 Gy; n = 45), low single-dose (< 24 Gy; n = 14), and hypofractionation regimens (n = 46) were 88%, 21%, and 17%, respectively (high single dose versus low single dose, p = 0.001; high single dose versus hypofractionation, p < 0.001). Multivariate analysis revealed the following variables as significant predictors of improved LPFS: dose of 24 Gy compared with lower dose (p = 0.009), and single dose versus hypofractionation (p = 0.008). Conclusion High-dose SD-IGRT is a non-invasive procedure resulting in high probability of local tumor control for metastatic renal cell cancers, generally considered radioresistant according to classical radiobiological ranking. PMID:21596489

  7. Intensity-Modulated Radiotherapy in the Treatment of Oropharyngeal Cancer: An Update of the Memorial Sloan-Kettering Cancer Center Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setton, Jeremy; Caria, Nicola; Romanyshyn, Jonathan

    2012-01-01

    Purpose: To update the Memorial Sloan-Kettering Cancer Center's experience with intensity-modulated radiotherapy (IMRT) in the treatment of oropharyngeal cancer (OPC). Methods and Materials: Between September 1998 and April 2009, 442 patients with histologically confirmed OPC underwent IMRT at our center. There were 379 men and 63 women with a median age of 57 years (range, 27-91). The disease was Stage I in 2%, Stage II in 4%, Stage III in 21%, and Stage IV in 73% of patients. The primary tumor subsite was tonsil in 50%, base of tongue in 46%, pharyngeal wall in 3%, and soft palate in 2%.more » The median prescription dose to the planning target volume of the gross tumor was 70 Gy for definitive (n = 412) cases and 66 Gy for postoperative cases (n = 30). A total 404 patients (91%) received chemotherapy, including 389 (88%) who received concurrent chemotherapy, the majority of which was platinum-based. Results: Median follow-up among surviving patients was 36.8 months (range, 3-135). The 3-year cumulative incidence of local failure, regional failure, and distant metastasis was 5.4%, 5.6%, and 12.5%, respectively. The 3-year OS rate was 84.9%. The incidence of late dysphagia and late xerostomia {>=}Grade 2 was 11% and 29%, respectively. Conclusions: Our results confirm the feasibility of IMRT in achieving excellent locoregional control and low rates of xerostomia. According to our knowledge, this study is the largest report of patients treated with IMRT for OPC.« less

  8. The Evolution of and Risk Factors for Neck Muscle Atrophy and Weakness in Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy

    PubMed Central

    Zhang, Lu-Lu; Mao, Yan-Ping; Zhou, Guan-Qun; Tang, Ling-Long; Qi, Zhen-Yu; Lin, Li; Yao, Ji-Jin; Ma, Jun; Lin, Ai-Hua; Sun, Ying

    2015-01-01

    Abstract The aim of this study was to investigate the evolution of sternocleidomastoid muscle (SCM) atrophy in nasopharyngeal carcinoma (NPC) patients following intensity-modulated radiotherapy (IMRT), and the relationship between SCM atrophy and neck weakness. Data were retrospectively analyzed from 223 biopsy-proven NPC patients with no distant metastasis who underwent IMRT with or without chemotherapy. The volume of SCM was measured on pretreatment magnetic resonance imaging (MRI), and MRIs were conducted 1, 2, and 3 years after the completion of IMRT. Change in SCM volume was calculated and classified using the late effects of normal tissues–subjective, objective, management, and analytic system. The grade of neck muscle weakness, classified by the Common Terminology Criteria for Adverse Events V 3.0, was measured 3 years after the completion of IMRT. The average SCM atrophy ratio was −10.97%, −18.65%, and −22.25% at 1, 2, and 3 years postirradiation, respectively. Multivariate analysis indicated N stage and the length of time after IMRT were independent prognostic variables. There were significant associations between the degree of SCM atrophy and neck weakness. Radical IMRT can cause significant SCM atrophy in NPC patients. A more advanced N stage was associated with more severe SCM atrophy, but no difference was observed between N2 and N3. SCM atrophy progresses over time during the 3 years following IMRT. Grade of SCM atrophy is significantly associated with neck weakness. PMID:26252307

  9. External Beam Radiotherapy for Prostate Cancer Patients on Anticoagulation Therapy: How Significant is the Bleeding Toxicity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Kevin S.; Jani, Ashesh B.; Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.ed

    Purpose: To characterize the bleeding toxicity associated with external beam radiotherapy for prostate cancer patients receiving anticoagulation (AC) therapy. Methods and Materials: The study cohort consisted of 568 patients with adenocarcinoma of the prostate who were treated with definitive external beam radiotherapy. Of these men, 79 were receiving AC therapy with either warfarin or clopidogrel. All patients were treated with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy. Bleeding complications were recorded during treatment and subsequent follow-up visits. Results: With a median follow-up of 48 months, the 4-year actuarial risk of Grade 3 or worse bleeding toxicity was 15.5% for those receivingmore » AC therapy compared with 3.6% among those not receiving AC (p < .0001). On multivariate analysis, AC therapy was the only significant factor associated with Grade 3 or worse bleeding (p < .0001). For patients taking AC therapy, the crude rate of bleeding was 39.2%. Multivariate analysis within the AC group demonstrated that a higher radiotherapy dose (p = .0408), intensity-modulated radiotherapy (p = 0.0136), and previous transurethral resection of the prostate (p = .0001) were associated with Grade 2 or worse bleeding toxicity. Androgen deprivation therapy was protective against bleeding, with borderline significance (p = 0.0599). Dose-volume histogram analysis revealed that Grade 3 or worse bleeding was minimized if the percentage of the rectum receiving >=70 Gy was <10% or the rectum receiving >=50 Gy was <50%. Conclusion: Patients taking AC therapy have a substantial risk of bleeding toxicity from external beam radiotherapy. In this setting, dose escalation or intensity-modulated radiotherapy should be used judiciously. With adherence to strict dose-volume histogram criteria and minimizing hotspots, the risk of severe bleeding might be reduced.« less

  10. Locoregional Control and Toxicity in Head and Neck Carcinoma Patients following Helical Tomotherapy-Delivered Intensity-Modulated Radiation Therapy Compared with 3D-CRT Data.

    PubMed

    Santa Cruz, Olalla; Tsoutsou, Pelagia; Castella, Cyril; Khanfir, Kaouthar; Anchisi, Sandro; Bouayed, Salim; Matzinger, Oscar; Ozsahin, Mahmut

    2018-06-12

    To assess the feasibility and efficacy of intensity-modulated radiation implemented with helical tomotherapy image-guided with daily megavoltage computed tomography for head and neck cancer. Between May 2010 and May 2013, 72 patients were treated with curative intent. The median age was 64 years, with 57% undergoing definitive and 43% postoperative radiotherapy. Primary tumour sites were oral cavity (21%), oropharynx (26%), hypopharynx (20%), larynx (22%), and others (11%). Staging included 4% stage I, 15% II, 26% III, 48% IVa, and 7% IVb. Radiotherapy was combined with chemotherapy in 64%. Primary endpoint was locoregional control, and secondary endpoints survival and toxicity. Median follow-up was 20 months, with 11 locoregional recurrences. Three-year disease-free survival was 58% and overall survival 57%. In the multivariate analysis, age under 64 years, no extracapsular extension, postoperative radiotherapy, induction chemotherapy, and non-oral cavity tumour were significant favourable prognostic factors for disease-free-survival. The overall incidence of acute grade ≥3 toxicities were mucositis 32%, pain 11%, xerostomia 7%, dysphagia 53%, radiodermatitis 44%, and osteonecrosis 1%. Late grade ≥3 toxicities were fibrosis 6%, dysphagia 21%, fistula 1%, and skin necrosis 1%. Intensity-modulated radiation with helical tomotherapy achieved respectable locoregional control and overall survival, with acceptable toxicity, in head and neck cancer patients. © 2018 S. Karger AG, Basel.

  11. Verification of intensity modulated profiles using a pixel segmented liquid-filled linear array.

    PubMed

    Pardo, J; Roselló, J V; Sánchez-Doblado, F; Gómez, F

    2006-06-07

    A liquid isooctane (C8H18) filled ionization chamber linear array developed for radiotherapy quality assurance, consisting of 128 pixels (each of them with a 1.7 mm pitch), has been used to acquire profiles of several intensity modulated fields. The results were compared with film measurements using the gamma test. The comparisons show a very good matching, even in high gradient dose regions. The volume-averaging effect of the pixels is negligible and the spatial resolution is enough to verify these regions. However, some mismatches between the detectors have been found in regions where low-energy scattered photons significantly contribute to the total dose. These differences are not very important (in fact, the measurements of both detectors are in agreement using the gamma test with tolerances of 3% and 3 mm in most of those regions), and may be associated with the film energy dependence. In addition, the linear array repeatability (0.27% one standard deviation) is much better than the film one ( approximately 3%). The good repeatability, small pixel size and high spatial resolution make the detector ideal for the real time profile verification of high gradient beam profiles like those present in intensity modulated radiation therapy and radiosurgery.

  12. Dosimetric comparison between intensity-modulated with coplanar field and 3D conformal radiotherapy with noncoplanar field for postocular invasion tumor.

    PubMed

    Wenyong, Tu; Lu, Liu; Jun, Zeng; Weidong, Yin; Yun, Li

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed. 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  13. Simultaneous integrated intensity-modulated radiotherapy boost for locally advanced gynecological cancer: Radiobiological and dosimetric considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, Mariana; Li, X. Allen; Ma Lijun

    2005-07-01

    Purpose: Whole-pelvis irradiation (WPI) followed by a boost to the tumor site is the standard of practice for the radiotherapeutic management of locally advanced gynecologic cancers. The boost is frequently administered by use of brachytherapy or, occasionally, external-beam radiotherapy (EBRT) when brachytherapy does not provide sufficient coverage because of the size of the tumor or the geometry of the patient. In this work, we propose using an intensity-modulated radiotherapy (IMRT) simultaneous integrated boost (SIB), which is a single-phase process, to replace the conventional two-phase process involving WPI plus a boost. Radiobiological modeling is used to design appropriate regimens for themore » IMRT SIB. To demonstrate feasibility, a dosimetric study is carried out on an example patient. Methods and Materials: The standard linear-quadratic (LQ) model is used to calculate the biologically effective dose (BED) and equivalent uniform dose (EUD). A series of regimens that are biologically equivalent to those conventional two-phase treatments is calculated for the proposed SIB. A commercial inverse planning system (Corvus) was used to generate IMRT SIB plans for a sample patient case that used the newly designed fractionations. The dose-volume histogram (DVH) and EUD of both the target and normal structures for conventional treatments and the SIB are compared. A sparing factor was introduced to characterize the sparing of normal structures. Results: Fractionation regimes that are equivalent to the conventional treatments and are suitable for the IMRT SIB are deduced. For example, a SIB plan with 25 x 3.1 Gy (77.5 Gy) to a tumor is equivalent to a conventional treatment of EBRT of 45 Gy to the whole pelvis in 25 fractions plus a high-dose rate (HDR) brachytherapy boost with 30 Gy in 5 fractions. The normal tissue BED is found to be lower for the SIB plan than for the whole-pelvis plus HDR scheme when a sparing factor for the critical structures is considered

  14. Dosimetric comparison of helical tomotherapy, intensity-modulated radiation therapy, volumetric-modulated arc therapy, and 3-dimensional conformal therapy for the treatment of T1N0 glottic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekici, Kemal, E-mail: drkemal06@hotmail.com; Pepele, Eda K.; Yaprak, Bahaddin

    2016-01-01

    Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT,more » and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D{sub max} of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.« less

  15. Feasibility study of an intensity-modulated radiation model for the study of erectile dysfunction.

    PubMed

    Koontz, Bridget F; Yan, Hui; Kimura, Masaki; Vujaskovic, Zeljko; Donatucci, Craig; Yin, Fang-Fang

    2011-02-01

    Preclinical studies of radiotherapy (RT) induced erectile dysfunction (ED) have been limited by radiation toxicity when using large fields. To develop a protocol of rat prostate irradiation using techniques mimicking the current clinical standard of intensity modulated radiotherapy (IMRT). Quality assurance (QA) testing of plan accuracy, animal health 9 weeks after RT, and intracavernosal pressure (ICP) measurement on cavernosal nerve stimulation. Computed tomography-based planning was used to develop a stereotactic radiosurgery (SRS) treatment plan for five young adult male Sprague-Dawley rats. Two treatment planning strategies were utilized to deliver 20 Gy in a single fraction: three-dimensional dynamic conformal arc and intensity-modulated arc (RapidArc). QA testing was performed for each plan type. Treatment was delivered using a NovalisTX (Varian Medical Systems) with high-definition multi-leaf collimators using on-board imaging prior to treatment. Each animal was evaluated for ED 2 months after treatment by nerve stimulation and ICP measurement. The mean prostate volume and target volume (5 mm expansion of prostate) for the five animals was 0.36 and 0.66 cm3, respectively. Both conformal and RapidArc plans provided at least 95% coverage of the target volume, with rapid dose fall-off. QA plans demonstrated strong agreement between doses of calculated and delivered plans, although the conformal arc plan was more homogenous in treatment delivery. Treatment was well tolerated by the animals with no toxicity out to 9 weeks. Compared with control animals, significant reduction in ICP/mean arterial pressure, maximum ICP, and ICP area under the curve were noted. Tightly conformal dynamic arc prostate irradiation is feasible and results in minimal toxicity and measurable changes in erectile function. © 2010 International Society for Sexual Medicine.

  16. Radiotherapy for Early Mediastinal Hodgkin Lymphoma According to the German Hodgkin Study Group (GHSG): The Roles of Intensity-Modulated Radiotherapy and Involved-Node Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeck, Julia, E-mail: Julia_Koeck@gmx.net; Abo-Madyan, Yasser; Department of Radiation Oncology, Faculty of Medicine, Cairo University, Cairo

    2012-05-01

    Purpose: Cure rates of early Hodgkin lymphoma (HL) are high, and avoidance of late complications and second malignancies have become increasingly important. This comparative treatment planning study analyzes to what extent target volume reduction to involved-node (IN) and intensity-modulated (IM) radiotherapy (RT), compared with involved-field (IF) and three-dimensional (3D) RT, can reduce doses to organs at risk (OAR). Methods and Materials: Based on 20 computed tomography (CT) datasets of patients with early unfavorable mediastinal HL, we created treatment plans for 3D-RT and IMRT for both the IF and IN according to the guidelines of the German Hodgkin Study Group (GHSG).more » As OAR, we defined heart, lung, breasts, and spinal cord. Dose-volume histograms (DVHs) were evaluated for planning target volumes (PTVs) and OAR. Results: Average IF-PTV and IN-PTV were 1705 cm{sup 3} and 1015 cm{sup 3}, respectively. Mean doses to the PTVs were almost identical for all plans. For IF-PTV/IN-PTV, conformity was better with IMRT and homogeneity was better with 3D-RT. Mean doses to the heart (17.94/9.19 Gy for 3D-RT and 13.76/7.42 Gy for IMRT) and spinal cord (23.93/13.78 Gy for 3D-RT and 19.16/11.55 Gy for IMRT) were reduced by IMRT, whereas mean doses to lung (10.62/8.57 Gy for 3D-RT and 12.77/9.64 Gy for IMRT) and breasts (left 4.37/3.42 Gy for 3D-RT and 6.04/4.59 Gy for IMRT, and right 2.30/1.63 Gy for 3D-RT and 5.37/3.53 Gy for IMRT) were increased. Volume exposed to high doses was smaller for IMRT, whereas volume exposed to low doses was smaller for 3D-RT. Pronounced benefits of IMRT were observed for patients with lymph nodes anterior to the heart. IN-RT achieved substantially better values than IF-RT for almost all OAR parameters, i.e., dose reduction of 20% to 50%, regardless of radiation technique. Conclusions: Reduction of target volume to IN most effectively improves OAR sparing, but is still considered investigational. For the time being, IMRT should be

  17. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    NASA Astrophysics Data System (ADS)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  18. Fan-beam intensity modulated proton therapy.

    PubMed

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  19. Evaluation of a mixed beam therapy for post-mastectomy breast cancer patients: bolus electron conformal therapy combined with intensity modulated photon radiotherapy and volumetric modulated photon arc therapy.

    PubMed

    Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth

    2018-05-10

    The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p < 0.001) and DHI (0.12 vs. 0.20, p < 0.001) over mixed beam therapy. For normal tissues, mixed beam therapy showed better OAR sparing and significantly reduced NTCP for cardiac mortality (0.23% vs. 0.80%, p = 0.01) and SCCP for contralateral breast (1.7% vs. 3.1% based on linear model, and 1.2% vs. 1.9% based on linear-exponential model, p < 0.001 in both cases), but showed significantly higher mean (50.8 Gy vs. 49.3 Gy, p < 0.001) and maximum skin doses (59.7 Gy vs. 53.3 Gy, p < 0.001) compared with VMAT. Patients with more tissue (minimum distance between the distal PTV surface and lung approximately > 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between

  20. Light intensity modulation in phototherapy

    NASA Astrophysics Data System (ADS)

    Lukyanovich, P. A.; Zon, B. A.; Kunin, A. A.; Pankova, S. N.

    2015-04-01

    A hypothesis that blocking ATP synthesis is one of the main causes of the stimulating effect is considered based on analysis of the primary photostimulation mechanisms. The light radiation intensity modulation is substantiated and the estimates of such modulation parameters are made. An explanation is offered to the stimulation efficiency decrease phenomenon at the increase of the radiation dose during the therapy. The results of clinical research of the medical treatment in preventive dentistry are presented depending on the spectrum and parameters of the light flux modulation.

  1. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost-IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate.

    PubMed

    Bansal, A; Kapoor, R; Singh, S K; Kumar, N; Oinam, A S; Sharma, S C

    2012-07-01

    DOSIMETERIC AND RADIOBIOLOGICAL COMPARISON OF TWO RADIATION SCHEDULES IN LOCALIZED CARCINOMA PROSTATE: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose-volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT.

  2. Analysis of factors influencing the development of xerostomia during intensity-modulated radiotherapy.

    PubMed

    Randall, Ken; Stevens, Jason; Yepes, Juan Fernando; Randall, Marcus E; Kudrimoti, Mahesh; Feddock, Jonathan; Xi, Jing; Kryscio, Richard J; Miller, Craig S

    2013-06-01

    Factors influencing xerostomia during intensity-modulated radiation therapy (IMRT) were assessed. A 6-week study of 32 head and neck cancer (HNC) patients was performed. Subjects completed the Xerostomia Inventory (XI) and provided stimulated saliva (SS) at baseline, week 2 and at end of IMRT. Influence of SS flow rate (SSFR), calcium and mucin 5b (MUC5b) concentrations and radiation dose on xerostomia was determined. HNC subjects experienced mean SSFR decline of 36% by visit 2 (N = 27; P = .012) and 57% by visit 3 (N = 20; P = .0004). Concentrations of calcium and MUC5b increased, but not significantly during IMRT (P > .05). Xerostomia correlated most with decreasing salivary flow rate as determined by Spearman correlations (P < .04) and linear mixed models (P < .0001). Although IMRT is sparing to the parotid glands, it has an early effect on SSFR and the constituents in saliva in a manner that is associated with the perception of xerostomia. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Analysis of Factors Influencing the Development of Xerostomia during Intensity-Modulated Radiotherapy

    PubMed Central

    Randall, Ken; Stevens, Jason; Yepes, Juan Fernando; Randall, Marcus E.; Kudrimoti, Mahesh; Feddock, Jonathan; Xi, Jing; Kryscio, Richard J.; Miller, Craig S.

    2013-01-01

    OBJECTIVES Factors influencing xerostomia during intensity-modulated radiation therapy (IMRT) were assessed. METHODS A 6-week study of 32 head and neck cancer (HNC) patients was performed. Subjects completed the Xerostomia Inventory (XI) and provided stimulated saliva (SS) at baseline, week two and at end of IMRT. Influence of SS flow rate (SSFR), calcium and mucin 5b (MUC5b) concentrations and radiation dose on xerostomia was determined. RESULTS HNC subjects experienced mean SSFR decline of 36% by visit two (N=27; p=0.012) and 57% by visit three (N=20; p=0.0004), Concentrations of calcium and MUC5b increased, but not significantly during IMRT (p>0.05). Xerostomia correlated most with decreasing salivary flow rate as determined by Spearman correlations (p<0.04) and linear mixed models (p<0.0001). CONCLUSIONS Although IMRT is sparing to the parotid glands, it has an early effect on SSFR and the constituents in saliva in a manner that is associated with the perception of xerostomia. PMID:23523462

  4. Intensity-modulated radiotherapy for localized nasopharyngeal amyloidosis : Case report and literature review.

    PubMed

    Luo, Ming; Peng, Gang; Shi, Liangliang; Ming, Xing; Li, Zhenyu; Fei, Shijiang; Ding, Qian; Cheng, Jing

    2016-12-01

    Primary localized amyloidosis is characterized by the deposition of amyloid proteins restricted to one organ, without systemic involvement. Primary nasopharyngeal amyloidosis is an exceedingly rare condition, for which the standard treatment remains unknown. Because of its challenging anatomical position, surgery alone hardly results in complete resection of the localized amyloidosis. Therefore, an interdisciplinary planning board to design optimal treatment is of particular importance. A 39-year-old man presented with a several-week history of nasal obstruction and epistaxis. Computed tomography (CT) and magnetic resonance imaging (MRI) revealed the presence of a retro-odontoid nonenhancing soft tissue mass. The endoscopic biopsy demonstrated that the mass was amyloid in nature. An extensive systemic workup revealed an absence of inflammatory process, systemic amyloidosis, or plasma cell dyscrasia. The patient was treated with a combination of surgery and radiotherapy, showing no evidence of recurrence or progression at his 1‑year follow-up. Primary solitary amyloidosis is a rare form of amyloidosis. To the best of our knowledge, this is the first report of a nasopharyngeal amyloidosis case treated with excision and radiation leading to complete remission. Because of the difficulty for surgeons to achieve radical resection with such lesions, radiotherapy proved to be an excellent adjuvant treatment in this case.

  5. A methodology for automatic intensity-modulated radiation treatment planning for lung cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Li, Xiaoqiang; Quan, Enzhuo M.; Pan, Xiaoning; Li, Yupeng

    2011-07-01

    In intensity-modulated radiotherapy (IMRT), the quality of the treatment plan, which is highly dependent upon the treatment planner's level of experience, greatly affects the potential benefits of the radiotherapy (RT). Furthermore, the planning process is complicated and requires a great deal of iteration, and is often the most time-consuming aspect of the RT process. In this paper, we describe a methodology to automate the IMRT planning process in lung cancer cases, the goal being to improve the quality and consistency of treatment planning. This methodology (1) automatically sets beam angles based on a beam angle automation algorithm, (2) judiciously designs the planning structures, which were shown to be effective for all the lung cancer cases we studied, and (3) automatically adjusts the objectives of the objective function based on a parameter automation algorithm. We compared treatment plans created in this system (mdaccAutoPlan) based on the overall methodology with plans from a clinical trial of IMRT for lung cancer run at our institution. The 'autoplans' were consistently better, or no worse, than the plans produced by experienced medical dosimetrists in terms of tumor coverage and normal tissue sparing. We conclude that the mdaccAutoPlan system can potentially improve the quality and consistency of treatment planning for lung cancer.

  6. Intensity-Modulated Radiation Therapy for the Treatment of Squamous Cell Anal Cancer With Para-aortic Nodal Involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges, Joseph C.; Das, Prajnan, E-mail: PrajDas@mdanderson.or; Eng, Cathy

    2009-11-01

    Purpose: To determine the rates of toxicity, locoregional control, distant control, and survival in anal cancer patients with para-aortic nodal involvement, treated with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy at a single institution. Methods and Materials: Between 2001 and 2007, 6 patients with squamous cell anal cancer and para-aortic nodal involvement were treated with IMRT and concurrent infusional 5-fluorouracil and cisplatin. The primary tumor was treated with a median dose of 57.5 Gy (range, 54-60 Gy), involved para-aortic, pelvic, and inguinal lymph nodes were treated with a median dose of 55 Gy (range, 50.5-55 Gy), and noninvolved nodal regions weremore » treated with a median dose of 45 Gy (range, 43.5-45 Gy). Results: After a median follow-up of 25 months, none of the patients had a recurrence at the primary tumor, pelvic/inguinal nodes, or para-aortic nodes, whereas 2 patients developed distant metastases to the liver. Four of the 6 patients are alive. The 3-year actuarial locoregional control, distant control, and overall survival rates were 100%, 56%, and 63%, respectively. Four of the 6 patients developed Grade 3 acute gastrointestinal toxicity during chemoradiation. Conclusions: Intensity-modulated radiotherapy and concurrent chemotherapy could potentially serve as definitive therapy in anal cancer patients with para-aortic nodal involvement. Adjuvant chemotherapy may be indicated in these patients, as demonstrated by the distant failure rates. These patients need to be followed carefully because of the potential for treatment-related toxicities.« less

  7. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Sen; Li, Guangjun; Wang, Maojie

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less

  8. Improving target coverage and organ-at-risk sparing in intensity-modulated radiotherapy for cervical oesophageal cancer using a simple optimisation method.

    PubMed

    Lu, Jia-Yang; Cheung, Michael Lok-Man; Huang, Bao-Tian; Wu, Li-Li; Xie, Wen-Jia; Chen, Zhi-Jian; Li, De-Rui; Xie, Liang-Xi

    2015-01-01

    To assess the performance of a simple optimisation method for improving target coverage and organ-at-risk (OAR) sparing in intensity-modulated radiotherapy (IMRT) for cervical oesophageal cancer. For 20 selected patients, clinically acceptable original IMRT plans (Original plans) were created, and two optimisation methods were adopted to improve the plans: 1) a base dose function (BDF)-based method, in which the treatment plans were re-optimised based on the original plans, and 2) a dose-controlling structure (DCS)-based method, in which the original plans were re-optimised by assigning additional constraints for hot and cold spots. The Original, BDF-based and DCS-based plans were compared with regard to target dose homogeneity, conformity, OAR sparing, planning time and monitor units (MUs). Dosimetric verifications were performed and delivery times were recorded for the BDF-based and DCS-based plans. The BDF-based plans provided significantly superior dose homogeneity and conformity compared with both the DCS-based and Original plans. The BDF-based method further reduced the doses delivered to the OARs by approximately 1-3%. The re-optimisation time was reduced by approximately 28%, but the MUs and delivery time were slightly increased. All verification tests were passed and no significant differences were found. The BDF-based method for the optimisation of IMRT for cervical oesophageal cancer can achieve significantly better dose distributions with better planning efficiency at the expense of slightly more MUs.

  9. Influence of Cervical Node Necrosis of Different Grades on the Prognosis of Nasopharyngeal Carcinoma Patients Treated with Intensity-Modulated Radiotherapy.

    PubMed

    Zhang, Lu-Lu; Li, Jia-Xiang; Zhou, Guan-Qun; Tang, Ling-Long; Ma, Jun; Lin, Ai-Hua; Qi, Zhen-Yu; Sun, Ying

    2017-01-01

    Background: To analyze the prognostic value of cervical node necrosis (CNN) observed on pretreatment magnetic resonance imaging (MRI) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Patients and Methods: The medical records of 1423 NPC patients with cervical node metastasis who underwent IMRT were retrospectively reviewed. Lymph nodes in the axial plane of pretreatment MRI were classified as follows: grade 0 CNN, no hypodense zones; grade 1 CNN, ≤33% areas showing hypodense zones; and grade 2, >33% areas showing hypodense zones. Results: CNN was detectable in 470/1423 (33%) patients. Of these 470 patients, 213 (15%) and 257 (18%) exhibited grade 1 and grade 2 CNN. The grade 0 and grade 1 CNN groups showed significant differences with regard to distant metastasis-free survival (DMFS), but not overall survival (OS), regional relapse-free survival (RRFS), local relapse-free survival (LRFS), and disease-free survival (DFS). Significant differences were observed among the grade 0 and grade 2 CNN groups with regard to OS, RRFS, LRFS, DMFS, and DFS. Moreover, OS, LRFS, RRFS, and DFS were significantly different between the grade 1 and grade 2 CNN groups, whereas DMFS showed no significant differences. Univariate and multivariate analyses revealed CNN on MRI as a significant negative prognostic factor for OS, LRFS, RRFS, DMFS, and DFS in NPC patients. Conclusions: NPC patients with CNN of different grades show various prognosis and failure patterns after IMRT. CNN on MRI can be adopted as a predictive factor for formulating individualized treatment plans for NPC patients.

  10. Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy.

    PubMed

    Wu, Vincent W C; Kwong, Dora L W; Sham, Jonathan S T

    2004-05-01

    Dose conformity to the planning target volume is an important criterion in radiotherapy treatment planning, for which the conformity index is a useful assessment tool. The purpose of this study is to compare the differences in CI for the treatment planning of four cancers including the nasopharynx, oesophagus, lung and prostate. Seventy patients with cancers of nasopharynx (30), oesophagus (15), lung (15) and prostate (10) were recruited. Each of these patients was planned with three sets of treatment plans using the FOCUS treatment planning system: the forward and inverse 3DCRT plans and the IMRT plan. The CI was generated for each treatment plan. The mean CI from each cancer patient group was calculated and compared with the other three cancer groups. The mean value of CI was also compared among the three planning methods. The oesophageal and lung cancers demonstrated relatively higher overall mean CI values (0.64 and 0.62, respectively), whereas that of the nasopharynx and prostate were lower (0.54 and 0.50, respectively). With regards to the planning method groups, the IMRT plans produced the highest overall mean CI (0.62), while those for the forward and inverse 3DCRT were similar (0.57 and 0.55, respectively). For the four selected cancers, oesophageal and lung cancers were easier to conform than the nasopharyngeal and prostate cancers. The IMRT plans were more effective in achieving better dose conformity than that of the 3DCRT.

  11. The challenge in treating locally recurrent T3-4 nasopharyngeal carcinoma: the survival benefit and severe late toxicities of re-irradiation with intensity-modulated radiotherapy.

    PubMed

    Tian, Yun-Ming; Huang, Wei-Zeng; Yuan, Xia; Bai, Li; Zhao, Chong; Han, Fei

    2017-06-27

    Effective treatments for patients with advanced locally recurrent nasopharyngeal carcinoma (NPC) are limited. This investigation was to determine the potential benefits from re-irradiation by intensity-modulated radiotherapy (IMRT) on survival and the effects of severe late toxicities. A retrospective study was conducted in 245 patients diagnosed with locally recurrent T3-T4 NPC who had undergone re-irradiation with IMRT. Follow-up data was colletedand factors associated with survival and severe late toxicities were analyzed. The 5-year local-regional failure-free survival, distant failure-free survival and overall survival rates were 60.9%, 78.3% and 27.5%, respectively. The presence of severe late complications, recurrent T4 disease and gross tumor volume >30 cm3 were associated with poor survival. The incidences of mucosal necrosis, temporal lobe necrosis, cranial neuropathy and trismus were 22.0%, 14.6%, 27.0% and 14.6% respectively. Re-irradiation with IMRT is an effective choice in patients with locally recurrent T3-T4 NPC. However, the survival benefits can be partly offset by severe late complications and optimum treatments in these patients remain a challenge.

  12. Pre-trial quality assurance processes for an intensity-modulated radiation therapy (IMRT) trial: PARSPORT, a UK multicentre Phase III trial comparing conventional radiotherapy and parotid-sparing IMRT for locally advanced head and neck cancer.

    PubMed

    Clark, C H; Miles, E A; Urbano, M T Guerrero; Bhide, S A; Bidmead, A M; Harrington, K J; Nutting, C M

    2009-07-01

    The purpose of this study was to compare conventional radiotherapy with parotid gland-sparing intensity-modulated radiation therapy (IMRT) using the PARSPORT trial. The validity of such a trial depends on the radiotherapy planning and delivery meeting a defined standard across all centres. At the outset, many of the centres had little or no experience of delivering IMRT; therefore, quality assurance processes were devised to ensure consistency and standardisation of all processes for comparison within the trial. The pre-trial quality assurance (QA) programme and results are described. Each centre undertook exercises in target volume definition and treatment planning, completed a resource questionnaire and produced a process document. Additionally, the QA team visited each participating centre. Each exercise had to be accepted before patients could be recruited into the trial. 10 centres successfully completed the quality assurance exercises. A range of treatment planning systems, linear accelerators and delivery methods were used for the planning exercises, and all the plans created reached the standard required for participation in this multicentre trial. All 10 participating centres achieved implementation of a comprehensive and robust IMRT programme for treatment of head and neck cancer.

  13. [Image-guided radiotherapy and partial delegation to radiotherapy technicians: Clermont-Ferrand experience].

    PubMed

    Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M

    2013-10-01

    The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. Copyright © 2013. Published by Elsevier SAS.

  14. Prophylactic lower para-aortic irradiation using intensity-modulated radiotherapy mitigates the risk of para-aortic recurrence in locally advanced cervical cancer: A 10-year institutional experience.

    PubMed

    Lee, Jie; Lin, Jhen-Bin; Chang, Chih-Long; Jan, Ya-Ting; Sun, Fang-Ju; Wu, Meng-Hao; Chen, Yu-Jen

    2017-07-01

    To evaluate the effects of prophylactic sub-renal vein radiotherapy (SRVRT) using intensity-modulated radiotherapy (IMRT) for cervical cancer. A total of 206 patients with FIGO stage IB2-IVA cervical cancer and negative para-aortic lymph nodes (PALNs) who underwent pelvic IMRT (PRT) or SRVRT between 2004 and 2013 at our institution were reviewed. SRVRT cranially extended the PRT field for PALNs up to the left renal vein level. The prescribed dose was consistent 50.4Gy in 28 fractions. Overall, 110 and 96 patients underwent PRT and SRVRT, respectively. The SRVRT group had more advanced disease based on FIGO stage and positive pelvic lymph nodes (PLNs). The median follow-up time was 60months (range, 7-143). For the total study population, the 5-year PALN recurrence-free survival (PARFS) and overall survival (OS) for PRT vs. SRVRT were 87.6% vs. 97.9% (p=0.03) and 74.5% vs. 87.8% (p=0.04), respectively. In patients with FIGO III-IVA or positive PLNs, the 5-year PARFS and OS for PRT vs. SRVRT were 80.1% vs. 96.4% (p=0.02) and 58.1% vs. 83.5% (p=0.012), respectively. However, there were no significant differences in these outcomes for patients with FIGO IB-IIB and negative PLNs. In a multivariate analysis, only SRVRT was associated with better PARFS (HR, 0.21; 95% CI, 0.06-0.78; p=0.02). The SRVRT did not significantly increase severe late toxicities. Prophylactic SRVRT using IMRT reduced PALN recurrence with tolerable toxicities, supporting the application of risk-based radiation fields for cervical cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Applying the technique of volume-modulated arc radiotherapy to upper esophageal carcinoma.

    PubMed

    Ma, Pan; Wang, Xiaozhen; Xu, Yingjie; Dai, Jianrong; Wang, Luhua

    2014-05-08

    This study aims to evaluate the possibility of using the technique of volume-modulated arc therapy (VMAT) to combine the advantages of simplified intensity-modulated radiation therapy (sIMRT) with that of regular intensity-modulated radiation therapy (IMRT) in upper esophageal cancer. Ten patients with upper esophageal carcinoma were randomly chosen in this retrospective study. sIMRT, IMRT, and VMAT plans were generated to deliver 60 Gy in 30 fractions to the planning target volume (PTV). For each patient, with the same clinical requirements (target dose prescription, and dose/dose-volume constraints to organs at risk (OARs)), three plans were designed for sIMRT (five equispaced coplanar beams), IMRT (seven equispaced coplanar beams), and VMAT (two complete arcs). Comparisons were performed for dosimetric parameters of PTV and of OARs (lungs, spinal cord PRV, heart and normal tissue (NT)). All the plans were delivered to a phantom to evaluate the treatment time. The Wilcoxon matched-pairs, signed-rank test was used for intragroup comparison. For all patients, compared to sIMRT plans, VMAT plans statistically provide: a) significant improvement in HI and CI for PTV; b) significant decrease in delivery time, lung V20, MLD, heart V30 and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in lung V5, V10, and heart MD. For all patients, compared to IMRT plans, VMAT plans statistically provide: a) significant improvement in CI for PTV; b) significant decrease in delivery time, lung V20, MLD, NT and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in HI for PTV, lung V5, V10, heart V30 and heart MD. For patients with upper esophageal carcinoma, using VMAT significantly reduces the delivery time and the dose to the lungs compared with IMRT, and consequently saves as much treatment time as sIMRT. Considering those significant advantages, compared to sIMRT and IMRT, VMAT is the first choice of

  16. Projected Improvements in Accelerated Partial Breast Irradiation Using a Novel Breast Stereotactic Radiotherapy Device: A Dosimetric Analysis.

    PubMed

    Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J

    2017-01-01

    Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.

  17. SU-F-BRB-12: A Novel Haar Wavelet Based Approach to Deliver Non-Coplanar Intensity Modulated Radiotherapy Using Sparse Orthogonal Collimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, D; Ruan, D; Low, D

    2015-06-15

    Purpose: Existing efforts to replace complex multileaf collimator (MLC) by simple jaws for intensity modulated radiation therapy (IMRT) resulted in unacceptable compromise in plan quality and delivery efficiency. We introduce a novel fluence map segmentation method based on compressed sensing for plan delivery using a simplified sparse orthogonal collimator (SOC) on the 4π non-coplanar radiotherapy platform. Methods: 4π plans with varying prescription doses were first created by automatically selecting and optimizing 20 non-coplanar beams for 2 GBM, 2 head & neck, and 2 lung patients. To create deliverable 4π plans using SOC, which are two pairs of orthogonal collimators withmore » 1 to 4 leaves in each collimator bank, a Haar Fluence Optimization (HFO) method was used to regulate the number of Haar wavelet coefficients while maximizing the dose fidelity to the ideal prescription. The plans were directly stratified utilizing the optimized Haar wavelet rectangular basis. A matching number of deliverable segments were stratified for the MLC-based plans. Results: Compared to the MLC-based 4π plans, the SOC-based 4π plans increased the average PTV dose homogeneity from 0.811 to 0.913. PTV D98 and D99 were improved by 3.53% and 5.60% of the corresponding prescription doses. The average mean and maximal OAR doses slightly increased by 0.57% and 2.57% of the prescription doses. The average number of segments ranged between 5 and 30 per beam. The collimator travel time to create the segments decreased with increasing leaf numbers in the SOC. The two and four leaf designs were 1.71 and 1.93 times more efficient, on average, than the single leaf design. Conclusion: The innovative dose domain optimization based on compressed sensing enables uncompromised 4π non-coplanar IMRT dose delivery using simple rectangular segments that are deliverable using a sparse orthogonal collimator, which only requires 8 to 16 leaves yet is unlimited in modulation resolution. This work

  18. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients.

    PubMed

    Ling, Ted C; Slater, Jerry M; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M; Patyal, Baldev; Slater, Jerry D; Yang, Gary Y

    2014-12-05

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients.

  19. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    PubMed Central

    Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y.

    2014-01-01

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients. PMID:25489937

  20. Association between intensity modulated radiotherapy and survival in patients with stage III non-small cell lung cancer treated with chemoradiotherapy.

    PubMed

    Koshy, Matthew; Malik, Renuka; Spiotto, Michael; Mahmood, Usama; Rusthoven, Chad G; Sher, David J

    2017-06-01

    To determine the effect of radiotherapy (RT) technique on treatment compliance and overall survival (OS) in patients with stage III non-small lung cancer (NSCLC) treated with definitive chemoradiotherapy (CRT). This study included patients with stage III NSCLC in the National Cancer Database treated between 2003 and 2011 with definitive CRT to 60-63 Gray (Gy). Radiation treatment interruption (RTI) was defined as a break of ≥4 days. Treatment technique was dichotomized as intensity modulated (IMRT) or non-IMRT techniques. Out of the cohort of 7492, 35% had a RTI and 10% received IMRT. With a median follow-up of surviving patients of 32 months, the median survival for those with non-IMRT vs. IMRT was 18.2 months vs. 20 months (p<0.0001). Median survival for those with and without an RTI≥4 days was 16.1 months vs. 19.8 months (p<0.0001). Use of IMRT predicted for a decreased likelihood of RTI (odds ratio, 0.84, p=0.04). On multivariable analysis for OS, IMRT had a HR of 0.89 (95% CI: 0.80-0.98, p=0.01) and RTI had a HR of 1.2 (95% confidence interval (CI): 1.14-1.27, p=0.001). IMRT was associated with small but significant survival advantage for patients with stage III NSCLC treated with CRT. A RTI led to inferior survival, and both IMRT and RTI were independently associated with OS. Additional research should investigate whether improved tolerability, reduced normal tissue exposure, or superior coverage drives the association between IMRT and improved survival. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Longitudinal density modulation and energy conversion in intense beams.

    PubMed

    Harris, J R; Neumann, J G; Tian, K; O'Shea, P G

    2007-08-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams.

  2. Intensity modulated radiotherapy (IMRT) in the treatment of children and adolescents--a single institution's experience and a review of the literature.

    PubMed

    Sterzing, Florian; Stoiber, Eva M; Nill, Simeon; Bauer, Harald; Huber, Peter; Debus, Jürgen; Münter, Marc W

    2009-09-23

    While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature. Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed. With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed. IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.

  3. A model to predict the risk of lethal nasopharyngeal necrosis after re-irradiation with intensity-modulated radiotherapy in nasopharyngeal carcinoma patients.

    PubMed

    Yu, Ya-Hui; Xia, Wei-Xiong; Shi, Jun-Li; Ma, Wen-Juan; Li, Yong; Ye, Yan-Fang; Liang, Hu; Ke, Liang-Ru; Lv, Xing; Yang, Jing; Xiang, Yan-Qun; Guo, Xiang

    2016-06-29

    For patients with nasopharyngeal carcinoma (NPC) who undergo re-irradiation with intensity-modulated radiotherapy (IMRT), lethal nasopharyngeal necrosis (LNN) is a severe late adverse event. The purpose of this study was to identify risk factors for LNN and develop a model to predict LNN after radical re-irradiation with IMRT in patients with recurrent NPC. Patients who underwent radical re-irradiation with IMRT for locally recurrent NPC between March 2001 and December 2011 and who had no evidence of distant metastasis were included in this study. Clinical characteristics, including recurrent carcinoma conditions and dosimetric features, were evaluated as candidate risk factors for LNN. Logistic regression analysis was used to identify independent risk factors and construct the predictive scoring model. Among 228 patients enrolled in this study, 204 were at risk of developing LNN based on risk analysis. Of the 204 patients treated, 31 (15.2%) developed LNN. Logistic regression analysis showed that female sex (P = 0.008), necrosis before re-irradiation (P = 0.008), accumulated total prescription dose to the gross tumor volume (GTV) ≥145.5 Gy (P = 0.043), and recurrent tumor volume ≥25.38 cm(3) (P = 0.009) were independent risk factors for LNN. A model to predict LNN was then constructed that included these four independent risk factors. A model that includes sex, necrosis before re-irradiation, accumulated total prescription dose to GTV, and recurrent tumor volume can effectively predict the risk of developing LNN in NPC patients who undergo radical re-irradiation with IMRT.

  4. High dose hypofractionated frameless volumetric modulated arc radiotherapy is a feasible method for treating canine trigeminal nerve sheath tumors.

    PubMed

    Dolera, Mario; Malfassi, Luca; Marcarini, Silvia; Mazza, Giovanni; Carrara, Nancy; Pavesi, Simone; Sala, Massimo; Finesso, Sara; Urso, Gaetano

    2018-06-08

    The aim of this prospective pilot study was to evaluate the feasibility and effectiveness of curative intent high dose hypofractionated frameless volumetric modulated arc radiotherapy for treatment of canine trigeminal peripheral nerve sheath tumors. Client-owned dogs with a presumptive imaging-based diagnosis of trigeminal peripheral nerve sheath tumor were recruited for the study during the period of February 2010 to December 2013. Seven dogs were enrolled and treated with high dose hypofractionated volumetric modulated arc radiotherapy delivered by a 6 MV linear accelerator equipped with a micro-multileaf beam collimator. The plans were computed using a Monte Carlo algorithm with a prescription dose of 37 Gy delivered in five fractions on alternate days. Overall survival was estimated using a Kaplan-Meier curve analysis. Magnetic resonance imaging (MRI) follow-up examinations revealed complete response in one dog, partial response in four dogs, and stable disease in two dogs. Median overall survival was 952 days with a 95% confidence interval of 543-1361 days. Volumetric modulated arc radiotherapy was demonstrated to be feasible and effective for trigeminal peripheral nerve sheath tumor treatment in this sample of dogs. The technique required few sedations and spared organs at risk. Even though larger studies are required, these preliminary results supported the use of high dose hypofractionated volumetric modulated arc radiotherapy as an alternative to other treatment modalities. © 2018 American College of Veterinary Radiology.

  5. Monte Carlo evaluation of Acuros XB dose calculation Algorithm for intensity modulated radiation therapy of nasopharyngeal carcinoma

    NASA Astrophysics Data System (ADS)

    Yeh, Peter C. Y.; Lee, C. C.; Chao, T. C.; Tung, C. J.

    2017-11-01

    Intensity-modulated radiation therapy is an effective treatment modality for the nasopharyngeal carcinoma. One important aspect of this cancer treatment is the need to have an accurate dose algorithm dealing with the complex air/bone/tissue interface in the head-neck region to achieve the cure without radiation-induced toxicities. The Acuros XB algorithm explicitly solves the linear Boltzmann transport equation in voxelized volumes to account for the tissue heterogeneities such as lungs, bone, air, and soft tissues in the treatment field receiving radiotherapy. With the single beam setup in phantoms, this algorithm has already been demonstrated to achieve the comparable accuracy with Monte Carlo simulations. In the present study, five nasopharyngeal carcinoma patients treated with the intensity-modulated radiation therapy were examined for their dose distributions calculated using the Acuros XB in the planning target volume and the organ-at-risk. Corresponding results of Monte Carlo simulations were computed from the electronic portal image data and the BEAMnrc/DOSXYZnrc code. Analysis of dose distributions in terms of the clinical indices indicated that the Acuros XB was in comparable accuracy with Monte Carlo simulations and better than the anisotropic analytical algorithm for dose calculations in real patients.

  6. Preliminary analysis of the sequential simultaneous integrated boost technique for intensity-modulated radiotherapy for head and neck cancers.

    PubMed

    Miyazaki, Masayoshi; Nishiyama, Kinji; Ueda, Yoshihiro; Ohira, Shingo; Tsujii, Katsutomo; Isono, Masaru; Masaoka, Akira; Teshima, Teruki

    2016-07-01

    The aim of this study was to compare three strategies for intensity-modulated radiotherapy (IMRT) for 20 head-and-neck cancer patients. For simultaneous integrated boost (SIB), doses were 66 and 54 Gy in 30 fractions for PTVboost and PTVelective, respectively. Two-phase IMRT delivered 50 Gy in 25 fractions to PTVelective in the First Plan, and 20 Gy in 10 fractions to PTVboost in the Second Plan. Sequential SIB (SEQ-SIB) delivered 55 Gy and 50 Gy in 25 fractions, respectively, to PTVboost and PTVelective using SIB in the First Plan and 11 Gy in 5 fractions to PTVboost in the Second Plan. Conformity indexes (CIs) (mean ± SD) for PTVboost and PTVelective were 1.09 ± 0.05 and 1.34 ± 0.12 for SIB, 1.39 ± 0.14 and 1.80 ± 0.28 for two-phase IMRT, and 1.14 ± 0.07 and 1.60 ± 0.18 for SEQ-SIB, respectively. CI was significantly highest for two-phase IMRT. Maximum doses (Dmax) to the spinal cord were 42.1 ± 1.5 Gy for SIB, 43.9 ± 1.0 Gy for two-phase IMRT and 40.3 ± 1.8 Gy for SEQ-SIB. Brainstem Dmax were 50.1 ± 2.2 Gy for SIB, 50.5 ± 4.6 Gy for two-phase IMRT and 47.4 ± 3.6 Gy for SEQ-SIB. Spinal cord Dmax for the three techniques was significantly different, and brainstem Dmax was significantly lower for SEQ-SIB. The compromised conformity of two-phase IMRT can result in higher doses to organs at risk (OARs). Lower OAR doses in SEQ-SIB made SEQ-SIB an alternative to SIB, which applies unconventional doses per fraction. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. [Rescue cryotherapy for prostate cancer after radiotherapy].

    PubMed

    García, Erique Lledó; Amo, Felipe Herranz; San Segundo, Carmen González; Fagundo, Eva Paños; Escudero, Roberto Molina; Alonso, Adrian Husillos; Piniés, Gabriel Ogaya; Rascón, Jose Jara; Fernández, Carlos Hernández

    2012-01-01

    Radical Radiotherapy constitutes a useful therapeutic option for localized prostate cancer. Almost one third of prostate cancer patients choose this alternative to treat the disease. Despite modifications in the technique as intensity modulation, 3D conformational radiotherapy or computer-assisted brachytherapy, a significant percentage of these patients will show an increase in PSA values after radiation. Local relapse without distant disease and PSA less than 10 ng/ml are candidates for salvage therapy. Cryotherapy has already become a curative treatment option in this group of patients. Recent technological as well as surgical advances in salvage-cryotherapy have reduced dramatically complications and progressively increase the interest on this alternative.

  8. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dosimetric comparison of standard three-dimensional conformal radiotherapy followed by intensity-modulated radiotherapy boost schedule (sequential IMRT plan) with simultaneous integrated boost–IMRT (SIB IMRT) treatment plan in patients with localized carcinoma prostate

    PubMed Central

    Bansal, A.; Kapoor, R.; Singh, S. K.; Kumar, N.; Oinam, A. S.; Sharma, S. C.

    2012-01-01

    Aims: Dosimeteric and radiobiological comparison of two radiation schedules in localized carcinoma prostate: Standard Three-Dimensional Conformal Radiotherapy (3DCRT) followed by Intensity Modulated Radiotherapy (IMRT) boost (sequential-IMRT) with Simultaneous Integrated Boost IMRT (SIB-IMRT). Material and Methods: Thirty patients were enrolled. In all, the target consisted of PTV P + SV (Prostate and seminal vesicles) and PTV LN (lymph nodes) where PTV refers to planning target volume and the critical structures included: bladder, rectum and small bowel. All patients were treated with sequential-IMRT plan, but for dosimetric comparison, SIB-IMRT plan was also created. The prescription dose to PTV P + SV was 74 Gy in both strategies but with different dose per fraction, however, the dose to PTV LN was 50 Gy delivered in 25 fractions over 5 weeks for sequential-IMRT and 54 Gy delivered in 27 fractions over 5.5 weeks for SIB-IMRT. The treatment plans were compared in terms of dose–volume histograms. Also, Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) obtained with the two plans were compared. Results: The volume of rectum receiving 70 Gy or more (V > 70 Gy) was reduced to 18.23% with SIB-IMRT from 22.81% with sequential-IMRT. SIB-IMRT reduced the mean doses to both bladder and rectum by 13% and 17%, respectively, as compared to sequential-IMRT. NTCP of 0.86 ± 0.75% and 0.01 ± 0.02% for the bladder, 5.87 ± 2.58% and 4.31 ± 2.61% for the rectum and 8.83 ± 7.08% and 8.25 ± 7.98% for the bowel was seen with sequential-IMRT and SIB-IMRT plans respectively. Conclusions: For equal PTV coverage, SIB-IMRT markedly reduced doses to critical structures, therefore should be considered as the strategy for dose escalation. SIB-IMRT achieves lesser NTCP than sequential-IMRT. PMID:23204659

  10. Outcomes of Patients With Head-and-Neck Cancer of Unknown Primary Origin Treated With Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoushtari, Asal; Saylor, Drew; Kerr, Kara-Lynne

    2011-11-01

    Purpose: To analyze survival, failure patterns, and toxicity in patients with head-and-neck carcinoma of unknown primary origin (HNCUP) treated with intensity-modulated radiotherapy (IMRT). Methods and materials: Records from 27 patients with HNCUP treated during the period 2002-2008 with IMRT were reviewed retrospectively. Nodal staging ranged from N1 to N3. The mean preoperative dose to gross or suspected disease, Waldeyer's ring, and uninvolved bilateral cervical nodes was 59.4, 53.5, and 51.0 Gy, respectively. Sixteen patients underwent neck dissection after radiation and 4 patients before radiation. Eight patients with advanced nodal disease (N2b-c, N3) or extracapsular extension received chemotherapy. Results: With amore » median follow-up of 41.9 months (range, 25.3-93.9 months) for nondeceased patients, the 5-year actuarial overall survival, disease-free survival, and nodal control rates were 70.9%, 85.2%, and 88.5%, respectively. Actuarial disease-free survival rates for N1, N2, and N3 disease were 100%, 94.1%, and 50.0%, respectively, at 5 years. When stratified by nonadvanced (N1, N2a nodal disease without extracapsular spread) vs. advanced nodal disease (N2b, N2c, N3), the 5-year actuarial disease-free survival rate for the nonadvanced nodal disease group was 100%, whereas for the advanced nodal disease group it was significantly lower at 66.7% (p = 0.017). Three nodal recurrences were observed: in 1 patient with bulky N2b disease and 2 in patients with N3 disease. No nodal failures occurred in patients with N1 or N2a disease who received only radiation and surgery. Conclusion: Definitive IMRT to 50-56 Gy followed by neck dissection results in excellent nodal control and overall and disease-free survival, with acceptable toxicity for patients with T0N1 or nonbulky T0N2a disease without extracapsular spread. Patients with extracapsular spread, advanced N2 disease, or N3 disease may benefit from concurrent chemotherapy, targeted therapeutic agents, or

  11. Conformal Radiotherapy in the Treatment of Advanced Juvenile Nasopharyngeal Angiofibroma With Intracranial Extension: An Institutional Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Santam, E-mail: drsantam@gmail.com; Ghoshal, Sushmita; Patil, Vijay Maruti

    2011-08-01

    Purpose: To describe the results of conformal radiotherapy in advanced juvenile nasopharyngeal angiofibroma in a tertiary care institution. Methods and Materials: Retrospective chart review was conducted for 8 patients treated with conformal radiotherapy between 2006 and 2009. The median follow-up was 17 months. All patients had Stage IIIB disease with intracranial extension. Radiotherapy was considered as treatment because patients were deemed inoperable owing to extensive intracranial/intraorbital extension or proximity to optic nerve. All but 1 patient were treated with intensity-modulated radiotherapy using seven coplanar fields. Median (range) dose prescribed was 39.6 (30-46) Gy. Actuarial analysis of local control and descriptivemore » analysis of toxicity profile was conducted. Results: Despite the large and complex target volume (median planning target volume, 292 cm{sup 3}), intensity-modulated radiotherapy achieved conformal dose distributions (median van't Reit index, 0.66). Significant sparing of the surrounding organs at risk was obtained. No significant Grade 3/4 toxicities were experienced during or after treatment. Actual local control at 2 years was 87.5%. One patient died 1 month after radiotherapy secondary to massive epistaxis. The remaining 7 patients had progressive resolution of disease and were symptom-free at last follow-up. Persistent rhinitis was the only significant toxicity, seen in 1 patient. Conclusions: Conformal radiotherapy results in good local control with minimal acute and late side effects in juvenile nasopharyngeal angiofibromas, even in the presence of advanced disease.« less

  12. Optical levitation measurements with intensity-modulated light beams.

    PubMed

    Cai, W; Li, F; Sun, S; Wang, Y

    1997-10-20

    Illumination of an optically levitated particle with an intensity-modulated transverse beam induces a transverse vibration of a particle in an optical trap. Based on this, the trapping force of a trap can be measured. Using an intensity-modulated longitudinal levitating beam causes a particle to move vertically, allowing for the determination of some aerodynamic parameters of a particle in air. The principles and the experimental phenomena are described and the initial results are given.

  13. Intensity-Modulated Radiotherapy of Head and Neck Cancer Aiming to Reduce Dysphagia: Early Dose-Effect Relationships for the Swallowing Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Felix Y.; Kim, Hyungjin M.; Lyden, Teresa H.

    2007-08-01

    Purpose: To present initial results of a clinical trial of intensity-modulated radiotherapy (IMRT) aiming to spare the swallowing structures whose dysfunction after chemoradiation is a likely cause of dysphagia and aspiration, without compromising target doses. Methods and Materials: This was a prospective, longitudinal study of 36 patients with Stage III-IV oropharyngeal (31) or nasopharyngeal (5) cancer. Definitive chemo-IMRT spared salivary glands and swallowing structures: pharyngeal constrictors (PC), glottic and supraglottic larynx (GSL), and esophagus. Lateral but not medial retropharyngeal nodes were considered at risk. Dysphagia endpoints included objective swallowing dysfunction (videofluoroscopy), and both patient-reported and observer-rated scores. Correlations between dosesmore » and changes in these endpoints from pre-therapy to 3 months after therapy were assessed. Results: Significant correlations were observed between videofluoroscopy-based aspirations and the mean doses to the PC and GSL, as well as the partial volumes of these structures receiving 50-65 Gy; the highest correlations were associated with doses to the superior PC (p = 0.005). All patients with aspirations received mean PC doses >60 Gy or PC V{sub 65} >50%, and GSL V{sub 50} >50%. Reduced laryngeal elevation and epiglottic inversion were correlated with mean PC and GSL doses (p < 0.01). All 3 patients with strictures had PC V{sub 70} >50%. Worsening patient-reported liquid swallowing was correlated with mean PC (p = 0.05) and esophageal (p 0.02) doses. Only mean PC doses were correlated with worsening patient-reported solid swallowing (p = 0.04) and observer-rated swallowing scores (p = 0.04). Conclusions: These dose-volume-effect relationships provide initial IMRT optimization goals and motivate further efforts to reduce swallowing structures doses to reduce dysphagia and aspiration.« less

  14. Investigation of the feasibility of elective irradiation to neck level Ib using intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma: a retrospective analysis.

    PubMed

    Zhang, Fan; Cheng, Yi-Kan; Li, Wen-Fei; Guo, Rui; Chen, Lei; Sun, Ying; Mao, Yan-Ping; Zhou, Guan-Qun; Liu, Xu; Liu, Li-Zhi; Lin, Ai-Hua; Tang, Ling-Long; Ma, Jun

    2015-10-15

    To assess the feasibility of elective neck irradiation to level Ib in nasopharyngeal carcinoma (NPC) using intensity-modulated radiation therapy (IMRT). We retrospectively analyzed 1438 patients with newly-diagnosed, non-metastatic and biopsy-proven NPC treated with IMRT. Greatest dimension of level IIa LNs (DLN-IIa) ≥ 20 mm and/or level IIa LNs with extracapsular spread (ES), oropharynx involvement and positive bilateral cervical lymph nodes (CLNs) were independently significantly associated with metastasis to level Ib LN at diagnosis. No recurrence at level Ib was observed in the 904 patients without these characteristics (median follow-up, 38.7 months; range, 1.3-57.8 months), these patients were classified as low risk. Level Ib irradiation was not an independent risk factor for locoregional failure-free survival, distant failure-free survival, failure-free survival or overall survival in low risk patients. The frequency of grade ≥ 2 subjective xerostomia at 12 months after radiotherapy was not significantly different between low risk patients who received level Ib-sparing, unilateral level Ib-covering or bilateral level Ib-covering IMRT. Level Ib-sparing IMRT should be safe and feasible for patients without a DLN-IIa ≥ 20 mm and/or level IIa LNs with ES, positive bilateral CLNs or oropharynx involvement at diagnosis. Further investigations based on specific criteria for dose constraints for the submandibular glands are warranted to confirm the benefit of elective level Ib irradiation.

  15. Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery

    PubMed Central

    Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.

    2015-01-01

    The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI

  16. Radiotherapy of rectal cancer in elderly patients: Real-world data assessment in a decade.

    PubMed

    Diao, Peng; Langrand-Escure, Julien; Garcia, Max-Adrien; Espenel, Sophie; Rehailia-Blanchard, Amel; de Lavigerie, Blandine; Vial, Nicolas; de Laroche, Guy; Vallard, Alexis; Magné, Nicolas

    2018-06-01

    There is paucity of data on the efficacy and toxicity of radiotherapy in rectal cancer (RC) elderly patients. The objective was to identify management strategies and resulting outcomes in RC patients ≥70 years undergoing radiotherapy. A retrospective study included consecutive RC patients ≥70 years undergoing rectal radiotherapy. From 2004-2015, 340 RC patients underwent pre-operative (n = 238; 70%), post-operative (n = 41, 12%), or exclusive (n = 61, 18%) radiotherapy, with a median age of 78.5 years old (range: 70-96). Radiotherapy protocols were tailored, with 54 different radiotherapy programs (alteration of the total dose, and/or fractionation, and/or volume). Median follow-up was 27.1 months. Acute and late grade 3-4 radio-induced toxicities were reported in 3.5% and 0.9% of patients. Metastatic setting (OR = 6.60, CI95% 1.47-46.03, p = 0.02), exclusive radiotherapy (OR = 5.08, CI95% 1.48-18.21, p = 0.009), and intensity-modulated radiotherapy (OR = 6.42, CI95% 1.31-24.73, p = 0.01) were associated with grade ≥3 acute toxicities in univariate analysis. Exclusive radiotherapy (OR = 9.79, CI95% 2.49-43.18, p = 0.001) and intensity-modulated radiotherapy (OR = 12.62, CI95% 2.05-71.26, p = 0.003) were independent predictive factors of grade ≥3 acute toxicities in multivariate analysis. A complete pathological response was achieved in 12 out of 221 pre-operative patients (5.4%). Age, tumor stage, and surgery were independent predictive factors of survival in multivariate analysis. At end of follow-up, 7.1% of patients experienced local relapse. Radiotherapy for RC in elderly patients appeared safe and manageable, perhaps due to the tailoring of radiotherapy protocols. Tailored management resulted in acceptable rate of local tumor control. Copyright © 2018 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  17. Comparative analysis of SmartArc‐based dual arc volumetric‐modulated arc radiotherapy (VMAT) versus intensity‐modulated radiotherapy (IMRT) for nasopharyngeal carcinoma

    PubMed Central

    Chao, Pei‐Ju; Ting, Hui‐Min; Lo, Su‐Hua; Wang, Yu‐Wen; Tuan, Chiu‐Ching; Fang, Fu‐Min

    2011-01-01

    The purpose of this study was to evaluate and quantify the planning performance of SmartArc‐based volumetric‐modulated arc radiotherapy (VMAT) versus fixed‐beam intensity‐modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) using a sequential mode treatment plan. The plan quality and performance of dual arc‐VMAT (DA‐VMAT) using the Pinnacle3 Smart‐Arc system (clinical version 9.0; Philips, Fitchburg, WI, USA) were evaluated and compared with those of seven‐field (7F)‐IMRT in 18 consecutive NPC patients. Analysis parameters included the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), maximum and mean dose, normal tissue complication probability (NTCP) for the specified organs at risk (OARs), and comprehensive quality index (CQI) for an overall evaluation in the 11 OARs. Treatment delivery time, monitor units per fraction (MU/fr), and gamma (Γ3mm,3%) evaluations were also analyzed. DA‐VMAT achieved similar target coverage and slightly better homogeneity than conventional 7F‐IMRT with a similar CI and HI. NTCP values were only significantly lower in the left parotid gland (for xerostomia) for DA‐VMAT plans. The mean value of CQI at 0.98±0.02 indicated a 2% benefit in sparing OARs by DA‐VMAT. The MU/fr used and average delivery times appeared to show improved efficiencies in DA‐VMAT. Each technique demonstrated high accuracy in dose delivery in terms of a high‐quality assurance (QA) passing rate (>98%) of the (Γ3mm,3%) criterion. The major difference between DA‐VMAT and 7F‐IMRT using a sequential mode for treating NPC cases appears to be improved efficiency, resulting in a faster delivery time and the use of fewer MU/fr. PACS number: 87.53.Tf, 87.55.x, 87.55.D, 87.55.dk PMID:22089015

  18. Incidence and dosimetric parameters for brainstem necrosis following intensity modulated radiation therapy in nasopharyngeal carcinoma.

    PubMed

    Li, Yang-Chan; Chen, Fo-Ping; Zhou, Guan-Qun; Zhu, Jin-Han; Hu, Jiang; Kang, De-Hua; Wu, Chen-Fei; Lin, Li; Wang, Xiao-Ju; Ma, Jun; Sun, Ying

    2017-10-01

    To clarify the incidence of brainstem toxicity and perform a dose-volume analysis for the brainstem after long-term follow-up of a large cohort of nasopharyngeal carcinoma (NPC) patients who underwent intensity-modulated radiation therapy (IMRT). All patients with NPC treated with IMRT at Sun Yat-sen University Cancer Center between April 2009 and March 2012 were retrospectively reviewed. A total of 1544 patients with follow-up >12months and detailed treatment plan data were included. Radiotherapy was administered using the simultaneous integrated boost technique in 2.0-2.48Gy per fractions/28-33 fractions. Brainstem necrosis was defined as lesions with high signal intensity on T2-weighted images and low signal intensity on T1-weighted images, with or without enhancement after administration of contrast in follow-up MRI. After median follow-up of 79.7months (range, 12.2-85.6months), 2/1544 (0.13%) patients developed brainstem necrosis after intervals of 12.3 and 18.5months. Actuarial incidence of brainstem necrosis was 0.07%, 0.13%, 0.13% and 0.13% after 1, 2, 3 and 5years, respectively. Overall, 384 (24.9%), 153 (9.9%), 67 (4.3%), 39 (2.5%), 78 (5.1%), and 114 (7.4%) patients had excessive doses of D max ≥64Gy, D1cc>59Gy, D2cc>59Gy, aV50>5.9cc, aV55>2.7cc and aV60>0.9cc respectively, of whom only two developed brainstem necrosis. Brainstem necrosis is rare in NPC. The definitive criteria based on conventional radiotherapy cannot accurately predict the occurrence of brainstem necrosis after IMRT, thus more flexible definitive criteria with strict restrictions need to be defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Description of latest generation equipment in external radiotherapy].

    PubMed

    Pellejero, S; Lozares, S; Mañeru, F

    2009-01-01

    Both the planning systems and the form of administering radiotherapy have changed radically since the introduction of 3D planning. At present treatment planning based on computerised axial tomography (CAT) images is standard practice in radiotherapy services. In recent years lineal accelerators for medical use have incorporated technology capable of administering intensity modulated radiation beams (IMRT). With this mode distributions of conformed doses are generated that adjust to the three dimensional form of the white volume, providing appropriate coverage and a lower dose to nearby risk organs. The use of IMRT is rapidly spreading amongst radiotherapy centres throughout the world. This growing use of IMRT has focused attention on the need for greater control of the geometric uncertainties in positioning the patient and control of internal movements. To this end, both flat and volumetric image systems have been incorporated into the treatment equipment, making image-guided radiotherapy (IGRT) possible. This article offers a brief description of the latest advances included in the planning and administration of radiotherapy treatment.

  20. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy.

    PubMed

    Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona

    2015-12-01

    The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Twenty SBRT patients, ten lung cases and ten liver cases, were retrospectively selected for this study. Treatment plans were optimized on average intensity projection (AIP) CTs using 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT). Afterwards, the plans were copied to the planning CTs (PCT), maximum intensity projection (MIP) and mid-ventilation (MidV) CT datasets and dose was recalculated keeping all beam parameters and monitor units unchanged. Ipsilateral lung and liver volumes and dosimetric parameters for PTV (Dmean, D2, D98, D95), ipsilateral lung and liver (Dmean, V30, V20, V10) were determined and statistically analysed using Wilcoxon test. Significant but small mean differences were found for PTV dose between the CTs (lung SBRT: ≤2.5 %; liver SBRT: ≤1.6 %). MIPs achieved the smallest lung and the largest liver volumes. OAR mean doses in MIP plans were distinctly smaller than in the other CT datasets. Furthermore, overlapping of tumors with the diaphragm results in underestimated ipsilateral lung dose in MIP plans. Best agreement was found between AIP and MidV (lung SBRT). Overall, differences in liver SBRT were smaller than in lung SBRT and VMAT plans achieved slightly smaller differences than 3D-CRT plans. Only small differences were found for PTV parameters between the four CT datasets. Larger differences occurred for the doses to organs at risk (ipsilateral lung, liver) especially for MIP plans. No relevant differences were observed between 3D-CRT or VMAT plans. MIP CTs are not appropriate for OAR dose

  1. A quantitative assessment of volumetric and anatomic changes of the parotid gland during intensity-modulated radiotherapy for head and neck cancer using serial computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajani, Abdallah A.; Qureshi, Muhammad M.; Kovalchuk, Nataliya

    To evaluate the change in volume and movement of the parotid gland measured by serial contrast-enhanced computed tomography scans in patients with head and neck cancer treated with parotid-sparing intensity-modulated radiotherapy (IMRT). A prospective study was performed on 13 patients with head and neck cancer undergoing dose-painted IMRT to 69.96 Gy in 33 fractions. Serial computed tomography scans were performed at baseline, weeks 2, 4, and 6 of radiotherapy (RT), and at 6 weeks post-RT. The parotid volume was contoured at each scan, and the movement of the medial and lateral borders was measured. The patient's body weight was recordedmore » at each corresponding week during RT. Regression analyses were performed to ascertain the rate of change during treatment as a percent change per fraction in parotid volume and distance relative to baseline. The mean parotid volume decreased by 37.3% from baseline to week 6 of RT. The overall rate of change in parotid volume during RT was−1.30% per fraction (−1.67% and−0.91% per fraction in≥31 Gy and<31 Gy mean planned parotid dose groups, respectively, p = 0.0004). The movement of parotid borders was greater in the≥31 Gy mean parotid dose group compared with the<31 Gy group (0.22% per fraction and 0.14% per fraction for the lateral border and 0.19% per fraction and 0.06% per fraction for the medial border, respectively). The median change in body weight was−7.4% (range, 0.75% to−17.5%) during RT. A positive correlation was noted between change in body weight and parotid volume during the course of RT (Spearman correlation coefficient, r = 0.66, p<0.01). Head and neck IMRT results in a volume loss of the parotid gland, which is related to the planned parotid dose, and the patient's weight loss during RT.« less

  2. Intensity modulation of HF heater-induced plasma lines

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Lee, M. C.

    1990-01-01

    The Arecibo HF heater is normally composed of two separate sets of antenna array, transmitting waves vertically at the same frequency and polarization. However, when these two sets of antenna array radiate at slightly different frequencies, the intensities of HF heater-induced plasma lines (HFPLs) can be drastically modulated. In recent Duncan et al.'s (1989) experiments the 100 percent intensity modulation of HFPLs was seen to persist even when the secondary set of antenna array radiated at a few percent of the power transmitted by the primary set of antenna array. An explanation is offered, and it is shown that there exists a minimum power, Pmin, and if the secondary set of antenna array radiates at a power lower than Pmin, the 100-percent intensity modulation of HFPLs will not be observed. The functional dependence of Pmin on the difference frequency of the two sets of antenna array is also predicted for future experiments to corroborate.

  3. Dosimetric comparison of moderate deep inspiration breath-hold and free-breathing intensity-modulated radiotherapy for left-sided breast cancer.

    PubMed

    Chi, F; Wu, S; Zhou, J; Li, F; Sun, J; Lin, Q; Lin, H; Guan, X; He, Z

    2015-05-01

    This study determined the dosimetric comparison of moderate deep inspiration breath-hold using active breathing control and free-breathing intensity-modulated radiotherapy (IMRT) after breast-conserving surgery for left-sided breast cancer. Thirty-one patients were enrolled. One free breathe and two moderate deep inspiration breath-hold images were obtained. A field-in-field-IMRT free-breathing plan and two field-in-field-IMRT moderate deep inspiration breath-holding plans were compared in the dosimetry to target volume coverage of the glandular breast tissue and organs at risks for each patient. The breath-holding time under moderate deep inspiration extended significantly after breathing training (P<0.05). There was no significant difference between the free-breathing and moderate deep inspiration breath-holding in the target volume coverage. The volume of the ipsilateral lung in the free-breathing technique were significantly smaller than the moderate deep inspiration breath-holding techniques (P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. There were no significant differences in target volume coverage between the three plans for the field-in-field-IMRT (all P>0.05). The dose to ipsilateral lung, coronary artery and heart in the field-in-field-IMRT were significantly lower for the free-breathing plan than for the two moderate deep inspiration breath-holding plans (all P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. The whole-breast field-in-field-IMRT under moderate deep inspiration breath-hold with active breathing control after breast-conserving surgery in left-sided breast cancer can reduce the irradiation volume and dose to organs at risks. There are no significant differences between various moderate deep inspiration breath-holding states in the dosimetry of irradiation to the field-in-field-IMRT target volume

  4. Comparison of chronic toxicities between brachytherapy-based accelerated partial breast irradiation and whole breast irradiation using intensity modulated radiotherapy.

    PubMed

    Wobb, Jessica L; Shah, Chirag; Jawad, Maha S; Wallace, Michelle; Dilworth, Joshua T; Grills, Inga S; Ye, Hong; Chen, Peter Y

    2015-12-01

    Brachytherapy-based APBI (bAPBI) shortens treatment duration and limits dose to normal tissue. While studies have demonstrated similar local control when comparing bAPBI and whole breast irradiation using intensity modulated radiotherapy (WBI-IMRT), comparison of late side effects is limited. Here, we report chronic toxicity profiles associated with these two treatment modalities. 1034 patients with early stage breast cancer were treated at a single institution; 489 received standard-fractionation WBI-IMRT between 2000 and 2013 and 545 received bAPBI (interstitial 40%, applicator-based 60%) between 1993 and 2013. Chronic toxicity was evaluated ≥6 months utilizing CTCAE version 3.0; cosmesis was evaluated using the Harvard scale. Median follow-up was 4.6 years (range 0.1-13.4) for WBI-IMRT versus 6.7 years (range 0.1-20.1) for bAPBI (p < 0.001). Compared to WBI-IMRT, bAPBI was associated with higher rates of ≥grade 2 seroma formation (14.4% vs 2.9%, p < 0.001), telangiectasia (12.3% vs 2.1%, p = 0.002) and symptomatic fat necrosis (10.2% vs 3.6%, p < 0.001). Lower rates of hyperpigmentation were observed (5.8% vs 14.5%; p = 0.001). Infection rates were similar (3.3% vs 1.3%, p = 0.07). There was no difference between rates of fair (6.1% vs. 4.1%, p = 0.30) or poor (0.2% vs. 0.5%, p = NS) cosmesis. Mastectomy rates for local recurrence (3.1% for WBI-IMRT and 1.2% for bAPBI, p = 0.06), or for other reasons (0.8% and 0.6%, p = 0.60) were similar between groups. With 5-year follow-up, WBI-IMRT and bAPBI are associated with similar, acceptable rates of toxicity. These data further support the utilization of bAPBI as a modality to deliver adjuvant radiation in a safe and efficacious manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Multivariate analysis of factors predicting prostate dose in intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, Tsuneyuki; Nakamura, Mitsuhiro, E-mail: m_nkmr@kuhp.kyoto-u.ac.jp; Hirose, Yoshinori

    We conducted a multivariate analysis to determine relationships between prostate radiation dose and the state of surrounding organs, including organ volumes and the internal angle of the levator ani muscle (LAM), based on cone-beam computed tomography (CBCT) images after bone matching. We analyzed 270 CBCT data sets from 30 consecutive patients receiving intensity-modulated radiation therapy for prostate cancer. With patients in the supine position on a couch with the HipFix system, data for center of mass (COM) displacement of the prostate and the state of individual organs were acquired and compared between planning CT and CBCT scans. Dose distributions weremore » then recalculated based on CBCT images. The relative effects of factors on the variance in COM, dose covering 95% of the prostate volume (D{sub 95%}), and percentage of prostate volume covered by the 100% isodose line (V{sub 100%}) were evaluated by a backward stepwise multiple regression analysis. COM displacement in the anterior-posterior direction (COM{sub AP}) correlated significantly with the rectum volume (δVr) and the internal LAM angle (δθ; R = 0.63). Weak correlations were seen for COM in the left-right (R = 0.18) and superior-inferior directions (R = 0.31). Strong correlations between COM{sub AP} and prostate D{sub 95%} and V{sub 100%} were observed (R ≥ 0.69). Additionally, the change ratios in δVr and δθ remained as predictors of prostate D{sub 95%} and V{sub 100%}. This study shows statistically that maintaining the same rectum volume and LAM state for both the planning CT simulation and treatment is important to ensure the correct prostate dose in the supine position with bone matching.« less

  6. Process-based quality management for clinical implementation of adaptive radiotherapy.

    PubMed

    Noel, Camille E; Santanam, Lakshmi; Parikh, Parag J; Mutic, Sasa

    2014-08-01

    Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be

  7. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forde, Elizabeth, E-mail: eforde@tcd.ie; Kneebone, Andrew; Northern Clinical School, University of Sydney, New South Wales

    2013-10-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for meanmore » dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.« less

  8. An elective radiation dose of 46 Gy is feasible in nasopharyngeal carcinoma treated by intensity-modulated radiotherapy

    PubMed Central

    Hung, Tsung-Min; Fan, Kang-Hsing; Chen, Eric Yen-Chao; Lin, Chien-Yu; Kang, Chung-Jan; Huang, Shiang-Fu; Liao, Chun-Ta; Ng, Shu-Hang; Wang, Hung-Ming; Chang, Joseph Tung-Chieh

    2017-01-01

    Abstract The purpose of this study is to compare the treatment outcome of different radiation doses of elective neck irradiation (ENI) in nasopharyngeal carcinoma (NPC) patients treated with intensity-modulated radiotherapy (IMRT). In total, 504 patients with nondisseminated NPC who underwent magnetic resonance imaging before radical IMRT between 2000 and 2008 were retrospectively reviewed. The patients were classified into 2 groups based on the ENI dose: low ENI when the ENI dose was 46 Gy (n = 446) and high ENI when the ENI doses were 50 to 60 Gy (n = 58). All the patients in both the groups received a median dose of 72 Gy to the gross tumor and involved nodes. The fraction size was 2 Gy per fraction. Matching was performed between low ENI and high ENI in a 2:1 ratio, and the matching criteria were N-stage, T-stage, treatment modality, pathology classification, sex, and age. The median follow-up for all patients was 63.5 months. In all patients, the 5-year progression-free survival (PFS), local control (LC), regional control (RC), distant metastasis-free survival (DMFS), overall survival (OS), and cancer-specific survival (CSS) for low ENI and high ENI patients were 69.0% and 63.2% (P = 0.331), 89.0% and 83.9% (P = 0.235), 90.1% and 85.2% (P = 0.246), 86.8% and 76.6% (P = 0.056), 77.5% and 80.8% (P = 0.926), and 84.4% and 82.5% (P = 0.237), respectively. In the matched-pair analysis, the 5-year PFS, LC, RC, DMFS, OS, and CSS for matched low ENI and high ENI patients were 74.1% and 63.2% (P = 0.134), 92.0% and 83.9% (P = 0.152), 90.1% and 85.2% (P = 0.356), 86.2% and 76.6% (P = 0.125), 87.0% and 80.8% (P = 0.102), and 88.6% and 82.5% (P = 0.080), respectively. In the multivariable analysis for all patients, the ENI group was not a significant factor for PFS, LC, RC, DMFS, OS, and CSS. A low ENI dose of 46 Gy in 23 fractions is feasible in NPC patients treated with IMRT, and this concept should be validated in

  9. Scintigraphic assessment of salivary function after intensity-modulated radiotherapy for head and neck cancer: correlations with parotid dose and quality of life.

    PubMed

    Chen, Wen-Cheng; Lai, Chia-Hsuan; Lee, Tsair-Fwu; Hung, Chao-Hsiung; Liu, Kuo-Chi; Tsai, Ming-Fong; Wang, Wen-Hung; Chen, Hungcheng; Fang, Fu-Ming; Chen, Miao-Fen

    2013-01-01

    We investigated salivary function using quantitative scintigraphy and sought to identify functional correlations between parotid dose and quality of life (QoL) for head and neck cancer (HNC) patients receiving intensity-modulated radiotherapy (IMRT). Between August, 2007 and June, 2008, 31 patients treated IMRT for HNC were enrolled in this prospective study. Salivary excretion function (SEF) was previously measured by salivary scintigraphy at annual intervals for 2 years after IMRT. A dose-volume histogram of each parotid gland was calculated, and the normal tissue complication probability (NTCP) was used to determine the tolerance dose. QoL was longitudinally assessed by the EORTC QLQ-C30 and H&N35 questionnaires prior to RT, and at one, three, 12 and 24 months after RT. A significant correlation was found between the reduction of SEF and the mean parotid dose measured at 1 year (correlation coefficient, R(2)=0.651) and 2 years (R(2)=0.310) after IMRT (p<0.001). The TD(50) of the parotid gland at 1 year after IMRT is 43.6 Gy, comparable to results from western countries. We further found that contralateral parotid and submandibular gland function preservation was correlated with reduced sticky saliva and a better QoL compared to the functional preservation of both parotid glands, as determined by the EORTC QLQ-H&N35 questionnaire. A significant correlation was found between the reduction of SEF and the mean parotid dose. Preservation of contralateral parotid and submandibular gland function predicts a better QoL compared to preservation of the function of both parotid glands. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Intensity-modulated salvage radiotherapy with simultaneous integrated boost for local recurrence of prostate carcinoma: a pilot study on the place of PET-choline for guiding target volume delineation.

    PubMed

    Wahart, Aurélien; Guy, Jean-Baptiste; Vallard, Alexis; Geissler, Benjamin; Ben Mrad, Majed; Falk, Alexander T; Prevot, Nathalie; de Laroche, Guy; Rancoule, Chloé; Chargari, Cyrus; Magné, Nicolas

    2016-01-01

    The aim of this study was to report the first cases of salvage radiotherapy (RT) using the intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost (SIB) targeted on choline positron emission tomography (PET) uptake in a local recurrent prostate cancer, after a radical prostatectomy. Four patients received salvage irradiation for biochemical relapse that occurred after the initial radical prostatectomy. The relapse occurred from 10 months to 6 years with PSA levels ranging from 2.35 to 4.86 ng ml(-1). For each patient, an (18)F-choline PET-CT showed a focal choline uptake in prostatic fossa, with standardized uptake value calculated on the basis of predicted lean body mass (SUL) max of 3.3-6.8. No involved lymph node or distant metastases were diagnosed. IMRT doses were of 62.7 Gy (1.9 Gy/fraction, 33 fractions), with a SIB of 69.3 Gy (2.1 Gy/fraction, 33 fractions) to a PET-guided target volume. Acute toxicities were limited. We observed no gastrointestinal toxicity ≥grade 2 and only one grade 2 genitourinary toxicity. At 1-month follow-up evaluation, no complication and a decrease in PSA level (6.8-43.8% of the pre-therapeutic level) were reported. After 4 months, a decrease in PSA level was obtained for all the patients, ranging from 30% to 70%. At a median follow-up of 15 months, PSA level was controlled for all the patients, but one of them experienced a distant lymph node recurrence. Salvage irradiation to the prostate bed with SIB guided by PET-CT is feasible, with biological efficacy and no major acute toxicity. IMRT with PET-oriented SIB for salvage treatment of prostate cancer is possible, without major acute toxicity.

  11. Influence of CT contrast agent on dose calculation of intensity modulated radiation therapy plan for nasopharyngeal carcinoma.

    PubMed

    Lee, F K-H; Chan, C C-L; Law, C-K

    2009-02-01

    Contrast enhanced computed tomography (CECT) has been used for delineation of treatment target in radiotherapy. The different Hounsfield unit due to the injected contrast agent may affect radiation dose calculation. We investigated this effect on intensity modulated radiotherapy (IMRT) of nasopharyngeal carcinoma (NPC). Dose distributions of 15 IMRT plans were recalculated on CECT. Dose statistics for organs at risk (OAR) and treatment targets were recorded for the plain CT-calculated and CECT-calculated plans. Statistical significance of the differences was evaluated. Correlations were also tested, among magnitude of calculated dose difference, tumor size and level of enhancement contrast. Differences in nodal mean/median dose were statistically significant, but small (approximately 0.15 Gy for a 66 Gy prescription). In the vicinity of the carotid arteries, the difference in calculated dose was also statistically significant, but only with a mean of approximately 0.2 Gy. We did not observe any significant correlation between the difference in the calculated dose and the tumor size or level of enhancement. The results implied that the calculated dose difference was clinically insignificant and may be acceptable for IMRT planning.

  12. Anal Cancer: An Examination of Radiotherapy Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glynne-Jones, Rob; Lim, Faye

    2011-04-01

    The Radiation Therapy Oncology Group 9811, ACCORD-03, and ACT II Phase III trials in anal cancer showed no benefit for cisplatin-based induction and maintenance chemotherapy, or radiation dose-escalation >59 Gy. This review examines the efficacy and toxicity of chemoradiation (CRT) in anal cancer, and discusses potential alternative radiotherapy strategies. The evidence for the review was compiled from randomized and nonrandomized trials of radiation therapy and CRT. A total of 103 retrospective/observational studies, 4 Phase I/II studies, 16 Phase II prospective studies, 2 randomized Phase II studies, and 6 Phase III trials of radiotherapy or chemoradiation were identified. There are nomore » meta-analyses based on individual patient data. A 'one-size-fits-all' approach for all stages of anal cancer is inappropriate. Early T1 tumors are probably currently overtreated, whereas T3/T4 lesions might merit escalation of treatment. Intensity-modulated radiotherapy or the integration of biological therapy may play a role in future.« less

  13. Critical Structure Sparing in Stereotactic Ablative Radiotherapy for Central Lung Lesions: Helical Tomotherapy vs. Volumetric Modulated Arc Therapy

    PubMed Central

    Chi, Alexander; Ma, Pan; Fu, Guishan; Hobbs, Gerry; Welsh, James S.; Nguyen, Nam P.; Jang, Si Young; Dai, Jinrong; Jin, Jing; Komaki, Ritsuko

    2013-01-01

    Background Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. Methods 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated. Results HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. Conclusion HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing. PMID:23577071

  14. Peripheral dose measurements with diode and thermoluminescence dosimeters for intensity modulated radiotherapy delivered with conventional and un-conventional linear accelerator

    PubMed Central

    Kinhikar, Rajesh; Gamre, Poonam; Tambe, Chandrashekhar; Kadam, Sudarshan; Biju, George; Suryaprakash; Magai, C. S.; Dhote, Dipak; Shrivastava, Shyam; Deshpande, Deepak

    2013-01-01

    The objective of this paper was to measure the peripheral dose (PD) with diode and thermoluminescence dosimeter (TLD) for intensity modulated radiotherapy (IMRT) with linear accelerator (conventional LINAC), and tomotherapy (novel LINAC). Ten patients each were selected from Trilogy dual-energy and from Hi-Art II tomotherapy. Two diodes were kept at 20 and 25 cm from treatment field edge. TLDs (LiF:MgTi) were also kept at same distance. TLDs were also kept at 5, 10, and 15 cm from field edge. The TLDs were read with REXON reader. The readings at the respective distance were recorded for both diode and TLD. The PD was estimated by taking the ratio of measured dose at the particular distance to the prescription dose. PD was then compared with diode and TLD for LINAC and tomotherapy. Mean PD for LINAC with TLD and diode was 2.52 cGy (SD 0.69), 2.07 cGy (SD 0.88) at 20 cm, respectively, while at 25 cm, it was 1.94 cGy (SD 0.58) and 1.5 cGy (SD 0.75), respectively. Mean PD for tomotherapy with TLD and diode was 1.681 cGy SD 0.53) and 1.58 (SD 0.44) at 20 cm, respectively. The PD was 1.24 cGy (SD 0.42) and 1.088 cGy (SD 0.35) at 25 cm, respectively, for tomotherapy. Overall, PD from tomotherapy was found lower than LINAC by the factor of 1.2-1.5. PD measurement is essential to find out the potential of secondary cancer. PD for both (conventional LINAC) and novel LINACs (tomotherapy) were measured and compared with each other. The comparison of the values for PD presented in this work and those published in the literature is difficult because of the different experimental conditions. The diode and TLD readings were reproducible and both the detector readings were comparable. PMID:23531765

  15. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  16. Histological changes in the human prostate after radiotherapy and salvage high intensity focused ultrasound

    PubMed Central

    Chalasani, Venu; Martinez, Carlos H.; Williams, Andrew K.; Kwan, Kevin; Chin, Joseph L.

    2010-01-01

    The histological changes (both macroscopic and microscopic) in the prostate following the combination of external beam radiotherapy and salvage high intensity focused ultrasound (HIFU) have not been previously described. This article describes the case of a 65-year-old male who presented with recurrent localized prostate cancer after undergoing external beam radiotherapy for low-risk prostate cancer. He was treated with salvage HIFU, and 4 weeks later presented with symptoms and signs consistent with a prostatorectal fistula. During a period of conservative management, his serum prostate-specific antigen levels started rising after having reached a nadir. A radical cystoprostatectomy and repair of fistula were performed after conservative management failed. Histological changes of dense fibrosis were noted in the region where the prostate should have been located. A literature review of the histological findings in the prostate after HIFU is discussed in this article, as well as the available evidence for the management of patients with local failure after the combination of external beam radiotherapy and salvage HIFU. PMID:20694085

  17. SU-E-T-368: Evaluating Dosimetric Outcome of Modulated Photon Radiotherapy (XMRT) Optimization for Head and Neck Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGeachy, P; Villarreal-Barajas, JE; Khan, R

    2015-06-15

    Purpose: The dosimetric outcome of optimized treatment plans obtained by modulating the photon beamlet energy and fluence on a small cohort of four Head and Neck (H and N) patients was investigated. This novel optimization technique is denoted XMRT for modulated photon radiotherapy. The dosimetric plans from XMRT for H and N treatment were compared to conventional, 6 MV intensity modulated radiotherapy (IMRT) optimization plans. Methods: An arrangement of two non-coplanar and five coplanar beams was used for all four H and N patients. Both XMRT and IMRT were subject to the same optimization algorithm, with XMRT optimization allowing bothmore » 6 and 18 MV beamlets while IMRT was restricted to 6 MV only. The optimization algorithm was based on a linear programming approach with partial-volume constraints implemented via the conditional value-at-risk method. H and N constraints were based off of those mentioned in the Radiation Therapy Oncology Group 1016 protocol. XMRT and IMRT solutions were assessed using metrics suggested by International Commission on Radiation Units and Measurements report 83. The Gurobi solver was used in conjunction with the CVX package to solve each optimization problem. Dose calculations and analysis were done in CERR using Monte Carlo dose calculation with VMC{sub ++}. Results: Both XMRT and IMRT solutions met all clinical criteria. Trade-offs were observed between improved dose uniformity to the primary target volume (PTV1) and increased dose to some of the surrounding healthy organs for XMRT compared to IMRT. On average, IMRT improved dose to the contralateral parotid gland and spinal cord while XMRT improved dose to the brainstem and mandible. Conclusion: Bi-energy XMRT optimization for H and N patients provides benefits in terms of improved dose uniformity to the primary target and reduced dose to some healthy structures, at the expense of increased dose to other healthy structures when compared with IMRT.« less

  18. Volumetric-modulated arc therapy (RapidArc) vs. conventional fixed-field intensity-modulated radiotherapy for {sup 18}F-FDG-PET-guided dose escalation in oropharyngeal cancer: A planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teoh, May, E-mail: m.teoh@nhs.net; Beveridge, Sabeena; Wood, Katie

    2013-04-01

    Fluorine-18-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET)–guided focal dose escalation in oropharyngeal cancer may potentially improve local control. We evaluated the feasibility of this approach using volumetric-modulated arc therapy (RapidArc) and compared these plans with fixed-field intensity-modulated radiotherapy (IMRT) focal dose escalation plans. Materials and methods: An initial study of 20 patients compared RapidArc with fixed-field IMRT using standard dose prescriptions. From this cohort, 10 were included in a dose escalation planning study. Dose escalation was applied to {sup 18}F-FDG-PET–positive regions in the primary tumor at dose levels of 5% (DL1), 10% (DL2), and 15% (DL3) above standard radical dose (65 Gymore » in 30 fractions). Fixed-field IMRT and double-arc RapidArc plans were generated for each dataset. Dose-volume histograms were used for plan evaluation and comparison. The Paddick conformity index (CI{sub Paddick}) and monitor units (MU) for each plan were recorded and compared. Both IMRT and RapidArc produced clinically acceptable plans and achieved planning objectives for target volumes. Dose conformity was significantly better in the RapidArc plans, with lower CI{sub Paddick} scores in both primary (PTV1) and elective (PTV2) planning target volumes (largest difference in PTV1 at DL3; 0.81 ± 0.03 [RapidArc] vs. 0.77 ± 0.07 [IMRT], p = 0.04). Maximum dose constraints for spinal cord and brainstem were not exceeded in both RapidArc and IMRT plans, but mean doses were higher with RapidArc (by 2.7 ± 1 Gy for spinal cord and 1.9 ± 1 Gy for brainstem). Contralateral parotid mean dose was lower with RapidArc, which was statistically significant at DL1 (29.0 vs. 29.9 Gy, p = 0.01) and DL2 (29.3 vs. 30.3 Gy, p = 0.03). MU were reduced by 39.8–49.2% with RapidArc (largest difference at DL3, 641 ± 94 vs. 1261 ± 118, p < 0.01). {sup 18}F-FDG-PET–guided focal dose escalation in oropharyngeal cancer is feasible

  19. Corrigendum to "Long-term results of a phase II study of gemcitabine and cisplatin chemotherapy combined with intensity-modulated radiotherapy in locoregionally advanced nasopharyngeal carcinoma" [Oral Oncol. 73 (2017) 118-123].

    PubMed

    Wu, Mingyao; Ou, Dan; He, Xiayun; Hu, Chaosu

    2017-11-01

    To evaluate long-term results of a phase II study of induction and adjuvant gemcitabine and cisplatin (GP) chemotherapy with intensity-modulated radiotherapy (IMRT) in locoregionally advanced nasopharyngeal carcinoma (NPC). One hundred and twelve patients (Stage III: 65, IVA-B: 47) with locoregionally advanced NPC were enrolled in this study. All patients received induction chemotherapy consisting of 1000 mg/m 2 gemcitabine on day 1 and 8, and cisplatin 25 mg/m 2 on day 1-3, every 3 weeks for 2 cycles. Adjuvant chemotherapy for 2 cycles of the same regime was given 28 days after the end of IMRT. The IMRT technique was utilized for all patients. In total, 97.3% patients completed 2 cycles of induction chemotherapy. The overall response rate (RR) of cervical lymph nodes was 89.0%. Acute toxicities were mainly grade 1-2 myleosuppression and vomiting. And 83.9% patients completed 2 cycles of adjuvant chemotherapy. All patients finished IMRT with RR at the end of IMRT for nasopharynx, lymph nodes of neck and retropharyngeal area being 99.1%, 97.9% and 97.7%, respectively. The 5-year local control, regional control, distant metastasis-free and overall survival rates were 93.2%, 92.3%, 89.0% and 82.1%, respectively. The 5-year overall survival of stage III and IVA-B were 87.0%, and 75.5%, respectively. The incidence of grade 3-4 acute radiotherapy-related mucositis was 28.6%. Severe late toxicities were uncommon. IMRT combined with GP for locoregionally advanced NPC is well tolerated, effective, and convenient, and warrants further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Protons and more: state of the art in radiotherapy.

    PubMed

    Hoskin, Peter J; Bhattacharya, Indrani S

    2014-12-01

    The purpose of modern radiotherapy is to deliver a precise high dose of radiation which will result in reproductive death of the cells. Radiation should transverse within the tumour volume whilst minimising damage to surrounding normal tissue. Overall 40% of cancers which are cured will have received radiotherapy. Current state of the art treatment will incorporate cross-sectional imaging and multiple high energy X-ray beams in processes called intensity modulated radiotherapy and image guided radiotherapy. Brachytherapy enables very high radiation doses to be delivered by the direct passage of a radiation source through or within the tumour volume and similar results can be achieved using rotational stereotactic X-ray beam techniques. Protons have the characteristics of particle beams which deposit their energy in a finite fixed peak at depth in tissue with no dose beyond this point - the Bragg peak. This has advantages in certain sites such as the spine adjacent to the spinal cord and particularly in children when the overall volume of tissue receiving radiation can be minimised. © 2014 Royal College of Physicians.

  1. Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors

    NASA Astrophysics Data System (ADS)

    Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio

    2010-03-01

    The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.

  2. Process-based quality management for clinical implementation of adaptive radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of twomore » clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not

  3. Process-based quality management for clinical implementation of adaptive radiotherapy

    PubMed Central

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa

    2014-01-01

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily

  4. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming

    NASA Astrophysics Data System (ADS)

    Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin

    2006-08-01

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10° greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  5. Modulation of spinal reflexes by sexual films of increasing intensity.

    PubMed

    Both, Stephanie; Boxtel, Geert; Stekelenburg, Jeroen; Everaerd, Walter; Laan, Ellen

    2005-11-01

    Sexual arousal can be viewed as an emotional state generating sex-specific autonomic and general somatic motor system responses that prepare for sexual action. In the present study modulation of spinal tendious (T) reflexes by sexual films of varying intensity was investigated. T reflexes were expected to increase as a function of increased film intensity. Through use of a between-subjects design, participants were exposed to three erotic films of low, moderate, and high intensity or to three films of moderate intensity. Self-report and genital data confirmed the induction of increasing versus stable levels of sexual arousal. Exposure to the films of increasing intensity resulted in increasing T reflexes. The results indicate that T reflex modulation is sensitive to varying levels of sexual arousal and may be of use in research on behavioral mechanisms underlying appetitive motivation.

  6. Time-driven activity-based cost comparison of prostate cancer brachytherapy and intensity-modulated radiation therapy.

    PubMed

    Dutta, Sunil W; Bauer-Nilsen, Kristine; Sanders, Jason C; Trifiletti, Daniel M; Libby, Bruce; Lash, Donna H; Lain, Melody; Christodoulou, Deborah; Hodge, Constance; Showalter, Timothy N

    To evaluate the delivery cost of frequently used radiotherapy options offered to patients with intermediate- to high-risk prostate cancer using time-driven activity-based costing and compare the results with Medicare reimbursement and relative value units (RVUs). Process maps were created to represent each step of prostate radiotherapy treatment at our institution. Salary data, equipment purchase costs, and consumable costs were factored into the cost analysis. The capacity cost rate was determined for each resource and calculated for each treatment option from initial consultation to its completion. Treatment options included low-dose-rate brachytherapy (LDR-BT), combined high-dose-rate brachytherapy single fraction boost with 25-fraction intensity-modulated radiotherapy (HDR-BT-IMRT), moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost. The total cost to deliver LDR-BT, HDR-BT-IMRT, moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost was $2719, $6517, $4173, $5507, and $5663, respectively. Total reimbursement for each course was $3123, $10,156, $7862, $9725, and $10,377, respectively. Radiation oncology attending time was 1.5-2 times higher for treatment courses incorporating BT. Attending radiation oncologist's time consumed per RVU was higher with BT (4.83 and 2.56 minutes per RVU generated for LDR-BT and HDR-BT-IMRT, respectively) compared to without BT (1.41-1.62 minutes per RVU). Time-driven activity-based costing analysis identified higher delivery costs associated with prostate BT compared with IMRT alone. In light of recent guidelines promoting BT for intermediate- to high-risk disease, re-evaluation of payment

  7. SU-E-J-116: Uncertainties Associated with Dose Summation of High-Dose Rate Brachytherapy and Intensity Modulated Radiotherapy for Gynecological Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauweloa, K; Bergamo, A; Gutierrez, A

    Purpose: Determining the cumulative dose distribution (CDD) for gynecological patients treated with both high-dose rate (HDR) brachytherapy and intensity-modulated radiotherapy (IMRT) is challenging. The purpose of this work is to study the uncertainty of performing this with a structure-guided deformable (SGD) approach in Velocity. Methods: For SGD, the Hounsfield units inside specified contours are overridden to set uniform values. Deformable image registration (DIR) is the run on these process images, which forces the DIR to focus on these contour boundaries. 18 gynecological cancer patients were used in this study. The original bladder and rectum planning contours for these patients weremore » used to drive the SGD. A second set of contours were made of the bladder by the same person with the intent of carefully making them completely consistent with each other. This second set was utilized to evaluate the spatial accuracy of the SGD. The determined spatial accuracy was then multiplied by the local dose gradient to determine a dose uncertainty associated with the SGD dose warping. The normal tissue complication probability (NTCP) was then calculated for each dose volume histogram (DVH) that included four different probabilistic uncertainties associated with the spatial errors (e.g., 68.3% and 95.4%). Results: The NTCPs for each DVH (e.g., NTCP-−95.4%, NTCP-−68.3%, NTCP-68.3%, NTCP-95.4%) differed amongst patients. All patients had an NTCP-−95.4% close to 0%, while NTCP-95.4% ranged from 0.67% to 100%. Nine patients had an NTCP-−95.4% less than 50% while the remaining nine patients had NTCP-95.4% greater than 50%. Conclusion: The uncertainty associated with this CDD technique renders a large NTCP uncertainty. Thus, it is currently not practical for clinical use. The two ways to improve this would be to use more precise contours to drive the SGD and to use a more accurate DIR algorithm.« less

  8. Fluorine-18-Labeled Fluoromisonidazole Positron Emission and Computed Tomography-Guided Intensity-Modulated Radiotherapy for Head and Neck Cancer: A Feasibility Study

    PubMed Central

    Lee, Nancy Y.; Mechalakos, James G.; Nehmeh, Sadek; Lin, Zhixiong; Squire, Olivia D.; Cai, Shangde; Chan, Kelvin; Zanzonico, Pasquale B.; Greco, Carlo; Ling, Clifton C.; Humm, John L.; Schöder, Heiko

    2010-01-01

    Purpose Hypoxia renders tumor cells radioresistant, limiting locoregional control from radiotherapy (RT). Intensity-modulated RT (IMRT) allows for targeting of the gross tumor volume (GTV) and can potentially deliver a greater dose to hypoxic subvolumes (GTVh) while sparing normal tissues. A Monte Carlo model has shown that boosting the GTVh increases the tumor control probability. This study examined the feasibility of fluorine-18–labeled fluoromisonidazole positron emission tomography/computed tomography (18F-FMISO PET/CT)–guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. Methods and Materials 18F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and 18F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated 18F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate 18F-FMISO PET/CT-guided IMRT plans. Results The heterogeneous distribution of 18F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing 18F-FMISO PET/CT–guided IMRT for 10 HNC patients achieved 84 Gy to the GTVh and 70 Gy to the GTV, without exceeding the normal tissue tolerance. We also attempted to deliver 105 Gy to the GTVh for 2 patients and were successful in 1, with normal tissue sparing. Conclusion It was feasible to dose escalate the GTVh to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC

  9. Evaluation of the dosimetric impact of applying flattening filter-free beams in intensity-modulated radiotherapy for early-stage upper thoracic carcinoma of oesophagus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wuzhe; Lin, Zhixiong; Yang, Zhining

    2015-06-15

    Flattening filter-free (FFF) radiation beams have recently become clinically available on modern linear accelerators in radiation therapy. This study aimed to evaluate the dosimetric impact of using FFF beams in intensity-modulated radiotherapy (IMRT) for early-stage upper thoracic oesophageal cancer. Eleven patients with primary stage upper thoracic oesophageal cancer were recruited. For each patient, two IMRT plans were computed using conventional beams (Con-P) and FFF beams (FFF-P), respectively. Both plans employed a five-beam arrangement and were prescribed with 64 Gy to (planning target volume) PTV1 and 54 Gy to PTV2 in 32 fractions using 6 MV photons. The dose parameters ofmore » the target volumes and organs at risks (OARs), and treatment parameters including the monitor units (MU) and treatment time (TT) for Con-P and FFF-P were recorded and compared. The mean D{sub 5} of PTV1 and PTV2 were higher in FFF-P than Con-P by 0.4 Gy and 0.3 Gy, respectively. For the OARs, all the dose parameters did not show significant difference between the two plans except the mean V{sub 5} and V{sub 10} of the lung in which the FFF-P was lower (46.7% vs. 47.3% and 39.1% vs. 39.6%, respectively). FFF-P required 54% more MU but 18.4% less irradiation time when compared to Con-P. The target volume and OARs dose distributions between the two plans were comparable. However, FFF-P was more effective in sparing the lung from low dose and reduced the mean TT compared with Con-P. Long-term clinical studies are suggested to evaluate the radiobiological effects of FFF beams.« less

  10. Dosimetric study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques - 3D CRT, IMRT and VMAT. Study protocol.

    NASA Astrophysics Data System (ADS)

    Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian

    2016-03-01

    Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates

  11. Current role of modern radiotherapy techniques in the management of breast cancer

    PubMed Central

    Ozyigit, Gokhan; Gultekin, Melis

    2014-01-01

    Breast cancer is the most common type of malignancy in females. Advances in systemic therapies and radiotherapy (RT) provided long survival rates in breast cancer patients. RT has a major role in the management of breast cancer. During the past 15 years several developments took place in the field of imaging and irradiation techniques, intensity modulated RT, hypofractionation and partial-breast irradiation. Currently, improvements in the RT technology allow us a subsequent decrease in the treatment-related complications such as fibrosis and long-term cardiac toxicity while improving the loco-regional control rates and cosmetic results. Thus, it is crucial that modern radiotherapy techniques should be carried out with maximum care and efficiency. Several randomized trials provided evidence for the feasibility of modern radiotherapy techniques in the management of breast cancer. However, the role of modern radiotherapy techniques in the management of breast cancer will continue to be defined by the mature results of randomized trials. Current review will provide an up-to-date evidence based data on the role of modern radiotherapy techniques in the management of breast cancer. PMID:25114857

  12. Anterior Myocardial Territory May Replace the Heart as Organ at Risk in Intensity-Modulated Radiotherapy for Left-Sided Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan Wenyong; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan; Liu Dong

    Purpose: We investigated whether the heart could be replaced by the anterior myocardial territory (AMT) as the organ at risk (OAR) in intensity-modulated radiotherapy (IMRT) of the breast for patients with left-sided breast cancer. Methods and Materials: Twenty-three patients with left-sided breast cancer who received postoperative radiation after breast-conserving surgery were studied. For each patient, we generated five IMRT plans including heart (H), left ventricle (LV), AMT, LV+AMT, and H+LV as the primary OARs, respectively, except both lungs and right breast, which corresponded to IMRT(H), IMRT(LV), IMRT(AMT), IMRT(LV+AMT), and IMRT(H+LV). For the planning target volumes and OARs, the parameters ofmore » dose-volume histograms were compared. Results: The homogeneity index, conformity index, and coverage index were not compromised significantly in IMRT(AMT), IMRT(LV) and IMRT(LV+ AMT), respectively, when compared with IMRT(H). The mean dose to the heart, LV, and AMT decreased 5.3-21.5% (p < 0.05), 19.9-29.5% (p < 0.05), and 13.3-24.5% (p < 0.05), respectively. Similarly, the low (e.g., V5%), middle (e.g., V20%), and high (e.g., V30%) dose-volume of the heart, LV, and AMT decreased with different levels. The mean dose and V10% of the right lung increased by 9.2% (p < 0.05) and 27.6% (p < 0.05), respectively, in IMRT(LV), and the mean dose and V5% of the right breast decreased significantly in IMRT(AMT) and IMRT(LV+AMT). IMRT(AMT) was the preferred plan and was then compared with IMRT(H+LV); the majority of dose-volume histogram parameters of OARs including the heart, LV, AMT, both lungs, and the right breast were not statistically different. However, the low dose-volume of LV increased and the middle dose-volume decreased significantly (p < 0.05) in IMRT(AMT). Also, those of the right lung (V10%, V15%) and right breast (V5%, V10%) decreased significantly (p < 0.05). Conclusions: The AMT may replace the heart as the OAR in left-sided breast IMRT after breast

  13. Dosimetric comparison between step-shoot intensity-modulated radiotherapy and volumetric-modulated arc therapy for upper thoracic and cervical esophageal carcinoma.

    PubMed

    Gao, Min; Li, Qilin; Ning, Zhonghua; Gu, Wendong; Huang, Jin; Mu, Jinming; Pei, Honglei

    2016-01-01

    To compare and analyze the dosimetric characteristics of volumetric modulated arc therapy (VMAT) vs step-shoot intensity-modulated radiation therapy (sIMRT) for upper thoracic and cervical esophageal carcinoma. Single-arc VMAT (VMAT1), dual-arc VMAT (VMAT2), and 7-field sIMRT plans were designed for 30 patients with upper thoracic or cervical esophageal carcinoma. Planning target volume (PTV) was prescribed to 50.4Gy in 28 fractions, and PTV1 was prescribed to 60Gy in 28 fractions. The parameters evaluated included dose homogeneity and conformality, dose to organs at risk (OARs), and delivery efficiency. (1) In comparison to sIMRT, VMAT provided a systematic improvement in PTV1 coverage. The homogeneity index of VMAT1 was better than that of VMAT2. There were no significant differences among sIMRT, VMAT1, and VMAT2 in PTV coverage. (2) VMAT1 and VMAT2 reduced the maximum dose of spinal cord as compared with sIMRT (p < 0.05). The rest dose-volume characteristics of OARs were similar. (3) Monitor units of VMAT2 and VMAT1 were more than sIMRT. However, the treatment time of VMAT1, VMAT2, and sIMRT was (2.0 ± 0.2), (2.8 ± 0.3), and (9.8 ± 0.8) minutes, respectively. VMAT1 was the fastest, and the difference was statistically significant. In the treatment of upper thoracic and cervical esophageal carcinoma by the AXESSE linac, compared with 7-field sIMRT, VMAT showed better PTV1 coverage and superior spinal cord sparing. Single-arc VMAT had similar target volume coverage and the sparing of OAR to dual-arc VMAT, with shortest treatment time and highest treatment efficiency in the 3 kinds of plans. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  14. Dosimetric comparison between step-shoot intensity-modulated radiotherapy and volumetric-modulated arc therapy for upper thoracic and cervical esophageal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Min; Li, Qilin; Ning, Zhonghua

    2016-07-01

    To compare and analyze the dosimetric characteristics of volumetric modulated arc therapy (VMAT) vs step-shoot intensity-modulated radiation therapy (sIMRT) for upper thoracic and cervical esophageal carcinoma. Single-arc VMAT (VMAT1), dual-arc VMAT (VMAT2), and 7-field sIMRT plans were designed for 30 patients with upper thoracic or cervical esophageal carcinoma. Planning target volume (PTV) was prescribed to 50.4 Gy in 28 fractions, and PTV1 was prescribed to 60 Gy in 28 fractions. The parameters evaluated included dose homogeneity and conformality, dose to organs at risk (OARs), and delivery efficiency. (1) In comparison to sIMRT, VMAT provided a systematic improvement in PTV1 coverage.more » The homogeneity index of VMAT1 was better than that of VMAT2. There were no significant differences among sIMRT, VMAT1, and VMAT2 in PTV coverage. (2) VMAT1 and VMAT2 reduced the maximum dose of spinal cord as compared with sIMRT (p < 0.05). The rest dose-volume characteristics of OARs were similar. (3) Monitor units of VMAT2 and VMAT1 were more than sIMRT. However, the treatment time of VMAT1, VMAT2, and sIMRT was (2.0 ± 0.2), (2.8 ± 0.3), and (9.8 ± 0.8) minutes, respectively. VMAT1 was the fastest, and the difference was statistically significant. In the treatment of upper thoracic and cervical esophageal carcinoma by the AXESSE linac, compared with 7-field sIMRT, VMAT showed better PTV1 coverage and superior spinal cord sparing. Single-arc VMAT had similar target volume coverage and the sparing of OAR to dual-arc VMAT, with shortest treatment time and highest treatment efficiency in the 3 kinds of plans.« less

  15. Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salama, Joseph K.; Mundt, Arno J.; Department of Radiation Oncology, University of Illinois, Chicago, IL

    2006-07-15

    Purpose: The aim of this article is to report a preliminary analysis of our initial clinical experience with extended-field intensity-modulated radiotherapy for gynecologic malignancies. Methods and Materials: Between November 2002 and May 2005, 13 women with gynecologic malignancies were treated with extended-field radiation therapy. Of the women, 7 had endometrial cancer, 4 cervical cancer, 1 recurrent endometrial cancer, and 1 suspected cervical cancer. All women underwent computed tomography planning, with the upper vagina, parametria, and uterus (if present) contoured within the CTV. In addition, the clinical target volume contained the pelvic and presacral lymph nodes as well as the para-aorticmore » lymph nodes. All acute toxicity was scored according to the Common Terminology Criteria for Adverse Events (CTCAE v 3.0). All late toxicity was scored using the Radiation Therapy Oncology Group late toxicity score. Results: The median follow-up was 11 months. Extended-field intensity-modulated radiation therapy (IMRT) for gynecologic malignancies was well tolerated. Two patients experienced Grade 3 or higher toxicity. Both patients were treated with concurrent cisplatin based chemotherapy. Neither patient was planned with bone marrow sparing. Eleven patients had no evidence of late toxicity. One patient with multiple previous surgeries experienced a bowel obstruction. One patient with bilateral grossly involved and unresectable common iliac nodes experienced bilateral lymphedema. Extended-field-IMRT achieved good local control with only 1 patient, who was metastatic at presentation, and 1 patient not able to complete treatment, experiencing in-field failure. Conclusions: Extended-field IMRT is safe and effective with a low incidence of acute toxicity. Longer follow-up is needed to assess chronic toxicity, although early results are promising.« less

  16. S-1 chemotherapy and intensity-modulated radiotherapy after D1/D2 lymph node dissection in patients with node-positive gastric cancer: a phase I/II study.

    PubMed

    Wang, X; Zhao, D B; Yang, L; Chi, Y; Tang, Y; Li, N; Wang, S L; Song, Y W; Liu, Y P; Liu, W Y; Ren, H; Zhang, T; Wang, J Y; Chen, X S; Fang, H; Wang, W H; Li, Y X; Jin, J

    2018-02-06

    This phase I/II clinical trial investigated S-1 administered with intensity-modulated radiotherapy (IMRT) as adjuvant therapy for node-positive gastric cancer. Patients had undergone radical resection and D1/D2 lymph node dissection. In phase I, patients received adjuvant chemoradiotherapy of IMRT (45 Gy in 25 fractions) with concurrent S-1 administered on a dose-escalation schedule to determine the recommended dose (RD). In phase II, the safety and efficacy of the RD of S-1 combined with IMRT were assessed. We consecutively enrolled 73 patients (56 men; median age, 53 years; range, 29-73 years) and the phase I portion of the study included 27 patients. The RD of S-1 administered concomitantly with IMRT was 80 mg m -2  day -1 orally, twice daily. The phase II analysis included 52 patients (46 new patients plus 6 from phase I). 8 patients (15.4%) developed grade 3 or 4 toxicities. There were 21 recurrence events and 15 deaths (1 bowel obstruction, 14 gastric cancer). Three-year disease-free survival and overall survival were 62.2% (95% confidence interval (CI), 48.5-75.9) and 70.0% (95% CI, 56.3-83.7), respectively. The median time to recurrence was 17.5 months (range, 3.8-42.0). The median time from recurrence to death was 7.0 months (range, 1.5-28.7). S-1 combined with IMRT adjuvant chemoradiotherapy is safe and efficacious for advanced gastric cancer.

  17. The Evolution of and Risk Factors for Neck Muscle Atrophy and Weakness in Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy: A Retrospective Study in an Endemic Area.

    PubMed

    Zhang, Lu-Lu; Mao, Yan-Ping; Zhou, Guan-Qun; Tang, Ling-Long; Qi, Zhen-Yu; Lin, Li; Yao, Ji-Jin; Ma, Jun; Lin, Ai-Hua; Sun, Ying

    2015-08-01

    The aim of this study was to investigate the evolution of sternocleidomastoid muscle (SCM) atrophy in nasopharyngeal carcinoma (NPC) patients following intensity-modulated radiotherapy (IMRT), and the relationship between SCM atrophy and neck weakness.Data were retrospectively analyzed from 223 biopsy-proven NPC patients with no distant metastasis who underwent IMRT with or without chemotherapy. The volume of SCM was measured on pretreatment magnetic resonance imaging (MRI), and MRIs were conducted 1, 2, and 3 years after the completion of IMRT. Change in SCM volume was calculated and classified using the late effects of normal tissues-subjective, objective, management, and analytic system. The grade of neck muscle weakness, classified by the Common Terminology Criteria for Adverse Events V 3.0, was measured 3 years after the completion of IMRT.The average SCM atrophy ratio was -10.97%, -18.65%, and -22.25% at 1, 2, and 3 years postirradiation, respectively. Multivariate analysis indicated N stage and the length of time after IMRT were independent prognostic variables. There were significant associations between the degree of SCM atrophy and neck weakness.Radical IMRT can cause significant SCM atrophy in NPC patients. A more advanced N stage was associated with more severe SCM atrophy, but no difference was observed between N2 and N3. SCM atrophy progresses over time during the 3 years following IMRT. Grade of SCM atrophy is significantly associated with neck weakness.

  18. Dose-Escalated Intensity-Modulated Radiotherapy Is Feasible and May Improve Locoregional Control and Laryngeal Preservation in Laryngo-Hypopharyngeal Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miah, Aisha B.; Bhide, Shreerang A.; Guerrero-Urbano, M. Teresa

    2012-02-01

    Purpose: To determine the safety and outcomes of induction chemotherapy followed by dose-escalated intensity-modulated radiotherapy (IMRT) with concomitant chemotherapy in locally advanced squamous cell cancer of the larynx and hypopharynx (LA-SCCL/H). Methods and Materials: A sequential cohort Phase I/II trial design was used to evaluate moderate acceleration and dose escalation. Patients with LA-SCCL/H received IMRT at two dose levels (DL): DL1, 63 Gy/28 fractions (Fx) to planning target volume 1 (PTV1) and 51.8 Gy/28 Fx to PTV2; DL2, 67.2 Gy/28 Fx and 56 Gy/28 Fx to PTV1 and PTV2, respectively. Patients received induction cisplatin/5-fluorouracil and concomitant cisplatin. Acute and latemore » toxicities and tumor control rates were recorded. Results: Between September 2002 and January 2008, 60 patients (29 DL1, 31 DL2) with Stage III (41% DL1, 52% DL2) and Stage IV (52% DL1, 48% DL2) disease were recruited. Median (range) follow-up for DL1 was 51.2 (12.1-77.3) months and for DL2 was 36.2 (4.2-63.3) months. Acute Grade 3 (G3) dysphagia was higher in DL2 (87% DL2 vs. 59% DL1), but other toxicities were equivalent. One patient in DL1 required dilatation of a pharyngeal stricture (G3 dysphagia). In DL2, 2 patients developed benign pharyngeal strictures at 1 year. One underwent a laryngo-pharyngectomy and the other a dilatation. No other G3/G4 toxicities were reported. Overall complete response was 79% (DL1) and 84% (DL2). Two-year locoregional progression-free survival rates were 64.2% (95% confidence interval, 43.5-78.9%) in DL1 and 78.4% (58.1-89.7%) in DL2. Two-year laryngeal preservation rates were 88.7% (68.5-96.3%) in DL1 and 96.4% (77.7-99.5%) in DL2. Conclusions: At a mean follow-up of 36 months, dose-escalated chemotherapy-IMRT at DL2 has so far been safe to deliver. In this study, DL2 delivered high rates of locoregional control, progression-free survival, and organ preservation and has been selected as the experimental arm in a Cancer Research UK Phase

  19. [Effect of intensity modulated radiation therapy on oral mucosa and immune function in patients with nasopharyngeal carcinoma].

    PubMed

    Liang, Shaoqiang; Zhang, Ning; Chen, Lusi; Zhang, Yang; Zheng, Zhenhe; Luo, Weijun; Xu, Tao; Lü, Zhiqian; Li, Shao'en

    2018-05-28

    To study the potential effects of intensity modulated radiation therapy (IMRT) on clinical efficacy, oral mucosa reaction and immunological foundation; and to explore the effect of immunological changes on clinical efficacy and oral mucosa reaction in patients with nasopharyngeal carcinoma.
 Methods: A total of 200 patients with nasopharyngeal carcinoma, who came from First Department of Nasopharyngeal Radiotherapy, the First People's Hospital of Foshan from October 2008 to November 2011, were selected. The patients were treated with nasopharyngeal radiotherapy, and divided into an observation group and a control group (n=100 in each group). The control group underwent common conventional two-dimensional radiotherapy treatment, while the observation group underwent IMRT. The 5-year survival rates and recurrence rates were recorded at follow-up. After the radiotherapy, the oral mucosa in the patients were evaluated by the classification standard of acute radioactive mucositis by American Radiotherapy Oncology Group (RTOG), and the number of T lymphocyte subsets before and after treatment was detected.
 Results: There were significant difference in non-regional-recurrence survival rate, disease-free survival rate, local recurrence rate between the above 2 groups (all P<0.05), but no significant difference in the distant metastasis-free survival rate (P>0.05). The acute oral mucosa reactions of grade 1, 2, 3, 4 in the control group were 8.00%, 20.00%, 12.00%, 7.00%, respectively, and those were 7.00%, 22.00%, 15.00%, 1.00% respectively. There was no significant difference in the acute response of oral mucosa in grade 1, 2 and 3 in the 2 groups (all P>0.05), but there was significant difference in the grade 4 (P<0.05). There were significantly difference in CD8+, CD4+/ CD8+ and CD4+ T lymphocyte subsets before and after treatment in the above 2 groups (all P<0.01); there were also significantly difference after treatment between the observation group and the

  20. Uses of megavoltage digital tomosynthesis in radiotherapy

    NASA Astrophysics Data System (ADS)

    Sarkar, Vikren

    With the advent of intensity modulated radiotherapy, radiation treatment plans are becoming more conformal to the tumor with the decreasing margins. It is therefore of prime importance that the patient be positioned correctly prior to treatment. Therefore, image guided treatment is necessary for intensity modulated radiotherapy plans to be implemented successfully. Current advanced imaging devices require costly hardware and software upgrade, and radiation imaging solutions, such as cone beam computed tomography, may introduce extra radiation dose to the patient in order to acquire better quality images. Thus, there is a need to extend current existing imaging device ability and functions while reducing cost and radiation dose. Existing electronic portal imaging devices can be used to generate computed tomography-like tomograms through projection images acquired over a small angle using the technique of cone-beam digital tomosynthesis. Since it uses a fraction of the images required for computed tomography reconstruction, use of this technique correspondingly delivers only a fraction of the imaging dose to the patient. Furthermore, cone-beam digital tomosynthesis can be offered as a software-only solution as long as a portal imaging device is available. In this study, the feasibility of performing digital tomosynthesis using individually-acquired megavoltage images from a charge coupled device-based electronic portal imaging device was investigated. Three digital tomosynthesis reconstruction algorithms, the shift-and-add, filtered back-projection, and simultaneous algebraic reconstruction technique, were compared considering the final image quality and radiation dose during imaging. A software platform, DART, was created using a combination of the Matlab and C++ languages. The platform allows for the registration of a reference Cone Beam Digital Tomosynthesis (CBDT) image against a daily acquired set to determine how to shift the patient prior to treatment. Finally

  1. Dose–volume-related dysphagia after constrictor muscles definition in head and neck cancer intensity-modulated radiation treatment

    PubMed Central

    Mazzola, R; Ricchetti, F; Fiorentino, A; Fersino, S; Giaj Levra, N; Naccarato, S; Sicignano, G; Albanese, S; Di Paola, G; Alterio, D; Ruggieri, R

    2014-01-01

    Objective: Dysphagia remains a side effect influencing the quality of life of patients with head and neck cancer (HNC) after radiotherapy. We evaluated the relationship between planned dose involvement and acute and late dysphagia in patients with HNC treated with intensity-modulated radiation therapy (IMRT), after a recontouring of constrictor muscles (PCs) and the cricopharyngeal muscle (CM). Methods: Between December 2011 and December 2013, 56 patients with histologically proven HNC were treated with IMRT or volumetric-modulated arc therapy. The PCs and CM were recontoured. Correlations between acute and late toxicity and dosimetric parameters were evaluated. End points were analysed using univariate logistic regression. Results: An increasing risk to develop acute dysphagia was observed when constraints to the middle PCs were not respected [mean dose (Dmean) ≥50 Gy, maximum dose (Dmax) >60 Gy, V50 >70% with a p = 0.05]. The superior PC was not correlated with acute toxicity but only with late dysphagia. The inferior PC was not correlated with dysphagia; for the CM only, Dmax >60 Gy was correlated with acute dysphagia ≥ grade 2. Conclusion: According to our analysis, the superior PC has a major role, being correlated with dysphagia at 3 and 6 months after treatments; the middle PC maintains this correlation only at 3 months from the beginning of radiotherapy, but it does not have influence on late dysphagia. The inferior PC and CM have a minimum impact on swallowing symptoms. Advances in knowledge: We used recent guidelines to define dose constraints of the PCs and CM. Two results emerge in the present analysis: the superior PC influences late dysphagia, while the middle PC influences acute dysphagia. PMID:25348370

  2. [Accelerated partial breast irradiation with image-guided intensity-modulated radiotherapy following breast-conserving surgery - preliminary results of a phase II clinical study].

    PubMed

    Mészáros, Norbert; Major, Tibor; Stelczer, Gábor; Zaka, Zoltán; Mózsa, Emõke; Fodor, János; Polgár, Csaba

    2015-06-01

    The purpose of the study was to implement accelerated partial breast irradiation (APBI) by means of image-guided intensity-modulated radiotherapy (IG-IMRT) following breast-conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive (St I-II) breast cancer who underwent BCS were enrolled in our phase II prospective study. Postoperative APBI was given by means of step and shoot IG-IMRT using 4 to 5 fields to a total dose of 36.9 Gy (9×4.1 Gy) using a twice-a-day fractionation. Before each fraction, series of CT images were taken from the region of the target volume using a kV CT on-rail mounted in the treatment room. An image fusion software was used for automatic image registration of the planning and verification CT images. Patient set-up errors were detected in three directions (LAT, LONG, VERT), and inaccuracies were adjusted by automatic movements of the treatment table. Breast cancer related events, acute and late toxicities, and cosmetic results were registered and analysed. At a median follow-up of 24 months (range 12-44) neither locoregional nor distant failure was observed. Grade 1 (G1), G2 erythema, G1 oedema, and G1 and G2 pain occurred in 21 (35%), 2 (3.3%), 23 (38.3%), 6 (10%) and 2 (3.3%) patients, respectively. No G3-4 acute side effects were detected. Among late radiation side effects G1 pigmentation, G1 fibrosis, and G1 fat necrosis occurred in 5 (8.3%), 7 (11.7%), and 2 (3.3%) patients, respectively. No ≥G2 late toxicity was detected. Excellent and good cosmetic outcome was detected in 45 (75%) and 15 (25%) patients. IG-IMRT is a reproducible and feasible technique for the delivery of APBI following conservative surgery for the treatment of low-risk, early-stage invasive breast carcinoma. Preliminary results are promising, early radiation side effects are minimal, and cosmetic results are excellent.

  3. The role of PET in target localization for radiotherapy treatment planning.

    PubMed

    Rembielak, Agata; Price, Pat

    2008-02-01

    Positron emission tomography (PET) is currently accepted as an important tool in oncology, mostly for diagnosis, staging and restaging purposes. It provides a new type of information in radiotherapy, functional rather than anatomical. PET imaging can also be used for target volume definition in radiotherapy treatment planning. The need for very precise target volume delineation has arisen with the increasing use of sophisticated three-dimensional conformal radiotherapy techniques and intensity modulated radiation therapy. It is expected that better delineation of the target volume may lead to a significant reduction in the irradiated volume, thus lowering the risk of treatment complications (smaller safety margins). Better tumour visualisation also allows a higher dose of radiation to be applied to the tumour, which may lead to better tumour control. The aim of this article is to review the possible use of PET imaging in the radiotherapy of various cancers. We focus mainly on non-small cell lung cancer, lymphoma and oesophageal cancer, but also include current opinion on the use of PET-based planning in other tumours including brain, uterine cervix, rectum and prostate.

  4. Salvage High-intensity Focused Ultrasound for the Recurrent Prostate Cancer after Radiotherapy

    NASA Astrophysics Data System (ADS)

    Shoji, S.; Nakano, M.; Omata, T.; Harano, Y.; Nagata, Y.; Usui, Y.; Terachi, T.; Uchida, T.

    2010-03-01

    To investigate the use of minimally invasive high-intensity focused ultrasound (HIFU) as a salvage therapy in men with localized prostate cancer recurrence following external beam radiotherapy (EBRT), brachytherapy or proton therapy. A review of 20 cases treated using the Sonablate® 500 HIFU device, between August 28, 2002 and September 1, 2009, was carried out. All men had presumed organ-confined, histologically confirmed recurrent prostate adenocarcinoma following radiation therapy. All men with presumed, organ-confined, recurrent disease following EBRT in 8 patients, brachytherapy in 7 patients or proton therapy in 5 patients treated with salvage HIFU were included. The patients were followed for a mean (range) of 16.0 (3-80) months. Biochemical disease-free survival (bDFS) rates in patients with low-intermediate and high risk groups were 86% and 50%, respectively. Side-effects included urethral stricture in 2 of the 16 patients (13%), urinary tract infection or dysuria syndrome in eight (26%), and urinary incontinence in one (6%). Recto-urethral fistula occurred in one patient (6%). Transrectal HIFU is an effective treatment for recurrence after radiotherapy especially in patients with low- and intermediate risk groups.

  5. Sparing the larynx and esophageal inlet expedites feeding tube removal in patients with stage III-IV oropharyngeal squamous cell carcinoma treated with intensity-modulated radiotherapy.

    PubMed

    Amin, Neha; Reddy, Krishna; Westerly, David; Raben, David; DeWitt, Peter; Chen, Changhu

    2012-12-01

    To evaluate the effect of larynx and esophageal inlet sparing on dysphagia recovery after intensity-modulated radiotherapy (IMRT) for stage III-IV oropharyngeal squamous cell carcinoma. Retrospective study. Of 88 patients treated with IMRT, 38 were planned with a larynx + esophageal inlet mean dose <50 Gy constraint, 27 with a larynx alone mean dose constraint of <50 Gy, and 23 without a larynx/esophagus constraint. All had a percutaneous endoscopic gastrostomy (PEG) tube placed before IMRT, which was removed when the patient could swallow and maintain weight. All IMRT plans were retrieved, and the larynx; esophageal inlet; and superior, middle, and inferior constrictors were contoured. Dosimetric data were correlated with PEG tube dependence duration. The PEG tube was removed within 3, 6, 9, and 12 months after IMRT in 24%, 61%, 71%, and 83% of patients, respectively. Median times to PEG tube removal were 3.7 and 8.6 months (P = .0029) in patients planned with or without a larynx/larynx + esophageal inlet dose constraint. A mean dose to the larynx + esophageal inlet of ≤60 Gy reduced the median PEG tube duration from 10.8 to 6.1 months (P = .02), compared to >60 Gy. Mean pharyngeal constrictor doses in patients receiving a mean dose to the larynx + esophageal inlet of ≤50 Gy versus >50 Gy were: 60 Gy and 69 Gy, 55 Gy and 67 Gy, and 47 Gy and 57 Gy, for the superior, middle, and inferior constrictors, respectively (P < .0001). A dose constraint on the larynx and esophageal inlet during IMRT planning reduces dose to pharyngeal constrictors and expedites PEG tube removal. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  6. Combined prognostic value of pretreatment anemia and cervical node necrosis in patients with nasopharyngeal carcinoma receiving intensity-modulated radiotherapy: A large-scale retrospective study.

    PubMed

    Zhang, Lu-Lu; Zhou, Guan-Qun; Li, Yi-Yang; Tang, Ling-Long; Mao, Yan-Ping; Lin, Ai-Hua; Ma, Jun; Qi, Zhen-Yu; Sun, Ying

    2017-12-01

    This study investigated the combined prognostic value of pretreatment anemia and cervical node necrosis (CNN) in patients with nasopharyngeal carcinoma (NPC). Retrospective review of 1302 patients with newly diagnosed nonmetastatic NPC treated with intensity-modulated radiotherapy (IMRT) ± chemotherapy. Patients were classified into four groups according to anemia and CNN status. Survival was compared using the log-rank test. Independent prognostic factors were identified using the Cox proportional hazards model. The primary end-point was overall survival (OS); secondary end-points were disease-free survival (DFS), locoregional relapse-free survival (LRRFS), and distant metastasis-free survival (DMFS). Pretreatment anemia was an independent, adverse prognostic factor for DMFS; pretreatment CNN was an independent adverse prognostic factor for all end-points. Five-year survival for non-anemia and non-CNN, anemia, CNN, and anemia and CNN groups were: OS (93.1%, 87.2%, 82.9%, 76.3%, P < 0.001), DFS (87.0%, 84.0%, 73.9%, 64.6%, P < 0.001), DMFS (94.1%, 92.1%, 82.4%, 72.5%, P < 0.001), and LRRFS (92.8%, 92.4%, 88.7%, 84.0%, P = 0.012). The non-anemia and non-CNN group had best survival outcomes; anemia and CNN group, the poorest. Multivariate analysis demonstrated combined anemia and CNN was an independent prognostic factor for OS, DFS, DMFS, and LRRFS (P < 0.05). The combination of anemia and CNN is an independent adverse prognostic factor in patients with NPC treated using IMRT ± chemotherapy. Assessment of pretreatment anemia and CNN improved risk stratification, especially for patients with anemia and CNN who have poorest prognosis. This study may aid the design of individualized treatment plans to improve treatment outcomes. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivakumar, R; Janardhan, N; Bhavani, P

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA

  8. S-1 versus S-1 plus cisplatin concurrent intensity modulated radiation therapy in the treatment of esophageal squamous cell carcinoma: Study protocol for a randomized controlled phase II trial.

    PubMed

    Wen, Yixue; Zhao, Zhenhuan; Miao, Jidong; Yang, Qilin; Gui, Yan; Sun, Mingqiang; Tian, Honggang; Jia, Qiang; Liao, Dongbiao; Yang, Chen; Du, Xiaobo

    2017-12-01

    Chemotherapy regimens are often a 2-drug regimen in concurrent chemotherapy and radiotherapy for esophageal cancer (EC). However, some retrospective studies have suggested that for patients with EC receiving radiotherapy combined with 2-drug chemotherapy have the severe toxicity. And S-1 alone with the combination of radiotherapy treatment effect is good, and achieved good clinical remission rate. The purpose of this trial is compare the efficacy and toxicity of combining S-1 or S-1 plus cisplatin with radiotherapy for esophageal squamous cell carcinoma. The study is a randomized, controlled, multicenter trial, comparing S-1 versus S-1 plus cisplatin concurrent radiotherapy for patients with esophageal squamous cell carcinoma. Eighty-eight patients with unresectable or medically unfit for surgery esophageal squamous cell carcinoma (clinical stage I to III), will randomly assigned to receive four cycles (2 concomitant and 2 postradiotherapy) S-1 or S-1 plus cisplatin along with radiotherapy 60-66 Gy/30 to 33 fractions. The primary outcome is complete response rate of primary tumor which will be measured by endoscopy and computer screen at 3 months after the completion of treatment. Secondary outcomes include survival and toxicity. To our knowledge, this study protocol is the first to test the effect between S-1 versus S-1 plus cisplatin concurrent intensity modulated radiation therapy in the treatment of esophageal squamous cell carcinoma. If the result will be the same effect and fewer side effects and less costly in S-1 plus radiotherapy. It will supply more treatment selection for esophageal squamous cell carcinoma.

  9. Risk-adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Yusung

    Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the

  10. Radiotherapy after surgical resection for head and neck mucosal melanoma.

    PubMed

    Wu, Abraham J; Gomez, Jennifer; Zhung, Joanne E; Chan, Kelvin; Gomez, Daniel R; Wolden, Suzanne L; Zelefsky, Michael J; Wolchok, Jedd D; Carvajal, Richard D; Chapman, Paul B; Wong, Richard J; Shaha, Ashok R; Kraus, Dennis H; Shah, Jatin P; Lee, Nancy Y

    2010-06-01

    To present our single-institution experience with postoperative radiotherapy for mucosal melanoma of the head and neck. Between 1992 and 2007, 27 patients with mucosal melanoma of the head and neck underwent surgical resection followed by postoperative radiotherapy. Median age was 68 years (range: 45-89 years). Sites included were sinonasal in 24 patients, oral cavity in 2, and oropharynx in 1. All but 2 patients had stage I disease. Twenty-two patients received hypofractionated radiation. Radiation techniques were intensity-modulated radiation therapy in 13, 3-dimensional conformal in 4, and conventional in 10. The median follow-up for living patients was 45 months (range: 24-122 months). The 3- and 5-year estimates of local progression-free, loco-regional progression-free, distant metastasis-free, and overall survival were: 47% and 35%; 34% and 22%; 30% and 24%; and 40% and 33%, respectively. Median time to local failure and distant metastasis was 32 and 14 months, respectively. Acute toxicities included 19% with grade 2 or higher mucositis. No late complications related to the optic structures were seen. Modern radiotherapeutic techniques including intensity-modulated radiation therapy appear feasible and well-tolerated in the postoperative treatment of head and neck mucosal melanoma. Unusual or serious late complications have not been observed despite extensive use of hypofractionated regimens. However, rates of local and distant failure remain high.

  11. Controlled generation of high-intensity optical rogue waves by induced modulation instability

    PubMed Central

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-01

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum. PMID:28051149

  12. Controlled generation of high-intensity optical rogue waves by induced modulation instability.

    PubMed

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-04

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.

  13. Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

    DOE PAGES

    Xia, Zhiyang; Chen, Lunjin; Dai, Lei; ...

    2016-09-05

    Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this paper, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <~ 0.3f ce), but cannot account for the observed higher-frequency chorus waves, includingmore » the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. Finally, in addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long.« less

  14. Influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer.

    PubMed

    López, Escarlata; Lazo, Antonio; Gutiérrez, Antonio; Arregui, Gregorio; Núñez, Isabel; Sacchetti, Antonio

    2015-01-01

    To evaluate the influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer patients. Precise information on the extension of prostate cancer is crucial for the choice of an appropriate therapeutic strategy. (11)C-choline positron emission tomography ((11)C-choline PET/CT) has two roles in radiation oncology (RT): (1) patient selection for treatment and (2) target volume selection and delineation. In conjunction with high-accuracy techniques, it might offer an opportunity of dose escalation and better tumour control while sparing healthy tissues. We carried out a retrospective study in order to analyse RT planning modification based on (11)C-choline PET/CT in 16 prostate cancer patients. Patients were treated with hypofractionated step-and-shoot Intensity Modulated Radiotherapy (IMRT), or Volumetric Modulated Arc Therapy (VMAT), and a daily cone-beam CT for Image Guided Radiation Therapy (IGRT). All patients underwent a (11)C-choline-PET/CT scan prior to radiotherapy. In 37.5% of cases, a re-delineation and new dose prescription occurred. Data show good preliminary clinical results in terms of biochemical control and toxicity. No gastrointestinal (GI)/genitourinary (GU) grade III toxicities were observed after a median follow-up of 9.5 months. In our experience, concerning the treatment of prostate cancer (PCa), (11)C-choline PET/CT may be helpful in radiotherapy planning, either for dose escalation or exclusion of selected sites.

  15. New Language and Old Problems in Breast Cancer Radiotherapy.

    PubMed

    Chiricuţă, Ion Christian

    2017-01-01

    New developments in breast cancer radiotherapy make possible new standards in treatment recommandations based on international guidelines. Developments in radiotherapy irradiation techniques from 2D to 3D-Conformal RT and to IMRT (Intensity Modulated Arc Therapy) make possible to reduce the usual side effects on the organs at risk as: skin, lung, miocard, bone, esophagus and brahial plexus. Dispite of all these progresses acute and late side effects are present. Side effects are as old as the radiotherapy was used. New solutions are available now by improving irradiation techniques. New techniques as sentinel node procedure (SNP) or partial breast irradiation (PBRT) and immediate breast reconstruction with silicon implants (IBRIS) make necessary new considerations regarding the target volume delineations. A new language for definition of gross tumor volume (GTV), clinical target volume (CTV) based on the new diagnostic methods as PET/CT,nonaparticle MRI will have real impact on target delineation and irradiation techniques. "The new common language in breast cancer therapy" would be the first step to improve the endresults and finally the quality of life of the patients. Celsius.

  16. Intensity position modulation for free-space laser communication system

    NASA Astrophysics Data System (ADS)

    Jangjoo, Alireza; Faghihi, F.

    2004-12-01

    In this research a novel modulation technique for free-space laser communication system called Intensity Position Modulation (IPM) is carried out. According to TEM00 mode of a laser beam and by linear fitting on the Gaussian function as an approximation, the variation of linear part on the reverse biased pn photodiode produced alternating currents which contain the information. Here, no characteristic property of the beam as intensity or frequency is changed and only the beam position moves laterally. We demonstrated that in this method no bandwidth is required, so it is possible to reduce the background radiation noise by narrowband filtering of the carrier. The fidelity of the analog voice communication system which is made upon the IPM is satisfactory and we are able to transmit the audio signals up to 1Km.

  17. Effectiveness of esophagectomy in patients with thoracic esophageal squamous cell carcinoma receiving definitive radiotherapy or concurrent chemoradiotherapy through intensity-modulated radiation therapy techniques.

    PubMed

    Yen, Yu-Chun; Chang, Jer-Hwa; Lin, Wei-Cheng; Chiou, Jeng-Fong; Chang, Yin-Chun; Chang, Chia-Lun; Hsu, Han-Lin; Chow, Jyh-Ming; Yuan, Kevin Sheng-Po; Wu, Alexander T H; Wu, Szu-Yuan

    2017-06-01

    Few large, prospective, randomized studies have investigated the effectiveness of esophagectomy in patients with thoracic esophageal squamous cell carcinoma (TESCC) who receive definitive radiotherapy (RT) or concurrent chemoradiotherapy (CCRT) through modern, intensity modulated-RT (IMRT) techniques. The therapeutic effects of esophagectomy in patients with TESCC were evaluated using modern clinical staging and RT techniques and suitable RT doses. The authors analyzed data from patients with TESCC from the Taiwan Cancer Registry database. Patients were categorized into the following groups on the basis of treatment modality to compare their outcomes: group 1 received definitive CCRT, group 2 received neoadjuvant RT followed by esophagectomy (total IMRT dose, ≥50 grays [Gy]), and group 3 receiving neoadjuvant CCRT followed by esophagectomy (total IMRT dose, ≥ 50 Gy). The median total RT dose and fraction size were 50.4 Gy and 1.8 Gy per fraction, respectively. Group 1 was used as the control arm for investigating the risk of mortality after treatment. In total, 3123 patients who had TESCC without distant metastasis were enrolled. Patient ages 65 years and older, Charlson comorbidity index scores ≥3, advanced clinical stages (IIA-IIIC), alcohol consumption, and cigarette smoking were identified as significant, independent poor prognostic risk factors for overall survival in multivariate Cox regression analyses. In group 3, after adjustment for confounders, the adjusted hazard ratios (95% confidence intervals [CIs]) for overall mortality were 0.62 (95% CI, 0.41-0.93) for patients with clinical stage IIA disease, 0.61 (95% CI, 0.41-0.91) for those with clinical stage IIB disease, 0.47 (95% CI, 0.38-0.55) for those with clinical stage IIIA disease, 0.47 (95% CI, 0.39-0.56) for those with clinical stage IIIB disease, and 0.46 (95% CI, 0.37-0.57) for those with clinical stage IIIC disease. Esophagectomy can be beneficial in patients with TESCC after definitive

  18. Subcarrier intensity modulation for MIMO visible light communications

    NASA Astrophysics Data System (ADS)

    Celik, Yasin; Akan, Aydin

    2018-04-01

    In this paper, subcarrier intensity modulation (SIM) is investigated for multiple-input multiple-output (MIMO) visible light communication (VLC) systems. A new modulation scheme called DC-aid SIM (DCA-SIM) is proposed for the spatial modulation (SM) transmission plan. Then, DCA-SIM is extended for multiple subcarrier case which is called DC-aid Multiple Subcarrier Modulation (DCA-MSM). Bit error rate (BER) performances of the considered system are analyzed for different MIMO schemes. The power efficiencies of DCA-SIM and DCA-MSM are shown in correlated MIMO VLC channels. The upper bound BER performances of the proposed models are obtained analytically for PSK and QAM modulation types in order to validate the simulation results. Additionally, the effect of power imbalance method on the performance of SIM is studied and remarkable power gains are obtained compared to the non-power imbalanced cases. In this work, Pulse amplitude modulation (PAM) and MSM-Index are used as benchmarks for single carrier and multiple carrier cases, respectively. And the results show that the proposed schemes outperform PAM and MSM-Index for considered single carrier and multiple carrier communication scenarios.

  19. Postoperative Intensity-Modulated Radiotherapy for Squamous Cell Carcinoma of the External Auditory Canal and Middle Ear: Treatment Outcomes, Marginal Misses, and Perspective on Target Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wan-Yu; Kuo, Sung-Hsin; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan

    Purpose: To report outcomes of the rare disease of squamous cell carcinoma (SCC) of the external auditory canal (EAC) and middle ear treated with surgery and postoperative intensity-modulated radiotherapy (IMRT). Failure patterns related to spatial dose distribution were also analyzed to provide insight into target delineation. Methods and Materials: A retrospective review was conducted of the records of 11 consecutive patients with SCC of the EAC and middle ear who were treated with curative surgery and postoperative IMRT at one institution between January 2007 and February 2010. The prescribed IMRT dose was 60 to 66 Gy at 2 Gy permore » fraction. Three patients also received concurrent cisplatin-based chemotherapy, and 1 patient received concurrent oral tegafur/uracil. The median follow-up time was 19 months (range, 6-33 months). Results: Four patients had locoregional recurrence, yielding an estimated 2-year locoregional control rate of 70.7%. Among them, 1 patient had persistent disease after treatment, and 3 had marginal recurrence. Distant metastasis occurred in 1 patient after extensive locoregional recurrence, yielding an estimated 2-year distant control rate of 85.7%. The estimated 2-year overall survival was 67.5%. The three cases of marginal recurrence were near the preauricular space and glenoid fossa of the temporomandibular joint, adjacent to the apex of the ear canal and glenoid fossa of the temporomandibular joint, and in the postauricular subcutaneous area and ipsilateral parotid nodes, respectively. Conclusions: Marginal misses should be recognized to improve target delineation. When treating SCC of the EAC and middle ear, care should be taken to cover the glenoid fossa of the temporomandibular joint and periauricular soft tissue. Elective ipsilateral parotid irradiation should be considered. The treatment planning procedure should also be refined to balance subcutaneous soft-tissue dosimetry and toxicity.« less

  20. Lack of Osteoradionecrosis of the Mandible After Intensity-Modulated Radiotherapy for Head and Neck Cancer: Likely Contributions of Both Dental Care and Improved Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-David, Merav A.; Diamante, Maximiliano; Radawski, Jeffrey D.

    Purpose: To assess the prevalence and dosimetric and clinical predictors of mandibular osteoradionecrosis (ORN) in patients with head and neck cancer who underwent a pretherapy dental evaluation and prophylactic treatment according to a uniform policy and were treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Between 1996 and 2005, all patients with head-and-neck cancer treated with parotid gland-sparing IMRT in prospective studies underwent a dental examination and prophylactic treatment according to a uniform policy that included extractions of high-risk, periodontally involved, and nonrestorable teeth in parts of the mandible expected to receive high radiation doses, fluoride supplements, and the placementmore » of guards aiming to reduce electron backscatter off metal teeth restorations. The IMRT plans included dose constraints for the maximal mandibular doses and reduced mean parotid gland and noninvolved oral cavity doses. A retrospective analysis of Grade 2 or worse (clinical) ORN was performed. Results: A total of 176 patients had a minimal follow-up of 6 months. Of these, 31 (17%) had undergone teeth extractions before RT and 13 (7%) after RT. Of the 176 patients, 75% and 50% had received {>=}65 Gy and {>=}70 Gy to {>=}1% of the mandibular volume, respectively. Falloff across the mandible characterized the dose distributions: the average gradient (in the axial plane containing the maximal mandibular dose) was 11 Gy (range, 1-27 Gy; median, 8 Gy). At a median follow-up of 34 months, no cases of ORN had developed (95% confidence interval, 0-2%). Conclusion: The use of a strict prophylactic dental care policy and IMRT resulted in no case of clinical ORN. In addition to the dosimetric advantages offered by IMRT, meticulous dental prophylactic care is likely an essential factor in reducing ORN risk.« less

  1. Postoperative intensity-modulated radiotherapy for squamous cell carcinoma of the external auditory canal and middle ear: treatment outcomes, marginal misses, and perspective on target delineation.

    PubMed

    Chen, Wan-Yu; Kuo, Sung-Hsin; Chen, Yu-Hsuan; Lu, Szu-Huai; Tsai, Chiao-Ling; Cheng, Jason Chia-Hsien; Hong, Ruey-Long; Chen, Ya-Fang; Hsu, Chuan-Jen; Lin, Kai-Nan; Ko, Jenq-Yuh; Lou, Pei-Jen; Wang, Cheng-Ping; Chong, Fok-Ching; Wang, Chun-Wei

    2012-03-15

    To report outcomes of the rare disease of squamous cell carcinoma (SCC) of the external auditory canal (EAC) and middle ear treated with surgery and postoperative intensity-modulated radiotherapy (IMRT). Failure patterns related to spatial dose distribution were also analyzed to provide insight into target delineation. A retrospective review was conducted of the records of 11 consecutive patients with SCC of the EAC and middle ear who were treated with curative surgery and postoperative IMRT at one institution between January 2007 and February 2010. The prescribed IMRT dose was 60 to 66 Gy at 2 Gy per fraction. Three patients also received concurrent cisplatin-based chemotherapy, and 1 patient received concurrent oral tegafur/uracil. The median follow-up time was 19 months (range, 6-33 months). Four patients had locoregional recurrence, yielding an estimated 2-year locoregional control rate of 70.7%. Among them, 1 patient had persistent disease after treatment, and 3 had marginal recurrence. Distant metastasis occurred in 1 patient after extensive locoregional recurrence, yielding an estimated 2-year distant control rate of 85.7%. The estimated 2-year overall survival was 67.5%. The three cases of marginal recurrence were near the preauricular space and glenoid fossa of the temporomandibular joint, adjacent to the apex of the ear canal and glenoid fossa of the temporomandibular joint, and in the postauricular subcutaneous area and ipsilateral parotid nodes, respectively. Marginal misses should be recognized to improve target delineation. When treating SCC of the EAC and middle ear, care should be taken to cover the glenoid fossa of the temporomandibular joint and periauricular soft tissue. Elective ipsilateral parotid irradiation should be considered. The treatment planning procedure should also be refined to balance subcutaneous soft-tissue dosimetry and toxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Proof of Principle of Ocular sparing in dogs with sinonasal tumors treated with intensity-modulated radiation therapy

    PubMed Central

    Lawrence, Jessica A.; Forrest, Lisa J.; Turek, Michelle M.; Miller, Paul E.; Mackie, T. Rockwell; Jaradat, Hazim A.; Vail, David M.; Dubielzig, Richard R.; Chappell, Richard; Mehta, Minesh P.

    2010-01-01

    Intensity modulated radiation therapy (IMRT) allows optimization of radiation dose delivery to complex tumor volumes with rapid dose drop-off to surrounding normal tissues. A prospective study was performed to evaluate the concept of conformal avoidance using IMRT in canine sinonasal cancer. The potential of IMRT to improve clinical outcome with respect to acute and late ocular toxicity was evaluated. Thirty-one dogs with sinonasal cancer were treated definitively with IMRT using helical tomotherapy and/or dynamic multileaf collimator (DMLC) delivery. Ocular toxicity was evaluated prospectively and compared to a comparable group of historical controls treated with conventional two-dimensional radiotherapy (2D-RT) techniques. Treatment plans were devised for each dog using helical tomotherapy and DMLC that achieved the target dose to the planning treatment volume and limited critical normal tissues to the prescribed dose-volume constraints. Overall acute and late toxicities were limited and minor, detectable by an experienced observer. This was in contrast to the profound ocular morbidity observed in the historical control group treated with 2D-RT. Overall median survival for IMRT treated and 2D treated dogs was 420 days and 411 days, respectively. Compared with conventional techniques, IMRT reduced dose delivered to eyes and resulted in bilateral ocular sparing in the dogs reported herein. These data provide proof-of-principle that conformal avoidance radiotherapy can be delivered through high conformity IMRT, resulting in decreased normal tissue toxicity as compared to historical controls treated with 2D-RT. PMID:20973393

  3. A multicentre 'end to end' dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy.

    PubMed

    Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah

    2017-12-01

    External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.

    PubMed

    Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C

    2012-02-15

    Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by

  5. [Dynamic observation on the short-term change of xerostomia after intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma].

    PubMed

    Li, Yanjie; Zhao, Changqing

    2015-01-01

    To dynamically analyze the change of xerostomia in patients with nasopharyngeal carcinoma after radiotherapy by DW MRI. Twenty-three nasopharyngeal carcinoma patients confirmed by pathology were enrolled. Male/Female: 19/4. The age was from 37 to 69 years. The patients were divided into two groups: G1, Dmean<26 Gy, G2, Dmean ≥ 26 Gy. All patients underwent salivary glands examination by DW MRI before IMRT, at the end of IMRT, 6 months and 12 months after IMRT, at the same time the ADC value of salivary glands were calculated. According to the RTOG/EORTC salivary gland injury grading standard and referring the subjective index, the degree of xerostomia was assessed. SPSS 13.0 and SAS 8.2 software were used to analyze the data. At the end of IMRT, the change tendency of ADC in parotid and submandibular glands value was different in patients with different degree of xerostomia (F = 11.52, P < 0.01). At the end of IMRT, a significant difference for degree of xerostomia could be found in patients within different irradiation dose groups (Z = -3.622, P < 0.01). Clinical stage, treatment mode and age had no significant effect on the degree of xerostomia for patients at the end of IMRT (Z value was -0.791, -0.949, 2.488, all P > 0.05). A significant difference of xerostomia degree in patients was found at the various follow-up time after IMRT (χ(2) = 19.59, P < 0.01). There is good correlation between the function of salivary gland and subjective rating of xerostomia in patients with nasopharyngeal carcinoma after radiotherapy. The degrees of salivary gland function and dry mouth in patients with nasopharyngeal carcinoma damage evaluate with illuminated dose increases. The function of salivary gland gradually restored and the degree of dry mouth gradually reduce with the extension of time after radiotherapy.

  6. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deasy, Joseph O., E-mail: jdeasy@radonc.wustl.ed; Moiseenko, Vitali; Marks, Lawrence

    2010-03-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than {approx}20 Gy or if both glands are spared to less than {approx}25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. Amore » lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk.« less

  7. Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy.

    PubMed

    Yamazaki, Hideya; Demizu, Yusuke; Okimoto, Tomoaki; Ogita, Mikio; Himei, Kengo; Nakamura, Satoaki; Suzuki, Gen; Yoshida, Ken; Kotsuma, Tadayuki; Yoshioka, Yasuo; Oh, Ryoongjin

    2017-07-01

    To examine the outcomes of reirradiation for recurrent head and neck cancers using different modalities. This retrospective study included 26 patients who received charged particle radiotherapy (CP) and 150 who received photon radiotherapy (117 CyberKnife radiotherapy [CK] and 36 intensity-modulated radiotherapy [IMRT]). Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. Higher prescribed doses were used in CP than photon radiotherapy. The 1‑year overall survival (OS) rates were 67.9% for CP and 54.1% for photon radiotherapy (p = 0.15; 55% for CK and 51% for IMRT). In multivariate Cox regression, the significant prognostic factors for better survival were nasopharyngeal cancer, higher prescribed dose, and lower tumor volume. IPTW showed a statistically significant difference between CP and photon radiotherapy (p = 0.04). The local control rates for patients treated with CP and photon radiotherapy at 1 year were 66.9% (range 46.3-87.5%) and 67.1% (range 58.3-75.9%), respectively. A total of 48 patients (27%) experienced toxicity grade ≥3 (24% in the photon radiotherapy group and 46% in the CP group), including 17 patients with grade 5 toxicity. Multivariate analysis revealed that younger age and a larger planning target volume (PTV) were significant risk factors for grade 3 or worse toxicity. CP provided superior survival outcome compared to photon radiotherapy. Tumor volume, primary site (nasopharyngeal), and prescribed dose were identified as survival factors. Younger patients with a larger PTV experienced toxicity grade ≥3.

  8. Quality assurance of intensity-modulated radiation therapy.

    PubMed

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.

  9. Fatal pneumonitis associated with intensity-modulated radiation therapy for mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Aaron M.; Czerminska, Maria; Jaenne, Pasi A.

    2006-07-01

    Purpose: To describe the initial experience at Dana-Farber Cancer Institute/Brigham and Women's Hospital with intensity-modulated radiation therapy (IMRT) as adjuvant therapy after extrapleural pneumonectomy (EPP) and adjuvant chemotherapy. Methods and Materials: The medical records of patients treated with IMRT after EPP and adjuvant chemotherapy were retrospectively reviewed. IMRT was given to a dose of 54 Gy to the clinical target volume in 1.8 Gy daily fractions. Treatment was delivered with a dynamic multileaf collimator using a sliding window technique. Eleven of 13 patients received heated intraoperative cisplatin chemotherapy (225 mg/m{sup 2}). Two patients received neoadjuvant intravenous cisplatin/pemetrexed, and 10 patientsmore » received adjuvant cisplatin/pemetrexed chemotherapy after EPP but before radiation therapy. All patients received at least 2 cycles of intravenous chemotherapy. The contralateral lung was limited to a V20 (volume of lung receiving 20 Gy or more) of 20% and a mean lung dose (MLD) of 15 Gy. All patients underwent fluorodeoxyglucose positron emission tomography (FDG-PET) for staging, and any FDG-avid areas in the hemithorax were given a simultaneous boost of radiotherapy to 60 Gy. Statistical comparisons were done using two-sided t test. Results: Thirteen patients were treated with IMRT from December 2004 to September 2005. Six patients developed fatal pneumonitis after treatment. The median time from completion of IMRT to the onset of radiation pneumonitis was 30 days (range 5-57 days). Thirty percent of patients (4 of 13) developed acute Grade 3 nausea and vomiting. One patient developed acute Grade 3 thrombocytopenia. The median V20, MLD, and V5 (volume of lung receiving 5 Gy or more) for the patients who developed pneumonitis was 17.6% (range, 15.3-22.3%), 15.2 Gy (range, 13.3-17 Gy), and 98.6% (range, 81-100%), respectively, as compared with 10.9% (range, 5.5-24.7%) (p = 0.08), 12.9 Gy (range, 8.7-16.9 Gy) (p = 0.07), and 90

  10. The cost of radiotherapy in a decade of technology evolution.

    PubMed

    Van de Werf, Evelyn; Verstraete, Jan; Lievens, Yolande

    2012-01-01

    To quantify changes in radiotherapy costs occurring in a decade of medical-technological evolution. The activity-based costing (ABC) model of the University Hospitals Leuven (UHL) radiotherapy (RT) department was adapted to current RT standards. It allocated actual resource costs to the treatments based on the departmental work-flow and patient mix in 2009. A benchmark with the former model analyzed the cost increases related to changes in RT infrastructure and practice over 10 years. A considerable increase in total RT costs was observed, resulting from higher capital investments (96%) and personnel cost (103%), the latter dominating the total picture. Treatment delivery remains the most costly activity, boosted by the cost of improved quality assurance (QA), 23% of total product costs, coming along with more advanced RT techniques. Hence, cost increases at the product level are most obvious for complex treatments, such as intensity-modulated radiotherapy (IMRT), representing cost increases ranging between 38% and 88% compared to conformal approaches. The ABC model provides insight into the financial consequences of evolving technology and practice. Such data are a mandatory first step in our strive to prove RT cost-effectiveness and thus support optimal reimbursement and provision of radiotherapy departments. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Dosimetric Factors Associated With Long-Term Dysphagia After Definitive Radiotherapy for Squamous Cell Carcinoma of the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudell, Jimmy J.; Schaner, Philip E.; Desmond, Renee A.

    2010-02-01

    Purpose: Intensification of radiotherapy and chemotherapy for head-and-neck cancer may lead to increased rates of dysphagia. Dosimetric predictors of objective findings of long-term dysphagia were sought. Methods and Materials: From an institutional database, 83 patients were identified who underwent definitive intensity-modulated radiotherapy for squamous cell carcinoma of the head and neck, after exclusion of those who were treated for a second or recurrent head-and-neck primary lesion, had locoregional recurrence at any time, had less than 12 months of follow-up, or had postoperative radiotherapy. Dosimetric parameters were analyzed relative to three objective endpoints as a surrogate for severe long-term dysphagia: percutaneousmore » endoscopic gastrostomy (PEG) tube dependence at 12 months, aspiration on modified barium swallow, or pharyngoesophageal stricture requiring dilation. Results: Mean dose greater than 41 Gy and volume receiving 60 Gy (V{sub 60}) greater than 24% to the larynx were significantly associated with PEG tube dependence and aspiration. V{sub 60} greater than 12% to the inferior pharyngeal constrictor was also significantly associated with increased PEG tube dependence and aspiration. V{sub 65} greater than 33% to the superior pharyngeal constrictor or greater than 75% to the middle pharyngeal constrictor was associated with pharyngoesophageal stricture requiring dilation. Conclusions: Doses to the larynx and pharyngeal constrictors predicted long-term swallowing complications, even when controlled for other clinical factors. The addition of these structures to intensity-modulated radiotherapy optimization may reduce the incidence of dysphagia, although cautious clinical validation is necessary.« less

  12. Fixed or adapted conditioning intensity for repeated conditioned pain modulation.

    PubMed

    Hoegh, M; Petersen, K K; Graven-Nielsen, T

    2017-12-29

    Aims Conditioned pain modulation (CPM) is used to assess descending pain modulation through a test stimulation (TS) and a conditioning stimulation (CS). Due to potential carry-over effects, sequential CPM paradigms might alter the intensity of the CS, which potentially can alter the CPM-effect. This study aimed to investigate the difference between a fixed and adaptive CS intensity on CPM-effect. Methods On the dominant leg of 20 healthy subjects the cuff pressure detection threshold (PDT) was recorded as TS and the pain tolerance threshold (PTT) was assessed on the non-dominant leg for estimating the CS. The difference in PDT before and during CS defined the CPM-effect. The CPM-effect was assessed four times using a CS with intensities of 70% of baseline PTT (fixed) or 70% of PTT measured throughout the session (adaptive). Pain intensity of the conditioning stimulus was assessed on a numeric rating scale (NRS). Data were analyzed with repeated-measures ANOVA. Results No difference was found comparing the four PDTs assessed before CSs for the fixed and the adaptive paradigms. The CS pressure intensity for the adaptive paradigm was increasing during the four repeated assessments (P < 0.01). The pain intensity was similar during the fixed (NRS: 5.8±0.5) and the adjusted paradigm (NRS: 6.0±0.4). The CPM-effect was higher using the fixed condition compared with the adaptive condition (P < 0.05). Conclusions The current study found that sequential CPM paradigms using a fixed conditioning stimulus produced an increased CPM-effect compared with adaptive and increasing conditioning intensities.

  13. Filter Bank Multicarrier (FBMC) for long-reach intensity modulated optical access networks

    NASA Astrophysics Data System (ADS)

    Saljoghei, Arsalan; Gutiérrez, Fernando A.; Perry, Philip; Barry, Liam P.

    2017-04-01

    Filter Bank Multi Carrier (FBMC) is a modulation scheme which has recently attracted significant interest in both wireless and optical communications. The interest in optical communications arises due to FBMC's capability to operate without a Cyclic Prefix (CP) and its high resilience to synchronisation errors. However, the operation of FBMC in optical access networks has not been extensively studied either in downstream or upstream. In this work we use experimental work to investigate the operation of FBMC in intensity modulated Passive Optical Networks (PONs) employing direct detection in conjunction with both direct and external modulation schemes. The data rates and propagation lengths employed here vary from 8.4 to 14.8 Gb/s and 0-75 km. The results suggest that by using FBMC it is possible to accomplish CP-Less transmission up to 75 km of SSMF in passive links using cost effective intensity modulation and detection schemes.

  14. [High-intensity focused ultrasound (HIFU): our experience in the treatment of prostate cancer relapsing after radiotherapy].

    PubMed

    Giovanessi, Luca; Peroni, Angelo; Mirabella, Giuseppe; Fugini, Andrea Vismara; Zani, Danilo; Cunico, Sergio Cosciani; Simeone, Claudio

    2011-01-01

    The aim of the study is to evaluate the safety and efficacy of high-intensity focused ultrasound (HIFU) treatment in patients with local prostate cancer recurrence after radiotherapy. From February 2009 to June 2010, 14 patients with prostate cancer recurrence after radiotherapy were selected for HIFU treatment; all patients had a positive TRUS-guided biopsy and the absence of distant metastases was confirmed by computer tomography, PET choline or bone scintigraphy. We classified all patients in 3 groups using D'Amico's classification: 4 patients high risk (PSA >20 ng/ml - 8≤ Gleason Score≤ 10 - clinical stage≥T2c), 8 patients intermediate risk (10 PSAnadir+1.2ng/ml) or after adjuvant therapy introduction. All complications were recorded. Of the 14 patients selected, 12 patients underwent HIFU treatments; 2 patients were excluded because of rectal strictures induced by radiotherapy. At a mean 13 months' follow-up, biochemical success rate was obtained in 1 of the high risk patients and in 5 of the low and intermediate risk patients; 1 man died for a disease not correlated with prostate cancer recurrence. Complications included urinary tract infection, acute urinary retentions, urethral strictures and light stress incontinence. In our experience salvage HIFU is a safe treatment option for local relapse after radiotherapy; its efficacy depends on a careful patient selection.

  15. Radiation dose escalation by simultaneous modulated accelerated radiotherapy combined with chemotherapy for esophageal cancer: a phase II study.

    PubMed

    Chen, Jianzhou; Guo, Hong; Zhai, Tiantian; Chang, Daniel; Chen, Zhijian; Huang, Ruihong; Zhang, Wuzhe; Lin, Kun; Guo, Longjia; Zhou, Mingzhen; Li, Dongsheng; Li, Derui; Chen, Chuangzhen

    2016-04-19

    The outcomes for patients with esophageal cancer (EC) underwent standard-dose radical radiotherapy were still disappointing. This phase II study investigated the feasibility, safety and efficacy of radiation dose escalation using simultaneous modulated accelerated radiotherapy (SMART) combined with chemotherapy in 60 EC patients. Radiotherapy consisted of 66Gy at 2.2 Gy/fraction to the gross tumor and 54Gy at 1.8 Gy/fraction to subclinical diseases simultaneously. Chemotherapy including cisplatin and 5fluorouracil were administered to all patients during and after radiotherapy. The data showed that the majority of patients (98.3%) completed the whole course of radiotherapy and concurrent chemotherapy. The most common ≥ grade 3 acute toxicities were neutropenia (16.7%), followed by esophagitis (6.7%) and thrombopenia (5.0%). With a median follow-up of 24 months (5-38) for all patients and 30 months (18-38) for those still alive, 11 patients (18.3%) developed ≥ Grade 3 late toxicities and 2 (3.3%) of them died subsequently due to esophageal hemorrhage. The 1- and 2-year local-regional control, distant metastasis-free survival, disease-free survival and overall survival rates were 87.6% and 78.6%, 86.0% and 80.5%, 75.6% and 64.4%, 86.7% and 72.7%, respectively. SMART combined with concurrent chemotherapy is feasible in EC patients with tolerable acute toxicities. They showed a trend of significant improvements in local-regional control and overall survival. Further follow-up is needed to evaluate the late toxicities.

  16. Quality of life in very elderly radiotherapy patients: a prospective pilot study using the EORTC QLQ-ELD14 module.

    PubMed

    Kaufmann, Anne; Schmidt, Heike; Ostheimer, Christian; Ullrich, Janine; Landenberger, Margarete; Vordermark, Dirk

    2015-07-01

    In very elderly cancer patients, health-related quality of life (HRQOL) is a particularly important issue but has rarely been studied due to a lack of specific instruments and of reference data. We performed a prospective analysis of HRQOL in patients ≥80 years undergoing radiotherapy with the newly validated elderly-specific HRQOL module EORTC QLQ-ELD14. We prospectively assessed HRQOL in n = 50 radiotherapy patients ≥80 years (32% lung, 20% gastrointestinal, 8% each of breast, head and neck, gynecologic cancer) at the start (t1), end (t2), and 6 months after (t3) radiotherapy, using EORTC QLQ-C30 and EORTC QLQ-ELD14. Overall survival was determined in the whole cohort and subgroups. Median overall survival from the start of radiotherapy was 15 months; 1-year and 2-year overall survival rates were 57.1 and 31.0%, respectively. Eastern Cooperative Oncology Group (ECOG) performance status <2, Charlson comorbidity index ≤6, curative treatment intention, local tumor stage Union Internationale Contre le Cancer (UICC I, II), and total dose >45 Gy were associated with prolonged survival. No significant changes in any HRQOL domain were observed during the course of treatment (t1 to t2). Six months after radiotherapy (t3), a significant and clinically relevant deterioration of HRQOL was seen in EORTC QLQ-C30 for physical function and role function and in EORTC QLQ-ELD14 for future worries, burden of illness, and family support. In radiotherapy patients ≥80 years, HRQOL was maintained until the end of radiotherapy but deteriorated in general and elderly-specific areas thereafter, suggesting a need to develop specific supportive interventions for this age group.

  17. Mediastinal irradiation in a patient affected by lung carcinoma after heart transplantation: Helical tomotherapy versus three dimensional conformal radiotherapy.

    PubMed

    Giugliano, Francesca M; Iorio, Vincenzo; Cammarota, Fabrizio; Toledo, Diego; Senese, Rossana; Francomacaro, Ferdinando; Muto, Matteo; Muto, Paolo

    2016-04-26

    Patients who have undergone solid organ transplants are known to have an increased risk of neoplasia compared with the general population. We report our experience using mediastinal irradiation with helical tomotherapy versus three-dimensional conformal radiation therapy to treat a patient with lung carcinoma 15 years after heart transplantation. Our dosimetric evaluation showed no particular difference between the techniques, with the exception of some organs. Mediastinal irradiation after heart transplantation is feasible and should be considered after evaluation of the risk. Conformal radiotherapy or intensity-modulated radiotherapy appears to be the appropriate treatment in heart-transplanted oncologic patients.

  18. Device to color modulate a stationary light beam gives high intensity

    NASA Technical Reports Server (NTRS)

    Gantz, W. A.

    1966-01-01

    Signal controlled system color modulates a beam of light while also providing high intensity and a stationary beam, either collimated or focused. The color modulation acquired by the presented system can be compatible with any color film by employing color filters formed to provide a color wedge having a color distribution compatible with the films color sensitivity.

  19. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Liu, Tian X.; Liu, Arthur K.

    2014-10-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy includingmore » Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed

  20. Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators.

    PubMed

    Wei, J L; Hugues-Salas, E; Giddings, R P; Jin, X Q; Zheng, X; Mansoor, S; Tang, J M

    2010-05-10

    Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5 Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10 Gb/s downstream and 6 Gb/s upstream over 40 km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23 Gb/s downstream and 8 Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems. (c) 2010 Optical Society of America.

  1. Adaptive radiotherapy for head and neck cancers: Fact or fallacy to improve therapeutic ratio?

    PubMed

    Li, Y Q; Tan, J S H; Wee, J T S; Chua, M L K

    2018-04-23

    Modern standards of precision radiotherapy, primarily driven by the technological advances of intensity modulation and image guidance, have led to increased versatility in radiotherapy planning and delivery. The ability to shape doses around critical normal organs, while simultaneously "painting" boost doses to the tumor have translated to substantial therapeutic gains in head and neck cancer patients. Recently, dose adaptation (or adaptive radiotherapy) has been proposed as a novel concept to enhance the therapeutic ratio of head and neck radiotherapy, facilitated in part by the onset of molecular and functional imaging. These contemporary imaging techniques have enabled visualisation of the spatial molecular architecture of the tumor. Daily cone-beam imaging, besides improving treatment accuracy, offers another unique angle to explore radiomics - a novel high throughput feature extraction and selection workflow, for adapting radiotherapy based on real-time tumor changes. Here, we review the existing evidence of molecular and functional imaging in head and neck cancers, as well as the current application of adaptive radiotherapy in the treatment of this tumor type. We propose that adaptive radiotherapy can be further exploited through a systematic application of molecular and functional imaging, including radiomics, at the different phases of planning and treatment. Copyright © 2018 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  2. Ultrasound-modulated optical tomography with intense acoustic bursts.

    PubMed

    Zemp, Roger J; Kim, Chulhong; Wang, Lihong V

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  3. Characterization and compensation of the residual chirp in a Mach-Zehnder-type electro-optical intensity modulator.

    PubMed

    Rogers, C E; Carini, J L; Pechkis, J A; Gould, P L

    2010-01-18

    We utilize various techniques to characterize the residual phase modulation of a waveguide-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.

  4. Development of three-dimensional radiotherapy techniques in breast cancer

    NASA Astrophysics Data System (ADS)

    Coles, Charlotte E.

    Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research

  5. Clinical applications of image guided-intensity modulated radiation therapy (IG-IMRT) for conformal avoidance of normal tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez, Alonso Navar

    2007-12-01

    Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the

  6. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  7. Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.

    2009-03-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.

  8. Clinical utility of RapidArc™ radiotherapy technology

    PubMed Central

    Infusino, Erminia

    2015-01-01

    RapidArc™ is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360°) and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT), compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords “RapidArc”, “Volumetric modulated arc radiotherapy”, and “Intensity-modulated radiotherapy”. PMID:26648755

  9. Statistical process control analysis for patient quality assurance of intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Rena; Kim, Kyubo; Cho, Samju; Lim, Sangwook; Lee, Suk; Shim, Jang Bo; Huh, Hyun Do; Lee, Sang Hoon; Ahn, Sohyun

    2017-11-01

    This study applied statistical process control to set and verify the quality assurances (QA) tolerance standard for our hospital's characteristics with the criteria standards that are applied to all the treatment sites with this analysis. Gamma test factor of delivery quality assurances (DQA) was based on 3%/3 mm. Head and neck, breast, prostate cases of intensity modulated radiation therapy (IMRT) or volumetric arc radiation therapy (VMAT) were selected for the analysis of the QA treatment sites. The numbers of data used in the analysis were 73 and 68 for head and neck patients. Prostate and breast were 49 and 152 by MapCHECK and ArcCHECK respectively. C p value of head and neck and prostate QA were above 1.0, C pml is 1.53 and 1.71 respectively, which is close to the target value of 100%. C pml value of breast (IMRT) was 1.67, data values are close to the target value of 95%. But value of was 0.90, which means that the data values are widely distributed. C p and C pml of breast VMAT QA were respectively 1.07 and 2.10. This suggests that the VMAT QA has better process capability than the IMRT QA. Consequently, we should pay more attention to planning and QA before treatment for breast Radiotherapy.

  10. Technological advances in radiotherapy of rectal cancer: opportunities and challenges.

    PubMed

    Appelt, Ane L; Sebag-Montefiore, David

    2016-07-01

    This review summarizes the available evidence for the use of modern radiotherapy techniques for chemoradiotherapy for rectal cancer, with specific focus on intensity-modulated radiotherapy (IMRT) and volumetric arc therapy (VMAT) techniques. The dosimetric benefits of IMRT and VMAT are well established, but prospective clinical studies are limited, with phase I-II studies only. Recent years have seen the publication of a few larger prospective patient series as well as some retrospective cohorts, several of which include much needed late toxicity data. Overall results are encouraging, as toxicity levels - although varying across reports - appear lower than for 3D conformal radiotherapy. Innovative treatment techniques and strategies which may be facilitated by the use of IMRT/VMAT include simultaneously integrated tumour boost, adaptive treatment, selective sparing of specific organs to enable chemotherapy escalation, and nonsurgical management. Few prospective studies of IMRT and VMAT exist, which causes uncertainty not just in regards to the clinical benefit of these technologies but also in the optimal use. The priority for future research should be subgroups of patients who might receive relatively greater benefit from innovative treatment techniques, such as patients receiving chemoradiotherapy with definitive intent and patients treated with dose escalation.

  11. FusionArc optimization: a hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy.

    PubMed

    Matuszak, Martha M; Steers, Jennifer M; Long, Troy; McShan, Daniel L; Fraass, Benedick A; Romeijn, H Edwin; Ten Haken, Randall K

    2013-07-01

    To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT. A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT∕hybrid beams. The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achieved superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%-43.7% fewer MU∕Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost--32.9%-55.2% compared to single-arc VMAT--the decrease in MU∕Gy compared to IMRT was noticeably smaller at 12.2%-18.5%, when compared to IMRT. A hybrid VMAT∕IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom. This optimization method will allow

  12. Clinical challenges in the implementation of a tomotherapy service for head and neck cancer patients in a regional UK radiotherapy centre.

    PubMed

    Chatterjee, S; Mott, J H; Smyth, G; Dickson, S; Dobrowsky, W; Kelly, C G

    2011-04-01

    Intensity-modulated radiotherapy (IMRT) is increasingly being used to treat head and neck cancer cases. We discuss the clinical challenges associated with the setting up of an image guided intensity modulated radiotherapy service for a subset of head and neck cancer patients, using a recently commissioned helical tomotherapy (HT) Hi Art (Tomotherapy Inc, WI) machine in this article. We also discuss the clinical aspects of the tomotherapy planning process, treatment and image guidance experiences for the first 10 head and neck cancer cases. The concepts of geographical miss along with tomotherapy-specific effects, including that of field width and megavoltage CT (MVCT) imaging strategy, have been highlighted using the first 10 head and neck cases treated. There is a need for effective streamlining of all aspects of the service to ensure compliance with cancer waiting time targets. We discuss how patient toxicity audits are crucial to guide refinement of the newly set-up planning dose constraints. This article highlights the important clinical issues one must consider when setting up a head and neck IMRT, image-guided radiotherapy service. It shares some of the clinical challenges we have faced during the setting up of a tomotherapy service. Implementation of a clinical tomotherapy service requires a multidisciplinary team approach and relies heavily on good team working and effective communication between different staff groups.

  13. A comparison of intensity modulated x-ray therapy to intensity modulated proton therapy for the delivery of non-uniform dose distributions

    NASA Astrophysics Data System (ADS)

    Flynn, Ryan

    2007-12-01

    The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of

  14. Analysis of Geometric Shifts and Proper Setup-Margin in Prostate Cancer Patients Treated With Pelvic Intensity-Modulated Radiotherapy Using Endorectal Ballooning and Daily Enema for Prostate Immobilization.

    PubMed

    Jeong, Songmi; Lee, Jong Hoon; Chung, Mi Joo; Lee, Sea Won; Lee, Jeong Won; Kang, Dae Gyu; Kim, Sung Hwan

    2016-01-01

    We evaluate geometric shifts of daily setup for evaluating the appropriateness of treatment and determining proper margins for the planning target volume (PTV) in prostate cancer patients.We analyzed 1200 sets of pretreatment megavoltage-CT scans that were acquired from 40 patients with intermediate to high-risk prostate cancer. They received whole pelvic intensity-modulated radiotherapy (IMRT). They underwent daily endorectal ballooning and enema to limit intrapelvic organ movement. The mean and standard deviation (SD) of daily translational shifts in right-to-left (X), anterior-to-posterior (Y), and superior-to-inferior (Z) were evaluated for systemic and random error.The mean ± SD of systemic error (Σ) in X, Y, Z, and roll was 2.21 ± 3.42 mm, -0.67 ± 2.27 mm, 1.05 ± 2.87 mm, and -0.43 ± 0.89°, respectively. The mean ± SD of random error (δ) was 1.95 ± 1.60 mm in X, 1.02 ± 0.50 mm in Y, 1.01 ± 0.48 mm in Z, and 0.37 ± 0.15° in roll. The calculated proper PTV margins that cover >95% of the target on average were 8.20 (X), 5.25 (Y), and 6.45 (Z) mm. Mean systemic geometrical shifts of IMRT were not statistically different in all transitional and three-dimensional shifts from early to late weeks. There was no grade 3 or higher gastrointestinal or genitourianry toxicity.The whole pelvic IMRT technique is a feasible and effective modality that limits intrapelvic organ motion and reduces setup uncertainties. Proper margins for the PTV can be determined by using geometric shifts data.

  15. Analysis of Geometric Shifts and Proper Setup-Margin in Prostate Cancer Patients Treated With Pelvic Intensity-Modulated Radiotherapy Using Endorectal Ballooning and Daily Enema for Prostate Immobilization

    PubMed Central

    Jeong, Songmi; Lee, Jong Hoon; Chung, Mi Joo; Lee, Sea Won; Lee, Jeong Won; Kang, Dae Gyu; Kim, Sung Hwan

    2016-01-01

    Abstract We evaluate geometric shifts of daily setup for evaluating the appropriateness of treatment and determining proper margins for the planning target volume (PTV) in prostate cancer patients. We analyzed 1200 sets of pretreatment megavoltage-CT scans that were acquired from 40 patients with intermediate to high-risk prostate cancer. They received whole pelvic intensity-modulated radiotherapy (IMRT). They underwent daily endorectal ballooning and enema to limit intrapelvic organ movement. The mean and standard deviation (SD) of daily translational shifts in right-to-left (X), anterior-to-posterior (Y), and superior-to-inferior (Z) were evaluated for systemic and random error. The mean ± SD of systemic error (Σ) in X, Y, Z, and roll was 2.21 ± 3.42 mm, −0.67 ± 2.27 mm, 1.05 ± 2.87 mm, and −0.43 ± 0.89°, respectively. The mean ± SD of random error (δ) was 1.95 ± 1.60 mm in X, 1.02 ± 0.50 mm in Y, 1.01 ± 0.48 mm in Z, and 0.37 ± 0.15° in roll. The calculated proper PTV margins that cover >95% of the target on average were 8.20 (X), 5.25 (Y), and 6.45 (Z) mm. Mean systemic geometrical shifts of IMRT were not statistically different in all transitional and three-dimensional shifts from early to late weeks. There was no grade 3 or higher gastrointestinal or genitourianry toxicity. The whole pelvic IMRT technique is a feasible and effective modality that limits intrapelvic organ motion and reduces setup uncertainties. Proper margins for the PTV can be determined by using geometric shifts data. PMID:26765418

  16. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi

    2008-10-01

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.

  17. Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Shen, Xinglei; Yu, Yan

    2013-04-01

    Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. Formore » the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.« less

  18. Carotid artery stiffness evaluated early by wave intensity in normal left ventricular function in post-radiotherapy patients with nasopharyngeal carcinoma.

    PubMed

    Zhang, Zhuo; Luo, Runlan; Tan, Bijun; Qian, Jing; Duan, Yanfang; Wang, Nan; Li, Guangsen

    2018-04-01

    This study aims to assess carotid elasticity early in normal left ventricular function in post-radiotherapy patients with nasopharyngeal carcinoma (NPC) by wave intensity. Sixty-seven post-radiotherapy patients all with normal left ventricular function were classified into group NPC1 and group NPC2 based on their carotid intima-media thickness. Thirty age- and sex-matched NPC patients without any history of irradiation and chemotherapy were included as a control group. Carotid parameters, including stiffness constant (β), pressure-strain elastic modulus (Ep), arterial compliance (AC), stiffness constant pulse wave velocity (PWVβ), and wave intensity pulse wave velocity (PWVWI) were measured. There were no significant differences in conventional echocardiographic variables among the three groups. In comparison with the control group, β, Ep, PWVβ, and PWVWI were significantly increased, while AC was significantly decreased in the NPC1 and NPC2 groups, and there were differences between the NPC1 group and NPC2 group (all P < 0.05). This study suggested that carotid artery stiffness increased with reduced carotid compliance in post-RT with NPC.

  19. Dynamic 3D measurement of modulated radiotherapy: a scintillator-based approach

    NASA Astrophysics Data System (ADS)

    Archambault, Louis; Rilling, Madison; Roy-Pomerleau, Xavier; Thibault, Simon

    2017-05-01

    With the rise of high-conformity dynamic radiotherapy, such as volumetric modulated arc therapy and robotic radiosurgery, the temporal dimension of dose measurement is becoming increasingly important. It must be possible to tell both ‘where’ and ‘when’ a discrepancy occurs between the plan and its delivery. A 3D scintillation-based dosimetry system could be ideal for such a thorough, end-to-end verification; however, the challenge lies in retrieving the volumetric information of the light-emitting volume. This paper discusses the motivation, from an optics point of view, of using the images acquired with a plenoptic camera, or light field imager, of an irradiated plastic scintillator volume to reconstruct the delivered 3D dose distribution. Current work focuses on the optimization of the optical design as well as the data processing that is involved in the ongoing development of a clinically viable, second generation dosimetry system.

  20. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Sengbusch, Evan R.

    , beamlet weight, the number of delivered beamlets, and the number of delivery angles. These methods are evaluated via treatment planning studies including left-sided whole breast irradiation, lung stereotactic body radiotherapy, nasopharyngeal carcinoma, and whole brain radiotherapy with hippocampal avoidance. Improvements in efficiency and efficacy relative to traditional proton therapy and intensity modulated photon radiation therapy are discussed.

  1. Pelvic Nodal Radiotherapy in Patients With Unfavorable Intermediate and High-Risk Prostate Cancer: Evidence, Rationale, and Future Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morikawa, Lisa K.; Memorial Sloan-Kettering Cancer Center; Roach, Mack, E-mail: mroach@radonc.ucsf.ed

    2011-05-01

    Over the past 15 years, there have been three major advances in the use of external beam radiotherapy in the management of men with clinically localized prostate made. They include: (1) image guided (IG) three-dimensional conformal/intensity modulated radiotherapy; (2) radiation dose escalation; and (3) androgen deprivation therapy. To date only the last of these three advances have been shown to improve overall survival. The presence of occult pelvic nodal involvement could explain the failure of increased conformality and dose escalation to prolong survival, because the men who appear to be at the greatest risk of death from clinically localized prostatemore » cancer are those who are likely to have lymph node metastases. This review discusses the evidence for prophylactic pelvic nodal radiotherapy, including the key trials and controversies surrounding this issue.« less

  2. Anaplastic thyroid cancer: Clinical outcomes with conformal radiotherapy.

    PubMed

    Bhatia, Aarti; Rao, Archana; Ang, Kie-Kian; Garden, Adam S; Morrison, William H; Rosenthal, David I; Evans, Douglas B; Clayman, Gary; Sherman, Steven I; Schwartz, David L

    2010-07-01

    The aim of this study was to review institutional outcomes for anaplastic thyroid cancer treated with conformal 3-dimensional radiotherapy (3DRT) or intensity-modulated radiotherapy (IMRT). In all, 53 consecutive patients were analyzed. Thirty-one (58%) patients were irradiated with curative intent. Median radiation dose was 55 Gray (Gy; range, 4-70 Gy). Thirteen (25%) patients received IMRT to a median 60 Gy (range, 39.9-69.0 Gy). Thirty-nine (74%) patients received chemotherapy with radiation. The Kaplan-Meier estimate of overall survival (OS) at 1 year for definitively irradiated patients was 29%. Patients without distant metastases receiving >or=50 Gy had superior survival outcomes; 5 such patients had no evidence of disease at last follow-up. Use of IMRT versus 3DRT did not influence toxicity. Outcomes for anaplastic thyroid cancer treated with 3DRT or IMRT remain equivalent to historical results. Healthy patients with localized disease who tolerate full dose irradiation can potentially enjoy prolonged survival. Biologically targeted radiosensitization merits prioritized investigation. (c) 2009 Wiley Periodicals, Inc.

  3. How to identify rectal sub-regions likely involved in rectal bleeding in prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Dréan, G.; Acosta, O.; Ospina, J. D.; Voisin, C.; Rigaud, B.; Simon, A.; Haigron, P.; de Crevoisier, R.

    2013-11-01

    Nowadays, the de nition of patient-speci c constraints in prostate cancer radiotherapy planning are solely based on dose-volume histogram (DVH) parameters. Nevertheless those DVH models lack of spatial accuracy since they do not use the complete 3D information of the dose distribution. The goal of the study was to propose an automatic work ow to de ne patient-speci c rectal sub-regions (RSR) involved in rectal bleeding (RB) in case of prostate cancer radiotherapy. A multi-atlas database spanning the large rectal shape variability was built from a population of 116 individuals. Non-rigid registration followed by voxel-wise statistical analysis on those templates allowed nding RSR likely correlated with RB (from a learning cohort of 63 patients). To de ne patient-speci c RSR, weighted atlas-based segmentation with a vote was then applied to 30 test patients. Results show the potentiality of the method to be used for patient-speci c planning of intensity modulated radiotherapy (IMRT).

  4. Improving IMRT delivery efficiency using intensity limits during inverse planning.

    PubMed

    Coselmon, Martha M; Moran, Jean M; Radawski, Jeffrey D; Fraass, Benedick A

    2005-05-01

    Inverse planned intensity modulated radiotherapy (IMRT) fields can be highly modulated due to the large number of degrees of freedom involved in the inverse planning process. Additional modulation typically results in a more optimal plan, although the clinical rewards may be small or offset by additional delivery complexity and/or increased dose from transmission and leakage. Increasing modulation decreases delivery efficiency, and may lead to plans that are more sensitive to geometrical uncertainties. The purpose of this work is to assess the use of maximum intensity limits in inverse IMRT planning as a simple way to increase delivery efficiency without significantly affecting plan quality. Nine clinical cases (three each for brain, prostate, and head/neck) were used to evaluate advantages and disadvantages of limiting maximum intensity to increase delivery efficiency. IMRT plans were generated using in-house protocol-based constraints and objectives for the brain and head/neck, and RTOG 9406 dose volume objectives in the prostate. Each case was optimized at a series of maximum intensity ratios (the product of the maximum intensity and the number of beams divided by the prescribed dose to the target volume), and evaluated in terms of clinical metrics, dose-volume histograms, monitor units (MU) required per fraction (SMLC and DMLC delivery), and intensity map variation (a measure of the beam modulation). In each site tested, it was possible to reduce total monitor units by constraining the maximum allowed intensity without compromising the clinical acceptability of the plan. Monitor unit reductions up to 38% were observed for SMLC delivery, while reductions up to 29% were achieved for DMLC delivery. In general, complicated geometries saw a smaller reduction in monitor units for both delivery types, although DMLC delivery required significantly more monitor units in all cases. Constraining the maximum intensity in an inverse IMRT plan is a simple way to improve

  5. Utilization of neoadjuvant intensity-modulated radiation therapy and proton beam therapy for esophageal cancer in the United States

    PubMed Central

    Haque, Waqar; Verma, Vivek; Butler, E. Brian

    2018-01-01

    Background Randomized esophageal cancer (EC) trials have utilized two- or three-dimensional conformal radiotherapy (3DCRT). Advanced radiotherapy (RT) techniques [(ARTs): intensity-modulated radiotherapy (IMRT) and proton beam therapy (PBT)] may have benefits, but are relatively unproven. This is the first study to date evaluating utilization of ARTs versus 3DCRT in the trimodality setting in the United States. Methods The National Cancer Data Base (NCDB) was queried (2004–2013) for newly-diagnosed cT1b-T4bN0/N+M0 EC receiving neoadjuvant CRT followed by esophagectomy. The primary objective was to assess temporal trends, with multivariable logistic regression analysis assessing factors predictive of receiving ARTs. Secondarily, Kaplan-Meier analysis evaluated overall survival (OS), Cox proportional hazards modeling determined variables associated with OS, and postoperative complications were compared between cohorts. Results Altogether, 3,138 patients met criteria; 1,398 (45%) received 3DCRT, and 1,740 (55%) received ARTs (99% IMRT, 1% PBT). Temporally, utilization of ARTs is steadily rising in the United States, from 20% in 2004 to 69% in 2013, corresponding with a progressive decrease in utilization of 3DCRT. ARTs were more often delivered with advancing age, squamous cell histology, N2+ disease, and at academic centers (P<0.05 for all). Centers in the Southwest were more likely to use ARTs, and those in the Midwest least likely (P<0.05 for both). As expected, there were no OS differences (P=0.8477); there were also no differences in postoperative events (P>0.05 for all). Treatment at an academic center independently correlated with improved OS (P<0.001). Conclusions Utilization of ARTs (IMRT in the vast majority) is steadily rising in the United States; 3DCRT is now used in a minority of patients. This has implications for payers and insurance coverage. ART use is impacted by not only age and disease factors, but also regional and facility differences

  6. Utilization of neoadjuvant intensity-modulated radiation therapy and proton beam therapy for esophageal cancer in the United States.

    PubMed

    Haque, Waqar; Verma, Vivek; Butler, E Brian; Teh, Bin S

    2018-04-01

    Randomized esophageal cancer (EC) trials have utilized two- or three-dimensional conformal radiotherapy (3DCRT). Advanced radiotherapy (RT) techniques [(ARTs): intensity-modulated radiotherapy (IMRT) and proton beam therapy (PBT)] may have benefits, but are relatively unproven. This is the first study to date evaluating utilization of ARTs versus 3DCRT in the trimodality setting in the United States. The National Cancer Data Base (NCDB) was queried (2004-2013) for newly-diagnosed cT1b-T4bN0/N+M0 EC receiving neoadjuvant CRT followed by esophagectomy. The primary objective was to assess temporal trends, with multivariable logistic regression analysis assessing factors predictive of receiving ARTs. Secondarily, Kaplan-Meier analysis evaluated overall survival (OS), Cox proportional hazards modeling determined variables associated with OS, and postoperative complications were compared between cohorts. Altogether, 3,138 patients met criteria; 1,398 (45%) received 3DCRT, and 1,740 (55%) received ARTs (99% IMRT, 1% PBT). Temporally, utilization of ARTs is steadily rising in the United States, from 20% in 2004 to 69% in 2013, corresponding with a progressive decrease in utilization of 3DCRT. ARTs were more often delivered with advancing age, squamous cell histology, N2+ disease, and at academic centers (P<0.05 for all). Centers in the Southwest were more likely to use ARTs, and those in the Midwest least likely (P<0.05 for both). As expected, there were no OS differences (P=0.8477); there were also no differences in postoperative events (P>0.05 for all). Treatment at an academic center independently correlated with improved OS (P<0.001). Utilization of ARTs (IMRT in the vast majority) is steadily rising in the United States; 3DCRT is now used in a minority of patients. This has implications for payers and insurance coverage. ART use is impacted by not only age and disease factors, but also regional and facility differences. Treatment at an academic facility independently

  7. Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Michalski, Darek; Censor, Yair; Galvin, James M.

    2004-07-01

    The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumour as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighbouring intensities. Accurately delivering an intensity pattern with a large number of extrema can prove impossible given the mechanical limitations of standard multileaf collimator (MLC) delivery systems. In this study, we apply Cimmino's simultaneous projection algorithm to the beamlet-based inverse planning problem, modelled mathematically as a system of linear inequalities. We show that using this method allows us to arrive at a smoother intensity pattern. Including nonlinear terms in the simultaneous projection algorithm to deal with dose-volume histogram (DVH) constraints does not compromise this property from our experimental observation. The smoothness properties are compared with those from other optimization algorithms which include simulated annealing and the gradient descent method. The simultaneous property of these algorithms is ideally suited to parallel computing technologies.

  8. Use of hydrogel spacer for improved rectal dose-sparing in patients undergoing radical radiotherapy for localized prostate cancer: First Canadian experience

    PubMed Central

    Berlin, Alejandro; Di Tomasso, Anne; Ballantyne, Heather; Patterson, Susan; Lam, Tony; Sundaramurthy, Aravind; Helou, Joelle; Bayley, Andrew; Chung, Peter

    2017-01-01

    We describe the initial experience using a hydrogel spacer (SpaceOAR) to separate the prostate-rectum interspace in patients planned to undergo radical hypofractionated, image-guided, intensity-modulated radiotherapy (IG-IMRT). We depict and discuss the impact of SpaceOAR in the context of hypofractionated IG-IMRT, and the particular considerations for its applications in the Canadian setting. PMID:29257741

  9. Visibility of an iron-containing fiducial marker in magnetic resonance imaging for high-precision external beam prostate radiotherapy.

    PubMed

    Tanaka, Osamu; Komeda, Hisao; Hirose, Shigeki; Taniguchi, Takuya; Ono, Kousei; Matsuo, Masayuki

    2017-11-29

    Visualization of fiducial gold markers is critical for registration on computed tomography (CT) and magnetic resonance imaging (MRI) for imaging-guided radiotherapy. Although larger markers provide better visualization on MRI, they tend to generate artifacts on CT. MRI is strongly influenced by the presence of metals, such as iron, in the body. Here we compared efficacies of a 0.5% iron-containing gold marker (GM) and a traditional non-iron-containing marker. Twenty-seven patients underwent CT/MRI fusion-based intensity-modulated radiotherapy. Markers were placed by urologists under local anesthesia. Gold Anchor (GA; diameter: 0.28 mm; length: 10 mm), an iron-containing marker, was placed on the right side of the prostate using a 22-G needle and VISICOIL (VIS; diameter: 0.35 mm; length: 10 mm), a non-iron-containing marker, was placed on the left side using a 19-G needle. T2*-weighted images MRI sequences were obtained. Two radiation oncologists and a radiation technologist evaluated and assigned scores for visual quality on a five-point scale (1, poor; 5, best visibility). Artifact generation on CT was slightly greater with GA than with VIS. The mean marker visualization scores on MRI of all three observers were significantly superior for GA than for VIS (3.5 vs 3.2, 3.9 vs 3.2, and 4.0 vs 2.9). The actual size of the spherical GA was about 2 mm in diameter, but the signal void on MRI was approximately 5 mm. Although both markers were well visualized and can be recommended clinically, the results suggest that GA has some subtle advantages for quantitative visualization that could prove useful in certain situations of stereotactic body radiotherapy and intensity-modulated radiotherapy. © 2017 John Wiley & Sons Australia, Ltd.

  10. Comparison of the helical tomotherapy against the multileaf collimator-based intensity-modulated radiotherapy and 3D conformal radiation modalities in lung cancer radiotherapy

    PubMed Central

    Mavroidis, P; Shi, C; Plataniotis, G A; Delichas, M G; Costa Ferreira, B; Rodriguez, S; Lind, B K; Papanikolaou, N

    2011-01-01

    Objectives The aim of this study was to compare three-dimensional (3D) conformal radiotherapy and the two different forms of IMRT in lung cancer radiotherapy. Methods Cases of four lung cancer patients were investigated by developing a 3D conformal treatment plan, a linac MLC-based step-and-shoot IMRT plan and an HT plan for each case. With the use of the complication-free tumour control probability (P+) index and the uniform dose concept as the common prescription point of the plans, the different treatment plans were compared based on radiobiological measures. Results The applied plan evaluation method shows the MLC-based IMRT and the HT treatment plans are almost equivalent over the clinically useful dose prescription range; however, the 3D conformal plan inferior. At the optimal dose levels, the 3D conformal treatment plans give an average P+ of 48.1% for a effective uniform dose to the internal target volume (ITV) of 62.4 Gy, whereas the corresponding MLC-based IMRT treatment plans are more effective by an average ΔP+ of 27.0% for a Δ effective uniform dose of 16.3 Gy. Similarly, the HT treatment plans are more effective than the 3D-conformal plans by an average ΔP+ of 23.8% for a Δ effective uniform dose of 11.6 Gy. Conclusion A radiobiological treatment plan evaluation can provide a closer association of the delivered treatment with the clinical outcome by taking into account the dose–response relations of the irradiated tumours and normal tissues. The use of P – effective uniform dose diagrams can complement the traditional tools of evaluation to compare and effectively evaluate different treatment plans. PMID:20858664

  11. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories

    NASA Astrophysics Data System (ADS)

    Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan

    2015-07-01

    Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans

  12. Effects of omitting elective neck irradiation to nodal Level IB in nasopharyngeal carcinoma patients with negative Level IB lymph nodes treated by intensity-modulated radiotherapy: a Phase 2 study.

    PubMed

    Li, Mei; Huang, Xiao-Guang; Yang, Zhi-Ning; Lu, Jia-Yang; Zhan, Yi-Zhou; Xie, Wen-Jia; Zhou, Dong-Jie; Wang, Li; Zhu, Di-Xia; Lin, Zhi-Xiong

    2016-09-01

    To investigate the need for elective neck irradiation (ENI) to nodal Level IB in patients with nasopharyngeal carcinoma (NPC) with negative Level IB lymph nodes (IB-negative) treated by intensity-modulated radiotherapy (IMRT). We conducted a Phase 2 prospective study in 123 newly diagnosed IB-negative patients with NPC treated by IMRT, who met at least 1 of the following criteria: (1) unilateral or bilateral Level II involvement with 1 of the following: Level IIA involvement or any Level II node ≥2 cm/with extracapsular spread; (2) ≥2 unilateral node-positive regions. Bilateral Level IB nodes were not contoured as part of the treatment target and treated electively. Level IB regional recurrence rate; pattern of treatment failure; 3-year overall survival (3y-OS), 3-year local control (3y-LC) and 3-year regional control (3y-RC) rates; toxicities; and dosimetric data for planning target volumes, organs at risk, Level IB and submandibular glands (SMGs) were evaluated. Two patients developed failures at Level IB (1.6%). The 3y-LC, 3y-RC and 3y-OS rates were 93.5%, 93.5% and 78.0%, respectively. Bilateral Level IB received unplanned high-dose irradiation with a mean dose (Dmean) ≥50 Gy in 60% of patients. The average Dmean of bilateral SMGs was approximately 53 Gy. ENI to Level IB may be unnecessary in IB-negative patients with NPC treated by IMRT. A further Phase 3 study is warranted. Based on the results of this first Phase 2 study, we suggest omitting ENI to Level IB in Ib-negative patients with NPC with extensive nodal disease treated by IMRT.

  13. Whole-Brain Radiotherapy With Simultaneous Integrated Boost to Multiple Brain Metastases Using Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerwaard, Frank J.; Hoorn, Elles A.P. van der; Verbakel, Wilko

    2009-09-01

    Purpose: Volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) allows for the generation of intensity-modulated dose distributions by use of a single gantry rotation. We used RA to plan and deliver whole-brain radiotherapy (WBRT) with a simultaneous integrated boost in patients with multiple brain metastases. Methods and Materials: Composite RA plans were generated for 8 patients, consisting of WBRT (20 Gy in 5 fractions) with an integrated boost, also 20 Gy in 5 fractions, to Brain metastases, and clinically delivered in 3 patients. Summated gross tumor volumes were 1.0 to 37.5 cm{sup 3}. RA plans weremore » measured in a solid water phantom by use of Gafchromic films (International Specialty Products, Wayne, NJ). Results: Composite RA plans could be generated within 1 hour. Two arcs were needed to deliver the mean of 1,600 monitor units with a mean 'beam-on' time of 180 seconds. RA plans showed excellent coverage of planning target volume for WBRT and planning target volume for the boost, with mean volumes receiving at least 95% of the prescribed dose of 100% and 99.8%, respectively. The mean conformity index was 1.36. Composite plans showed much steeper dose gradients outside Brain metastases than plans with a conventional summation of WBRT and radiosurgery. Comparison of calculated and measured doses showed a mean gamma for double-arc plans of 0.30, and the area with a gamma larger than 1 was 2%. In-room times for clinical RA sessions were approximately 20 minutes for each patient. Conclusions: RA treatment planning and delivery of integrated plans of WBRT and boosts to multiple brain metastases is a rapid and accurate technique that has a higher conformity index than conventional summation of WBRT and radiosurgery boost.« less

  14. Volumetric modulated arc therapy: a review of current literature and clinical use in practice

    PubMed Central

    Teoh, M; Clark, C H; Wood, K; Whitaker, S; Nisbet, A

    2011-01-01

    Volumetric modulated arc therapy (VMAT) is a novel radiation technique, which can achieve highly conformal dose distributions with improved target volume coverage and sparing of normal tissues compared with conventional radiotherapy techniques. VMAT also has the potential to offer additional advantages, such as reduced treatment delivery time compared with conventional static field intensity modulated radiotherapy (IMRT). The clinical worldwide use of VMAT is increasing significantly. Currently the majority of published data on VMAT are limited to planning and feasibility studies, although there is emerging clinical outcome data in several tumour sites. This article aims to discuss the current use of VMAT techniques in practice and review the available data from planning and clinical outcome studies in various tumour sites including prostate, pelvis (lower gastrointestinal, gynaecological), head and neck, thoracic, central nervous system, breast and other tumour sites. PMID:22011829

  15. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy.

    PubMed

    Qi, X Sharon; Liu, Tian X; Liu, Arthur K; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y Angie

    2014-01-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0)Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2)Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed-field radiotherapy

  16. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  17. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Time management in radiation oncology: evaluation of time, attendance of medical staff, and resources during radiotherapy for prostate cancer: the DEGRO-QUIRO trial.

    PubMed

    Keilholz, L; Willner, J; Thiel, H-J; Zamboglou, N; Sack, H; Popp, W

    2014-01-01

    In order to evaluate resource requirements, the German Society of Radiation Oncology (DEGRO) recorded the times needed for core procedures in the radio-oncological treatment of various cancer types within the scope of its QUIRO trial. The present study investigated the personnel and infrastructural resources required in radiotherapy of prostate cancer. The investigation was carried out in the setting of definitive radiotherapy of prostate cancer patients between July and October 2008 at two radiotherapy centers, both with well-trained staff and modern technical facilities at their disposal. Personnel attendance times and room occupancy times required for core procedures (modules) were each measured prospectively by two independently trained observers using time measurements differentiated on the basis of professional group (physician, physicist, and technician), 3D conformal (3D-cRT), and intensity-modulated radiotherapy (IMRT). Total time requirements of 983 min for 3D-cRT and 1485 min for step-and-shoot IMRT were measured for the technician (in terms of professional group) in all modules recorded and over the entire course of radiotherapy for prostate cancer (72-76 Gy). Times needed for the medical specialist/physician were 255 min (3D-cRT) and 271 min (IMRT), times of the physicist were 181 min (3D-cRT) and 213 min (IMRT). The difference in time was significant, although variations in time spans occurred primarily as a result of various problems during patient treatment. This investigation has permitted, for the first time, a realistic estimation of average personnel and infrastructural requirements for core procedures in quality-assured definitive radiotherapy of prostate cancer. The increased time needed for IMRT applies to the step-and-shoot procedure with verification measurements for each irradiation planning.

  19. A case study of radiotherapy planning for Intensity Modulation Radiation Therapy for the whole scalp with matching electron treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponseller, Patricia, E-mail: sponselp@uw.edu; Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA; Paravathaneni, Upendra

    2013-07-01

    The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of themore » IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.« less

  20. An elective radiation dose of 46 Gy is feasible in nasopharyngeal carcinoma treated by intensity-modulated radiotherapy: A long-term follow-up result.

    PubMed

    Hung, Tsung-Min; Fan, Kang-Hsing; Chen, Eric Yen-Chao; Lin, Chien-Yu; Kang, Chung-Jan; Huang, Shiang-Fu; Liao, Chun-Ta; Ng, Shu-Hang; Wang, Hung-Ming; Chang, Joseph Tung-Chieh

    2017-02-01

    The purpose of this study is to compare the treatment outcome of different radiation doses of elective neck irradiation (ENI) in nasopharyngeal carcinoma (NPC) patients treated with intensity-modulated radiotherapy (IMRT).In total, 504 patients with nondisseminated NPC who underwent magnetic resonance imaging before radical IMRT between 2000 and 2008 were retrospectively reviewed. The patients were classified into 2 groups based on the ENI dose: low ENI when the ENI dose was 46 Gy (n = 446) and high ENI when the ENI doses were 50 to 60 Gy (n = 58). All the patients in both the groups received a median dose of 72 Gy to the gross tumor and involved nodes. The fraction size was 2 Gy per fraction. Matching was performed between low ENI and high ENI in a 2:1 ratio, and the matching criteria were N-stage, T-stage, treatment modality, pathology classification, sex, and age.The median follow-up for all patients was 63.5 months. In all patients, the 5-year progression-free survival (PFS), local control (LC), regional control (RC), distant metastasis-free survival (DMFS), overall survival (OS), and cancer-specific survival (CSS) for low ENI and high ENI patients were 69.0% and 63.2% (P = 0.331), 89.0% and 83.9% (P = 0.235), 90.1% and 85.2% (P = 0.246), 86.8% and 76.6% (P = 0.056), 77.5% and 80.8% (P = 0.926), and 84.4% and 82.5% (P = 0.237), respectively. In the matched-pair analysis, the 5-year PFS, LC, RC, DMFS, OS, and CSS for matched low ENI and high ENI patients were 74.1% and 63.2% (P = 0.134), 92.0% and 83.9% (P = 0.152), 90.1% and 85.2% (P = 0.356), 86.2% and 76.6% (P = 0.125), 87.0% and 80.8% (P = 0.102), and 88.6% and 82.5% (P = 0.080), respectively. In the multivariable analysis for all patients, the ENI group was not a significant factor for PFS, LC, RC, DMFS, OS, and CSS.A low ENI dose of 46 Gy in 23 fractions is feasible in NPC patients treated with IMRT, and this concept should be validated in the

  1. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial.

    PubMed

    Livi, Lorenzo; Meattini, Icro; Marrazzo, Livia; Simontacchi, Gabriele; Pallotta, Stefania; Saieva, Calogero; Paiar, Fabiola; Scotti, Vieri; De Luca Cardillo, Carla; Bastiani, Paolo; Orzalesi, Lorenzo; Casella, Donato; Sanchez, Luis; Nori, Jacopo; Fambrini, Massimiliano; Bianchi, Simonetta

    2015-03-01

    Accelerated partial breast irradiation (APBI) has been introduced as an alternative treatment method for selected patients with early stage breast cancer (BC). Intensity-modulated radiotherapy (IMRT) has the theoretical advantage of a further increase in dose conformity compared with three-dimensional techniques, with more normal tissue sparing. The aim of this randomised trial is to compare the local recurrence and survival of APBI using the IMRT technique after breast-conserving surgery to conventional whole-breast irradiation (WBI) in early stage BC. This study was performed at the University of Florence (Florence, Italy). Women aged more than 40years affected by early BC, with a maximum pathological tumour size of 25mm, were randomly assigned in a 1:1 ratio to receive either WBI or APBI using IMRT. Patients in the APBI arm received a total dose of 30 Gy to the tumour bed in five daily fractions. The WBI arm received 50Gy in 25 fractions, followed by a boost on the tumour bed of 10Gy in five fractions. The primary end-point was occurrence of ipsilateral breast tumour recurrences (IBTRs); the main analysis was by intention-to-treat. This trial is registered with ClinicalTrials.gov, number NCT02104895. A total of 520 patients were randomised (260 to external WBI and 260 to APBI with IMRT) between March 2005 and June 2013. At a median follow-up of 5.0 years (Interquartile Range (IQR) 3.4-7.0), the IBTR rate was 1.5% (three cases) in the APBI group (95% confidence interval (CI) 0.1-3.0) and in the WBI group (three cases; 95% CI 0.0-2.8). No significant difference emerged between the two groups (log rank test p=0.86). We identified seven deaths in the WBI group and only one in the APBI group (p=0.057). The 5-year overall survival was 96.6% for the WBI group and 99.4% for the APBI group. The APBI group presented significantly better results considering acute (p=0.0001), late (p=0.004), and cosmetic outcome (p=0.045). To our knowledge, this is the first randomised

  2. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    NASA Astrophysics Data System (ADS)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  3. Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer.

    PubMed

    Dawson, L A; Anzai, Y; Marsh, L; Martel, M K; Paulino, A; Ship, J A; Eisbruch, A

    2000-03-15

    To analyze the patterns of local-regional recurrence in patients with head and neck cancer treated with parotid-sparing conformal and segmental intensity-modulated radiotherapy (IMRT). Fifty-eight patients with head and neck cancer were treated with bilateral neck radiation (RT) using conformal or segmental IMRT techniques, while sparing a substantial portion of one parotid gland. The targets for CT-based RT planning included the gross tumor volume (GTV) (primary tumor and lymph node metastases) and the clinical target volume (CTV) (postoperative tumor bed, expansions of the GTVs and lymph node groups at risk of subclinical disease). Lymph node targets at risk of subclinical disease included the bilateral jugulodigastric and lower jugular lymph nodes, bilateral retropharyngeal lymph nodes at risk, and high jugular nodes at the base of skull in the side of the neck at highest risk (containing clinical neck metastases and/or ipsilateral to the primary tumor). The CTVs were expanded by 5 mm to yield planning target volumes (PTVs). Planning goals included coverage of all PTVs (with a minimum of 95% of the prescribed dose) and sparing of a substantial portion of the parotid gland in the side of the neck at less risk. The median RT doses to the gross tumor, the operative bed, and the subclinical disease PTVs were 70.4 Gy, 61.2 Gy, and 50.4 Gy respectively. All recurrences were defined on CT scans obtained at the time of recurrence, transferred to the pretreatment CT dataset used for RT planning, and analyzed using dose-volume histograms. The recurrences were classified as 1) "in-field," in which 95% or more of the recurrence volume (V(recur)) was within the 95% isodose; 2) "marginal," in which 20% to 95% of V(recur) was within the 95% isodose; or 3) "outside," in which less than 20% of V(recur) was within the 95% isodose. With a median follow-up of 27 months (range 6 to 60 months), 10 regional recurrences, 5 local recurrences (including one noninvasive recurrence) and 1

  4. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moro, Erik A.

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offeringmore » robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated

  5. Evaluation of radiotherapy techniques for radical treatment of lateralised oropharyngeal cancers : Dosimetry and NTCP.

    PubMed

    McQuaid, D; Dunlop, A; Nill, S; Franzese, C; Nutting, C M; Harrington, K J; Newbold, K L; Bhide, S A

    2016-08-01

    The aim of this study was to investigate potential advantages and disadvantages of three-dimensional conformal radiotherapy (3DCRT), multiple fixed-field intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in terms of dose to the planning target volume (PTV), organs at risk (OARs) and normal tissue complication probability (NTCP) for delivering ipsilateral radiotherapy. 3DCRT, IMRT and VMAT were compared in patients with well-lateralised primary tonsillar cancers who underwent primary radical ipsilateral radiotherapy. The following parameters were compared: conformity index (CI); homogeneity index (HI); dose-volume histograms (DVHs) of PTVs and OARs; NTCP, risk of radiation-induced cancer and dose accumulation during treatment. IMRT and VMAT were superior to 3DCRT in terms of CI, HI and dose to the target volumes, as well as mandible and dose accumulation robustness. The techniques were equivalent in terms of dose and NTCP for the contralateral oral cavity, contralateral submandibular gland and mandible, when specific dose constraint objectives were used on the oral cavity volume. Although the volume of normal tissue exposed to low-dose radiation was significantly higher with IMRT and VMAT, the risk of radiation-induced secondary malignancy was dependant on the mathematical model used. This study demonstrates the superiority of IMRT/VMAT techniques over 3DCRT in terms of dose homogeneity, conformity and consistent dose delivery to the PTV throughout the course of treatment in patients with lateralised oropharyngeal cancers. Dosimetry and NTCP calculations show that these techniques are equivalent to 3DCRT with regard to the risk of acute mucositis when specific dose constraint objectives were used on the contralateral oral cavity OAR.

  6. Multi-GPU configuration of 4D intensity modulated radiation therapy inverse planning using global optimization

    NASA Astrophysics Data System (ADS)

    Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo

    2018-01-01

    We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of 26% in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the

  7. Multi-GPU configuration of 4D intensity modulated radiation therapy inverse planning using global optimization.

    PubMed

    Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo

    2018-01-16

    We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of [Formula: see text] in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly

  8. Accurate tracking of tumor volume change during radiotherapy by CT-CBCT registration with intensity correction

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Robinson, Adam; Quon, Harry; Kiess, Ana P.; Shen, Colette; Wong, John; Plishker, William; Shekhar, Raj; Lee, Junghoon

    2016-03-01

    In this paper, we propose a CT-CBCT registration method to accurately predict the tumor volume change based on daily cone-beam CTs (CBCTs) during radiotherapy. CBCT is commonly used to reduce patient setup error during radiotherapy, but its poor image quality impedes accurate monitoring of anatomical changes. Although physician's contours drawn on the planning CT can be automatically propagated to daily CBCTs by deformable image registration (DIR), artifacts in CBCT often cause undesirable errors. To improve the accuracy of the registration-based segmentation, we developed a DIR method that iteratively corrects CBCT intensities by local histogram matching. Three popular DIR algorithms (B-spline, demons, and optical flow) with the intensity correction were implemented on a graphics processing unit for efficient computation. We evaluated their performances on six head and neck (HN) cancer cases. For each case, four trained scientists manually contoured the nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial image registration software based on conventional mutual information (MI), VelocityAI (Varian Medical Systems Inc.). The volume differences (mean±std in cc) between the average of the manual segmentations and automatic segmentations are 3.70+/-2.30 (B-spline), 1.25+/-1.78 (demons), 0.93+/-1.14 (optical flow), and 4.39+/-3.86 (VelocityAI). The proposed method significantly reduced the estimation error by 9% (B-spline), 38% (demons), and 51% (optical flow) over the results using VelocityAI. Although demonstrated only on HN nodal GTVs, the results imply that the proposed method can produce improved segmentation of other critical structures over conventional methods.

  9. Intensity-modulated radiotherapy for nasopharyngeal carcinoma: Clinical correlation of dose to the pharyngo-esophageal axis and dysphagia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fua, Tsien F.; Corry, June; Milner, Alvin D.

    2007-03-15

    Purpose: The aim of this study was to quantify the dose delivered to the pharyngo-esophageal axis using different intensity-modulated radiation therapy (IMRT) techniques for treatment of nasopharyngeal carcinoma and to correlate this with acute swallowing toxicity. Methods and Materials: The study population consisted of 28 patients treated with IMRT between February 2002 and August 2005: 20 with whole field IMRT (WF-IMRT) and 8 with IMRT fields junctioned with an anterior neck field with central shielding (j-IMRT). Dose to the pharyngo-esophageal axis was measured using dose-volume histograms. Acute swallowing toxicity was assessed by review of dysphagia grade during treatment and enteralmore » feeding requirements. Results: The mean pharyngo-esophageal dose was 55.2 Gy in the WF-IMRT group and 27.2 Gy in the j-IMRT group, p < 0.001. Ninety-five percent (19/20) of the WF-IMRT group developed Grade 3 dysphagia compared with 62.5% (5/8) of the j-IMRT group, p = 0.06. Feeding tube duration was a median of 38 days for the WF-IMRT group compared with 6 days for the j-IMRT group, p = 0.04. Conclusions: Clinical vigilance must be maintained when introducing new technology to ensure that unanticipated adverse effects do not result. Although newer planning systems can reduce the dose to the pharyngo-esophageal axis with WF-IMRT, the j-IMRT technique is preferred at least in patients with no gross disease in the lower neck.« less

  10. Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerwaard, Frank J.; Meijer, Otto W.M.; Hoorn, Elles A.P. van der

    2009-06-01

    Purpose: To evaluate volumetric modulated arc radiotherapy (RapidArc [RA]), a novel approach allowing for rapid treatment delivery, for the treatment of vestibular schwannoma (VS). Methods and Materials: The RA plans were generated for a small (0.5 cm{sup 3}), intermediate (2.8 cm{sup 3}), and large (14.8 cm{sup 3}) VS. The prescription dose was 12.5 Gy to the encompassing 80% isodose. The RA plans were compared with conventional radiosurgery plans using both a single dynamic conformal arc (1DCA) and five noncoplanar dynamic conformal arcs (5DCA). Conformity indices (CI) and dose-volume histograms of critical organs were compared. The RA plan for the medium-sizedmore » VS was measured in a phantom using Gafchromic EBT films and compared with calculated dose distributions. Results: The RA planning was completed within 30 min in all cases, and calculated treatment delivery time (after patient setup) was 5 min vs. 20 min for 5DCA. A superior CI was achieved with RA, with a substantial decrease in low-dose irradiation of the normal brain achieved relative to 5DCA plans. Maximum doses to critical organs were similar for RA and 5DCA but were higher for 1DCA. Film measurements showed the differences between calculated and measured doses to be smaller than 1.5% in the high-dose area and smaller than 3% in the low-dose area. Conclusion: The RA plans consistently achieved a higher CI and decrease in areas of low-dose irradiation. This, together with shorter treatment delivery times, has led to RA replacing our conventional five-arc radiosurgery technique for VS.« less

  11. Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization.

    PubMed

    Fujarewicz, Krzysztof; Lakomiec, Krzysztof

    2016-12-01

    We investigate a spatial model of growth of a tumor and its sensitivity to radiotherapy. It is assumed that the radiation dose may vary in time and space, like in intensity modulated radiotherapy (IMRT). The change of the final state of the tumor depends on local differences in the radiation dose and varies with the time and the place of these local changes. This leads to the concept of a tumor's spatiotemporal sensitivity to radiation, which is a function of time and space. We show how adjoint sensitivity analysis may be applied to calculate the spatiotemporal sensitivity of the finite difference scheme resulting from the partial differential equation describing the tumor growth. We demonstrate results of this approach to the tumor proliferation, invasion and response to radiotherapy (PIRT) model and we compare the accuracy and the computational effort of the method to the simple forward finite difference sensitivity analysis. Furthermore, we use the spatiotemporal sensitivity during the gradient-based optimization of the spatiotemporal radiation protocol and present results for different parameters of the model.

  12. Brain dose-sparing radiotherapy techniques for localized intracranial germinoma: Case report and literature review of modern irradiation.

    PubMed

    Leung, H W C; Chan, A L F; Chang, M B

    2016-05-01

    We examined the effects of intensity-modulated radiation therapy with dose-sparing and avoidance technique on a pediatric patient with localized intracranial germinoma. We also reviewed the literature regarding modern irradiation techniques in relation to late neurocognitive sequelae. A patient with a localized intracranial germinoma in the third ventricle anterior to the pineal gland received a dose-sparing intensity-modulated radiation therapy. The planning was compared to the radiation oncologist's guide of organs at risk and dose constraints for dosimetric analyses. The patient received radiation therapy alone. The total dose was 54Gy delivered in 2.0Gy fractions to the primary tumour and 37Gy in 1.4Gy fractions to whole ventricles using a dose-sculpting plan. Dosimetry analyses showed that dose-sparing intensity-modulated radiation therapy delivered reduced doses to the whole brain, temporal lobes, hippocampi, cochleae, and optic nerves. With a follow-up of 22 months, failure-free survival was 100% for the patient and no adverse events during radiation treatment process. Intensity-modulated radiation therapy with dose sparing and avoidance technique can spare the limbic circuit, central nervous system, and hippocampus for pineal germ cell tumours. This technique reduces the integral dose delivered to the uninvolved normal brain tissues and may reduce late neurocognitive sequelae caused by cranial radiotherapy. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  13. Intensity-modulated radiotherapy for cervical node squamous cell carcinoma metastases from unknown head-and-neck primary site: M. D. Anderson Cancer Center outcomes and patterns of failure.

    PubMed

    Frank, Steven J; Rosenthal, David I; Petsuksiri, Janjira; Ang, K Kian; Morrison, William H; Weber, Randal S; Glisson, Bonnie S; Chao, K S Clifford; Schwartz, David L; Chronowski, Gregory M; El-Naggar, Adel K; Garden, Adam S

    2010-11-15

    Conventional therapy for cervical node squamous cell carcinoma metastases from an unknown primary can cause considerable toxicity owing to the volume of tissues to be irradiated. In the present study, hypothesizing that using intensity-modulated radiotherapy (IMRT) would provide effective treatment with minimal toxicity, we reviewed the outcomes and patterns of failure for head-and-neck unknown primary cancer at a single tertiary cancer center. We retrospectively reviewed the records of 52 patients who had undergone IMRT for an unknown primary at M.D. Anderson Cancer Center between 1998 and 2005. The patient and treatment characteristics were extracted and the survival rates calculated using the Kaplan-Meier method. Of the 52 patients, 5 presented with Stage N1, 11 with Stage N2a, 23 with Stage N2b, 6 with Stage N2c, 4 with Stage N3, and 3 with Stage Nx disease. A total of 26 patients had undergone neck dissection, 13 before and 13 after IMRT; 14 patients had undergone excisional biopsy and presented for IMRT without evidence of disease. Finally, 14 patients had received systemic chemotherapy. All patients underwent IMRT to targets on both sides of the neck and pharyngeal axis. The median follow-up time for the surviving patients was 3.7 years. The 5-year actuarial rate of primary mucosal tumor control and regional control was 98% and 94%, respectively. Only 3 patients developed distant metastasis with locoregional control. The 5-year actuarial disease-free and overall survival rate was 88% and 89%, respectively. The most severe toxicity was Grade 3 dysphagia/esophageal stricture, experienced by 2 patients. The results of our study have shown that IMRT can produce excellent outcomes for patients who present with cervical node squamous cell carcinoma metastases from an unknown head-and-neck primary tumor. Severe late complications were uncommon. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Intensity-Modulated Radiotherapy for Cervical Node Squamous Cell Carcinoma Metastases From Unknown Head-and-Neck Primary Site: M. D. Anderson Cancer Center Outcomes and Patterns of Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Steven J., E-mail: sjfrank@mdanderson.or; Rosenthal, David I.; Petsuksiri, Janjira

    2010-11-15

    Purpose: Conventional therapy for cervical node squamous cell carcinoma metastases from an unknown primary can cause considerable toxicity owing to the volume of tissues to be irradiated. In the present study, hypothesizing that using intensity-modulated radiotherapy (IMRT) would provide effective treatment with minimal toxicity, we reviewed the outcomes and patterns of failure for head-and-neck unknown primary cancer at a single tertiary cancer center. Methods and Materials: We retrospectively reviewed the records of 52 patients who had undergone IMRT for an unknown primary at M.D. Anderson Cancer Center between 1998 and 2005. The patient and treatment characteristics were extracted and themore » survival rates calculated using the Kaplan-Meier method. Results: Of the 52 patients, 5 presented with Stage N1, 11 with Stage N2a, 23 with Stage N2b, 6 with Stage N2c, 4 with Stage N3, and 3 with Stage Nx disease. A total of 26 patients had undergone neck dissection, 13 before and 13 after IMRT; 14 patients had undergone excisional biopsy and presented for IMRT without evidence of disease. Finally, 14 patients had received systemic chemotherapy. All patients underwent IMRT to targets on both sides of the neck and pharyngeal axis. The median follow-up time for the surviving patients was 3.7 years. The 5-year actuarial rate of primary mucosal tumor control and regional control was 98% and 94%, respectively. Only 3 patients developed distant metastasis with locoregional control. The 5-year actuarial disease-free and overall survival rate was 88% and 89%, respectively. The most severe toxicity was Grade 3 dysphagia/esophageal stricture, experienced by 2 patients. Conclusion: The results of our study have shown that IMRT can produce excellent outcomes for patients who present with cervical node squamous cell carcinoma metastases from an unknown head-and-neck primary tumor. Severe late complications were uncommon.« less

  15. Delivery time comparison for intensity-modulated radiation therapy with/without flattening filter: a planning study

    NASA Astrophysics Data System (ADS)

    Fu, Weihua; Dai, Jianrong; Hu, Yimin; Han, Dongsheng; Song, Yixin

    2004-04-01

    The treatment delivery time of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) is generally longer than that of conventional radiotherapy. In theory, removing the flattening filter from the treatment head may reduce the beam-on time by enhancing the output dose rate, and then reduce the treatment delivery time. And in practice, there is a possibility of delivering the required fluence distribution by modulating the unflattened non-uniform fluence distribution. However, the reduction of beam-on time may be discounted by the increase of leaf-travel time and (or) verification-and-recording (V&R) time. Here we investigate the overall effect of flattening filter on the treatment delivery time of IMRT with MLCs implemented in the step and shoot method, as well as with compensators on six hybrid machines. We compared the treatment delivery time with/without flattening filter for ten nasopharynx cases and ten prostate cases by observing the variations of the ratio of the beam-on time, segment number, leaf-travel time and the treatment delivery time with dose rate, leaf speed and V&R time. The results show that, without the flattening filter, the beam-on time reduces for both static MLC and compensator-based techniques; the number of segments and the leaf-travel time increase slightly for the static MLC technique; the relative IMRT treatment delivery time decreases more with lower dose rate, higher leaf speed and shorter V&R overhead time. The absolute treatment delivery time reduction depends on the fraction dose. It is not clinically significant at a fraction dose of 2 Gy for the technique of removing the flattening filter, but becomes significant when the fraction dose is as high as that for radiosurgery.

  16. Comparison of 3DCRT,VMAT and IMRT techniques in metastatic vertebra radiotherapy: A phantom Study

    NASA Astrophysics Data System (ADS)

    Gedik, Sonay; Tunc, Sema; Kahraman, Arda; Kahraman Cetintas, Sibel; Kurt, Meral

    2017-09-01

    Vertebra metastases can be seen during the prognosis of cancer patients. Treatment ways of the metastasis are radiotherapy, chemotherapy and surgery. Three-dimensional conformal therapy (3D-CRT) is widely used in the treatment of vertebra metastases. Also, Intensity Modulated Radiotherapy (IMRT) and Volumetric Arc Therapy (VMAT) are used too. The aim of this study is to examine the advantages and disadvantages of the different radiotherapy techniques. In the aspect of this goal, it is studied with a randophantom in Uludag University Medicine Faculty, Radiation Oncology Department. By using a computerized tomography image of the phantom, one 3DCRT plan, two VMAT and three IMRT plans for servical vertebra and three different 3DCRT plans, two VMAT and two IMRT plans for lomber vertebra are calculated. To calculate 3DCRT plans, CMS XiO Treatment System is used and to calculate VMAT and IMRT plans Monaco Treatment Planning System is used in the department. The study concludes with the dosimetric comparison of the treatment plans in the spect of critical organ doses, homogeneity and conformity index. As a result of this study, all critical organ doses are suitable for QUANTEC Dose Limit Report and critical organ doses depend on the techniques which used in radiotherapy. According to homogeneity and conformity indices, VMAT and IMRT plans are better than one in 3DCRT plans in servical and lomber vertebra radiotherapy plans.

  17. Comparison of three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy in the treatment of cervical esophageal carcinoma.

    PubMed

    Yang, Hao; Feng, Cong; Cai, Bo-Ning; Yang, Jun; Liu, Hai-Xia; Ma, Lin

    2017-02-01

    The aim of this study was to evaluate the effectiveness and toxicities of three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), and volumetric-modulated arc therapy (VMAT) in patients with cervical esophageal cancer. Specifically, we asked whether technological advances conferred an advantage with respect to the clinical curative effect. Seventy-eight patients with cervical esophageal cancer treated with definitive radiotherapy with or without concomitant chemotherapy at our institution between 2007 and 2014 were enrolled in the study: 26 received 3DCRT, 30 were treated with IMRT, and 22 underwent VMAT. Kaplan-Meier analysis and the Cox proportional hazard model were used to analyze overall survival (OS) and failure-free survival (FFS). Treatment-related toxicity was also assessed. For all patients, the 2-year OS and FFS rates were 56.2 and 53.9%, respectively. The 2-year OS for the 3DCRT, IMRT, and VMAT groups was 53.6, 55.6, and 60.6%, respectively (P = 0.965). The corresponding 2-year FFS rates were 49.5, 56.7, and 60.1% (P = 0.998). A univariate analysis of the complete response to treatment showed an advantage of treatment modality with respect to OS (P < 0.001). The development of acute hematologic toxicity was not significantly different among the three groups. The survival rates of patients treated with IMRT and VMAT were comparable to the survival of patients administered 3DCRT, while lower lung mean dose, V20, maximum dose of brachial plexus and spinal cord. Grade 1 radiation pneumonitis occurred significantly less in patients treated with IMRT and VMAT than with 3DCRT (P = 0.011). A complete response was the most important prognostic factor of the patients with cervical esophageal cancer. © 2016 International Society for Diseases of the Esophagus.

  18. Comparison of anisotropic aperture based intensity modulated radiotherapy with 3D-conformal radiotherapy for the treatment of large lung tumors.

    PubMed

    Simeonova, Anna; Abo-Madyan, Yasser; El-Haddad, Mostafa; Welzel, Grit; Polednik, Martin; Boggula, Ramesh; Wenz, Frederik; Lohr, Frank

    2012-02-01

    IMRT allows dose escalation for large lung tumors, but respiratory motion may compromise delivery. A treatment plan that modulates fluence predominantly in the transversal direction and leaves the fluence identical in the direction of the breathing motion may reduce this problem. Planning-CT-datasets of 20 patients with Stage I-IV non small cell lung cancer (NSCLC) formed the basis of this study. A total of two IMRT plans and one 3D plan were created for each patient. Prescription dose was 60 Gy to the CTV and 70 Gy to the GTV. For the 3D plans an energy of 18 MV photons was used. IMRT plans were calculated for 6 MV photons with 13 coplanar and with 17 noncoplanar beams. Robustness of the used method of anisotropic modulation toward breathing motion was tested in a 13-field IMRT plan. As a consequence of identical prescription doses, mean target doses were similar for 3D and IMRT. Differences between 3D and 13- and 17-field IMRT were significant for CTV Dmin (43 Gy vs. 49.1 Gy vs. 48.6 Gy; p<0.001) and CTV D(95) (53.2 Gy vs. 55.0 Gy vs. 55.4 Gy; p=0.001). The D(mean) of the contralateral lung was significantly lower in the 17-field plans (17-field IMRT vs. 13- vs. 3D: 12.5 Gy vs. 14.8 Gy vs. 15.8 Gy: p<0.05). The spinal cord dose limit of 50 Gy was always respected in IMRT plans and only in 17 of 20 3D-plans. Heart D(max) was only marginally reduced with IMRT (3D vs. 13- vs. 17-field IMRT: 38.2 Gy vs. 36.8 Gy vs. 37.8 Gy). Simulated breathing motion caused only minor changes in the IMRT dose distribution (~0.5-1 Gy). Anisotropic modulation of IMRT improves dose delivery over 3D-RT and renders IMRT plans robust toward breathing induced organ motion, effectively preventing interplay effects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Volumetric Modulated Arc-Based Hypofractionated Stereotactic Radiotherapy for the Treatment of Selected Intracranial Arteriovenous Malformations: Dosimetric Report and Early Clinical Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Sai; Srinivas, Chilukuri; Ramalingam, K.

    2012-03-01

    Purpose: To evaluate, with a dosimetric and clinical feasibility study, RapidArc (a volumetric modulated arc technique) for hypofractionated stereotactic radiotherapy treatment of large arteriovenous malformations (AVMs). Methods and Materials: Nine patients were subject to multimodality imaging (magnetic resonance, computed tomography, and digital subtraction angiography) to determine nidus and target volumes, as well as involved organs at risk (optical structures, inner ear, brain stem). Plans for multiple intensity-modulated arcs with a single isocenter were optimized for a fractionation of 25 Gy in 5 fractions. All plans were optimized for 6-MV photon beams. Dose-volume histograms were analyzed to assess plan quality. Deliverymore » parameters were reported to appraise technical features of RapidArc, and pretreatment quality assurance measurements were carried out to report on quality of delivery. Results: Average size of AVM nidus was 26.2 cm{sup 3}, and RapidArc plans provided complete target coverage with minimal overdosage (V{sub 100%} = 100% and V{sub 110%} < 1%) and excellent homogeneity (<6%). Organs at risk were highly spared. The D{sub 1%} to chiasm, eyes, lenses, optic nerves, and brainstem (mean {+-} SD) was 6.4 {+-} 8.3, 1.9 {+-} 3.8, 2.3 {+-} 2.2, 0.7 {+-} 0.9, 4.4 {+-} 7.2, 12.2 {+-} 9.6 Gy, respectively. Conformity index (CI{sub 95%}) was 2.2 {+-} 0.1. The number of monitor units per gray was 277 {+-} 45, total beam-on time was 2.5 {+-} 0.3 min. Planning vs. delivery {gamma} pass rate was 98.3% {+-} 0.9%. None of the patients developed acute toxicity. With a median follow-up of 9 months, 3 patients presented with deterioration of symptoms and were found to have postradiation changes but responded symptomatically to steroids. These patients continue to do well on follow-up. One patient developed headache and seizures, which was attributed to intracranial bleed, confirmed on imaging. Conclusion: Hypofractionated stereotactic radiotherapy can be

  20. Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion.

    PubMed

    Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter

    2012-08-27

    We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.

  1. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gökçe, M., E-mail: mgokce@adu.edu.tr; Uslu, D. Koçyiğit; Ertunç, C.

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3more » percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.« less

  2. Switching circuit to improve the frequency modulation difference-intensity THz quantum cascade laser imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saat, N. K.; Dean, P.; Khanna, S. P.

    2015-04-24

    We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz.

  3. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery.

    PubMed

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck Af Rosenschold, Per

    2012-03-01

    Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358° arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy × 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45° or 315°. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The dosimetric results

  4. SU-F-T-358: Is Auto-Planning Useful for Volumetric-Modulated Arc Therapy Planning in Rectal Cancer Radiotherapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K; Chang, X; Wang, J

    Purpose: To evaluate whether Auto-Planning based volumetric-modulated radiotherapy (auto-VMAT) can reduce manual interaction time during treatment planning and improve plan quality for rectal cancer radiotherapy. Methods: Ten rectal cancer patients (stage II and III) after radical resection using Dixon surgery were enrolled. All patients were treated with VMAT technique. The manual VMAT plans (man-VMAT) were designed in the Pinnacle treatment planning system (Version 9.10) following the standard treatment planning procedure developed in our department. Clinical plans were manually designed by our experienced dosimetrists. Additionally, an auto-VMAT plan was created for each patient using Auto-Planning module. However, manual interaction was stillmore » applied to meet the clinical requirements. The treatment planning time and plan quality surrogated by the DVH parameters were compared between manual and automated plans. Results: The total planning time and manual interaction time were 50.38 and 4.47 min for the auto-VMAT and 36.81 and 16.94 min for the man-VMAT (t=60.14,−23.86; p=0.000, 0.000). In terms of plan quality, both plans meet the clinical requirements. The PTV homogeneity index (HI) and conformity index (CI) were 0.054 and 0.822 for the auto-VMAT and 0.059 and 0.815 for the man-VMAT (t=−1.72, 0.36;p=0.119,0.730).Compared to the man-VMAT, the auto-VMAT showed reduction of 11.9% and 0.7% in V40 and V50 of the bladder, respectively.The V30 and D mean were reduced by 14.0% and 5.1Gy in the left femur and 12.2% and 3.8Gy in the right femur. Conclusion: The Auto-Planning based VMAT plans not only shows similar or superior plan quality to the manual ones in the rectal cancer radiotherapy, but also improve the planning efficiency significantly. However, manual interactions are still required to achieve a clinically acceptable plan based on our experiences.« less

  5. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: a feasibility study.

    PubMed

    Nicolini, Giorgia; Ghosh-Laskar, Sarbani; Shrivastava, Shyam Kishore; Banerjee, Sushovan; Chaudhary, Suresh; Agarwal, Jai Prakash; Munshi, Anusheel; Clivio, Alessandro; Fogliata, Antonella; Mancosu, Pietro; Vanetti, Eugenio; Cozzi, Luca

    2012-10-01

    A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving ≥ 95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving ≥ 5 Gy was <60%, that receiving 20 Gy was <20%-30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 ± 0.1 for RA and IMRT and 1.5 ± 0.2 for 3D-CRT. The mean lung dose was 12.2 ± 4.5 for IMRT, 11.3 ± 4.6 for RA, and 10.8 ± 4.4 for RA with FFF beams, 18.2 ± 8.5 for 3D-CRT. The percentage of volume receiving ≥ 20 Gy ranged from 23.6% ± 9.1% to 21.1% ± 9.7% for IMRT and RA (FFF beams) and 39.2% ± 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 ± 139, 322 ± 20, and 387 ± 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a ∼20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different gantry speeds). RA demonstrated, compared with conventional IMRT, a

  6. Efficiency and prognosis of whole brain irradiation combined with precise radiotherapy on triple-negative breast cancer.

    PubMed

    Wu, Xinhong; Luo, Bo; Wei, Shaozhong; Luo, Yan; Feng, Yaojun; Xu, Juan; Wei, Wei

    2013-11-01

    To investigate the treatment efficiency of whole brain irradiation combined with precise radiotherapy on triple-negative (TN) phenotype breast cancer patients with brain metastases and their survival times. A total of 112 metastatic breast cancer patients treated with whole brain irradiation and intensity modulated radiotherapy (IMRT) or 3D conformal radiotherapy (3DCRT) were analyzed. Thirty-seven patients were of TN phenotype. Objective response rates were compared. Survival times were estimated by using the Kaplan-Meier method. Log-rank test was used to compare the survival time difference between the TN and non-TN groups. Potential prognostic factors were determined by using a Cox proportional hazard regression model. The efficiency of radiotherapy treatment on TN and non-TN phenotypes was 96.2% and 97%, respectively. TN phenotype was associated with worse survival times than non-TN phenotype after radiotherapy (6.9 months vs. 17 months) (P < 0.01). On multivariate analysis, good prognosis was associated with non-TN status, lower graded prognosis assessment class, and nonexistence of active extracranial metastases. After whole brain irradiation followed by IMRT or 3DCRT treatment, TN phenotype breast cancer patients with intracranial metastasis had high objective response rates but shorter survival time. With respect to survival in breast cancer patients with intracranial metastasis, the TN phenotype represents a significant adverse prognostic factor.

  7. Relationship between Eustachian tube dysfunction and otitis media with effusion in radiotherapy patients.

    PubMed

    Akazawa, K; Doi, H; Ohta, S; Terada, T; Fujiwara, M; Uwa, N; Tanooka, M; Sakagami, M

    2018-02-01

    This study evaluated the relationship between radiation and Eustachian tube dysfunction, and examined the radiation dose required to induce otitis media with effusion. The function of 36 Eustachian tubes in 18 patients with head and neck cancer were examined sonotubometrically before, during, and 1, 2 and 3 months after, intensity-modulated radiotherapy. Patients with an increase of 5 dB or less in sound pressure level (dB) during swallowing were categorised as being in the dysfunction group. Additionally, radiation dose distributions were assessed in all Eustachian tubes using three dose-volume histogram parameters. Twenty-two of 25 normally functioning Eustachian tubes before radiotherapy (88.0 per cent) shifted to the dysfunction group after therapy. All ears that developed otitis media with effusion belonged to the dysfunction group. The radiation dose threshold evaluation revealed that ears with otitis media with effusion received significantly higher doses to the Eustachian tubes. The results indicate a relationship between radiation dose and Eustachian tube dysfunction and otitis media with effusion.

  8. Study of the intensity noise and intensity modulation in a of hybrid soliton pulsed source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dogru, Nuran; Oziazisi, M Sadetin

    2005-10-31

    The relative intensity noise (RIN) and small-signal intensity modulation (IM) of a hybrid soliton pulsed source (HSPS) with a linearly chirped Gaussian apodised fibre Bragg grating (FBG) are considered in the electric-field approximation. The HSPS is described by solving the dynamic coupled-mode equations. It is shown that consideration of the carrier density noise in the HSPS in addition to the spontaneous noise is necessary to analyse accurately noise in the mode-locked HSPS. It is also shown that the resonance peak spectral splitting (RPSS) of the IM near the frequency inverse to the round-trip time of light in the external cavitymore » can be eliminated by selecting an appropriate linear chirp rate in the Gaussian apodised FBG. (laser applications and other topics in quantum electronics)« less

  9. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy.

    PubMed

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-02-27

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  10. XRCC3 polymorphisms are associated with the risk of developing radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with intensity modulation radiated therapy.

    PubMed

    Zou, Yan; Song, Tao; Yu, Wei; Zhao, Ruping; Wang, Yong; Xie, Ruifei; Chen, Tian; Wu, Bo; Wu, Shixiu

    2014-03-01

    The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.

  11. Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams.

    PubMed

    Greer, Peter B; Vial, Philip; Oliver, Lyn; Baldock, Clive

    2007-11-01

    The aim of this work was to experimentally determine the difference in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to the open and multileaf collimator (MLC) transmitted beam components of intensity modulated radiation therapy (IMRT) beams. EPID dose response curves were measured for open and MLC transmitted (MLCtr) 10 x 10 cm2 beams at central axis and with off axis distance using a shifting field technique. The EPID signal was obtained by replacing the flood-field correction with a pixel sensitivity variation matrix correction. This signal, which includes energy-dependent response, was then compared to ion-chamber measurements. An EPID calibration method to remove the effect of beam energy variations on EPID response was developed for IMRT beams. This method uses the component of open and MLCtr fluence to an EPID pixel calculated from the MLC delivery file and applies separate radially dependent calibration factors for each component. The calibration procedure does not correct for scatter differences between ion chamber in water measurements and EPID response; these must be accounted for separately with a kernel-based approach or similar method. The EPID response at central axis for the open beam was found to be 1.28 +/- 0.03 of the response for the MLCtr beam, with the ratio increasing to 1.39 at 12.5 cm off axis. The EPID response to MLCtr radiation did not change with off-axis distance. Filtering the beam with copper plates to reduce the beam energy difference between open and MLCtr beams was investigated; however, these were not effective at reducing EPID response differences. The change in EPID response for uniform sliding window IMRT beams with MLCtr dose components from 0.3% to 69% was predicted to within 2.3% using the separate EPID response calibration factors for each dose component. A clinical IMRT image calibrated with this method differed by nearly 30% in high MLCtr regions from an image calibrated with an open

  12. Progress in Y-00 physical cipher for Giga bit/sec optical data communications (intensity modulation method)

    NASA Astrophysics Data System (ADS)

    Hirota, Osamu; Futami, Fumio

    2014-10-01

    To guarantee a security of Cloud Computing System is urgent problem. Although there are several threats in a security problem, the most serious problem is cyber attack against an optical fiber transmission among data centers. In such a network, an encryption scheme on Layer 1(physical layer) with an ultimately strong security, a small delay, and a very high speed should be employed, because a basic optical link is operated at 10 Gbit/sec/wavelength. We have developed a quantum noise randomied stream cipher so called Yuen- 2000 encryption scheme (Y-00) during a decade. This type of cipher is a completely new type random cipher in which ciphertext for a legitimate receiver and eavesdropper are different. This is a condition to break the Shannon limit in theory of cryptography. In addition, this scheme has a good balance on a security, a speed and a cost performance. To realize such an encryption, several modulation methods are candidates such as phase-modulation, intensity-modulation, quadrature amplitude modulation, and so on. Northwestern university group demonstrated a phase modulation system (α=η) in 2003. In 2005, we reported a demonstration of 1 Gbit/sec system based on intensity modulation scheme(ISK-Y00), and gave a design method for quadratic amplitude modulation (QAM-Y00) in 2005 and 2010. An intensity modulation scheme promises a real application to a secure fiber communication of current data centers. This paper presents a progress in quantum noise randomized stream cipher based on ISK-Y00, integrating our theoretical and experimental achievements in the past and recent 100 Gbit/sec(10Gbit/sec × 10 wavelengths) experiment.

  13. SU-E-T-483: In Vivo Dosimetry of Conventional and Rotational Intensity Modulated Radiotherapy Using Integral Quality Monitor (IQM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L; Qian, J; Gonzales, R

    Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate themore » sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.« less

  14. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Eva Sau Fan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University; Wu, Vincent Wing Cheung

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, followingmore » the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.« less

  15. Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling

    PubMed Central

    Mukherjee, B.; Kaushik, N.; Tripathi, Ravi P. N.; Joseph, A. M.; Mohapatra, P. K.; Dhar, S.; Singh, B. P.; Kumar, G. V. Pavan; Simsek, E.; Lodha, S.

    2017-01-01

    Modulation of photoluminescence of atomically thin transition metal dichalcogenide two-dimensional materials is critical for their integration in optoelectronic and photonic device applications. By coupling with different plasmonic array geometries, we have shown that the photoluminescence intensity can be enhanced and quenched in comparison with pristine monolayer MoS2. The enhanced exciton emission intensity can be further tuned by varying the angle of polarized incident excitation. Through controlled variation of the structural parameters of the plasmonic array in our experiment, we demonstrate modulation of the photoluminescence intensity from nearly fourfold quenching to approximately threefold enhancement. Our data indicates that the plasmonic resonance couples to optical fields at both, excitation and emission bands, and increases the spontaneous emission rate in a double spacing plasmonic array structure as compared with an equal spacing array structure. Furthermore our experimental results are supported by numerical as well as full electromagnetic wave simulations. This study can facilitate the incorporation of plasmon-enhanced transition metal dichalcogenide structures in photodetector, sensor and light emitter applications. PMID:28134260

  16. Linear algebraic methods applied to intensity modulated radiation therapy.

    PubMed

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  17. Radiotherapy in Prostate Cancer Patients With Pelvic Lymphocele After Surgery: Clinical and Dosimetric Data of 30 Patients.

    PubMed

    Jereczek-Fossa, Barbara Alicja; Colangione, Sarah Pia; Fodor, Cristiana; Russo, Stefania; Cambria, Raffaella; Zerini, Dario; Bonora, Maria; Cecconi, Agnese; Vischioni, Barbara; Vavassori, Andrea; Matei, Deliu Victor; Bottero, Danilo; Brescia, Antonio; Musi, Gennaro; Mazzoleni, Federica; Orsi, Franco; Bonomo, Guido; De Cobelli, Ottavio; Orecchia, Roberto

    2015-08-01

    The purpose of the study was to evaluate the feasibility of irradiation after prostatectomy in the presence of asymptomatic pelvic lymphocele. The inclusion criteria for this study were: (1) patients referred for postoperative (adjuvant or salvage) intensity modulated radiotherapy (IMRT; 66-69 Gy in 30 fractions); (2) detection of postoperative pelvic lymphocele at the simulation computed tomography [CT] scan; (3) no clinical symptoms; and (4) written informed consent. Radiotherapy toxicity and occurrence of symptoms or complications of lymphocele were analyzed. Dosimetric data (IMRT plans) and the modification of lymphocele volume during radiotherapy (cone beam CT [CBCT] scan) were evaluated. Between January 2011 and July 2013, in 30 of 308 patients (10%) treated with radiotherapy after prostatectomy, pelvic lymphocele was detected on the simulation CT. The median lymphocele volume was 47 cm(3) (range, 6-467.3 cm(3)). Lymphocele was not included in planning target volume (PTV) in 8 cases (27%). Maximum dose to lymphocele was 57 Gy (range, 5.7-73.3 Gy). Radiotherapy was well tolerated. In all but 2 patients, lymphoceles remained asymptomatic. Lymphocele drainage-because of symptom occurrence-had to be performed in 2 patients during IMRT and in one patient, 7 weeks after IMRT. CBCT at the end of IMRT showed reduction in lymphocele volume and position compared with the initial data (median reduction of 37%), more pronounced in lymphoceles included in PTV. Radiotherapy after prostatectomy in the presence of pelvic asymptomatic lymphocele is feasible with acceptable acute and late toxicity. The volume of lymphoceles decreased during radiotherapy and this phenomenon might require intermediate radiotherapy plan evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Clinical outcomes using carbon-ion radiotherapy and dose-volume histogram comparison between carbon-ion radiotherapy and photon therapy for T2b-4N0M0 non-small cell lung cancer-A pilot study.

    PubMed

    Shirai, Katsuyuki; Kawashima, Motohiro; Saitoh, Jun-Ichi; Abe, Takanori; Fukata, Kyohei; Shigeta, Yuka; Irie, Daisuke; Shiba, Shintaro; Okano, Naoko; Ohno, Tatsuya; Nakano, Takashi

    2017-01-01

    The safety and efficacy of carbon-ion radiotherapy for advanced non-small cell lung cancer have not been established. We evaluated the clinical outcomes and dose-volume histogram parameters of carbon-ion radiotherapy compared with photon therapy in T2b-4N0M0 non-small cell lung cancer. Twenty-three patients were treated with carbon-ion radiotherapy between May 2011 and December 2015. Seven, 14, and 2 patients had T2b, T3, and T4, respectively. The median age was 78 (range, 53-91) years, with 22 male patients. There were 12 adenocarcinomas, 8 squamous cell carcinomas, 1 non-small cell lung carcinoma, and 2 clinically diagnosed lung cancers. Eleven patients were operable, and 12 patients were inoperable. Most patients (91%) were treated with carbon-ion radiotherapy of 60.0 Gy relative biological effectiveness (RBE) in 4 fractions or 64.0 Gy (RBE) in 16 fractions. Local control and overall survival rates were calculated. Dose-volume histogram parameters of normal lung and tumor coverages were compared between carbon-ion radiotherapy and photon therapies, including three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT). The median follow-up of surviving patients was 25 months. Three patients experienced local recurrence, and the 2-year local control rate was 81%. During follow-up, 5 patients died of lung cancer, and 1 died of intercurrent disease. The 2-year overall survival rate was 70%. Operable patients had a better overall survival rate compared with inoperable patients (100% vs. 43%; P = 0.04). There was no grade ≥2 radiation pneumonitis. In dose-volume histogram analysis, carbon-ion radiotherapy had a significantly lower dose to normal lung and greater tumor coverage compared with photon therapies. Carbon-ion radiotherapy was effectively and safely performed for T2b-4N0M0 non-small cell lung cancer, and the dose distribution was superior compared with those for photon therapies. A Japanese multi-institutional study is

  19. Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Weinberg, Rebecca

    The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1

  20. Evaluation of surface and shallow depth dose reductions using a Superflab bolus during conventional and advanced external beam radiotherapy.

    PubMed

    Yoon, Jihyung; Xie, Yibo; Zhang, Rui

    2018-03-01

    The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. Technical Note: A novel leaf sequencing optimization algorithm which considers previous underdose and overdose events for MLC tracking radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au

    2016-01-15

    Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events aremore » taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.« less

  2. Poster - 31: Predicting IQ and hearing loss following radiotherapy in pediatric brain tumors: proton vs photon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortin, Dominique; Ng, Angela; Tsang, Derek

    Purpose: The increased sparing of normal tissues in intensity modulated proton therapy (IMPT) in pediatric brain tumor treatments should translate into improved neurocognitive outcomes. Models were used to estimate the intelligence quotient (IQ) and the risk of hearing loss 5 years post radiotherapy and to compare outcomes of proton against photon in pediatric brain tumors. Methods: Patients who had received intensity modulated radiotherapy (IMRT) were randomly selected from our retrospective database. The existing planning CT and contours were used to generate IMPT plans. The RBE-corrected dose was calculated for both IMPT and IMRT. For each patient, the IQ was estimatedmore » via a Monte Carlo technique, whereas the reported incidence of hearing loss as a function of cochlear dose was used to estimate the probability of occurrence. Results: The integrated brain dose was reduced in all IMPT plans, translating into a gain of 2 IQ points on average for protons for the whole cohort at 5 years post-treatment. In terms of specific diseases, the gains in IQ ranged from 0.8 points for medulloblastoma, to 2.7 points for craniopharyngioma. Hearing loss probability was evaluated on a per-ear-basis and was found to be systematically less for proton versus photon: overall 2.9% versus 7.2%. Conclusions: A method was developed to predict IQ and hearing outcomes in pediatric brain tumor patients on a case-by-case basis. A modest gain was systematically observed for proton in all patients. Given the uncertainties within the model used and our reinterpretation, these gains may be underestimated.« less

  3. A dosimetric phantom study of thoracic radiotherapy based on three-dimensional modeling of mediastinal lymph nodes

    PubMed Central

    Zhang, Ji-Bin; Zhao, Li-Rong; Cui, Tian-Xiang; Chen, Xie-Wan; Yang, Qiao; Zhou, Yi-Bing; Chen, Zheng-Tang; Zhang, Shao-Xiang; Sun, Jian-Guo

    2018-01-01

    The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring. PMID:29556300

  4. [Dosimetric comparing between protons beam and photons beam
for lung cancer radiotherapy: a meta-analysis].

    PubMed

    Tian, Guangwei; Li, Nan; Li, Guang

    2013-05-01

    The clinical evidences are not sufficient on the proton beam therapy of lung cancer for lacking of the RCTs on the comparing the proton with the photon beam in lung cancer radiotherapy. The aim of this study is to evaluate the dosimetry superiority of the proton beam and provide more valuable evidences to the clinical researches. Clinical trails of dosimetric comparing between protons beam and photons beam for lung cancer radiotherapy were obtained from the Cochrane library, Pubmed, EMbase, CBM, CNKI, VIP, and Wan Fang databases. The data included in the study were evaluated and analyzed using the Cochrane Collaboration's RevMan 5.2 software. Six trails were included. Compared to photon therapy (three-dimensional conformal photon radiotherapy, 3D-CRT), the proton therapy had a significantly lower total lung Dmean (MD=-4.15, 95%CI: -5.56--2.74, P<0.001) and V20, V10, V5 (MD=-10.92, 95%CI: -13.23--8.62, P<0.001); The V20, V10, V5 significantly decreased in proton therapy group. Compared to photon therapy (intensity-modulated photon radiotherapy, IMRT), V20, V10, V5 were also significantly lowered in proton therapy group (MD=-3.70, 95%CI: -5.31--2.10, P<0.001; MD=-8.86, 95%CI: -10.74--6.98, P<0.001; MD=-20.13, 95%CI: -27.11--13.14, P<0.001); The esophagus Dmean was not lowered, while the heart Dmean decreased in proton therapy group. Comparing to photon beam radiotherapy (3D-CRT and IMRT), proton beam therapy is advantageous in dosimetry of the lung cancer radiotherapy and recommended for clinical applying.

  5. Selective modulation of intracortical inhibition by low-intensity Theta Burst Stimulation.

    PubMed

    McAllister, S M; Rothwell, J C; Ridding, M C

    2009-04-01

    Theta Burst Stimulation (TBS) is a repetitive transcranial magnetic stimulation paradigm which has effects on both excitatory and inhibitory intracortical pathways when applied at an intensity of 80% of active motor threshold. As intracortical inhibitory pathways have a lower threshold for activation than excitatory pathways, we sought to determine whether it was possible to selectively target cortical inhibitory circuitry by reducing the intensity of TBS to 70% of active motor threshold. Motor evoked potentials (MEPs), short latency intracortical facilitation (SICF), intracortical facilitation (ICF) and short interval intracortical inhibition (SICI) were measured at baseline, 5-20 and 20-35 min following continuous (cTBS) and intermittent (iTBS) low-intensity TBS in nine healthy subjects. Low-intensity cTBS significantly reduced SICI 5-20 min following stimulation, whilst having no effect on MEPs, SICF or ICF. Low-intensity iTBS had no effect on SICI, MEPs, SICF or ICF. It is possible to selectively target intracortical inhibitory networks for modulation by low-intensity TBS, however, responses may critically depend upon the particular paradigm chosen. These findings have important implications for the treatment of neurological disorders where abnormal levels of intracortical inhibition are present, such as Parkinson's disease and focal hand dystonia and requires further investigation.

  6. Proton Radiotherapy for Pediatric Central Nervous System Germ Cell Tumors: Early Clinical Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Shannon M., E-mail: smacdonald@partners.or; Trofimov, Alexei; Safai, Sairos

    Purpose: To report early clinical outcomes for children with central nervous system (CNS) germ cell tumors treated with protons; to compare dose distributions for intensity-modulated photon radiotherapy (IMRT), three-dimensional conformal proton radiation (3D-CPT), and intensity-modulated proton therapy with pencil beam scanning (IMPT) for whole-ventricular irradiation with and without an involved-field boost. Methods and Materials: All children with CNS germinoma or nongerminomatous germ cell tumor who received treatment at the Massachusetts General Hospital between 1998 and 2007 were included in this study. The IMRT, 3D-CPT, and IMPT plans were generated and compared for a representative case. Results: Twenty-two patients were treatedmore » with 3D-CPT. At a median follow-up of 28 months, there were no CNS recurrences; 1 patient had a recurrence outside the CNS. Local control, progression-free survival, and overall survival rates were 100%, 95%, and 100%, respectively. Comparable tumor volume coverage was achieved with IMRT, 3D-CPT, and IMPT. Substantial normal tissue sparing was seen with any form of proton therapy as compared with IMRT. The use of IMPT may yield additional sparing of the brain and temporal lobes. Conclusions: Preliminary disease control with proton therapy compares favorably to the literature. Dosimetric comparisons demonstrate the advantage of proton radiation over IMRT for whole-ventricle radiation. Superior dose distributions were accomplished with fewer beam angles utilizing 3D-CPT and scanned protons. Intensity-modulated proton therapy with pencil beam scanning may improve dose distribution as compared with 3D-CPT for this treatment.« less

  7. New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors.

    PubMed

    Olko, P; Marczewska, B; Czopyk, L; Czermak, M A; Klosowski, M; Waligórski, M P R

    2006-01-01

    At the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Kraków, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene TetraFluoroEthylene (ETFE) polymer. Foil detectors were irradiated with (226)Ra brachytherapy sources and a (90)Sr/(90)Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm(2), which may be used to evaluate the dose distribution with a spatial resolution of 120 microm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy.

  8. Evaluation of clinical hypothyroidism risk due to irradiation of thyroid and pituitary glands in radiotherapy of nasopharyngeal cancer patients.

    PubMed

    Lin, Zhixiong; Wang, Xiaoyan; Xie, Wenjia; Yang, Zhining; Che, Kaijun; Wu, Vincent W C

    2013-12-01

    Radiation-induced thyroid dysfunction after radiotherapy for nasopharyngeal cancer (NPC) has been reported. This study investigated the radiation effects of the thyroid and pituitary glands on thyroid function after radiotherapy for NPC. Sixty-five NPC patients treated with radiotherapy were recruited. Baseline thyroid hormone levels comprising free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) were taken before treatment and at 3, 6, 12 and 18 months. A seven-beam intensity-modulated radiotherapy plan was generated for each patient. Thyroid and pituitary gland dose volume histograms were generated, dividing the patients into four groups: high (>50 Gy) thyroid and pituitary doses (HTHP group); high thyroid and low pituitary doses (HTLP group); low thyroid and high pituitary doses; and low thyroid and pituitary doses. Incidence of hypothyroidism was analysed. Twenty-two (34%) and 17 patients (26%) received high mean thyroid and pituitary doses, respectively. At 18 months, 23.1% of patients manifested various types of hypothyroidism. The HTHP group showed the highest incidence (83.3%) of hypothyroidism, followed by the HTLP group (50%). NPC patients with high thyroid and pituitary gland doses carried the highest risk of abnormal thyroid physiology. The dose to the thyroid was more influential than the pituitary dose at 18 months after radiotherapy, and therefore more attention should be given to the thyroid gland in radiotherapy planning. © 2013 The Royal Australian and New Zealand College of Radiologists.

  9. Constant-intensity waves and their modulation instability in non-Hermitian potentials

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2015-07-01

    In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.

  10. Analysis and Management of Rectal Gas with Kampo Formulas During Intensity-Modulated Radiotherapy of Prostate Cancer: A Case Series Study.

    PubMed

    Nagai, Aiko; Shibamoto, Yuta; Ogawa, Keiko; Inoda, Koji; Yoshida, Masanori; Kikuchi, Yuzo

    2016-06-01

    During intensity-modulated radiation therapy (IMRT) for prostate cancer, the target, bladder, and rectum positions should be kept constant to reduce adverse events, such as radiation proctitis, and to increase local tumor control. For this purpose, decreasing the rectal contents as much as possible is important. Daisaikoto (DST) and bukuryoingohangekobokuto (BIHKT) are traditional Japanese herbal (Kampo) formulas that have been used to treat patients with abdominal bloating or constipation. This study investigated the effect of DST and BIHKT on the rectal gas volume during prostate IMRT according to Kampo diagnosis. Five patients were treated with DST or BIHKT at a dose of 5.0 or 7.5 g/d. The volume of rectal gas in 189 megavoltage computed tomographic images taken before each treatment session and the frequency of rectal gas drainage were evaluated before and after DST or BIHKT administration. After DST or BIHKT treatment, the mean volume of rectal gas was reduced from 6.4 to 2.1 mL, and the mean frequency of gas drainage decreased from 43% to 9%. DST and BIHKT appear to be useful in reducing rectal gas, which would help prevent radiation proctitis and improve the local control of prostate cancer with IMRT.

  11. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  12. Prognostic Value of Plasma Epstein-Barr Virus DNA for Local and Regionally Advanced Nasopharyngeal Carcinoma Treated With Cisplatin-Based Concurrent Chemoradiotherapy in Intensity-Modulated Radiotherapy Era.

    PubMed

    Chen, Wen-Hui; Tang, Lin-Quan; Guo, Shan-Shan; Chen, Qiu-Yan; Zhang, Lu; Liu, Li-Ting; Qian, Chao-Nan; Guo, Xiang; Xie, Dan; Zeng, Mu-Sheng; Mai, Hai-Qiang

    2016-02-01

    This study aimed to evaluate the prognostic value of plasma Epstein-Barr Virus DNA (EBV DNA) for local and regionally advanced nasopharyngeal carcinoma (NPC) patients treated with concurrent chemoradiotherapy in intensity-modulated radiotherapy (IMRT) era.In this observational study, 404 nonmetastatic local and regionally advanced NPC patients treated with IMRT and cisplatin-based concurrent chemotherapy were recruited. Blood samples were collected before treatment for examination of plasma EBV DNA levels. We evaluated the association of pretreatment plasma EBV DNA levels with progression-free survival rate (PFS), distant metastasis-free survival rate (DMFS), and overall survival rate (OS).Compared to patients with an EBV DNA level < 4000  copies/mL, patients with an EBV DNA ≥ 4000  copies/mL had a lower rate of 3-year PFS (76%, 95% CI [68-84]) versus (93%, 95% CI [90-96], P < 0.001), DMFS (83%, 95% CI [76-89]) versus (97%, 95% CI [94-99], P < 0.001), and OS (85%, 95% CI [78-92]) versus (98%, 95% CI [95-100], P < 0.001). Multivariate analysis showed that pretreatment EBV DNA levels (HR = 3.324, 95% CI, 1.80-6.138, P < 0.001) and clinical stage (HR = 1.878, 95% CI, 1.036-3.404, P = 0.038) were the only independent factor associated with PFS, pretreatment EBV DNA level was the only significant factor to predict DMFS (HR = 6.292, 95% CI, 2.647-14.956, P < 0.001), and pretreatment EBV DNA levels (HR = 3.753, 95% CI, 1.701-8.284, P < 0.001) and clinical stage (HR = 2.577, 95% CI, 1.252-5.050, P = 0.010) were significantly associated with OS. In subgroup analysis, higher plasma EBV DNA levels still predicted a worse PFS, DMFS, and OS for the patients stage III or stage IVa-b, compared with those with low EBV DNA levels.Elevated plasma EBV DNA was still effective prognostic biomarker for local and regionally advanced NPC patients treated with IMRT and cisplatin-based concurrent chemotherapy. Future ramdomized

  13. Mechanisms underlying intensity-dependent changes in cortical selectivity for frequency-modulated sweeps.

    PubMed

    Razak, K A

    2012-04-01

    Frequency-modulated (FM) sweeps are common components of species-specific vocalizations. The intensity of FM sweeps can cover a wide range in the natural environment, but whether intensity affects neural selectivity for FM sweeps is unclear. Bats, such as the pallid bat, which use FM sweeps for echolocation, are suited to address this issue, because the intensity of echoes will vary with target distance. In this study, FM sweep rate selectivity of pallid bat auditory cortex neurons was measured using downward sweeps at different intensities. Neurons became more selective for FM sweep rates present in the bat's echolocation calls as intensity increased. Increased selectivity resulted from stronger inhibition of responses to slower sweep rates. The timing and bandwidth of inhibition generated by frequencies on the high side of the excitatory tuning curve [sideband high-frequency inhibition (HFI)] shape rate selectivity in cortical neurons in the pallid bat. To determine whether intensity-dependent changes in FM rate selectivity were due to altered inhibition, the timing and bandwidth of HFI were quantified at multiple intensities using the two-tone inhibition paradigm. HFI arrived faster relative to excitation as sound intensity increased. The bandwidth of HFI also increased with intensity. The changes in HFI predicted intensity-dependent changes in FM rate selectivity. These data suggest that neural selectivity for a sweep parameter is not static but shifts with intensity due to changes in properties of sideband inhibition.

  14. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holliday, Emma B.; Kocak-Uzel, Esengul; Department of Radiation Therapy, Beykent University, Istanbul

    A potential advantage of intensity-modulated proton therapy (IMPT) over intensity-modulated (photon) radiation therapy (IMRT) in the treatment of oropharyngeal carcinoma (OPC) is lower radiation dose to several critical structures involved in the development of nausea and vomiting, mucositis, and dysphagia. The purpose of this study was to quantify doses to critical structures for patients with OPC treated with IMPT and compare those with doses on IMRT plans generated for the same patients and with a matched cohort of patients actually treated with IMRT. In this study, 25 patients newly diagnosed with OPC were treated with IMPT between 2011 and 2012.more » Comparison IMRT plans were generated for these patients and for additional IMRT-treated controls extracted from a database of patients with OPC treated between 2000 and 2009. Cases were matched based on the following criteria, in order: unilateral vs bilateral therapy, tonsil vs base of tongue primary, T-category, N-category, concurrent chemotherapy, induction chemotherapy, smoking status, sex, and age. Results showed that the mean doses to the anterior and posterior oral cavity, hard palate, larynx, mandible, and esophagus were significantly lower with IMPT than with IMRT comparison plans generated for the same cohort, as were doses to several central nervous system structures involved in the nausea and vomiting response. Similar differences were found when comparing dose to organs at risks (OARs) between the IMPT cohort and the case-matched IMRT cohort. In conclusion, these findings suggest that patients with OPC treated with IMPT may experience fewer and less severe side effects during therapy. This may be the result of decreased beam path toxicities with IMPT due to lower doses to several dysphagia, odynophagia, and nausea and vomiting–associated OARs. Further study is needed to evaluate differences in long-term disease control and chronic toxicity between patients with OPC treated with IMPT in comparison

  15. Dosimetric effects of endorectal balloons on intensity-modulated radiation therapy plans for prostate cancer

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Chung, Jin-Beom; Kim, In-Ah; Eom, Keun-Yong

    2013-10-01

    We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.

  16. Kramers-Kronig relations in Laser Intensity Modulation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuncer, Enis

    2006-01-01

    In this short paper, the Kramers-Kronig relations for the Laser Intensity Modulation Method (LIMM) are presented to check the self-consistency of experimentally obtained complex current densities. The numerical procedure yields well defined, precise estimates for the real and the imaginary parts of the LIMM current density calculated from its imaginary and real parts, respectively. The procedure also determines an accurate high frequency real current value which appears to be an intrinsic material parameter similar to that of the dielectric permittivity at optical frequencies. Note that the problem considered here couples two different material properties, thermal and electrical, consequently the validitymore » of the Kramers-Kronig relation indicates that the problem is invariant and linear.« less

  17. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korhonen, Juha, E-mail: juha.p.korhonen@hus.fi; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS; Kapanen, Mika

    2014-01-15

    Purpose: The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. Methods: T{sub 1}/T{sub 2}*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRImore » intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360° volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. Results: The average HU differences between the constructed pseudo-CT images and standard CT images

  18. Definition and visualisation of regions of interest in post-prostatectomy image-guided intensity modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Linda J, E-mail: linda.bell1@health.nsw.gov.au; Cox, Jennifer; Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales

    2014-09-15

    Standard post-prostatectomy radiotherapy (PPRT) image verification uses bony anatomy alignment. However, the prostate bed (PB) moves independently of bony anatomy. Cone beam computed tomography (CBCT) can be used to soft tissue match, so radiation therapists (RTs) must understand pelvic anatomy and PPRT clinical target volumes (CTV). The aims of this study are to define regions of interest (ROI) to be used in soft tissue matching image guidance and determine their visibility on planning CT (PCT) and CBCT. Published CTV guidelines were used to select ROIs. The PCT scans (n = 23) and CBCT scans (n = 105) of 23 post-prostatectomymore » patients were reviewed. Details on ROI identification were recorded. Eighteen patients had surgical clips. All ROIs were identified on PCTs at least 90% of the time apart from mesorectal fascia (MF) (87%) due to superior image quality. When surgical clips are present, the seminal vesicle bed (SVB) was only seen in 2.3% of CBCTs and MF was unidentifiable. Most other structures were well identified on CBCT. The anterior rectal wall (ARW) was identified in 81.4% of images and penile bulb (PB) in 68.6%. In the absence of surgical clips, the MF and SVB were always identified; the ARW was identified in 89.5% of CBCTs and PB in 73.7%. Surgical clips should be used as ROIs when present to define SVB and MF. In the absence of clips, SVB, MF and ARW can be used. RTs must have a strong knowledge of soft tissue anatomy and PPRT CTV to ensure coverage and enable soft tissue matching.« less

  19. Volumetric modulated arc radiotherapy for esophageal cancer.

    PubMed

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Kumar, S A Syam; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-01-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V(₂₀Gy) and V(₃₀Gy) dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D(₃₅%) of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V(₁₀Gy) and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. miR-139-5p Modulates Radiotherapy Resistance in Breast Cancer by Repressing Multiple Gene Networks of DNA Repair and ROS Defense.

    PubMed

    Pajic, Marina; Froio, Danielle; Daly, Sheridan; Doculara, Louise; Millar, Ewan; Graham, Peter H; Drury, Alison; Steinmann, Angela; de Bock, Charles E; Boulghourjian, Alice; Zaratzian, Anaiis; Carroll, Susan; Toohey, Joanne; O'Toole, Sandra A; Harris, Adrian L; Buffa, Francesca M; Gee, Harriet E; Hollway, Georgina E; Molloy, Timothy J

    2018-01-15

    Radiotherapy is essential to the treatment of most solid tumors and acquired or innate resistance to this therapeutic modality is a major clinical problem. Here we show that miR-139-5p is a potent modulator of radiotherapy response in breast cancer via its regulation of genes involved in multiple DNA repair and reactive oxygen species defense pathways. Treatment of breast cancer cells with a miR-139-5p mimic strongly synergized with radiation both in vitro and in vivo , resulting in significantly increased oxidative stress, accumulation of unrepaired DNA damage, and induction of apoptosis. Several miR-139-5p target genes were also strongly predictive of outcome in radiotherapy-treated patients across multiple independent breast cancer cohorts. These prognostically relevant miR-139-5p target genes were used as companion biomarkers to identify radioresistant breast cancer xenografts highly amenable to sensitization by cotreatment with a miR-139-5p mimetic. Significance: The microRNA described in this study offers a potentially useful predictive biomarker of radiosensitivity in solid tumors and a generally applicable druggable target for tumor radiosensitization. Cancer Res; 78(2); 501-15. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Comparison of selected dose calculation algorithms in radiotherapy treatment planning for tissues with inhomogeneities

    NASA Astrophysics Data System (ADS)

    Woon, Y. L.; Heng, S. P.; Wong, J. H. D.; Ung, N. M.

    2016-03-01

    Inhomogeneity correction is recommended for accurate dose calculation in radiotherapy treatment planning since human body are highly inhomogeneous with the presence of bones and air cavities. However, each dose calculation algorithm has its own limitations. This study is to assess the accuracy of five algorithms that are currently implemented for treatment planning, including pencil beam convolution (PBC), superposition (SP), anisotropic analytical algorithm (AAA), Monte Carlo (MC) and Acuros XB (AXB). The calculated dose was compared with the measured dose using radiochromic film (Gafchromic EBT2) in inhomogeneous phantoms. In addition, the dosimetric impact of different algorithms on intensity modulated radiotherapy (IMRT) was studied for head and neck region. MC had the best agreement with the measured percentage depth dose (PDD) within the inhomogeneous region. This was followed by AXB, AAA, SP and PBC. For IMRT planning, MC algorithm is recommended for treatment planning in preference to PBC and SP. The MC and AXB algorithms were found to have better accuracy in terms of inhomogeneity correction and should be used for tumour volume within the proximity of inhomogeneous structures.

  2. Capecitabine and Oxaliplatin Before, During, and After Radiotherapy for High-Risk Rectal Cancer.

    PubMed

    Larsen, Finn Ole; Markussen, Alice; Jensen, Benny V; Fromm, Anne L; Vistisen, Kirsten K; Parner, Vibeke K; Linnemann, Dorte; Hansen, Rasmus H; Johannesen, Helle H; Schou, Jakob V

    2017-06-01

    To evaluate the effect of capecitabine and oxaliplatin before, during, and after radiotherapy for high-risk rectal cancer. Patients with rectum cancer T4 or T3 involving the mesorectal fascia was included in a prospective phase 2 trial. Liver or lung metastases were accepted if the surgeons found them resectable. The patients received 6 weeks of capecitabine and oxaliplatin before chemoradiotherapy (CRT), continued capecitabine and oxaliplatin during radiotherapy, and received 4 weeks of capecitabine and oxaliplatin after CRT. The patients received radiotherapy as intensity-modulated radiotherapy. Total mesorectal excision was planned 8 weeks after CRT. The patients were evaluated with magnetic resonance imaging (MRI) before start of treatment, after 6 weeks of chemotherapy, and again just before the operation. The European Organization for Research and Treatment of Cancer (EORTC) QLQ-CR29 scoring system was used to evaluate adverse events. Fifty-two patients were enrolled between 2009 and 2012. The treatment was well tolerated, with only one death during treatment. Eighty percent of assessable patients experienced response to chemotherapy alone as evaluated by MRI, which increased to 94% after complete oncologic treatment. Forty-nine patients had a total mesorectal excision performed, all with a R0 resection and with a pathologic complete response of 20% for patients with T3 tumor and 7% for patients with T4 tumor. Five patients had metastases at study entry, while 47 patients had locally advanced rectal cancer without metastases. Of these 47 patients, overall survival and progression-free survival at 5 years was 72% and 62%, respectively, with a median follow-up of 60 months. This aggressive approach with capecitabine and oxaliplatin before, during, and after radiotherapy for high-risk rectal cancer is safe and feasible; it also has an impressive response rate as measured by MRI and a promising 5-year overall survival. Copyright © 2016 Elsevier Inc. All rights

  3. The efficacy and safety of simultaneous integrated boost intensity-modulated radiation therapy for esophageal squamous cell carcinoma in Chinese population: A single institution experience.

    PubMed

    Xu, Yujin; Wang, Zhun; Liu, Guan; Zheng, Xiao; Wang, Yuezhen; Feng, Wei; Lai, Xiaojing; Zhou, Xia; Li, Pu; Ma, Honglian; Wang, Jin; Hu, Xiao; Chen, Ming

    2016-10-01

    To evaluate the clinical efficacy and toxicity of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) in patients with esophageal squamous cell carcinoma (ESCC) in Chinese population. Patients with ESCC, who received SIB-IMRT from September 2011 to January 2013 were retrospectively analyzed. The SIB-IMRT plans were designed to deliver primary gross tumor volume at 60-64.4 Gy in 28-30 fractions, and planning target volume at 50.4-56 Gy in 28-30 fractions. Treatment-related toxicities were estimated based on Common Terminology Criteria for Adverse Events version 4.0, and tumor response after the treatment was estimated according to Response Evaluation Criteria in Solid Tumors version 1.0. Overall survival (OS), locoregional progression-free survival (LPFS), and progression-free survival (PFS) were estimated with Kaplan-Meier. All patients completed definitive radiotherapy, 54 (78.3%) received combined chemotherapy, of which 31 (44.9%) were concurrent chemoradiotherapy and 23 (33.3%) were sequential chemotherapy. The objective response rate is 82.6% (56/69), with complete response 11 (15.9%), partial response 45 (65.2%), stable disease 8 (11.6%), and progressive disease 5 (7.2%). The 1-, 2- and 3-year LPFS was 74.4%, 57.8%, and 55.6%, respectively. The 1-, 2- and 3-year PFS was 62.3%, 41.0%, and 34.2%, respectively, and the 1-, 2-, and 3-year OS was 73.8%, 57.4%, and 41.0%, respectively, with a median OS of 27.1 months (4.5-54.9 m). For those who received concurrent chemotherapy, the 1-, 2-, and 3-year OS was 75.9%, 69.0%, and 55.2%, respectively, better than those who had sequential chemotherapy or radiotherapy alone (χ2 = 3.115, P = 0.078). Radiation esophagitis occurred in 63.8% and 14.5% with Grade 2 and 3, respectively. No patients occurred ≥ Grade 3 radiation pneumonia. It is safe and effective using SIB-IMRT technology to treat patients with ESCC. More prospective clinical studies should be needed.

  4. Simulation of novel intensity modulated cascaded coated LPFG sensor based on PMTP

    NASA Astrophysics Data System (ADS)

    Feng, Wenbin; Gu, Zhengtian; Lin, Qiang; Sang, Jiangang

    2017-12-01

    This paper presents a novel intensity modulated cascaded long-period fiber grating (CLPFG) sensor which is cascaded by two same coated long-period fiber gratings (LPFGs) operating at the phase-matching turning point (PMTP). The sensor combines the high sensitivity of LPFG operating at PMTP and the narrow bandwidth of interference attenuation band of CLPFG, so a higher response to small change of the surrounding refractive index (SRI) can be obtained by intensity modulation. Based on the coupled-mode theory, the grating parameters of the PMTP of a middle odd order cladding mode of a single LPFG are calculated. Then this two same LPFGs are cascaded into a CLPFG, and the optical transmission spectrum of the CLPFG is calculated by transfer matrix method. A resonant wavelength of a special interference attenuation band whose intensity has the highest response to SRI, is selected form CLPFG’s spectrum, and setting the resonant wavelength as the operating wavelength of the sensor. Furthermore, the simulation results show that the resolution of SRI of this CLPFG is available to 1.97 × 10-9 by optimizing the film optical parameters, which is about three orders of magnitude higher than coated dual-peak LPFG and cascaded LPFG sensors. It is noteworthy that the sensor is also sensitive to the refractive index of coat, so that the sensor is expected to be applied to detections of gas, PH value, humidity and so on, in the future.

  5. The Intensity Modulation of the Fluorescent Line by a Finite Light Speed Effect in Accretion-powered X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Kitamoto, Shunji; Hoshino, Akio

    2017-11-01

    The X-ray line diagnostic method is a powerful tool for an investigation of plasma around accretion-powered X-ray pulsars. We point out an apparent intensity modulation of emission lines, with their rotation period of neutron stars, due to the finite speed of light (we call this effect the “finite light speed effect”) if the line emission mechanism is a kind of reprocessing, such as fluorescence or recombination after ionization by X-ray irradiation from pulsars. The modulation amplitude is determined by the size of the emission region, which is in competition with the smearing effect by the light crossing time in the emission region. This is efficient if the size of the emission region is roughly comparable to that of the rotation period multiplied by the speed of light. We apply this effect to a symbiotic X-ray pulsar, GX 1+4, where a spin modulation of the intense iron line of which has been reported. The finite light speed effect can explain the observed intensity modulation if its fluorescent region is the size of ˜ {10}12 cm.

  6. SU-C-17A-01: MRI-Based Radiotherapy Treatment Planning In Pelvis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S; Cao, Y; Jolly, S

    2014-06-15

    Purpose: To support radiotherapy dose calculation, synthetic CT (MRCT) image volumes need to represent the electron density of tissues with sufficient accuracy. This study compares CT and MRCT for pelvic radiotherapy. Methods: CT and multi-contrast MRI acquired using T1- based Dixon, T2 TSE, and PETRA sequences were acquired on an IRBapproved protocol patient. A previously published method was used to create a MRCT image volume by applying fuzzy classification on T1- weighted and calculated water image volumes (air and fluid voxels were excluded using thresholds applied to PETRA and T2-weighted images). The correlation of pelvic bone intensity between CT andmore » MRCT was investigated. Two treatment plans, based on CT and MRCT, were performed to mimic treatment for: (a) pelvic bone metastasis with a 16MV parallel beam arrangement, and (b) gynecological cancer with 6MV volumetric modulated arc therapy (VMAT) using two full arcs. The CT-calculated fluence maps were used to recalculate doses using the MRCT-derived density grid. The dose-volume histograms and dose distributions were compared. Results: Bone intensities in the MRCT volume correlated linearly with CT intensities up to 800 HU (containing 96% of the bone volume), and then decreased with CT intensity increase (4% volume). There was no significant difference in dose distributions between CT- and MRCTbased plans, except for the rectum and bladder, for which the V45 differed by 15% and 9%, respectively. These differences may be attributed to normal and visualized organ movement and volume variations between CT and MR scans. Conclusion: While MRCT had lower bone intensity in highly-dense bone, this did not cause significant dose deviations from CT due to its small percentage of volume. These results indicate that treatment planning using MRCT could generate comparable dose distributions to that using CT, and further demonstrate the feasibility of using MRI-alone to support Radiation Oncology workflow. NIH R01

  7. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    NASA Astrophysics Data System (ADS)

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-02-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  8. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    PubMed

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-02-24

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  9. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    USGS Publications Warehouse

    van Hengstrum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  10. SU-E-T-175: Clinical Evaluations of Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y; Li, Y; Tian, Z

    2015-06-15

    Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine wasmore » used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.« less

  11. Incorporating uncertainty and motion in Intensity Modulated Radiation Therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Martin, Benjamin Charles

    In radiation therapy, one seeks to destroy a tumor while minimizing the damage to surrounding healthy tissue. Intensity Modulated Radiation Therapy (IMRT) uses overlapping beams of x-rays that add up to a high dose within the target and a lower dose in the surrounding healthy tissue. IMRT relies on optimization techniques to create high quality treatments. Unfortunately, the possible conformality is limited by the need to ensure coverage even if there is organ movement or deformation. Currently, margins are added around the tumor to ensure coverage based on an assumed motion range. This approach does not ensure high quality treatments. In the standard IMRT optimization problem, an objective function measures the deviation of the dose from the clinical goals. The optimization then finds the beamlet intensities that minimize the objective function. When modeling uncertainty, the dose delivered from a given set of beamlet intensities is a random variable. Thus the objective function is also a random variable. In our stochastic formulation we minimize the expected value of this objective function. We developed a problem formulation that is both flexible and fast enough for use on real clinical cases. While working on accelerating the stochastic optimization, we developed a technique of voxel sampling. Voxel sampling is a randomized algorithms approach to a steepest descent problem based on estimating the gradient by only calculating the dose to a fraction of the voxels within the patient. When combined with an automatic sampling rate adaptation technique, voxel sampling produced an order of magnitude speed up in IMRT optimization. We also develop extensions of our results to Intensity Modulated Proton Therapy (IMPT). Due to the physics of proton beams the stochastic formulation yields visibly different and better plans than normal optimization. The results of our research have been incorporated into a software package OPT4D, which is an IMRT and IMPT optimization tool

  12. Initial Results from the Royal College of Radiologists' UK National Audit of Anal Cancer Radiotherapy 2015.

    PubMed

    Muirhead, R; Drinkwater, K; O'Cathail, S M; Adams, R; Glynne-Jones, R; Harrison, M; Hawkins, M A; Sebag-Montefiore, D; Gilbert, D C

    2017-03-01

    UK guidance was recently developed for the treatment of anal cancer using intensity-modulated radiotherapy (IMRT). We audited the current use of radiotherapy in UK cancer centres for the treatment of anal cancer against such guidance. We describe the acute toxicity of IMRT in comparison with patient population in the audit treated with two-phase conformal radiotherapy and the previous published data from two-phase conformal radiotherapy, in the UK ACT2 trial. A Royal College of Radiologists' prospective national audit of patients treated with radiotherapy in UK cancer centres was carried out over a 6 month period between February and July 2015. Two hundred and forty-two cases were received from 40/56 cancer centres (71%). In total, 231 (95%) underwent full dose radiotherapy with prophylactic nodal irradiation. Of these, 180 (78%) received IMRT or equivalent, 52 (22%) two-phase conformal (ACT2) technique. The number of interruptions in radiotherapy treatment in the ACT2 trial was 15%. Interruptions were noted in 7% (95% confidence interval 0-14%) of courses receiving two-phase conformal and 4% (95% confidence interval 1-7%) of those receiving IMRT. The percentage of patients completing the planned radiotherapy dose, irrelevant of gaps, was 90% (95% confidence interval 82-98%) and 96% (95% confidence interval 93-99%), in two-phase conformal and IMRT respectively. The toxicity reported in the ACT2 trial, in patients receiving two-phase conformal in the audit and in patients receiving IMRT in the audit was: any toxic effect 71%, 54%, 48%, non-haematological 62%, 49%, 40% and haematological 26%, 13%, 18%, respectively. IMRT implementation for anal cancer is well underway in the UK with most patients receiving IMRT delivery, although its usage is not yet universal. This audit confirms that IMRT results in reduced acute toxicity and minimised treatment interruptions in comparison with previous two-phase conformal techniques. Copyright © 2016 The Royal College of

  13. Hippocampus-sparing radiotherapy using volumetric modulated arc therapy (VMAT) to the primary brain tumor: the result of dosimetric study and neurocognitive function assessment.

    PubMed

    Kim, Kyung Su; Wee, Chan Woo; Seok, Jin-Yong; Hong, Joo Wan; Chung, Jin-Beom; Eom, Keun-Yong; Kim, Jae-Sung; Kim, Chae-Yong; Park, Young Ho; Kim, Yu Jung; Kim, In Ah

    2018-02-20

    We hypothesized that hippocampal-sparing radiotherapy via volumetric modulated arc therapy (VMAT) could preserve the neurocognitive function (NCF) of patients with primary brain tumors treated with radiotherapy. We reviewed data from patients with primary brain tumors who underwent hippocampal-sparing brain radiotherapy via VMAT between February 2014 and December 2015. The optimization criteria for the contralateral hippocampus was a maximum dose (D max ) of less than 17 Gy. For NCF evaluations, the Seoul Verbal Learning Test for total recall, delayed recall, and recognition (SVLT-TR, DR, and Recognition) was performed at baseline and at seven months after radiotherapy. A total of 26 patients underwent NCF testing seven months after radiotherapy. Their median age was 49.5 years (range 26-77 years), and 14 (53.8%) had grade III/IV tumors. The median D max to the contralateral hippocampus was 16.4 Gy (range 3.5-63.4). The median mean dose to the contralateral hippocampus, expressed as equivalent to a 2-Gy dose (EQD 2/2 ), was 7.4 Gy 2 (0.7-13.1). The mean relative changes in SVLT-TR, SVLT-DR, and SVLT-Recognition at seven months compared to the baseline were - 7.7% (95% confidence interval [CI], - 19.6% to 4.2%), - 9.2% (95% CI, - 25.4% to 7.0%), and - 3.4% (- 12.7% to 5.8%), respectively. Two patients (7.7%) showed deteriorated NCF in the SVLT-TR and SVLT-DR, and three (11.5%) in the SVLT-Recognition. The mean dose of the left hippocampus and bilateral hippocampi were significantly higher in patients showing deterioration of the SVLT-TR and SVLT-Recognition than in those without deterioration. The contralateral hippocampus could be effectively spared in patients with primary brain tumor via VMAT to preserve the verbal memory function. Further investigation is needed to identify those patients who will most benefit from hippocampal-sparing radiotherapy of the primary brain tumor.

  14. Radiotherapy dose verification on a customised head and neck perspex phantom

    NASA Astrophysics Data System (ADS)

    Eng, K. Y.; Kandaiya, S.; Yahaya, N. Z.

    2017-05-01

    IMRT dose planned for head and neck radiotherapy was verified using a customised acrylic head-and-neck phantom. The dosimeters used were calibrated Gafchromic EBT2 film and metal-oxide-semiconductor-field-effect-transistor (MOSFET). Target volumes (TV) and organs-at-risk (OAR) which were previously contoured by an oncologist on selected nasopharynx (NPC) patients were transferred to this phantom by an image fusion procedure. Three radiotherapy plans were done: Plan1 with 7-fields intensity-modulated radiotherapy (IMRT) of prescribed dose 70 Gy using 33 fractions; Plan2 with 7-fields IMRT plan at 70 Gy and 35 fractions; and Plan3 which was a mid-plane-dose (MPD) plan of 66 Gy at 33 fractions. The dose maps were first verified using MapCheck2 by SNC-PatientTM software. The passing rates from gamma analysis were 97.7% (Plan1), 93.1% (Plan2) and 100% (Plan3). Percentage difference between Treatment Planning System (TPS) calculated dose and MOSFET measured dose was comparatively higher than those from EBT2. Calculated dose and EBT2 measured doses showed differences of within the range of ±3% for TV and <±10% for OARs. However MOSFET had differences of within the range of ±6% for TV and within the range of ±10% for OARs between measured and planned doses. An overdose treatment may occur as TPS calculated doses were lower than the measured doses in these plans. This may be due to the effects of leaf leakage, leaf scatter and photon backscatter into the measuring tools (Pawlicki et al., 1999 and Ma et al., 2000). More IMRT plans have to be studied to validate this conclusion. However, the dose measurements were still within the 10% tolerance (AAPM Task Group 119). In conclusion, both GafchromicEBT2 film and MOSFET are suitable for IMRT radiotherapy dosimetry.

  15. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plansmore » were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc

  16. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma.

    PubMed

    Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling

    2017-01-01

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated

  17. Survey of the Patterns of Using Stereotactic Ablative Radiotherapy for Early-Stage Non-small Cell Lung Cancer in Korea.

    PubMed

    Song, Sanghyuk; Chang, Ji Hyun; Kim, Hak Jae; Kim, Yeon Sil; Kim, Jin Hee; Ahn, Yong Chan; Kim, Jae-Sung; Song, Si Yeol; Moon, Sung Ho; Cho, Moon June; Youn, Seon Min

    2017-07-01

    Stereotactic ablative radiotherapy (SABR) is an effective emerging technique for early-stage non-small cell lung cancer (NSCLC). We investigated the current practice of SABR for early-stage NSCLC in Korea. We conducted a nationwide survey of SABR for NSCLC by sending e-mails to all board-certified members of the Korean Society for Radiation Oncology. The survey included 23 questions focusing on the technical aspects of SABR and 18 questions seeking the participants' opinions on specific clinical scenarios in the use of SABR for early-stage NSCLC. Overall, 79 radiation oncologists at 61/85 specialist hospitals in Korea (71.8%) responded to the survey. SABR was used at 33 institutions (54%) to treat NSCLC. Regarding technical aspects, the most common planning methods were the rotational intensity-modulated technique (59%) and the static intensity-modulated technique (49%). Respiratory motion was managed by gating (54%) or abdominal compression (51%), and 86% of the planning scans were obtained using 4-dimensional computed tomography. In the clinical scenarios, the most commonly chosen fractionation schedule for peripherally located T1 NSCLC was 60 Gy in four fractions. For centrally located tumors and T2 NSCLC, the oncologists tended to avoid SABR for radiotherapy, and extended the fractionation schedule. The results of our survey indicated that SABR is increasingly being used to treat NSCLC in Korea. However, there were wide variations in the technical protocols and fractionation schedules of SABR for early-stage NSCLC among institutions. Standardization of SABR is necessary before implementing nationwide, multicenter, randomized studies.

  18. Loud and angry: sound intensity modulates amygdala activation to angry voices in social anxiety disorder

    PubMed Central

    Simon, Doerte; Becker, Michael; Mothes-Lasch, Martin; Miltner, Wolfgang H.R.

    2017-01-01

    Abstract Angry expressions of both voices and faces represent disorder-relevant stimuli in social anxiety disorder (SAD). Although individuals with SAD show greater amygdala activation to angry faces, previous work has failed to find comparable effects for angry voices. Here, we investigated whether voice sound-intensity, a modulator of a voice’s threat-relevance, affects brain responses to angry prosody in SAD. We used event-related functional magnetic resonance imaging to explore brain responses to voices varying in sound intensity and emotional prosody in SAD patients and healthy controls (HCs). Angry and neutral voices were presented either with normal or high sound amplitude, while participants had to decide upon the speaker’s gender. Loud vs normal voices induced greater insula activation, and angry vs neutral prosody greater orbitofrontal cortex activation in SAD as compared with HC subjects. Importantly, an interaction of sound intensity, prosody and group was found in the insula and the amygdala. In particular, the amygdala showed greater activation to loud angry voices in SAD as compared with HC subjects. This finding demonstrates a modulating role of voice sound-intensity on amygdalar hyperresponsivity to angry prosody in SAD and suggests that abnormal processing of interpersonal threat signals in amygdala extends beyond facial expressions in SAD. PMID:27651541

  19. A Kindler syndrome-associated squamous cell carcinoma treated with radiotherapy.

    PubMed

    Caldeira, Ademar; Trinca, William Correia; Flores, Thais Pires; Costa, Andrea Barleze; Brito, Claudio de Sá; Weigert, Karen Loureiro; Matos, Maryana Schwartzhaupt; Nicolini, Carmela; Obst, Fernando Mariano

    2016-01-01

    Kindler syndrome1, 2 is a genetic disorder mainly characterized by increased skin fragility and photosensitivity,3, 4 making the use of treatments based on radiation difficult or even prohibited. Thus, cases reporting Kindler syndrome patients treated with radiotherapy are rare. In this study, we report clinical outcomes and care provided for a rare case of a Kindler syndrome patient submitted to radiotherapy. Diagnosed with squamous cell carcinoma involving the buccal mucosa, the patient was exclusively treated with radiotherapy, with 70 Gy delivered on the PTV with the Volumetric Modulated Arc technique. The patient's reaction regarding control of the lesion is relevant compared to patients not affected by the syndrome. We noticed acute reactions of the skin and buccal mucosa after few radiotherapy sessions, followed by a fast reduction in the tumor volume. The efficacy of radiotherapy along with multidisciplinary actions allowed treatment continuity, leading to a complete control of the lesion and life quality improvement and showed that the use of radiotherapy on Kindler syndrome patients is possible.

  20. Dose specification for hippocampal sparing whole brain radiotherapy (HS WBRT): considerations from the UK HIPPO trial QA programme.

    PubMed

    Megias, Daniel; Phillips, Mark; Clifton-Hadley, Laura; Harron, Elizabeth; Eaton, David J; Sanghera, Paul; Whitfield, Gillian

    2017-03-01

    The HIPPO trial is a UK randomized Phase II trial of hippocampal sparing (HS) vs conventional whole-brain radiotherapy after surgical resection or radiosurgery in patients with favourable prognosis with 1-4 brain metastases. Each participating centre completed a planning benchmark case as part of the dedicated radiotherapy trials quality assurance programme (RTQA), promoting the safe and effective delivery of HS intensity-modulated radiotherapy (IMRT) in a multicentre trial setting. Submitted planning benchmark cases were reviewed using visualization for radiotherapy software (VODCA) evaluating plan quality and compliance in relation to the HIPPO radiotherapy planning and delivery guidelines. Comparison of the planning benchmark data highlighted a plan specified using dose to medium as an outlier by comparison with those specified using dose to water. Further evaluation identified that the reported plan statistics for dose to medium were lower as a result of the dose calculated at regions of PTV inclusive of bony cranium being lower relative to brain. Specification of dose to water or medium remains a source of potential ambiguity and it is essential that as part of a multicentre trial, consideration is given to reported differences, particularly in the presence of bone. Evaluation of planning benchmark data as part of an RTQA programme has highlighted an important feature of HS IMRT dosimetry dependent on dose being specified to water or medium, informing the development and undertaking of HS IMRT as part of the HIPPO trial. Advances in knowledge: The potential clinical impact of differences between dose to medium and dose to water are demonstrated for the first time, in the setting of HS whole-brain radiotherapy.

  1. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William, E-mail: william@medphys.mcgill.c; Brodeur, Marylene; Roberge, David

    2010-07-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as partmore » of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.« less

  2. Proton Radiotherapy for High-Risk Pediatric Neuroblastoma: Early Outcomes and Dose Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattangadi, Jona A.; Rombi, Barbara; Provincial Agency for Proton Therapy, Trento

    2012-07-01

    Purpose: To report the early outcomes for children with high-risk neuroblastoma treated with proton radiotherapy (RT) and to compare the dose distributions for intensity-modulated photon RT (IMRT), three-dimensional conformal proton RT (3D-CPT), and intensity-modulated proton RT to the postoperative tumor bed. Methods and Materials: All patients with high-risk (International Neuroblastoma Staging System Stage III or IV) neuroblastoma treated between 2005 and 2010 at our institution were included. All patients received induction chemotherapy, surgical resection of residual disease, high-dose chemotherapy with stem cell rescue, and adjuvant 3D-CPT to the primary tumor sites. The patients were followed with clinical examinations, imaging, andmore » laboratory testing every 6 months to monitor disease control and side effects. IMRT, 3D-CPT, and intensity-modulated proton RT plans were generated and compared for a representative case of adjuvant RT to the primary tumor bed followed by a boost. Results: Nine patients were treated with 3D-CPT. The median age at diagnosis was 2 years (range 10 months to 4 years), and all patients had Stage IV disease. All patients had unfavorable histologic characteristics (poorly differentiated histologic features in 8, N-Myc amplification in 6, and 1p/11q chromosomal abnormalities in 4). The median tumor size at diagnosis was 11.4 cm (range 7-16) in maximal dimension. At a median follow-up of 38 months (range 11-70), there were no local failures. Four patients developed distant failure, and, of these, two died of disease. Acute side effects included Grade 1 skin erythema in 5 patients and Grade 2 anorexia in 2 patients. Although comparable target coverage was achieved with all three modalities, proton therapy achieved substantial normal tissue sparing compared with IMRT. Intensity-modulated proton RT allowed additional sparing of the kidneys, lungs, and heart. Conclusions: Preliminary outcomes reveal excellent local control with proton

  3. Subliminal action priming modulates the perceived intensity of sensory action consequences☆

    PubMed Central

    Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.

    2014-01-01

    The sense of control over the consequences of one’s actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime–target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. PMID:24333539

  4. A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lips, Irene M., E-mail: i.m.lips@umcutrecht.nl; Gils, Carla H. van; Kotte, Alexis N.T.J.

    2012-06-01

    Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondarymore » outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.« less

  5. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    PubMed

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  6. The rationale for intensity-modulated proton therapy in geometrically challenging cases

    NASA Astrophysics Data System (ADS)

    Safai, S.; Trofimov, A.; Adams, J. A.; Engelsman, M.; Bortfeld, T.

    2013-09-01

    Intensity-modulated proton therapy (IMPT) delivered with beam scanning is currently available at a limited number of proton centers. However, a simplified form of IMPT, the technique of field ‘patching’, has long been a standard practice in proton therapy centers. In field patching, different parts of the target volume are treated from different directions, i.e., a part of the tumor gets either full dose from a radiation field, or almost no dose. Thus, patching represents a form of binary intensity modulation. This study explores the limitations of the standard binary field patching technique, and evaluates possible dosimetric advantages of continuous dose modulations in IMPT. Specifics of the beam delivery technology, i.e., pencil beam scanning versus passive scattering and modulation, are not investigated. We have identified two geometries of target volumes and organs at risk (OAR) in which the use of field patching is severely challenged. We focused our investigations on two patient cases that exhibit these geometries: a paraspinal tumor case and a skull-base case. For those cases we performed treatment planning comparisons of three-dimensional conformal proton therapy (3DCPT) with field patching versus IMPT, using commercial and in-house software, respectively. We also analyzed the robustness of the resulting plans with respect to systematic setup errors of ±1 mm and range errors of ±2.5 mm. IMPT is able to better spare OAR while providing superior dose coverage for the challenging cases identified above. Both 3DCPT and IMPT are sensitive to setup errors and range uncertainties, with IMPT showing the largest effect. Nevertheless, when delivery uncertainties are taken into account IMPT plans remain superior regarding target coverage and OAR sparing. On the other hand, some clinical goals, such as the maximum dose to OAR, are more likely to be unmet with IMPT under large range errors. IMPT can potentially improve target coverage and OAR sparing in

  7. Conditioned pain modulation is affected by occlusion cuff conditioning stimulus intensity, but not duration.

    PubMed

    Smith, A; Pedler, A

    2018-01-01

    Various conditioned pain modulation (CPM) methodologies have been used to investigate diffuse noxious inhibitory control pain mechanisms in healthy and clinical populations. Occlusion cuff parameters have been poorly studied. We aimed to investigate whether occlusion cuff intensity and/or duration influenced CPM magnitudes. We also investigated the role of physical activity levels on CPM magnitude. Two studies were performed to investigate the role of intensity and duration of occlusion cuff conditioning stimulus on test stimulus (tibialis anterior pressure pain thresholds). In Study 1, conditioning stimulus intensity of 2/10 or 5/10 (duration <20 s) was evaluated using a paired-samples t-test. In Study 2, duration of 2/10 conditioning stimulus was 3 min. One-way repeated-measures ANOVA was used to investigate the effect of time (0, 1, 2 and 3 min) on CPM magnitude. In Study 1, 27 healthy volunteers (mean ± SD: 24.9 years (±4.5); eight female) demonstrated that an occlusion cuff applied to the upper arm eliciting 5/10 local pain resulted in a significant (mean ± SD: 17% ± 46%) increase in CPM magnitude, when compared to 2/10 intensity (-3% ± 38%, p = 0.026), whereas in Study 2, 25 healthy volunteers (22.5 years (±2.7); 13 female) demonstrated that 3 min of 2/10 CS intensity did not result in a significant change in CPM (p = 0.21). There was no significant relationship between physical activity levels and CPM in either study (p > 0.22). This study demonstrated that an occlusion cuff of 5/10 conditioning stimulus intensity, when compared to 2/10, significantly increased CPM magnitude. Maintaining 2/10 conditioning stimulus for 3 min did not increase CPM magnitude. Dysfunctional conditioned pain modulation (CPM) has been associated with poor health outcomes. Various factors can influence CPM outcomes. The role of occlusion cuff conditioning stimulus intensity and duration has not been previously investigated. Intensity (5/10), but not

  8. Thyroid V50 Highly Predictive of Hypothyroidism in Head-and-Neck Cancer Patients Treated With Intensity-modulated Radiotherapy (IMRT).

    PubMed

    Sachdev, Sean; Refaat, Tamer; Bacchus, Ian D; Sathiaseelan, Vythialinga; Mittal, Bharat B

    2017-08-01

    Radiation-induced hypothyroidism affects a significant number of patients with head-and-neck squamous cell cancer (HNSCC). We examined detailed dosimetric and clinical parameters to better determine the risk of hypothyroidism in euthyroid HNSCC patients treated with intensity-modulated radiation therapy (IMRT). From 2006 to 2010, 75 clinically euthyroid patients with HNSCC were treated with sequential IMRT. The cohort included 59 men and 16 females with a median age of 55 years (range, 30 to 89 y) who were treated to a median dose of 70 Gy (range, 60 to 75 Gy) with concurrent chemotherapy in nearly all (95%) cases. Detailed thyroid dosimetric parameters including maximum dose, mean dose, and other parameters (eg, V50-percent volume receiving at least 50 Gy) were obtained. Freedom from hypothyroidism was evaluated using the Kaplan-Meier method. Univariate and multivariate analyses were conducted using Cox regression. After a median follow-up period of 50 months, 25 patients (33%) became hypothyroid. On univariate analysis, thyroid V50 was highly correlated with developing hypothyroidism (P=0.035). Other dosimetric paramaters including mean thyroid dose (P=0.11) and maximum thyroid dose (P=0.39) did not reach statistical significance. On multivariate analysis incorporating patient, tumor, and treatment variables, V50 remained highly statistically significant (P=0.037). Regardless of other factors, for V50>60%, the odds ratio of developing hypothyroidism was 6.76 (P=0.002). In HNSCC patients treated with IMRT, thyroid V50 highly predicts the risk of developing hypothyroidism. V50>60% puts patients at a significantly higher risk of becoming hypothyroid. This can be a useful dose constraint to consider during treatment planning.

  9. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    PubMed Central

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670

  10. Validation of the relative insensitivity of volumetric-modulated arc therapy (VMAT) plan quality to gantry space resolution

    PubMed Central

    Cora, Stefania; Khan, Ehsan Ullah

    2017-01-01

    Abstract Volumetric-modulated arc therapy (VMAT) is an efficient form of radiotherapy used to deliver intensity-modulated radiotherapy beams. The aim of this study was to investigate the relative insensitivity of VMAT plan quality to gantry angle spacing (GS). Most previous VMAT planning and dosimetric work for GS resolution has been conducted for single arc VMAT. In this work, a quantitative comparison of dose–volume indices (DIs) was made for partial-, single- and double-arc VMAT plans optimized at 2°, 3° and 4° GS, representing a large variation in deliverable multileaf collimator segments. VMAT plans of six prostate cancer and six head-and-neck cancer patients were simulated for an Elekta SynergyS® Linac (Elekta Ltd, Crawley, UK), using the SmartArc™ module of Pinnacle³ TPS, (version 9.2, Philips Healthcare). All optimization techniques generated clinically acceptable VMAT plans, except for the single-arc for the head-and-neck cancer patients. Plan quality was assessed by comparing the DIs for the planning target volume, organs at risk and normal tissue. A GS of 2°, with finest resolution and consequently highest intensity modulation, was considered to be the reference, and this was compared with GS 3° and 4°. The differences between the majority of reference DIs and compared DIs were <2%. The metrics, such as treatment plan optimization time and pretreatment (phantom) dosimetric calculation time, supported the use of a GS of 4°. The ArcCHECK™ phantom–measured dosimetric agreement verifications resulted in a >95.0% passing rate, using the criteria for γ (3%, 3 mm). In conclusion, a GS of 4° is an optimal choice for minimal usage of planning resources without compromise of plan quality. PMID:27974507

  11. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.

    2015-04-01

    This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less

  12. Adapting radiotherapy to hypoxic tumours

    NASA Astrophysics Data System (ADS)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields

  13. Feasibility and efficacy of helical intensity-modulated radiotherapy for stage III non-small cell lung cancer in comparison with conventionally fractionated 3D-CRT.

    PubMed

    He, Jian; Huang, Yan; Chen, Yixing; Shi, Shiming; Ye, Luxi; Hu, Yong; Zhang, Jianying; Zeng, Zhaochong

    2016-05-01

    The standard treatment for stage III non-small-cell lung cancer (NSCLC) is still 60 Gy in conventional fractions combined with concurrent chemotherapy; however, the resulting local controls are disappointing. The aim of this study was to compare and assess the feasibility and efficacy of hypofractionated chemoradiotherapy using helical tomotherapy (HT) with conventional fractionation as opposed to using three-dimensional conformal radiotherapy (3D-CRT) for stage III NSCLC. Sixty-nine patients with stage III (AJCC 7th edition) NSCLC who underwent definitive radiation treatment at our institution between July 2011 and November 2013 were reviewed and analyzed retrospectively. A dose of 60 Gy in 20 fractions was delivered in the HT group (n=34), whereas 60 Gy in 30 fractions in the 3D-CRT group (n=35). Primary endpoints were toxicity, overall response rate, overall survival (OS) and progression-free survival (PFS). The median follow-up period was 26.4 months. V20 (P=0.005), V30 (P=0.001), V40 (P=0.004), mean lung dose (P=0.000) and max dose of spinal cord (P=0.005) were significantly lower in the HT group than in the 3D-CRT group. There was no significant difference in the incidences of acute radiation pneumonitis (RP) ≥ grade 2 between the two groups, whereas the incidences of acute radiation esophagitis ≥ grade 2 were significantly lower in the HT group than in the 3D-CRT group (P=0.027). Two-year overall response rate was significantly higher in the HT group than in the 3D-CRT group (P=0.015). One- and 2-year OS rates were significantly higher in the HT group (95.0% and 68.7%, respectively) than in the 3D-CRT group (85.5% and 47.6%, respectively; P=0.0236). One- and 2-year PFS rates were significantly higher in the HT group (57.8% and 26.3%, respectively) than in the 3D-CRT group (32.7% and 11.4%, respectively; P=0.0351). Univariate analysis indicated that performance status (PS), T stage and radiotherapy technique were significant prognostic factors for both OS

  14. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT).

    PubMed

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-01

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  15. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  16. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRTmore » plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.« less

  17. Loud and angry: sound intensity modulates amygdala activation to angry voices in social anxiety disorder.

    PubMed

    Simon, Doerte; Becker, Michael; Mothes-Lasch, Martin; Miltner, Wolfgang H R; Straube, Thomas

    2017-03-01

    Angry expressions of both voices and faces represent disorder-relevant stimuli in social anxiety disorder (SAD). Although individuals with SAD show greater amygdala activation to angry faces, previous work has failed to find comparable effects for angry voices. Here, we investigated whether voice sound-intensity, a modulator of a voice's threat-relevance, affects brain responses to angry prosody in SAD. We used event-related functional magnetic resonance imaging to explore brain responses to voices varying in sound intensity and emotional prosody in SAD patients and healthy controls (HCs). Angry and neutral voices were presented either with normal or high sound amplitude, while participants had to decide upon the speaker's gender. Loud vs normal voices induced greater insula activation, and angry vs neutral prosody greater orbitofrontal cortex activation in SAD as compared with HC subjects. Importantly, an interaction of sound intensity, prosody and group was found in the insula and the amygdala. In particular, the amygdala showed greater activation to loud angry voices in SAD as compared with HC subjects. This finding demonstrates a modulating role of voice sound-intensity on amygdalar hyperresponsivity to angry prosody in SAD and suggests that abnormal processing of interpersonal threat signals in amygdala extends beyond facial expressions in SAD. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. [Porting Radiotherapy Software of Varian to Cloud Platform].

    PubMed

    Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin

    2017-09-30

    To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.

  19. Photoacoustic microscopy of single cells employing an intensity-modulated diode laser

    NASA Astrophysics Data System (ADS)

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Dasa, Manoj Kumar; Klar, Thomas A.; Berer, Thomas

    2018-02-01

    In this work, we employ frequency-domain photoacoustic microscopy to obtain photoacoustic images of labeled and unlabeled cells. The photoacoustic microscope is based on an intensity-modulated diode laser in combination with a focused piezo-composite transducer and allows imaging of labeled cells without severe photo-bleaching. We demonstrate that frequency-domain photoacoustic microscopy realized with a diode laser is capable of recording photoacoustic images of single cells with sub-µm resolution. As examples, we present images of undyed human red blood cells, stained human epithelial cells, and stained yeast cells.

  20. Human Collagen Injections to Reduce Rectal Dose During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, William R., E-mail: noyes@cancercenternd.com; Hosford, Charles C.; Schultz, Steven E.

    Objectives: The continuing search for interventions, which address the incidence and grade of rectal toxicities associated with radiation treatment of prostate cancer, is a major concern. We are reporting an investigational trial using human collagen to increase the distance between the prostate and anterior rectal wall, thereby decreasing the radiation dose to the rectum. Methods: This is a pilot study evaluating the use of human collagen as a displacing agent for the rectal wall injected before starting a course of intensity-modulated radiotherapy (IMRT) for prostate cancer. Using a transperineal approach, 20 mL of human collagen was injected into the perirectalmore » space in an outpatient setting. Computerized IMRT plans were performed pre- and postcollagen injection, and after a patient completed their radiotherapy, to determine radiation dose reduction to the rectum associated with the collagen injection. Computed tomography scans were performed 6 months and 12 months after completing their radiotherapy to evaluate absorption rate of the collagen. All patients were treated with IMRT to a dose of 75.6 Gy to the prostate. Results: Eleven patients were enrolled into the study. The injection of human collagen in the outpatient setting was well tolerated. The mean separation between the prostate and anterior rectum was 12.7 mm. The mean reduction in dose to the anterior rectal wall was 50%. All men denied any rectal symptoms during the study. Conclusions: The transperineal injection of human collagen for the purpose of tissue displacement is well tolerated in the outpatient setting. The increased separation between the prostate and rectum resulted in a significant decrease in radiation dose to the rectum while receiving IMRT and was associated with no rectal toxicities.« less