Kikuchi, Kazuro
2014-01-27
We propose a novel configuration of optical receivers for intensity-modulation direct-detection (IM · DD) systems, which can cope with dual-polarization (DP) optical signals electrically. Using a Stokes analyzer and a newly-developed digital signal-processing (DSP) algorithm, we can achieve polarization tracking and demultiplexing in the digital domain after direct detection. Simulation results show that the power penalty stemming from digital polarization manipulations is negligibly small.
Maximum likelihood sequence estimation for optical complex direct modulation.
Che, Di; Yuan, Feng; Shieh, William
2017-04-17
Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.
Optically pre-amplified lidar-radar
NASA Astrophysics Data System (ADS)
Morvan, Loic; Dolfi, Daniel; Huignard, Jean-Pierre
2001-09-01
We present the concept of an optically pre-amplified intensity modulated lidar, where the modulation frequency is in the microwave domain (1-10 GHz). Such a system permits to combine directivity of laser beams with mature radar processing. As an intensity modulated or dual-frequency laser beam is directed on a target, the backscattered intensity is collected by an optical system, pass through an optical preamplifier, and is detected on a high speed photodiode in a direct detection scheme. A radar type processing permits then to extract range, speed and identification information. The association of spatially multimode amplifier and direct detection allows low sensitivity to atmospheric turbulence and large field of view. We demonstrated theoretically that optical pre-amplification can greatly enhance sensitivity, even in spatially multimode amplifiers, such as free-space amplifier or multimode doped fiber. Computed range estimates based on this concept are presented. Laboratory demonstrations using 1 to 3 GHz modulated laser sources and >20 dB gain in multimode amplifiers are detailed. Preliminary experimental results on range and speed measurements and possible use for large amplitude vibrometry will be presented.
Filter Bank Multicarrier (FBMC) for long-reach intensity modulated optical access networks
NASA Astrophysics Data System (ADS)
Saljoghei, Arsalan; Gutiérrez, Fernando A.; Perry, Philip; Barry, Liam P.
2017-04-01
Filter Bank Multi Carrier (FBMC) is a modulation scheme which has recently attracted significant interest in both wireless and optical communications. The interest in optical communications arises due to FBMC's capability to operate without a Cyclic Prefix (CP) and its high resilience to synchronisation errors. However, the operation of FBMC in optical access networks has not been extensively studied either in downstream or upstream. In this work we use experimental work to investigate the operation of FBMC in intensity modulated Passive Optical Networks (PONs) employing direct detection in conjunction with both direct and external modulation schemes. The data rates and propagation lengths employed here vary from 8.4 to 14.8 Gb/s and 0-75 km. The results suggest that by using FBMC it is possible to accomplish CP-Less transmission up to 75 km of SSMF in passive links using cost effective intensity modulation and detection schemes.
Zhou, Xian; Zhong, Kangping; Gao, Yuliang; Sui, Qi; Dong, Zhenghua; Yuan, Jinhui; Wang, Liang; Long, Keping; Lau, Alan Pak Tao; Lu, Chao
2015-04-06
Discrete multi-tone (DMT) modulation is an attractive modulation format for short-reach applications to achieve the best use of available channel bandwidth and signal noise ratio (SNR). In order to realize polarization-multiplexed DMT modulation with direct detection, we derive an analytical transmission model for dual polarizations with intensity modulation and direct diction (IM-DD) in this paper. Based on the model, we propose a novel polarization-interleave-multiplexed DMT modulation with direct diction (PIM-DMT-DD) transmission system, where the polarization de-multiplexing can be achieved by using a simple multiple-input-multiple-output (MIMO) equalizer and the transmission performance is optimized over two distinct received polarization states to eliminate the singularity issue of MIMO demultiplexing algorithms. The feasibility and effectiveness of the proposed PIM-DMT-DD system are investigated via theoretical analyses and simulation studies.
Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel
NASA Astrophysics Data System (ADS)
Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin
2016-10-01
An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.
NASA Astrophysics Data System (ADS)
Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao
2018-02-01
A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.
Colorless ONU implementation for WDM-PON using direct-detection optical OFDM
NASA Astrophysics Data System (ADS)
Feng, Min; Luo, Qing-long; Bai, Cheng-lin
2013-03-01
A novel architecture for the colorless optical network unit (ONU) is proposed and experimentally demonstrated with direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM). In this architecture, polarization-division multiplexing is used to reduce the cost at ONU. In optical line terminal (OLT), quadrature amplitude modulation (QAM) intensity-modulated OFDM signal with x-polarization at 10 Gbit/s is transmitted as downstream. At each ONU, the optical OFDM signal is demodulated with direct detection, and γ-polarization signal is modulated for upstream on-off keying (OOK) data at 5 Gbit/s. Simulation results show that the power penalty is negligible for both optical OFDM downstream and the on-off keying upstream signals after over 50 km single-mode fiber (SMF) transmission.
Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.
Yuan, Feng; Che, Di; Shieh, William
2016-05-01
Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.
Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light
Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.
2014-01-01
A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods. PMID:25105880
Buican, T.N.
1993-05-04
Apparatus and method is described for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochromes in the sample.
Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-03-20
Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.
Multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection
NASA Astrophysics Data System (ADS)
Zong, Kang; Zhu, Jiang
2017-11-01
In this paper, we present a multiband phase-modulated radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide high linearity for transparent transport of multiband radio frequency (RF) signals and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The exact analytical expression of signal to noise and distortion ratio (SNDR) is derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. Numerical results of SNDR with various number of subchannels and modulation index are given. Results indicate that the optimal modulation index exists to maximize the SNDR. With the same system parameters, the value of the optimal modulation index will decrease with the increase of number of subchannels.
Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin
2009-06-08
A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.
Intensity autocorrelation measurements of frequency combs in the terahertz range
NASA Astrophysics Data System (ADS)
Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme
2017-09-01
We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.
All-optical phase modulation for integrated interferometric biosensors.
Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M
2012-03-26
We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.
Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.
Xu, Longtao; Jin, Shilei; Li, Yifei
2016-04-18
We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.
Multiband DSB-SC modulated radio over IsOWC link with coherent homodyne detection
NASA Astrophysics Data System (ADS)
Kang, Zong; Zhu, Jiang
2018-02-01
In this paper, we present a multiband double sideband-suppressed carrier (DSB-SC) modulated radio over intersatellite optical wireless communication (IsOWC) link with coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than the intensity modulated with direct detection (IM/DD) scheme. The full system model and the exactly analytical expression of signal to noise and distortion ratio (SNDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The finite extinction ratio (ER) of Mach-Zehnder Modulator (MZM) and the saturation property of erbium doped fiber amplifier (EDFA) are also considered. Numerical results of SNDR with various numbers of subchannels and ERs are given. Results indicate that the optimal modulation index exists to maximize the SNDR and the power of local oscillator (LO) carrier should be within an appropriate range.
NASA Astrophysics Data System (ADS)
Lach, Zbigniew T.
2017-08-01
A possibility is shown of a non-disruptive estimation of chromatic dispersion in a fiber of an intensity modulation communication line under work conditions. Uncertainty of the chromatic dispersion estimates is analyzed and quantified with the use of confidence intervals.
Chen, Hsing-Yu; Kaneda, Noriaki; Lee, Jeffrey; Chen, Jyehong; Chen, Young-Kai
2017-03-20
The feasibility of a single sideband (SSB) PAM4 intensity-modulation and direct-detection (IM/DD) transmission based on a CMOS ADC and DAC is experimentally demonstrated in this work. To cost effectively build a >50 Gb/s system as well as to extend the transmission distance, a low cost EML and a passive optical filter are utilized to generate the SSB signal. However, the EML-induced chirp and dispersion-induced power fading limit the requirements of the SSB filter. To separate the effect of signal-signal beating interference, filters with different roll-off factors are employed to demonstrate the performance tolerance at different transmission distance. Moreover, a high resolution spectrum analysis is proposed to depict the system limitation. Experimental results show that a minimum roll-off factor of 7 dB/10GHz is required to achieve a 51.84Gb/s 40-km transmission with only linear feed-forward equalization.
Rejuvenating direct modulation and direct detection for modern optical communications
NASA Astrophysics Data System (ADS)
Che, Di; Li, An; Chen, Xi; Hu, Qian; Shieh, William
2018-02-01
High-speed transoceanic optical fiber transmission using direct modulation (DM) and direct detection (DD) was one of the most stirring breakthroughs for telecommunication in 1990s, which drove the internet as a global phenomenon. However, the later evolution of optical coherent communications in 2000s gradually took over the long-haul applications, due to its superior optical spectral efficiency. Nowadays, DM-DD systems are dominant mainly in cost- and power-sensitive short-reach applications, because of its natural characteristics-the simplicity. This paper reviews the recent advances of DM-DD transceivers from both hardware and signal processing perspectives. It introduces a variety of modified DM and/or DD systems for 3 application scenarios: very-short-reach interconnect with little fiber channel impact; single or a few spans of fiber transmission up to several hundred km; and distance beyond the 2nd scenario. Besides the DM-DD and multi-dimension DM-DD with polarization diversity, this paper focuses on how to rejuvenate traditional DM and DD technologies in order to bridge the transmission application gap between DM-DD and coherent transceivers, using technologies such as dispersion compensation, signal field recovery from the intensity-only DD receiver, and complex direct modulation with coherent detection. More than 30 years since the birth, DM and DD still hold indispensable roles in modern optical communications.
Microwave photonic link with improved phase noise using a balanced detection scheme
NASA Astrophysics Data System (ADS)
Hu, Jingjing; Gu, Yiying; Tan, Wengang; Zhu, Wenwu; Wang, Linghua; Zhao, Mingshan
2016-07-01
A microwave photonic link (MPL) with improved phase noise performance using a dual output Mach-Zehnder modulator (DP-MZM) and balanced detection is proposed and experimentally demonstrated. The fundamental concept of the approach is based on the two complementary outputs of DP-MZM and the destructive combination of the photocurrent in balanced photodetector (BPD). Theoretical analysis is performed to numerical evaluate the additive phase noise performance and shows a good agreement with the experiment. Experimental results are presented for 4 GHz, 8 GHz and 12 GHz transmission link and an 11 dB improvement of phase noise performance at 10 MHz offset is achieved compared to the conventional intensity-modulation and direct-detection (IMDD) MPL.
Direction-Finding Measurements of Heliospheric 2-3 kHz Radio Emissions
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1998-01-01
Using data from the Voyager 1 plasma wave instrument, a series of direction-finding measurements is presented for the intense 1992-93 heliospheric 2- to 3-kHz radio emission event, and several weaker events extending into 1994. Direction-finding measurements can only be obtained during roll maneuvers, which are performed about once every three months. Two parameters can be determined from the roll-induced intensity modulation, the azimuthal direction of arrival (measured around the roll axis), and the modulation index (the peak-to-peak amplitude divided by the peak amplitude). Measurements were made at two frequencies, 1.78 and 3.11 kHz. No roll modulation was observed at 1.78 kHz, which is consistent with an isotropic source at this frequency. In most cases an easily measurable roll modulation was detectable at 3.11 kHz. Although the azimuth angles have considerable scatter, the directions of arrival at 3.11 kHz can be organized into three groups, each of which appears to be associated with a separate upward drifting feature in the radio emission spectrum. The first group, which is associated with the main 1992-93 event, is consistent with a source located near the nose of the heliosphere. The remaining two groups, which occur after the main 1992-93 event, have azimuth angles well away from the nose of the heliosphere. The modulation indexes vary over a large range, from 0.06 to 0.61, with no obvious trend. Although the variations in the directions of arrival and modulation indicies appear to reflect changes in the position and angular size of the source, it is also possible that they could be caused by refraction or scattering due to density structures in the solar wind.
NASA Astrophysics Data System (ADS)
El-Nahal, Fady I.
2017-01-01
We investigate a wavelength-division-multiplexing passive optical network (WDM-PON) with centralized lightwave and direct detection. The system is demonstrated for symmetric 10 Gbit/s differential phase-shift keying (DPSK) downstream signals and on-off keying (OOK) upstream signals, respectively. A wavelength reused scheme is employed to carry the upstream data by using a reflective semiconductor optical amplifier (RSOA) as an intensity modulator at the optical network unit (ONU). The constant-intensity property of the DPSK modulation format can keep high extinction ratio ( ER) of downstream signal and reduce the crosstalk to the upstream signal. The bit error rate ( BER) performance of our scheme shows that the proposed 10 Gbit/s symmetric WDM-PON can achieve error free transmission over 25-km-long fiber transmission with low power penalty.
On the benefit of DMT modulation in nonlinear VLC systems.
Qian, Hua; Cai, Sunzeng; Yao, Saijie; Zhou, Ting; Yang, Yang; Wang, Xudong
2015-02-09
In a visible light communication (VLC) system, the nonlinear characteristic of the light emitting diode (LED) in transmitter is a limiting factor of system performance. Modern modulation signals with large peak-to-power-ratio (PAPR) suffers uneven distortion. The nonlinear response directly impacts the intensity modulation and direct detection VLC system with pulse-amplitude modulation (PAM). The amplitude of the PAM signal is distorted unevenly and large signal is vulnerable to noise. Orthogonal linear transformations, such as discrete multi-tone (DMT) modulation, can spread the nonlinear effects evenly to each data symbol, thus perform better than PAM signals. In this paper, we provide theoretical analysis on the benefit of DMT modulation in nonlinear VLC system. We show that the DMT modulation is a better choice than the PAM modulation for the VLC system as the DMT modulation is more robust against nonlinearity. We also show that the post-distortion nonlinear elimination method, which is applied at the receiver, can be a reliable solution to the nonlinear VLC system. Simulation results show that the post-distortion greatly improves the system performance for the DMT modulation.
NASA Astrophysics Data System (ADS)
Zong, Kang; Zhu, Jiang
2018-04-01
In this paper, we present a multiband phase-modulated (PM) radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The expressions of RF gain, noise figure (NF) and third-order spurious-free dynamic range (SFDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The optimal power of local oscillator (LO) optical signal is also derived theoretically. Numerical results for RF gain, NF and third-order SFDR are given for demonstration. Results indicate that the gain of the optical preamplifier and the power of LO optical signal should be optimized to obtain the satisfactory performance.
The beat in laser-accelerated ion beams
NASA Astrophysics Data System (ADS)
Schnürer, M.; Andreev, A. A.; Abicht, F.; Bränzel, J.; Koschitzki, Ch.; Platonov, K. Yu.; Priebe, G.; Sandner, W.
2013-10-01
Regular modulation in the ion velocity distribution becomes detectable if intense femtosecond laser pulses with very high temporal contrast are used for target normal sheath acceleration of ions. Analytical and numerical analysis of the experimental observation associates the modulation with the half-cycle of the driving laser field period. In processes like ion acceleration, the collective and laser-frequency determined electron dynamics creates strong fields in plasma to accelerate the ions. Even the oscillatory motion of electrons and its influence on the acceleration field can dominate over smoothing effects in plasma if a high temporal contrast of the driving laser pulse is given. Acceleration parameters can be directly concluded out of the experimentally observed modulation period in ion velocity spectra. The appearance of the phenomenon at a temporal contrast of ten orders between the intensity of the pulse peak and the spontaneous amplified emission background as well as remaining intensity wings at picosecond time-scale might trigger further parameter studies with even higher contrast.
Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin
2014-07-28
In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.
Potential of OFDM for next generation optical access
NASA Astrophysics Data System (ADS)
Fritzsche, Daniel; Weis, Erik; Breuer, Dirk
2011-01-01
This paper shows the requirements for next generation optical access (NGOA) networks and analyzes the potential of OFDM (orthogonal frequency division multiplexing) for the use in such network scenarios. First, we show the motivation for NGOA systems based on the future requirements on FTTH access systems and list the advantages of OFDM in such scenarios. In the next part, the basics of OFDM and different methods to generate and detect optical OFDM signals are explained and analyzed. At the transmitter side the options include intensity modulation and the more advanced field modulation of the optical OFDM signal. At the receiver there is the choice between direct detection and coherent detection. As the result of this discussion we show our vision of the future use of OFDM in optical access networks.
A photonic chip based frequency discriminator for a high performance microwave photonic link.
Marpaung, David; Roeloffzen, Chris; Leinse, Arne; Hoekman, Marcel
2010-12-20
We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.
An Evaluation of Psychophysical Models of Auditory Change Perception
Micheyl, Christophe; Kaernbach, Christian; Demany, Laurent
2009-01-01
In many psychophysical experiments, the participant's task is to detect small changes along a given stimulus dimension, or to identify the direction (e.g., upward vs. downward) of such changes. The results of these experiments are traditionally analyzed using a constant-variance Gaussian (CVG) model or a high-threshold (HT) model. Here, the authors demonstrate that for changes along three basic sound dimensions (frequency, intensity, and amplitude-modulation rate), such models cannot account for the observed relationship between detection thresholds and direction-identification thresholds. It is shown that two alternative models can account for this relationship. One of them is based on the idea of sensory “quanta”; the other assumes that small changes are detected on the basis of Poisson processes with low means. The predictions of these two models are then compared against receiver operating characteristics (ROCs) for the detection of changes in sound intensity. It is concluded that human listeners' perception of small and unidimensional acoustic changes is better described by a discrete-state Poisson model than by the more commonly used CVG model or by the less favored HT and quantum models. PMID:18954215
Feasibility study of microwave modulation DIAL system for global CO II monitoring
NASA Astrophysics Data System (ADS)
Hirano, Yoshihito; Kameyama, Shumpei; Ueno, Shinichi; Sugimoto, Nobuo; Kimura, Toshiyoshi
2006-12-01
A new concept of DIAL (DIfferential Absorption Lidar) system for global CO II monitoring using microwave modulation is introduced. This system uses quasi-CW lights which are intensity modulated in microwave region and receives a backscattered light from the ground. In this system, ON/OFF wavelength laser lights are modulated with microwave frequencies, and received lights of two wavelengths are able to be discriminated by modulation frequencies in electrical signal domain. Higher sensitivity optical detection can be realized compared with the conventional microwave modulation lidar by using direct down conversion of modulation frequency. The system also has the function of ranging by using pseudo-random coding in modulation. Fiber-based optical circuit using wavelength region of 1.6 micron is a candidate for the system configuration. After the explanation of this configuration, feasibility study of this system on the application to global CO II monitoring is introduced.
NASA Astrophysics Data System (ADS)
Li, Hejie; Rieker, Gregory B.; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.
2006-02-01
Tunable diode laser absorption measurements at high pressures by use of wavelength-modulation spectroscopy (WMS) require large modulation depths for optimum detection of molecular absorption spectra blended by collisional broadening or dense spacing of the rovibrational transitions. Diode lasers have a large and nonlinear intensity modulation when the wavelength is modulated over a large range by injection-current tuning. In addition to this intensity modulation, other laser performance parameters are measured, including the phase shift between the frequency modulation and the intensity modulation. Following published theory, these parameters are incorporated into an improved model of the WMS signal. The influence of these nonideal laser effects is investigated by means of wavelength-scanned WMS measurements as a function of bath gas pressure on rovibrational transitions of water vapor near 1388 nm. Lock-in detection of the magnitude of the 2f signal is performed to remove the dependence on detection phase. We find good agreement between measurements and the improved model developed for the 2f component of the WMS signal. The effects of the nonideal performance parameters of commercial diode lasers are especially important away from the line center of discrete spectra, and these contributions become more pronounced for 2f signals with the large modulation depths needed for WMS at elevated pressures.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.
2011-01-01
Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.
Vertical intensity modulation for improved radiographic penetration and reduced exclusion zone
NASA Astrophysics Data System (ADS)
Bendahan, J.; Langeveld, W. G. J.; Bharadwaj, V.; Amann, J.; Limborg, C.; Nosochkov, Y.
2016-09-01
In the present work, a method to direct the X-ray beam in real time to the desired locations in the cargo to increase penetration and reduce exclusion zone is presented. Cargo scanners employ high energy X-rays to produce radiographic images of the cargo. Most new scanners employ dual-energy to produce, in addition to attenuation maps, atomic number information in order to facilitate the detection of contraband. The electron beam producing the bremsstrahlung X-ray beam is usually directed approximately to the center of the container, concentrating the highest X-ray intensity to that area. Other parts of the container are exposed to lower radiation levels due to the large drop-off of the bremsstrahlung radiation intensity as a function of angle, especially for high energies (>6 MV). This results in lower penetration in these areas, requiring higher power sources that increase the dose and exclusion zone. The capability to modulate the X-ray source intensity on a pulse-by-pulse basis to deliver only as much radiation as required to the cargo has been reported previously. This method is, however, controlled by the most attenuating part of the inspected slice, resulting in excessive radiation to other areas of the cargo. A method to direct a dual-energy beam has been developed to provide a more precisely controlled level of required radiation to highly attenuating areas. The present method is based on steering the dual-energy electron beam using magnetic components on a pulse-to-pulse basis to a fixed location on the X-ray production target, but incident at different angles so as to direct the maximum intensity of the produced bremsstrahlung to the desired locations. The details of the technique and subsystem and simulation results are presented.
Phase-sensitive flow cytometer
Steinkamp, John A.
1993-01-01
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.
Direct detection of the optical field beyond single polarization mode.
Che, Di; Sun, Chuanbowen; Shieh, William
2018-02-05
Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.
Observation of an excess of cosmic ray muons of energies 2 TeV from the direction of Cygnus X-3
NASA Technical Reports Server (NTRS)
Battistoni, G.; Bellotti, E.; Bloise, C.; Bologna, G.; Campana, P.; Castagnoli, C.; Castellina, A.; Chiarella, V.; Ciocio, A.; Cundy, D.
1985-01-01
A high flux of muons from the Cygnus X-3 direction has been observed in NUSEX experiment at depths greater than 4600 hg/sq cm s.r. The excess muons show the 4.8 hour modulation in arrival time typical of this source. A study of this modulation was done in order to find the best value of the period and of the period derivative. The muon flux underground from NUSEX and SOUDAN (1800 hg/sq cm) experiments are used to determine the energy spectrum at sea level. The shape and the absolute intensities are found similar to those attributed to gamma rays responsible for production of air showers detected in direction of Cygnus X-3 in the energy range 10 to the 12th power to 10 to the 15th power eV.
Diversity-optimal power loading for intensity modulated MIMO optical wireless communications.
Zhang, Yan-Yu; Yu, Hong-Yi; Zhang, Jian-Kang; Zhu, Yi-Jun
2016-04-18
In this paper, we consider the design of space code for an intensity modulated direct detection multi-input-multi-output optical wireless communication (IM/DD MIMO-OWC) system, in which channel coefficients are independent and non-identically log-normal distributed, with variances and means known at the transmitter and channel state information available at the receiver. Utilizing the existing space code design criterion for IM/DD MIMO-OWC with a maximum likelihood (ML) detector, we design a diversity-optimal space code (DOSC) that maximizes both large-scale diversity and small-scale diversity gains and prove that the spatial repetition code (RC) with a diversity-optimized power allocation is diversity-optimal among all the high dimensional nonnegative space code schemes under a commonly used optical power constraint. In addition, we show that one of significant advantages of the DOSC is to allow low-complexity ML detection. Simulation results indicate that in high signal-to-noise ratio (SNR) regimes, our proposed DOSC significantly outperforms RC, which is the best space code currently available for such system.
OLT-centralized sampling frequency offset compensation scheme for OFDM-PON.
Chen, Ming; Zhou, Hui; Zheng, Zhiwei; Deng, Rui; Chen, Qinghui; Peng, Miao; Liu, Cuiwei; He, Jing; Chen, Lin; Tang, Xionggui
2017-08-07
We propose an optical line terminal (OLT)-centralized sampling frequency offset (SFO) compensation scheme for adaptively-modulated OFDM-PON systems. By using the proposed SFO scheme, the phase rotation and inter-symbol interference (ISI) caused by SFOs between OLT and multiple optical network units (ONUs) can be centrally compensated in the OLT, which reduces the complexity of ONUs. Firstly, the optimal fast Fourier transform (FFT) size is identified in the intensity-modulated and direct-detection (IMDD) OFDM system in the presence of SFO. Then, the proposed SFO compensation scheme including phase rotation modulation (PRM) and length-adaptive OFDM frame has been experimentally demonstrated in the downlink transmission of an adaptively modulated optical OFDM with the optimal FFT size. The experimental results show that up to ± 300 ppm SFO can be successfully compensated without introducing any receiver performance penalties.
Phase-sensitive flow cytometer
Steinkamp, J.A.
1993-12-14
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.
Rogers, C E; Carini, J L; Pechkis, J A; Gould, P L
2010-01-18
We utilize various techniques to characterize the residual phase modulation of a waveguide-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.
NASA Astrophysics Data System (ADS)
Kim, D.; Youn, J.; Kim, C.
2017-08-01
As a malfunctioning PV (Photovoltaic) cell has a higher temperature than adjacent normal cells, we can detect it easily with a thermal infrared sensor. However, it will be a time-consuming way to inspect large-scale PV power plants by a hand-held thermal infrared sensor. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule based on the mean intensity and standard deviation range was developed to detect defective PV modules from individual array automatically. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97 % or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule.
All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity
Liu, Xi; Gu, Leilei; Zhang, Qianpeng; Wu, Jiyuan; Long, Yunze; Fan, Zhiyong
2014-01-01
High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high photoconductive gain, responsivity and detectivity up to 3.3 × 1017 Jones. Further analysis shows that their high performance originates from the unique band-edge modulation along the nanowire axial direction, where the existence of Schottky barriers in series leads to highly suppressed dark current of the device and also gives rise to fast photoelectric response to low-intensity optical signal owing to barrier height modulation. The discovered rationale in this work can be utilized as guideline to design high-performance photodetectors with other nanomaterial systems. The developed fabrication scheme opens up possibility for future flexible and high-performance integrated optoelectronic sensor circuitry. PMID:24898081
All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity.
Liu, Xi; Gu, Leilei; Zhang, Qianpeng; Wu, Jiyuan; Long, Yunze; Fan, Zhiyong
2014-06-05
High-performance photodetectors are critical for high-speed optical communication and environmental sensing, and flexible photodetectors can be used for a wide range of portable or wearable applications. Here we demonstrate the all-printable fabrication of polycrystalline nanowire-based high-performance photodetectors on flexible substrates. Systematic investigations have shown their ultra-high photoconductive gain, responsivity and detectivity up to 3.3 × 10(17) Jones. Further analysis shows that their high performance originates from the unique band-edge modulation along the nanowire axial direction, where the existence of Schottky barriers in series leads to highly suppressed dark current of the device and also gives rise to fast photoelectric response to low-intensity optical signal owing to barrier height modulation. The discovered rationale in this work can be utilized as guideline to design high-performance photodetectors with other nanomaterial systems. The developed fabrication scheme opens up possibility for future flexible and high-performance integrated optoelectronic sensor circuitry.
Romano, P Q; Conlon, S C; Smith, E C
2013-01-01
Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators.
Link Performance Analysis of a Ship-to-Ship Laser Communication System
2012-03-01
the optical output by a modulating signal. Direct detection requires only the intensity, and not the phase information, of the input signal to...links have a higher signal-to-noise ratio ( ) as compared to RF link. However, at approximately 108 km, the SNR for the optical links is much... optical signal received is mixed with a light signal generated from a local oscillator laser (LO-laser). The combined signals are then impinged onto the
NASA Astrophysics Data System (ADS)
Dabiri, Mohammad Taghi; Sadough, Seyed Mohammad Sajad
2018-04-01
In the free-space optical (FSO) links, atmospheric turbulence lead to scintillation in the received signal. Due to its ease of implementation, intensity modulation with direct detection (IM/DD) based on ON-OFF keying (OOK) is a popular signaling scheme in these systems. Over turbulence channel, to detect OOK symbols in a blind way, i.e., without sending pilot symbols, an expectation-maximization (EM)-based detection method was recently proposed in the literature related to free-space optical (FSO) communication. However, the performance of EM-based detection methods severely depends on the length of the observation interval (Ls). To choose the optimum values of Ls at target bit error rates (BER)s of FSO communications which are commonly lower than 10-9, Monte-Carlo simulations would be very cumbersome and require a very long processing time. To facilitate performance evaluation, in this letter we derive the analytic expressions for BER and outage probability. Numerical results validate the accuracy of our derived analytic expressions. Our results may serve to evaluate the optimum value for Ls without resorting to time-consuming Monte-Carlo simulations.
Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism
Xie, Xiaoliang Sunney [Lexington, MA; Freudiger, Christian [Boston, MA; Min, Wei [Cambridge, MA
2011-09-27
A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.
Advanced optical fiber communication systems
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.
1994-03-01
Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.
Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats.
Zhao, Jian; Chen, Lian-Kuan
2017-04-17
We investigate the constellation design and symbol error rate (SER) of set-partitioned (SP) quadrature amplitude modulation (QAM) formats. Based on the SER analysis, we derive the adaptive bit and power loading algorithm for SP QAM based intensity-modulation direct-detection (IM/DD) orthogonal frequency division multiplexing (OFDM). We experimentally show that the proposed system significantly outperforms the conventional adaptively-loaded IM/DD OFDM and can increase the data rate from 36 Gbit/s to 42 Gbit/s in the presence of severe dispersion-induced spectral nulls after 40-km single-mode fiber. It is also shown that the adaptive algorithm greatly enhances the tolerance to fiber nonlinearity and allows for more power budget.
NASA Astrophysics Data System (ADS)
Chao, X.; Jeffries, J. B.; Hanson, R. K.
2012-03-01
A mid-infrared absorption strategy with calibration-free wavelength-modulation-spectroscopy (WMS) has been developed and demonstrated for real-time, in situ detection of nitric oxide in particulate-laden combustion-exhaust gases up to temperatures of 700 K. An external-cavity quantum-cascade laser (ECQCL) near 5.2 μm accessed the fundamental absorption band of NO, and a wavelength-scanned, 1 f-normalized WMS with second-harmonic detection (WMS-2 f/1 f) strategy was developed. Due to the external-cavity laser architecture, large nonlinear intensity modulation (IM) was observed when the wavelength was modulated by injection-current modulation, and the IM indices were also found to be strongly wavelength-dependent as the center wavelength was scanned with piezoelectric tuning of the cavity. A quantitative model of the 1 f-normalized WMS-2 f signal was developed and validated under laboratory conditions. A sensor was subsequently designed, built and demonstrated for real-time, in situ measurements of NO across a 3 m path in the particulate-laden exhaust of a pulverized-coal-fired power plant boiler. The 1 f-normalized WMS-2 f method proved to have better noise immunity for non-absorption transmission, than wavelength-scanned direct absorption. A 0.3 ppm-m detection limit was estimated using the R15.5 transition near 1927 cm-1 with 1 s averaging. Mid-infrared QCL-based NO absorption with 1 f-normalized WMS-2 f detection shows excellent promise for practical sensing in the combustion exhaust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saat, N. K.; Dean, P.; Khanna, S. P.
2015-04-24
We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz.
Plasma optical modulators for intense lasers
Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie
2016-01-01
Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369
Kubota, K; Wagatsuma, K
2001-01-02
A phase-sensitive detection technique associated with a digital lock-in amplifier was applied for an improvement of the detection in ICP-AES. The lock-in amplifier works as an extremely narrow band pass filter. It can pick up the modulated signal, which has the same frequency as the reference signal, from any noise and thus it can improve the signal-to-noise ratio. Modulation of the ICP can be performed by mixing small amounts of air to argon as the outer gas cyclically, because the emission intensities of ionic lines are enhanced by using the mixed gas. An electromagnetic valve, which is placed in the outer-gas flow path, causes periodic variation in the air gas in the outer-gas flow, and thus switching the valve on/off can modulate the ICP. By choosing the appropriate conditions, the addition of air gas enhances the emission intensity of ionic lines more than that of the background, thus leading to improved signal-to-background ratios. At the same time the lock-in amplifier further enhances the ionic emissions because it picks up only the modulated part of the signal. By applying the plasma gas flow modulation technique the detection and the determination limits of the Mn II 257.610 nm line are improved in comparison with the conventional method. A change in plasma shape corresponding to the modulation frequency is observed when the ICP is modulated.
2010-09-10
photodiode with internal resistor followed by a high-gain RF amplifier , and c) a p-i-n photodiode followed by a transimpedance amplifier (TIA). We...gain, RF electrical amplifier ; and 3) a p-i-n photodiode followed by a transimpedance amplifier . Finally, we perform calculations to predict the...common photoreceiver is a p-i-n or avalanche photodiode with a built-in transimpedance amplifier (TIA) and often incorporating automatic gain control
The interaction of O(plus) ions with the interior surface of a copper chamber
NASA Technical Reports Server (NTRS)
Siegel, M. W.; Boring, J. W.
1971-01-01
Modulated beams of 0(+), Ar(+), and Kr(+) in the 100-300 eV range are directed into a copper box simulating the ante-chamber of an orbiting mass spectrometer. An RF quadrupole mass spectrometer and phase sensitive detection extract the component of the internal mass spectrum correlated with the beam. Intense Ar and Kr signals are observed; however, no O or O2 is detectable, indicating loss of the primary O(+) beam to surface interactions. All four primary ions stimulate sizeable signals at masses 26 and 28. The relevance of these experiments to the interpretation of mass spectra obtained by orbiting satellites is discussed.
Gain and power optimization of the wireless optical system with multilevel modulation.
Liu, Xian
2008-06-01
When used in an outdoor environment to expedite networking access, the performance of wireless optical communication systems is affected by transmitter sway. In the design of such systems, much attention has been paid to developing power-efficient schemes. However, the bandwidth efficiency is also an important issue. One of the most natural approaches to promote bandwidth efficiency is to use multilevel modulation. This leads to multilevel pulse amplitude modulation in the context of intensity modulation and direct detection. We develop a model based on the four-level pulse amplitude modulation. We show that the model can be formulated as an optimization problem in terms of the transmitter power, bit error probability, transmitter gain, and receiver gain. The technical challenges raised by modeling and solving the problem include the analytical and numerical treatments for the improper integrals of the Gaussian functions coupled with the erfc function. The results demonstrate that, at the optimal points, the power penalty paid to the doubled bandwidth efficiency is around 3 dB.
Nonlinear Focal Modulation Microscopy.
Zhao, Guangyuan; Zheng, Cheng; Kuang, Cuifang; Zhou, Renjie; Kabir, Mohammad M; Toussaint, Kimani C; Wang, Wensheng; Xu, Liang; Li, Haifeng; Xiu, Peng; Liu, Xu
2018-05-11
We demonstrate nonlinear focal modulation microscopy (NFOMM) to achieve superresolution imaging. Traditional approaches to superresolution that utilize point scanning often rely on spatially reducing the size of the emission pattern by directly narrowing (e.g., through minimizing the detection pinhole in Airyscan, Zeiss) or indirectly peeling its outer profiles [e.g., through depleting the outer emission region in stimulated emission depletion (STED) microscopy]. We show that an alternative conceptualization that focuses on maximizing the optical system's frequency shifting ability offers advantages in further improving resolution while reducing system complexity. In NFOMM, a spatial light modulator and a suitably intense laser illumination are used to implement nonlinear focal-field modulation to achieve a transverse spatial resolution of ∼60 nm (∼λ/10). We show that NFOMM is comparable with STED microscopy and suitable for fundamental biology studies, as evidenced in imaging nuclear pore complexes, tubulin and vimentin in Vero cells. Since NFOMM is readily implemented as an add-on module to a laser-scanning microscope, we anticipate wide utility of this new imaging technique.
Nonlinear Focal Modulation Microscopy
NASA Astrophysics Data System (ADS)
Zhao, Guangyuan; Zheng, Cheng; Kuang, Cuifang; Zhou, Renjie; Kabir, Mohammad M.; Toussaint, Kimani C.; Wang, Wensheng; Xu, Liang; Li, Haifeng; Xiu, Peng; Liu, Xu
2018-05-01
We demonstrate nonlinear focal modulation microscopy (NFOMM) to achieve superresolution imaging. Traditional approaches to superresolution that utilize point scanning often rely on spatially reducing the size of the emission pattern by directly narrowing (e.g., through minimizing the detection pinhole in Airyscan, Zeiss) or indirectly peeling its outer profiles [e.g., through depleting the outer emission region in stimulated emission depletion (STED) microscopy]. We show that an alternative conceptualization that focuses on maximizing the optical system's frequency shifting ability offers advantages in further improving resolution while reducing system complexity. In NFOMM, a spatial light modulator and a suitably intense laser illumination are used to implement nonlinear focal-field modulation to achieve a transverse spatial resolution of ˜60 nm (˜λ /10 ). We show that NFOMM is comparable with STED microscopy and suitable for fundamental biology studies, as evidenced in imaging nuclear pore complexes, tubulin and vimentin in Vero cells. Since NFOMM is readily implemented as an add-on module to a laser-scanning microscope, we anticipate wide utility of this new imaging technique.
Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems.
Zhong, Kangping; Zhou, Xian; Gui, Tao; Tao, Li; Gao, Yuliang; Chen, Wei; Man, Jiangwei; Zeng, Li; Lau, Alan Pak Tao; Lu, Chao
2015-01-26
Advanced modulation formats combined with digital signal processing and direct detection is a promising way to realize high capacity, low cost and power efficient short reach optical transmission system. In this paper, we present a detailed investigation on the performance of three advanced modulation formats for 100 Gb/s short reach transmission system. They are PAM-4, CAP-16 and DMT. The detailed digital signal processing required for each modulation format is presented. Comprehensive simulations are carried out to evaluate the performance of each modulation format in terms of received optical power, transmitter bandwidth, relative intensity noise and thermal noise. The performance of each modulation format is also experimentally studied. To the best of our knowledge, we report the first demonstration of a 112 Gb/s transmission over 10km of SSMF employing single band CAP-16 with EML. Finally, a comparison of computational complexity of DSP for the three formats is presented.
Gas sensing using wavelength modulation spectroscopy
NASA Astrophysics Data System (ADS)
Viveiros, D.; Ribeiro, J.; Flores, D.; Ferreira, J.; Frazao, O.; Santos, J. L.; Baptista, J. M.
2014-08-01
An experimental setup has been developed for different gas species sensing based on the Wavelength Modulation Spectroscopy (WMS) principle. The target is the measurement of ammonia, carbon dioxide and methane concentrations. The WMS is a rather sensitive technique for detecting atomic/molecular species presenting the advantage that it can be used in the near-infrared region using optical telecommunications technology. In this technique, the laser wavelength and intensity are modulated applying a sine wave signal through the injection current, which allows the shift of the detection bandwidth to higher frequencies where laser intensity noise is reduced. The wavelength modulated laser light is tuned to the absorption line of the target gas and the absorption information can be retrieved by means of synchronous detection using a lock-in amplifier, where the amplitude of the second harmonic of the laser modulation frequency is proportional to the gas concentration. The amplitude of the second harmonic is normalised by the average laser intensity and detector gain through a LabVIEW® application, where the main advantage of normalising is that the effects of laser output power fluctuations and any variations in laser transmission, or optical-electrical detector gain are eliminated. Two types of sensing heads based on free space light propagation with different optical path length were used, permitting redundancy operation and technology validation.
Detection and rate discrimination of amplitude modulation in electrical hearing.
Chatterjee, Monita; Oberzut, Cherish
2011-09-01
Three experiments were designed to examine temporal envelope processing by cochlear implant (CI) listeners. In experiment 1, the hypothesis that listeners' modulation sensitivity would in part determine their ability to discriminate between temporal modulation rates was examined. Temporal modulation transfer functions (TMTFs) obtained in an amplitude modulation detection (AMD) task were compared to threshold functions obtained in an amplitude modulation rate discrimination (AMRD) task. Statistically significant nonlinear correlations were observed between the two measures. In experiment 2, results of loudness-balancing showed small increases in the loudness of modulated over unmodulated stimuli beyond a modulation depth of 16%. Results of experiment 3 indicated small but statistically significant effects of level-roving on the overall gain of the TMTF, but no impact of level-roving on the average shape of the TMTF across subjects. This suggested that level-roving simply increased the task difficulty for most listeners, but did not indicate increased use of intensity cues under more challenging conditions. Data obtained with one subject, however, suggested that the most sensitive listeners may derive some benefit from intensity cues in these tasks. Overall, results indicated that intensity cues did not play an important role in temporal envelope processing by the average CI listener. © 2011 Acoustical Society of America
Li, Cai; Hu, Rong; Yang, Qi; Luo, Ming; Li, Wei; Yu, Shaohua
2016-01-25
The coherent reception of intensity modulated signal has been recently widely investigated, in which the signal is recovered by the envelop detection. High linewidth tolerance is achieved with such scheme. However, strong optical carrier exists during the transmission, which degrades the optical power efficiency. In this paper, an efficient modulation scheme for discrete multi-tone (DMT) signal is proposed based on the Mach-Zehnder modulator (MZM). Different from the traditional intensity modulation, the proposed method employs both intensity and phase domain. Thus, the optical carrier power can be greatly reduced by adjusting the bias of MZM around the null point. By employing coherent detection and digital carrier regeneration (DCR), the carrier suppressed DMT signal can be recovered using envelop detection. No carrier frequency or phase estimation is required. Numerical investigations are made to demonstrate the feasibility, in which significant improvements are found for the proposed DCR method, showing great tolerance against laser linewidth and carrier power reduction. Finally, a 124-Gb/s transmission of polarization-division multiplexed DMT (PDM-DMT) signal is demonstrated over 100-km SSMF, with only -8 dB optical carrier to signal power ratio (CSPR).
Mooers, Blaine H. M.
2016-03-24
Using direct methods starting from random phases, the crystal structure of a 32-base-pair RNA (675 non-H RNA atoms in the asymmetric unit) was determined using only the native diffraction data (resolution limit 1.05 Å) and the computer program SIR2014. The almost three helical turns of the RNA in the asymmetric unit introduced partial or imperfect translational pseudosymmetry (TPS) that modulated the intensities when averaged by the lMiller indices but still escaped automated detection. Almost six times as many random phase sets had to be tested on average to reach a correct structure compared with a similar-sized RNA hairpin (27 nucleotides,more » 580 non-H RNA atoms) without TPS. Lastly, more sensitive methods are needed for the automated detection of partial TPS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooers, Blaine H. M.
Using direct methods starting from random phases, the crystal structure of a 32-base-pair RNA (675 non-H RNA atoms in the asymmetric unit) was determined using only the native diffraction data (resolution limit 1.05 Å) and the computer program SIR2014. The almost three helical turns of the RNA in the asymmetric unit introduced partial or imperfect translational pseudosymmetry (TPS) that modulated the intensities when averaged by the lMiller indices but still escaped automated detection. Almost six times as many random phase sets had to be tested on average to reach a correct structure compared with a similar-sized RNA hairpin (27 nucleotides,more » 580 non-H RNA atoms) without TPS. Lastly, more sensitive methods are needed for the automated detection of partial TPS.« less
Quantum efficiencies exceeding unity in amorphous silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanmaekelbergh, D.; Lagemaat, J. van de; Schropp, R.E.I.
1994-12-31
The experimental observation of internal quantum efficiencies above unity in crystalline silicon solar cells has brought up the question whether the generation of multiple electron/hole pairs has to be taken into consideration also in solar cells based on direct gap amorphous semiconductors. To study photogenerated carrier dynamics, the authors have applied Intensity Modulated Photocurrent Spectroscopy (IMPS) to hydrogenated amorphous silicon p-i-n solar cells. In the reverse voltage bias region at low illumination intensities it has been observed that the low frequency limit of the AC quantum yield Y increases significantly above unit with decreasing light intensity, indicating that more thanmore » one electron per photon is detected in the external circuit. This phenomenon can be explained by considering trapping and thermal emission of photogenerated carriers at intragap atmospheric dangling bond defect centers.« less
The effect of narrow-band noise maskers on increment detection1
Messersmith, Jessica J.; Patra, Harisadhan; Jesteadt, Walt
2010-01-01
It is often assumed that listeners detect an increment in the intensity of a pure tone by detecting an increase in the energy falling within the critical band centered on the signal frequency. A noise masker can be used to limit the use of signal energy falling outside of the critical band, but facets of the noise may impact increment detection beyond this intended purpose. The current study evaluated the impact of envelope fluctuation in a noise masker on thresholds for detection of an increment. Thresholds were obtained for detection of an increment in the intensity of a 0.25- or 4-kHz pedestal in quiet and in the presence of noise of varying bandwidth. Results indicate that thresholds for detection of an increment in the intensity of a pure tone increase with increasing bandwidth for an on-frequency noise masker, but are unchanged by an off-frequency noise masker. Neither a model that includes a modulation-filter-bank analysis of envelope modulation nor a model based on discrimination of spectral patterns can account for all aspects of the observed data. PMID:21110593
Salzman, Gary C.; Mullaney, Paul F.
1976-01-01
The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.
An AWG-based 10 Gbit/s colorless WDM-PON system using a chirp-managed directly modulated laser
NASA Astrophysics Data System (ADS)
Latif, Abdul; Yu, Chong-xiu; Xin, Xiang-jun; Husain, Aftab; Hussain, Ashiq; Munir, Abid; Khan, Yousaf
2012-09-01
We propose an arrayed waveguide grating (AWG)-based 10 Gbit/s per channel full duplex wavelength division multiplexing passive optical network (WDM-PON). A chirp managed directly modulated laser with return-to-zero (RZ) differential phase shift keying (DPSK) modulation technique is utilized for downlink (DL) direction, and then the downlink signal is re-modulated for the uplink (UL) direction using intensity modulation technique with the data rate of 10 Gbit/s per channel. A successful WDM-PON transmission operation with the data rate of 10 Gbit/s per channel over a distance of 25 km without any optical amplification or dispersion compensation is demonstrated with low power penalty.
Monthly modulation in dark matter direct-detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britto, Vivian; Meyers, Joel, E-mail: vivian.britto@mail.utoronto.ca, E-mail: jmeyers@cita.utoronto.ca
2015-11-01
The signals in dark matter direct-detection experiments should exhibit modulation signatures due to the Earth's motion with respect to the Galactic dark matter halo. The annual and daily modulations, due to the Earth's revolution about the Sun and rotation about its own axis, have been explored previously. Monthly modulation is another such feature present in direct detection signals, and provides a nearly model-independent method of distinguishing dark matter signal events from background. We study here monthly modulations in detail for both WIMP and WISP dark matter searches, examining both the effect of the motion of the Earth about the Earth-Moonmore » barycenter and the gravitational focusing due to the Moon. For WIMP searches, we calculate the monthly modulation of the count rate and show the effects are too small to be observed in the foreseeable future. For WISP dark matter experiments, we show that the photons generated by WISP to photon conversion have frequencies which undergo a monthly modulating shift which is detectable with current technology and which cannot in general be neglected in high resolution WISP searches.« less
Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar
NASA Technical Reports Server (NTRS)
Constaninides, N. J.; Bicknell, T. J. (Inventor)
1980-01-01
A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.
Detection of Motion under Target Uncertainty and Peripheral Presentation.
1980-08-01
SCIENTIFIC RESEARCH (AISC) NOTICE OF TF A2:’fi1TL TO DDC This techi , ’-’ b n reviewed and in approved fc,r 1 c r e 1A,; AiiA 190-12 (7b). Distribution i...center direction). The response of the mecnanism is characterizable by the product of a)the intensity of the stimulus and b )the sensitivity of the...then are those of cells that are less responsive to such temporal modulation (FuKuda and Stone, 1974; Kirk# Levick and Cleland, j 1976). Tnis difference
Phase-modulated radio over fiber multimode links.
Gasulla, Ivana; Capmany, José
2012-05-21
We present the first experimental demonstration of a phase-modulated MMF link implementing high-frequency digital transmission in a cost-effective solution based on direct detection. Successful subcarrier transmission of QPSK, 16-QAM and 64-QAM data channels for bit rates up to 120 Mb/s through a 5 km MMF link is achieved over the microwave region comprised between 6 and 20 GHz. The overall capacity of the proposed approach can be further increased by properly accommodating more passband channels in the operative frequency range determined by the phase-to-intensity conversion process provided by the dispersive nature of the optical fiber. In this sense, our results show the possibility of achieving an aggregate bit rate per length product of 144 Gb/s · km and confirm, in consequence, the possibility of broadband phase-modulated radio over fiber transmission through MMF links suitable for multichannel SCM signal distribution.
NASA Astrophysics Data System (ADS)
Mao, Mingzhi; Qian, Chen; Cao, Bingyao; Zhang, Qianwu; Song, Yingxiong; Wang, Min
2017-09-01
A digital signal process enabled dual-drive Mach-Zehnder modulator (DD-MZM)-based spectral converter is proposed and extensively investigated to realize dynamically reconfigurable and high transparent spectral conversion. As another important innovation point of the paper, to optimize the converter performance, the optimum operation conditions of the proposed converter are deduced, statistically simulated, and experimentally verified. The optimum conditions supported-converter performances are verified by detail numerical simulations and experiments in intensity-modulation and direct-detection-based network in terms of frequency detuning range-dependent conversion efficiency, strict operation transparency for user signal characteristics, impact of parasitic components on the conversion performance, as well as the converted component waveform are almost nondistortion. It is also found that the converter has the high robustness to the input signal power, optical signal-to-noise ratio variations, extinction ratio, and driving signal frequency.
Matsuta, Hideyuki; Naeem, Tariq M; Wagatsuma, Kazuaki
2003-06-01
A novel emission excitation source comprising a high repetition rate diode-pumped Q-switched Nd:YAG laser and a Grimm-style glow-discharge lamp is described. Laser-ablated atoms are introduced into the He glow discharge plasma, which then give emission signals. By using phase-sensitive detection with a lock-in amplifier, the emission signal modulated by the pulsed laser can be detected selectively. It is possible to estimate only the emission intensity of sample atoms ablated by laser irradiation with little interference from the other species in the plasma.
Effect of detector dead time on the performance of optical direct-detection communication links
NASA Astrophysics Data System (ADS)
Chen, C.-C.
1988-05-01
Avalanche photodiodes (APDs) operating in the Geiger mode can provide a significantly improved single-photon detection sensitivity over conventional photodiodes. However, the quenching circuit required to remove the excess charge carriers after each photon event can introduce an undesirable dead time into the detection process. The effect of this detector dead time on the performance of a binary pulse-position-modulated (PPM) channel is studied by analyzing the error probability. It is shown that, when background noise is negligible, the performance of the detector with dead time is similar to that of a quantum-limited receiver. For systems with increasing background intensities, the error rate of the receiver starts to degrade rapidly with increasing dead time. The power penalty due to detector dead time is also evaluated and shown to depend critically on badkground intensity as well as dead time. Given the expected background strength in an optical channel, therefore, a constraint must be placed on the bandwidth of the receiver to limit the amount of power penalty due to detector dead time.
Giddings, R P; Hugues-Salas, E; Tang, J M
2012-08-27
Record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) transmission is experimentally demonstrated, for the first time, in a simple electro-absorption modulated laser (EML)-based 25 km standard SMF system using intensity modulation and direct detection (IMDD). Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting line rates of 10 Gb/s and 9.125 Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100 MHz and DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically frequency-division-multiplexed (FDM) for intensity modulation of a single optical carrier by an EML. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive features and on-line performance monitoring is fully exploited to optimize key OOFDM transceiver and system parameters, which includes subcarrier characteristics within each individual OFDM sub-band, total and relative sub-band power as well as EML operating conditions. The achieved 19.125 Gb/s over 25 km SMF OOFDM transmission system has an optical power budget of 13.5 dB, and shows almost identical bit error rate (BER) performances for both the baseband and passband signals. In addition, experimental investigations also indicate that the maximum achievable transmission capacity of the present system is mainly determined by the EML frequency chirp-enhanced chromatic dispersion effect, and the passband BER performance is not affected by the two sub-band-induced intermixing effect, which, however, gives a 1.2dB optical power penalty to the baseband signal transmission.
24-26 GHz radio-over-fiber and free-space optics for fifth-generation systems.
Bohata, Jan; Komanec, Matěj; Spáčil, Jan; Ghassemlooy, Zabih; Zvánovec, Stanislav; Slavík, Radan
2018-03-01
This Letter outlines radio-over-fiber combined with radio-over-free-space optics (RoFSO) and radio frequency free-space transmission, which is of particular relevance for fifth-generation networks. Here, the frequency band of 24-26 GHz is adopted to demonstrate a low-cost, compact, and high-energy-efficient solution based on the direct intensity modulation and direct detection scheme. For our proof-of-concept demonstration, we use 64 quadrature amplitude modulation with a 100 MHz bandwidth. We assess the link performance by exposing the RoFSO section to atmospheric turbulence conditions. Further, we show that the measured minimum error vector magnitude (EVM) is 4.7% and also verify that the proposed system with the free-space-optics link span of 100 m under strong turbulence can deliver an acceptable EVM of <9% with signal-to-noise ratio levels of 22 dB and 10 dB with and without turbulence, respectively.
Infrasound induced instability by modulation of condensation process in the atmosphere.
Naugolnykh, Konstantin; Rybak, Samuil
2008-12-01
A sound wave in supersaturated water vapor can modulate both the process of heat release caused by condensation, and subsequently, as a result, the resonance interaction of sound with the modulated heat release provides sound amplification. High-intensity atmospheric perturbations such as cyclones and thunderstorms generate infrasound, which is detectable at large distances from the source. The wave-condensation instability can lead to variation in the level of infrasound radiation by a developing cyclone, and this can be as a precursor of these intense atmospheric events.
NASA Astrophysics Data System (ADS)
Seto, Keisuke; Tarumi, Takashi; Tokunaga, Eiji
2018-06-01
Noise cancellation of the light source is an important method to enhance the signal-to-noise ratio (SNR) and facilitate high-speed detection in pump/probe measurements. We developed a method to eliminate the noise for the multichannel spectral pump/probe measurements with a spectral dispersion of a white probe pulse light. In this method, the sample-induced intensity modulation is converted to the phase modulation of the pulse repetition irrespective of the intensity noise of the light source. The SNR is enhanced through the phase detection of the observed signal with the signal synchronized to the pulse repetition serving as the phase reference (synchronized signal). However, the shot-noise limited performance is not achieved with an intense probe light. In this work, we demonstrate that the performance limitation below the shot noise limit is caused by the amplitude-phase cross talk. It converts the amplitude noise into the phase noise and is caused by the space-charge effect in the photodetector, the reverse bias voltage drop across the load impedance, and the phase detection circuit. The phase delay occurs with an intense light at a PIN photodiode, whereas the phase is advanced in an avalanche photodiode. Although the amplitude distortion characteristics also reduce the performance, the distortion effect is equivalent to the amplitude-phase cross talk. We also propose possible ways to compensate the cross talk effect by using the phase modulation of the synchronized signal for the phase detection based on the instantaneous amplitude.
Early, James W.
1990-01-01
A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.
Impact of Dispersion Slope on SPM Degradation in WDM Systems With High Channel Count
NASA Astrophysics Data System (ADS)
Luí; S, Ruben S.; Cartaxo, Adolfo V. T.
2005-11-01
Dispersion management design in wavelength division multiplexing (WDM) intensity modulation-direct detection (IM-DD) systems is often difficult due to the complex relation between the dispersion-management parameters (inline and total residual dispersion) and nonlinear impairments, such as cross-phase modulation (XPM). In this paper, we investigate the dependence of the XPM degradation on the dispersion-management parameters of a two-channel system. Afterwards, the XPM degradation on systems with high channel count (161 channels) is analytically evaluated, and the observed behaviors are explained using the results obtained with a two-channel system. In the absence of dispersion-slope compensation (DSC), significant differences in the XPM degradation of different channels in the same system are shown. Such differences result mainly from the strong dependence of the phase-modulation-to-intensity-modulation conversion of the XPM on the dispersion-management parameters of each channel. Due to this dependence, numerical results show that, unlike systems without dispersion compensation (DC), the XPM degradation may increase steadily with the channel count, and the worst-case channel may not be the center channel of the transmitted band. DSC allows a remarkable equalization of the XPM degradation along the transmitted band, facilitating dispersion-management planning. However, variations of the dispersion parameter and excessive residual dispersion that is not compensated may still induce a tilt of the XPM degradation along the transmitted band.
Remote detection of methane with a 1.66-microm diode laser.
Uehara, K; Tai, H
1992-02-20
High-sensitivity real-time remote detection of methane in air with a 1.66-microm distributed-feedback diode laser operating at room temperature is demonstrated by laboratory simulations. The laser current was modulated at a high frequency of ~5 MHz, and the laser-center frequency was locked onto a methane-absorption line. The laser light directed toward the probed region was received after one-way transmission or further reflection from a topographic target. The methane absorption was detected by the second-harmonic component in the optical-power variation. The minimum-detectable concentration-path-length product in the transmission scheme was 0.3 part in 10(6) m for a signal averaging time of 1.3 s. In the reflection scheme, the amount of methane could be measured from the ratio of the fundamental and second-harmonic signal intensities independently of the received power.
Fiber optic current monitor for high-voltage applications
Renda, G.F.
1992-04-21
A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.
Fiber optic current monitor for high-voltage applications
Renda, George F.
1992-01-01
A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.
Ultrasound-modulated optical tomography with intense acoustic bursts.
Zemp, Roger J; Kim, Chulhong; Wang, Lihong V
2007-04-01
Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.
Development of CO2 laser dispersion interferometer with photoelastic modulator
NASA Astrophysics Data System (ADS)
Akiyama, T.; Kawahata, K.; Okajima, S.; Nakayama, K.
2010-10-01
A dispersion interferometer is one of the promising methods of the electron density measurement on large and high density fusion devices. This paper describes development of a CO2 laser dispersion interferometer with a photoelastic modulator for phase modulation. In order to make the dispersion interferometer free from variations of the detected intensity, a new phase extraction method is introduced: The phase shift is evaluated from a ratio of amplitudes of the fundamental and the second harmonics of the phase modulation frequency in the detected interference signal. The proof-of-principle experiments demonstrate the feasibility of this method.
Development of CO2 laser dispersion interferometer with photoelastic modulator.
Akiyama, T; Kawahata, K; Okajima, S; Nakayama, K
2010-10-01
A dispersion interferometer is one of the promising methods of the electron density measurement on large and high density fusion devices. This paper describes development of a CO(2) laser dispersion interferometer with a photoelastic modulator for phase modulation. In order to make the dispersion interferometer free from variations of the detected intensity, a new phase extraction method is introduced: The phase shift is evaluated from a ratio of amplitudes of the fundamental and the second harmonics of the phase modulation frequency in the detected interference signal. The proof-of-principle experiments demonstrate the feasibility of this method.
Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas
2012-08-01
In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.
Optically-gated Non-latched High Gain Power Device
2008-11-21
parameters such as power conversion efficiency, dv/dt and di/dt stress on PSD and electromagnetic noise emission spectrum, which depend directly on the...4. EXPERIMENTAL STUDIES ON OTPT AND OPTICAL INTENSITY MODULATION OF OTPT PARAMETERS 33 4.1 Optical source, driver, and fiber details 33 4.2...off dynamics characterizations 36 4.5. Optical intensity modulation of OTPT parameters 37 5. EXPERIMENTAL STUDIES ON HYBRID OTPT-PSD AND OPTICAL
[Effect of immune modulation on immunogenic and protective activity of a live plague vaccine].
Karal'nik, B V; Ponomareva, T S; Deriabin, P N; Denisova, T G; Mel'nikova, N N; Tugambaev, T I; Atshabar, B B; Zakarian, S B
2014-01-01
Comparative evaluation of the effect of polyoxidonium and betaleukin on immunogenic and protective activity of a live plague vaccine in model animal experiments. Plague vaccine EV, polyoxidonium, betaleukin, erythrocytic antigenic diagnosticum for determination of F1 antibodies and immune reagents for detection of lymphocytes with F1 receptors (LFR) in adhesive test developed by the authors were used. The experiments were carried out in 12 rabbits and 169 guinea pigs. Immune modulation accelerated the appearance and disappearance of LFR (early phase) and ensured a more rapid and intensive antibody formation (effector phase). Activation by betaleukin is more pronounced than by polyoxidonium. The more rapid and intensive was the development of early phase, the more effective was antibody response to the vaccine. Immune modulation in the experiment with guinea pigs significantly increased protective activity of the vaccine. The use of immune modulators increased immunogenic (in both early and effector phases of antigen-specific response) and protective activity of the EV vaccine. A connection between the acceleration of the first phase of antigen-specific response and general intensity of effector phase of immune response to the EV vaccine was detected. ,
High-speed optical transmission system using 1.55-μm directly modulated lasers
NASA Astrophysics Data System (ADS)
Kim, Hoon
2018-01-01
We present the small-signal frequency responses of single-mode fiber used in directly modulated laser/direct detection (DML/DD) and externally modulated transmitter/direct detection (EXT/DD) systems, and compare the dispersion tolerance of these two systems. We find out that DML/DD system could be more tolerant to fiber chromatic dispersion than EXT/DD system when an electrical equalizer is employed at the receiver. We also present the transmission of 56- Gb/s 4-level pulse amplitude modulation signals generated from a 1.55-μm DML over 20-km standard single-mode fiber with the aid of a linear electrical equalizer. The performance behavior of this system with respect to the transmission distance is explained by using the frequency response.
Battista, L; Sciuto, S A; Scorza, A
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r(2) is equal to 0.997; for the bi-directional configuration, the coefficient of determination r(2) is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l∕min to a maximum of about 9% at -12.0 l∕min.
NASA Astrophysics Data System (ADS)
Battista, L.; Sciuto, S. A.; Scorza, A.
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r2 is equal to 0.997; for the bi-directional configuration, the coefficient of determination r2 is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.
Tracking sperm whales with a towed acoustic vector sensor.
Thode, Aaron; Skinner, Jeff; Scott, Pam; Roswell, Jeremy; Straley, Janice; Folkert, Kendall
2010-11-01
Passive acoustic towed linear arrays are increasingly used to detect marine mammal sounds during mobile anthropogenic activities. However, these arrays cannot resolve between signals arriving from the port or starboard without vessel course changes or multiple cable deployments, and their performance is degraded by vessel self-noise and non-acoustic mechanical vibration. In principle acoustic vector sensors can resolve these directional ambiguities, as well as flag the presence of non-acoustic contamination, provided that the vibration-sensitive sensors can be successfully integrated into compact tow modules. Here a vector sensor module attached to the end of a 800 m towed array is used to detect and localize 1813 sperm whale "clicks" off the coast of Sitka, AK. Three methods were used to identify frequency regimes relatively free of non-acoustic noise contamination, and then the active intensity (propagating energy) of the signal was computed between 4-10 kHz along three orthogonal directions, providing unambiguous bearing estimates of two sperm whales over time. These bearing estimates are consistent with those obtained via conventional methods, but the standard deviations of the vector sensor bearing estimates are twice those of the conventionally-derived bearings. The resolved ambiguities of the bearings deduced from vessel course changes match the vector sensor predictions.
Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers
NASA Astrophysics Data System (ADS)
Chao, X.; Jeffries, J. B.; Hanson, R. K.
2009-11-01
Tunable diode laser absorption spectroscopy of CO was studied in the controlled laboratory environments of a heated cell and a combustion exhaust rig. Two absorption lines, R(10) and R(11) in the first overtone band of CO near 2.3 µm, were selected from a HITRAN simulation to minimize interference from water vapor at a representative combustion exhaust temperature (~1200 K). The linestrengths and collision broadening coefficients for these lines were measured in a heated static cell. This database was then used in a comparative study of direct absorption and wavelength-modulation absorption. CO concentration measurements using scanned-wavelength direct absorption (DA) and wavelength modulation with the second-harmonic signal normalized by the first-harmonic signal (WMS-2f/1f) all agreed with those measured by a conventional gas sampling analyzer over the range from <10 ppm to 2.3%. As expected, water vapor was found to be the dominant source of background interference for CO detection in combustion flows at high temperatures. Water absorption was measured to a high spectral resolution within the wavelength region 4295-4301 cm-1 at 1100 K, and shown to produce <10 ppm level interference for CO detection in combustion exhausts at temperatures up to 1200 K. We found that the WMS-2f/1f strategy avoids the need for WMS calibration measurements but requires characterization of the wavelength and injection-current intensity modulation of the specific diode laser. We conclude that WMS-2f/1f using the selected R(10) or R(11) transitions in the CO overtone band holds good promise for sensitive in situ detection of ppm-level CO in combustion flows, with high resistance to interference absorption from H2O.
Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya
2018-04-01
Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.
NASA Astrophysics Data System (ADS)
Fu, Meixia; Zhang, Min; Wang, Danshi; Cui, Yue; Han, Huanhuan
2016-10-01
We propose a scheme of optical duobinary-modulated upstream transmission system for reflective semiconductor optical amplifier-based colorless optical network units in 10-Gbps wavelength-division multiplexed passive optical network (WDM-PON), where a fiber Bragg grating (FBG) is adopted as an optical equalizer for better performance. The demodulation module is extremely simple, only needing a binary intensity modulation direct detection receiver. A better received sensitivity of -16.98 dBm at bit rate error (BER)=1.0×10-4 can be achieved at 120 km without FBG, and the BER at the sensitivity of -18.49 dBm can be up to 2.1×10-5 at the transmission distance of 160 km with FBG, which demonstrates the feasibility of our proposed scheme. Moreover, it could be a high cost-effectiveness scheme for WDM-PON in the future.
NASA Astrophysics Data System (ADS)
Zhuge, Qunbi; Chen, Xi
2018-02-01
Global IP traffic is predicted to increase nearly threefold over the next 5 years, driven by emerging high-bandwidth-demanding applications, such as cloud computing, 5G wireless, high-definition video streaming, and virtual reality. This results in a continuously increasing demand on the capacity of backbone optical networks. During the past decade, advanced digital signal processing (DSP), modulation formats, and forward error correction (FEC) were commercially realized to exploit the capacity potential of long-haul fiber channels, and have increased per channel data rate from 10 Gb/s to 400 Gb/s. DSP has played a crucial role in coherent transceivers to accommodate channel impairments including chromatic dispersion (CD), polarization mode dispersion (PMD), laser phase noise, fiber nonlinearities, clock jitter, and so forth. The advance of DSP has also enabled innovations in modulation formats to increase spectral efficiency, improve linear/nonlinear noise tolerance, and realize flexible bandwidth. Moving forward to next generation 1 Tb/s systems on conventional single mode fiber (SMF) platform, more innovations in DSP techniques are needed to further reduce cost per bit, increase network efficiency, and close the gap to the Shannon limit. To further increase capacity per fiber, spatial-division multiplexing (SDM) systems can be used. DSP techniques such as advanced channel equalization methods and distortion compensation can help SDM systems to achieve higher system capacity. In the area of short-reach transmission, the rapid increase of data center network traffic has driven the development of optical technologies for both intra- and inter-data center interconnects (DCI). In particular, DSP has been exploited in intensity-modulation direct detection (IM/DD) systems to realize 400 Gb/s pluggable optical transceivers. In addition, multi-dimensional direct detection modulation schemes are being investigated to increase the data rate per wavelength targeting 1 Tb/s interface.
NASA Astrophysics Data System (ADS)
Wasiczko, Linda M.; Smolyaninov, Igor I.; Davis, Christopher C.
2004-01-01
Free space optics (FSO) is one solution to the bandwidth bottleneck resulting from increased demand for broadband access. It is well known that atmospheric turbulence distorts the wavefront of a laser beam propagating through the atmosphere. This research investigates methods of reducing the effects of intensity scintillation and beam wander on the performance of free space optical communication systems, by characterizing system enhancement using either aperture averaging techniques or nonimaging optics. Compound Parabolic Concentrators, nonimaging optics made famous by Winston and Welford, are inexpensive elements that may be easily integrated into intensity modulation-direct detection receivers to reduce fading caused by beam wander and spot breakup in the focal plane. Aperture averaging provides a methodology to show the improvement of a given receiver aperture diameter in averaging out the optical scintillations over the received wavefront.
Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei
2016-03-15
A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.
Method for Balancing Detector Output to a Desired Level of Balance at a Frequency
NASA Technical Reports Server (NTRS)
Sachse, Glenn W. (Inventor)
2003-01-01
A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.
NASA Technical Reports Server (NTRS)
Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)
1999-01-01
A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.
Imaging System With Confocally Self-Detecting Laser.
Webb, Robert H.; Rogomentich, Fran J.
1996-10-08
The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.
Li, Zhengxuan; Yi, Lilin; Hu, Weisheng
2014-10-06
In this paper, we propose to use a semiconductor optical amplifier (SOA) in the optical network unit (ONU) to improve the loss budget in time and wavelength division multiplexed-passive optical network (TWDM-PON) systems. The SOA boosts the upstream signal to increase the output power of the electro-absorption modulated laser (EML) and simultaneously pre-amplifies the downstream signal for sensitivity improvement. The penalty caused by cross gain modulation (XGM) effect is negligible due to the low extinction ratio (ER) of upstream signal and the large wavelength difference between upstream and downstream links. In order to achieve a higher output power, the SOA is driven into its saturation region, where the self-phase modulation (SPM) effect converts the intensity into phase information and realizes on-off-keying (OOK) to phase-shifted-keying (PSK) format conversion. In this way, the pattern effect is eliminated, which releases the requirement of gain-clamping on SOA. To further improve the loss budget of upstream link, an Erbium doped fiber amplifier (EDFA) is used in the optical line terminal (OLT) to pre-amplify the received signal. For the downstream direction, directly modulated laser (DML) is used as the laser source. Taking advantage of its carrier-less characteristic, directly modulated signal shows high tolerance to fiber nonlinearity, which could support a downstream launch power as high as + 16 dBm per channel. In addition, the signal is pre-amplified by the SOA in ONU before being detected, so the sensitivity limitation for downstream link is also removed. As a result, a truly passive symmetric 40-Gb/s TWDM-PON was demonstrated, achieving a link loss budget of 51 dB.
Musical duplex perception: perception of figurally good chords with subliminal distinguishing tones.
Hall, M D; Pastore, R E
1992-08-01
In a variant of duplex perception with speech, phoneme perception is maintained when distinguishing components are presented below intensities required for separate detection, forming the basis for the claim that a phonetic module takes precedence over nonspeech processing. This finding is replicated with music chords (C major and minor) created by mixing a piano fifth with a sinusoidal distinguishing tone (E or E flat). Individual threshold intensities for detecting E or E flat in the context of the fixed piano tones are established. Chord discrimination thresholds defined by distinguishing tone intensity were determined. Experiment 2 verified masked detection thresholds and subliminal chord identification for experienced musicians. Accurate chord perception was maintained at distinguishing tone intensities nearly 20 dB below the threshold for separate detection. Speech and music findings are argued to demonstrate general perceptual principles.
An Overview of Saturn Narrowband Radio Emissions Observed by Cassini RPWS
NASA Astrophysics Data System (ADS)
Ye, S.-Y.; Fischer, G.; Menietti, J. D.; Wang, Z.; Gurnett, D. A.; Kurth, W. S.
Saturn narrowband (NB) radio emissions are detected between 3 and 70 kHz, with occurrence probability and wave intensity peaking around 5 kHz and 20 kHz. The emissions usually occur periodically for several days after intensification of Saturn kilometric radiation (SKR). Originally detected by the Voyagers, the extended duration of the Cassini mission and the improved capabilities of the Radio and Plasma Wave Science (RPWS) instrument have significantly advanced our knowledge about them. For example, RPWS measurements of the magnetic component have validated the electromagnetic nature of Saturn NB emissions. Evidences show that the 20 kHz NB emissions are generated by mode conversion of electrostatic upper hybrid waves on the boundary of the plasma torus, whereas direction-finding results point to a source in the auroral zone for the 5 kHz component. Similar to SKR, the 5 kHz NB emissions have a clock-like modulation and display two distinct modulation periods identical to the northern and southern hemisphere periods of SKR. Polarization measurements confirm that most NB emissions are propagating in the L-O mode, with the exception of second harmonic NB emissions. At high latitudes closer to the planet, RPWS detected right hand polarized Z-mode NB emissions below the local electron cyclotron frequency (f_ce), which are believed to be the source of the L-O mode NB emissions detected above the local f_ce. Although the energy source for the generation of the Z-mode waves is still unclear, linear growth rate calculations indicate that the observed plasma distributions are unstable to the growth of electrostatic cyclotron harmonic emission. Alternatively, electromagnetic Z-mode might be directly generated by the cyclotron maser instability. The source Z-mode waves, upon reflection, propagate to the opposite hemisphere before escaping through mode conversion, which could explain the fact that both rotational modulation periods of NB emissions are observable in each hemisphere.
Mora, Cordula V.; Bingman, Verner P.
2013-01-01
It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a “virtual magnetic map” during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain. PMID:24039812
Mora, Cordula V; Bingman, Verner P
2013-01-01
It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a "virtual magnetic map" during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain.
1 λ × 1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM.
Zhu, Yixiao; Zou, Kaiheng; Zheng, Zhennan; Zhang, Fan
2016-02-22
We report the experimental demonstration of single wavelength terabit free-space intensity modulation direct detection (IM-DD) system employing both orbital angular momentum (OAM) multiplexing and polarization division multiplexing (PDM). In our experiment, 12 OAM modes with two orthogonal polarization states are used to generate 24 channels for transmission. Each channel carries 30 Gbaud Nyquist PAM-4 signal. Therefore an aggregate gross capacity record of 1.44 Tb/s (12 × 2 × 30 × 2 Gb/s) is acheived with a modulation efficiency of 48 bits/symbol. After 0.8m free-space transmission, the bit error rates (BERs) of all the channels are below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10(-2). After applying the decision directed recursive least square (DD-RLS) based filter and post filter, the BERs of two polarizations can be reduced from 5.3 × 10(-3) and 7.3 × 10(-3) to 2.2 × 10(-3) and 3.4 × 10(-3), respectively.
Power-efficient method for IM-DD optical transmission of multiple OFDM signals.
Effenberger, Frank; Liu, Xiang
2015-05-18
We propose a power-efficient method for transmitting multiple frequency-division multiplexed (FDM) orthogonal frequency-division multiplexing (OFDM) signals in intensity-modulation direct-detection (IM-DD) optical systems. This method is based on quadratic soft clipping in combination with odd-only channel mapping. We show, both analytically and experimentally, that the proposed approach is capable of improving the power efficiency by about 3 dB as compared to conventional FDM OFDM signals under practical bias conditions, making it a viable solution in applications such as optical fiber-wireless integrated systems where both IM-DD optical transmission and OFDM signaling are important.
Directly Phase-Modulated Light Source
NASA Astrophysics Data System (ADS)
Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.
2016-07-01
The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.
Security-enhanced chaos communication with time-delay signature suppression and phase encryption.
Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun
2016-08-15
A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.
Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V
2012-06-18
We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.
An electric noise component with density 1/f identified on ISEE 3
NASA Technical Reports Server (NTRS)
Hoang, S.; Steinberg, J. L.; Couturier, P.; Feldman, W. C.
1982-01-01
The properties of the 1/f noise detected at the terminals of ISEE 3 antennas are described and related to the solar wind parameters. The 1/f noise was observed with the radio receivers of the three-dimensional radio mapping experiment using the S and Z dipole antennas. The noise spectra contained a negative spectral index component at frequencies lower than 0.7 of the plasma frequency, and 5-10 times the predicted thermal noise for the Z antenna. S-antenna measurements of the 1/f component revealed it to be deeply spin modulated with a minimum electric field in the direction of the solar wind. Modulation increases with increasing frequency, becomes negligible when the 1/f intensity is negligible with respect to the thermal noise, and increases with solar wind velocity. The possibilities that the noise is due either to waves or currents are discussed.
Experimental research of UWB over fiber system employing 128-QAM and ISFA-optimized scheme
NASA Astrophysics Data System (ADS)
He, Jing; Xiang, Changqing; Long, Fengting; Chen, Zuo
2018-05-01
In this paper, an optimized intra-symbol frequency-domain averaging (ISFA) scheme is proposed and experimentally demonstrated in intensity-modulation and direct-detection (IMDD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system. According to the channel responses of three MB-OFDM UWB sub-bands, the optimal ISFA window size for each sub-band is investigated. After 60-km standard single mode fiber (SSMF) transmission, the experimental results show that, at the bit error rate (BER) of 3.8 × 10-3, the receiver sensitivity of 128-quadrature amplitude modulation (QAM) can be improved by 1.9 dB using the proposed enhanced ISFA combined with training sequence (TS)-based channel estimation scheme, compared with the conventional TS-based channel estimation. Moreover, the spectral efficiency (SE) is up to 5.39 bit/s/Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battista, L.; Sciuto, S. A.; Scorza, A.
2013-03-15
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it;more » the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.« less
[Research on Spectral Polarization Imaging System Based on Static Modulation].
Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng
2015-04-01
The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.
Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs
NASA Astrophysics Data System (ADS)
Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong
2016-12-01
In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.
Factors Affecting the Processing of Intensity in School-Aged Children
ERIC Educational Resources Information Center
Buss, Emily; Hall, Joseph W., III; Grose, John H.
2013-01-01
Purpose: Thresholds of school-aged children are elevated relative to those of adults for intensity discrimination and amplitude modulation (AM) detection. It is unclear how these findings are related or what role stimulus gating and dynamic envelope cues play in these results. Two experiments assessed the development of sensitivity to intensity…
NASA Astrophysics Data System (ADS)
Abaza, Mohamed; Mesleh, Raed; Mansour, Ali; Aggoune, el-Hadi
2015-01-01
The performance analysis of a multi-hop decode and forward relaying free-space optical (FSO) communication system is presented in this paper. The considered FSO system uses intensity modulation and direct detection as means of transmission and reception. Atmospheric turbulence impacts are modeled as a log-normal channel, and different weather attenuation effects and geometric losses are taken into account. It is shown that multi-hop is an efficient technique to mitigate such effects in FSO communication systems. A comparison with direct link and multiple-input single-output (MISO) systems considering correlation effects at the transmitter is provided. Results show that MISO multi-hop FSO systems are superior than their counterparts over links exhibiting high attenuation. Monte Carlo simulation results are provided to validate the bit error rate (BER) analyses and conclusions.
Cheng, Min-Chi; Chi, Yu-Chieh; Li, Yi-Cheng; Tsai, Cheng-Ting; Lin, Gong-Ru
2014-06-30
By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from -12 to -3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to -104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10(-3) to 5 × 10(-5), which slightly degrades to 1.1 × 10(-4) after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from -12 to -3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from -0.8 to -1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10(-5) under a receiving power of -3 dBm.
Detecting crop population growth using chlorophyll fluorescence imaging.
Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu
2017-12-10
For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45 cm×34 cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.
Zhang, Lu; Hong, Xuezhi; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Schatz, Richard; Guo, Changjian; Zhang, Junwei; Nordwall, Fredrik; Engenhardt, Klaus M; Westergren, Urban; Popov, Sergei; Jacobsen, Gunnar; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia
2018-01-15
We experimentally demonstrate the transmission of a 200 Gbit/s discrete multitone (DMT) at the soft forward error correction limit in an intensity-modulation direct-detection system with a single C-band packaged distributed feedback laser and traveling-wave electro absorption modulator (DFB-TWEAM), digital-to-analog converter and photodiode. The bit-power loaded DMT signal is transmitted over 1.6 km standard single-mode fiber with a net rate of 166.7 Gbit/s, achieving an effective electrical spectrum efficiency of 4.93 bit/s/Hz. Meanwhile, net rates of 174.2 Gbit/s and 179.5 Gbit/s are also demonstrated over 0.8 km SSMF and in an optical back-to-back case, respectively. The feature of the packaged DFB-TWEAM is presented. The nonlinearity-aware digital signal processing algorithm for channel equalization is mathematically described, which improves the signal-to-noise ratio up to 3.5 dB.
Compact terahertz spectrometer based on disordered rough surfaces
NASA Astrophysics Data System (ADS)
Yang, Tao; Jiang, Bing; Ge, Jia-cheng; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei
2018-01-01
In this paper, a compact spectrometer based on disordered rough surfaces for operation in the terahertz band is presented. The proposed spectrometer consists of three components, which are used for dispersion, modulation and detection respectively. The disordered rough surfaces, which are acted as the dispersion component, are modulated by the modulation component. Different scattering intensities are captured by the detection component with different extent of modulation. With a calibration measurement process, one can reconstruct the spectra of the probe terahertz beam by solving a system of simultaneous linear equations. A Tikhonov regularization approach has been implemented to improve the accuracy of the spectral reconstruction. The reported broadband, compact, high-resolution terahertz spectrometer is well suited for portable terahertz spectroscopy applications.
Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency
Davis, Ryan Wesley; Singh, Seema; Wu, Huawen
2013-07-09
Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.
NASA Astrophysics Data System (ADS)
Liu, Dachang; Wang, Zixiong; Liu, Jianguo; Tan, Jun; Yu, Lijuan; Mei, Haiping; Zhou, Yusong; Zhu, Ninghua
2017-10-01
The performance of a free-space optical communication system is highly affected by the atmospheric turbulence in terms of scintillation. An optical communication system based on intensity-modulation direct-detection was built with 1-km transmission distance to evaluate the bit error rate (BER) performance over real atmospheric turbulence. 2.5-, 5-, and 10-Gbps data rate transmissions were carried out, where error-free transmission could be achieved during over 37% of the 2.5-Gbps transmissions and over 43% of the 5-Gbps transmissions. In the rest of the transmissions, BER deteriorated as the refractive-index structure constant increased, while the two measured items have almost the same trend.
NASA Astrophysics Data System (ADS)
Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri
2016-02-01
In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.
The impact of odor–reward memory on chemotaxis in larval Drosophila
Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander
2015-01-01
How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor “valence” (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior. PMID:25887280
Status and Trend of Automotive Power Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Zhenxian
2012-01-01
Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.
Red light-induced suppression of gravitropism in moss protonemata
NASA Astrophysics Data System (ADS)
Kern, V. D.; Sack, F. D.
1999-01-01
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (≥140nmol m-2s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities ≤100nmol m-2s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities ≥140nmol m-2s-1.
Single-beam, dark toroidal optical traps for cold atoms
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew
2007-02-01
We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.
Zeroth-order phase-contrast technique.
Pizolato, José Carlos; Cirino, Giuseppe Antonio; Gonçalves, Cristhiane; Neto, Luiz Gonçalves
2007-11-01
What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.
Acoustic characteristics of simulated respiratory-induced vocal tremor.
Lester, Rosemary A; Story, Brad H
2013-05-01
The purpose of this study was to investigate the relation of respiratory forced oscillation to the acoustic characteristics of vocal tremor. Acoustical analyses were performed to determine the characteristics of the intensity and fundamental frequency (F0) for speech samples obtained by Farinella, Hixon, Hoit, Story, and Jones (2006) using a respiratory forced oscillation paradigm with 5 healthy adult males to simulate vocal tremor involving respiratory pressure modulation. The analyzed conditions were sustained productions of /a/ with amplitudes of applied pressure of 0, 1, 2, and 4 cmH2O and a rate of 5 Hz. Forced oscillation of the respiratory system produced modulation of the intensity and F0 for all participants. Variability was observed between participants and conditions in the change in intensity and F0 per unit of pressure change, as well as in the mean intensity and F0. However, the extent of modulation of intensity and F0 generally increased as the applied pressure increased, as would be expected. These findings suggest that individuals develop idiosyncratic adaptations to pressure modulations, which are important to understanding aspects of variability in vocal tremor, and highlight the need to assess all components of the speech mechanism that may be directly or indirectly affected by tremor.
NASA Astrophysics Data System (ADS)
Zhu, Yixiao; Jiang, Mingxuan; Ruan, Xiaoke; Chen, Zeyu; Li, Chenjia; Zhang, Fan
2018-05-01
We experimentally demonstrate 6.4 Tb/s wavelength division multiplexed (WDM) direct-detection transmission based on Nyquist twin-SSB modulation over 25 km SSMF with bit error rates (BERs) below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10-2. The two sidebands of each channel are separately detected using Kramers-Kronig receiver without MIMO equalization. We also carry out numerical simulations to evaluate the system robustness against I/Q amplitude imbalance, I/Q phase deviation and the extinction ratio of modulator, respectively. Furthermore, we show in simulation that the requirement of steep edge optical filter can be relaxed if multi-input-multi-output (MIMO) equalization between the two sidebands is used.
Ionospheric very low frequency transmitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Spencer P.
2015-02-15
The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HFmore » heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave approach generates VLF radiations over a larger frequency band than by the modulated electrojet.« less
NASA Astrophysics Data System (ADS)
Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang
2016-10-01
We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.
NASA Astrophysics Data System (ADS)
Reynolds, Jeffery S.; Thompson, Alan B.; Troy, Tamara L.; Mayer, Ralf H.; Waters, David J.; Sevick-Muraca, Eva M.
1999-07-01
In this paper we demonstrate the ability to detect the frequency-domain fluorescent signal from the contrast agent indocyanine green within the mammary chain of dogs with spontaneous mammary tumors. We use a gain-modulated image intensifier to rapidly capture multi-pixel images of the fluorescent modulation amplitude, modulation phase, and average intensity signals. Excitation is provided by a 100 MHz amplitude-modulated, 780 nm laser diode. Time series images of the uptake and clearance of the contrast agent in the diseased tissue are also presented.
Detection and modulation of capsaicin perception in the human oral cavity.
Smutzer, Gregory; Jacob, Jeswin C; Tran, Joseph T; Shah, Darshan I; Gambhir, Shilpa; Devassy, Roni K; Tran, Eric B; Hoang, Brian T; McCune, Joseph F
2018-05-09
Capsaicin causes a burning or spicy sensation when this vanilloid compound comes in contact with trigeminal neurons of the tongue. This compound has low solubility in water, which presents difficulties in examining the psychophysical properties of capsaicin by standard aqueous chemosensory tests. This report describes a new approach that utilizes edible strips for delivering precise amounts of capsaicin to the human oral cavity for examining threshold and suprathreshold amounts of this irritant. When incorporated into pullulan-based edible strips, recognition thresholds for capsaicin occurred over a narrow range, with a mean value near 1 nmol. When incorporated into edible strips at suprathreshold amounts, capsaicin yielded robust intensity values that were readily measured in our subject population. Maximal capsaicin intensity was observed 20 s after strips dissolved on the tongue surface, and then decreased in intensity. Suprathreshold studies showed that complete blockage of nasal airflow diminished capsaicin perception in the oral cavity. Oral rinses with vanillin-linoleic acid emulsions decreased mean intensity values for capsaicin by approximately 75%, but only modestly affected recognition threshold values. Also, oral rinses with isointense amounts of aqueous sucrose and sucralose solutions decreased mean intensity values for capsaicin by approximately 50%. In addition, this decrease in capsaicin intensity following an oral rinse with sucrose was partially reversed by the sweet taste inhibitor lactisole. These results suggest that blockage of nasal airflow, vanillin, sucrose, and sucralose modulate capsaicin perception in the human oral cavity. The results further suggest a chemosensory link between receptor cells that detect sweet taste stimuli and trigeminal neurons that detect capsaicin. Copyright © 2018 Elsevier Inc. All rights reserved.
Electric field-induced emission enhancement and modulation in individual CdSe nanowires.
Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru
2012-10-23
CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.
Linearized electrooptic polymeric directional coupler modulator
NASA Astrophysics Data System (ADS)
Hung, Yu-Chueh
External linearized modulators are required in high-performance analog optical communication systems since the performance of conventional modulators, such as Mach-Zehnder modulators, are degraded by distortions by the nonlinearity of their transfer functions. Various linearization schemes have been proposed to increase the dynamic range of an analog optical link. Most of the optical schemes involve multiple Mach-Zehnder modulators, either in parallel or series configuration, incorporated with strict balance of RF and bias control. This is a significant challenge when it comes to practical implementation. In this dissertation, a linearized two-section directional coupler modulator made from electrooptic polymer is presented. The coupling coefficient of each section is tailored by properly tuning the refractive index contrast, which can be easily employed using the photobleaching technique in polymer technology. A two-tone test was performed to evaluate the linearity of the modulator and the spur-free dynamic range shows a 7.5 dB improvement compared to a conventional Mach-Zehnder modulator. This scheme avoids multiple modulators or complicated modulation synchronization and demonstrates a compact design in real implementation. Most of the linearization schemes up to date consider only the direct detection mode of operation. However, the RF output characteristics at the detection side are determined differently by various system parameters if a coherent link is implemented instead. Therefore, different considerations of linearization have to be examined for this kind of application. In the second part of this dissertation, the impact of various modulation scenarios on the system performance of an analog coherent optical link will be addressed. It will be shown that a directional coupler modulator is better suited at increasing the dynamic range in coherent optical links. Specific designs of a directional coupler modulator shows an SFDR improvement of 20 dB compared to a Mach-Zehnder modulator. This new type of device can be easily fabricated using photobleaching technique in eletrooptic polymer and can be utilized in various applications.
Active control of acoustic field-of-view in a biosonar system.
Yovel, Yossi; Falk, Ben; Moss, Cynthia F; Ulanovsky, Nachum
2011-09-01
Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc.) is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks) is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allen M., E-mail: allen.chen@ucdmc.ucdavis.edu; Farwell, D. Gregory; Luu, Quang
2011-07-01
Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651more » daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 {+-} 1.25 mm, 1.79 {+-} 1.45 mm, and 1.98 {+-} 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.« less
Micro Ring Grating Spectrometer with Adjustable Aperture
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)
2012-01-01
A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.
NASA Astrophysics Data System (ADS)
Gou, Pengqi; Wang, Kaihui; Qin, Chaoyi; Yu, Jianjun
2017-03-01
We experimentally demonstrate a 16-ary quadrature amplitude modulation (16QAM) DFT-spread optical orthogonal frequency division multiplexing (OFDM) transmission system utilizing a cost-effective directly modulated laser (DML) and direct detection. For 20-Gbaud 16QAM-OFDM signal, with the aid of nonlinear equalization (NLE) algorithm, we respectively provide 6.2-dB and 5.2-dB receiver sensitivity improvement under the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3 for the back-to-back (BTB) case and after transmission over 10-km standard single mode fiber (SSMF) case, related to only adopt post-equalization scheme. To our knowledge, this is the first time to use dynamic nonlinear equalizer (NLE) based on the summation of the square of the difference between samples in one IM/DD OFDM system with DML to mitigate nonlinear distortion.
Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang
2016-01-01
A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082
NASA Astrophysics Data System (ADS)
Devecioğlu, İsmail; Güçlü, Burak
2017-02-01
Objective. Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. Approach. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. Main results. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. Significance. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.
Devecioğlu, İsmail; Güçlü, Burak
2017-02-01
Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.
Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring
NASA Astrophysics Data System (ADS)
Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon
2014-10-01
Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we introduce a new non-invasive mechanism of tissue-informative measurement, where an experimental phenomenon called subcutaneous tissue pressure equilibrium is revealed and related for application in detection of absolute blood pressure. A prototype was experimentally verified to provide an absolute blood pressure measurement by wearing a watch-type measurement module that does not cause any discomfort. This work is supposed to contribute remarkably to the advancement of continuous non-invasive mobile devices for 24-7 daily-life ambulatory blood-pressure monitoring.
the role of shock waves in modulation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Gall, R.; Thomas, B. T.; Durand, H.
1985-01-01
The understanding of modulation of the galactic cosmic rays has considerably progressed by the exploration by space probes of major heliospheric structures, such as the Corotating Interaction Regions, the neutral sheet, and the compression regions of intense heliospheric magnetic fields. Also relevant in this context were the detections in the outer heliosphere of long lasting Forbush type decreases of cosmic ray intensity. The results of recent theoretical studies on the changes in intensity and energy, at different location from the Sun, induced by the passage of shocks across the heliosphere are presented. In this version of the research, the simplest cases of modulation of uGV and 2GV particles by single or several shocks during periods of positive and negative solar field polarity are reviewed. The results of the theoretical aspects of the search is reported. The comparison of the theoretical predictions with space probe data allows conclusions to be drawn on the role of shocks on the modulation on both the 11 and 22 year galactic cosmic ray cycles in the outer heliosphere and on the plausibility of the models and parameters used.
Fluorescence detection of dental calculus
NASA Astrophysics Data System (ADS)
Gonchukov, S.; Biryukova, T.; Sukhinina, A.; Vdovin, Yu
2010-11-01
This work is devoted to the optimization of fluorescence dental calculus diagnostics in optical spectrum. The optimal wavelengths for fluorescence excitation and registration are determined. Two spectral ranges 620 - 645 nm and 340 - 370 nm are the most convenient for supra- and subgingival calculus determination. The simple implementation of differential method free from the necessity of spectrometer using was investigated. Calculus detection reliability in the case of simple implementation is higher than in the case of spectra analysis at optimal wavelengths. The use of modulated excitation light and narrowband detection of informative signal allows us to decrease essentially its diagnostic intensity even in comparison with intensity of the low level laser dental therapy.
Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.
Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R
2014-01-10
The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10) GeV dark matter may also be significant, depending on the threshold energy of the experiment.
Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator
NASA Astrophysics Data System (ADS)
Weinberg, Rebecca
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity.
Analysis of different sub-carrier allocation of M-ary QAM-OFDM downlink in RoF system
NASA Astrophysics Data System (ADS)
Shao, Yu-feng; Chen, Luo; Wang, An-rong; Zhao, Yun-jie; Long, Ying; Ji, Xing-ping
2018-01-01
In this paper, the performance of a 60 GHz radio over fiber (RoF) system with 4/16/64 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) downstream signals is studied. Delivery of 10 Gbit/s M-ary QAM (MQAM) OFDM signals through the 20-km-long single-mode fiber (SMF) is complicated in terms of intensity modulation and direct detection (IM/DD). Using self-homodyne method, the beating of two independent light waves generating the millimeter-wave at the photodetector can be down-converted to baseband in the electrical domain. Meanwhile, three kinds of sub-carrier arrangement schemes are compared and discussed, and the simulation results show that lower peak-to-average power ratio ( PAPR) can be obtained adopting the adjacent scheme. At bit error rate ( BER) of 10-3, the receiver sensitivity using 4QAM-OFDM sub-carrier signal is almost enhanced by 4 dB and 9 dB compared with those of 16QAM-OFDM signal and 64QAM-OFDM signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spataru, Sergiu; Hacke, Peter; Sera, Dezso
A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less
Control range: a controllability-based index for node significance in directed networks
NASA Astrophysics Data System (ADS)
Wang, Bingbo; Gao, Lin; Gao, Yong
2012-04-01
While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks.
Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk.
Homola, Jirí; Dostálek, Jakub; Chen, Shengfu; Rasooly, Avraham; Jiang, Shaoyi; Yee, Sinclair S
2002-05-05
This work evaluates a newly developed wavelength modulation-based SPR biosensor for the detection of staphylococcal enterotoxin B (SEB) in milk. Two modes of operation of the SPR biosensor are described: direct detection of SEB and sandwich assay. In the sandwich assay detection mode, secondary antibodies are bound to the already captured toxin to amplify sensor response. Samples including SEB in buffer and SEB in milk were analyzed in this work. The SPR biosensor has been shown to be capable of directly detecting concentrations of SEB in buffer as low as 5 ng/ml. In sandwich detection mode, the lowest detection limit was determined to be 0.5 ng/ml for both buffer and milk samples. The reported wavelength modulation-based SPR sensor provides a generic platform which can be tailored for detection of various foodborne pathogens and agents for food analysis and testing.
Design and implementation of green intelligent lights based on the ZigBee
NASA Astrophysics Data System (ADS)
Gan, Yong; Jia, Chunli; Zou, Dongyao; Yang, Jiajia; Guo, Qianqian
2013-03-01
By analysis of the low degree of intelligence of the traditional lighting control methods, the paper uses the singlechip microcomputer for the control core, and uses a pyroelectric infrared technology to detect the existence of the human body, light sensors to sense the light intensity; the interface uses infrared sensor module, photosensitive sensor module, relay module to transmit the signal, which based on ZigBee wireless network. The main function of the design is to realize that the lighting can intelligently adjust the brightness according to the indoor light intensity when people in door, and it can turn off the light when people left. The circuit and program design of this system is flexible, and the system achieves the effect of intelligent energy saving control.
Lacava, C; Cardea, I; Demirtzioglou, I; Khoja, A E; Ke, Li; Thomson, D J; Ruan, X; Zhang, F; Reed, G T; Richardson, D J; Petropoulos, P
2017-11-27
We present the characterization of a silicon Mach-Zehnder modulator with electrical packaging and show that it exhibits a large third-order intermodulation spurious-free dynamic range (> 100 dB Hz 2/3 ). This characteristic renders the modulator particularly suitable for the generation of high spectral efficiency discrete multi-tone signals and we experimentally demonstrate a single-channel, direct detection transmission system operating at 49.6 Gb/s, exhibiting a baseband spectral efficiency of 5 b/s/Hz. Successful transmission is demonstrated over various lengths of single mode fibre up to 40 km, without the need of any amplification or dispersion compensation.
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Cartaxo, Adolfo V. T.
2005-03-01
This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.
A molecular-sized optical logic circuit for digital modulation of a fluorescence signal
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun
2018-03-01
Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.
Correcting bulk in-plane motion artifacts in MRI using the point spread function.
Lin, Wei; Wehrli, Felix W; Song, Hee Kwon
2005-09-01
A technique is proposed for correcting both translational and rotational motion artifacts in magnetic resonance imaging without the need to collect additional navigator data or to perform intensive postprocessing. The method is based on measuring the point spread function (PSF) by attaching one or two point-sized markers to the main imaging object. Following the isolation of a PSF marker from the acquired image, translational motion could be corrected directly from the modulation transfer function, without the need to determine the object's positions during the scan, although the shifts could be extracted if desired. Rotation is detected by analyzing the relative displacements of two such markers. The technique was evaluated with simulations, phantom and in vivo experiments.
Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects.
Wei, J L; Sanchez, C; Giacoumidis, E
2017-10-01
We present, to the best of our knowledge, the first known detailed analysis and fair comparison of complexity of a 56 Gb/s multi-band carrierless amplitude and phase (CAP) and discrete multi-tone (DMT) over 80 km dispersion compensation fiber-free single-mode fiber links based on intensity modulation and direct detection for data center interconnects. We show that the matched finite impulse response filters and inverse fast Fourier transform (IFFT)/FFT take the majority of the complexity of the multi-band CAP and DMT, respectively. The choice of the multi-band CAP sub-band count and the DMT IFFT/FFT size makes significant impact on the system complexity or performance, and trade-off must be considered.
NASA Astrophysics Data System (ADS)
Wang, Yi; Zhang, Ao; Ma, Jing
2017-07-01
Minimum-shift keying (MSK) has the advantages of constant envelope, continuous phase, and high spectral efficiency, and it is applied in radio communication and optical fiber communication. MSK modulation of coherent detection is proposed in the ground-to-satellite laser communication system; in addition, considering the inherent noise of uplink, such as intensity scintillation and beam wander, the communication performance of the MSK modulation system with coherent detection is studied in the uplink ground-to-satellite laser. Based on the gamma-gamma channel model, the closed form of bit error rate (BER) of MSK modulation with coherent detection is derived. In weak, medium, and strong turbulence, the BER performance of the MSK modulation system is simulated and analyzed. To meet the requirements of the ground-to-satellite coherent MSK system to optimize the parameters and configuration of the transmitter and receiver, the influence of the beam divergence angle, the zenith angle, the transmitter beam radius, and the receiver diameter are studied.
Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications
NASA Astrophysics Data System (ADS)
Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.
2009-03-01
X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.
Ultrasensitive Laser Spectroscopy in Solids: Single-Molecule Detection
1989-10-25
spite of detection intensity constraints necessary to avoid power broadening, the optical absorption spectrum of single molecules of pentacene In p...molecule detection, or SMD) would provide a useful tool for the study of local host-absorber interactions where tihe absorbing ,ontor is essentially at...modulation techniques 7. 8 for the model system composed of pentacene substitutional impurities in p-terphenyl crystals at 1.5K. The pontacene molecules can
Hu, Lei; Zuo, Peng; Ye, Bang-Ce
2010-10-01
An automated multicomponent mesofluidic system (MCMS) based on biorecognitions carried out on meso-scale glass beads in polydimethylsiloxane (PDMS) channels was developed. The constructed MCMS consisted of five modules: a bead introduction module, a bioreaction module, a solution handling module, a liquid driving module, and a signal collection module. The integration of these modules enables the assay to be automated and reduces it to a one-step protocol. The MCMS has successfully been applied toward the detection of veterinary drug residues in animal-derived foods. The drug antigen-coated beads (varphi250 microm) were arrayed in the PDMS channels (varphi300 microm). The competitive immunoassay was then carried out on the surface of the glass beads. After washing, the Cy3-labeled secondary antibody was introduced to probe the antigen-antibody complex anchored to the beads. The fluorescence intensity of each bead was measured and used to determine the residual drug concentration. The MCMS is highly sensitive, with its detection limits ranging from 0.02 (salbutamol) to 3.5 microg/L (sulfamethazine), and has a short assay time of 45 min or less. The experimental results demonstrate that the MCMS proves to be an economic, efficient, and sensitive platform for multicomponent detection of compound residues for contamination in foods or the environment. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ojaghi, Ashkan; Parkhimchyk, Artur; Tabatabaei, Nima
2016-09-01
Early detection of the most prevalent oral disease worldwide, i.e., dental caries, still remains as one of the major challenges in dentistry. The current dental standard of care relies on caries detection methods, such as visual inspection and x-ray radiography, which lack the sufficient specificity and sensitivity to detect caries at early stages of formation when they can be healed. We report on the feasibility of early caries detection in a clinically and commercially viable thermophotonic imaging system. The system incorporates intensity-modulated laser light along with a low-cost long-wavelength infrared (LWIR; 8 to 14 μm) camera, providing diagnostic contrast based on the enhanced light absorption of early caries. The LWIR camera is highly suitable for integration into clinical platforms because of its low weight and cost. In addition, through theoretical modeling, we show that LWIR detection enhances the diagnostic contrast due to the minimal LWIR transmittance of enamel and suppression of the masking effect of the direct thermal Planck emission. Diagnostic performance of the system and its detection threshold are experimentally evaluated by monitoring the inception and progression of artificially induced occlusal and smooth surface caries. The results are suggestive of the suitability of the developed LWIR system for detecting early dental caries.
A ppb level sensitive sensor for atmospheric methane detection
NASA Astrophysics Data System (ADS)
Xia, Jinbao; Zhu, Feng; Zhang, Sasa; Kolomenskii, Alexandre; Schuessler, Hans
2017-11-01
A high sensitivity sensor, combining a multipass cell and wavelength modulation spectroscopy in the near infrared spectral region was designed and implemented for trace gas detection. The effective length of the multipass cell was about 290 meters. The developed spectroscopic technique demonstrates an improved sensitivity of methane in ambient air and a relatively short detection time compared to previously reported sensors. Home-built electronics and software were employed for diode laser frequency modulation, signal lock-in detection and processing. A dual beam scheme and a balanced photo-detector were implemented to suppress the intensity modulation and noise for better detection sensitivity. The performance of the sensor was evaluated in a series of measurements ranging from three hours to two days. The average methane concentration measured in ambient air was 2.01 ppm with a relative error of ± 2.5%. With Allan deviation analysis, it was found that the methane detection limit of 1.2 ppb was achieved in 650 s. The developed sensor is compact and portable, and thus it is well suited for field measurements of methane and other trace gases.
NASA Astrophysics Data System (ADS)
Süveges, Maria; Anderson, Richard I.
2018-03-01
Context. Recent studies have revealed a hitherto unknown complexity of Cepheid pulsations by discovering irregular modulated variability using photometry, radial velocities, and interferometry. Aim. We aim to perform a statistically rigorous search and characterization of such phenomena in continuous time, applying it to 53 classical Cepheids from the OGLE-III catalog. Methods: We have used local kernel regression to search for both period and amplitude modulations simultaneously in continuous time and to investigate their detectability. We determined confidence intervals using parametric and non-parametric bootstrap sampling to estimate significance, and investigated multi-periodicity using a modified pre-whitening approach that relies on time-dependent light curve parameters. Results: We find a wide variety of period and amplitude modulations and confirm that first overtone pulsators are less stable than fundamental mode Cepheids. Significant temporal variations in period are more frequently detected than those in amplitude. We find a range of modulation intensities, suggesting that both amplitude and period modulations are ubiquitous among Cepheids. Over the 12-year baseline offered by OGLE-III, we find that period changes are often nonlinear, sometimes cyclic, suggesting physical origins beyond secular evolution. Our method detects modulations (period and amplitude) more efficiently than conventional methods that are reliant on certain features in the Fourier spectrum, and pre-whitens time series more accurately than using constant light curve parameters, removing spurious secondary peaks effectively. Conclusions: Period and amplitude modulations appear to be ubiquitous among Cepheids. Current detectability is limited by observational cadence and photometric precision: detection of amplitude modulation below 3 mmag requires space-based facilities. Recent and ongoing space missions (K2, BRITE, MOST, CoRoT) as well as upcoming ones (TESS, PLATO) will significantly improve detectability of fast modulations, such as cycle-to-cycle variations, by providing high-cadence high-precision photometry. High-quality long-term ground-based photometric time series will remain crucial to study longer-term modulations and to disentangle random fluctuations from secular evolution.
Adaptively loaded SP-offset-QAM OFDM for IM/DD communication systems.
Zhao, Jian; Chan, Chun-Kit
2017-09-04
In this paper, we propose adaptively loaded set-partitioned offset quadrature amplitude modulation (SP-offset-QAM) orthogonal frequency division multiplexing (OFDM) for low-cost intensity-modulation direct-detection (IM/DD) communication systems. We compare this scheme with multi-band carrier-less amplitude phase modulation (CAP) and conventional OFDM, and demonstrate >40 Gbit/s transmission over 50-km single-mode fiber. It is shown that the use of SP-QAM formats, together with the adaptive loading algorithm specifically designed to this group of formats, results in significant performance improvement for all these three schemes. SP-offset-QAM OFDM exhibits greatly reduced complexity compared to SP-QAM based multi-band CAP, via parallelized implementation and minimized memory length for spectral shaping. On the other hand, this scheme shows better performance than SP-QAM based conventional OFDM at both back-to-back and after transmission. We also characterize the proposed scheme in terms of enhanced tolerance to fiber intra-channel nonlinearity and the potential to increase the communication security. The studies show that adaptive SP-offset-QAM OFDM is a promising IM/DD solution for medium- and long-reach optical access networks and data center connections.
Glowing locked nucleic acids: brightly fluorescent probes for detection of nucleic acids in cells.
Østergaard, Michael E; Cheguru, Pallavi; Papasani, Madhusudhan R; Hill, Rodney A; Hrdlicka, Patrick J
2010-10-13
Fluorophore-modified oligonucleotides have found widespread use in genomics and enable detection of single-nucleotide polymorphisms, real-time monitoring of PCR, and imaging of mRNA in living cells. Hybridization probes modified with polarity-sensitive fluorophores and molecular beacons (MBs) are among the most popular approaches to produce hybridization-induced increases in fluorescence intensity for nucleic acid detection. In the present study, we demonstrate that the 2'-N-(pyren-1-yl)carbonyl-2'-amino locked nucleic acid (LNA) monomer X is a highly versatile building block for generation of efficient hybridization probes and quencher-free MBs. The hybridization and fluorescence properties of these Glowing LNA probes are efficiently modulated and optimized by changes in probe backbone chemistry and architecture. Correctly designed probes are shown to exhibit (a) high affinity toward RNA targets, (b) excellent mismatch discrimination, (c) high biostability, and (d) pronounced hybridization-induced increases in fluorescence intensity leading to formation of brightly fluorescent duplexes with unprecedented emission quantum yields (Φ(F) = 0.45-0.89) among pyrene-labeled oligonucleotides. Finally, specific binding between messenger RNA and multilabeled quencher-free MBs based on Glowing LNA monomers is demonstrated (a) using in vitro transcription assays and (b) by quantitative fluorometric assays and direct microscopic observation of probes bound to mRNA in its native form. These features render Glowing LNA as promising diagnostic probes for biomedical applications.
An inter-lighting interference cancellation scheme for MISO-VLC systems
NASA Astrophysics Data System (ADS)
Kim, Kyuntak; Lee, Kyujin; Lee, Kyesan
2017-08-01
In this paper, we propose an inter-lighting interference cancellation (ILIC) scheme to reduce the interference between adjacent light-emitting diodes (LEDs) and enhance the transmission capacity of multiple-input-single-output (MISO)-visible light communication (VLC) systems. In indoor environments, multiple LEDs have normally been used as lighting sources, allowing the design of MISO-VLC systems. To enhance the transmission capacity, different data should be simultaneously transmitted from each LED; however, that can lead to interference between adjacent LEDs. In that case, relatively low-received power signals are subjected to large interference because wireless optical systems generally use intensity modulation and direct detection. Thus, only the signal with the highest received power can be detected, while the other received signals cannot be detected. To solve this problem, we propose the ILIC scheme for MISO-VLC systems. The proposed scheme preferentially detects the highest received power signal, and this signal is referred as interference signal by an interference component generator. Then, relatively low-received power signal can be detected by cancelling the interference signal from the total received signals. Therefore, the performance of the proposed scheme can improve the total average bit error rate and throughput of a MISO-VLC system.
Scott, Marion W.
1990-01-01
A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.
Scott, M.W.
1990-06-19
A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.
Speckle-learning-based object recognition through scattering media.
Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun
2015-12-28
We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning.
Tactile functions after cerebral hemispherectomy.
Backlund, H; Morin, C; Ptito, A; Bushnell, M C; Olausson, H
2005-01-01
Patients that were hemispherectomized due to brain lesions early in life sometimes have remarkably well-preserved tactile functions on their paretic body half. This has been attributed to developmental neuroplasticity. However, the tactile examinations generally have been fairly crude, and subtle deficits may not have been revealed. We investigated monofilament detection and three types of tactile directional sensibility in four hemispherectomized patients and six healthy controls. Patients were examined bilaterally on the face, forearm and lower leg. Normal subjects were examined unilaterally. Following each test of directional sensibility, subjects were asked to rate the intensity of the stimulation. On the nonparetic side, results were almost always in the normal range. On the paretic side, the patients' capacity for monofilament detection was less impaired than their directional sensibility. Despite the disturbed directional sensibility on their paretic side the patients rated tactile sensations evoked by the stimuli, on both their paretic and nonparetic body halves, as more intense than normals. Thus, mechanisms of plasticity seem adequate for tactile detection and intensity coding but not for more complex tactile functions such as directional sensibility. The reason for the high vulnerability of tactile directional sensibility may be that it depends on spatially and temporally precise afferent information processed in a distributed cortical network.
Zhang, Qinduan; Chang, Jun; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang
2017-01-01
We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f0 = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C2H2) to select the laser wavelength. The system achieved a linear response (R2 = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times. PMID:29295599
Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection
Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo
2016-01-01
We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944
Zhang, Qinduan; Chang, Jun; Wang, Qiang; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang
2017-12-25
We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f ₀ = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C₂H₂) to select the laser wavelength. The system achieved a linear response (R² = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.
Characterization of modulated time-of-flight range image sensors
NASA Astrophysics Data System (ADS)
Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.
2009-01-01
A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.
Modulation and detection of single neuron activity using spin transfer nano-oscillators
NASA Astrophysics Data System (ADS)
Algarin, Jose Miguel; Ramaswamy, Bharath; Venuti, Lucy; Swierzbinski, Matthew; Villar, Pablo; Chen, Yu-Jin; Krivorotov, Ilya; Weinberg, Irving N.; Herberholz, Jens; Araneda, Ricardo; Shapiro, Benjamin; Waks, Edo
2017-09-01
The brain is a complex network of interconnected circuits that exchange electrical signals with each other. These electrical signals provide insight on how neural circuits code information, and give rise to sensations, thoughts, emotions and actions. Currents methods to detect and modulate these electrical signals use implanted electrodes or optical fields with light sensitive dyes in the brain. These techniques require complex surgeries or suffer low resolution. In this talk we explore a new method to both image and stimulate single neurons using spintronics. We propose using a Spin Transfer Nano-Oscillators (STNOs) as a nanoscale sensor that converts neuronal action potentials to microwave field oscillations that can be detected wirelessly by magnetic induction. We will describe our recent proof-of-concept demonstration of both detection and wireless modulation of neuronal activity using STNOs. For detection we use electrodes to connect a STNO to a lateral giant crayfish neuron. When we stimulate the neuron, the STNO responds to the neuronal activity with a corresponding microwave signal. For modulation, we stimulate the STNOs wirelessly using an inductively coupled solenoid. The STNO rectifies the induced microwave signal to produce a direct voltage. This direct voltage from the STNO, when applied in the vicinity of a mammalian neuron, changes the frequency of electrical signals produced by the neuron.
Improved Portable Ultrasonic Leak Detectors
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Strobel, James P.; Luaces, Frank
1995-01-01
Improved portable ultrasonic leak detector features three interchangeable ultrasonic-transducer modules, each suited for operation in unique noncontact or contact mode. One module equipped with ultrasound-collecting horn for use in scanning to detect leaks from distance; horn provides directional sensitivity pattern with sensitivity multiplied by factor of about 6 in forward direction. Another module similar, does not include horn; this module used for scanning close to suspected leak, where proximity of leak more than offsets loss of sensitivity occasioned by lack of horn. Third module designed to be pressed against leaking vessel; includes rugged stainless-steel shell. Improved detectors perform significantly better, smaller, more rugged, and greater sensitivity.
Active Control of Acoustic Field-of-View in a Biosonar System
Yovel, Yossi; Falk, Ben; Moss, Cynthia F.; Ulanovsky, Nachum
2011-01-01
Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks—the “field-of-view.” We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc.) is influenced by three competing task demands: detection, localization, and angular scanning—where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks) is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar—the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized. PMID:21931535
Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping
2015-05-04
Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.
NASA Astrophysics Data System (ADS)
Torjesen, Alyssa; Istfan, Raeef; Roblyer, Darren
2017-03-01
Frequency-domain diffuse optical spectroscopy (FD-DOS) utilizes intensity-modulated light to characterize optical scattering and absorption in thick tissue. Previous FD-DOS systems have been limited by large device footprints, complex electronics, high costs, and limited acquisition speeds, all of which complicate access to patients in the clinical setting. We have developed a new digital DOS (dDOS) system, which is relatively compact and inexpensive, allowing for simplified clinical use, while providing unprecedented measurement speeds. The dDOS system utilizes hardware-integrated custom board-level direct digital synthesizers and an analog-to-digital converter to generate frequency sweeps and directly measure signals utilizing undersampling at six wavelengths modulated at discrete frequencies from 50 to 400 MHz. Wavelength multiplexing is utilized to achieve broadband frequency sweep measurements acquired at over 97 Hz. When compared to a gold-standard DOS system, the accuracy of optical properties recovered with the dDOS system was within 5.3% and 5.5% for absorption and reduced scattering coefficient extractions, respectively. When tested in vivo, the dDOS system was able to detect physiological changes throughout the cardiac cycle. The new FD-dDOS system is fast, inexpensive, and compact without compromising measurement quality.
NASA Astrophysics Data System (ADS)
Wang, Fei
2013-09-01
Geiger-mode detectors have single photon sensitivity and picoseconds timing resolution, which make it a good candidate for low light level ranging applications, especially in the case of flash three dimensional imaging applications where the received laser power is extremely limited. Another advantage of Geiger-mode APD is their capability of large output current which can drive CMOS timing circuit directly, which means that larger format focal plane arrays can be easily fabricated using the mature CMOS technology. However Geiger-mode detector based FPAs can only measure the range information of a scene but not the reflectivity. Reflectivity is a major characteristic which can help target classification and identification. According to Poisson statistic nature, detection probability is tightly connected to the incident number of photon. Employing this relation, a signal intensity estimation method based on probability inversion is proposed. Instead of measuring intensity directly, several detections are conducted, then the detection probability is obtained and the intensity is estimated using this method. The relation between the estimator's accuracy, measuring range and number of detections are discussed based on statistical theory. Finally Monte-Carlo simulation is conducted to verify the correctness of this theory. Using 100 times of detection, signal intensity equal to 4.6 photons per detection can be measured using this method. With slight modification of measuring strategy, intensity information can be obtained using current Geiger-mode detector based FPAs, which can enrich the information acquired and broaden the application field of current technology.
Heterodyne lock-in thermography of early demineralized in dental tissues
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Jun-yan; Mohummad, Oliullah; Wang, Xiao-chun; Wang, Yang
2017-12-01
Heterodyne lock-in thermography (HeLIT) is a highly sensitive method to detect early demineralized in dental tissues, which is based on nonlinear photothermal phenomena of dental tissues. In this paper, the nonlinear photothermal phenomena of dental tissues was introduced, and then the system of HeLIT was developed. The relationship between laser modulated parameters (modulated frequency and laser intensity) and heterodyne lock-in thermal wave signal was investigated. The comparison between HeLIT and homodyne lock-in thermography (HoLIT) for detecting the different types of dental caries (smooth surface caries, proximal surface caries and occlusal surface caries) were carried out. Experimental results illustrate that the HeLIT has the merits of high sensitivity and high specificity in detecting different types of early caries.
Cevallos-Larrea, Pablo; Pereira, Thobias; Santos, Wagner; Frota, Silvana M; Infantosi, Antonio F; Ichinose, Roberto M; Tierra-Criollo, Carlos
2016-08-01
This study investigated the performance of Frequency Specific Auditory Steady-State Response (FS-ASSR) detection elicited by the amplitude modulated tone with 2-order exponential envelope (AM2), using objective response detection (ORD) techniques of Spectral F-Test (SFT) and Magnitude Squared Coherence (MSC). ASSRs from 24 normal hearing adults were obtained during binaural multi-tone stimulation of amplitude-modulation (AM) and AM2 at intensities of 60, 45 and 30 dBSPL. The carrier frequencies were 500, 1000, 2000, and 4000 Hz, modulated between 77 and 105 Hz. AM2 achieve FS-ASSR amplitudes higher than AM by 16%, 18% and 12% at 60, 45 and 30 dBSPL, respectively, with a major increase at 500 Hz (22.5%). AMS2PL increased the Detection Rate (DR) up to 8.3% at 500 Hz for 30 dBSPL, which is particularly beneficial for FS-ASSR detection near the hearing threshold. In addition, responses in 1000 and 4000 Hz were consistently increased. The MSC and SFT presented no differences in Detection Rate (DR). False Detection Rate (FDR) was close to 5% for both techniques and tones. Detection times to reach DR over 90% were 3.5 and 4.9 min at 60 and 45 dBSPL, respectively. Further investigation concerning efficient multiple FS-ASSR is still necessary, such as testing subjects with hearing loss.
Anderson, Elizabeth S; Oxenham, Andrew J; Nelson, Peggy B; Nelson, David A
2012-12-01
Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects' thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time.
Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes
Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang
2015-04-21
A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.
Prospects for detection of target-dependent annual modulation in direct dark matter searches
Nobile, Eugenio Del; Gelmini, Graciela B.; Witte, Samuel J.
2016-02-03
Earth's rotation about the Sun produces an annual modulation in the expected scattering rate at direct dark matter detection experiments. The annual modulation as a function of the recoil energy E R imparted by the dark matter particle to a target nucleus is expected to vary depending on the detector material. However, for most interactions a change of variables from E R to v min, the minimum speed a dark matter particle must have to impart a fixed E R to a target nucleus, produces an annual modulation independent of the target element. We recently showed that if the darkmore » matter-nucleus cross section contains a non-factorizable target and dark matter velocity dependence, the annual modulation as a function of v min can be target dependent. Here we examine more extensively the necessary conditions for target-dependent modulation, its observability in present-day experiments, and the extent to which putative signals could identify a dark matter-nucleus differential cross section with a non-factorizable dependence on the dark matter velocity.« less
NASA Astrophysics Data System (ADS)
Mosset, J.-B.; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.
2017-02-01
A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:6LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current 3He detector and with the 16-ch detection module, and the channel-to-channel uniformity.
Study of dual-polarization OQAM-OFDM PON with direct detection
NASA Astrophysics Data System (ADS)
Luo, Qing-long; Feng, Min; Bai, Cheng-lin; Hu, Wei-sheng
2016-01-01
An offset quadrature amplitude modulation orthogonal frequency-division multiplexing (OQAM-OFDM) passive optical network (PON) architecture with direct detection is brought up to increase the transmission range and improve the system performance. In optical line terminal (OLT), OQAM-OFDM signals at 40 Gbit/s are transmitted as downstream. At each optical network unit (ONU), the optical OQAM-OFDM signal is demodulated with direct detection. The results show that the transmission distance can exceed 20 km with negligible penalty under the experimental conditions.
NASA Astrophysics Data System (ADS)
Xie, Qijie; Zheng, Bofang; Shu, Chester
2017-05-01
We demonstrate a simple approach for adjustable multiplication of optical pulses in a fiber using the temporal Talbot effect. Binary electrical patterns are used to control the multiplication factor in our approach. The input 10 GHz picosecond pulses are pedestal-free and are shaped directly from a CW laser. The pulses are then intensity modulated by different sets of binary patterns prior to entering a fiber of fixed dispersion. Tunable repetition-rate multiplication by different factors of 2, 4, and 8 have been achieved and up to 80 GHz pulse train has been experimentally generated. We also evaluate numerically the influence of the extinction ratio of the intensity modulator on the performance of the multiplied pulse train. In addition, the impact of the modulator bias on the uniformity of the output pulses has also been analyzed through simulation and experiment and a good agreement is reached. Last, we perform numerical simulation on the RF spectral characteristics of the output pulses. The insensitivity of the signal-to-subharmonic noise ratio (SSNR) to the laser linewidth shows that our multiplication scheme is highly tolerant to the incoherence of the input optical pulses.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu
2015-01-01
To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.
Optical magnetoelectric effect at CaRuO3-CaMnO3 interfaces as a polar ferromagnet
NASA Astrophysics Data System (ADS)
Yamada, Hiroyuki; Sato, H.; Akoh, H.; Kida, N.; Arima, T.; Kawasaki, M.; Tokura, Y.
2008-02-01
A correlated electron interface between paramagnetic CaRuO3 and antiferromagnetic CaMnO3 has been characterized with optical magnetoelectric (OME) effect as an interface-selective probe for spin and charge states. To detect the OME effect, i.e., nonreciprocal directional dichroism for visible or near-infrared light, we have constructed a "tricolor" superlattice with artificially broken inversion symmetry by stacking CaRuO3, CaMnO3, and CaTiO3, and patterned a grating structure with 4μm period on the superlattice. The observed intensity modulation (0.3% at 50K) in the Bragg diffraction verifies a charge transfer and concomitant ferromagnetism at the CaRuO3-CaMnO3 interface.
Li, Zhe; Erkilinc, M Sezer; Galdino, Lidia; Shi, Kai; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I
2016-12-12
Single-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers. In this paper, we compare the performance of a number of recently proposed digital signal processing-based SSBI compensation schemes, including the use of single- and two-stage linearization filters, an iterative linearization filter and a SSBI estimation and cancellation technique. Their performance is assessed experimentally using a 7 × 25 Gb/s wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquist-subcarrier modulation system operating at a net information spectral density of 2.3 (b/s)/Hz.
Modulation sensing of fluorophores in tissue: a new approach to drug compliance monitoring
NASA Astrophysics Data System (ADS)
Abugo, Omoefe O.; Gryczynski, Zygmunt; Lakowicz, Joseph R.
1999-10-01
We describe a method to detect the presence of fluorophores in scattering media, including intralipid suspensions and chicken muscle covered with skin. The fluorophores were rhodamine 800 (Rb800) and indocyanine green (IcG), both of which can be excited at long wavelengths where there is minimal absorption by tissues. These fluorophores were dissolved in intralipid or in chicken muscle under skin. A method to approximate the fluorophore concentration in such samples was developed using a long lifetime reference fluorophores in a polymer film placed immediately on the illuminated surface of the sample. Because of the long lifetime of the reference film, the modulation of its emission at low frequencies near 2 MHz is near zero. Since the lifetime of Rh800 and IcG are below 2 ns the modulation of the combined emission is a measure of the intensity of the fluorophore (Rh800 or IcG) relative to the long lifetime reference. Using this method we were able to measure the concentration-dependent intensities of Rh800 and IcG in an intralipid suspension. Additionally, micromolar concentrations of these probes could be detected in chicken muscles, even when the muscle was covered with a layer of chicken skin. The presence of an India ink absorber in the intralipid had only a moderate effect on the modulation values. We suggest the use of this transdermal detection of long-wavelength fluorophores as a noninvasive method to monitor patient compliance when taking medicines used for treatment of chronic diseases such as AIDS or tuberculosis.
Optical filtering in directly modulated/detected OOFDM systems.
Sánchez, C; Ortega, B; Wei, J L; Capmany, J
2013-12-16
This work presents a theoretical investigation on the performance of directly modulated/detected (DM/DD) optical orthogonal frequency division multiplexed (OOFDM) systems subject to optical filtering. The impact of both linear and nonlinear distortion effects are taken into account to calculate the effective signal-to-noise ratio of each subcarrier. These results are then employed to optimize the design parameters of two simple optical filtering structures: a Mach Zehnder interferometer and a uniform fiber Bragg grating, leading to a significant optical power budget improvement given by 3.3 and 3dB, respectively. These can be further increased to 5.5 and 4.2dB respectively when balanced detection configurations are employed. We find as well that this improvement is highly dependent on the clipping ratio.
Modulational instability in a PT-symmetric vector nonlinear Schrödinger system
NASA Astrophysics Data System (ADS)
Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.
2016-12-01
A class of exact multi-component constant intensity solutions to a vector nonlinear Schrödinger (NLS) system in the presence of an external PT-symmetric complex potential is constructed. This type of uniform wave pattern displays a non-trivial phase whose spatial dependence is induced by the lattice structure. In this regard, light can propagate without scattering while retaining its original form despite the presence of inhomogeneous gain and loss. These constant-intensity continuous waves are then used to perform a modulational instability analysis in the presence of both non-hermitian media and cubic nonlinearity. A linear stability eigenvalue problem is formulated that governs the dynamical evolution of the periodic perturbation and its spectrum is numerically determined using Fourier-Floquet-Bloch theory. In the self-focusing case, we identify an intensity threshold above which the constant-intensity modes are modulationally unstable for any Floquet-Bloch momentum belonging to the first Brillouin zone. The picture in the self-defocusing case is different. Contrary to the bulk vector case, where instability develops only when the waves are strongly coupled, here an instability occurs in the strong and weak coupling regimes. The linear stability results are supplemented with direct (nonlinear) numerical simulations.
Fixed or adapted conditioning intensity for repeated conditioned pain modulation.
Hoegh, M; Petersen, K K; Graven-Nielsen, T
2017-12-29
Aims Conditioned pain modulation (CPM) is used to assess descending pain modulation through a test stimulation (TS) and a conditioning stimulation (CS). Due to potential carry-over effects, sequential CPM paradigms might alter the intensity of the CS, which potentially can alter the CPM-effect. This study aimed to investigate the difference between a fixed and adaptive CS intensity on CPM-effect. Methods On the dominant leg of 20 healthy subjects the cuff pressure detection threshold (PDT) was recorded as TS and the pain tolerance threshold (PTT) was assessed on the non-dominant leg for estimating the CS. The difference in PDT before and during CS defined the CPM-effect. The CPM-effect was assessed four times using a CS with intensities of 70% of baseline PTT (fixed) or 70% of PTT measured throughout the session (adaptive). Pain intensity of the conditioning stimulus was assessed on a numeric rating scale (NRS). Data were analyzed with repeated-measures ANOVA. Results No difference was found comparing the four PDTs assessed before CSs for the fixed and the adaptive paradigms. The CS pressure intensity for the adaptive paradigm was increasing during the four repeated assessments (P < 0.01). The pain intensity was similar during the fixed (NRS: 5.8±0.5) and the adjusted paradigm (NRS: 6.0±0.4). The CPM-effect was higher using the fixed condition compared with the adaptive condition (P < 0.05). Conclusions The current study found that sequential CPM paradigms using a fixed conditioning stimulus produced an increased CPM-effect compared with adaptive and increasing conditioning intensities.
A new linear structured light module based on the MEMS micromirror
NASA Astrophysics Data System (ADS)
Zhou, Peng; Shen, Wenjiang; Yu, Huijun
2017-10-01
A new linear structured light module based on the Micro-Electro-Mechanical System (MEMS) two-dimensional scanning micromirror was designed and created. This module consists of a laser diode, a convex lens, and the MEMS micromirror. The laser diode generates the light and the convex lens control the laser beam to converge on a single point with large depth of focus. The fast scan in horizontal direction of the micromirror will turn the laser spot into a homogenous laser line. Meanwhile, the slow scan in vertical direction of the micromirror will move the laser line in the vertical direction. The width of the line generated by this module is 300μm and the length is 120mm and the moving distance is 100mm at 30cm away from the module. It will promote the development of industrial detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plansmore » were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique.« less
NEUTRON FLUX INTENSITY DETECTION
Russell, J.T.
1964-04-21
A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)
Drift effects on the galactic cosmic ray modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurenza, M.; Storini, M.; Vecchio, A.
2014-02-01
Cosmic ray (CR) modulation is driven by both solar activity and drift effects in the heliosphere, although their role is only qualitatively understood as it is difficult to connect the CR variations to their sources. In order to address this problem, the Empirical Mode Decomposition technique has been applied to the CR intensity, recorded by three neutron monitors at different rigidities (Climax, Rome, and Huancayo-Haleakala (HH)), the sunspot area, as a proxy for solar activity, the heliospheric magnetic field magnitude, directly related to CR propagation, and the tilt angle (TA) of the heliospheric current sheet (HCS), which characterizes drift effectsmore » on CRs. A prominent periodicity at ∼six years is detected in all the analyzed CR data sets and it is found to be highly correlated with changes in the HCS inclination at the same timescale. In addition, this variation is found to be responsible for the main features of the CR modulation during periods of low solar activity, such as the flat (peaked) maximum in even (odd) solar cycles. The contribution of the drift effects to the global Galactic CR modulation has been estimated to be between 30% and 35%, depending on the CR particle energy. Nevertheless, the importance of the drift contribution is generally reduced in periods nearing the sunspot maximum. Finally, threshold values of ∼40°, ∼45°, and >55° have been derived for the TA, critical for the CR modulation at the Climax, Rome, and HH rigidity thresholds, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, L. N.; Hu, Z. D.; Zheng, Y.
2014-09-15
Proton acceleration from 4 μm thick aluminum foils irradiated by 30-TW Ti:sapphire laser pulses is investigated using an angle-resolved proton energy spectrometer. We find that a modulated spectral peak at ∼0.82 MeV is presented at 2.5° off the target normal direction. The divergence angle of the modulated zone is 3.8°. Two-dimensional particle-in-cell simulations reveal that self-generated toroidal magnetic field at the rear surface of the target foil is responsible for the modulated spectral feature. The field deflects the low energy protons, resulting in the modulated energy spectrum with certain peaks.
Multi terabits/s optical access transport technologies
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey
2016-02-01
Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.
Clinical evaluation of intensity-modulated radiotherapy for head and neck cancers
Bhide, S A; Newbold, K L; Harrington, K J; Nutting, C M
2012-01-01
Radiotherapy and surgery are the principal curative modalities in treatment of head and neck cancer. Conventional two-dimensional and three-dimensional conformal radiotherapy result in significant side effects and altered quality of life. Intensity-modulated radiotherapy (IMRT) can spare the normal tissues, while delivering a curative dose to the tumour-bearing tissues. This article reviews the current role of IMRT in head and neck cancer from the point of view of normal tissue sparing, and also reviews the current published literature by individual head and neck cancer subsites. In addition, we briefly discuss the role of image guidance in head and neck IMRT, and future directions in this area. PMID:22556403
Analytical model and figures of merit for filtered Microwave Photonic Links.
Gasulla, Ivana; Capmany, José
2011-09-26
The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Hu, Li; Zhao, Nanjing; Liu, Wenqing; Meng, Deshuo; Fang, Li; Wang, Yin; Yu, Yang; Ma, Mingjun
2015-08-01
Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were prepared with an automatic device, which was composed of a loading and unloading module, a quantitatively adding solution module, a rapid heating and drying module and a precise rotating module. The experimental results showed that the sample preparation methods had no significant effect on sample distribution and the LIBS signal accumulated in 20 pulses was stable and repeatable. With an increasing amount of the sample solution on the graphite flake, the peak intensity at Cu I 324.75 nm accorded with the exponential function with a correlation coefficient of 0.9963 and the background intensity remained unchanged. The limit of detection (LOD) was calculated through linear fitting of the peak intensity versus the concentration. The LOD decreased rapidly with an increasing amount of sample solution until the amount exceeded 20 mL and the correlation coefficient of exponential function fitting was 0.991. The LOD of Pb, Ni, Cd, Cr and Zn after evaporating different amounts of sample solution on the graphite flakes was measured and the variation tendency of their LOD with sample solution amounts was similar to the tendency for Cu. The experimental data and conclusions could provide a reference for automatic sample preparation and heavy metal in situ detection. supported by National Natural Science Foundation of China (No. 60908018), National High Technology Research and Development Program of China (No. 2013AA065502) and Anhui Province Outstanding Youth Science Fund of China (No. 1108085J19)
Channel simulation for direct detection optical communication systems
NASA Technical Reports Server (NTRS)
Tycz, M.; Fitzmaurice, M. W.
1974-01-01
A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.
Channel simulation for direct-detection optical communication systems
NASA Technical Reports Server (NTRS)
Tycz, M.; Fitzmaurice, M. W.
1974-01-01
A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.
Mészáros, Norbert; Major, Tibor; Stelczer, Gábor; Zaka, Zoltán; Mózsa, Emõke; Fodor, János; Polgár, Csaba
2015-06-01
The purpose of the study was to implement accelerated partial breast irradiation (APBI) by means of image-guided intensity-modulated radiotherapy (IG-IMRT) following breast-conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive (St I-II) breast cancer who underwent BCS were enrolled in our phase II prospective study. Postoperative APBI was given by means of step and shoot IG-IMRT using 4 to 5 fields to a total dose of 36.9 Gy (9×4.1 Gy) using a twice-a-day fractionation. Before each fraction, series of CT images were taken from the region of the target volume using a kV CT on-rail mounted in the treatment room. An image fusion software was used for automatic image registration of the planning and verification CT images. Patient set-up errors were detected in three directions (LAT, LONG, VERT), and inaccuracies were adjusted by automatic movements of the treatment table. Breast cancer related events, acute and late toxicities, and cosmetic results were registered and analysed. At a median follow-up of 24 months (range 12-44) neither locoregional nor distant failure was observed. Grade 1 (G1), G2 erythema, G1 oedema, and G1 and G2 pain occurred in 21 (35%), 2 (3.3%), 23 (38.3%), 6 (10%) and 2 (3.3%) patients, respectively. No G3-4 acute side effects were detected. Among late radiation side effects G1 pigmentation, G1 fibrosis, and G1 fat necrosis occurred in 5 (8.3%), 7 (11.7%), and 2 (3.3%) patients, respectively. No ≥G2 late toxicity was detected. Excellent and good cosmetic outcome was detected in 45 (75%) and 15 (25%) patients. IG-IMRT is a reproducible and feasible technique for the delivery of APBI following conservative surgery for the treatment of low-risk, early-stage invasive breast carcinoma. Preliminary results are promising, early radiation side effects are minimal, and cosmetic results are excellent.
2017-01-01
Background Influenza is a viral respiratory disease capable of causing epidemics that represent a threat to communities worldwide. The rapidly growing availability of electronic “big data” from diagnostic and prediagnostic sources in health care and public health settings permits advance of a new generation of methods for local detection and prediction of winter influenza seasons and influenza pandemics. Objective The aim of this study was to present a method for integrated detection and prediction of influenza virus activity in local settings using electronically available surveillance data and to evaluate its performance by retrospective application on authentic data from a Swedish county. Methods An integrated detection and prediction method was formally defined based on a design rationale for influenza detection and prediction methods adapted for local surveillance. The novel method was retrospectively applied on data from the winter influenza season 2008-09 in a Swedish county (population 445,000). Outcome data represented individuals who met a clinical case definition for influenza (based on International Classification of Diseases version 10 [ICD-10] codes) from an electronic health data repository. Information from calls to a telenursing service in the county was used as syndromic data source. Results The novel integrated detection and prediction method is based on nonmechanistic statistical models and is designed for integration in local health information systems. The method is divided into separate modules for detection and prediction of local influenza virus activity. The function of the detection module is to alert for an upcoming period of increased load of influenza cases on local health care (using influenza-diagnosis data), whereas the function of the prediction module is to predict the timing of the activity peak (using syndromic data) and its intensity (using influenza-diagnosis data). For detection modeling, exponential regression was used based on the assumption that the beginning of a winter influenza season has an exponential growth of infected individuals. For prediction modeling, linear regression was applied on 7-day periods at the time in order to find the peak timing, whereas a derivate of a normal distribution density function was used to find the peak intensity. We found that the integrated detection and prediction method detected the 2008-09 winter influenza season on its starting day (optimal timeliness 0 days), whereas the predicted peak was estimated to occur 7 days ahead of the factual peak and the predicted peak intensity was estimated to be 26% lower than the factual intensity (6.3 compared with 8.5 influenza-diagnosis cases/100,000). Conclusions Our detection and prediction method is one of the first integrated methods specifically designed for local application on influenza data electronically available for surveillance. The performance of the method in a retrospective study indicates that further prospective evaluations of the methods are justified. PMID:28619700
Spreco, Armin; Eriksson, Olle; Dahlström, Örjan; Cowling, Benjamin John; Timpka, Toomas
2017-06-15
Influenza is a viral respiratory disease capable of causing epidemics that represent a threat to communities worldwide. The rapidly growing availability of electronic "big data" from diagnostic and prediagnostic sources in health care and public health settings permits advance of a new generation of methods for local detection and prediction of winter influenza seasons and influenza pandemics. The aim of this study was to present a method for integrated detection and prediction of influenza virus activity in local settings using electronically available surveillance data and to evaluate its performance by retrospective application on authentic data from a Swedish county. An integrated detection and prediction method was formally defined based on a design rationale for influenza detection and prediction methods adapted for local surveillance. The novel method was retrospectively applied on data from the winter influenza season 2008-09 in a Swedish county (population 445,000). Outcome data represented individuals who met a clinical case definition for influenza (based on International Classification of Diseases version 10 [ICD-10] codes) from an electronic health data repository. Information from calls to a telenursing service in the county was used as syndromic data source. The novel integrated detection and prediction method is based on nonmechanistic statistical models and is designed for integration in local health information systems. The method is divided into separate modules for detection and prediction of local influenza virus activity. The function of the detection module is to alert for an upcoming period of increased load of influenza cases on local health care (using influenza-diagnosis data), whereas the function of the prediction module is to predict the timing of the activity peak (using syndromic data) and its intensity (using influenza-diagnosis data). For detection modeling, exponential regression was used based on the assumption that the beginning of a winter influenza season has an exponential growth of infected individuals. For prediction modeling, linear regression was applied on 7-day periods at the time in order to find the peak timing, whereas a derivate of a normal distribution density function was used to find the peak intensity. We found that the integrated detection and prediction method detected the 2008-09 winter influenza season on its starting day (optimal timeliness 0 days), whereas the predicted peak was estimated to occur 7 days ahead of the factual peak and the predicted peak intensity was estimated to be 26% lower than the factual intensity (6.3 compared with 8.5 influenza-diagnosis cases/100,000). Our detection and prediction method is one of the first integrated methods specifically designed for local application on influenza data electronically available for surveillance. The performance of the method in a retrospective study indicates that further prospective evaluations of the methods are justified. ©Armin Spreco, Olle Eriksson, Örjan Dahlström, Benjamin John Cowling, Toomas Timpka. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 15.06.2017.
Performance of Multiplexed XY Resistive Micromegas detectors in a high intensity beam
NASA Astrophysics Data System (ADS)
Banerjee, D.; Burtsev, V.; Chumakov, A.; Cooke, D.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gninenko, S. N.; Hösgen, M.; Karneyeu, A. E.; Ketzer, B.; Kirsanov, M. M.; Konorov, I. V.; Kramarenko, V. A.; Kuleshov, S. V.; Levchenko, E.; Lyubovitskij, V. E.; Lysan, V.; Mamon, S.; Matveev, V. A.; Mikhailov, Yu. V.; Myalkovskiy, V. V.; Peshekhonov, V. D.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Vasilishin, B.; Arenas, G. Vasquez; Ulloa, P.; Crivelli, P.
2018-02-01
We present the performance of multiplexed XY resistive Micromegas detectors tested in the CERN SPS 100 GeV/c electron beam at intensities up to 3 . 3 × 105e- /(s ṡcm2) . So far, all studies with multiplexed Micromegas have only been reported for tests with radioactive sources and cosmic rays. The use of multiplexed modules in high intensity environments was not explored due to the effect of ambiguities in the reconstruction of the hit point caused by the multiplexing feature. For the specific mapping and beam intensities analyzed in this work with a multiplexing factor of five, more than 50% level of ambiguity is introduced due to particle pile-up as well as fake clusters due to the mapping feature. Our results prove that by using the additional information of cluster size and integrated charge from the signal clusters induced on the XY strips, the ambiguities can be reduced to a level below 2%. The tested detectors are used in the CERN NA64 experiment for tracking the incoming particles bending in a magnetic field in order to reconstruct their momentum. The average hit detection efficiency of each module was found to be ∼96% at the highest beam intensities. By using four modules a tracking resolution of 1.1% was obtained with ∼85% combined tracking efficiency.
Development of ultrasound-assisted fluorescence imaging of indocyanine green.
Morikawa, Hiroyasu; Toyota, Shin; Wada, Kenji; Uchida-Kobayashi, Sawako; Kawada, Norifumi; Horinaka, Hiromichi
2017-01-01
Indocyanine green (ICG) accumulation in hepatocellular carcinoma means tumors can be located by fluorescence. However, because of light scattering, it is difficult to detect ICG fluorescence from outside the body. We propose a new fluorescence imaging method that detects changes in the intensity of ICG fluorescence by ultrasound-induced temperature changes. ICG fluorescence intensity decreases as the temperature rises. Therefore, it should theoretically be possible to detect tissue distribution of ICG using ultrasound to heat tissue, moving the point of ultrasound transmission, and monitoring changes in fluorescence intensity. A new probe was adapted for clinical application. It consisted of excitation light from a laser, fluorescence sensing through a light pipe, and heating by ultrasound. We applied the probe to bovine liver to image the accumulation of ICG. ICG emits fluorescence (820 nm) upon light irradiation (783 nm). With a rise in temperature, the fluorescence intensity of ICG decreased by 0.85 %/°C. The distribution of fluorescent ICG was detected using an ultrasonic warming method in a new integrated probe. Modulating fluorescence by changing the temperature using ultrasound can determine where ICG accumulates at a depth, highlighting its potential as a means to locate hepatocellular carcinoma.
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission
Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J
2011-04-13
We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.
NASA Astrophysics Data System (ADS)
Choi, S.; Mandelis, A.; Guo, X.; Lashkari, B.; Kellnberger, S.; Ntziachristos, V.
2015-06-01
In the field of medical diagnostics, biomedical photoacoustics (PA) is a non-invasive hybrid optical-ultrasonic imaging modality. Due to the unique hybrid capability of optical and acoustic imaging, PA imaging has risen to the frontiers of medical diagnostic procedures such as human breast cancer detection. While conventional PA imaging has been mainly carried out by a high-power pulsed laser, an alternative technology, the frequency domain biophotoacoustic radar (FD-PAR) is under intensive development. It utilizes a continuous wave optical source with the laser intensity modulated by a frequency-swept waveform for acoustic wave generation. The small amplitude of the generated acoustic wave is significantly compensated by increased signal-to-noise ratio (several orders of magnitude) using matched-filter and pulse compression correlation processing in a manner similar to radar systems. The current study introduces the theory of a novel FD-PAR modality for ultra-sensitive characterization of functional information for breast cancer imaging. The newly developed theory of wavelength-modulated differential PA spectroscopy (WM-DPAS) detection has been introduced to address angiogenesis and hypoxia monitoring, two well-known benchmarks of breast tumor formation. Based on the WM-DPAS theory, this modality efficiently suppresses background absorptions and is expected to detect very small changes in total hemoglobin concentration and oxygenation levels, thereby identifying pre-malignant tumors before they are anatomically apparent. An experimental system design for the WM-DPAS is presented and preliminary single-ended laser experimental results were obtained and compared to a limiting case of the developed theoretical formalism.
Blöchl, Maria; Franz, Marcel; Miltner, Wolfgang H R; Weiss, Thomas
2015-04-07
Attention has been shown to affect the neural processing of pain. However, the exact mechanisms underlying this modulation remain unknown. Here, we used a new method called pain steady-state evoked potentials (PSSEPs) to investigate whether selective spatial attention affects EEG responses to tonic painful stimuli. In general, steady-state evoked potentials reflect changes in the EEG spectrum at a certain frequency that correspond to the frequency of a train of applied stimuli. In this study, high intensity transcutaneous electrical stimulation was delivered to both hands simultaneously with 31 Hz and 37 Hz, respectively. Subject׳s attention was directed to one of the two trains of stimulation in order to detect a small gap that was occasionally interspersed into the stimulus trains. Thereby, they had to ignore the stimulation applied to the other hand. Results show that PSSEPs were induced at 31 Hz and 37 Hz at frontal and central electrodes. PSSEPs occurred contralaterally to the respective hand stimulated with that frequency. Surprisingly, the magnitude of PSSEPs was not modulated by spatial attention towards one of the two stimuli. Our results indicate that attention can hardly be shifted between two simultaneously applied tonic painful stimulations. Copyright © 2015 Elsevier B.V. All rights reserved.
Thermal diffusivity imaging with the thermal lens microscope.
Dada, Oluwatosin O; Feist, Peter E; Dovichi, Norman J
2011-12-01
A coaxial thermal lens microscope was used to generate images based on both the absorbance and thermal diffusivity of histological samples. A pump beam was modulated at frequencies ranging from 50 kHz to 5 MHz using an acousto-optic modulator. The pump and a CW probe beam were combined with a dichroic mirror, directed into an inverted microscope, and focused onto the specimen. The change in the transmitted probe beam's center intensity was detected with a photodiode. The photodiode's signal and a reference signal from the modulator were sent to a high-speed lock-in amplifier. The in-phase and quadrature signals were recorded as a sample was translated through the focused beams and used to generate images based on the amplitude and phase of the lock-in amplifier's signal. The amplitude is related to the absorbance and the phase is related to the thermal diffusivity of the sample. Thin sections of stained liver and bone tissues were imaged; the contrast and signal-to-noise ratio of the phase image was highest at frequencies from 0.1-1 MHz and dropped at higher frequencies. The spatial resolution was 2.5 μm for both amplitude and phase images, limited by the pump beam spot size. © 2011 Optical Society of America
Halo independent comparison of direct dark matter detection data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondolo, Paolo; Gelmini, Graciela B., E-mail: paolo@physics.utah.edu, E-mail: gelmini@physics.ucla.edu
We extend the halo-independent method of Fox, Liu, and Weiner to include energy resolution and efficiency with arbitrary energy dependence, making it more suitable for experiments to use in presenting their results. Then we compare measurements and upper limits on the direct detection of low mass ( ∼ 10 GeV) weakly interacting massive particles with spin-independent interactions, including the upper limit on the annual modulation amplitude from the CDMS collaboration. We find that isospin-symmetric couplings are severely constrained both by XENON100 and CDMS bounds, and that isospin-violating couplings are still possible at the lowest energies, while the tension of themore » higher energy CoGeNT bins with the CDMS modulation constraint remains. We find the CRESST-II signal is not compatible with the modulation signals of DAMA and CoGeNT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, John C.; Schwartz, Moses Daniel; Berg, Michael J.
2013-10-01
Critical infrastructures, such as electrical power plants and oil refineries, rely on programmable logic controllers (PLCs) to control essential processes. State of the art security cannot detect attacks on PLCs at the hardware or firmware level. This renders critical infrastructure control systems vulnerable to costly and dangerous attacks. WeaselBoard is a PLC backplane analysis system that connects directly to the PLC backplane to capture backplane communications between modules. WeaselBoard forwards inter-module traffic to an external analysis system that detects changes to process control settings, sensor values, module configuration information, firmware updates, and process control program (logic) updates. WeaselBoard provides zero-daymore » exploit detection for PLCs by detecting changes in the PLC and the process. This approach to PLC monitoring is protected under U.S. Patent Application 13/947,887.« less
Anderson, Elizabeth S.; Oxenham, Andrew J.; Nelson, Peggy B.; Nelson, David A.
2012-01-01
Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects’ thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time. PMID:23231122
Linearization of microwave photonic link based on nonlinearity of distributed feedback laser
NASA Astrophysics Data System (ADS)
Kang, Zi-jian; Gu, Yi-ying; Zhu, Wen-wu; Fan, Feng; Hu, Jing-jing; Zhao, Ming-shan
2016-02-01
A microwave photonic link (MPL) with spurious-free dynamic range (SFDR) improvement utilizing the nonlinearity of a distributed feedback (DFB) laser is proposed and demonstrated. First, the relationship between the bias current and nonlinearity of a semiconductor DFB laser is experimentally studied. On this basis, the proposed linear optimization of MPL is realized by the combination of the external intensity Mach-Zehnder modulator (MZM) modulation MPL and the direct modulation MPL with the nonlinear operation of the DFB laser. In the external modulation MPL, the MZM is biased at the linear point to achieve the radio frequency (RF) signal transmission. In the direct modulation MPL, the third-order intermodulation (IMD3) components are generated for enhancing the SFDR of the external modulation MPL. When the center frequency of the input RF signal is 5 GHz and the two-tone signal interval is 10 kHz, the experimental results show that IMD3 of the system is effectively suppressed by 29.3 dB and the SFDR is increased by 7.7 dB.
NASA Astrophysics Data System (ADS)
Rakvin, B.; Carić, D.; Kveder, M.
2018-02-01
The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.
Rakvin, B; Carić, D; Kveder, M
2018-02-01
The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.
Comparison between non-modulation four-sided and two-sided pyramid wavefront sensor.
Wang, Jianxin; Bai, Fuzhong; Ning, Yu; Huang, Linhai; Wang, Shengqian
2010-12-20
Based on the diffraction theory the paper analyzes non-modulation Pyramid wavefront sensor (PWFS, namely, four-sided pyramid) and two-sided pyramid wavefront sensor (TSPWFS), and expresses the detected signals as a function of the measured wavefront. The expressions of the detected signals show that non-modulation PWFS and TSPWFS hold the same properties of both slope and direct phase sensors. We compare both sensors working in slope and phase sensing by theory and numerical simulations. The results demonstrate that the performance of TSPWFS excels that of PWFS. Additionally, the influence of interference between adjacent pupils is discussed.
Yan, Yuling; Petchprayoon, Chutima; Mao, Shu; Marriott, Gerard
2013-01-01
Optical switch probes undergo rapid and reversible transitions between two distinct states, one of which may fluoresce. This class of probe is used in various super-resolution imaging techniques and in the high-contrast imaging technique of optical lock-in detection (OLID) microscopy. Here, we introduce optimized optical switches for studies in living cells under standard conditions of cell culture. In particular, a highly fluorescent cyanine probe (Cy or Cy3) is directly or indirectly linked to naphthoxazine (NISO), a highly efficient optical switch that undergoes robust, 405/532 nm-driven transitions between a colourless spiro (SP) state and a colourful merocyanine (MC) state. The intensity of Cy fluorescence in these Cy/Cy3-NISO probes is reversibly modulated between a low and high value in SP and MC states, respectively, as a result of Förster resonance energy transfer. Cy/Cy3-NISO probes are targeted to specific proteins in living cells where defined waveforms of Cy3 fluorescence are generated by optical switching of the SP and MC states. Finally, we introduce a new imaging technique (called OLID-immunofluorescence microscopy) that combines optical modulation of Cy3 fluorescence from Cy3/NISO co-labelled antibodies within fixed cells and OLID analysis to significantly improve image contrast in samples having high background or rare antigens. PMID:23267183
Wafer screening device and methods for wafer screening
Sopori, Bhushan; Rupnowski, Przemyslaw
2014-07-15
Wafer breakage is a serious problem in the photovoltaic industry because a large fraction of wafers (between 5 and 10%) break during solar cell/module fabrication. The major cause of this excessive wafer breakage is that these wafers have residual microcracks--microcracks that were not completely etched. Additional propensity for breakage is caused by texture etching and incomplete edge grinding. To eliminate the cost of processing the wafers that break, it is best to remove them prior to cell fabrication. Some attempts have been made to develop optical techniques to detect microcracks. Unfortunately, it is very difficult to detect microcracks that are embedded within the roughness/texture of the wafers. Furthermore, even if such detection is successful, it is not straightforward to relate them to wafer breakage. We believe that the best way to isolate the wafers with fatal microcracks is to apply a stress to wafers--a stress that mimics the highest stress during cell/module processing. If a wafer survives this stress, it has a high probability of surviving without breakage during cell/module fabrication. Based on this, we have developed a high throughput, noncontact method for applying a predetermined stress to a wafer. The wafers are carried on a belt through a chamber that illuminates the wafer with an intense light of a predetermined intensity distribution that can be varied by changing the power to the light source. As the wafers move under the light source, each wafer undergoes a dynamic temperature profile that produces a preset elastic stress. If this stress exceeds the wafer strength, the wafer will break. The broken wafers are separated early, eliminating cost of processing into cell/module. We will describe details of the system and show comparison of breakage statistics with the breakage on a production line.
Control of ultra-intense single attosecond pulse generation in laser-driven overdense plasmas.
Liu, Qingcao; Xu, Yanxia; Qi, Xin; Zhao, Xiaoying; Ji, Liangliang; Yu, Tongpu; Wei, Luo; Yang, Lei; Hu, Bitao
2013-12-30
Ultra-intense single attosecond pulse (AP) can be obtained from circularly polarized (CP) laser interacting with overdense plasma. High harmonics are naturally generated in the reflected laser pulses due to the laser-induced one-time drastic oscillation of the plasma boundary. Using two-dimensional (2D) planar particle-in-cell (PIC) simulations and analytical model, we show that multi-dimensional effects have great influence on the generation of AP. Self-focusing and defocusing phenomena occur in front of the compressed plasma boundary, which lead to the dispersion of the generated AP in the far field. We propose to control the reflected high harmonics by employing a density-modulated foil target (DMFT). When the target density distribution fits the laser intensity profile, the intensity of the attosecond pulse generated from the center part of the plasma has a flatten profile within the center range in the transverse direction. It is shown that a single 300 attosecond (1 as = 10(-18)s) pulse with the intensity of 1.4 × 10(21) W cm(-2) can be naturally generated. Further simulations reveal that the reflected high harmonics properties are highly related to the modulated density distribution and the phase offset between laser field and the carrier envelope. The emission direction of the AP generated from the plasma boundary can be controlled in a very wide range in front of the plasma surface by combining the DMFT and a suitable driving laser.
Bioluminescence Truth Data Measurement and Signature Detection
2007-09-30
cell phone based communications module attached to the top of the piling. A cell phone tower represents communication of data to shore. Also shown...representing each Kilroy installation are located based on GPS coordinates telemetered by the cell phone module. Icons point in direction of most recently
Directed module detection in a large-scale expression compendium.
Fu, Qiang; Lemmens, Karen; Sanchez-Rodriguez, Aminael; Thijs, Inge M; Meysman, Pieter; Sun, Hong; Fierro, Ana Carolina; Engelen, Kristof; Marchal, Kathleen
2012-01-01
Public online microarray databases contain tremendous amounts of expression data. Mining these data sources can provide a wealth of information on the underlying transcriptional networks. In this chapter, we illustrate how the web services COLOMBOS and DISTILLER can be used to identify condition-dependent coexpression modules by exploring compendia of public expression data. COLOMBOS is designed for user-specified query-driven analysis, whereas DISTILLER generates a global regulatory network overview. The user is guided through both web services by means of a case study in which condition-dependent coexpression modules comprising a gene of interest (i.e., "directed") are identified.
NASA Astrophysics Data System (ADS)
Quintero-Quiroz, C.; Sorrentino, Taciano; Torrent, M. C.; Masoller, Cristina
2016-04-01
We study the dynamics of semiconductor lasers with optical feedback and direct current modulation, operating in the regime of low frequency fluctuations (LFFs). In the LFF regime the laser intensity displays abrupt spikes: the intensity drops to zero and then gradually recovers. We focus on the inter-spike-intervals (ISIs) and use a method of symbolic time-series analysis, which is based on computing the probabilities of symbolic patterns. We show that the variation of the probabilities of the symbols with the modulation frequency and with the intrinsic spike rate of the laser allows to identify different regimes of noisy locking. Simulations of the Lang-Kobayashi model are in good qualitative agreement with experimental observations.
Heterodyne method for high specificity gas detection.
NASA Technical Reports Server (NTRS)
Dimeff, J.; Donaldson, R. W.; Gunter, W. D., Jr.; Jaynes, D. N.; Margozzi, A. P.; Deboo, G. J.; Mcclatchie, E. A.; Williams, K. G.
1971-01-01
This paper describes a new technique for measuring trace quantities of gases. The technique involves the use of a reference cell (containing a known amount of the gas being sought) and a sample cell (containing an unknown amount of the same gas) wherein the gas densities are modulated. Light passing through the two cells in sequence is modulated in intensity at the vibrational-rotational lines characteristic of the absorption spectrum for the gas of interest. Since the absorption process is nonlinear, modulating the two absorption cells at two different frequencies gives rise to a heterodyning effect, which in turn introduces sum and difference frequencies in the detected signal. Measuring the ratio of the difference frequency signal for example, to the signal introduced by the reference cell provides a normalized measure of the amount of the gas in the sample cell. The readings produced are thereby independent of source intensity, window transparency, and detector sensitivity. Experimental evaluation of the technique suggests that it should be applicable to a wide range of gases, that it should be able to reject spurious signals due to unwanted gases, and that it should be sensitive to concentrations of the order of 10 to the minus 8th power when used with a sample cell of only 20 cm length.
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Zhao, Junfa; Li, Hongqiang; Bai, Hua; Miao, Changyun
2017-12-01
A differential intensity-modulated refractive index (RI) sensor consisting of a no-core fiber (NCF) filter, a circulator and two fiber Bragg gratings (FBGs) is proposed and demonstrated. A section of the NCF is sandwiched between two parts of single mode fibers (SMFs) to form a band-pass filter. The Bragg wavelengths of the FBGs are chosen at the two edges of the filter, respectively. The peak wavelength of the NCF filter has a red-shift with the increase of the surrounding refractive index (SRI) while the Bragg wavelengths have no change, which results in the variation of the difference of the two FBGs reflective intensities, thus the differential intensity modulation to the SRI can be accomplished. Compared with directly connecting the NCF filter and the FBGs, this sensing structure can increase the output power so as to improve the measuring resolution. The experimental results show that the RI sensitivities are -99.191 dB/RIU and -139.958 dB/RIU at the range of 1.3329-1.3781 and 1.3781-1.401, respectively. In addition, the disturbance from the light source fluctuation and temperature cross sensitivity can be minimized effectively, which has great potential in actual applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, C; Seduk, J; Yang, T
Purpose: A prototype actives scanning beam delivery system was designed, manufactured and installed as a part of the Korea Heavy Ion Medical Accelerator Project. The prototype system includes the most components for steering, modulating, detecting incident beam to patient. The system was installed in MC-50 cyclotron beam line and tested to extract the normal operation conditions. Methods: The commissioning process was completed by using 45 MeV of proton beam. To measure the beam position accuracy along the scanning magnet power supply current, 25 different spots were scanning and measured. The scanning results on GaF film were compared with the irradiationmore » plan. Also, the beam size variation and the intensity reduction using range shifter were measured and analyzed. The results will be used for creating a conversion factors for asymmetric behavior of scanning magnets and a dose compensation factor for longitudinal direction. Results: The results show asymmetry operations on both scanning × and y magnet. In case of scanning magnet × operation, the current to position conversion factors were measured 1.69 mm/A for positive direction and 1.74 mm/A for negative direction. The scanning magnet y operation shows 1.38mm/A and 1.48 mm/A for both directions. The size of incoming beam which was 18 mm as sigma becomes larger up to 55 mm as sigma while using 10 mm of the range shifter plate. As the beam size becomes large, the maximum intensity of the was decreased. In case of using 10 mm of range shifter, the maximum intensity was only 52% compared with no range shifter insertion. Conclusion: For the appropriate operation of the prototype active scanning system, the commissioning process were performed to measure the beam characteristics variation. The obtained results would be applied on the irradiation planning software for more precise dose delivery using the active scanning system.« less
Elman, Noel M; Ben-Yoav, Hadar; Sternheim, Marek; Rosen, Rachel; Krylov, Slava; Shacham-Diamand, Yosi
2008-06-15
A lab-on-chip consisting of a unique integration of whole-cell sensors, a MOEMS (Micro-Opto-Electro-Mechanical-System) modulator, and solid-state photo-detectors was implemented for the first time. Whole-cell sensors were genetically engineered to express a bioluminescent reporter (lux) as a function of the lac promoter. The MOEMS modulator was designed to overcome the inherent low frequency noise of solid-state photo-detectors by means of a previously reported modulation technique, named IHOS (Integrated Heterodyne Optical System). The bio-reporter signals were modulated prior to photo-detection, increasing the SNR of solid-state photo-detectors at least by three orders of magnitude. Experiments were performed using isopropyl-beta-d-thiogalactopyranoside (IPTG) as a preliminary step towards testing environmental toxicity. The inducer was used to trigger the expression response of the whole-cell sensors testing the sensitivity of the lab-on-chip. Low intensity bio-reporter optical signals were measured after the whole-cell sensors were exposed to IPTG concentrations of 0.1, 0.05, and 0.02mM. The experimental results reveal the potential of this technology for future implementation as an inexpensive massive method for rapid environmental toxicity detection.
Scannerless loss modulated flash color range imaging
Sandusky, John V [Albuquerque, NM; Pitts, Todd Alan [Rio Rancho, NM
2008-09-02
Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.
Scannerless loss modulated flash color range imaging
Sandusky, John V [Albuquerque, NM; Pitts, Todd Alan [Rio Rancho, NM
2009-02-24
Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.
Gang, G J; Siewerdsen, J H; Stayman, J W
2016-02-01
This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index ( d' ). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. The task-driven design yielded the best performance, improving d' by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d' by 16% and 9%, respectively. This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.
Double-Referential Holography and Spatial Quadrature Amplitude Modulation
NASA Astrophysics Data System (ADS)
Zukeran, Keisuke; Okamoto, Atsushi; Takabayashi, Masanori; Shibukawa, Atsushi; Sato, Kunihiro; Tomita, Akihisa
2013-09-01
We proposed a double-referential holography (DRH) that allows phase-detection without external additional beams. In the DRH, phantom beams, prepared in the same optical path as signal beams and preliminary multiplexed in a recording medium along with the signal, are used to produce interference fringes on an imager for converting a phase into an intensity distribution. The DRH enables stable and high-accuracy phase detection independent of the fluctuations and vibrations of the optical system owing to medium shift and temperature variation. Besides, the collinear arrangement of the signal and phantom beams leads to the compactness of the optical data storage system. We conducted an experiment using binary phase modulation signals for verifying the DRH operation. In addition, 38-level spatial quadrature amplitude modulation signals were successfully reproduced with the DRH by numerical simulation. Furthermore, we verified that the distributed phase-shifting method moderates the dynamic range consumption for the exposure of phantom beams.
Lab-on-a-chip for the isolation and characterization of circulating tumor cells.
Stakenborg, Tim; Liu, Chengxu; Henry, Olivier; O'Sullivan, Ciara K; Fermer, Christian; Roeser, Tina; Ritzi-Lehnert, Marion; Hauch, Sigfried; Borgen, Elin; Laddach, Nadja; Lagae, Liesbet
2010-01-01
A smart miniaturized system is being proposed for the isolation and characterization of circulating tumor cells (CTCs) directly from blood. Different microfluidic modules have been designed for cell enrichment and -counting, multiplex mRNA amplification as well as DNA detection. With the different modules at hand, future effort will focus on the integration of the modules in a fully automated, single platform.
Direct bit detection receiver noise performance analysis for 32-PSK and 64-PSK modulated signals
NASA Astrophysics Data System (ADS)
Ahmed, Iftikhar
1987-12-01
Simple two channel receivers for 32-PSK and 64-PSK modulated signals have been proposed which allow digital data (namely bits), to be recovered directly instead of the traditional approach of symbol detection followed by symbol to bit mappings. This allows for binary rather than M-ary receiver decisions, reduces the amount of signal processing operations and permits parallel recovery of the bits. The noise performance of these receivers quantified by the Bit Error Rate (BER) assuming an Additive White Gaussian Noise interference model is evaluated as a function of Eb/No, the signal to noise ratio, and transmitted phase angles of the signals. The performance results of the direct bit detection receivers (DBDR) when compared to that of convectional phase measurement receivers demonstrate that DBDR's are optimum in BER sense. The simplicity of the receiver implementations and the BER of the delivered data make DBDR's attractive for high speed, spectrally efficient digital communication systems.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Lin, Tao; Hu, Dapeng
2018-03-01
Photonic microwave frequency down-conversion with independent multichannel phase shifting and zero-intermediate frequency (IF) receiving is proposed and demonstrated by simulation. By combined use of a phase modulator (PM) in a sagnac loop and an optical bandpass filter (OBPF), orthogonal polarized carrier suppression single sideband (CS-SSB) signals are obtained. By adjusting the polarization controllers (PCs) to introduce the phase difference in the optical domain and using balanced detection to eliminate the direct current components, the phase of the generated IF signal can be arbitrarily tuned. Besides, the radio frequency (RF) vector signal can be also frequency down-converted to baseband directly by choosing two quadrature channels. In the simulation, high gain and continuously tunable phase shifts over the 360 degree range are verified. Furthermore, 2.5 Gbit/s RF vector signals centered at 10 GHz with different modulation formats are successfully demodulated.
Cellular telephone-based radiation sensor and wide-area detection network
Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA
2006-12-12
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
Cellular telephone-based radiation detection instrument
Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA
2011-06-14
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
Cellular telephone-based wide-area radiation detection network
Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA
2009-06-09
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling
2017-01-01
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
The research of adaptive-exposure on spot-detecting camera in ATP system
NASA Astrophysics Data System (ADS)
Qian, Feng; Jia, Jian-jun; Zhang, Liang; Wang, Jian-Yu
2013-08-01
High precision acquisition, tracking, pointing (ATP) system is one of the key techniques of laser communication. The spot-detecting camera is used to detect the direction of beacon in laser communication link, so that it can get the position information of communication terminal for ATP system. The positioning accuracy of camera decides the capability of laser communication system directly. So the spot-detecting camera in satellite-to-earth laser communication ATP systems needs high precision on target detection. The positioning accuracy of cameras should be better than +/-1μ rad . The spot-detecting cameras usually adopt centroid algorithm to get the position information of light spot on detectors. When the intensity of beacon is moderate, calculation results of centroid algorithm will be precise. But the intensity of beacon changes greatly during communication for distance, atmospheric scintillation, weather etc. The output signal of detector will be insufficient when the camera underexposes to beacon because of low light intensity. On the other hand, the output signal of detector will be saturated when the camera overexposes to beacon because of high light intensity. The calculation accuracy of centroid algorithm becomes worse if the spot-detecting camera underexposes or overexposes, and then the positioning accuracy of camera will be reduced obviously. In order to improve the accuracy, space-based cameras should regulate exposure time in real time according to light intensity. The algorithm of adaptive-exposure technique for spot-detecting camera based on metal-oxide-semiconductor (CMOS) detector is analyzed. According to analytic results, a CMOS camera in space-based laser communication system is described, which utilizes the algorithm of adaptive-exposure to adapting exposure time. Test results from imaging experiment system formed verify the design. Experimental results prove that this design can restrain the reduction of positioning accuracy for the change of light intensity. So the camera can keep stable and high positioning accuracy during communication.
Spherical transceivers for ultrafast optical wireless communications
NASA Astrophysics Data System (ADS)
Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.
2016-02-01
Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.
An alternate design for the Defrise phantom to quantify resolution in digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Acciavatti, Raymond J.; Mannherz, William; Nolan, Margaret; Maidment, Andrew D. A.
2017-03-01
Our previous work analyzed the Defrise phantom as a test object for evaluating image quality in digital breast tomosynthesis (DBT). The phantom is assembled from multiple plastic plates, which are arranged to form a square wave. In our previous work, there was no explicit analysis of how image quality varies with the thickness of the plates. To investigate this concept, a modified design of the phantom is now considered. For this purpose, each rectangular plate was laser-cut at an angle, creating a slope along which thickness varies continuously. The phantom was imaged using a clinical DBT system, and the relative modulation of the plastic-air separations was calculated in the reconstruction. In addition, a theoretical model was developed to determine whether modulation can be optimized by modifying the x-ray tube trajectory. It is demonstrated that modulation is dependent on the orientation of the frequency. Modulation is within detectable limits over a broad range of phantom thicknesses if frequency is parallel with the tube travel direction. Conversely, there is marked loss of modulation if frequency is oriented along the posteroanterior direction. In particular, as distance from the chest wall increases, there is a smaller range of thicknesses over which modulation is within detectable limits. Theoretical modeling suggests that this anisotropy is minimized by introducing tube motion along the posteroanterior direction. In conclusion, this paper demonstrates that the Defrise phantom is a tool for analyzing the limits of resolution in DBT systems.
Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation
Gopalsami, Nachappa; Raptis, Apostolos C.
1991-01-01
A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.
NASA Astrophysics Data System (ADS)
Lee, Hwan; Cho, Jun-Hyung; Sung, Hyuk-Kee
2017-05-01
The phase modulation (PM) and amplitude modulation (AM) of optical signals can be achieved using a direct-modulated (DM) optical injection-locked (OIL) semiconductor laser. We propose and theoretically analyze a simple method to extract the phase component of a PM signal produced by a DM-OIL semiconductor laser. The pure AM component of the combined PM-AM signal can be isolated by square-law detection in a photodetector and can then be used to compensate for the PM-AM signal based on an optical homodyne method. Using the AM compensation technique, we successfully developed a simple and cost-effective phase extraction method applicable to the PM-AM optical signal of a DM-OIL semiconductor laser.
Fukuoka, Yutaka; Miyazawa, Kenji; Mori, Hiroki; Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira; Hoshino, Hiroshi; Noshiro, Makoto; Ueno, Akinori
2013-01-01
In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs). One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a) the masseter, (b) trapezius, (c) anterior tibialis and (d) flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module. PMID:23396194
Electro-optic modulation for high-speed characterization of entangled photon pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.
In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less
Electro-optic modulation for high-speed characterization of entangled photon pairs
Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; ...
2015-11-10
In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less
Nativ, Amit; Feldman, Haim; Shaked, Natan T
2018-05-01
We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.
Xie, Jintao; Zhang, Jianbin; Zheng, Xitao; Ye, Junran; Deng, Dongmei
2018-04-30
We study the paraxial propagation of the radially polarized Airy beams (RPAiBs) in uniaxial crystals orthogonal to the optical axis analytically and numerically. The propagation trajectory, the intensity and the radiation forces of the RPAiBs are investigated and the properties are elucidated by numerical examples in this paper. Results show that the RPAiBs evolve into the beams produced by the x-direction electric field (RPAiXBs) and the y-direction electric field (PRAiYBs) which are totally different in uniaxial crystals. During the propagation, the intensity of the RPAiXBs transfers from the side lobe in the x-direction to the main lobe and finally returns to the side lobe in the x-direction again, but that of the RPAiYBs transfers from the side lobe in the y-direction to the main lobe and flows to the side lobe in the x-direction at last. The effect of the intensity focusing for the RPAiXBs can be modulated by the ratio of the extraordinary index (ne) to the ordinary index (no) in anisotropic medium, which contributes to the intensity focusing of the RPAiBs in a short distance a lot. We can adjust the intensity distribution especially the focusing position, the propagation trajectory and the radiation forces distributions of the RPAiXBs through choosing an appropriate value of the ratio of ne to no to meet the actual usage accordingly.
Detecting temporal changes in acoustic scenes: The variable benefit of selective attention.
Demany, Laurent; Bayle, Yann; Puginier, Emilie; Semal, Catherine
2017-09-01
Four experiments investigated change detection in acoustic scenes consisting of a sum of five amplitude-modulated pure tones. As the tones were about 0.7 octave apart and were amplitude-modulated with different frequencies (in the range 2-32 Hz), they were perceived as separate streams. Listeners had to detect a change in the frequency (experiments 1 and 2) or the shape (experiments 3 and 4) of the modulation of one of the five tones, in the presence of an informative cue orienting selective attention either before the scene (pre-cue) or after it (post-cue). The changes left intensity unchanged and were not detectable in the spectral (tonotopic) domain. Performance was much better with pre-cues than with post-cues. Thus, change deafness was manifest in the absence of an appropriate focusing of attention when the change occurred, even though the streams and the changes to be detected were acoustically very simple (in contrast to the conditions used in previous demonstrations of change deafness). In one case, the results were consistent with a model based on the assumption that change detection was possible if and only if attention was endogenously focused on a single tone. However, it was also found that changes resulting in a steepening of amplitude rises were to some extent able to draw attention exogenously. Change detection was not markedly facilitated when the change produced a discontinuity in the modulation domain, contrary to what could be expected from the perspective of predictive coding. Copyright © 2017 Elsevier B.V. All rights reserved.
Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang
2013-10-21
In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe(2+) and Fe(3+) on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe(3+). Although both Fe(2+) and Fe(3+) could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe(2+) and Fe(3+). The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe(3+) (60 μmol L(-1)), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe(2+) (60 μmol L(-1)). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe(3+) was reduced to Fe(2+) by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe(2+) to Fe(3+). As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L(-1), with a detection limit (3σ) of 1.25 μmol L(-1) The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.
Human Movement Detection and Idengification Using Pyroelectric Infrared Sensors
Yun, Jaeseok; Lee, Sang-Shin
2014-01-01
Pyroelectric infrared (PIR) sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and idengification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth), three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor) and three speed levels (slow, moderate, fast). We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and idengifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and idengifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules. PMID:24803195
V1 mechanisms underlying chromatic contrast detection
Hass, Charles A.
2013-01-01
To elucidate the cortical mechanisms of color vision, we recorded from individual primary visual cortex (V1) neurons in macaque monkeys performing a chromatic detection task. Roughly 30% of the neurons that we encountered were unresponsive at the monkeys' psychophysical detection threshold (PT). The other 70% were responsive at threshold but on average, were slightly less sensitive than the monkey. For these neurons, the relationship between neurometric threshold (NT) and PT was consistent across the four isoluminant color directions tested. A corollary of this result is that NTs were roughly four times lower for stimuli that modulated the long- and middle-wavelength sensitive cones out of phase. Nearly one-half of the neurons that responded to chromatic stimuli at the monkeys' detection threshold also responded to high-contrast luminance modulations, suggesting a role for neurons that are jointly tuned to color and luminance in chromatic detection. Analysis of neuronal contrast-response functions and signal-to-noise ratios yielded no evidence for a special set of “cardinal color directions,” for which V1 neurons are particularly sensitive. We conclude that at detection threshold—as shown previously with high-contrast stimuli—V1 neurons are tuned for a diverse set of color directions and do not segregate naturally into red–green and blue–yellow categories. PMID:23446689
Moliadze, Vera; Andreas, Saskia; Lyzhko, Ekaterina; Schmanke, Till; Gurashvili, Tea; Freitag, Christine M; Siniatchkin, Michael
2015-10-01
Transcranial direct current stimulation (tDCS) is a promising and well-tolerated method of non-invasive brain stimulation, by which cortical excitability can be modulated. However, the effects of tDCS on the developing brain are still unknown, and knowledge about its tolerability in children and adolescents is still lacking. Safety and tolerability of tDCS was assessed in children and adolescents by self-reports and spectral characteristics of electroencephalogram (EEG) recordings. Nineteen typically developing children and adolescents aged 11-16 years participated in the study. Anodal and cathodal tDCS as well as sham stimulation were applied for a duration of 10 min over the left primary motor cortex (M1), each with an intensity of 1 mA. Subjects were unable to identify whether they had received active or sham stimulation, and all participants tolerated the stimulation well with a low rate of adverse events in both groups and no serious adverse events. No pathological oscillations, in particular, no markers of epileptiform activity after 1mA tDCS were detected in any of the EEG analyses. In summary, our study demonstrates that tDCS with 1mA intensity over 10 min is well tolerated, and thus may be used as an experimental and treatment method in the pediatric population. Copyright © 2015 Elsevier Inc. All rights reserved.
Echolocation calls of Poey's flower bat (Phyllonycteris poeyi) unlike those of other phyllostomids.
Mora, Emanuel C; Macías, Silvio
2007-05-01
Unlike any other foraging phyllostomid bat studied to date, Poey's flower bats (Phyllonycteris poeyi-Phyllostomidae) emit relatively long (up to 7.2 ms), intense, single-harmonic echolocation calls. These calls are readily detectable at distances of at least 15 m. Furthermore, the echolocation calls contain only the first harmonic, which is usually filtered out in the vocal tract of phyllostomids. The foraging echolocation calls of P. poeyi are more like search-phase echolocation calls of sympatric aerial-feeding bats (Molossidae, Vespertilionidae, Mormoopidae). Intense, long, narrowband, single-harmonic echolocation calls focus acoustic energy maximizing range and favoring detection, which may be particularly important for cruising bats, like P. poeyi, when flying in the open. Flying in enclosed spaces, P. poeyi emit short, low-intensity, frequency-modulated, multiharmonic echolocation calls typical of other phyllostomids. This is the first report of a phyllostomid species emitting long, intense, single-harmonic echolocation calls with most energy in the first harmonic.
Apparatus and method for measuring and imaging traveling waves
Telschow, Kenneth L.; Deason, Vance A.
2001-01-01
An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.
Low-intensity calibration source for optical imaging systems
NASA Astrophysics Data System (ADS)
Holdsworth, David W.
2017-03-01
Laboratory optical imaging systems for fluorescence and bioluminescence imaging have become widely available for research applications. These systems use an ultra-sensitive CCD camera to produce quantitative measurements of very low light intensity, detecting signals from small-animal models labeled with optical fluorophores or luminescent emitters. Commercially available systems typically provide quantitative measurements of light output, in units of radiance (photons s-1 cm-2 SR-1) or intensity (photons s-1 cm-2). One limitation to current systems is that there is often no provision for routine quality assurance and performance evaluation. We describe such a quality assurance system, based on an LED-illuminated thin-film transistor (TFT) liquid-crystal display module. The light intensity is controlled by pulse-width modulation of the backlight, producing radiance values ranging from 1.8 x 106 photons s-1 cm-2 SR-1 to 4.2 x 1013 photons s-1 cm-2 SR-1. The lowest light intensity values are produced by very short backlight pulses (i.e. approximately 10 μs), repeated every 300 s. This very low duty cycle is appropriate for laboratory optical imaging systems, which typically operate with long-duration exposures (up to 5 minutes). The low-intensity light source provides a stable, traceable radiance standard that can be used for routine quality assurance of laboratory optical imaging systems.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Yang, Heming; Zhao, Difu; Qiu, Kun
2016-07-01
We introduce digital coherent superposition (DCS) into optical access network and propose a DCS-OFDM-PON upstream transmission scheme using intensity modulator and collective self-coherent detection. The generated OFDM signal is real based on Hermitian symmetry, which can be used to estimate the common phase error (CPE) by complex conjugate subcarrier pairs without any pilots. In simulation, we transmit an aggregated 40 Gb/s optical OFDM signal from two ONUs. The transmission performance with DCS is slightly better after 25 km transmission without relative transmission time delay. The fiber distance for different ONUs to RN are not same in general and there is relative transmission time delay between ONUs, which causes inter-carrier-interference (ICI) power increasing and degrades the transmission performance. The DCS can mitigate the ICI power and the DCS-OFDM-PON upstream transmission outperforms the conventional OFDM-PON. The CPE estimation is by using two pairs of complex conjugate subcarriers without redundancy. The power variation can be 9 dB in DCS-OFDM-PON, which is enough to tolerate several kilometers fiber length difference between the ONUs.
NASA Astrophysics Data System (ADS)
Fernández-Ruiz, Ramón; Friedrich K., E. Josue; Redrejo, M. J.
2018-02-01
The main goal of this work was to investigate, in a systematic way, the influence of the controlled modulation of the particle size distribution of a representative solid sample with respect to the more relevant analytical parameters of the Direct Solid Analysis (DSA) by Total-reflection X-Ray Fluorescence (TXRF) quantitative method. In particular, accuracy, uncertainty, linearity and detection limits were correlated with the main parameters of their size distributions for the following elements; Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb. In all cases strong correlations were finded. The main conclusion of this work can be resumed as follows; the modulation of particles shape to lower average sizes next to a minimization of the width of particle size distributions, produce a strong increment of accuracy, minimization of uncertainties and limit of detections for DSA-TXRF methodology. These achievements allow the future use of the DSA-TXRF analytical methodology for development of ISO norms and standardized protocols for the direct analysis of solids by mean of TXRF.
Differential pain modulation in patients with peripheral neuropathic pain and fibromyalgia.
Gormsen, Lise; Bach, Flemming W; Rosenberg, Raben; Jensen, Troels S
2017-12-29
Background The definition of neuropathic pain has recently been changed by the International Association for the Study of Pain. This means that conditions such as fibromyalgia cannot, as sometimes discussed, be included in the neuropathic pain conditions. However, fibromyalgia and peripheral neuropathic pain share common clinical features such as spontaneous pain and hypersensitivity to external stimuli. Therefore, it is of interest to directly compare the conditions. Material and methods In this study we directly compared the pain modulation in neuropathic pain versus fibromyalgia by recording responses to a cold pressor test in 30 patients with peripheral neuropathic pain, 28 patients with fibromyalgia, and 26 pain-free age-and gender-matched healthy controls. Patients were asked to rate their spontaneous pain on a visual analog scale (VAS (0-100 mm) immediately before and immediately after the cold pressor test. Furthermore the duration (s) of extremity immersion in cold water was used as a measure of the pain tolerance threshold, and the perceived pain intensity at pain tolerance on the VAS was recorded on the extremity in the water after the cold pressor test. In addition, thermal (thermo tester) and mechanical stimuli (pressure algometer) were used to determine sensory detection, pain detection, and pain tolerance thresholds in different body parts. All sensory tests were done by the same examiner, in the same room, and with each subject in a supine position. The sequence of examinations was the following: (1) reaction time, (2) pressure thresholds, (3) thermal thresholds, and (4) cold pressor test. Reaction time was measured to ensure that psychomotoric inhibitions did not influence pain thresholds. Results Pain modulation induced by a cold pressor test reduced spontaneous pain by 40% on average in neuropathic pain patients, but increased spontaneous pain by 2.6% in fibromyalgia patients. This difference between fibromyalgia and neuropathic pain patients was significant (P < 0.002). Fibromyalgia patients withdrew their extremity from the cold water significantly earlier than neuropathic pain patients and healthy controls; however, they had a higher perceived pain intensity on the VAS than neuropathic pain patients and control subjects. Furthermore, neuropathic pain patients had a localized hypersensitivity to mechanical and thermal stimuli in the affected area of the body. In contrast, fibromyalgia patients displayed a general hypersensitivity to mechanical and thermal stimuli when the stimuli were rated by the VAS, and hypersensitivity to some of the sensory stimuli. Conclusions These findings are the first to suggest that a conditioning stimulus evoked by a cold pressor test reduced spontaneous ongoing pain in patients with peripheral neuropathic pain, but not in fibromyalgia patients when directly compared. The current study supports the notion that fibromyalgia and neuropathic pain are distinct pain conditions with separate sensory patterns and dysfunctions in pain-modulating networks. Fibromyalgia should therefore not, as sometimes discussed, be included in NP conditions. Implications On the basis of the findings, it is of interest to speculate on the underlying mechanisms. The results are consistent with the idea that peripheral neuropathic pain is primarily driven from damaged nerve endings in the periphery, while chronic fibromyalgia pain may be a central disorder with increased activity in pain-facilitating systems.
Active terahertz metamaterials based on liquid-crystal induced transparency and absorption
NASA Astrophysics Data System (ADS)
Yang, Lei; Fan, Fei; Chen, Meng; Zhang, Xuanzhou; Chang, Sheng-Jiang
2017-01-01
An active terahertz (THz) liquid crystal (LC) metamaterial has been experimentally investigated for THz wave modulation. Some interesting phenomena of resonance shifting, tunable electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) have been observed in the same device structure under different DC bias directions and different incident wave polarization directions by the THz time domain spectroscopy. Further theoretical studies indicate that these effects originate from interference and coupling between bright and dark mode components of elliptically polarized modes in the LC metamaterial, which are induced by the optical activity of LC alignment controllable by the electric field as well as the changes of LC refractive index. The LC layer is indeed a phase retarder and polarization converter that is controlled by the DC bias. The THz modulation depth of the analogs of EIT and EIA effects are 18.3 dB and 10.5 dB in their frequency band, respectively. Electrical control, large modulation depth and feasible integration of this LC device make it an ideal candidate for THz tunable filter, intensity modulator and spatial light modulator.
Kim, Chulhong; Zemp, Roger J; Wang, Lihong V
2006-08-15
Biophotonic imaging with ultrasound-modulated optical tomography (UOT) promises ultrasonically resolved imaging in biological tissues. A key challenge in this imaging technique is a low signal-to-noise ratio (SNR). We show significant UOT signal enhancement by using intense time-gated acoustic bursts. A CCD camera captured the speckle pattern from a laser-illuminated tissue phantom. Differences in speckle contrast were observed when ultrasonic bursts were applied, compared with when no ultrasound was applied. When CCD triggering was synchronized with burst initiation, acoustic-radiation-force-induced displacements were detected. To avoid mechanical contrast in UOT images, the CCD camera acquisition was delayed several milliseconds until transient effects of acoustic radiation force attenuated to a satisfactory level. The SNR of our system was sufficiently high to provide an image pixel per acoustic burst without signal averaging. Because of the substantially improved SNR, the use of intense acoustic bursts is a promising signal enhancement strategy for UOT.
Lee, Shao-Hsuan; Fang, Tuan-Jen; Yu, Jen-Fang; Lee, Guo-She
2017-09-01
Auditory feedback can make reflexive responses on sustained vocalizations. Among them, the middle-frequency power of F0 (MFP) may provide a sensitive index to access the subtle changes in different auditory feedback conditions. Phonatory airflow temperature was obtained from 20 healthy adults at two vocal intensity ranges under four auditory feedback conditions: (1) natural auditory feedback (NO); (2) binaural speech noise masking (SN); (3) bone-conducted feedback of self-generated voice (BAF); and (4) SN and BAF simultaneously. The modulations of F0 in low-frequency (0.2 Hz-3 Hz), middle-frequency (3 Hz-8 Hz), and high-frequency (8 Hz-25 Hz) bands were acquired using power spectral analysis of F0. Acoustic and aerodynamic analyses were used to acquire vocal intensity, maximum phonation time (MPT), phonatory airflow, and MFP-based vocal efficiency (MBVE). SN and high vocal intensity decreased MFP and raised MBVE and MPT significantly. BAF showed no effect on MFP but significantly lowered MBVE. Moreover, BAF significantly increased the perception of voice feedback and the sensation of vocal effort. Altered auditory feedback significantly changed the middle-frequency modulations of F0. MFP and MBVE could well detect these subtle responses of audio-vocal feedback. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Modulation and coding for throughput-efficient optical free-space links
NASA Technical Reports Server (NTRS)
Georghiades, Costas N.
1993-01-01
Optical direct-detection systems are currently being considered for some high-speed inter-satellite links, where data-rates of a few hundred megabits per second are evisioned under power and pulsewidth constraints. In this paper we investigate the capacity, cutoff-rate and error-probability performance of uncoded and trellis-coded systems for various modulation schemes and under various throughput and power constraints. Modulation schemes considered are on-off keying (OOK), pulse-position modulation (PPM), overlapping PPM (OPPM) and multi-pulse (combinatorial) PPM (MPPM).
Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas
2017-03-15
We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.
Respiration rate detection based on intensity modulation using plastic optical fiber
NASA Astrophysics Data System (ADS)
Anwar, Zawawi Mohd; Ziran Nurul Sufia, Nor; Hadi, Manap
2017-11-01
This paper presents the implementation of respiration rate measurement via a simple intensity-based optical fiber sensor using optical fiber technology. The breathing rate is measured based on the light intensity variation due to the longitudinal gap changes between two separated fibers. In order to monitor the breathing rate continuously, the output from the photodetector conditioning circuit is connected to a low-cost Arduino kit. At the sensing point, two optical fiber cables are positioned in series with a small gap and fitted inside a transparent plastic tube. To ensure smooth movement of the fiber during inhale and exhale processes as well as to maintain the gap of the fiber during idle condition, the fiber is attached firmly to a stretchable bandage. This study shows that this simple fiber arrangement can be applied to detect respiration activity which might be critical for patient monitoring.
Temporal variations of cosmic rays over a variety of time scales
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Marti, K.
1986-01-01
The variation of the intensity of Galactic cosmic rays in the inner solar system over a wide variety of time scales is discussed, and the generally accepted physical model which can account quantitatively for these modulations is reviewed. The use of direct measurements and of nuclear reactions to study the temporal intensity variations is summarized. It is demonstrated that all of the observed variations could easily be the result of solar variations on long and short time scales.
NASA Astrophysics Data System (ADS)
Hashimoto, Y.; Yamamoto, N.; Kato, T.; Oshima, D.; Iwata, S.
2018-03-01
Giant magneto-resistance (GMR) spin-valve films with an FeSiB/CoFeB free layer were fabricated to detect applied strain in a GMR device. The magnetostriction constant of FeSiB was experimentally determined to have 32 ppm, which was one order of magnitude larger than that of CoFeB. In order to detect the strain sensitively and robustly against magnetic field fluctuation, the magnetic field modulation technique was applied to the GMR device. It was confirmed that the output voltage of the GMR device depends on the strain, and the gauge factor K = 46 was obtained by adjusting the applied DC field intensity and direction. We carried out the simulation based on a macro-spin model assuming uniaxial anisotropy, interlayer coupling between the free and pin layers, strain-induced anisotropy, and Zeeman energy, and succeeded in reproducing the experimental results. The simulation predicts that improving the magnetic properties of GMR films, especially reducing interlayer coupling, will be effective for increasing the output, i.e., the gauge factor, of the GMR strain sensors.
Artificial Aurora Generated by HAARP (Invited)
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Kendall, E. A.
2013-12-01
We present results from the ionospheric heating experiment conducted on March 12, 2013 at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. During the experiment HAARP transmitted X-mode 4.57 MHz waves modulated with the frequency 0.9 mHz and pointed in the direction of the magnetic zenith. The beam was focused to ~20 km spot at the altitude 100 km. The heating produces two effects: First, it generates magnetic field-aligned currents producing D and H components of the magnetic field with frequency 0.9 mHz detected by fluxgate magnetometer in Gakona. Second, the heating produced bright luminous structures in the heated region detected with the SRI telescope in 427.8 nm, 557.7 nm, 630.0 nm wavelengths. We emphasize, that for the best of our knowledge, this is the first experiment where the heating of the ionosphere with X-mode produces luminous structures in the ionosphere. We classify this luminosity as an 'artificial aurora', because it correlate with the intensity of the magnetic field-aligned currents, and such correlation is constantly seen in the natural aurora.
Techniques to Improve Ultrasound-Switchable Fluorescence Imaging
NASA Astrophysics Data System (ADS)
Kandukuri, Jayanth
Novel approaches to the improvement of ultrasound-switchable fluorescence (USF) imaging--a relatively new imaging modality that combines ultrasound and optical imaging techniques--have been proposed for early cancer detection. In USF, a high-intensity focused ultrasound (HIFU) beam is used to induce temperature rise within its acoustic focal region due to which a thermo-sensitive USF contrast agent undergoes a switch in its state by increasing the output of fluorescence photons. By using an increase in fluorescence, one can isolate and quantify the fluorescence properties within the ultrasonic focal area. Therefore, USF is able to provide fluorescence contrast while maintaining ultrasound resolution in tissue. The major challenge of the conventional USF technique is its low axial resolution and its sensitivity (i.e. its signal-to-noise ratio (SNR)). This work focuses on investigating and developing a novel USF system design that can improve the resolution and SNR of USF imaging for biological applications. This work can be divided into two major parts: characterizing the performance of a high-intensity focused ultrasound transducer; and improving the axial resolution and sensitivity of the USF technique. Preliminary investigation was conducted by using an IR camera setup to detect temperature variation and thereby study the performance of the high-intensity focused ultrasound transducer to quantify different parameters of ultrasound-induced temperature focal size (UTFS). Investigations are conducted for the purpose of high-resolution imaging with an emphasis on HIFU-induced thermal focus size, short duration of HIFU-induced temperature increase (to avoid thermal diffusion or conduction), and control of HIFU-induced temperature increase within a few degrees Celsius. Next, the focus was shifted to improving the sensitivity of the ultrasound-switchable fluorescence-imaging technique. In this study, the USF signal is encoded with the modulation frequency of the ultrasound by modulating the induced temperature. Later, two approaches were adopted to modify the USF design to improve the resolution of the conventional USF imaging technique. The first approach aims to improve the axial resolution of conventional USF technique, which involves changing the USF system to adopt a dual-HIFU transducer arrangement (in which the transducers are 90 degree with respect to each other) for use as the heating source. The overlapped region of the two crossed foci (OR-TCF) of the dual-HIFU transducer module is expected to have small thermal size along both lateral and axial directions; thus, it could improve the axial resolution of the USF imaging technique. The second approach aims to demonstrate the improvement of resolution via a single-element HIFU transducer with a high frequency (15 MHz). The high frequency of the ultrasound transducer would have smaller acoustic lateral and axial size and should therefore have smaller thermal size. Thus, both approaches should be able to reduce the focal region of heating and thereby improve the resolution of the USF imaging. Results show that the driving power and exposure time of the HIFU transducer significantly influence the ultrasound-induced temperature focal size (UTFS). Interestingly, a nonlinear acoustic effect was observed at certain variations of the ultrasound exposure power while satisfying the thermal confinement within UTFS. This has been shown to reduce UTFS beyond the acoustic diffraction limit, while the ultrasound-induced thermal energy, which is confined within the focal volume, can induce a desired peak-temperature increase of a few degrees. On other hand, after encoding the HIFU exposure and therefore the detected USF signal with a modulation frequency, the SNR (sensitivity) and full width at half maximum (FWHM) along the lateral direction of the USF image was calculated to be 114 and 0.95 mm for a micro-tube with an inner diameter of 0.31 mm (ID), respectively. In comparison, they are 95 and 1.1 mm when using a non-modulated conventional USF imaging technique. In the case of improving the axial resolution of USF imaging for a similar target size, the dual-HIFU USF design was able to achieve 1.07 and 1.5 mm along lateral (x ) and axial (z) directions, respectively. Adopting the second approach of using single 15 MHz HIFU transducer for USF imaging, the axial resolution was calculated to be 0.67+/-0.02 mm and 1.71+/-0.24 mm along lateral (x) and axial (z) directions, respectively. Thus, high-resolution ultrasound-switchable fluorescence with good sensitivity can be designed for biomedical applications.
Does Gaze Direction Modulate Facial Expression Processing in Children with Autism Spectrum Disorder?
ERIC Educational Resources Information Center
Akechi, Hironori; Senju, Atsushi; Kikuchi, Yukiko; Tojo, Yoshikuni; Osanai, Hiroo; Hasegawa, Toshikazu
2009-01-01
Two experiments investigated whether children with autism spectrum disorder (ASD) integrate relevant communicative signals, such as gaze direction, when decoding a facial expression. In Experiment 1, typically developing children (9-14 years old; n = 14) were faster at detecting a facial expression accompanying a gaze direction with a congruent…
NASA Astrophysics Data System (ADS)
Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.
2018-03-01
Various magnetohydrodynamic (MHD) waves have recently been detected in the solar corona and investigated intensively in the context of coronal heating and coronal seismology. In this Letter, we report the first detection of short-period propagating fast sausage mode waves in a metric radio spectral fine structure observed with the Assembly of Metric-band Aperture Telescope and Real-time Analysis System. Analysis of Zebra patterns (ZPs) in a type-IV burst revealed a quasi-periodic modulation in the frequency separation between the adjacent stripes of the ZPs (Δf ). The observed quasi-periodic modulation had a period of 1–2 s and exhibited a characteristic negative frequency drift with a rate of 3–8 MHz s‑1. Based on the double plasma resonance model, the most accepted generation model of ZPs, the observed quasi-periodic modulation of the ZP can be interpreted in terms of fast sausage mode waves propagating upward at phase speeds of 3000–8000 km s‑1. These results provide us with new insights for probing the fine structure of coronal loops.
Kim, Se-Um; Lee, Sin-Hyung; Lee, In-Ho; Lee, Bo-Yeon; Na, Jun-Hee; Lee, Sin-Doo
2018-05-14
A new concept of intensity-tunable structural coloration is proposed on the basis of a helical photonic crystal (HPC). The HPCs are constructed from a mixture of chiral reactive mesogens by spin-coating, followed by the photo-polymerization. A liquid crystal (LC) layer, being homogeneously aligned, is prepared on the HPCs to serve as a tunable waveplate. The electrical modulation of the phase retardation through the LC layer directly leads to the intensity-tunable Bragg reflection from the HPCs upon the incidence of the polarized light. The bandwidths of the structural colors are found to be well preserved regardless of the applied voltage. A prototype of a full color reflective-type display, incorporated with three primary color units, is demonstrated. Our concept of decoupling two mutually independent functions, the intensity modulation by the tunable waveplate and the color reflection by the HPCs provides a simple and powerful way of producing a full color reflective-type display which possesses high color purity, high optical efficiency, the cycling durability, and the design flexibility.
NASA Astrophysics Data System (ADS)
Yang, Z. J.; Scheinfein, M. R.
1993-12-01
Surface and ultrathin-film magnetocrystalline anisotropy in epitaxial fcc Fe thin films grown on room-temperature Cu(100) single crystals has been investigated, in situ, by the combined surface magneto-optical Kerr effects (SMOKE). In polar, longitudinal, and transverse Kerr effects, the direction of the applied magnetic field must be distinguished from the direction of magnetization during the switching process. For arbitrary orientations of the magnetization and field axis relative to the optical scattering plane, any of the three Kerr effects may contribute to the detected signal. A general expression for the normalized light intensity sensed by a photodiode detector, involving all three combined Kerr effects, is obtained both in the ultrathin-film limit and for bulk, at general oblique incidence angles and with different orientations of the polarizer, modulator, and analyzer. This expression is used to interpret the results of fcc Fe/Cu(100) SMOKE measurements. For films grown at room temperature, polar and longitudinal Kerr-effect magnetization loops show that the easy axis of magnetization rotates from the (canted) out-of-plane direction to the in-plane direction at a thickness of about 4.7 monolayers. Transverse Kerr-effect measurements indicate that the in-plane easy axes are biaxial.
Lu, Ji-Yun; Liang, Da-Kai; Zhang, Xiao-Li; Zhu, Zhu
2009-12-01
Spectrum of fiber bragg grating (FBG) sensor modulated by double long period grating (LPFG) is proposed in the paper. Double LPFG consists of two LPFGS whose center wavelengths are the same and reflection spectrum of FBG sensor is located in linear range of double LPFG transmission spectrum. Based on spectral analysis of FBG and double LPFG, reflection spectrum of FBG modulated by double LPFG is obtained and studied by use of band-hider filter characteristics for double LPFG. An FBG sensor is attached on the surface of thin steel beam, which is strained by bending, and the center wavelength of FBG sensor will shift. The spectral peak of FBG sensor modulated by double LPFG is changed correspondingly, and the spectral change will lead to variation in exit light intensity from double LPFG. Experiment demonstrates that the relation of filtering light intensity from double LPFG monitored by optical power meter to center wavelength change of FBG sensor is linear and the minimum strain of material (steel beam) detected by the modulation and demodulation system is 1.05 microepsilon. This solution is used in impact monitoring of optical fibre smart structure, and FBG sensor is applied for impulse response signal monitoring induced by low-velocity impact, when impact pendulum is loaded to carbon fiber-reinforced plastics (CFP). The acquired impact response signal and fast Fourier transform of the signal detected by FBG sensor agree with the measurement results of eddy current displacement meter attached to the FBG sensor. From the results, the present method using FBG sensor is found to be effective for monitoring the impact. The research provides a practical reference in dynamic monitoring of optical fiber smart structure field.
Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.
2018-04-01
Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.
Silicon nitride directional coupler interferometer for surface sensing
NASA Astrophysics Data System (ADS)
Okubo, Kyohei; Uchiyamada, Ken; Asakawa, Kiyoshi; Suzuki, Hiroaki
2017-01-01
A silicon nitride directional coupler (DC) used to create a biosensing device is presented. The DC detects changes in the refractive index of the cladding (nclad) as changes in the relative output intensity. The DC length (L), nclad-dependent sensitivities of the DC, and preferred dimensions of the single-mode DC waveguides are obtained through numerical simulations. The performance of the DC is evaluated through end-fire coupling measurements. The intensities measured after varying the nclad using air, water, and glycerol solutions agree well with the fitting for a wide range of L values between 60 and 600 μm, i.e., corresponding to 6 to 60 times the coupling length. The bulk refractive index sensitivity was investigated using glycerol solutions of different concentrations and was found to be 18.9 optical intensity units per refractive index unit (OIU/RIU). Biotin/streptavidin bindings were detected with a sensitivity of 60 OIU/RIU and a detection limit of 0.13 μM, suggesting the feasibility of the DC for immunosensing.
WGM-Based Photonic Local Oscillators and Modulators
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Maleki, Lute; Iltchenko, Vladimir; Savchenkov, Anatoliy
2007-01-01
Photonic local oscillators and modulators that include whispering-gallery mode (WGM) optical resonators have been proposed as power-efficient devices for generating and detecting radiation at frequencies of the order of a terahertz. These devices are intended especially to satisfy anticipated needs for receivers capable of detecting lowpower, narrow-band terahertz signals to be used for sensing substances of interest in scientific and military applications. At present, available terahertz-signal detectors are power-inefficient and do not afford the spectral and amplitude resolution needed for detecting such signals. The proposed devices would not be designed according to the conventional approach of direct detection of terahertz radiation. Instead, terahertz radiation would first be up-converted into the optical domain, wherein signals could be processed efficiently by photonic means and detected by optical photodetectors, which are more efficient than are photodetectors used in conventional direct detection of terahertz radiation. The photonic devices used to effect the up-conversion would include a tunable optical local oscillator and a novel electro-optical modulator. A local oscillator according to the proposal would be a WGM-based modelocked laser operating at a desired pulserepetition rate of the order of a terahertz. The oscillator would include a terahertz optical filter based on a WGM microresonator, a fiber-optic delay line, an optical amplifier (which could be either a semiconductor optical amplifier or an erbium-doped optical fiberamplifier), and a WGM Ka-band modulator. The terahertz repetition rate would be obtained through harmonic mode locking: for example, by modulating the light at a frequency of 33 GHz and locking each 33d optical mode, one would create a 1.089-THz pulse train. The high resonance quality factors (Q values) of WGM optical resonators should make it possible to decrease signal-generation threshold power levels significantly below those of other optical-signal-generation devices.
Generation and transmission of DPSK signals using a directly modulated passive feedback laser.
Karar, Abdullah S; Gao, Ying; Zhong, Kang Ping; Ke, Jian Hong; Cartledge, John C
2012-12-10
The generation of differential-phase-shift keying (DPSK) signals is demonstrated using a directly modulated passive feedback laser at 10.709-Gb/s, 14-Gb/s and 16-Gb/s. The quality of the DPSK signals is assessed using both noncoherent detection for a bit rate of 10.709-Gb/s and coherent detection with digital signal processing involving a look-up table pattern-dependent distortion compensator. Transmission over a passive link consisting of 100 km of single mode fiber at a bit rate of 10.709-Gb/s is achieved with a received optical power of -45 dBm at a bit-error-ratio of 3.8 × 10(-3) and a 49 dB loss margin.
Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets
NASA Astrophysics Data System (ADS)
Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan
2018-05-01
Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang
2018-06-01
In this paper, thermal-wave radar imaging (TWRI) is introduced to detect debonding defects in SiC-coated Ni-based superalloy plates. Linear frequency modulation signal (chirp) is used as the excitation signal which has a large time-bandwidth product. Artificial debonding defects in SiC coating are excited by the laser beam with the light intensity modulated by a chirp signal. Cross-correlation algorithm and chirp lock-in algorithm are introduced to extract the thermal-wave signal characteristic. The comparative experiment between TWRI reflection mode and transmission mode was carried out. Experiments are conducted to investigate the influence of laser power density, chirp period, and excitation frequency. Experimental results illustrate that chirp lock-in phase has a better detection capability than other characteristic parameters. TWRI can effectively detect simulated debonding defects of SiC-coated Ni-based superalloy plates.
Designing optical-fiber modulators by using magnetic fluids.
Horng, H E; Chieh, J J; Chao, Y H; Yang, S Y; Hong, Chin-Yih; Yang, H C
2005-03-01
To reduce interface loss between optical fibers and devices in telecommunication systems, the development of an optical-fiber-based device that can be fused directly with fibers is important. A novel optical modulator consisting of a bare fiber core surrounded by magnetic fluids instead of by a SiO2 cladding layer is proposed. Applying a magnetic field raises the refractive index of the magnetic fluid. Thus we can control the occurrence of total reflection at the interface between the fiber core and the magnetic fluid when light propagates along the fiber. As a result, the intensity of the outgoing light is modulated by variation in field strength. Details of the design, fabrication, and working properties of such a modulator are presented.
NASA Astrophysics Data System (ADS)
Zeng, Xi; Mizuno, Yosuke; Nakamura, Kentaro
2017-12-01
The sound intensity vector provides useful information on the state of an ultrasonic field in water, since sound intensity is a vector quantity expressing the direction and magnitude of the sound field. In the previous studies on sound intensity measurement in water, conventional piezoelectric sensors and metal cables were used, and the transmission distance was limited. A new configuration of a sound intensity probe suitable for ultrasonic measurement in water is proposed and constructed for trial in this study. The probe consists of light-emitting diodes and piezoelectric elements, and the output signals are transmitted through fiber optic cables as intensity-modulated light. Sound intensity measurements of a 26 kHz ultrasonic field in water are demonstrated. The difference in the intensity vector state between the water tank with and without sound-absorbing material on its walls was successfully observed.
Damage Precursor Detection in Polymer Matrix Composites Using Novel Smart Composite Particles
2016-09-20
during the deformation test. Good agreement was observed with experimental results : the intensity of fluorescence was found to be directly proportional to...agreement is observed with experimental results , for which the intensity of fluorescence was found to be directly proportional to the deformation. Epoxy...the estimated Tgs of both neat epoxy and the smart polymer were compared with the experimental results obtained by DSC. Unit cell preparation
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.
Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H
2016-11-22
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface
Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.
2016-01-01
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053
Zhou, Wen; Li, Xinying; Yu, Jianjun
2017-10-30
We propose QPSK millimeter-wave (mm-wave) vector signal generation for D-band based on balanced precoding-assisted photonic frequency quadrupling technology employing a single intensity modulator without an optical filter. The intensity MZM is driven by a balanced pre-coding 37-GHz QPSK RF signal. The modulated optical subcarriers are directly sent into the single ended photodiode to generate 148-GHz QPSK vector signal. We experimentally demonstrate 1-Gbaud 148-GHz QPSK mm-wave vector signal generation, and investigate the bit-error-rate (BER) performance of the vector signals at 148-GHz. The experimental results show that the BER value can be achieved as low as 1.448 × 10 -3 when the optical power into photodiode is 8.8dBm. To the best of our knowledge, it is the first time to realize the frequency-quadrupling vector mm-wave signal generation at D-band based on only one MZM without an optical filter.
Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.
Millman, Rebecca E; Mattys, Sven L; Gouws, André D; Prendergast, Garreth
2017-08-09
Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-induced changes in the coding of amplitude-modulated sounds may have a detrimental effect on the ability of SNHL listeners to understand speech in the presence of modulated background noise. To date, direct evidence for a link between magnified envelope coding and deficits in speech identification in modulated noise has been absent. Here, magnetoencephalography was used to quantify the effects of SNHL on phase locking to the temporal envelope of modulated noise (envelope coding) in human auditory cortex. Our results show that SNHL enhances the amplitude of envelope coding in posteromedial auditory cortex, whereas it enhances the fidelity of envelope coding in posteromedial and posterolateral auditory cortex. This dissociation was more evident in the right hemisphere, demonstrating functional lateralization in enhanced envelope coding in SNHL listeners. However, enhanced envelope coding was not perceptually beneficial. Our results also show that both hearing thresholds and, to a lesser extent, magnified cortical envelope coding in left posteromedial auditory cortex predict speech identification in modulated background noise. We propose a framework in which magnified envelope coding in posteromedial auditory cortex disrupts the segregation of speech from background noise, leading to deficits in speech perception in modulated background noise. SIGNIFICANCE STATEMENT People with hearing loss struggle to follow conversations in noisy environments. Background noise that fluctuates in intensity over time poses a particular challenge. Using magnetoencephalography, we demonstrate anatomically distinct cortical representations of modulated noise in normal-hearing and hearing-impaired listeners. This work provides the first link among hearing thresholds, the amplitude of cortical representations of modulated sounds, and the ability to understand speech in modulated background noise. In light of previous work, we propose that magnified cortical representations of modulated sounds disrupt the separation of speech from modulated background noise in auditory cortex. Copyright © 2017 Millman et al.
300 Gb/s IM/DD based SDM-WDM-PON with laserless ONUs.
Bao, Fangdi; Morioka, Toshio; Oxenløwe, Leif K; Hu, Hao
2018-04-02
A low-cost, high-speed SDM-WDM-PON architecture is proposed by using a multi-core fiber (MCF) and intensity modulation/directly detection (IM/DD). One of the MCF cores is used for sending laser sources from optical line terminal (OLT) to optical network unit (ONU), thus facilitating laserless and colorless ONUs, and providing ease of network management and maintenance. In addition, the wavelengths of the ONUs are controlled on the OLT side, which also enables flexible optical networks. Thanks to the low inter-core crosstalk of a MCF, downstream (DS) and upstream (US) signals are transmitted independently in different cores of the MCF, not only increasing the aggregated capacity but also avoiding the Rayleigh backscattering noise. Finally, a proof-of-principle experiment is performed by using a 7-core fiber, achieving 300 /120 Gb/s aggregated capacity for DS and US (3 × cores, 4 × wavelengths, 25/10 Gb/s per wavelength), respectively.
NASA Astrophysics Data System (ADS)
Kim, Sung-Man; Kwon, Ki-Keun
2017-07-01
The relatively unsatisfactory performance of optical wireless communication (OWC) with respect to WiFi and millimeter-wave communications has formed a key issue preventing its commercialization. We experimentally demonstrate an OWC technology using a combination of positive real-valued orthogonal frequency-division multiplexing (OFDM) and optical beamforming (OB). Due to the intensity-modulation and direct-detection aspects of OWC systems, a positive real-valued OFDM signal can be suitably utilized to maximize the OWC data rate. Further, the OB technique, which can focus laser light on a desired target, can be utilized to increase the OWC data rate and transmission distance. Our experimental results show that the received optical signal power and electrical signal increase by up to 42 and 25 dB, respectively. Further, the data rate increases by a factor of 200 with OB over the conventional approach.
NASA Astrophysics Data System (ADS)
Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook
2018-05-01
A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.
Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian
2016-06-27
Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.
NASA Astrophysics Data System (ADS)
Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu
2014-02-01
We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.
Aida, Kazuo; Sugie, Toshihiko
2011-12-12
We propose a method of testing transmission fiber lines and distributed amplifiers. Multipath interference (MPI) is detected as a beat spectrum between a multipath signal and a direct signal using a synthesized chirped test signal with lightwave frequencies of f(1) and f(2) periodically emitted from a distributed feedback laser diode (DFB-LD). This chirped test pulse is generated using a directly modulated DFB-LD with a drive signal calculated using a digital signal processing technique (DSP). A receiver consisting of a photodiode and an electrical spectrum analyzer (ESA) detects a baseband power spectrum peak appearing at the frequency of the test signal frequency deviation (f(1)-f(2)) as a beat spectrum of self-heterodyne detection. Multipath interference is converted from the spectrum peak power. This method improved the minimum detectable MPI to as low as -78 dB. We discuss the detailed design and performance of the proposed test method, including a DFB-LD drive signal calculation algorithm with DSP for synthesis of the chirped test signal and experiments on single-mode fibers with discrete reflections. © 2011 Optical Society of America
Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.
2012-01-01
Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421
Coherent Detection of High-Rate Optical PPM Signals
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor; Fernandez, Michela Munoz
2006-01-01
A method of coherent detection of high-rate pulse-position modulation (PPM) on a received laser beam has been conceived as a means of reducing the deleterious effects of noise and atmospheric turbulence in free-space optical communication using focal-plane detector array technologies. In comparison with a receiver based on direct detection of the intensity modulation of a PPM signal, a receiver based on the present method of coherent detection performs well at much higher background levels. In principle, the coherent-detection receiver can exhibit quantum-limited performance despite atmospheric turbulence. The key components of such a receiver include standard receiver optics, a laser that serves as a local oscillator, a focal-plane array of photodetectors, and a signal-processing and data-acquisition assembly needed to sample the focal-plane fields and reconstruct the pulsed signal prior to detection. The received PPM-modulated laser beam and the local-oscillator beam are focused onto the photodetector array, where they are mixed in the detection process. The two lasers are of the same or nearly the same frequency. If the two lasers are of different frequencies, then the coherent detection process is characterized as heterodyne and, using traditional heterodyne-detection terminology, the difference between the two laser frequencies is denoted the intermediate frequency (IF). If the two laser beams are of the same frequency and remain aligned in phase, then the coherent detection process is characterized as homodyne (essentially, heterodyne detection at zero IF). As a result of the inherent squaring operation of each photodetector, the output current includes an IF component that contains the signal modulation. The amplitude of the IF component is proportional to the product of the local-oscillator signal amplitude and the PPM signal amplitude. Hence, by using a sufficiently strong local-oscillator signal, one can make the PPM-modulated IF signal strong enough to overcome thermal noise in the receiver circuits: this is what makes it possible to achieve near-quantum-limited detection in the presence of strong background. Following quantum-limited coherent detection, the outputs of the individual photodetectors are automatically aligned in phase by use of one or more adaptive array compensation algorithms [e.g., the least-mean-square (LMS) algorithm]. Then the outputs are combined and the resulting signal is processed to extract the high-rate information, as though the PPM signal were received by a single photodetector. In a continuing series of experiments to test this method (see Fig. 1), the local oscillator has a wavelength of 1,064 nm, and another laser is used as a signal transmitter at a slightly different wavelength to establish an IF of about 6 MHz. There are 16 photodetectors in a 4 4 focal-plane array; the detector outputs are digitized at a sampling rate of 25 MHz, and the signals in digital form are combined by use of the LMS algorithm. Convergence of the adaptive combining algorithm in the presence of simulated atmospheric turbulence for optical PPM signals has already been demonstrated in the laboratory; the combined output is shown in Fig. 2(a), and Fig. 2(b) shows the behavior of the phase of the combining weights as a function of time (or samples). We observe that the phase of the weights has a sawtooth shape due to the continuously changing phase in the down-converted output, which is not exactly at zero frequency. Detailed performance analysis of this coherent free-space optical communication system in the presence of simulated atmospheric turbulence is currently under way.
NASA Astrophysics Data System (ADS)
Johnson, Stanley
An increasing adoption of digital signal processing (DSP) in optical fiber telecommunication has brought to the fore several interesting DSP enabled modulation formats. One such format is orthogonal frequency division multiplexing (OFDM), which has seen great success in wireless and wired RF applications, and is being actively investigated by several research groups for use in optical fiber telecom. In this dissertation, I present three implementations of OFDM for elastic optical networking and distributed network control. The first is a field programmable gate array (FPGA) based real-time implementation of a version of OFDM conventionally known as intensity modulation and direct detection (IMDD) OFDM. I experimentally demonstrate the ability of this transmission system to dynamically adjust bandwidth and modulation format to meet networking constraints in an automated manner. To the best of my knowledge, this is the first real-time software defined networking (SDN) based control of an OFDM system. In the second OFDM implementation, I experimentally demonstrate a novel OFDM transmission scheme that supports both direct detection and coherent detection receivers simultaneously using the same OFDM transmitter. This interchangeable receiver solution enables a trade-off between bit rate and equipment cost in network deployment and upgrades. I show that the proposed transmission scheme can provide a receiver sensitivity improvement of up to 1.73 dB as compared to IMDD OFDM. I also present two novel polarization analyzer based detection schemes, and study their performance using experiment and simulation. In the third implementation, I present an OFDM pilot-tone based scheme for distributed network control. The first instance of an SDN-based OFDM elastic optical network with pilot-tone assisted distributed control is demonstrated. An improvement in spectral efficiency and a fast reconfiguration time of 30 ms have been achieved in this experiment. Finally, I experimentally demonstrate optical re-timing of a 10.7 Gb/s data stream utilizing the property of bound soliton pairs (or "soliton molecules") to relax to an equilibrium temporal separation after propagation through a nonlinear dispersion alternating fiber span. Pulses offset up to 16 ps from bit center are successfully re-timed. The optical re-timing scheme studied here is a good example of signal processing in the optical domain and such a technique can overcome the bandwidth bottleneck present in DSP. An enhanced version of this re-timing scheme is analyzed using numerical simulations.
Xu, Weifeng; Wolff, Brian S.
2014-01-01
Low-intensity alternating electric fields applied to the scalp are capable of modulating cortical activity and brain functions, but the underlying mechanisms remain largely unknown. Here, we report two distinct components of voltage-sensitive dye signals induced by low-intensity, alternating electric fields in rodent cortical slices: a “passive component,” which corresponds to membrane potential changes directly induced by the electric field; and an “active component,” which is a widespread depolarization that is dependent on excitatory synaptic transmission. The passive component is stationary, with amplitude and phase accurately reflecting the cortical cytoarchitecture. In contrast, the active component is initiated from a local “hot spot” of activity and spreads to a large population as a propagating wave with rich local dynamics. The propagation of the active component may play a role in modulating large-scale cortical activity by spreading a low level of excitation from a small initiation point to a vast neuronal population. PMID:25122710
NASA Astrophysics Data System (ADS)
London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi
2017-04-01
An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.
Joy, R M; Walby, W F; Stark, L G; Albertson, T E
1995-01-01
An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of lindane on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. This was done to establish simultaneous effects on a simple neural network and to develop procedures for more detailed analyses of the effects of lindane. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid. Electrodes were placed in the CA1 region to record extracellular population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural (SC/C) fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. Perfusion with lindane produced both time and dose dependent changes in a number of the responses measured. The most striking effect produced by lindane was the loss of GABAA-mediated recurrent collateral inhibition. This tended to occur rapidly, often before changes in EPSP or PS responses could be detected. With longer exposures to lindane, repetitive discharge of pyramidal cells developed resulting in multiple PSs to single stimuli. Lindane (50 microM) also completely reversed the effects of the injectable anesthetic, propofol, a compound known to potentiate GABAA-mediated inhibition via a direct action on the GABAA receptor-chloride channel complex. An analysis of input/output relationships at varying stimulus intensities showed that lindane increased EPSP and PS response amplitudes at any given stimulus intensity resulting in a leftward shift in the EPSP amplitude/stimulus intensity, PS amplitude/stimulus intensity and PS amplitude/EPSP amplitude relationships. This effect was most noticeable with low intensity stimuli and became progressively less so as stimulus intensities approached those yielding maximal responses. In addition lindane significantly increased paired pulse facilitation of EPSPs during paired stimulus presentation.
Extending the data rate of non-line-of-sight UV communication with polarization modulation
NASA Astrophysics Data System (ADS)
Yin, Hongwei; Jia, Honghui; Zhang, Hailiang; Wang, Xiaofeng; Chang, Shengli; Yang, Juncai
2012-10-01
With low radiation background of solar-blind UV and strong scattering of UV photons by atmospheric particles, UV communication can be made use of to set up a non-line-of-sight (NLOS) free-space optical communication link. Polarization modulation, besides the traditional intensity modulation, is presented to enhance the data rate of the UV communication system. The configuration and the working process of the dually modulated UV communication system with intensity modulation and polarization, the theoretical evaluation of polarization modulation, and a numerical of the scattering matrix are presented, with the conclusion that polarization modulation is achievable. By adding the polarizing devices and changing the coding procedures, the existing singly-modulated UV communication systems with intensity modulation are easily modified to be dually-modulated ones with polarization modulation and intensity modulation. Ideally speaking, the data rate of the dually-modulated UV communication system is the product of the data rate of the singly modulated system and the number of polarization modulation.
On the Direct Detection of Dark Matter Annihilation
Cherry, John Francis Jr.; Frandsen, Mads T.; Shoemaker, Ian M.
2015-06-12
We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, but rather, the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a nonstandard and/or even absent annual modulation, and the ability to probe DM masses as low as a ~ 10 MeV. Here, we use current LUX data to show that experimental sensitivity to thermal relic annihilation cross sections hasmore » already been reached in a class of models. Moreover, the compatibility of dark matter direct detection experiments can be compared directly in E min space without making assumptions about DM astrophysics, mass, or scattering form factors. Lastly, when DM has direct couplings to nuclei, the limit from annihilation to relativistic particlesin the Sun can be stronger than that of conventional nonrelativistic direct detection by more than 3 orders of magnitude for masses in a 2–7 GeV window.« less
Facial Expressions Modulate the Ontogenetic Trajectory of Gaze-Following among Monkeys
ERIC Educational Resources Information Center
Teufel, Christoph; Gutmann, Anke; Pirow, Ralph; Fischer, Julia
2010-01-01
Gaze-following, the tendency to direct one's attention to locations looked at by others, is a crucial aspect of social cognition in human and nonhuman primates. Whereas the development of gaze-following has been intensely studied in human infants, its early ontogeny in nonhuman primates has received little attention. Combining longitudinal and…
Koo, Ho; Kim, Min Sun; Han, Sang Who; Paulus, Walter; Nitche, Michael A; Kim, Yun-Hee; Kim, Hyoung-Ihl; Ko, Sung-Hwa; Shin, Yong-Il
2016-09-21
Transcranial direct current stimulation (tDCS) is increasingly seen as a useful tool for noninvasive cortical neuromodulation. A number of studies in humans have shown that when tDCS is applied to the motor cortex it can modulate cortical excitability. It is especially interesting to note that when applied with sufficient duration and intensity, tDCS can enable long-lasting neuroplastic effects. However, the mechanism by which tDCS exerts its effects on the cortex is not fully understood. We investigated the effects of anodal tDCS under urethane anesthesia on field potentials in in vivo rats. These were measured on the skull over the right motor cortex of rats immediately after stimulating the left corpus callosum. Evoked field potentials in the motor cortex were gradually increased for more than one hour after anodal tDCS. To induce these long-lasting effects, a sufficient duration of stimulation (20 minutes or more) was found to may be required rather than high stimulation intensity. We propose that anodal tDCS with a sufficient duration of stimulation may modulate transcallosal plasticity.
High-efficiency directional backlight design for an automotive display.
Chen, Bo-Tsuen; Pan, Jui-Wen
2018-06-01
We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.
Calibration methods and performance evaluation for pnCCDs in experiments with FEL radiation
NASA Astrophysics Data System (ADS)
Kimmel, N.; Andritschke, R.; Englert, L.; Epp, S.; Hartmann, A.; Hartmann, R.; Hauser, G.; Holl, P.; Ordavo, I.; Richter, R.; Strüder, L.; Ullrich, J.
2011-06-01
Measurement campaigns of the Max-Planck Advanced Study Group (ASG) in cooperation with the Center for Free Electron Laser Science (CFEL) at DESY-FLASH and SLAC-LCLS have established pnCCDs as universal photon imaging spectrometers in the energy range from 90 eV to 2 keV. In the CFEL-ASG multi purpose chamber (CAMP), pnCCD detector modules are an integral part of the design with the ability to detect photons at very small scattering angles. In order to fully exploit the spectroscopic and intensity imaging capability of pnCCDs, it is essentially important to translate the unprocessed raw data into units of photon counts for any given position on the detection area. We have studied the performance of pnCCDs in FEL experiments and laboratory test setups for the range of signal intensities from a few X-ray photons per signal frame to 100 or more photons with an energy of 2 keV per pixel. Based on these measurement results, we were able to characterize the response of pnCCDs over the experimentally relevant photon energy and intensity range. The obtained calibration results are directly relevant for the physics data analysis. The accumulated knowledge of the detector performance was implemented in guidelines for detector calibration methods which are suitable for the specific requirements in photon science experiments at Free Electron Lasers. We discuss the achievable accuracy of photon energy and photon count measurements before and after the application of calibration data. Charge spreading due to illumination of small spots with high photon rates is discussed with respect to the charge handling capacity of a pixel and the effect of the charge spreading process on the resulting signal patterns.
Method and apparatus for atomic imaging
Saldin, Dilano K.; de Andres Rodriquez, Pedro L.
1993-01-01
A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.
Takahashi, Mitsuru; Takeda, Kotaro; Otaka, Yohei; Osu, Rieko; Hanakawa, Takashi; Gouko, Manabu; Ito, Koji
2012-08-16
We developed an electroencephalogram-based brain computer interface system to modulate functional electrical stimulation (FES) to the affected tibialis anterior muscle in a stroke patient. The intensity of FES current increased in a stepwise manner when the event-related desynchronization (ERD) reflecting motor intent was continuously detected from the primary cortical motor area. We tested the feasibility of the ERD-modulated FES system in comparison with FES without ERD modulation. The stroke patient who presented with severe hemiparesis attempted to perform dorsiflexion of the paralyzed ankle during which FES was applied either with or without ERD modulation. After 20 minutes of training, the range of movement at the ankle joint and the electromyography amplitude of the affected tibialis anterior muscle were significantly increased following the ERD-modulated FES compared with the FES alone. The proposed rehabilitation technique using ERD-modulated FES for stroke patients was feasible. The system holds potentials to improve the limb function and to benefit stroke patients.
Phytoplankton-Fluorescence-Lifetime Vertical Profiler
NASA Technical Reports Server (NTRS)
Fernandez, Salvador M.; Guignon, Ernest F.; St. Louis, Ernest
2004-01-01
A battery-operated optoelectronic instrument is designed to be lowered into the ocean to measure the intensity and lifetime of fluorescence of chlorophyll A in marine phytoplankton as a function of depth from 0 to 300 m. Fluorescence lifetimes are especially useful as robust measures of photosynthetic productivity of phytoplankton and of physical and chemical mechanisms that affect photosynthesis. The knowledge of photosynthesis in phytoplankton gained by use of this and related instruments is expected to contribute to understanding of global processes that control the time-varying fluxes of carbon and associated biogenic elements in the ocean. The concentration of chlorophyll in the ocean presents a major detection challenge because in order to obtain accurate values of photosynthetic parameters, the intensity of light used to excite fluorescence must be kept very low so as not to disturb the photosynthetic system. Several innovations in fluorometric instrumentation were made in order to make it possible to reach the required low detection limit. These innovations include a highly efficient optical assembly with an integrated flow-through sample interface, and a high-gain, low-noise electronic detection subsystem. The instrument also incorporates means for self-calibration during operation, and electronic hardware and software for control, acquisition and analysis of data, and communications. The electronic circuitry is highly miniaturized and designed to minimize power demand. The instrument is housed in a package that can withstand the water pressure at the maximum depth of 300 m. A light-emitting diode excites fluorescence in the sample flow cell, which is placed at one focal point of an ellipsoidal reflector. A photomultiplier tube is placed at the other focal point. This optical arrangement enables highly efficient collection of fluorescence emitted over all polar directions. Fluorescence lifetime is measured indirectly, by use of a technique based on the same principle as the one described in "Fluorometer for Analysis of Photosynthesis in Phytoplankton" (SSC-00110), NASA Tech Briefs, Vol. 24, No. 1 (November 2000), page 79. The excitation is modulated at a frequency of 70 MHz, and the phase shift between the excitation light and the emitted fluorescence is measured by a detection method in which the 70 MHz signal is down-converted to a 400 Hz signal. The fluorescence lifetime can be computed from the known relationship among the fluorescence lifetime, phase shift, and modulation frequency
NASA Astrophysics Data System (ADS)
Hung, Min-Sheng; Ho, Chia-Chin; Chen, Chih-Pin
2016-08-01
This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin-avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.
Sabo, M; Malásková, M; Matejčík, S
2014-10-21
We present a new highly sensitive technique for the detection of explosives directly from the surface using laser desorption-corona discharge-ion mobility spectrometry (LD-CD-IMS). We have developed LD based on laser diode modules (LDM) and the technique was tested using three different LDM (445, 532 and 665 nm). The explosives were detected directly from the surface without any further preparation. We discuss the mechanism of the LD and the limitations of this technique such as desorption time, transport time and desorption area. After the evaluation of experimental data, we estimated the potential limits of detection of this method to be 0.6 pg for TNT, 2.8 pg for RDX and 8.4 pg for PETN.
Xu, Yifang; Collins, Leslie M
2005-06-01
This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.
NASA Astrophysics Data System (ADS)
Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander
2017-09-01
The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.
Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander
2017-09-01
The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.
NASA Astrophysics Data System (ADS)
Eiselt, Nicklas; Muench, Daniel; Dochhan, Annika; Griesser, Helmut; Eiselt, Michael; Olmos, Juan Jose Vegas; Monroy, Idelfonso Tafur; Elbers, Joerg-Peter
2018-05-01
For a future 5G Ethernet-based fronthaul architecture, 100G trunk lines of a transmission distance up to 10 km standard single mode fiber (SSMF) in combination with cheap grey optics to daisy chain cell site network interfaces are a promising cost- and power-efficient solution. For such a scenario, different intensity modulation and direct detect (IMDD) Formats at a data rate of 112 Gb/s, namely Nyquist four-level pulse amplitude modulation (PAM4), discrete multi-tone Transmission (DMT) and partial-response (PR) PAM4 are experimentally investigated, using a low-cost electro-absorption modulated laser (EML), a 25G driver and current state-of-the-art high Speed 84 GS/s CMOS digital-to-analog converter (DAC) and analog-to-digital converter (ADC) test chips. Each modulation Format is optimized independently for the desired scenario and their digital signal processing (DSP) requirements are investigated. The performance of Nyquist PAM4 and PR PAM4 depend very much on the efficiency of pre- and post-equalization. We show the necessity for at least 11 FFE-taps for pre-emphasis and up to 41 FFE coefficients at the receiver side. In addition, PR PAM4 requires an MLSE with four states to decode the signal back to a PAM4 signal. On the contrary, bit- and power-loading (BL, PL) is crucial for DMT and an FFT length of at least 512 is necessary. With optimized parameters, all Modulation formats result in a very similar performances, demonstrating a transmission distance of up to 10 km over SSMF with bit error rates (BERs) below a FEC threshold of 4.4E-3, allowing error free transmission.
Method for curing polymers using variable-frequency microwave heating
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.
NASA Astrophysics Data System (ADS)
Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo
2015-01-01
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.
SABRE: WIMP modulation detection in the northern and southern hemisphere
NASA Astrophysics Data System (ADS)
Froborg, F.;
2016-05-01
Measuring an annual modulation in a direct Dark Matter detection experiment is not only a proof of the existence of WIMPs but can also tell us more about their interaction with standard matter and maybe even their density and velocity in the halo. Such a modulation has been measured by the DAMA/LIBRA experiment in NaI(Tl) crystals. However, the interpretation as WIMP signal is controversial due to contradicting results by other experiments. The SABRE experiment aims to shed light on this controversy by detecting the annual modulation in the same target material as DAMA with twin detectors at LNGS in Italy and at SUPL in Australia. The two locations in the northern and southern hemisphere allow to verify if other seasonal effects or the site have an influence on the measurement, thus reducing systematic effects. This paper will give an overview on the experimental design, the current status of the proof of principle phase mainly devoted to high-purity crystal growing, and an outlook on future plans.
An autonomous sensor module based on a legacy CCTV camera
NASA Astrophysics Data System (ADS)
Kent, P. J.; Faulkner, D. A. A.; Marshall, G. F.
2016-10-01
A UK MoD funded programme into autonomous sensors arrays (SAPIENT) has been developing new, highly capable sensor modules together with a scalable modular architecture for control and communication. As part of this system there is a desire to also utilise existing legacy sensors. The paper reports upon the development of a SAPIENT-compliant sensor module using a legacy Close-Circuit Television (CCTV) pan-tilt-zoom (PTZ) camera. The PTZ camera sensor provides three modes of operation. In the first mode, the camera is automatically slewed to acquire imagery of a specified scene area, e.g. to provide "eyes-on" confirmation for a human operator or for forensic purposes. In the second mode, the camera is directed to monitor an area of interest, with zoom level automatically optimized for human detection at the appropriate range. Open source algorithms (using OpenCV) are used to automatically detect pedestrians; their real world positions are estimated and communicated back to the SAPIENT central fusion system. In the third mode of operation a "follow" mode is implemented where the camera maintains the detected person within the camera field-of-view without requiring an end-user to directly control the camera with a joystick.
Zhu, Mingyue; Zhang, Jing; Yi, Xingwen; Ying, Hao; Li, Xiang; Luo, Ming; Song, Yingxiong; Huang, Xiatao; Qiu, Kun
2018-03-19
We present the design and optimization of the optical single side-band (SSB) Nyquist four-level pulse amplitude modulation (PAM-4) transmission using dual-drive Mach-Zehnder modulator (DDMZM)modulation and direct detection (DD), aiming at the C-band cost-effective, high-speed and long-distance transmission. At the transmitter, the laser line width should be small to avoid the phase noise to amplitude noise conversion and equalization-enhanced phase noise due to the large chromatic dispersion (CD). The optical SSB signal is generated after optimizing the optical modulation index (OMI) and hence the minimum phase condition which is required by the Kramers-Kronig (KK) receiver can also be satisfied. At the receiver, a simple AC-coupled photodiode (PD) is used and a virtual carrier is added for the KK operation to alleviate the signal-to-signal beating interference (SSBI).A Volterra filter (VF) is cascaded for remaining nonlinearities mitigation. When the fiber nonlinearity becomes significant, we elect to use an optical band-pass filter with offset filtering. It can suppress the simulated Brillouin scattering and the conjugated distortion by filtering out the imaging frequency components. With our design and optimization, we achieve single-channel, single polarization 102.4-Gb/s Nyquist PAM-4 over 800-km standard single-mode fiber (SSMF).
Simulation of novel intensity modulated cascaded coated LPFG sensor based on PMTP
NASA Astrophysics Data System (ADS)
Feng, Wenbin; Gu, Zhengtian; Lin, Qiang; Sang, Jiangang
2017-12-01
This paper presents a novel intensity modulated cascaded long-period fiber grating (CLPFG) sensor which is cascaded by two same coated long-period fiber gratings (LPFGs) operating at the phase-matching turning point (PMTP). The sensor combines the high sensitivity of LPFG operating at PMTP and the narrow bandwidth of interference attenuation band of CLPFG, so a higher response to small change of the surrounding refractive index (SRI) can be obtained by intensity modulation. Based on the coupled-mode theory, the grating parameters of the PMTP of a middle odd order cladding mode of a single LPFG are calculated. Then this two same LPFGs are cascaded into a CLPFG, and the optical transmission spectrum of the CLPFG is calculated by transfer matrix method. A resonant wavelength of a special interference attenuation band whose intensity has the highest response to SRI, is selected form CLPFG’s spectrum, and setting the resonant wavelength as the operating wavelength of the sensor. Furthermore, the simulation results show that the resolution of SRI of this CLPFG is available to 1.97 × 10-9 by optimizing the film optical parameters, which is about three orders of magnitude higher than coated dual-peak LPFG and cascaded LPFG sensors. It is noteworthy that the sensor is also sensitive to the refractive index of coat, so that the sensor is expected to be applied to detections of gas, PH value, humidity and so on, in the future.
Howard, James D.
2017-01-01
Goal-directed behavior is sensitive to the current value of expected outcomes. This requires independent representations of specific rewards, which have been linked to orbitofrontal cortex (OFC) function. However, the mechanisms by which the human brain updates specific goals on the fly, and translates those updates into choices, have remained unknown. Here we implemented selective devaluation of appetizing food odors in combination with pattern-based neuroimaging and a decision-making task. We found that in a hungry state, participants chose to smell high-intensity versions of two value-matched food odor rewards. After eating a meal corresponding to one of the two odors, participants switched choices toward the low intensity of the sated odor but continued to choose the high intensity of the nonsated odor. This sensory-specific behavioral effect was mirrored by pattern-based changes in fMRI signal in lateral posterior OFC, where specific reward identity representations were altered after the meal for the sated food odor but retained for the nonsated counterpart. In addition, changes in functional connectivity between the OFC and general value coding in ventromedial prefrontal cortex (vmPFC) predicted individual differences in satiety-related choice behavior. These findings demonstrate how flexible representations of specific rewards in the OFC are updated by devaluation, and how functional connections to vmPFC reflect the current value of outcomes and guide goal-directed behavior. SIGNIFICANCE STATEMENT The orbitofrontal cortex (OFC) is critical for goal-directed behavior. A recent proposal is that OFC fulfills this function by representing a variety of state and task variables (“cognitive maps”), including a conjunction of expected reward identity and value. Here we tested how identity-specific representations of food odor reward are updated by satiety. We found that fMRI pattern-based signatures of reward identity in lateral posterior OFC were modulated after selective devaluation, and that connectivity between this region and general value coding ventromedial prefrontal cortex (vmPFC) predicted choice behavior. These results provide evidence for a mechanism by which devaluation modulates a cognitive map of expected reward in OFC and thereby alters general value signals in vmPFC to guide goal-directed behavior. PMID:28159906
A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection
Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan
2016-01-01
A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%. PMID:27941636
A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.
Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan
2016-12-08
A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.
Lightweight multi-carrier modulation for IoT
NASA Astrophysics Data System (ADS)
Hussein, Ahmed F.; Elgala, Hany
2018-01-01
Visible light communications (VLC) based on intensity-modulation with direct-detection (IM/DD) is a promising technology to offer broadband wireless Internet access. A VLC system based on the well-known multi-carrier orthogonal frequency-division multiplexing (OFDM) modulation has the potential to coexist with radio frequency (RF) technologies such as WiFi. Recently, the VLC technology is considered to enable wireless connectivity of resource limited devices, thus enabling the Internet-of-Things (IoT) vision. This paper presents a novel concept for modulating multiple light sources to realize a lightweight version of OFDM communication chain suitable for resource limited IoT devices. In such proposed system, different sinusoidal streams from an array of light sources are carrying the encoded OFDM time-domain samples, thus enabling the realization of the Fourier transformation in the optical domain. Accordingly, the fast Fourier transform (FFT) operation required for the demodulation at the receiver side is eliminated, which is crucial for resource limited IoT devices. In addition, the proposed concept, (1) offers the same spectral efficiency as the well-known asymmetrically clipped optical OFDM (ACO-OFDM), (2) reduces the bandwidth requirement from individual light sources, (3) reduces the peak-to-average power ratio (PAPR) of the signal formed and transmitted over the optical channel, and (4) supports simultaneous sensing applications using the different sinusoidal streams that are acting as unique beaconing signals. The proposed concept is numerically evaluated and compared with ACO-OFDM. The obtained results reveal a clear reduction in the PAPR with ˜ 5dB at a complementary cumulative distribution function (CCDF) of 10-2 and remarkable enhancement in bit-error performance.
Anti-dynamic-crosstalk method for single photon LIDAR detection
NASA Astrophysics Data System (ADS)
Zhang, Fan; Liu, Qiang; Gong, Mali; Fu, Xing
2017-11-01
With increasing number of vehicles equipped with light detection and ranging (LIDAR), crosstalk is identified as a critical and urgent issue in the range detection for active collision avoidance. Chaotic pulse position modulation (CPPM) applied in the transmitting pulse train has been shown to prevent crosstalk as well as range ambiguity. However, static and unified strategy on discrimination threshold and the number of accumulated pulse is not valid against crosstalk with varying number of sources and varying intensity of each source. This paper presents an adaptive algorithm to distinguish the target echo from crosstalk with dynamic and unknown level of intensity in the context of intelligent vehicles. New strategy is given based on receiver operating characteristics (ROC) curves that consider the detection requirements of the probability of detection and false alarm for the scenario with varying crosstalk. In the adaptive algorithm, the detected results are compared by the new strategy with both the number of accumulated pulses and the threshold being raised step by step, so that the target echo can be exactly identified from crosstalk with the dynamic and unknown level of intensity. The validity of the algorithm has been verified through the experiments with a single photon detector and the time correlated single photo counting (TCSPC) technique, demonstrating a marked drop in required shots for identifying the target compared with static and unified strategy
Glucose control of root growth direction in Arabidopsis thaliana.
Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya
2014-07-01
Directional growth of roots is a complex process that is modulated by various environmental signals. This work shows that presence of glucose (Glc) in the medium also extensively modulated seedling root growth direction. Glc modulation of root growth direction was dramatically enhanced by simultaneous brassinosteroid (BR) application. Glc enhanced BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) endocytosis from plasma membrane to early endosomes. Glc-induced root deviation was highly enhanced in a PP2A-defective mutant, roots curl in naphthyl phthalamic acid 1-1 (rcn1-1) suggesting that there is a role of phosphatase in Glc-induced root-growth deviation. RCN1, therefore, acted as a link between Glc and the BR-signalling pathway. Polar auxin transport worked further downstream to BR in controlling Glc-induced root deviation response. Glc also affected other root directional responses such as root waving and coiling leading to altered root architecture. High light intensity mimicked the Glc-induced changes in root architecture that were highly reduced in Glc-signalling mutants. Thus, under natural environmental conditions, changing light flux in the environment may lead to enhanced Glc production/response and is a way to manipulate root architecture for optimized development via integrating several extrinsic and intrinsic signalling cues. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
High dynamic spectroscopy using a digital micromirror device and periodic shadowing.
Kristensson, Elias; Ehn, Andreas; Berrocal, Edouard
2017-01-09
We present an optical solution called DMD-PS to boost the dynamic range of 2D imaging spectroscopic measurements up to 22 bits by incorporating a digital micromirror device (DMD) prior to detection in combination with the periodic shadowing (PS) approach. In contrast to high dynamic range (HDR), where the dynamic range is increased by recording several images at different exposure times, the current approach has the potential of improving the dynamic range from a single exposure and without saturation of the CCD sensor. In the procedure, the spectrum is imaged onto the DMD that selectively reduces the reflection from the intense spectral lines, allowing the signal from the weaker lines to be increased by a factor of 28 via longer exposure times, higher camera gains or increased laser power. This manipulation of the spectrum can either be based on a priori knowledge of the spectrum or by first performing a calibration measurement to sense the intensity distribution. The resulting benefits in detection sensitivity come, however, at the cost of strong generation of interfering stray light. To solve this issue the Periodic Shadowing technique, which is based on spatial light modulation, is also employed. In this proof-of-concept article we describe the full methodology of DMD-PS and demonstrate - using the calibration-based concept - an improvement in dynamic range by a factor of ~100 over conventional imaging spectroscopy. The dynamic range of the presented approach will directly benefit from future technological development of DMDs and camera sensors.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1984-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1986-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
Renewal of K-NET (National Strong-motion Observation Network of Japan)
NASA Astrophysics Data System (ADS)
Kunugi, T.; Fujiwara, H.; Aoi, S.; Adachi, S.
2004-12-01
The National Research Institute for Earth Science and Disaster Prevention (NIED) operates K-NET (Kyoshin Network), the national strong-motion observation network, which evenly covers the whole of Japan at intervals of 25 km on average. K-NET was constructed after the Hyogoken-Nambu (Kobe) earthquake in January 1995, and began operation in June 1996. Thus, eight years have passed since K-NET started, and large amounts of strong-motion records have been obtained. As technology has progressed and new technologies have become available, NIED has developed a new K-NET with improved functionality. New seismographs have been installed at 443 observatories mainly in southwestern Japan where there is a risk of strong-motion due to the Nankai and Tonankai earthquakes. The new system went into operation in June 2004, although seismographs have still to be replaced in other areas. The new seismograph (K-NET02) consists of a sensor module, a measurement module and a communication module. A UPS, a GPS antenna and a dial-up router are also installed together with a K-NET02. A triaxial accelerometer, FBA-ES-DECK (Kinemetrics Inc.) is built into the sensor module. The measurement module functions as a conventional strong-motion seismograph for high-precision observation. The communication module can perform sophisticated processes, such as calculation of the Japan Meteorological Agency (JMA) seismic intensity, continuous recording of data and near real-time data transmission. It connects to the Data Management Center (DMC) using an ISDN line. In case of a power failure, the measurement module can control the power supply to the router and the communication module to conserve battery power. One of the main features of K-NET02 is a function for processing JMA seismic intensity. K-NET02 functions as a proper seismic intensity meter that complies with the official requirements of JMA, although the old strong-motion seismograph (K-NET95) does not calculate seismic intensity. Another feature is near real-time data transmission. When a K-NET02 detects a strong-motion, it can automatically connect to the DMC in 2 to 5 seconds and then transmits seismic data. Furthermore, the full-scale is improved from 2000 gals to 4000 gals and the dynamic range of AD conversion is more than 132 dB. Strong-motion records of the new K-NET are available at: http://www.kyoshin.bosai.go.jp/
X-ray pushing of a mechanical microswing.
Siria, A; Rodrigues, M S; Dhez, O; Schwartz, W; Torricelli, G; Ledenmat, S; Rochat, N; Auvert, G; Bikondoa, O; Metzger, T H; Wermeille, D; Felici, R; Comin, F; Chevrier, J
2008-11-05
We report here for the first time the combination of x-ray synchrotron light and a micro-electro-mechanical system (MEMS). We show how it is possible to modulate in real time a MEMS mass distribution to induce a nanometric and tunable mechanical oscillation. The quantitative experimental demonstration we present here uses periodic thermal dilatation of a Ge microcrystal attached to a Si microlever, induced by controlled absorption of an intensity modulated x-ray microbeam. The mechanism proposed can be envisaged either for the detection of small heat flux or for the actuation of a mechanical system.
Dissociation of face-selective cortical responses by attention.
Furey, Maura L; Tanskanen, Topi; Beauchamp, Michael S; Avikainen, Sari; Uutela, Kimmo; Hari, Riitta; Haxby, James V
2006-01-24
We studied attentional modulation of cortical processing of faces and houses with functional MRI and magnetoencephalography (MEG). MEG detected an early, transient face-selective response. Directing attention to houses in "double-exposure" pictures of superimposed faces and houses strongly suppressed the characteristic, face-selective functional MRI response in the fusiform gyrus. By contrast, attention had no effect on the M170, the early, face-selective response detected with MEG. Late (>190 ms) category-related MEG responses elicited by faces and houses, however, were strongly modulated by attention. These results indicate that hemodynamic and electrophysiological measures of face-selective cortical processing complement each other. The hemodynamic signals reflect primarily late responses that can be modulated by feedback connections. By contrast, the early, face-specific M170 that was not modulated by attention likely reflects a rapid, feed-forward phase of face-selective processing.
Combinatorial pulse position modulation for power-efficient free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven
1993-01-01
A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.
High throughput optical scanner
Basiji, David A.; van den Engh, Gerrit J.
2001-01-01
A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.
Two particle tracking and detection in a single Gaussian beam optical trap.
Praveen, P; Yogesha; Iyengar, Shruthi S; Bhattacharya, Sarbari; Ananthamurthy, Sharath
2016-01-20
We have studied in detail the situation wherein two microbeads are trapped axially in a single-beam Gaussian intensity profile optical trap. We find that the corner frequency extracted from a power spectral density analysis of intensity fluctuations recorded on a quadrant photodetector (QPD) is dependent on the detection scheme. Using forward- and backscattering detection schemes with single and two laser wavelengths along with computer simulations, we conclude that fluctuations detected in backscattering bear true position information of the bead encountered first in the beam propagation direction. Forward scattering, on the other hand, carries position information of both beads with substantial contribution from the bead encountered first along the beam propagation direction. Mie scattering analysis further reveals that the interference term from the scattering of the two beads contributes significantly to the signal, precluding the ability to resolve the positions of the individual beads in forward scattering. In QPD-based detection schemes, detection through backscattering, thereby, is imperative to track the true displacements of axially trapped microbeads for possible studies on light-mediated interbead interactions.
Wen, Xuejiao; Qiu, Xiaolan; Han, Bing; Ding, Chibiao; Lei, Bin; Chen, Qi
2018-05-07
Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.
NASA Astrophysics Data System (ADS)
Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui
2016-10-01
With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.
NASA Astrophysics Data System (ADS)
Irsch, Kristina; Gramatikov, Boris I.; Wu, Yi-Kai; Guyton, David L.
2014-06-01
Amblyopia ("lazy eye") is a major public health problem, caused by misalignment of the eyes (strabismus) or defocus. If detected early in childhood, there is an excellent response to therapy, yet most children are detected too late to be treated effectively. Commercially available vision screening devices that test for amblyopia's primary causes can detect strabismus only indirectly and inaccurately via assessment of the positions of external light reflections from the cornea, but they cannot detect the anatomical feature of the eyes where fixation actually occurs (the fovea). Our laboratory has been developing technology to detect true foveal fixation, by exploiting the birefringence of the uniquely arranged Henle fibers delineating the fovea using retinal birefringence scanning (RBS), and we recently described a polarization-modulated approach to RBS that enables entirely direct and reliable detection of true foveal fixation, with greatly enhanced signal-to-noise ratio and essentially independent of corneal birefringence (a confounding variable with all polarization-sensitive ophthalmic technology). Here, we describe the design and operation of a new pediatric vision screener that employs polarization-modulated, RBS-based strabismus detection and bull's eye focus detection with an improved target system, and demonstrate the feasibility of this new approach.
Irsch, Kristina; Gramatikov, Boris I; Wu, Yi-Kai; Guyton, David L
2014-06-01
Amblyopia ("lazy eye") is a major public health problem, caused by misalignment of the eyes (strabismus) or defocus. If detected early in childhood, there is an excellent response to therapy, yet most children are detected too late to be treated effectively. Commercially available vision screening devices that test for amblyopia's primary causes can detect strabismus only indirectly and inaccurately via assessment of the positions of external light reflections from the cornea, but they cannot detect the anatomical feature of the eyes where fixation actually occurs (the fovea). Our laboratory has been developing technology to detect true foveal fixation, by exploiting the birefringence of the uniquely arranged Henle fibers delineating the fovea using retinal birefringence scanning (RBS), and we recently described a polarization-modulated approach to RBS that enables entirely direct and reliable detection of true foveal fixation, with greatly enhanced signal-to-noise ratio and essentially independent of corneal birefringence (a confounding variable with all polarization-sensitive ophthalmic technology). Here, we describe the design and operation of a new pediatric vision screener that employs polarization-modulated, RBS-based strabismus detection and bull's eye focus detection with an improved target system, and demonstrate the feasibility of this new approach.
Han, Eun Young; Paudel, Nava; Sung, Jiwon; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook
2016-04-19
The risk of secondary cancer from radiation treatment remains a concern for long-term breast cancer survivors, especially those treated with radiation at the age younger than 45 years. Treatment modalities optimally maximize the dose delivery to the tumor while minimizing radiation doses to neighboring organs, which can lead to secondary cancers. A new TomoTherapy treatment machine, TomoHDATM, can treat an entire breast with two static but intensity-modulated beams in a slice-by-slice fashion. This feature could reduce scattered and leakage radiation doses. We compared the plan quality and lifetime attributable risk (LAR) of a second malignancy among five treatment modalities: three-dimensional conformal radiation therapy, field-in-field forward-planned intensity-modulated radiation therapy, inverse-planned intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, and TomoDirect mode on the TomoHDA system. Ten breast cancer patients were selected for retrospective analysis. Organ equivalent doses, plan characteristics, and LARs were compared. Out-of-field organ doses were measured with radio-photoluminescence glass dosimeters. Although the IMRT plan provided overall better plan quality, including the lowest probability of pneumonitis, it caused the second highest LAR. The TomoTherapy plan provided plan quality comparable to the IMRT plan and posed the lowest total LAR to neighboring organs. Therefore, it can be a better treatment modality for younger patients who have a longer life expectancy.
Glucose Sensing with Phenylboronic Acid Functionalized Hydrogel-Based Optical Diffusers
2018-01-01
Phenylboronic acids have emerged as synthetic receptors that can reversibly bind to cis-diols of glucose molecules. The incorporation of phenylboronic acids in hydrogels offers exclusive attributes; for example, the binding process with glucose induces Donnan osmotic pressure resulting in volumetric changes in the matrix. However, their practical applications are hindered because of complex readout approaches and their time-consuming fabrication processes. Here, we demonstrate a microimprinting method to fabricate densely packed concavities in phenylboronic acid functionalized hydrogel films. A microengineered optical diffuser structure was imprinted on a phenylboronic acid based cis-diol recognizing motif prepositioned in a hydrogel film. The diffuser structure engineered on the hydrogel was based on laser-inscribed arrays of imperfect microlenses that focused the incoming light at different focal lengths and direction resulting in a diffused profile of light in transmission and reflection readout modes. The signature of the dimensional modulation was detected in terms of changing focal lengths of the microlenses due to the volumetric expansion of the hydrogel that altered the diffusion spectra and transmitted beam profile. The transmitted optical light spread and intensity through the sensor was measured to determine variation in glucose concentrations at physiological conditions. The sensor was integrated in a contact lens and placed over an artificial eye. Artificial stimulation of variation in glucose concentration allowed quantitative measurements using a smartphone’s photodiode. A smartphone app was utilized to convert the received light intensity to quantitative glucose concentration values. The developed sensing platform offers low cost, rapid fabrication, and easy detection scheme as compared to other optical sensing counterparts. The presented detection scheme may have applications in wearable real-time biomarker monitoring devices at point-of-care settings. PMID:29529366
Wang, Fei; Dong, Jianji; Xu, Enming; Zhang, Xinliang
2010-11-22
An all-optical UWB pulses generation and modulation scheme using cross phase modulation (XPM) effect of semiconductor optical amplifier (SOA) and DWDM-based multi-channel frequency discrimination is proposed and demonstrated, which has potential application in multiuser UWB-Over-Fiber communication systems. When a Gaussian pulse light and a wavelength-tunable CW probe light are together injected into the SOA, the probe light out from the SOA will have a temporal chirp due to SOA-XPM effect. When the chirped probe light is tuned to the slopes of single DWDM channel transmittance curve, the optical phase modulation to intensity modulation conversion is achieved at DWDM that serves as a multi-channel frequency discriminator, the inverted polarity Gaussian monocycle and doublet pulse is detected by a photodetector, respectively. If the probe lights are simultaneously aimed to different slopes of several DWDM channels, multi-channel or binary-phase-coded UWB signal generation can be acquired. Using proposed scheme, pulse amplitude modulation (PAM), pulse polarity modulation (PPM) and pulse shape modulation (PSM) to UWB pulses also can be conveniently realized.
Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam
NASA Astrophysics Data System (ADS)
Lin, Han; Gu, Min
2013-02-01
Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.
Main, Julie C; DeBruine, Lisa M; Little, Anthony C; Jones, Benedict C
2010-01-01
Previous studies have shown that preferences for direct versus averted gaze are modulated by emotional expressions and physical attractiveness. For example, preferences for direct gaze are stronger when judging happy or physically attractive faces than when judging disgusted or physically unattractive faces. Here we show that preferences for front versus three-quarter views of faces, in which gaze direction was always congruent with head orientation, are also modulated by emotional expressions and physical attractiveness; participants demonstrated preferences for front views of faces over three-quarter views of faces when judging the attractiveness of happy, physically attractive individuals, but not when judging the attractiveness of relatively unattractive individuals or those with disgusted expressions. Moreover, further analyses indicated that these interactions did not simply reflect differential perceptions of the intensity of the emotional expressions shown in each condition. Collectively, these findings present novel evidence that the effect of the direction of the attention of others on attractiveness judgments is modulated by cues to the physical attractiveness and emotional state of the depicted individual, potentially reflecting psychological adaptations for efficient allocation of social effort. These data also present the first behavioural evidence that the effect of the direction of the attention of others on attractiveness judgments reflects viewer-referenced, rather than face-referenced, coding and/or processing of gaze direction.
Signal intensity enhancement of laser ablated volume holograms
NASA Astrophysics Data System (ADS)
Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.
2017-11-01
Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to stabilize the metal nanoparticles within the matrix yield more intense holographic signals as the integrity of the fringe is more protected with increasing metal solubility.
NASA Astrophysics Data System (ADS)
Seo, Seong-Heon; Lee, K. D.
2012-10-01
A frequency modulation reflectometer has been developed to measure the density profile of the KSTAR tokamak. It has two channels operating in X-mode in the frequency range of Q band (33-50 GHz) and V band (50-75 GHz). The full band is swept in 20 μs. The mixer output is directly digitized at the sampling rate of 100 MSamples/s. A new phase detection algorithm is developed to analyze both amplitude and frequency modulated signal. The algorithm is benchmarked for a synthesized amplitude modulation-frequency modulation signal. This new algorithm is applied to the data analysis of KSTAR reflectometer.
NASA Astrophysics Data System (ADS)
Min, Qing-xu; Zhu, Jun-zhen; Feng, Fu-zhou; Xu, Chao; Sun, Ji-wei
2017-06-01
In this paper, the lock-in vibrothermography (LVT) is utilized for defect detection. Specifically, for a metal plate with an artificial fatigue crack, the temperature rise of the defective area is used for analyzing the influence of different test conditions, i.e. engagement force, excitation intensity, and modulated frequency. The multivariate nonlinear and logistic regression models are employed to estimate the POD (probability of detection) and POA (probability of alarm) of fatigue crack, respectively. The resulting optimal selection of test conditions is presented. The study aims to provide an optimized selection method of the test conditions in the vibrothermography system with the enhanced detection ability.
Dual beam optical interferometer
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
2003-01-01
A dual beam interferometer device is disclosed that enables moving an optics module in a direction, which changes the path lengths of two beams of light. The two beams reflect off a surface of an object and generate different speckle patterns detected by an element, such as a camera. The camera detects a characteristic of the surface.
Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.
Razak, Khaleel A
2013-01-01
Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.
Attentional modulation of desensitization to odor.
Fallon, Nicholas; Giesbrecht, Timo; Stancak, Andrej
2018-05-22
Subjective and behavioral responsiveness to odor diminishes during prolonged exposure. The precise mechanisms underlying olfactory desensitization are not fully understood, but previous studies indicate that the phenomenon may be modulated by central-cognitive processes. The present study investigated the effect of attention on perceived intensity during exposure to a pleasant odor. A within-subjects design was utilized with 19 participants attending 2 sessions. During each session, participants continuously rated their perceived intensity of a 10-minute exposure to a pleasant fragrance administered using an olfactometer. An auditory oddball task was implemented to manipulate the focus of attention in each session. Participants were instructed to either direct their attention toward the sounds, but still to rate odor, or to focus entirely on rating the odor. Analysis revealed three 50-second time windows with significantly lower mean intensity ratings during the distraction condition. Curve fitting of the data disclosed a linear function of desensitization in the focused attention condition compared with an exponential decay function during distraction condition, indicating an increased rate of initial desensitization when attention is distracted away from the odor. In the focused-attention condition, perceived intensity demonstrated a regular pattern of odor sensitivity occurring at approximately 1-2 minutes intervals following initial desensitization. Spectral analysis of low-frequency oscillations confirmed the presence of augmented spectral power in this frequency range during focused relative to distracted conditions. The findings demonstrate for the first time modulation of odor desensitization specifically by attentional factors, exemplifying the relevance of top-down control for ongoing perception of odor.
Method for curing polymers using variable-frequency microwave heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.
1998-02-24
A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Themore » furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.« less
Method for curing polymers using variable-frequency microwave heating
Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.
1998-01-01
A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.
Audio-Visual Integration in a Redundant Target Paradigm: A Comparison between Rhesus Macaque and Man
Bremen, Peter; Massoudi, Rooholla; Van Wanrooij, Marc M.; Van Opstal, A. J.
2017-01-01
The mechanisms underlying multi-sensory interactions are still poorly understood despite considerable progress made since the first neurophysiological recordings of multi-sensory neurons. While the majority of single-cell neurophysiology has been performed in anesthetized or passive-awake laboratory animals, the vast majority of behavioral data stems from studies with human subjects. Interpretation of neurophysiological data implicitly assumes that laboratory animals exhibit perceptual phenomena comparable or identical to those observed in human subjects. To explicitly test this underlying assumption, we here characterized how two rhesus macaques and four humans detect changes in intensity of auditory, visual, and audio-visual stimuli. These intensity changes consisted of a gradual envelope modulation for the sound, and a luminance step for the LED. Subjects had to detect any perceived intensity change as fast as possible. By comparing the monkeys' results with those obtained from the human subjects we found that (1) unimodal reaction times differed across modality, acoustic modulation frequency, and species, (2) the largest facilitation of reaction times with the audio-visual stimuli was observed when stimulus onset asynchronies were such that the unimodal reactions would occur at the same time (response, rather than physical synchrony), and (3) the largest audio-visual reaction-time facilitation was observed when unimodal auditory stimuli were difficult to detect, i.e., at slow unimodal reaction times. We conclude that despite marked unimodal heterogeneity, similar multisensory rules applied to both species. Single-cell neurophysiology in the rhesus macaque may therefore yield valuable insights into the mechanisms governing audio-visual integration that may be informative of the processes taking place in the human brain. PMID:29238295
Bremen, Peter; Massoudi, Rooholla; Van Wanrooij, Marc M; Van Opstal, A J
2017-01-01
The mechanisms underlying multi-sensory interactions are still poorly understood despite considerable progress made since the first neurophysiological recordings of multi-sensory neurons. While the majority of single-cell neurophysiology has been performed in anesthetized or passive-awake laboratory animals, the vast majority of behavioral data stems from studies with human subjects. Interpretation of neurophysiological data implicitly assumes that laboratory animals exhibit perceptual phenomena comparable or identical to those observed in human subjects. To explicitly test this underlying assumption, we here characterized how two rhesus macaques and four humans detect changes in intensity of auditory, visual, and audio-visual stimuli. These intensity changes consisted of a gradual envelope modulation for the sound, and a luminance step for the LED. Subjects had to detect any perceived intensity change as fast as possible. By comparing the monkeys' results with those obtained from the human subjects we found that (1) unimodal reaction times differed across modality, acoustic modulation frequency, and species, (2) the largest facilitation of reaction times with the audio-visual stimuli was observed when stimulus onset asynchronies were such that the unimodal reactions would occur at the same time (response, rather than physical synchrony), and (3) the largest audio-visual reaction-time facilitation was observed when unimodal auditory stimuli were difficult to detect, i.e., at slow unimodal reaction times. We conclude that despite marked unimodal heterogeneity, similar multisensory rules applied to both species. Single-cell neurophysiology in the rhesus macaque may therefore yield valuable insights into the mechanisms governing audio-visual integration that may be informative of the processes taking place in the human brain.
Svensson, Roger; Larsson, Susanne; Gudowska, Irena; Holmberg, Rickard; Brahme, Anders
2007-03-01
Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37-61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15-25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of the collimator will minimize edge scatter from glancing incidence. The major portions of the collimator leafs can then be made of steel or even aluminum, so that the total weight of the multileaf collimator will be as low as 10 kg, which may even allow high-speed collimation in real time in synchrony with organ movements. To demonstrate the efficiency of this collimator design in combination with pencil beam scanning, optimal radiobiological treatments of an advanced cervix cancer were simulated. Different geometrical collimator designs were tested for bremsstrahlung, electron, and light ion beams. With a 10 mm half-width elementary scanned photon beam and a steel collimator with tungsten edges, it was possible to make as effective treatments as obtained with intensity modulated beams of full resolution, i.e., here 5 mm resolution in the fluence map. In combination with narrow pencil beam scanning, such a collimator may provide ideal delivery of photons, electrons, or light ions for radiation therapy synchronized to breathing and other organ motions. These high-energy photon and light ion beams may allow three-dimensional in vivo verification of delivery and thereby clinical implementation of the BioArt approach using Biologically Optimized three-dimensional in vivo predictive Assay based adaptive Radiation Therapy [Brahme, Acta Oncol. 42, 123-126 (2003)].
Threatening social context facilitates pain-related fear learning.
Karos, Kai; Meulders, Ann; Vlaeyen, Johan W S
2015-03-01
This study investigated the effects of a threatening and a safe social context on learning pain-related fear, a key factor in the development and maintenance of chronic pain. We measured self-reported pain intensity, pain expectancy, pain-related fear (verbal ratings and eyeblink startle responses), and behavioral measures of avoidance (movement-onset latency and duration) using an established differential voluntary movement fear conditioning paradigm. Participants (N = 42) performed different movements with a joystick: during fear acquisition, movement in one direction (CS+) was followed by a painful stimulus (pain-US) whereas movement in another direction (CS-) was not. For participants in the threat group, an angry face was continuously presented in the background during the task, whereas in the safe group, a happy face was presented. During the extinction phase the pain-US was omitted. As compared to the safe social context, a threatening social context led to increased contextual fear and facilitated differentiation between CS+ and CS- movements regarding self-reported pain expectancy, fear of pain, eyeblink startle responses, and movement-onset latency. In contrast, self-reported pain intensity was not affected by social context. These data support the modulation of pain-related fear by social context. A threatening social context leads to stronger acquisition of (pain-related) fear and simultaneous contextual fear but does not affect pain intensity ratings. This knowledge may aid in the prevention of chronic pain and anxiety disorders and shows that social context might modulate pain-related fear without immediately affecting pain intensity itself. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Optical probe for porosity defect detection on inner diameter surfaces of machined bores
NASA Astrophysics Data System (ADS)
Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.
2010-12-01
We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.
Osche, G R
2000-08-20
Single- and multiple-pulse detection statistics are presented for aperture-averaged direct detection optical receivers operating against partially developed speckle fields. A partially developed speckle field arises when the probability density function of the received intensity does not follow negative exponential statistics. The case of interest here is the target surface that exhibits diffuse as well as specular components in the scattered radiation. An approximate expression is derived for the integrated intensity at the aperture, which leads to single- and multiple-pulse discrete probability density functions for the case of a Poisson signal in Poisson noise with an additive coherent component. In the absence of noise, the single-pulse discrete density function is shown to reduce to a generalized negative binomial distribution. The radar concept of integration loss is discussed in the context of direct detection optical systems where it is shown that, given an appropriate set of system parameters, multiple-pulse processing can be more efficient than single-pulse processing over a finite range of the integration parameter n.
Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.
2011-01-01
A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868
Imaging photorefractive optical vibration measurement method and device
Telschow, Kenneth L.; Deason, Vance A.; Hale, Thomas C.
2000-01-01
A method and apparatus are disclosed for characterizing a vibrating image of an object of interest. The method includes providing a sensing media having a detection resolution within a limited bandwidth and providing an object of interest having a vibrating medium. Two or more wavefronts are provided, with at least one of the wavefronts being modulated by interacting the one wavefront with the vibrating medium of the object of interest. The another wavefront is modulated such that the difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. The modulated one wavefront and another wavefront are combined in association with the sensing media to interfere and produce simultaneous vibration measurements that are distributed over the object so as to provide an image of the vibrating medium. The image has an output intensity that is substantially linear with small physical variations within the vibrating medium. Furthermore, the method includes detecting the image. In one implementation, the apparatus comprises a vibration spectrum analyzer having an emitter, a modulator, sensing media and a detector configured so as to realize such method. According to another implementation, the apparatus comprises a vibration imaging device.
Characteristics of speaking style and implications for speech recognition.
Shinozaki, Takahiro; Ostendorf, Mari; Atlas, Les
2009-09-01
Differences in speaking style are associated with more or less spectral variability, as well as different modulation characteristics. The greater variation in some styles (e.g., spontaneous speech and infant-directed speech) poses challenges for recognition but possibly also opportunities for learning more robust models, as evidenced by prior work and motivated by child language acquisition studies. In order to investigate this possibility, this work proposes a new method for characterizing speaking style (the modulation spectrum), examines spontaneous, read, adult-directed, and infant-directed styles in this space, and conducts pilot experiments in style detection and sampling for improved speech recognizer training. Speaking style classification is improved by using the modulation spectrum in combination with standard pitch and energy variation. Speech recognition experiments on a small vocabulary conversational speech recognition task show that sampling methods for training with a small amount of data benefit from the new features.
Suaebah, Evi; Naramura, Takuro; Myodo, Miho; Hasegawa, Masataka; Shoji, Shuichi; Buendia, Jorge J.; Kawarada, Hiroshi
2017-01-01
Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP) detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD). Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification) was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current–drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current–drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface. PMID:28753998
Suaebah, Evi; Naramura, Takuro; Myodo, Miho; Hasegawa, Masataka; Shoji, Shuichi; Buendia, Jorge J; Kawarada, Hiroshi
2017-07-21
Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP) detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD). Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification) was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current-drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current-drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface.
Sinclair, N.; Heshami, K.; Deshmukh, C.; Oblak, D.; Simon, C.; Tittel, W.
2016-01-01
Non-destructive detection of photonic qubits is an enabling technology for quantum information processing and quantum communication. For practical applications, such as quantum repeaters and networks, it is desirable to implement such detection in a way that allows some form of multiplexing as well as easy integration with other components such as solid-state quantum memories. Here, we propose an approach to non-destructive photonic qubit detection that promises to have all the mentioned features. Mediated by an impurity-doped crystal, a signal photon in an arbitrary time-bin qubit state modulates the phase of an intense probe pulse that is stored during the interaction. Using a thulium-doped waveguide in LiNbO3, we perform a proof-of-principle experiment with macroscopic signal pulses, demonstrating the expected cross-phase modulation as well as the ability to preserve the coherence between temporal modes. Our findings open the path to a new key component of quantum photonics based on rare-earth-ion-doped crystals. PMID:27853153
Modulation of UK lightning by heliospheric magnetic field polarity
NASA Astrophysics Data System (ADS)
Owens, M. J.; Scott, C. J.; Lockwood, M.; Barnard, L.; Harrison, R. G.; Nicoll, K.; Watt, C.; Bennett, A. J.
2014-11-01
Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40-60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.
1982-11-15
Optics Y-Junction and Mach-Zehnder Interferometric Modulator Using Four -Port Scattering Matrix 7 1.3 Heterodyne and Direct Detection at 10 om with High...and of the Mach-Zehnder interferometric modulator have been analyzed using the four -port scattering i- matrix. The interferometric properties of the Y...USING FOUR -PORT SCATTERING MATRIX The scattering matrix formalism for a lossless four -port device has been used to describe the performance of the
Frequency-Modulated Microwave Photonic Links with Direct Detection: Review and Theory
2010-12-15
create large amounts of signal distortion. Alternatives to MZIs have been pro- posed, including Fabry - Perot interferometers, ber Bragg gratings (FBGs...multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot discriminated, FM subcarrier...multiplexed system were presented by [17]. An array of optical frequency modulated DFB lasers and a Fabry - Perot discriminator were used to transmit and
Screening for Intensive Intervention Needs in Secondary Schools: Directions for the Future
ERIC Educational Resources Information Center
Lane, Kathleen Lynne; Oakes, Wendy Peia; Lusk, Mandy E.; Cantwell, Emily Dawn; Schatschneider, Christopher
2016-01-01
In this article, we provided descriptive and methodological illustrations of how to conduct systematic behavior screenings at the middle and high school levels to detect students with intensive intervention needs using one systematic screening tool: the Student Risk Screening Scale. We discussed the importance of systematic screening and presented…
Magneto-electronic properties of graphene nanoribbons in the spatially modulated electric field
NASA Astrophysics Data System (ADS)
Chen, S. C.; Wang, T. S.; Lee, C. H.; Lin, M. F.
2008-09-01
The Peierls tight-binding model with the nearest-neighbor interactions is used to calculate the magneto-electronic structure of graphene nanoribbons under a spatially modulated electric field along the y-axis. A uniform perpendicular magnetic field could make energy dispersions change into the quasi-Landau levels. Such levels are composed of the dispersionless and parabolic energy bands. A spatially modulated electric field would further induce a lot of oscillating parabolic bands with several band-edge states. It drastically modifies energy dispersions, alters subband spacings, destroys symmetry of energy spectrum about k=0, and changes features of band-edge states (number and energy). The above-mentioned magneto-electronic structures are directly reflected in density of states (DOS). The modulation effect changes shape, number, positions, and intensities of peaks in DOS. The predicted result could be tested by the optical measurements.
Light-intensity modulator withstands high heat fluxes
NASA Technical Reports Server (NTRS)
Maples, H. G.; Strass, H. K.
1966-01-01
Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.
GX 9+9: VARIABILITY OF THE X-RAY ORBITAL MODULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Robert J.; Levine, Alan M.; Durant, Martin
2009-05-10
Results of observations of the Galactic bulge X-ray source GX 9+9 by the All-Sky Monitor (ASM) and Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer are presented. The ASM results show that the 4.19 hr X-ray periodicity first reported by Hertz and Wood in 1987 was weak or not detected for most of the mission prior to late 2004, but then became strong and remained strong for approximately two years after which it weakened considerably. When the modulation at the 4.19 hr period is strong, it appears in folded light curves as an intensity dip over {approx}<30% ofmore » a cycle and is distinctly nonsinusoidal. A number of PCA observations of GX 9+9 were performed before the appearance of strong modulation; two were performed in 2006 during the epoch of strong modulation. Data obtained from the earlier PCA observations yield, at best, limited evidence of the presence of phase-dependent intensity changes, while the data from the later observations confirm the presence of flux minima with depths and phases compatible with those apparent in folded ASM light curves. Light curves from a Chandra observation of GX 9+9 performed in the year 2000 prior to the start of strong modulation show the possible presence of shallow dips at the predicted times. Optical observations performed in 2006 while the X-ray modulation was strong do not show an increase in the degree of modulation at the 4.19 hr period. Implications of the changes in modulation strength in X-rays and other observational results are considered.« less
Sampaio-Baptista, Cassandra; Scholz, Jan; Jenkinson, Mark; Thomas, Adam G.; Filippini, Nicola; Smit, Gabrielle; Douaud, Gwenaëlle; Johansen-Berg, Heidi
2014-01-01
The ability to predict learning performance from brain imaging data has implications for selecting individuals for training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-body task. 44 naïve participants were scanned before undertaking daily juggling practice for 6 weeks, following either a high intensity or a low intensity training regime. To assess performance across the training period participants' practice sessions were filmed. Greater GM volume in medial occipito-parietal areas at baseline correlated with steeper learning slopes. We also tested whether practice time or performance outcomes modulated the degree of structural brain change detected between the baseline scan and additional scans performed immediately after training and following a further 4 weeks without training. Participants with better performance had higher increases in GM volume during the period following training (i.e., between scans 2 and 3) in dorsal parietal cortex and M1. When contrasting brain changes between the practice intensity groups, we did not find any straightforward effects of practice time though practice modulated the relationship between performance and GM volume change in dorsolateral prefrontal cortex. These results suggest that practice time and performance modulate the degree of structural brain change evoked by long-term training regimes. PMID:24680712
Front-end Design and Characterization for the ν-Angra Nuclear Reactor Monitoring Detector
NASA Astrophysics Data System (ADS)
Dornelas, T. I.; Araújo, F. T. H.; Cerqueira, A. S.; Costa, J. A.; Nóbrega, R. A.
2016-07-01
The Neutrinos Angra (ν-Angra) Experiment aims to construct an antineutrinos detection device capable of monitoring the Angra dos Reis nuclear reactor activity. Nuclear reactors are intense sources of antineutrinos, and the thermal power released in the fission process is directly related to the flow rate of these particles. The antineutrinos energy spectrum also provides valuable information on the nuclear source isotopic composition. The proposed detector will be equipped with photomultipliers tubes (PMT) which will be readout by a custom Amplifier-Shaper-Discriminator circuit designed to condition its output signals to the acquisition modules to be digitized and processed by an FPGA. The readout circuit should be sensitive to single photoelectron signals, process fast signals, with a full-width-half-amplitude of about 5 ns, have a narrow enough output pulse width to detect both particles coming out from the inverse beta decay (bar nue+p → n + e+), and its output amplitude should be linear to the number of photoelectrons generated inside the PMT, used for energy estimation. In this work, some of the main PMT characteristics are measured and a new readout circuit is proposed, described and characterized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
Effect of stress and attention on startle response and prepulse inhibition.
De la Casa, Luis Gonzalo; Mena, Auxiliadora; Ruiz-Salas, Juan Carlos
2016-10-15
The startle reflex magnitude can be modulated when a weak stimulus is presented before the onset of the startle stimulus, a phenomenon termed prepulse inhibition (PPI). Previous research has demonstrated that emotional processes can modulate PPI and startle intensity, but the available evidence is inconclusive. In order to obtain additional evidence in this domain, we conducted two experiments intended to analyze the effect of induced stress and attentional load on PPI and startle magnitude. Specifically, in Experiment 1 we used a between subject strategy to evaluate the effect on startle response and PPI magnitude of performing a difficult task intended to induce stress in the participants, as compared to a group exposed to a control task. In Experiment 2 we evaluated the effect of diverting attention from the acoustic stimulus on startle and PPI intensity. The results seem to indicate that induced stress can reduce PPI, and that startle reflex intensity is reduced when attention is directed away from the auditory stimulus that induces the reflex. Copyright © 2016 Elsevier Inc. All rights reserved.
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.; ...
2017-02-12
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
Naeem, Tariq Mahmood; Matsuta, Hideyuki; Wagatsuma, Kazuaki
2004-05-01
An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N(2)(+) 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed.
NASA Astrophysics Data System (ADS)
Corato-Zanarella, Mateus; Dorrah, Ahmed H.; Zamboni-Rached, Michel; Mojahedi, Mo
2018-02-01
We report on the theory and experimental generation of a class of diffraction-attenuation-resistant beams with state of polarization (SOP) and intensity that can be controlled on demand along the propagation direction. This control is achieved by a suitable superposition of Bessel beams, whose parameters are systematically chosen based on closed-form analytic expressions provided by the frozen waves method. Using an amplitude-only spatial light modulator, we experimentally demonstrate three scenarios. In the first, the SOP of a horizontally polarized beam evolves to radial polarization and is then changed to vertical polarization, with the beam intensity held constant. In the second, we simultaneously control the SOP and the longitudinal intensity profile, which is chosen such that the beam's central ring can be switched off over predefined space regions, thus generating multiple foci with different SOPs and at different intensity levels along the propagation. Finally, the ability to control the SOP while overcoming attenuation inside lossy fluids is shown experimentally. We envision our proposed method to be of great interest for many applications, such as optical tweezers, atom guiding, material processing, microscopy, and optical communications.
Longitudinal density modulation and energy conversion in intense beams.
Harris, J R; Neumann, J G; Tian, K; O'Shea, P G
2007-08-01
Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams.
Invasive species change detection using artificial neural networks and CASI hyperspectral imagery
USDA-ARS?s Scientific Manuscript database
For monitoring and controlling the extent and intensity of an invasive species, a direct multi-date image classification method was applied in invasive species (saltcedar) change detection in the study area of Lovelock, Nevada. With multi-date Compact Airborne Spectrographic Imager (CASI) hyperspec...
A design of LED adaptive dimming lighting system based on incremental PID controller
NASA Astrophysics Data System (ADS)
He, Xiangyan; Xiao, Zexin; He, Shaojia
2010-11-01
As a new generation energy-saving lighting source, LED is applied widely in various technology and industry fields. The requirement of its adaptive lighting technology is more and more rigorous, especially in the automatic on-line detecting system. In this paper, a closed loop feedback LED adaptive dimming lighting system based on incremental PID controller is designed, which consists of MEGA16 chip as a Micro-controller Unit (MCU), the ambient light sensor BH1750 chip with Inter-Integrated Circuit (I2C), and constant-current driving circuit. A given value of light intensity required for the on-line detecting environment need to be saved to the register of MCU. The optical intensity, detected by BH1750 chip in real time, is converted to digital signal by AD converter of the BH1750 chip, and then transmitted to MEGA16 chip through I2C serial bus. Since the variation law of light intensity in the on-line detecting environment is usually not easy to be established, incremental Proportional-Integral-Differential (PID) algorithm is applied in this system. Control variable obtained by the incremental PID determines duty cycle of Pulse-Width Modulation (PWM). Consequently, LED's forward current is adjusted by PWM, and the luminous intensity of the detection environment is stabilized by self-adaptation. The coefficients of incremental PID are obtained respectively after experiments. Compared with the traditional LED dimming system, it has advantages of anti-interference, simple construction, fast response, and high stability by the use of incremental PID algorithm and BH1750 chip with I2C serial bus. Therefore, it is suitable for the adaptive on-line detecting applications.
Role of recoverin in rod photoreceptor light adaptation.
Morshedian, Ala; Woodruff, Michael L; Fain, Gordon L
2018-04-15
Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that can modulate the rate of rhodopsin phosphorylation. We describe two additional and perhaps more important functions during photoreceptor light adaptation. Recoverin influences the rate of change of adaptation. In wild-type rods, sensitivity and response integration time adapt with similar time constants of 150-200 ms. In Rv-/- rods lacking recoverin, sensitivity declines faster and integration time is already shorter and not significantly altered. During steady light exposure, rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is deleted, steady-state currents are already larger and rods saturate at brighter intensities. We propose that recoverin modulates spontaneous and light-activated phophodiesterase-6, the phototransduction effector enzyme, to increase sensitivity in dim light but improve responsiveness to change in brighter illumination. Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that binds to G-protein receptor kinase 1 and can alter the rate of rhodopsin phosphorylation. A change in phosphorylation should change the lifetime of light-activated rhodopsin and the gain of phototransduction, but deletion of recoverin has little effect on the sensitivity of rods either in the dark or in dim-to-moderate background light. We describe two additional functions perhaps of greater physiological significance. (i) When the ambient intensity increases, sensitivity and integration time decrease in wild-type (WT) rods with similar time constants of 150-200 ms. Recoverin is part of the mechanism controlling this process because, in Rv-/- rods lacking recoverin, sensitivity declines more rapidly and integration time is already shorter and not further altered. (ii) During steady light exposure, WT rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is also deleted, steady-state currents are already larger and rods saturate at brighter intensities. We argue that neither (i) nor (ii) can be caused by modulation of rhodopsin phosphorylation but may instead be produced by direct modulation of phophodiesterase-6 (PDE6), the phototransduction effector enzyme. We propose that recoverin in dark-adapted rods keeps the integration time long and the spontaneous PDE6 rate relatively high to improve sensitivity. In background light, the integration time is decreased to facilitate detection of change and motion and the spontaneous PDE6 rate decreases to augment the rod working range. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
NASA Astrophysics Data System (ADS)
Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.
1987-08-01
A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.
Radiation Tolerant Intelligent Memory Stack (RTIMS)
NASA Technical Reports Server (NTRS)
Ng, Tak-kwong; Herath, Jeffrey A.
2006-01-01
The Radiation Tolerant Intelligent Memory Stack (RTIMS), suitable for both geostationary and low earth orbit missions, has been developed. The memory module is fully functional and undergoing environmental and radiation characterization. A self-contained flight-like module is expected to be completed in 2006. RTIMS provides reconfigurable circuitry and 2 gigabits of error corrected or 1 gigabit of triple redundant digital memory in a small package. RTIMS utilizes circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuitries are stacked into a module of 42.7mm x 42.7mm x 13.00mm. Triple module redundancy, current limiting, configuration scrubbing, and single event function interrupt detection are employed to mitigate radiation effects. The mitigation techniques significantly simplify system design. RTIMS is well suited for deployment in real-time data processing, reconfigurable computing, and memory intensive applications.
Status of the DRIFT-II Directional Dark Matter Detector
NASA Astrophysics Data System (ADS)
Ghag, Chamkaur
2006-10-01
DRIFT is a directional dark matter detection programme that utilises the fact that as the Earth rotates and revolves around the Sun, an annual and diurnal signal modulation could be detected as a result of relative motion between the Earth and the non-rotating WIMP halo. This would provide very strong evidience of WIMPs since such a signal could not be mimicked by background sources. DRIFT II is an array of gas filled time projection chambers (TPCs) with Multi Wire Proportional Counter (MWPC) readout. Signals from different types of events differ greatly, between nuclear and electron recoils for example, due to the amount of ionisation initially produced and recombination times. This provides phenomenal discrimination capabilities. The first module of the DRIFT-II detector was successfully installed underground at Boulby Mine, N. Yorkshire early last year and has proven very stable, collecting high quality calibration and WIMP data. Since then a second module has been installed and is also currently operational. This presentation will describe the status of the detector and will focus on the determination of neutron efficiency and gamma rejection factors.
Deep sea tests of a prototype of the KM3NeT digital optical module
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; de Asmundis, R.; Balasi, K.; Band, H.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; Baron, S.; Belias, A.; Berbee, E.; van den Berg, A. M.; Berkien, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Bianucci, S.; Billault, M.; Birbas, A.; Boer Rookhuizen, H.; Bormuth, R.; Bouché, V.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Caruso, F.; Cecchini, S.; Ceres, A.; Cereseto, R.; Champion, C.; Château, F.; Chiarusi, T.; Christopoulou, B.; Circella, M.; Classen, L.; Cocimano, R.; Colonges, S.; Coniglione, R.; Cosquer, A.; Costa, M.; Coyle, P.; Creusot, A.; Curtil, C.; Cuttone, G.; D'Amato, C.; D'Amico, A.; De Bonis, G.; De Rosa, G.; Deniskina, N.; Destelle, J.-J.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Drury, L.; Durand, D.; Eberl, T.; Eleftheriadis, C.; Elsaesser, D.; Enzenhöfer, A.; Fermani, P.; Fusco, L. A.; Gajana, D.; Gal, T.; Galatà, S.; Gallo, F.; Garufi, F.; Gebyehu, M.; Giordano, V.; Gizani, N.; Gracia Ruiz, R.; Graf, K.; Grasso, R.; Grella, G.; Grmek, A.; Habel, R.; van Haren, H.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hevinga, M. A.; van der Hoek, M.; Hofestädt, J.; Hogenbirk, J.; Hugon, C.; Hößl, J.; Imbesi, M.; James, C.; Jansweijer, P.; Jochum, J.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Kappos, E.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kieft, G.; Koffeman, E.; Kok, H.; Kooijman, P.; Koopstra, J.; Korporaal, A.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Le Provost, H.; Leisos, A.; Lenis, D.; Leonora, E.; Lindsey Clark, M.; Liolios, A.; Llorens Alvarez, C. D.; Löhner, H.; Lo Presti, D.; Louis, F.; Maccioni, E.; Mannheim, K.; Manolopoulos, K.; Margiotta, A.; Mariş, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Masullo, R.; Michael, T.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C.; Mongelli, M.; Morganti, M.; Mos, S.; Moudden, Y.; Musico, P.; Musumeci, M.; Nicolaou, C.; Nicolau, C. A.; Orlando, A.; Orzelli, A.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Păvălaş, G. E.; Peek, H.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Petridou, C.; Piattelli, P.; Pikounis, K.; Popa, V.; Pradier, Th.; Priede, M.; Pühlhofer, G.; Pulvirenti, S.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rovelli, A.; Royon, J.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Santangelo, A.; Sapienza, P.; Savvidis, I.; Schmelling, J.; Schnabel, J.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Siotis, I.; Sipala, V.; Solazzo, M.; Spitaleri, A.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stolarczyk, T.; Stransky, D.; Taiuti, M.; Terreni, G.; Tézier, D.; Théraube, S.; Thompson, L. F.; Timmer, P.; Trapierakis, H. I.; Trasatti, L.; Trovato, A.; Tselengidou, M.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Vernin, P.; Viola, S.; Vivolo, D.; Werneke, P.; Wiggers, L.; Wilms, J.; de Wolf, E.; van Wooning, R. H. L.; Yatkin, K.; Zachariadou, K.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.; Zwart, A.
2014-09-01
The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40}$K decay and the localization bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions.
NASA Astrophysics Data System (ADS)
Singh, B.; Kumar, S.; Prajapati, S.; Singh, B. K.; Llovet, X.; Shanker, R.
2018-02-01
Measurements yielding the first results on angular dependence of Kβ/Kα X-ray intensity ratios of thick Ti (Z = 22) and Cu (Z = 29) targets induced by 10-25 keV electrons are presented. The measurements were done by rotating the target surface around the electron beam direction in the angular detection range 105° ≤ θ ≤ 165° in the reflection mode using an energy dispersive Si PIN photodiode detector. The measured angular dependence of Kβ/Kα intensity ratios is shown to be almost isotropic for Ti and Cu targets for the range of detection angles, 105° ≤ θ ≤ 150°, while there is a very weak increase beyond 150° for both targets. No dependence of Kβ/Kα intensity ratios on impact energy is observed; while on average, the value of the Kβ/Kα X-ray intensity ratio for Cu is larger by about 8% than that for Ti, which indicates a weak Z-dependence of the target. The experimental results are compared with those obtained from PENELOPE MC calculations and from the Evaluated Atomic Data Library (EADL) ratios. These results on Kβ/Kα X-ray intensity ratios are found to be in reasonable agreement in the detection angle range 105° ≤ θ ≤ 150° to within uncertainties, whereas the simulation and experimental results show a very slight increase in the intensity ratio with θ as the latter attains higher values. The results presented in this work provide a direct check on the accuracy of PENELOPE at oblique incidence angles for which there has been a lack of measurements in the literature until now.
All-digital radar architecture
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo A.
2014-10-01
All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.
Barium Qubit State Detection and Ba Ion-Photon Entanglement
NASA Astrophysics Data System (ADS)
Sosnova, Ksenia; Inlek, Ismail Volkan; Crocker, Clayton; Lichtman, Martin; Monroe, Christopher
2016-05-01
A modular ion-trap network is a promising framework for scalable quantum-computational devices. In this architecture, different ion-trap modules are connected via photonic buses while within one module ions interact locally via phonons. To eliminate cross-talk between photonic-link qubits and memory qubits, we use different atomic species for quantum information storage (171 Yb+) and intermodular communication (138 Ba+). Conventional deterministic Zeeman-qubit state detection schemes require additional stabilized narrow-linewidth lasers. Instead, we perform fast probabilistic state detection utilizing efficient detectors and high-NA lenses to detect emitted photons from circularly polarized 493 nm laser excitation. Our method is not susceptible to intensity and frequency noise, and we show single-shot detection efficiency of ~ 2%, meaning that we can discriminate between the two qubits states with 99% confidence after as little as 50 ms of averaging. Using this measurement technique, we report entanglement between a single 138 Ba+ ion and its emitted photon with 86% fidelity. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness program, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.
Thresholds for linear amplitude change of a continuous pure tone.
Jerlvall, L B; Arlinger, S D; Holmgren, E C
1978-01-01
The human auditory sensitivity in detecting linear amplitude change of a continuous pure tone has been studied in normal-hearing subjects. It is shown that for short glide durations (less than 100 ms) the duration of the following plateau exerts a significant influence on the DLI. The average DLI at 1 kHz and 60 dB HL was found to be of the order of 0.8 dB when the intensity glide had a duration of 10 ms and was followed by a much longer plateau. For longer glide durations (greater than or equal to 200 ms) the DLI increased significantly as compared with shorter durations. There was no significant difference between increasing and decreasing intensity change. Significantly larger DLIs were found at 250 and 500 Hz than at 1, 2 and 4 kHz. The sound level was found to have a significant influence on the DLI. At low levels of 40 dB HL, and lower, the increase in DLI for detecting sound levels is highly significant. A falling exponential function offers a mathematical description of the relationship with good fit. It is concluded that an integrating mechanism with an integration time of approx. 200 ms could explain the auditory ability to detect linear amplitude glides of a continuous tone. The results are discussed in relation to previous intensity discrimination data, where pulse pairs, continuous intensity modulation or intensity glides were used as stimuli.
NASA Astrophysics Data System (ADS)
Guo, X.; Mandelis, A.; Zinman, B.
2012-11-01
Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site.« less
Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B
2017-01-01
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Colli, Alessandra; Attenkofer, Klaus; Raghothamachar, Balaji; ...
2016-07-14
Here in this article, we present the first experiment to prove the capabilities of X-ray topography for the direct imaging and analysis of defects, stress, and strain affecting the cell within the laminated photovoltaic (PV) module. Cracks originating from grain boundaries structures have been detected, developing along the cleavage planes of the crystal. The strain affecting the cell is clearly visualized through the bending of the metallization line images and can be easily mapped. While the recording conditions need to be optimized to maximize image contrast, this experiment demonstrates how synchrotron facilities can enable PV industry and research to characterizemore » full PV modules. Appropriate development of the technique could also lead to future use of laboratory-level X-ray sources.« less
A Near-Infrared Spectrometer Based on Novel Grating Light Modulators
Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin
2009-01-01
A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification. PMID:22574065
A near-infrared spectrometer based on novel grating light modulators.
Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin
2009-01-01
A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification.
Application of human reliability analysis to nursing errors in hospitals.
Inoue, Kayoko; Koizumi, Akio
2004-12-01
Adverse events in hospitals, such as in surgery, anesthesia, radiology, intensive care, internal medicine, and pharmacy, are of worldwide concern and it is important, therefore, to learn from such incidents. There are currently no appropriate tools based on state-of-the art models available for the analysis of large bodies of medical incident reports. In this study, a new model was developed to facilitate medical error analysis in combination with quantitative risk assessment. This model enables detection of the organizational factors that underlie medical errors, and the expedition of decision making in terms of necessary action. Furthermore, it determines medical tasks as module practices and uses a unique coding system to describe incidents. This coding system has seven vectors for error classification: patient category, working shift, module practice, linkage chain (error type, direct threat, and indirect threat), medication, severity, and potential hazard. Such mathematical formulation permitted us to derive two parameters: error rates for module practices and weights for the aforementioned seven elements. The error rate of each module practice was calculated by dividing the annual number of incident reports of each module practice by the annual number of the corresponding module practice. The weight of a given element was calculated by the summation of incident report error rates for an element of interest. This model was applied specifically to nursing practices in six hospitals over a year; 5,339 incident reports with a total of 63,294,144 module practices conducted were analyzed. Quality assurance (QA) of our model was introduced by checking the records of quantities of practices and reproducibility of analysis of medical incident reports. For both items, QA guaranteed legitimacy of our model. Error rates for all module practices were approximately of the order 10(-4) in all hospitals. Three major organizational factors were found to underlie medical errors: "violation of rules" with a weight of 826 x 10(-4), "failure of labor management" with a weight of 661 x 10(-4), and "defects in the standardization of nursing practices" with a weight of 495 x 10(-4).
NASA Astrophysics Data System (ADS)
Chen, Yong; Yan, Zhenya; Li, Xin
2018-02-01
The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.
NASA Astrophysics Data System (ADS)
Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.
2018-02-01
Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.
Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source.
Riek, Claudius; Kocher, Claudius; Zirak, Peyman; Kölbl, Christoph; Fimpel, Peter; Leitenstorfer, Alfred; Zumbusch, Andreas; Brida, Daniele
2016-08-15
A highly stable setup for stimulated Raman scattering (SRS) microscopy is presented. It is based on a two-branch femtosecond Er:fiber laser operating at a 40 MHz repetition rate. One of the outputs is directly modulated at the Nyquist frequency with an integrated electro-optic modulator (EOM). This compact source combines a jitter-free pulse synchronization with a broad tunability and allows for shot-noise limited SRS detection. The performance of the SRS microscope is illustrated with measurements on samples from material science and cell biology.
NASA Astrophysics Data System (ADS)
Wu, Jiangling; Huang, Yu; Bian, Xintong; Li, DanDan; Cheng, Quan; Ding, Shijia
2016-10-01
In this work, a custom-made intensity-interrogation surface plasmon resonance imaging (SPRi) system has been developed to directly detect a specific sequence of BCR/ABL fusion gene in chronic myelogenous leukemia (CML). The variation in the reflected light intensity detected from the sensor chip composed of gold islands array is proportional to the change of refractive index due to the selective hybridization of surface-bound DNA probes with target ssDNA. SPRi measurements were performed with different concentrations of synthetic target DNA sequence. The calibration curve of synthetic target sequence shows a good relationship between the concentration of synthetic target and the change of reflected light intensity. The detection limit of this SPRi measurement could approach 10.29 nM. By comparing SPRi images, the target ssDNA and non-complementary DNA sequence are able to be distinguished. This SPRi system has been applied for assay of BCR/ABL fusion gene extracted from real samples. This nucleic acid-based SPRi biosensor therefore offers an alternative high-effective, high-throughput label-free tool for DNA detection in biomedical research and molecular diagnosis.
Automated Power-Distribution System
NASA Technical Reports Server (NTRS)
Thomason, Cindy; Anderson, Paul M.; Martin, James A.
1990-01-01
Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.
Bioluminescence Truth Data Measurement and Signature Detection
2006-01-01
bioluminescence activity and related forcing factors. Kilroy sensors are shown attached to pilings with the senor system below water and the cell phone based...communications module attached to the top of the piling. A cell phone tower represents communication of data to shore. Also shown are distributed...installation are located based on GPS coordinates telemetered by the cell phone module. Icons point in direction of most recently measured flow and
Few-Nucleon Charge Radii and a Precision Isotope Shift Measurement in Helium
NASA Astrophysics Data System (ADS)
Hassan Rezaeian, Nima; Shiner, David
2015-05-01
Precision atomic theory and experiment provide a valuable method to determine few nucleon charge radii, complementing the more direct scattering approaches, and providing sensitive tests of few-body nuclear theory. Some puzzles with respect to this method exist, particularly in the muonic and electronic measurements of the proton radius, and as well with respect to measurements of nuclear size in helium. We perform precision measurements of the isotope shift of the 23S -23P transitions in 3He and 4He. A tunable laser frequency discriminator and electro-optic modulation technique give precise frequency and intensity control. We select (ts <50 ms) and stabilize the intensity of the required sideband and eliminate the unused sidebands (<= 10¬5) . The technique uses a MEMS fiber switch (ts = 10 ms) and several temperature stabilized narrow band (3 GHz) fiber gratings. A fiber based optical circulator and amplifier provide the desired isolation and net gain for the selected frequency. A beam with both species of helium is achieved using a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates Doppler effects. Careful detection design and software control allows for unbiased data collection. Current results will be discussed. This work is supported by NSF PHY-1068868 and PHY-1404498.
Kim, Dong Ik; Rhee, Hyug-Gyo; Song, Jae-Bong; Lee, Yun-Woo
2007-10-01
We present experimental results on the output power stabilization of an Ar(+) laser for a direct laser writing system (LWS). Instability of the laser output power in the LWS cause resolution fluctuations of being fabricated diffractive optical elements or computer-generated holograms. For the purpose of reducing the power fluctuations, we have constituted a feedback loop with an acousto-optic modulator, a photodetector, and a servo controller. In this system, we have achieved the stability of +/-0.20% for 12 min and the relative intensity noise level of 2.1 x 10(-7) Hz(-12) at 100 Hz. In addition, we applied our system to a 2 mW internal mirror He-Ne laser. As a consequence, we achieved the output power stability of +/-0.12% for 25 min.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha
2016-01-01
The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from themore » intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.« less
Method and apparatus for detecting internal structures of bulk objects using acoustic imaging
Deason, Vance A.; Telschow, Kenneth L.
2002-01-01
Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.
Sapir, Shimon; Pud, Dorit
2008-01-01
To assess the effect of tonic pain stimulation on auditory processing of speech-relevant acoustic signals in healthy pain-free volunteers. Sixty university students, randomly assigned to either a thermal pain stimulation (46 degrees C/6 min) group (PS) or no pain stimulation group (NPS), performed a rate change detection task (RCDT) involving sinusoidally frequency-modulated vowel-like signals. Task difficulty was manipulated by changing the rate of the modulated signals (henceforth rate). Perceived pain intensity was evaluated using a visual analog scale (VAS) (0-100). Mean pain rating was approximately 33 in the PS group and approximately 3 in the NPS group. Pain stimulation was associated with poorer performance on the RCDT, but this trend was not statistically significant. Performance worsened with increasing rate of signal modulation in both groups (p < 0.0001), with no pain by rate interaction. The present findings indicate a trend whereby mild or moderate pain appears to affect auditory processing of speech-relevant acoustic signals. This trend, however, was not statistically significant. It is possible that more intense pain would yield more pronounced (deleterious) effects on auditory processing, but this needs to be verified empirically.
Brinkløv, Signe; Jakobsen, Lasse; Ratcliffe, John M; Kalko, Elisabeth K V; Surlykke, Annemarie
2011-01-01
The directionality of bat echolocation calls defines the width of bats' sonar "view," while call intensity directly influences detection range since adequate sound energy must impinge upon objects to return audible echoes. Both are thus crucial parameters for understanding biosonar signal design. Phyllostomid bats have been classified as low intensity or "whispering bats," but recent data indicate that this designation may be inaccurate. Echolocation beam directionality in phyllostomids has only been measured through electrode brain-stimulation of restrained bats, presumably excluding active beam control via the noseleaf. Here, a 12-microphone array was used to measure echolocation call intensity and beam directionality in the frugivorous phyllostomid, Carollia perspicillata, echolocating in flight. The results showed a considerably narrower beam shape (half-amplitude beam angles of approximately 16° horizontally and 14° vertically) and louder echolocation calls [source levels averaging 99 dB sound pressure level (SPL) root mean square] for C. perspicillata than was found for this species when stationary. This suggests that naturally behaving phyllostomids shape their sound beam to achieve a longer and narrower sonar range than previously thought. C. perspicillata orient and forage in the forest interior and the narrow beam might be adaptive in clutter, by reducing the number and intensity of off-axis echoes.
Edge detection based on computational ghost imaging with structured illuminations
NASA Astrophysics Data System (ADS)
Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin
2018-03-01
Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.
Investigation of ELF/VLF waves created by a "beat-wave" HF ionospheric heating at high latitudes
NASA Astrophysics Data System (ADS)
Shumilov, Oleg; Tereshchenko, Evgeniy; Kasatkina, Elena; Gomonov, Alexandr
2015-04-01
The generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) electromagnetic waves by modulated ionospheric high frequency (HF, 2-30 MHz) heating is one of the main directions of ionospheric modification experiments. In this work, we present observations of ELF waves generated during a "beat-wave" heating experiments at the EISCAT heating facility. ELF waves were registered with the ELF receiver located at Lovozero (68 N, 35 E), 660 km east from the EISCAT Tromso heating facility (69.6 N, 19.2 E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.
Microvolume index of refraction determinations by interferometric backscatter
NASA Astrophysics Data System (ADS)
Bornhop, Darryl J.
1995-06-01
A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.
Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling
NASA Astrophysics Data System (ADS)
Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin
2018-01-01
In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.
NASA Astrophysics Data System (ADS)
Walker, Ernest L.
1994-05-01
This paper presents results of a theoretical investigation to evaluate the performance of code division multiple access communications over multimode optical fiber channels in an asynchronous, multiuser communication network environment. The system is evaluated using Gold sequences for spectral spreading of the baseband signal from each user employing direct-sequence biphase shift keying and intensity modulation techniques. The transmission channel model employed is a lossless linear system approximation of the field transfer function for the alpha -profile multimode optical fiber. Due to channel model complexity, a correlation receiver model employing a suboptimal receive filter was used in calculating the peak output signal at the ith receiver. In Part 1, the performance measures for the system, i.e., signal-to-noise ratio and bit error probability for the ith receiver, are derived as functions of channel characteristics, spectral spreading, number of active users, and the bit energy to noise (white) spectral density ratio. In Part 2, the overall system performance is evaluated.
Pan, Yan; Yan, Lianshan; Yi, Anlin; Jiang, Lin; Pan, Wei; Luo, Bin; Zou, Xihua
2017-10-15
We propose a four-linear state of polarization multiplexed intensity modulation and direct detection (IM/DD) scheme based on two orthogonal polarization division multiplexing (PDM) on-off keying systems. We also experimentally demonstrate a simple demultiplexing algorithm for this scheme by utilizing only a single Stokes analyzer. At the rate of 4×10 Gbit/s, the experimental results show that the power penalty of the proposed scheme is about 1.5 dB, compared to the single PDM-IM/DD for back-to-back (B2B) transmission. Compared to B2B, just about 1.7 dB power penalty is required after 25 km Corning LEAF optical fiber transmission. Meanwhile, the performance of the polarization tracking is evaluated, and the results show that the BER fluctuation is less than 0.5 dB with a polarization scrambling rate up to 708.75 deg/s.
Effect of Pointing Error on the BER Performance of an Optical CDMA FSO Link with SIK Receiver
NASA Astrophysics Data System (ADS)
Nazrul Islam, A. K. M.; Majumder, S. P.
2017-12-01
An analytical approach is presented for an optical code division multiple access (OCDMA) system over free space optical (FSO) channel considering the effect of pointing error between the transmitter and the receiver. Analysis is carried out with an optical sequence inverse keying (SIK) correlator receiver with intensity modulation and direct detection (IM/DD) to find the bit error rate (BER) with pointing error. The results are evaluated numerically in terms of signal-to-noise plus multi-access interference (MAI) ratio, BER and power penalty due to pointing error. It is noticed that the OCDMA FSO system is highly affected by pointing error with significant power penalty at a BER of 10-6 and 10-9. For example, penalty at BER 10-9 is found to be 9 dB corresponding to normalized pointing error of 1.4 for 16 users with processing gain of 256 and is reduced to 6.9 dB when the processing gain is increased to 1,024.
NASA direct detection laser diode driver
NASA Technical Reports Server (NTRS)
Seery, B. D.; Hornbuckle, C. A.
1989-01-01
TRW has developed a prototype driver circuit for GaAs laser diodes as part of the NASA/Goddard Space Flight Center's Direct Detection Laser Transceiver (DDLT) program. The circuit is designed to drive the laser diode over a range of user-selectable data rates from 1.7 to 220 Mbps, Manchester-encoded, while ensuring compatibility with 8-bit and quaternary pulse position modulation (QPPM) formats for simulating deep space communications. The resulting hybrid circuit has demonstrated 10 to 90 percent rise and fall times of less than 300 ps at peak currents exceeding 100 mA.
Optimum Array Processing for Detecting Binary Signals Corrupted by Directional Interference.
1972-12-01
specific cases. Two different series representations of a vector random process are discussed in Van Trees [3]. These two methods both require the... spaci ~ng d, etc.) its detection error represents a lower bound for the performance that might be obtained with other types of array processing (such...Middleton, Introduction to Statistical Communication Theory, New York: McGraw-Hill, 1960. 3. H.L. Van Trees , Detection, Estimation, and Modulation Theory
Bayesian analysis of multiple direct detection experiments
NASA Astrophysics Data System (ADS)
Arina, Chiara
2014-12-01
Bayesian methods offer a coherent and efficient framework for implementing uncertainties into induction problems. In this article, we review how this approach applies to the analysis of dark matter direct detection experiments. In particular we discuss the exclusion limit of XENON100 and the debated hints of detection under the hypothesis of a WIMP signal. Within parameter inference, marginalizing consistently over uncertainties to extract robust posterior probability distributions, we find that the claimed tension between XENON100 and the other experiments can be partially alleviated in isospin violating scenario, while elastic scattering model appears to be compatible with the frequentist statistical approach. We then move to model comparison, for which Bayesian methods are particularly well suited. Firstly, we investigate the annual modulation seen in CoGeNT data, finding that there is weak evidence for a modulation. Modulation models due to other physics compare unfavorably with the WIMP models, paying the price for their excessive complexity. Secondly, we confront several coherent scattering models to determine the current best physical scenario compatible with the experimental hints. We find that exothermic and inelastic dark matter are moderatly disfavored against the elastic scenario, while the isospin violating model has a similar evidence. Lastly the Bayes' factor gives inconclusive evidence for an incompatibility between the data sets of XENON100 and the hints of detection. The same question assessed with goodness of fit would indicate a 2 σ discrepancy. This suggests that more data are therefore needed to settle this question.
NASA Astrophysics Data System (ADS)
Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien
2018-01-01
A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed.
Using Passive and Active Acoustics to Examine Relationships of Cetacean and Prey Densities
2015-09-30
modulation or production to the marine soundscape with daily, lunar, and seasonal patterns. We aim to document how presence and intensity of certain...sounds relate to spatio-temporal variability of active acoustic backscatter strength. Additionally, several marine mammal species are predators of deep...scattering layer (DSL) species as well as krill. We intend to investigate if passive acoustic marine mammal detections are related to increased
Randomized algorithms for high quality treatment planning in volumetric modulated arc therapy
NASA Astrophysics Data System (ADS)
Yang, Yu; Dong, Bin; Wen, Zaiwen
2017-02-01
In recent years, volumetric modulated arc therapy (VMAT) has been becoming a more and more important radiation technique widely used in clinical application for cancer treatment. One of the key problems in VMAT is treatment plan optimization, which is complicated due to the constraints imposed by the involved equipments. In this paper, we consider a model with four major constraints: the bound on the beam intensity, an upper bound on the rate of the change of the beam intensity, the moving speed of leaves of the multi-leaf collimator (MLC) and its directional-convexity. We solve the model by a two-stage algorithm: performing minimization with respect to the shapes of the aperture and the beam intensities alternatively. Specifically, the shapes of the aperture are obtained by a greedy algorithm whose performance is enhanced by random sampling in the leaf pairs with a decremental rate. The beam intensity is optimized using a gradient projection method with non-monotonic line search. We further improve the proposed algorithm by an incremental random importance sampling of the voxels to reduce the computational cost of the energy functional. Numerical simulations on two clinical cancer date sets demonstrate that our method is highly competitive to the state-of-the-art algorithms in terms of both computational time and quality of treatment planning.
Duobinary pulse shaping for frequency chirp enabled complex modulation.
Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William
2016-09-01
The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.
Howard, James D; Kahnt, Thorsten
2017-03-08
Goal-directed behavior is sensitive to the current value of expected outcomes. This requires independent representations of specific rewards, which have been linked to orbitofrontal cortex (OFC) function. However, the mechanisms by which the human brain updates specific goals on the fly, and translates those updates into choices, have remained unknown. Here we implemented selective devaluation of appetizing food odors in combination with pattern-based neuroimaging and a decision-making task. We found that in a hungry state, participants chose to smell high-intensity versions of two value-matched food odor rewards. After eating a meal corresponding to one of the two odors, participants switched choices toward the low intensity of the sated odor but continued to choose the high intensity of the nonsated odor. This sensory-specific behavioral effect was mirrored by pattern-based changes in fMRI signal in lateral posterior OFC, where specific reward identity representations were altered after the meal for the sated food odor but retained for the nonsated counterpart. In addition, changes in functional connectivity between the OFC and general value coding in ventromedial prefrontal cortex (vmPFC) predicted individual differences in satiety-related choice behavior. These findings demonstrate how flexible representations of specific rewards in the OFC are updated by devaluation, and how functional connections to vmPFC reflect the current value of outcomes and guide goal-directed behavior. SIGNIFICANCE STATEMENT The orbitofrontal cortex (OFC) is critical for goal-directed behavior. A recent proposal is that OFC fulfills this function by representing a variety of state and task variables ("cognitive maps"), including a conjunction of expected reward identity and value. Here we tested how identity-specific representations of food odor reward are updated by satiety. We found that fMRI pattern-based signatures of reward identity in lateral posterior OFC were modulated after selective devaluation, and that connectivity between this region and general value coding ventromedial prefrontal cortex (vmPFC) predicted choice behavior. These results provide evidence for a mechanism by which devaluation modulates a cognitive map of expected reward in OFC and thereby alters general value signals in vmPFC to guide goal-directed behavior. Copyright © 2017 the authors 0270-6474/17/372627-12$15.00/0.
Method and apparatus of highly linear optical modulation
DeRose, Christopher; Watts, Michael R.
2016-05-03
In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.
Tremblay, Sara; Larochelle-Brunet, Félix; Lafleur, Louis-Philippe; El Mouderrib, Sofia; Lepage, Jean-François; Théoret, Hugo
2016-09-01
Since the initial demonstration of linear effects of stimulation duration and intensity on the strength of after-effects associated with transcranial direct current stimulation (tDCS), few studies have systematically assessed how varying these parameters modulates corticospinal excitability. Therefore, the objective of this study was to systematically evaluate the effects of anodal tDCS on corticospinal excitability at two stimulation intensities (1 mA, 2 mA) and durations (10 min, 20 min), and determine the value of several variables in predicting response. Two groups of 20 individuals received, in two separate sessions, 1 and 2 mA anodal tDCS (left primary motor cortex (M1)-right supra-orbital montage) for either 10- or 20-min. Transcranial magnetic stimulation was delivered over left M1 and motor evoked potentials (MEPs) of the contralateral hand were recorded prior to tDCS and every 5 min for 20-min post-tDCS. The following predictive variables were evaluated: I-wave recruitment, stimulation intensity, baseline M1 excitability and inter-trial MEP variability. Results show that anodal tDCS failed to significantly modulate corticospinal excitability in all conditions. Furthermore, low response rates were identified across all parameter combinations. No baseline measure was significantly correlated with increases in MEP amplitude. However, a decrease in inter-trial MEP variability was linked to response to anodal tDCS. In conclusion, the present findings are consistent with recent reports showing high levels of inter-subject variability in the neurophysiological response to tDCS, which may partly explain inconsistent group results. Furthermore, the level of variability in the neurophysiological outcome measure, i.e. MEPs, appears to be related to response. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS)
Gielen, Fabrice; Hours, Raphaelle; Emond, Stephane; Fischlechner, Martin; Schell, Ursula
2016-01-01
Ultrahigh-throughput screening, in which members of enzyme libraries compartmentalized in water-in-oil emulsion droplets are assayed, has emerged as a powerful format for directed evolution and functional metagenomics but is currently limited to fluorescence readouts. Here we describe a highly efficient microfluidic absorbance-activated droplet sorter (AADS) that extends the range of assays amenable to this approach. Using this module, microdroplets can be sorted based on absorbance readout at rates of up to 300 droplets per second (i.e., >1 million droplets per hour). To validate this device, we implemented a miniaturized coupled assay for NAD+-dependent amino acid dehydrogenases. The detection limit (10 μM in a coupled assay producing a formazan dye) enables accurate kinetic readouts sensitive enough to detect a minimum of 1,300 turnovers per enzyme molecule, expressed in a single cell, and released by lysis within a droplet. Sorting experiments showed that the AADS successfully enriched active variants up to 2,800-fold from an overwhelming majority of inactive ones at ∼100 Hz. To demonstrate the utility of this module for protein engineering, two rounds of directed evolution were performed to improve the activity of phenylalanine dehydrogenase toward its native substrate. Fourteen hits showed increased activity (improved >4.5-fold in lysate; kcat increased >2.7-fold), soluble protein expression levels (up 60%), and thermostability (Tm, 12 °C higher). The AADS module makes the most widely used optical detection format amenable to screens of unprecedented size, paving the way for the implementation of chromogenic assays in droplet microfluidics workflows. PMID:27821774
Subcycle quantum physics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Leitenstorfer, Alfred
2017-02-01
A time-domain approach to quantum electrodynamics is presented, covering the entire mid-infrared and terahertz frequency ranges. Ultrabroadband electro-optic sampling with few-femtosecond laser pulses allows direct detection of the vacuum fluctuations of the electric field in free space [1,2]. Besides the Planck and electric field fundamental constants, the variance of the ground state is determined solely by the inverse of the four-dimensional space-time volume over which a measurement or physical process integrates. Therefore, we can vary the contribution of multi-terahertz vacuum fluctuations and discriminate against the trivial shot noise due to the constant flux of near-infrared probe photons. Subcycle temporal resolution based on a nonlinear phase shift provides signals from purely virtual photons for accessing the ground-state wave function without amplification to finite intensity. Recently, we have succeeded in generation and analysis of mid-infrared squeezed transients with quantum noise patterns that are time-locked to the intensity envelope of the probe pulses. We find subcycle temporal positions with a noise level distinctly below the bare vacuum which serves as a direct reference. Delay times with increased differential noise indicate generation of highly correlated quantum fields by spontaneous parametric fluorescence. Our time-domain approach offers a generalized understanding of spontaneous emission processes as a consequence of local anomalies in the co-propagating reference frame modulating the quantum vacuum, in combination with the boundary conditions set by Heisenberg's uncertainty principle. [1] C. Riek et al., Science 350, 420 (2015) [2] A. S. Moskalenko et al., Phys. Rev. Lett. 115, 263601 (2015)
Lin, Yuehe; Bennett, Wendy D.; Timchalk, Charles; Thrall, Karla D.
2004-03-02
Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating "plug and play" concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in, for example, river water and saliva samples using stripping voltammetry is described.
Laser interferometer used for nanometer vibration measurements
NASA Astrophysics Data System (ADS)
Sun, Jiaxing; Yang, Jun; Liu, Zhihai; Yuan, Libo
2007-01-01
A novel laser interferometer which adopts alternating modulation phase tracking homodyne technique is proposed. The vibration of nanometer-accuracy is measured with the improved Michelson interferometer by adding cat's eye moving mirror and PZT phase modulation tracking structure. The working principle and the structure of the interferometer are analyzed and the demodulation scheme of alternating phase modulation and tracking is designed. The signal detection is changed from direct current detecting to alternating current detecting. The signal's frequency spectrum transform is achieved, the low-frequency noise jamming is abated, the Signal-to-Noise of the system is improved and the measured resolution is enhanced. Phase tracking technique effectively suppresses the low-frequency noise which is caused by outside environment factors such as temperature and vibration, and the stability of the system is enhanced. The experimental results indicate that for the signal with the frequency of 100Hz and the amplitude of 25nm, the output Signal-to-Noise is 30dB and the measured resolution is 1nm.
Zhang, Peng; Tan, Yi-Dong; Liu, Ning; Wu, Yun; Zhang, Shu-Lian
2013-11-01
We present an experimental observation of the output responses of a Nd:YAG microchip laser with an anisotropic external cavity under weak optical feedback. The feedback mirror is stationary during the experiments. A pair of acousto-optic modulators is used to produce a frequency shift in the feedback light with respect to the initial light. The laser output is a beat signal with 40 kHz modulation frequency and is separated into two orthogonal directions by a Wollaston prism. Phase differences between the two intensity curves are observed as the laser works in two orthogonal modes, and vary with the external birefringence element and the pump power. Theoretical analyses are given, and the simulated results are consistent with the experimental phenomena.
Imprint of non-linear effects on HI intensity mapping on large scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeh, Obinna, E-mail: umeobinna@gmail.com
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on themore » power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.« less
Imprint of non-linear effects on HI intensity mapping on large scales
NASA Astrophysics Data System (ADS)
Umeh, Obinna
2017-06-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moro, Erik A.
Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offeringmore » robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated interferometric sensor depends on an appropriate performance function (e.g., desired displacement range, accuracy, robustness, etc.). In this dissertation, the performance limitations of a bundled differential intensity-modulated displacement sensor are analyzed, where the bundling configuration has been designed to optimize performance. The performance limitations of a white light Fabry-Perot displacement sensor are also analyzed. Both these sensors are non-contacting, but they have access to different regions of the performance-space. Further, both these sensors have different degrees of sensitivity to experimental uncertainty. Made in conjunction with careful analysis, the decision of which sensor to deploy need not be an uninformed one.« less
Figure of merit for direct-detection optical channels
NASA Technical Reports Server (NTRS)
Chen, C.-C.
1992-01-01
The capacity and sensitivity of a direct-detection optical channel are calculated and compared to those of a white Gaussian noise channel. Unlike Gaussian channels in which the receiver performance can be characterized using the noise temperature, the performance of the direct-detection channel depends on both signal and background noise, as well as the ratio of peak to average signal power. Because of the signal-power dependence of the optical channel, actual performance of the channel can be evaluated only by considering both transmit and receive ends of the systems. Given the background noise power and the modulation bandwidth, however, the theoretically optimum receiver sensitivity can be calculated. This optimum receiver sensitivity can be used to define the equivalent receiver noise temperature and calculate the corresponding G/T product. It should be pointed out, however, that the receiver sensitivity is a function of signal power, and care must be taken to avoid deriving erroneous projections of the direct-detection channel performance.
Gelderman, Grant; Sivakumar, Anusha; Lipp, Sarah; Contreras, Lydia
2015-02-01
sRNAs play a significant role in controlling and regulating cellular metabolism. One of the more interesting aspects of certain sRNAs is their ability to make global changes in the cell by interacting with regulatory proteins. In this work, we demonstrate the use of an in vivo Tri-molecular Fluorescence Complementation assay to detect and visualize the central regulatory sRNA-protein interaction of the Carbon Storage Regulatory system in E. coli. The Carbon Storage Regulator consists primarily of an RNA binding protein, CsrA, that alters the activity of mRNA targets and of an sRNA, CsrB, that modulates the activity of CsrA. We describe the construction of a fluorescence complementation system that detects the interactions between CsrB and CsrA. Additionally, we demonstrate that the intensity of the fluorescence of this system is able to detect changes in the affinity of the CsrB-CsrA interaction, as caused by mutations in the protein sequence of CsrA. While previous methods have adopted this technique to study mRNA or RNA localization, this is the first attempt to use this technique to study the sRNA-protein interaction directly in bacteria. This method presents a potentially powerful tool to study complex bacterial RNA protein interactions in vivo. © 2014 Wiley Periodicals, Inc.
Design of coherent receiver optical front end for unamplified applications.
Zhang, Bo; Malouin, Christian; Schmidt, Theodore J
2012-01-30
Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100 Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of -33 dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11 dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.
NASA Astrophysics Data System (ADS)
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.
Subramanian, Sankaran; Koscielniak, Janusz W.; Devasahayam, Nallathamby; Pursley, Randall H.; Pohida, Thomas J.; Krishna, Murali C.
2007-01-01
Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc. PMID:17350865
Modal noise impact in radio over fiber multimode fiber links.
Gasulla, I; Capmany, J
2008-01-07
A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise.
Boletti, A; Boffi, P; Martelli, P; Ferrario, M; Martinelli, M
2015-01-26
To face the increased demand for bandwidth, cost-effectiveness and simplicity of future Ethernet data communications, a comparison between two different solutions based on directly-modulated VCSEL sources and Silicon Photonics technologies is carried out. Also by exploiting 4-PAM modulation, the transmission of 50-Gb/s and beyond capacity per channel is analyzed by means of BER performance. Applications for optical backplane, very short reach and in case of client-optics networks and intra and inter massive data centers communications (up to 10 km) are taken into account. A comparative analysis based on the power consumption is also proposed.
Carbon lines at limitedly low frequencies
NASA Technical Reports Server (NTRS)
Valtts, I. Y.
1983-01-01
Detection of several absorption recombination radio lines of carbon at 26 MHz in Cas A direction resulted in an attempt to select similar situations (a gas cloud projection on the intense source of the nonthermal radio emission) that are promising for detecting lines of such a kind. Recommendations are given for observations to be made.
Direct-detection Free-space Laser Transceiver Test-bed
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Chen, Jeffrey R.; Dabney, Philip W.; Ferrara, Jeffrey F.; Fong, Wai H.; Martino, Anthony J.; McGarry Jan. F.; Merkowitz, Stephen M.; Principe, Caleb M.; Sun, Siaoli;
2008-01-01
NASA Goddard Space Flight Center is developing a direct-detection free-space laser communications transceiver test bed. The laser transmitter is a master-oscillator power amplifier (MOPA) configuration using a 1060 nm wavelength laser-diode with a two-stage multi-watt Ytterbium fiber amplifier. Dual Mach-Zehnder electro-optic modulators provide an extinction ratio greater than 40 dB. The MOPA design delivered 10-W average power with low-duty-cycle PPM waveforms and achieved 1.7 kW peak power. We use pulse-position modulation format with a pseudo-noise code header to assist clock recovery and frame boundary identification. We are examining the use of low-density-parity-check (LDPC) codes for forward error correction. Our receiver uses an InGaAsP 1 mm diameter photocathode hybrid photomultiplier tube (HPMT) cooled with a thermo-electric cooler. The HPMT has 25% single-photon detection efficiency at 1064 nm wavelength with a dark count rate of 60,000/s at -22 degrees Celsius and a single-photon impulse response of 0.9 ns. We report on progress toward demonstrating a combined laser communications and ranging field experiment.
Mood influences supraspinal pain processing separately from attention.
Villemure, Chantal; Bushnell, M Catherine
2009-01-21
Studies show that inducing a positive mood or diverting attention from pain decreases pain perception. Nevertheless, induction manipulations, such as viewing interesting movies or performing mathematical tasks, often influence both emotional and attentional states. Imaging studies have examined the neural basis of psychological pain modulation, but none has explicitly separated the effects of emotion and attention. Using odors to modulate mood and shift attention from pain, we previously showed that the perceptual consequences of changing mood differed from those of altering attention, with mood primarily altering pain unpleasantness and attention preferentially altering pain intensity. These findings suggest that brain circuits involved in pain modulation provoked by mood or attention are partially separable. Here we used functional magnetic resonance imaging to directly compare the neurocircuitry involved in mood- and attention-related pain modulation. We manipulated independently mood state and attention direction, using tasks involving heat pain and pleasant and unpleasant odors. Pleasant odors, independent of attentional focus, induced positive mood changes and decreased pain unpleasantness and pain-related activity within the anterior cingulate (ACC), medial thalamus, and primary and secondary somatosensory cortices. The effects of attentional state were less robust, with only the activity in anterior insular cortex (aIC) showing possible attentional modulation. Lateral inferior frontal cortex [LinfF; Brodmann's area (BA) 45/47] activity correlated with mood-related modulation, whereas superior posterior parietal (SPP; BA7) and entorhinal activity correlated with attention-related modulation. ACC activity covaried with LinfF and periacqueductal gray activity, whereas aIC activity covaried with SPP activity. These findings suggest that separate neuromodulatory circuits underlie emotional and attentional modulation of pain.
Quaternary pulse position modulation electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.
1991-01-01
The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (GPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.
Quaternary pulse position modulation electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.
1991-01-01
The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.
Manipulation Detection and Preference Alterations in a Choice Blindness Paradigm
Taya, Fumihiko; Gupta, Swati; Farber, Ilya; Mullette-Gillman, O'Dhaniel A.
2014-01-01
Objectives It is commonly believed that individuals make choices based upon their preferences and have access to the reasons for their choices. Recent studies in several areas suggest that this is not always the case. In choice blindness paradigms, two-alternative forced-choice in which chosen-options are later replaced by the unselected option, individuals often fail to notice replacement of their chosen option, confabulate explanations for why they chose the unselected option, and even show increased preferences for the unselected-but-replaced options immediately after choice (seconds). Although choice blindness has been replicated across a variety of domains, there are numerous outstanding questions. Firstly, we sought to investigate how individual- or trial-factors modulated detection of the manipulations. Secondly, we examined the nature and temporal duration (minutes vs. days) of the preference alterations induced by these manipulations. Methods Participants performed a computerized choice blindness task, selecting the more attractive face between presented pairs of female faces, and providing a typewritten explanation for their choice on half of the trials. Chosen-face cue manipulations were produced on a subset of trials by presenting the unselected face during the choice explanation as if it had been selected. Following all choice trials, participants rated the attractiveness of each face individually, and rated the similarity of each face pair. After approximately two weeks, participants re-rated the attractiveness of each individual face online. Results Participants detected manipulations on only a small proportion of trials, with detections by fewer than half of participants. Detection rates increased with the number of prior detections, and detection rates subsequent to first detection were modulated by the choice certainty. We show clear short-term modulation of preferences in both manipulated and non-manipulated explanation trials compared to choice-only trials (with opposite directions of effect). Preferences were altered in the direction that subjects were led to believe they selected. PMID:25247886
Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration
NASA Astrophysics Data System (ADS)
Sabet, Mahsheed; Rowshanfarzad, Pejman; Vial, Philip; Menk, Frederick W.; Greer, Peter B.
2012-08-01
In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.
NASA Astrophysics Data System (ADS)
Wei, Min; Kan, RuiFeng; Chen, Bing; Xu, ZhenYu; Yang, ChenGuang; Chen, Xiang; Xia, HuiHui; Hu, Mai; He, Yabai; Liu, JianGuo; Fan, XueLi; Wang, Wei
2017-05-01
We report the development of an accurate calibration-free wavelength-scanned wavelength modulation spectroscopy system based on the temporal wavelength response of a current-modulated quantum cascade laser (QCL) for gas concentration detections. Accurate measurements and determination of the QCL output intensity and wavelength response to current modulation enabled calculations of 1f-normalized 2f signal to obtain spectroscopic information with and without gas absorption in the beam path. The gas concentration was retrieved by fitting a simulation spectrum based on spectral line parameters to the background-subtracted 1f-normalized 2f signal based on measurements. In this paper, we demonstrate the performance of the developed system for the CH4 detection by applying an infrared QCL (at 7.84 µm or 1275 cm-1) to probe its two infrared transition lines at 1275.042 cm-1 and 1275.387 cm-1. The experimental results indicated very good agreements between measurements and modeling, for integrated absorbance ranging from 0.0057 cm-1 to 0.11 cm-1 (or absorbance ranging from 0.029 to 0.57). The extracted integrated absorbance was highly linear ( R = 0.99996) to the gas sample concentration. Deviations between the nominal sample gas concentrations and the extracted gas concentrations calculated based on HITRAN spectroscopic parameters were within 3.5%.
Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene
2017-08-01
Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.
Research of the fluorescence detection apparatus for nutrients
NASA Astrophysics Data System (ADS)
Wang, Yu; Yan, Huimin; Ni, Xuxiang; Xu, Xiaoyi; Chen, Shibing
2015-10-01
The research of the multifunctional analyzer of Clinical Nutrition, which integrates the absorbance, luminescence, fluorescence and other optical detection methods, can overcome the functional limitations of a single technology on human nutrition analysis, and realize a rapid and accurate analysis of the nutrients. This article focuses on the design of fluorescence detection module that uses a photomultiplier tube(PMT) to detect weak fluorescence, and utilizes the single photon counting method to measure the fluorescence intensity, and then according to the relationship between the fluorescent marker and fluorescence intensity, the concentration of the analyte can be derived. Using fluorescein isothiocyanate(FITC, the most widely used fluorescein currently)to mark antibodies in the experiment, therefore, according to the maximum absorption wavelength and the maximum emission wavelength of the fluorescein isothiocyanate, to select the appropriate filters to set up the optical path. In addition, the fluorescence detection apparatus proposed in this paper uses an aspherical lens with large numerical aperture, in order to improve the capacity of signal acquisition more effectively, and the selective adoption of flexible optical fiber can realize a compact opto-mechanical structure, which is also conducive to the miniaturization of the device. The experimental results show that this apparatus has a high sensitivity, can be used for the detection and analysis of human nutrition.
QUASI-BIENNIAL MODULATION OF GALACTIC COSMIC RAYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurenza, M.; Storini, M.; Vecchio, A.
2012-04-20
The time variability of the cosmic-ray (CR) intensity at three different rigidities has been analyzed through the empirical mode decomposition technique for the period 1964-2004. Apart from the {approx}11 yr cycle, quasi-biennial oscillations (QBOs) have been detected as a prominent scale of variability in CR data, as well as in the heliomagnetic field magnitude at 1 AU and in the sunspot area. The superposition of the {approx}11 yr and QBO contributions reproduces the general features of the CR modulation, such as most of the step-like decreases and the Gnevyshev Gap phenomenon. A significant correlation has also been found between QBOsmore » of the heliospheric magnetic field and the CR intensity during even solar activity cycles, suggesting that the former are responsible for step-like decreases in CR modulation, probably dominated by the particle diffusion/convection in such periods. In contrast, during odd-numbered cycles, no significant correlation is found. This could be explained with an enhanced drift effect also during the solar maximum or a greater influence of merged interaction regions at great heliocentric distances during odd cycles. Moreover, the QBOs of CR data are delayed with respect to sunspot activity, the lag being shorter for A > 0 periods of even cycles ({approx}1-4 months) than for A < 0 periods of odd cycles ({approx}7-9 months); we suggest that solar QBOs also affect the recovery of the CR intensity after the solar activity maximum.« less
Coherent communication link using diode-pumped lasers
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Wallace, Richard W.
1989-01-01
Work toward developing a diffraction limited, single frequency, modulated transmitter suitable for coherent optical communication or direct detection communication is discussed. Diode pumped, monolithic Nd:YAG nonplanar ring oscillators were used as the carrier beam. An external modulation technique which can handle high optical powers, has moderate modulation voltage, and which can reach modulation rates of 1 GHz was invented. Semiconductor laser pumped solid-state lasers which have high output power (0.5 Watt) and which oscillate at a single frequency, in a diffraction limited beam, at the wavelength of 1.06 microns were built. A technique for phase modulating the laser output by 180 degrees with a 40-volt peak to peak driving voltage is demonstrated. This technique can be adapted for amplitude modulation of 100 percent with the same voltage. This technique makes use of a resonant bulk modulator, so it does not have the power handling limitations of guided wave modulators.
Measurement of the length of pedestrian crossings from image data
NASA Astrophysics Data System (ADS)
Uddin, Mohammad S.; Shioyama, Tadayoshi
2004-10-01
A computer vision based new method for the measurement of the length of pedestrian crossings using a single camera is described. The main objective of this research is to develop a travel aid for the blind people. In a crossing, the usual black road surface is painted with constant width periodic white bands. In Japan, this width is 45 cm. The crossing region as well as its length is detected using this concept. At first, the crossing direction is determined from the power spectrum using fast Fourier transform. The periodic white and black bands are detected using integration along the crossing direction and then differentiation of the integral data perpendicular to crossing. This detection may be erroneous due to adverse effects of the neighboring region of crossing, as the intensity of the whole image is used for bands detection. To remove the neighboring effects, the crossing region is extracted. Then the crossing bands are detected from the image intensity using the crossing region only. Experiment is performed using 32 real road scenes with pedestrian crossing. The rms error is found 2.28 m. The technique determines the crossing length with good accuracy for crossings marked clearly with white paintings as well as fine image resolution.
Direct solar pumping of semiconductor lasers: A feasibility study
NASA Technical Reports Server (NTRS)
Anderson, Neal G.
1991-01-01
The primary goals of the feasibility study are the following: (1) to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space directly focused sunlight; and (2) to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or battery electrically pumping a current injection laser. With external modulation, such lasers may prove to be efficient sources for intersatellite communications. We proposed to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation for operation at low pump intensities. This report outlines our progress toward these goals. Discussion of several technical details are left to the attached summary abstract.
Characterizing resonant component in speech: A different view of tracking fundamental frequency
NASA Astrophysics Data System (ADS)
Dong, Bin
2017-05-01
Inspired by the nonlinearity and nonstationarity and the modulations in speech, Hilbert-Huang Transform and cyclostationarity analysis are employed to investigate the speech resonance in vowel in sequence. Cyclostationarity analysis is not directly manipulated on the target vowel, but on its intrinsic mode functions one by one. Thanks to the equivalence between the fundamental frequency in speech and the cyclic frequency in cyclostationarity analysis, the modulation intensity distributions of the intrinsic mode functions provide much information for the estimation of the fundamental frequency. To highlight the relationship between frequency and time, the pseudo-Hilbert spectrum is proposed to replace the Hilbert spectrum here. After contrasting the pseudo-Hilbert spectra of and the modulation intensity distributions of the intrinsic mode functions, it finds that there is usually one intrinsic mode function which works as the fundamental component of the vowel. Furthermore, the fundamental frequency of the vowel can be determined by tracing the pseudo-Hilbert spectrum of its fundamental component along the time axis. The later method is more robust to estimate the fundamental frequency, when meeting nonlinear components. Two vowels [a] and [i], picked up from a speech database FAU Aibo Emotion Corpus, are applied to validate the above findings.
NASA Astrophysics Data System (ADS)
Gatto, A.; Parolari, P.; Boffi, P.
2018-05-01
Frequency division multiplexing (FDM) is attractive to achieve high capacities in multiple access networks characterized by direct modulation and direct detection. In this paper we take into account point-to-point intra- and inter-datacenter connections to understand the performance of FDM operation compared with the ones achievable with standard multiple carrier modulation approach based on discrete multitone (DMT). DMT and FDM allow to match the non-uniform and bandwidth-limited response of the system under test, associated with the employment of low-cost directly-modulated sources, such as VCSELs with high-frequency chirp, and with fibre-propagation in presence of chromatic dispersion. While for very short distances typical of intra-datacentre communications, the huge number of DMT subcarriers permits to increase the transported capacity with respect to the FDM employment, in case of few tens-km reaches typical of inter-datacentre connections, the capabilities of FDM are more evident, providing system performance similar to the case of DMT application.
Li, Xiaolei; Deng, Lei; Chen, Xiaoman; Cheng, Mengfan; Fu, Songnian; Tang, Ming; Liu, Deming
2017-04-17
A novel automatic bias control (ABC) method for optical in-phase and quadrature (IQ) modulator is proposed and experimentally demonstrated. In the proposed method, two different low frequency sine wave dither signals are generated and added on to the I/Q bias signal respectively. Instead of power monitoring of the harmonics of the dither signal, dither-correlation detection is proposed and used to adjust the bias voltages of the optical IQ modulator. By this way, not only frequency spectral analysis isn't required but also the directional bias adjustment could be realized, resulting in the decrease of algorithm complexity and the growth of convergence rate of ABC algorithm. The results show that the sensitivity of the proposed ABC method outperforms that of the traditional dither frequency monitoring method. Moreover, the proposed ABC method is proved to be modulation-format-free, and the transmission penalty caused by this method for both 10 Gb/s optical QPSK and 17.9 Gb/s optical 16QAM-OFDM signal transmission are negligible in our experiment.
NASA Astrophysics Data System (ADS)
Mehrübeoğlu, Mehrübe; McLauchlan, Lifford
2006-02-01
The goal of this project was to detect the intensity of traffic on a road at different times of the day during daytime. Although the work presented utilized images from a section of a highway, the results of this project are intended for making decisions on the type of intervention necessary on any given road at different times for traffic control, such as installation of traffic signals, duration of red, green and yellow lights at intersections, and assignment of traffic control officers near school zones or other relevant locations. In this project, directional patterns are used to detect and count the number of cars in traffic images over a fixed area of the road to determine local traffic intensity. Directional patterns are chosen because they are simple and common to almost all moving vehicles. Perspective vision effects specific to each camera orientation has to be considered, as they affect the size and direction of patterns to be recognized. In this work, a simple and fast algorithm has been developed based on horizontal directional pattern matching and perspective vision adjustment. The results of the algorithm under various conditions are presented and compared in this paper. Using the developed algorithm, the traffic intensity can accurately be determined on clear days with average sized cars. The accuracy is reduced on rainy days when the camera lens contains raindrops, when there are very long vehicles, such as trucks or tankers, in the view, and when there is very low light around dusk or dawn.
Beta receptor-mediated modulation of the late positive potential in humans.
de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander
2012-02-01
Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.
Method and apparatus for inspecting reflection masks for defects
Bokor, Jeffrey; Lin, Yun
2003-04-29
An at-wavelength system for extreme ultraviolet lithography mask blank defect detection is provided. When a focused beam of wavelength 13 nm is incident on a defective region of a mask blank, three possible phenomena can occur. The defect will induce an intensity reduction in the specularly reflected beam, scatter incoming photons into an off-specular direction, and change the amplitude and phase of the electric field at the surface which can be monitored through the change in the photoemission current. The magnitude of these changes will depend on the incident beam size, and the nature, extent and size of the defect. Inspection of the mask blank is performed by scanning the mask blank with 13 nm light focused to a spot a few .mu.m in diameter, while measuring the reflected beam intensity (bright field detection), the scattered beam intensity (dark-field detection) and/or the change in the photoemission current.
Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders
Peiker, Ina; Schneider, Till R.; Milne, Elizabeth; Schöttle, Daniel; Vogeley, Kai; Münchau, Alexander; Schunke, Odette; Siegel, Markus; Engel, Andreas K.; David, Nicole
2015-01-01
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD. PMID:26147342
NASA Astrophysics Data System (ADS)
Grossman, S.
2015-05-01
Since the events of September 11, 2001, the intelligence focus has moved from large order-of-battle targets to small targets of opportunity. Additionally, the business community has discovered the use of remotely sensed data to anticipate demand and derive data on their competition. This requires the finer spectral and spatial fidelity now available to recognize those targets. This work hypothesizes that directed searches using calibrated data perform at least as well as inscene manually intensive target detection searches. It uses calibrated Worldview-2 multispectral images with NEF generated signatures and standard detection algorithms to compare bespoke directed search capabilities against ENVI™ in-scene search capabilities. Multiple execution runs are performed at increasing thresholds to generate detection rates. These rates are plotted and statistically analyzed. While individual head-to-head comparison results vary, 88% of the directed searches performed at least as well as in-scene searches with 50% clearly outperforming in-scene methods. The results strongly support the premise that directed searches perform at least as well as comparable in-scene searches.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Gao, Feng; Dong, Junyu; Qi, Qiang
2018-04-01
Synthetic aperture radar (SAR) image is independent on atmospheric conditions, and it is the ideal image source for change detection. Existing methods directly analysis all the regions in the speckle noise contaminated difference image. The performance of these methods is easily affected by small noisy regions. In this paper, we proposed a novel change detection framework for saliency-guided change detection based on pattern and intensity distinctiveness analysis. The saliency analysis step can remove small noisy regions, and therefore makes the proposed method more robust to the speckle noise. In the proposed method, the log-ratio operator is first utilized to obtain a difference image (DI). Then, the saliency detection method based on pattern and intensity distinctiveness analysis is utilized to obtain the changed region candidates. Finally, principal component analysis and k-means clustering are employed to analysis pixels in the changed region candidates. Thus, the final change map can be obtained by classifying these pixels into changed or unchanged class. The experiment results on two real SAR images datasets have demonstrated the effectiveness of the proposed method.
Optical detection of ultrasound using an apertureless near-field scanning optical microscopy system
NASA Astrophysics Data System (ADS)
Ahn, Phillip; Zhang, Zhen; Sun, Cheng; Balogun, Oluwaseyi
2013-01-01
Laser ultrasonics techniques are power approaches for non-contact generation and detection of high frequency ultrasound on a local scale. In these techniques, optical diffraction limits the spatial information that can be accessed from a measurement. In order to improve the lateral spatial resolution, we incorporate an apertureless near-field scanning optical microscope (aNSOM) into laser ultrasonics setup for local detection of laser generated ultrasound. The aNSOM technique relies on the measurement of a weak backscattered near-field light intensity resulting from the oblique illumination of a nanoscale probe-tip positioned close to a sample surface. We enhance the optical near-field intensity by coupling light to surface plasmon polaritons (SPPs) on the shaft of an atomic force microscopy (AFM) cantilever. The SPPs propagate down the AFM shaft, localize at the tip apex, and are backscattered to the far-field when the separation distance between the probe tip and the sample surface is comparable to the probe-tip radius. The backscattered near-field intensity is dynamically modulated when an ultrasonic wave arrives at the sample surface leading to a transient change in the tip-sample separation distance. We present experimental results detailing measurement of broadband and narrowband laser generated ultrasound in solids with frequencies reaching up to 180 MHz range.
Nonlinear Detection, Estimation, and Control for Free-Space Optical Communication
2008-08-17
original message. The promising features of this communication scheme such as high-bandwidth, power efficiency, and security, render it a viable means...bandwidth, power efficiency, and security, render it a viable means for high data rate point-to-point communication. In this dissertation, we adopt a...Department of Electrical and Computer Engineering In free-space optical communication, the intensity of a laser beam is modulated by a message, the beam
Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.
Meng, Bo; Wang, Qi Jie
2012-01-16
In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.
Characteristics of detectors for prevention of nuclear radiation terrorism
NASA Astrophysics Data System (ADS)
Kolesnikov, S. V.; Ryabeva, E. V.; Samosadny, V. T.
2017-01-01
There is description of one type of detectors in use for the task of nuclear terrorism cases prevention to determine the direction to the radioactive source and geometrical structure of radiation field. This type is a modular detector with anisotropic sensitivity. The principle of work of a modular detecting device is the simultaneous operation of several detecting modules with anisotropic sensitivity to gamma radiation.
Characterization of amine-functionalized electrode for aqueous carbon dioxide (CO2) direct detection
NASA Astrophysics Data System (ADS)
Sato, Hiroshi
2017-03-01
In this study, fabrication of amino groups and ferrocenes co-modified sensor electrode and electrochemical detection of carbon dioxide (CO2) in the saline solution is reported. Electrochemical detection of CO2 was carried out using cyclic voltammetry in saline solution containing sodium bicarbonate as CO2 source. Oxidation and reduction peak current intensities computed from cyclic voltammograms varied as a function of concentration of CO2 molecules. The calibration curve was obtained by plotting oxidation peak current intensities as a function of CO2 concentration. The sensor electrode prepared in this study can estimate the differences between concentrations of CO2 in normal seawater up to 10 times higher. Furthermore, the surface analysis was performed to clarify the CO2 detection mechanism.
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Sherer, T. N.; Maitland, D. J.
1989-01-01
A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.
A CMOS Luminescence Intensity and Lifetime Dual Sensor Based on Multicycle Charge Modulation.
Fu, Guoqing; Sonkusale, Sameer R
2018-06-01
Luminescence plays an important role in many scientific and industrial applications. This paper proposes a novel complementary metal-oxide-semiconductor (CMOS) sensor chip that can realize both luminescence intensity and lifetime sensing. To enable high sensitivity, we propose parasitic insensitive multicycle charge modulation scheme for low-light lifetime extraction benefiting from simplicity, accuracy, and compatibility with deeply scaled CMOS process. The designed in-pixel capacitive transimpedance amplifier (CTIA) based structure is able to capture the weak luminescence-induced voltage signal by accumulating photon-generated charges in 25 discrete gated 10-ms time windows and 10-μs pulsewidth. A pinned photodiode on chip with 1.04 pA dark current is utilized for luminescence detection. The proposed CTIA-based circuitry can achieve 2.1-mV/(nW/cm 2 ) responsivity and 4.38-nW/cm 2 resolution at 630 nm wavelength for intensity measurement and 45-ns resolution for lifetime measurement. The sensor chip is employed for measuring time constants and luminescence lifetimes of an InGaN-based white light-emitting diode at different wavelengths. In addition, we demonstrate accurate measurement of the lifetime of an oxygen sensitive chromophore with sensitivity to oxygen concentration of 7.5%/ppm and 6%/ppm in both intensity and lifetime domain. This CMOS-enabled oxygen sensor was then employed to test water quality from different sources (tap water, lakes, and rivers).
Static magnetic Faraday rotation spectroscopy combined with a differential scheme for OH detection
NASA Astrophysics Data System (ADS)
Zhao, Weixiong; Deng, Lunhua; Qian, Xiaodong; Fang, Bo; Gai, Yanbo; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun
2015-04-01
The hydroxyl (OH) radical plays a critical role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and other trace gaseous species. Because of its very short life time and very low concentration in the atmosphere, interference-free high sensitivity in-situ OH monitoring by laser spectroscopy represents a real challenge. Faraday rotation spectroscopy (FRS) relies on the particular magneto-optic effect observed for paramagnetic species, which makes it capable of enhancing the detection sensitivity and mitigation of spectral interferences from diamagnetic species in the atmosphere. When an AC magnetic field is used, the Zeeman splitting of the molecular absorption line (and thus the magnetic circular birefringence) is modulated. This provides an 'internal modulation' of the sample, which permits to suppress the external noise like interference fringes. An alternative FRS detection scheme is to use a static magnetic field (DC-field) associated with laser wavelength modulation to effectively modulate the Zeeman splitting of the absorption lines. In the DC field case, wavelength modulation of the laser frequency can provide excellent performance compared to most of the sensing systems based on direct absorption and wavelength modulation spectroscopy. The dimension of the DC solenoid is not limited by the resonant frequency of the RLC circuit, which makes large dimension solenoid coil achievable and the absorption base length could be further increased. By employing a combination of the environmental photochemical reactor or smog chamber with multipass absorption cell, one can lower the minimum detection limit for high accuracy atmospheric chemistry studies. In this paper, we report on the development of a DC field based FRS in conjunction with a balanced detection scheme for OH radical detection at 2.8 μm and the construction of OH chemistry research platform which combined a large dimension superconducting magnetic coil with the multipass cell and photochemical reactor chamber for real time in-situ measurement of OH radical concentration in the chamber.
Murakami, Naoya; Norihisa, Yoshiki; Isohashi, Fumiaki; Murofushi, Keiko; Ariga, Takuro; Kato, Tomoyasu; Inaba, Koji; Okamoto, Hiroyuki; Ito, Yoshinori; Toita, Takafumi; Itami, Jun
2016-01-01
The aim of this study was to develop an appropriate definition for vaginal cuff and paracolpium clinical target volume (CTV) for postoperative intensity modulated radiation therapy in patients with uterine cervical cancer. A working subgroup was organized within the Radiation Therapy Study Group of the Japan Clinical Oncology Group to develop a definition for the postoperative vaginal cuff and paracolpium CTV in December 2013. The group consisted of 5 radiation oncologists who specialized in gynecologic oncology and a gynecologic oncologist. A comprehensive literature review that included anatomy, surgery, and imaging fields was performed and was followed by multiple discreet face-to-face discussions and e-mail messages before a final consensus was reached. Definitions for the landmark structures in all directions that demarcate the vaginal cuff and paracolpium CTV were decided by consensus agreement of the working group. A table was created that showed boundary structures of the vaginal cuff and paracolpium CTV in each direction. A definition of the postoperative cervical cancer vaginal cuff and paracolpium CTV was developed. It is expected that this definition guideline will serve as a template for future radiation therapy clinical trial protocols, especially protocols involving intensity modulated radiation therapy. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs
NASA Technical Reports Server (NTRS)
Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia
1997-01-01
Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].
NASA Astrophysics Data System (ADS)
Owens, Mathew; Scott, Chris; Lockwood, Mike; Barnard, Luke; Harrison, Giles; Nicoll, Keri; Watt, Clare; Bennett, Alec
2015-04-01
Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40 to 60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.
Noise filtering via electromagnetically induced transparency
NASA Astrophysics Data System (ADS)
Jeong, Taek; Bae, In-Ho; Moon, Han Seb
2017-01-01
We report on the intensity-noise reduction of pseudo-thermal light via electromagnetically induced transparency (EIT) in the Λ-type system of the 5S1/2-5P1/2 transition in 87Rb. Noise filtering of the pseudo-thermal probe light was achieved via an EIT filter and measured according to the degree of intensity noise of the pseudo-thermal probe light. Reductions in the intensity and spectral noise of the pseudo-thermal probe light with the EIT filter were observed using the direct intensity fluctuation and heterodyne detection technique, respectively. Comparison of the intensity noise of the pseudo-thermal probe light before and after passing through the EIT filter revealed a significant reduction in the intensity noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulationmore » effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.« less
Spatial reasoning to determine stream network from LANDSAT imagery
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Wang, S.; Elliott, D. B.
1983-01-01
In LANDSAT imagery, spectral and spatial information can be used to detect the drainage network as well as the relative elevation model in mountainous terrain. To do this, mixed information of material reflectance in the original LANDSAT imagery must be separated. From the material reflectance information, big visible rivers can be detected. From the topographic modulation information, ridges and valleys can be detected and assigned relative elevations. A complete elevation model can be generated by interpolating values for nonridge and non-valley pixels. The small streams not detectable from material reflectance information can be located in the valleys with flow direction known from the elevation model. Finally, the flow directions of big visible rivers can be inferred by solving a consistent labeling problem based on a set of spatial reasoning constraints.
Correlated-Intensity velocimeter for Arbitrary Reflector
Wang, Zhehui; Luo, Shengnian; Barnes, Cris W.; Paul, Stephen F.
2008-11-11
A velocimetry apparatus and method comprising splitting incoming reflected laser light and directing the laser light into first and second arms, filtering the laser light with passband filters in the first and second arms, one having a positive passband slope and the other having a negative passband slope, and detecting the filtered laser light via light intensity detectors following the passband filters in the first and second arms
High-security communication by coherence modulation at the photon-counting level.
Rhodes, William T; Boughanmi, Abdellatif; Moreno, Yezid Torres
2016-05-20
We show that key-specified interferometer path-length difference modulation (often referred to as coherence modulation), operating in the photon-counting regime with a broadband source, can provide a quantifiably high level of physics-guaranteed security for binary signal transmission. Each signal bit is associated with many photocounts, perhaps numbering in the thousands. Of great importance, the presence of an eavesdropper can be quickly detected. We first review the operation of key-specified coherence modulation at high light levels, illustrating by means of an example its lack of security against attack. We then show, using the same example, that, through the reduction of light intensities to photon-counting levels, a high level of security can be attained. A particular attack on the system is analyzed to demonstrate the quantifiability of the scheme's security, and various remaining research issues are discussed. A potential weakness of the scheme lies in a possible vulnerability to light amplification by an attacker.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cashmore, Jason, E-mail: Jason.cashmore@uhb.nhs.uk; Ramtohul, Mark; Ford, Dan
Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery ofmore » pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.« less
Advanced digital signal processing for short-haul and access network
NASA Astrophysics Data System (ADS)
Zhang, Junwen; Yu, Jianjun; Chi, Nan
2016-02-01
Digital signal processing (DSP) has been proved to be a successful technology recently in high speed and high spectrum-efficiency optical short-haul and access network, which enables high performances based on digital equalizations and compensations. In this paper, we investigate advanced DSP at the transmitter and receiver side for signal pre-equalization and post-equalization in an optical access network. A novel DSP-based digital and optical pre-equalization scheme has been proposed for bandwidth-limited high speed short-distance communication system, which is based on the feedback of receiver-side adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi-modulus algorithms (CMA, MMA). Based on this scheme, we experimentally demonstrate 400GE on a single optical carrier based on the highest ETDM 120-GBaud PDM-PAM-4 signal, using one external modulator and coherent detection. A line rate of 480-Gb/s is achieved, which enables 20% forward-error correction (FEC) overhead to keep the 400-Gb/s net information rate. The performance after fiber transmission shows large margin for both short range and metro/regional networks. We also extend the advanced DSP for short haul optical access networks by using high order QAMs. We propose and demonstrate a high speed multi-band CAP-WDM-PON system on intensity modulation, direct detection and digital equalizations. A hybrid modified cascaded MMA post-equalization schemes are used to equalize the multi-band CAP-mQAM signals. Using this scheme, we successfully demonstrates 550Gb/s high capacity WDMPON system with 11 WDM channels, 55 sub-bands, and 10-Gb/s per user in the downstream over 40-km SMF.
Generation and coherent detection of QPSK signal using a novel method of digital signal processing
NASA Astrophysics Data System (ADS)
Zhao, Yuan; Hu, Bingliang; He, Zhen-An; Xie, Wenjia; Gao, Xiaohui
2018-02-01
We demonstrate an optical quadrature phase-shift keying (QPSK) signal transmitter and an optical receiver for demodulating optical QPSK signal with homodyne detection and digital signal processing (DSP). DSP on the homodyne detection scheme is employed without locking the phase of the local oscillator (LO). In this paper, we present an extracting one-dimensional array of down-sampling method for reducing unwanted samples of constellation diagram measurement. Such a novel scheme embodies the following major advantages over the other conventional optical QPSK signal detection methods. First, this homodyne detection scheme does not need strict requirement on LO in comparison with linear optical sampling, such as having a flat spectral density and phase over the spectral support of the source under test. Second, the LabVIEW software is directly used for recovering the QPSK signal constellation without employing complex DSP circuit. Third, this scheme is applicable to multilevel modulation formats such as M-ary PSK and quadrature amplitude modulation (QAM) or higher speed signals by making minor changes.
Bongiorno, Christian; Miccichè, Salvatore; Mantegna, Rosario N
2017-01-01
We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast.
Bongiorno, Christian; Mantegna, Rosario N.
2017-01-01
We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers’ operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast. PMID:28419160
How bees distinguish patterns by green and blue modulation
Horridge, Adrian
2015-01-01
In the 1920s, Mathilde Hertz found that trained bees discriminated between shapes or patterns of similar size by something related to total length of contrasting contours. This input is now interpreted as modulation in green and blue receptor channels as flying bees scan in the horizontal plane. Modulation is defined as total contrast irrespective of sign multiplied by length of edge displaying that contrast, projected to vertical, therefore, combining structure and contrast in a single input. Contrast is outside the eye; modulation is a phasic response in receptor pathways inside. In recent experiments, bees trained to distinguish color detected, located, and measured three independent inputs and the angles between them. They are the tonic response of the blue receptor pathway and modulation of small-field green or (less preferred) blue receptor pathways. Green and blue channels interacted intimately at a peripheral level. This study explores in more detail how various patterns are discriminated by these cues. The direction of contrast at a boundary was not detected. Instead, bees located and measured total modulation generated by horizontal scanning of contrasts, irrespective of pattern. They also located the positions of isolated vertical edges relative to other landmarks and distinguished the angular widths between vertical edges by green or blue modulation alone. The preferred inputs were the strongest green modulation signal and angular width between outside edges, irrespective of color. In the absence of green modulation, the remaining cue was a measure and location of blue modulation at edges. In the presence of green modulation, blue modulation was inhibited. Black/white patterns were distinguished by the same inputs in blue and green receptor channels. Left–right polarity and mirror images could be discriminated by retinotopic green modulation alone. Colors in areas bounded by strong green contrast were distinguished as more or less blue than the background. The blue content could also be summed over the whole target. There were no achromatic patterns for bees and no evidence that they detected black, white, or gray levels apart from the differences in blue content or modulation at edges. Most of these cues would be sensitive to background color but some were influenced by changes in illumination. The bees usually learned only to avoid the unrewarded target. Exactly the same preferences of the same inputs were used in the detection of single targets as in discrimination between two targets. PMID:28539796