NASA Astrophysics Data System (ADS)
Fan, Tong-liang; Wen, Yu-cang; Kadri, Chaibou
Orthogonal frequency-division multiplexing (OFDM) is robust against frequency selective fading because of the increase of the symbol duration. However, the time-varying nature of the channel causes inter-carrier interference (ICI) which destroys the orthogonal of sub-carriers and degrades the system performance severely. To alleviate the detrimental effect of ICI, there is a need for ICI mitigation within one OFDM symbol. We propose an iterative Inter-Carrier Interference (ICI) estimation and cancellation technique for OFDM systems based on regularized constrained total least squares. In the proposed scheme, ICI aren't treated as additional additive white Gaussian noise (AWGN). The effect of Inter-Carrier Interference (ICI) and inter-symbol interference (ISI) on channel estimation is regarded as perturbation of channel. We propose a novel algorithm for channel estimation o based on regularized constrained total least squares. Computer simulations show that significant improvement can be obtained by the proposed scheme in fast fading channels.
Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool
NASA Astrophysics Data System (ADS)
Cai, Yu; Sha, Shuang
2016-09-01
This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.
Link Scheduling Algorithm with Interference Prediction for Multiple Mobile WBANs
Le, Thien T. T.
2017-01-01
As wireless body area networks (WBANs) become a key element in electronic healthcare (e-healthcare) systems, the coexistence of multiple mobile WBANs is becoming an issue. The network performance is negatively affected by the unpredictable movement of the human body. In such an environment, inter-WBAN interference can be caused by the overlapping transmission range of nearby WBANs. We propose a link scheduling algorithm with interference prediction (LSIP) for multiple mobile WBANs, which allows multiple mobile WBANs to transmit at the same time without causing inter-WBAN interference. In the LSIP, a superframe includes the contention access phase using carrier sense multiple access with collision avoidance (CSMA/CA) and the scheduled phase using time division multiple access (TDMA) for non-interfering nodes and interfering nodes, respectively. For interference prediction, we define a parameter called interference duration as the duration during which disparate WBANs interfere with each other. The Bayesian model is used to estimate and classify the interference using a signal to interference plus noise ratio (SINR) and the number of neighboring WBANs. The simulation results show that the proposed LSIP algorithm improves the packet delivery ratio and throughput significantly with acceptable delay. PMID:28956827
NASA Astrophysics Data System (ADS)
Tripathy, Srijeet; Bhattacharyya, Tarun Kanti
2016-09-01
Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.
Interference-free SDMA for FBMC-OQAM
NASA Astrophysics Data System (ADS)
Horlin, François; Fickers, Jessica; Deleu, Thibault; Louveaux, Jérome
2013-12-01
Filter-bank multi-carrier (FBMC) modulations have recently been considered for the emerging wireless communication systems as a means to improve the utilization of the physical resources and the robustness to channel time variations. FBMC divides the overall frequency channel in a set of subchannels of bandwidth proportionally decreasing with the number of subchannels. If the number of subchannels is high enough, the bandwidth of each subchannel is small enough to assume that it is approximately flat. On the other hand, space-division multiple access (SDMA) is a recognized technique to support multiple access in the downlink of a multi-user system. The user signals are precoded at the base station equipped with multiple antennas to separate the users in the spatial domain. The application of SDMA to FBMC is unfortunately difficult when the channel is too frequency selective (or when the number of subchannels to too small) to assume flat subchannels. In that case, the system suffers from inter-symbol and inter-subchannel interference, besides the multi-user interference inherent to SDMA. State-of-the art solutions simply neglect the inter-symbol/subchannel interference. This article proposes a new SDMA precoder for FBMC capable of mitigating the three sources of interference. It is constructed per subchannel in order to keep an acceptable complexity and has the structure of a filter applied on each subchannel and its neighbors at twice the symbol rate. Numerical results demonstrate that the precoder can get rid of all the interference present in the system and benefit therefore from the diversity and power gains achievable with multiple antenna systems.
NASA Astrophysics Data System (ADS)
Kawai, Hiroyuki; Morimoto, Akihito; Higuchi, Kenichi; Sawahashi, Mamoru
This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.
Jia, Zhensheng; Chien, Hung-Chang; Cai, Yi; Yu, Jianjun; Zhang, Chengliang; Li, Junjie; Ma, Yiran; Shang, Dongdong; Zhang, Qi; Shi, Sheping; Wang, Huitao
2015-02-09
We experimentally demonstrate a quad-carrier 1-Tb/s solution with 37.5-GBaud PM-16QAM signal over 37.5-GHz optical grid at 6.7 b/s/Hz net spectral efficiency. Digital Nyquist pulse shaping at the transmitter and post-equalization at the receiver are employed to mitigate the impairments of joint inter-symbol-interference (ISI) and inter-channel-interference (ICI) symbol degradation. The post-equalization algorithms consist of one sample/symbol based decision-directed least mean square (DD-LMS) adaptive filter, digital post filter and maximum likelihood sequence estimation (MLSE), and a positive iterative process among them. By combining these algorithms, the improvement as much as 4-dB OSNR (0.1nm) at SD-FEC limit (Q(2) = 6.25 corresponding to BER = 2.0e-2) is obtained when compared to no such post-equalization process, and transmission over 820-km EDFA-only standard single-mode fiber (SSMF) link is achieved for two 1.2-Tb/s signals with the averaged Q(2) factor larger than 6.5 dB for all sub-channels. Additionally, 50-GBaud 16QAM operating at 1.28 samples/symbol in a DAC is also investigated and successful transmission over 410-km SSMF link is achieved at 62.5-GHz optical grid.
Zadoff-Chu sequence-based hitless ranging scheme for OFDMA-PON configured 5G fronthaul uplinks
NASA Astrophysics Data System (ADS)
Reza, Ahmed Galib; Rhee, June-Koo Kevin
2017-05-01
A Zadoff-Chu (ZC) sequence-based low-complexity hitless upstream time synchronization scheme is proposed for an orthogonal frequency division multiple access passive optical network configured cloud radio access network fronthaul. The algorithm is based on gradual loading of the ZC sequences, where the phase discontinuity due to the cyclic prefix is alleviated by a frequency domain phase precoder, eliminating the requirements of guard bands to mitigate intersymbol interference and inter-carrier interference. Simulation results for uncontrolled-wavelength asynchronous transmissions from four concurrent transmitting optical network units are presented to demonstrate the effectiveness of the proposed scheme.
Performance analysis of a finite radon transform in OFDM system under different channel models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A.
In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resultedmore » in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.« less
Performance analysis of a finite radon transform in OFDM system under different channel models
NASA Astrophysics Data System (ADS)
Dawood, Sameer A.; Malek, F.; Anuar, M. S.; Fayadh, Rashid A.; Abdullah, Farrah Salwani
2015-05-01
In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.
New spatial diversity equalizer based on PLL
NASA Astrophysics Data System (ADS)
Rao, Wei
2011-10-01
A new Spatial Diversity Equalizer (SDE) based on phase-locked loop (PLL) is proposed to overcome the inter-symbol interference (ISI) and phase rotations simultaneously in the digital communication system. The proposed SDE consists of equal gain combining technique based on a famous blind equalization algorithm constant modulus algorithm (CMA) and a PLL. Compared with conventional SDE, the proposed SDE has not only faster convergence rate and lower residual error but also the ability to recover carrier phase rotation. The efficiency of the method is proved by computer simulation.
Nakamura, Moriya; Kamio, Yukiyoshi; Miyazaki, Tetsuya
2008-07-07
We experimentally demonstrated linewidth-tolerant 10-Gbit/s (2.5-Gsymbol/s) 16-quadrature amplitude modulation (QAM) by using a distributed-feedback laser diode (DFB-LD) with a linewidth of 30 MHz. Error-free operation, a bit-error rate (BER) of <10(-9) was achieved in transmission over 120 km of standard single mode fiber (SSMF) without any dispersion compensation. The phase-noise canceling capability provided by a pilot-carrier and standard electronic pre-equalization to suppress inter-symbol interference (ISI) gave clear 16-QAM constellations and floor-less BER characteristics. We evaluated the BER characteristics by real-time measurement of six (three different thresholds for each I- and Q-component) symbol error rates (SERs) with simultaneous constellation observation.
Optical ranging and communication method based on all-phase FFT
NASA Astrophysics Data System (ADS)
Li, Zening; Chen, Gang
2014-10-01
This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.
Pilot self-coding applied in optical OFDM systems
NASA Astrophysics Data System (ADS)
Li, Changping; Yi, Ying; Lee, Kyesan
2015-04-01
This paper studies the frequency offset correction technique which can be applied in optical OFDM systems. Through theoretical analysis and computer simulations, we can observe that our proposed scheme named pilot self-coding (PSC) has a distinct influence for rectifying the frequency offset, which could mitigate the OFDM performance deterioration because of inter-carrier interference and common phase error. The main approach is to assign a pilot subcarrier before data subcarriers and copy this subcarrier sequence to the symmetric side. The simulation results verify that our proposed PSC is indeed effective against the high degree of frequency offset.
Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming
2016-06-09
Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer.
Li, Chong; Xue, ChunLai; Liu, Zhi; Cong, Hui; Cheng, Buwen; Hu, Zonghai; Guo, Xia; Liu, Wuming
2016-01-01
Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer. PMID:27279426
Kumaravel, Rasadurai; Narayanaswamy, Kumaratharan
2015-01-01
Multi carrier code division multiple access (MC-CDMA) system is a promising multi carrier modulation (MCM) technique for high data rate wireless communication over frequency selective fading channels. MC-CDMA system is a combination of code division multiple access (CDMA) and orthogonal frequency division multiplexing (OFDM). The OFDM parts reduce multipath fading and inter symbol interference (ISI) and the CDMA part increases spectrum utilization. Advantages of this technique are its robustness in case of multipath propagation and improve security with the minimize ISI. Nevertheless, due to the loss of orthogonality at the receiver in a mobile environment, the multiple access interference (MAI) appears. The MAI is one of the factors that degrade the bit error rate (BER) performance of MC-CDMA system. The multiuser detection (MUD) and turbo coding are the two dominant techniques for enhancing the performance of the MC-CDMA systems in terms of BER as a solution of overcome to MAI effects. In this paper a low complexity iterative soft sensitive bits algorithm (SBA) aided logarithmic-Maximum a-Posteriori algorithm (Log MAP) based turbo MUD is proposed. Simulation results show that the proposed method provides better BER performance with low complexity decoding, by mitigating the detrimental effects of MAI. PMID:25714917
49 CFR 374.111 - Reports of interference with regulations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 5 2014-10-01 2014-10-01 false Reports of interference with regulations. 374.111 Section 374.111 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PASSENGER CARRIER REGULATIONS Discrimination i...
Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti
2017-02-01
We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.
47 CFR 15.113 - Power line carrier systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-interference basis in accordance with § 15.5 of this part. If harmful interference occurs, the electric power... frequencies. (e) Power line carrier system apparatus shall conform to such engineering standards as may be... 47 Telecommunication 1 2012-10-01 2012-10-01 false Power line carrier systems. 15.113 Section 15...
Joint Channel and Phase Noise Estimation in MIMO-OFDM Systems
NASA Astrophysics Data System (ADS)
Ngebani, I. M.; Chuma, J. M.; Zibani, I.; Matlotse, E.; Tsamaase, K.
2017-05-01
The combination of multiple-input multiple-output (MIMO) techniques with orthogonal frequency division multiplexing (OFDM), MIMO-OFDM, is a promising way of achieving high spectral efficiency in wireless communication systems. However, the performance of MIMO-ODFM systems is highly degraded by radio frequency (RF) impairments such as phase noise. Similar to the single-input single-output (SISO) case, phase noise in MIMO-OFDM systems results in a common phase error (CPE) and inter carrier interference (ICI). In this paper the problem of joint channel and phase noise estimation in a system with multiple transmit and receive antennas where each antenna is equipped with its own independent oscillator is tackled. The technique employed makes use of a novel placement of pilot carriers in the preamble and data portion of the MIMO-OFDM frame. Numerical results using a 16 and 64 quadrature amplitude modulation QAM schemes are provided to illustrate the effectiveness of the proposed scheme for MIMO-OFDM systems.
Carrier-envelope phase control over pathway interference in strong-field dissociation of H2+.
Kling, Nora G; Betsch, K J; Zohrabi, M; Zeng, S; Anis, F; Ablikim, U; Jochim, Bethany; Wang, Z; Kübel, M; Kling, M F; Carnes, K D; Esry, B D; Ben-Itzhak, I
2013-10-18
The dissociation of an H2+ molecular-ion beam by linearly polarized, carrier-envelope-phase-tagged 5 fs pulses at 4×10(14) W/cm2 with a central wavelength of 730 nm was studied using a coincidence 3D momentum imaging technique. Carrier-envelope-phase-dependent asymmetries in the emission direction of H+ fragments relative to the laser polarization were observed. These asymmetries are caused by interference of odd and even photon number pathways, where net zero-photon and one-photon interference predominantly contributes at H+ + H kinetic energy releases of 0.2-0.45 eV, and net two-photon and one-photon interference contributes at 1.65-1.9 eV. These measurements of the benchmark H2+ molecule offer the distinct advantage that they can be quantitatively compared with ab initio theory to confirm our understanding of strong-field coherent control via the carrier-envelope phase.
Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM
NASA Astrophysics Data System (ADS)
Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng
2015-07-01
We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.
NASA Astrophysics Data System (ADS)
Mitani, Takeshi; Nakashima, Shin-ichi; Kojima, Kazutoshi; Kato, Tomohisa; Okumura, Hajime
2012-08-01
For n-type 4H-SiC crystals with carrier concentrations between 2 × 1017 and 2.5 × 1020 cm-3, Fano interference of the folded transverse acoustic (FTA) doublet modes was observed. The Fano line-shape parameters were shown to vary with carrier concentration. It is proposed that the peak shifts in the FTA modes resulting from interference with an electronic continuum state can be used to measure carrier concentration for n-type 4H-SiC up to 1020 cm-3. In addition, the relative intensity of the FTA doublet modes varies markedly with carrier concentrations above 5 × 1018 cm-3. This suggests that mode coupling occurs between the FTA doublet components. The variation in the intensity ratio is attributed to the intensity transfer between the FTA doublet components. This mode coupling arises from a phonon-phonon interaction via electronic continuum state-phonon interactions.
NASA Astrophysics Data System (ADS)
Kang, Soo-Min; Kim, Chang-Hun; Han, Sang-Kook
2016-02-01
In passive optical network (PON), orthogonal frequency division multiplexing (OFDM) has been studied actively due to its advantages such as high spectra efficiency (SE), dynamic resource allocation in time or frequency domain, and dispersion robustness. However, orthogonal frequency division multiple access (OFDMA)-PON requires tight synchronization among multiple access signals. If not, frequency orthogonality could not be maintained. Also its sidelobe causes inter-channel interference (ICI) to adjacent channel. To prevent ICI caused by high sidelobes, guard band (GB) is usually used which degrades SE. Thus, OFDMA-PON is not suitable for asynchronous uplink transmission in optical access network. In this paper, we propose intensity modulation/direct detection (IM/DD) based universal filtered multi-carrier (UFMC) PON for asynchronous multiple access. The UFMC uses subband filtering to subsets of subcarriers. Since it reduces sidelobe of each subband by applying subband filtering, it could achieve better performance compared to OFDM. For the experimental demonstration, different sample delay was applied to subbands to implement asynchronous transmission condition. As a result, time synchronization robustness of UFMC was verified in asynchronous multiple access system.
Towards a carrier SDN: an example for elastic inter-datacenter connectivity.
Velasco, L; Asensio, A; Berral, J L; Castro, A; López, V
2014-01-13
We propose a network-driven transfer mode for cloud operations in a step towards a carrier SDN. Inter-datacenter connectivity is requested in terms of volume of data and completion time. The SDN controller translates and forwards requests to an ABNO controller in charge of a flexgrid network.
Effect of hemoglobin- and Perflubron-based oxygen carriers on common clinical laboratory tests.
Ma, Z; Monk, T G; Goodnough, L T; McClellan, A; Gawryl, M; Clark, T; Moreira, P; Keipert, P E; Scott, M G
1997-09-01
Polymerized hemoglobin solutions (Hb-based oxygen carriers; HBOCs) and a second-generation perfluorocarbon (PFC) emulsion (Perflubron) are in clinical trials as temporary oxygen carriers ("blood substitutes"). Plasma and serum samples from patients receiving HBOCs look markedly red, whereas those from patients receiving PFC appear to be lipemic. Because hemolysis and lipemia are well-known interferents in many assays, we examined the effects of these substances on clinical chemistry, immunoassay, therapeutic drug, and coagulation tests. HBOC concentrations up to 50 g/L caused essentially no interference for Na, K, Cl, urea, total CO2, P, uric acid, Mg, creatinine, and glucose values determined by the Hitachi 747 or Vitros 750 analyzers (or both) or for immunoassays of lidocaine, N-acetylprocainamide, procainamide, digoxin, phenytoin, quinidine, or theophylline performed on the Abbott AxSym or TDx. Gentamycin and vancomycin assays on the AxSym exhibited a significant positive and negative interference, respectively. Immunoassays for TSH on the Abbott IMx and for troponin I on the Dade Stratus were unaffected by HBOC at this concentration. Tests for total protein, albumin, LDH, AST, ALT, GGT, amylase, lipase, and cholesterol were significantly affected to various extents at different HBOC concentrations on the Hitachi 747 and Vitros 750. The CK-MB assay on the Stratus exhibited a negative interference at 5 g/L HBOC. HBOC interference in coagulation tests was method-dependent-fibrometer-based methods on the BBL Fibro System were free from interference, but optical-based methods on the MLA 1000C exhibited interferences at 20 g/L HBOC. A 1:20 dilution of the PFC-based oxygen carrier (600 g/L) caused no interference on any of these chemistry or immunoassay tests except for amylase and ammonia on the Vitros 750 and plasma iron on the Hitachi 747.
Roos, P A; Li, Xiaoqin; Smith, R P; Pipis, Jessica A; Fortier, T M; Cundiff, S T
2005-04-01
We demonstrate carrier-envelope phase stabilization of a mode-locked Ti:sapphire laser by use of quantum interference control of injected photocurrents in a semiconductor. No harmonic generation is required for this stabilization technique. Instead, interference between coexisting single- and two-photon absorption pathways in the semiconductor provides a phase comparison between different spectral components. The phase comparison, and the detection of the photocurrent that it produces, both occur within a single low-temperature-grown gallium arsenide sample. The carrier-envelope offset beat note fidelity is 30 dB in a 10-kHz resolution bandwidth. The out-of-loop phase-noise level is essentially identical to the best previous measurements with the standard self-referencing technique.
47 CFR 27.65 - Acceptance of interference in 2000-2020 MHz.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Acceptance of interference in 2000-2020 MHz. 27.65 Section 27.65 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER... interference in 2000-2020 MHz. (a) Receivers operating in the 2000-2020 MHz band must accept interference from...
47 CFR 27.65 - Acceptance of interference in 2000-2020 MHz.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Acceptance of interference in 2000-2020 MHz. 27.65 Section 27.65 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER... interference in 2000-2020 MHz. (a) Receivers operating in the 2000-2020 MHz band must accept interference from...
Engineering calculations for communications satellite systems planning
NASA Technical Reports Server (NTRS)
Walton, E.; Aebker, E.; Mata, F.; Reilly, C.
1991-01-01
The final phase of a satellite synthesis project is described. Several methods for generating satellite positionings with improved aggregate carrier to interference characteristics were studied. Two general methods for modifying required separation values are presented. Also, two methods for improving aggregate carrier to interference (C/I) performance of given satellite synthesis solutions are presented. A perturbation of the World Administrative Radio Conference (WARC) synthesis is presented.
OFDM Coupled Compressive Sensing Algorithm for Stepped-Frequency Ground Penetrating Radar
2014-10-01
These frequencies are combined in such a way to achieve orthogonality between the carrier frequencies, while mitigating any interference between...in such a way to achieve orthogonality between the carrier frequencies, while mitigating any interference between said frequencies. In CS, a signal...frequency tones is mitigated . Orthogonality requires that the sub-bands are spaced at = is the OFDM symbol period, and k is any
Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors.
Fortier, T M; Roos, P A; Jones, D J; Cundiff, S T; Bhat, R D R; Sipe, J E
2004-04-09
We demonstrate quantum interference control of injected photocurrents in a semiconductor using the phase stabilized pulse train from a mode-locked Ti:sapphire laser. Measurement of the comb offset frequency via this technique results in a signal-to-noise ratio of 40 dB (10 Hz resolution bandwidth), enabling solid-state detection of carrier-envelope phase shifts of a Ti:sapphire oscillator.
Comparative effects of carrier proteins on vaccine-induced immune response.
Knuf, Markus; Kowalzik, Frank; Kieninger, Dorothee
2011-07-12
The efficacy of vaccines against major encapsulated bacterial pathogens -Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae type b (Hib) - has been significantly enhanced by conjugating the respective polysaccharides with different carrier proteins: diphtheria toxoid; non-toxic cross-reactive material of diphtheria toxin(197), tetanus toxoid, N. meningitidis outer membrane protein, and non-typeable H. influenzae-derived protein D. Hib, meningococcal, and pneumococcal conjugate vaccines have shown good safety and immunogenicity profiles regardless of the carrier protein used, although data are conflicting as to which carrier protein is the most immunogenic. Coadministration of conjugate vaccines bearing the same carrier protein has the potential for inducing either positive or negative effects on vaccine immunogenicity (immune interference). Clinical studies on the coadministration of conjugate vaccines reveal conflicting data with respect to immune interference and vaccine efficacy. Copyright © 2011 Elsevier Ltd. All rights reserved.
47 CFR 27.58 - Interference to BRS/EBS receivers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Interference to BRS/EBS receivers. 27.58 Section 27.58 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.58 Interference to BRS/EBS receivers. (a...
Analysis of OFDMA receiver with carrier frequency offset and common carrier frequency offset (CCFO)
NASA Astrophysics Data System (ADS)
Gauni, Sabitha; Kumar, R.
2013-01-01
The technique of Orthogonal frequency multiplexing (OFDM) is used to mitigate the multipath effects and to achieve better data rate. When these systems are extended to enable multiple access wireless multimedia communications they are more beneficial. The performance of the OFDM systems degrades with frequency offset and phase offset. The OFDM multiple access (OFDMA) technology allots groups of the OFDM subcarriers allocated to different users for transmission. In this paper we study the interference effects of the individual subcarriers with the neighbouring subcarriers which also plays a role in the system degradation is termed as Multiuser Interference (MUI). The effect of Carrier frequency offset (CFO) on these systems is also taken in account. There are conventional CFO compensation methods for OFDMA systems the CFOs are usually compensated by directly eliminating the intercarrier interference (ICI) caused by the residual CFOs for individual users.
An inter-lighting interference cancellation scheme for MISO-VLC systems
NASA Astrophysics Data System (ADS)
Kim, Kyuntak; Lee, Kyujin; Lee, Kyesan
2017-08-01
In this paper, we propose an inter-lighting interference cancellation (ILIC) scheme to reduce the interference between adjacent light-emitting diodes (LEDs) and enhance the transmission capacity of multiple-input-single-output (MISO)-visible light communication (VLC) systems. In indoor environments, multiple LEDs have normally been used as lighting sources, allowing the design of MISO-VLC systems. To enhance the transmission capacity, different data should be simultaneously transmitted from each LED; however, that can lead to interference between adjacent LEDs. In that case, relatively low-received power signals are subjected to large interference because wireless optical systems generally use intensity modulation and direct detection. Thus, only the signal with the highest received power can be detected, while the other received signals cannot be detected. To solve this problem, we propose the ILIC scheme for MISO-VLC systems. The proposed scheme preferentially detects the highest received power signal, and this signal is referred as interference signal by an interference component generator. Then, relatively low-received power signal can be detected by cancelling the interference signal from the total received signals. Therefore, the performance of the proposed scheme can improve the total average bit error rate and throughput of a MISO-VLC system.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Ming, Yi; Li, Jin
2017-11-01
Due to the unique phase noise (PN) characteristics in direct-detection optical OFDM (DDO-OFDM) systems, the design of PN compensator is considered as a difficult task. In this paper, a laser PN suppression scheme with low complexity for DDO-OFDM based on coherent superposition of data carrying subcarriers and their phase conjugates is proposed. Through theoretical derivation, the obvious PN suppression is observed. The effectiveness of this technique is demonstrated by simulation of a 4-QAM DDO-OFDM system over 1000 km transmission length at different laser line-width and subcarrier frequency spacing. The results show that the proposed scheme can significantly suppress both varied phase rotation term (PTR) and inter-carrier interference (ICI), and the laser line-width can be relaxed with up to 9 dB OSNR saving or even breakthrough of performance floor.
Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun
2014-12-15
Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Ge, Jian-Hua
2012-12-01
Single-carrier (SC) transmission with frequency-domain equalization (FDE) is today recognized as an attractive alternative to orthogonal frequency-division multiplexing (OFDM) for communication application with the inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel. In this paper, we investigate an iterative receiver based on minimum mean square error (MMSE) decision feedback equalizer (DFE) with symbol rate and fractional rate samplings in the frequency domain (FD) and serially concatenated trellis coded modulation (SCTCM) decoder. Based on sound speed profiles (SSP) measured in the lake and finite-element ray tracking (Bellhop) method, the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. Performance results show that the proposed iterative receiver can significantly improve the performance and obtain better data transmission than FD linear and adaptive decision feedback equalizers, especially in adopting fractional rate sampling.
Performance of the split-symbol moments SNR estimator in the presence of inter-symbol interference
NASA Technical Reports Server (NTRS)
Shah, B.; Hinedi, S.
1989-01-01
The Split-Symbol Moments Estimator (SSME) is an algorithm that is designed to estimate symbol signal-to-noise ratio (SNR) in the presence of additive white Gaussian noise (AWGN). The performance of the SSME algorithm in band-limited channels is examined. The effects of the resulting inter-symbol interference (ISI) are quantified. All results obtained are in closed form and can be easily evaluated numerically for performance prediction purposes. Furthermore, they are validated through digital simulations.
Spectrum/Orbit-Utilization Program
NASA Technical Reports Server (NTRS)
Miller, Edward F.; Sawitz, Paul; Zusman, Fred
1988-01-01
Interferences among geostationary satellites determine allocations. Spectrum/Orbit Utilization Program (SOUP) is analytical computer program for determining mutual interferences among geostationary-satellite communication systems operating in given scenario. Major computed outputs are carrier-to-interference ratios at receivers at specified stations on Earth. Information enables determination of acceptability of planned communication systems. Written in FORTRAN.
Joint digital signal processing for superchannel coherent optical communication systems.
Liu, Cheng; Pan, Jie; Detwiler, Thomas; Stark, Andrew; Hsueh, Yu-Ting; Chang, Gee-Kung; Ralph, Stephen E
2013-04-08
Ultra-high-speed optical communication systems which can support ≥ 1Tb/s per channel transmission will soon be required to meet the increasing capacity demand. However, 1Tb/s over a single carrier requires either or both a high-level modulation format (i.e. 1024QAM) and a high baud rate. Alternatively, grouping a number of tightly spaced "sub-carriers" to form a terabit superchannel increases channel capacity while minimizing the need for high-level modulation formats and high baud rate, which may allow existing formats, baud rate and components to be exploited. In ideal Nyquist-WDM superchannel systems, optical subcarriers with rectangular spectra are tightly packed at a channel spacing equal to the baud rate, thus achieving the Nyquist bandwidth limit. However, in practical Nyquist-WDM systems, precise electrical or optical control of channel spectra is required to avoid strong inter-channel interference (ICI). Here, we propose and demonstrate a new "super receiver" architecture for practical Nyquist-WDM systems, which jointly detects and demodulates multiple channels simultaneously and mitigates the penalties associated with the limitations of generating ideal Nyquist-WDM spectra. Our receiver-side solution relaxes the filter requirements imposed on the transmitter. Two joint DSP algorithms are developed for linear ICI cancellation and joint carrier-phase recovery. Improved system performance is observed with both experimental and simulation data. Performance analysis under different system configurations is conducted to demonstrate the feasibility and robustness of the proposed joint DSP algorithms.
NASA Astrophysics Data System (ADS)
Ohuchida, Satoshi; Endoh, Tetsuo
2018-06-01
In this paper, we propose a new model of inter-cell interference phenomenon in a 10 nm magnetic tunnel junction with perpendicular anisotropy (p-MTJ) array and investigated the interference effect between a program cell and unselected cells due to the oscillatory stray field from neighboring cells by Landau–Lifshitz–Gilbert micromagnetic simulation. We found that interference brings about a switching delay in a program cell and excitation of magnetization precession in unselected cells even when no programing current passes through. The origin of interference is ferromagnetic resonance between neighboring cells. During the interference period, the precession frequency of the program cell is 20.8 GHz, which synchronizes with that of the theoretical precession frequency f = γH eff in unselected cells. The disturbance strength of unselected cells decreased to be inversely proportional to the cube of the distance from the program cell, which is in good agreement with the dependence of stray field on the distance from the program cell calculated by the dipole approximation method.
Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm
NASA Astrophysics Data System (ADS)
Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang
2018-05-01
A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.
Roos, Peter; Quraishi, Qudsia; Cundiff, Steven; Bhat, Ravi; Sipe, J
2003-08-25
We use two mutually coherent, harmonically related pulse trains to experimentally characterize quantum interference control (QIC) of injected currents in low-temperature-grown gallium arsenide. We observe real-time QIC interference fringes, optimize the QIC signal fidelity, uncover critical signal dependences regarding beam spatial position on the sample, measure signal dependences on the fundamental and second harmonic average optical powers, and demonstrate signal characteristics that depend on the focused beam spot sizes. Following directly from our motivation for this study, we propose an initial experiment to measure and ultimately control the carrier-envelope phase evolution of a single octave-spanning pulse train using the QIC phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Dian; Fu Panming; Wang Bingbing
2010-11-15
We investigate numerically with Hylleraas coordinates the frequency dependence of the carrier-envelope phase (CEP) effect on bound-bound transitions of helium induced by an ultrashort laser pulse of a few cycles. We find that the CEP effect is very sensitive to the carrier frequency of the laser pulse, occurring regularly even at far-off-resonance frequencies. By analyzing a two-level model, we find that the CEP effect can be attributed to the quantum interference between neighboring multiphoton transition pathways, which is made possible by the broadened spectrum of the ultrashort laser pulse. A general picture is developed along this line to understand themore » sensitivity of the CEP effect to the laser's carrier frequency. Multilevel influence on the CEP effect is also discussed.« less
Asif, Rameez
2016-01-01
Space division multiplexing (SDM), incorporating multi-core fibers (MCFs), has been demonstrated for effectively maximizing the data capacity in an impending capacity crunch. To achieve high spectral-density through multi-carrier encoding while simultaneously maintaining transmission reach, benefits from inter-core crosstalk (XT) and non-linear compensation must be utilized. In this report, we propose a proof-of-concept unified receiver architecture that jointly compensates optical Kerr effects, intra- and inter-core XT in MCFs. The architecture is analysed in multi-channel 512 Gbit/s dual-carrier DP-16QAM system over 800 km 19-core MCF to validate the digital compensation of inter-core XT. Through this architecture: (a) we efficiently compensates the inter-core XT improving Q-factor by 4.82 dB and (b) achieve a momentous gain in transmission reach, increasing the maximum achievable distance from 480 km to 1208 km, via analytical analysis. Simulation results confirm that inter-core XT distortions are more relentless for cores fabricated around the central axis of cladding. Predominantly, XT induced Q-penalty can be suppressed to be less than 1 dB up-to −11.56 dB of inter-core XT over 800 km MCF, offering flexibility to fabricate dense core structures with same cladding diameter. Moreover, this report outlines the relationship between core pitch and forward-error correction (FEC). PMID:27270381
Healy, Laura C; Ntoumanis, Nikos; Duda, Joan L
2016-12-01
This investigation extended the goal striving literature by examining motives for two goals being pursued simultaneously. Grounded in self-determination theory, we examined how student-athletes' motives for their sporting and academic goals were associated with inter-goal facilitation and interference. Cross-sectional survey. UK university student-athletes (n=204) identified their most important sporting and academic goals. They then rated their extrinsic, introjected, identified and intrinsic motives for these goals and completed questionnaires assessing inter-goal facilitation and interference. Using a person-centered approach via latent profile analysis, we identified three distinct profiles of goal motives. Auxiliary analyses showed that the profile with high identified motives for both goals reported greater inter-goal facilitation. Extending the previous literature, the findings demonstrate the benefits of autonomous motives when simultaneously pursing goals in sport and academia. Copyright © 2016. Published by Elsevier Ltd.
Weak-field multiphoton femtosecond coherent control in the single-cycle regime.
Chuntonov, Lev; Fleischer, Avner; Amitay, Zohar
2011-03-28
Weak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons. The intra-group interference is controlled by the relative spectral phase of the different frequency components of the pulse, while the inter-group interference is controlled jointly by the CEP and the relative spectral phase. Specifically, non-resonant two- and three-photon excitation is studied in a simple model system within the perturbative frequency-domain framework. The developed intuition is then applied to weak-field multiphoton excitation of atomic cesium (Cs), where the simplified model is verified by non-perturbative numerical solution of the time-dependent Schrödinger equation. We expect this work to serve as a basis for a new line of femtosecond coherent control experiments.
IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network
NASA Astrophysics Data System (ADS)
Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook
2016-12-01
Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.
Carpenter, Kristen M; Eisenberg, Stacy; Weltfreid, Sharone; Low, Carissa A; Beran, Tammy; Stanton, Annette L
2014-09-01
This study evaluated associations of cancer-related cognitive processing with BRCA1/2 mutation carrier status, personal cancer history, age, and election of prophylactic surgery in women at high risk for breast cancer. In a 2 (BRCA1/2 mutation carrier status) × 2 (personal cancer history) matched-control design, with age as an additional predictor, participants (N = 115) completed a computerized cancer Stroop task. Dependent variables were response latency to cancer-related stimuli (reaction time [RT]) and cancer-related cognitive interference (cancer RT minus neutral RT). RT and interference were tested as predictors of prophylactic surgery in the subsequent four years. RT for cancer-related words was significantly slower than other word groups, indicating biased processing specific to cancer-related stimuli. Participants with a cancer history evidenced longer RT to cancer-related words than those without a history; moreover, a significant Cancer History × Age interaction indicated that, among participants with a cancer history, the typical advantage associated with younger age on Stroop tasks was absent. BRCA mutation carriers demonstrated more cancer-related cognitive interference than noncarriers. Again, the typical Stroop age advantage was absent among carriers. Exploratory analyses indicated that BRCA+ status and greater cognitive interference predicted greater likelihood of undergoing prophylactic surgery. Post hoc tests suggest that cancer-related distress does not account for these relationships. In the genetic testing context, younger women with a personal cancer history or who are BRCA1/2 mutation carriers might be particularly vulnerable to biases in cancer-related cognitive processing. Biased processing was associated marginally with greater likelihood of prophylactic surgery. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Gudino, Natalia; Duan, Qi; de Zwart, Jacco A; Murphy-Boesch, Joe; Dodd, Stephen J; Merkle, Hellmut; van Gelderen, Peter; Duyn, Jeff H
2015-01-01
Purpose We tested the feasibility of implementing parallel transmission (pTX) for high field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of a RF transmit coil. Method We designed a current-source switch-mode amplifier based on miniaturized, non-magnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7 T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring inter-channel coupling and phase adjustment in a 2-channel setup. Results The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between 2 coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. Conclusion An optically controlled miniaturized RF amplifier for on-coil implementation at high field is demonstrated that should facilitate implementation of high-density pTX arrays. PMID:26256671
Assignment of channels and polarisations in a broadcasting satellite service environment
NASA Astrophysics Data System (ADS)
Fortes, J. M. P.
1986-07-01
In the process of synthesizing a satellite communications plan, a large number of possible configurations has to be analyzed in a short amount of time. An important part of the process concerns the allocation of channels and polarizations to the various systems. It is, of course, desirable to make these allocations based on the aggregate carrier/interference ratios, but this needs a considerable amount of time, and for this reason the single-entry carrier/interference criterion is usually employed. The paper presents an integer programming model based on an approximate evaluation of the aggregate carrier/interference ratios, which is fast enough to justify its application in the synthesis process. It was developed to help the elaboration of a downlink plan for the broadcasting satellite service (BSS) of North, Central, and South America. The official software package of the 1983 Administrative Radio Conference (RARC 83), responsible for the planning of the BSS in region 2, contains a routine based on this model.
Oren, Noga; Shapira-Lichter, Irit; Lerner, Yulia; Tarrasch, Ricardo; Hendler, Talma; Giladi, Nir; Ash, Elissa L
2017-09-01
Prior knowledge can either assist or hinder the ability to learn new information. These contradicting behavioral outcomes, referred to as schema benefit and proactive interference respectively, have been studied separately. Here we examined whether the known neural correlates of each process coexist, and how they are influenced by attentional loading and aging. To this end we used an fMRI task that affected both processes simultaneously by presenting pairs of related short movies in succession. The first movie of each pair provided context for the second movie, which could evoke schema benefit and/or proactive interference. Inclusion of an easy or hard secondary task performed during encoding of the movies, as well as testing both younger (22-35y) and older (65-79y) adults, allowed examining the effect of attentional load and older age on the neural patterns associated with context. Analyses focused on three predefined regions and examined how their inter-subject correlation (inter-SC) and functional connectivity (FC) with the hippocampi changed between the first and second movie. The results in the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) matched and expanded previous findings: higher inter-SC and lower FC were observed during the second compared to the first movie; yet the differentiation between the first and second movies in these regions was attenuated under high attentional load, pointing to dependency on attentional resources. Instead, at high load there was a significant context effect in the FC of the left ventrolateral prefrontal cortex (vlPFC), and greater FC in the second movie was related to greater proactive interference. Further, older adults showed context effect in the PCC and vlPFC. Intriguingly, older adults with inter-SC mPFC patterns similar to younger adults exhibited schema benefit in our task, while those with inter-SC PCC patterns similar to younger adults showed proactive interference in an independent task. The brain-behavior relationships corroborate the functional significance of these regions and indicate that the mPFC mainly contributes to schema benefit, while the left vlPFC and PCC contribute to proactive interference. Importantly, our findings show that the functions of the regions are retained throughout the lifespan and may predict the predominant behavioral outcome. Copyright © 2017 Elsevier Inc. All rights reserved.
47 CFR 22.879 - Interference resolution procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... communications on these systems are not safety related. (b) Interference analysis. Commercial aviation air-ground... Section 22.879 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.879...
47 CFR 22.878 - Obligation to abate unacceptable interference.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... 22.878 Section 22.878 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.878 Obligation to abate unacceptable interference. This section applies only to commercial...
47 CFR 27.60 - TV/DTV interference protection criteria.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the radio path horizon will be calculated assuming smooth earth. If the distance so determined equals... Section 27.60 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.60 TV/DTV interference protection...
47 CFR 27.60 - TV/DTV interference protection criteria.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the radio path horizon will be calculated assuming smooth earth. If the distance so determined equals... Section 27.60 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.60 TV/DTV interference protection...
47 CFR 27.60 - TV/DTV interference protection criteria.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the radio path horizon will be calculated assuming smooth earth. If the distance so determined equals... Section 27.60 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.60 TV/DTV interference protection...
47 CFR 27.60 - TV/DTV interference protection criteria.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the radio path horizon will be calculated assuming smooth earth. If the distance so determined equals... Section 27.60 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.60 TV/DTV interference protection...
Ground Isolation Circuit for Isolating a Transmission Line from Ground Interference
NASA Technical Reports Server (NTRS)
Davidson, Craig A. (Inventor)
1996-01-01
This invention relates generally to a system for isolating ground interference from a transmission line, e.g., a ground isolation circuit for isolating a wideband transmission signal (such as a video signal) from ground by modulating the base signal on a carrier signal to permit the transmission signal to be isolated. In one embodiment, the circuit includes a pair of matched mixer circuits, each of which receives a carrier signal from the same oscillator circuit. The first mixer circuit also receives the baseband signal input, after appropriate conditioning, and modulates the baseband signal onto the carrier signal. In a preferred embodiment the carrier signal has a predetermined frequency which is at least two times the frequency of the baseband signal. The modulated signal (which can comprise an rf signal) is transmitted via an rf transmission line to the second mixer, which demodulates the rf signal to recover the baseband signal. Each port of the mixer connects to an isolation transformer to ensure isolation from ground interference. The circuit is considered to be of commercial value in that it can provide isolation between transmitting and receiving circuits, e.g., ground isolation for television circuits or high frequency transmitters, without the need for video transformers or optical isolators, thereby reducing the complexity, power consumption, and weight of the system.
Peter, Valsa S; Peter, M C Subhash
2011-12-01
Endocrines, the chief components of chemical centers which produce hormones in tune with intrinsic and extrinsic clues, create a chemical bridge between the organism and the environment. In fishes also hormones integrate and modulate many physiologic functions and its synthesis, release, biological actions and metabolic clearance are well regulated. Consequently, thyroid hormones (THs) and cortisol, the products of thyroid and interrenal axes, have been identified for their common integrative actions on metabolic and osmotic functions in fish. On the other hand, many anthropogenic chemical substances, popularly known as endocrine disrupting chemicals, have been shown to disrupt the hormone-receptor signaling pathways in a number fish species. These chemicals which are known for their ability to induce endocrine disruption particularly on thyroid and interrenals can cause malfunction or maladaptation of many vital processes which are involved in the development, growth and reproduction in fish. On the contrary, evidence is presented that the endocrine interrupting agents (EIAs) can cause interruption of thyroid and interrenals, resulting in physiologic compensatory mechanisms which can be adaptive, though such hormonal interactions are less recognized in fishes. The EIAs of physical, chemical and biological origins can specifically interrupt and modify the hormonal interactions between THs and cortisol, resulting in specific patterns of inter-hormonal interference. The physiologic analysis of these inter-hormonal interruptions during acclimation and post-acclimation to intrinsic or extrinsic EIAs reveals that combinations of anti-hormonal, pro-hormonal or stati-hormonal interference may help the fish to fine-tune their metabolic and osmotic performances as part of physiologic adaptation. This novel hypothesis on the phenomenon of inter-hormonal interference and its consequent physiologic interference during thyroid and interrenal interruption thus forms the basis of physiologic acclimation. This interfering action of TH and cortisol during hormonal interruption may subsequently promote ecological adaptation in fish as these physiologic processes ultimately favor them to survive in their hostile environment. Copyright © 2011 Elsevier Inc. All rights reserved.
Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks.
Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua
2013-06-01
Wireless body area networks (WBANs) are cyber-physical systems (CPS) that have emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance including depleting the energy of WBAN nodes more quickly, and even eventually jeopardize people's lives due to unreliable (caused by the interference) healthcare data collections. Therefore, It is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs due to their ignoring the social nature of WBANs. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people's social interaction information. Our major contributions include: (1) model the inter-WBANs interference, and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; (2) develop social interaction detection and prediction algorithms for people carrying WBANs; (3) develop a power control game based on the social interaction information to maximize the system's utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks.
Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks
Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua
2014-01-01
Wireless body area networks (WBANs) are cyber-physical systems (CPS) that have emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance including depleting the energy of WBAN nodes more quickly, and even eventually jeopardize people’s lives due to unreliable (caused by the interference) healthcare data collections. Therefore, It is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs due to their ignoring the social nature of WBANs. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people’s social interaction information. Our major contributions include: (1) model the inter-WBANs interference, and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; (2) develop social interaction detection and prediction algorithms for people carrying WBANs; (3) develop a power control game based on the social interaction information to maximize the system’s utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks. PMID:25436180
47 CFR 27.60 - TV/DTV interference protection criteria.
Code of Federal Regulations, 2014 CFR
2014-10-01
... average terrain, the distance to the radio path horizon will be calculated assuming smooth earth. If the... Section 27.60 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.60 TV/DTV interference protection...
Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations
NASA Astrophysics Data System (ADS)
Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.
2014-02-01
Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense light pulses in the terahertz spectral range have opened fascinating vistas. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm-1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.
A Millimeter-Wave Digital Link for Wireless MRI
Aggarwal, Kamal; Joshi, Kiran R.; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M.; Poon, Ada S. Y.; Scott, Greig
2017-01-01
A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI. PMID:27810803
A Millimeter-Wave Digital Link for Wireless MRI.
Aggarwal, Kamal; Joshi, Kiran R; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M; Poon, Ada S Y; Scott, Greig
2017-02-01
A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI.
Wang, Yiguang; Huang, Xingxing; Tao, Li; Shi, Jianyang; Chi, Nan
2015-05-18
Inter-symbol interference (ISI) is one of the key problems that seriously limit transmission data rate in high-speed VLC systems. To eliminate ISI and further improve the system performance, series of equalization schemes have been widely investigated. As an adaptive algorithm commonly used in wireless communication, RLS is also suitable for visible light communication due to its quick convergence and better performance. In this paper, for the first time we experimentally demonstrate a high-speed RGB-LED based WDM VLC system employing carrier-less amplitude and phase (CAP) modulation and recursive least square (RLS) based adaptive equalization. An aggregate data rate of 4.5Gb/s is successfully achieved over 1.5-m indoor free space transmission with the bit error rate (BER) below the 7% forward error correction (FEC) limit of 3.8x10(-3). To the best of our knowledge, this is the highest data rate ever achieved in RGB-LED based VLC systems.
Mousa-Pasandi, Mohammad E; Zhuge, Qunbi; Xu, Xian; Osman, Mohamed M; El-Sahn, Ziad A; Chagnon, Mathieu; Plant, David V
2012-07-02
We experimentally investigate the performance of a low-complexity non-iterative phase noise induced inter-carrier interference (ICI) compensation algorithm in reduced-guard-interval dual-polarization coherent-optical orthogonal-frequency-division-multiplexing (RGI-DP-CO-OFDM) transport systems. This interpolation-based ICI compensator estimates the time-domain phase noise samples by a linear interpolation between the CPE estimates of the consecutive OFDM symbols. We experimentally study the performance of this scheme for a 28 Gbaud QPSK RGI-DP-CO-OFDM employing a low cost distributed feedback (DFB) laser. Experimental results using a DFB laser with the linewidth of 2.6 MHz demonstrate 24% and 13% improvement in transmission reach with respect to the conventional equalizer (CE) in presence of weak and strong dispersion-enhanced-phase-noise (DEPN), respectively. A brief analysis of the computational complexity of this scheme in terms of the number of required complex multiplications is provided. This practical approach does not suffer from error propagation while enjoying low computational complexity.
NASA Astrophysics Data System (ADS)
Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki
In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.
33 CFR 209.340 - Laboratory investigations and materials testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... hydraulic laboratories, and to the Inter-Agency Sedimentation Project. (c) References. (1) AR 37-20. (2) AR... ordinary business channels. (3) Performance of the work will not interfere with provisions of services... with the same procedures as apply to Division Materials Laboratories. (3) Inter-Agency Sedimentation...
33 CFR 209.340 - Laboratory investigations and materials testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hydraulic laboratories, and to the Inter-Agency Sedimentation Project. (c) References. (1) AR 37-20. (2) AR... ordinary business channels. (3) Performance of the work will not interfere with provisions of services... with the same procedures as apply to Division Materials Laboratories. (3) Inter-Agency Sedimentation...
NASA Astrophysics Data System (ADS)
Li, Dong-xia; Ye, Qian-wen
Out-of-band radiation suppression algorithm must be used efficiently for broadband aeronautical communication system in order not to interfere the operation of the existing systems in aviation L-Band. Based on the simple introduction of the broadband aeronautical multi-carrier communication (B-AMC) system model, several sidelobe suppression techniques in orthogonal frequency multiplexing (OFDM) system are presented and analyzed so as to find a suitable algorithm for B-AMC system in this paper. Simulation results show that raise-cosine function windowing can suppress the out-of-band radiation of B-AMC system effectively.
Neuropsychological performance in LRRK2 G2019S carriers with Parkinson’s disease
Alcalay, Roy N.; Mejia-Santana, Helen; Mirelman, Anat; Saunders-Pullman, Rachel; Raymond, Deborah; Palmese, Christina; Caccappolo, Elise; Ozelius, Laurie; Orr-Urtreger, Avi; Clark, Lorraine; Giladi, Nir; Bressman, Susan; Marder, Karen
2014-01-01
Background Ashkenazi Jewish (AJ) LRRK2 carriers are more likely to manifest the postural instability gait difficulty (PIGD) motor phenotype than non-carriers but perform similarly to non-carriers on cognitive screening tests. Objective To compare the cognitive profiles of AJ with Parkinson’s disease (PD) with and without LRRK2 G2019S mutations using a comprehensive neuropsychological battery. Methods We administered a neuropsychological battery to PD participants in the Michael J. Fox Foundation AJ consortium. Participants (n=236) from Beth Israel Medical Center, NY, Columbia University Medical Center, NY and Tel Aviv Medical Center, Israel included 116 LRRK2 G2019S carriers and 120 non-carriers. Glucocerbrosidase mutation carriers were excluded. We compared performance on each neuropsychological test between carriers and non-carriers. Participants in New York (n=112) were evaluated with the entire battery. Tel Aviv participants (n=124) were evaluated on attention, executive function and psychomotor speed tasks. The association between G2019S mutation status (predictor) and each neuropsychological test (outcome) was assessed using linear regression models adjusted for PIGD motor phenotype, site, sex, age, disease duration, education, Unified Parkinson’s Disease Rating Scale (UPDRS) Part III, levodopa equivalent dose, and Geriatric Depression Score (GDS). Results Carriers had longer disease duration (p<0.001) and were more likely to manifest the PIGD phenotype (p=0.024). In adjusted regression models, carriers performed better than non-carriers in Stroop Word Reading (p<0.001), Stroop Interference (p=0.011) and Category Fluency (p=0.026). Conclusion In AJ-PD, G2019S mutation status is associated with better attention (Stroop Word Reading), executive function (Stroop Interference) and language (Category Fluency) after adjustment for PIGD motor phenotype. PMID:25434972
CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.
1996-01-01
Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.
Optical data communication for Earth observation satellite systems
NASA Astrophysics Data System (ADS)
Fischer, J.; Loecherbach, E.
1991-10-01
The current development status of optical communication engineering in comparison to the conventional microwave systems and the different configurations of the optical data communication for Earth observation satellite systems are described. An outlook to future optical communication satellite systems is given. During the last decade Earth observation became more and more important for the extension of the knowledge about our planet and the human influence on nature. Today pictures taken by satellites are used, for example, to discover mineral resources or to predict harvest, crops, climate, and environment variations and their influence on the population. A new and up to date application for Earth observation satellites can be the verification of disarmament arrangements and the control of crises areas. To solve these tasks a system of Earth observing satellites with sensors tailored to the envisaged mission is necessary. Besides these low Earth orbiting satellites, a global Earth observation system consists of at least two data relay satellites. The communication between the satellites will be established via Inter-Satellite Links (ISL) and Inter-Orbit Links (IOL). On these links, bitrates up to 1 Gbit/s must be taken into account. Due to the increasing scarcity of suitable frequencies, higher carrier frequencies must probably be considered, and possible interference with terrestrial radio relay systems are two main problems for a realization in microwave technique. One important step to tackle these problems is the use of optical frequencies for IOL's and ISL's.
Excitonic condensation with different pairing symmetries in double quantum wells
NASA Astrophysics Data System (ADS)
Jamell, Christopher
2009-03-01
Double quantum wells with one containing electrons and the other containing holes as carriers are a promising candidate for condensation of dipolar excitons with lifetime much larger than lifetime of excitons in bulk semiconductors. When the inter-well distance is comparable to the interparticle distance within a single well, d <=rsaB, inter-well coherence is expected to lead to an excitonic condensation. We explore the ground state of a balanced system as a function of inter-well distance d and the carrier density n2D. We present Hartree-Fock mean-field results for the quasiparticle and order parameter dispersion with different pairing symmetries. We obtain the quasiparticle density of states in each case. These results lay the ground work for mean-field study of excitonic condensate states with spontaneously broken translational symmetry.
NASA Astrophysics Data System (ADS)
Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.
2007-01-01
The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-cellular 800 MHz licensees from commercial aviation air-ground systems. 22.877 Section 22.877 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.877 Unacceptable interference...
Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo
2017-01-01
We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046
Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve
2011-01-01
Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers: PMID:21711779
NASA Astrophysics Data System (ADS)
He, Jing; Shi, Jin; Deng, Rui; Chen, Lin
2017-08-01
Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.
NASA Astrophysics Data System (ADS)
Deng, Lingling; Zhou, Hongwei; Chen, Shufen; Shi, Hongying; Liu, Bin; Wang, Lianhui; Huang, Wei
2015-02-01
Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn
Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the usemore » of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.« less
Simple lock-in detection technique utilizing multiple harmonics for digital PGC demodulators.
Duan, Fajie; Huang, Tingting; Jiang, Jiajia; Fu, Xiao; Ma, Ling
2017-06-01
A simple lock-in detection technique especially suited for digital phase-generated carrier (PGC) demodulators is proposed in this paper. It mixes the interference signal with rectangular waves whose Fourier expansions contain multiple odd or multiple even harmonics of the carrier to recover the quadrature components needed for interference phase demodulation. In this way, the use of a multiplier is avoided and the efficiency of the algorithm is improved. Noise performance with regard to light intensity variation and circuit noise is analyzed theoretically for both the proposed technique and the traditional lock-in technique, and results show that the former provides a better signal-to-noise ratio than the latter with proper modulation depth and average interference phase. Detailed simulations were conducted and the theoretical analysis was verified. A fiber-optic Michelson interferometer was constructed and the feasibility of the proposed technique is demonstrated.
CCSDS - SFCG Efficient Modulation Methods Study at NASA/JPL - Phase 4: Interference Susceptibility
NASA Technical Reports Server (NTRS)
Martin, W.; Yan, T. Y.; Gray, A.; Lee, D.
1999-01-01
Susceptibility to two types of interfering signals was requested by the SFCG: a pure carrier (single frequency tone)and wide-band RFI (characteristics unspecified). Selecting a broad-band interfering signal is diffuclt because it should represent the types of interference to be found in the space science service bands.
Carrier-envelope phase-controlled quantum interference in optical poling.
Adachi, Shunsuke; Kobayashi, Takayoshi
2005-04-22
We demonstrate the efficiency of the optical poling process that depends on the CE phase-controlled quantum interference. For the experiment we employed our noncollinear optical parametric amplifier system for the self-stabilization of the CE phase, with the f-to-2f spectral interferometry system to control the CE phase.
Locata Performance Evaluation in the Presence of Wide- and Narrow-Band Interference
NASA Astrophysics Data System (ADS)
Khan, Faisal A.; Rizos, Chris; Dempster, Andrew G.
Classically difficult positioning environments often call for augmentation technology to assist the GPS, or more generally the Global Navigation Satellite System (GNSS) technology. The ground-based ranging technology offers augmentation, and even replacement, to GPS in such environments. However, like any other system relying on wireless technology, a Locata positioning network also faces issues in the presence of RF interference (RFI). This problem is magnified due to the fact that Locata operates in the licence-free 2·4 GHz Industrial, Scientific and Medical (ISM) band. The licence-free nature of this band attracts a much larger number of devices using a wider range of signal types than for licensed bands, resulting in elevation of the noise floor. Also, harmonics from out-of-band signals can act as potential interferers. WiFi devices operating in this band have been identified as the most likely potential interferer, due partially to their use of the whole ISM band, but also because Locata applications often also may use a wireless network. This paper evaluates the performance of Locata in the presence of both narrow- and wide-band interfering signals. Effects of received interference on both raw measurements and final solutions are reported and analysed. Test results show that Locata performance degrades in the presence of received interference. It is also identified that high levels of received interference can affect Locata carriers even if the interference is not in co-frequency situation with the affected carrier. Finally, Locata characteristics have been identified which can be exploited to mitigate RFI issues.
2013-06-01
Miridakis and D. D. Vergados, “A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM ...in this thesis. Follow on work that focuses on SIC for multi-carrier and MIMO systems would be most beneficial. Other estimation methods exist that...antenna and multiple-antenna OFDM systems,” IEEE Comms. Surveys & Tutorials, vol.15, no. 1, pp. 312–335, 2013. [2] J. G. Andrews, “Interference
Theoretical Limits on Multiuser Molecular Communication in Internet of Nano-Bio Things.
Dinc, Ergin; Akan, Ozgur B
2017-06-01
In nano-bio networks, multiple transmitter-receiver pairs will operate in the same medium. Both inter-symbol interference and multi-user interference can cause saturation at the receiver side, and this effect may cause an outage. Thus, we propose a tractable framework to calculate the theoretical operating points for fully absorbing receiver.
Tsai, Pei-I; Chen, Chih-Yu; Huang, Shu-Wei; Yang, Kuo-Yi; Lin, Tzu-Hung; Chen, San-Yuan; Sun, Jui-Sheng
2018-05-04
The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti 6 Al 4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti 6 Al 4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8 and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future interference screw designs to improve the performance of implants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A New Hybrid Scheme for Preventing Channel Interference and Collision in Mobile Networks
NASA Astrophysics Data System (ADS)
Kim, Kyungjun; Han, Kijun
This paper proposes a new hybrid scheme based on a given set of channels for preventing channel interference and collision in mobile networks. The proposed scheme is designed for improving system performance, focusing on enhancement of performance related to path breakage and channel interference. The objective of this scheme is to improve the performance of inter-node communication. Simulation results from this paper show that the new hybrid scheme can reduce a more control message overhead than a conventional random scheme.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 22.970 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.970 Unacceptable interference to part 90 non... −104 dBm or higher, as measured at the R.F. input of the receiver of a mobile unit; or (B) A median...
Abnormal enhancement against interference inhibition for few-cycle pulses propagating in dense media
NASA Astrophysics Data System (ADS)
Chen, Yue-Yue; Feng, Xun-Li; Xu, Zhi-Zhan; Liu, Chengpu
2016-04-01
We numerically study the reflected spectrum of a few-cycle pulse propagating through an ultrathin resonant medium. According to the classical interference theory, a destructive interference dip is expected at the carrier frequency ωp for a half-wavelength medium. In contrast, an abnormal enhanced spike appears instead. The origin of such an abnormal enhancement is attributed to the coherent transient effects. In addition, its scaling laws versus medium length, pulse area and duration are obtained, which follow simple rules.
NASA Technical Reports Server (NTRS)
Sarver, D.; Mulkey, T. L.; Lindahl, R. H.
1975-01-01
The performance, stability, and control characteristics of various carrier aircraft configurations are presented. Aerodynamic characteristics of the carrier mated with the Orbiter, carrier alone, and Orbiter alone were investigated. Carrier support system tare and interference effects were determined. Six-component force and moment data were recorded for the carrier and Orbiter. Buffet onset characteristics of the carrier vertical tail and horizontal tail were recorded. Angles of attack from -3 deg through 26 deg and angles of slideslip between +12 deg and -12 deg were investigated at Mach numbers from 0.15 through 0.70. Photographs are included.
NASA Astrophysics Data System (ADS)
Schaefer, S.; Gregory, M.; Rosenkranz, W.
2017-09-01
Due to higher data rates, better data security and unlicensed spectral usage optical inter-satellite links (OISL) offer an attractive alternative to conventional RF-communication. However, the very high transmission distances necessitate an optical receiver design enabling high receiver sensitivity which requires careful carrier synchronization and a quasi-coherent detection scheme.
Carrier-envelope phase-dependent atomic coherence and quantum beats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Ying; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071; Yang Xiaoxue
2007-07-15
It is shown that the carrier-envelope phase (CEP) of few-cycle laser pulses has profound effects on the bound-state atomic coherence even in the weak-field regime where both tunneling and multiphoton ionization hardly take place. The atomic coherence thus produced is shown to be able to be mapped onto the CEP-dependent signal of quantum beats (and other quantum-interference phenomena) and hence might be used to extract information about and ultimately to measure the carrier-envelope phase.
Super-Nyquist shaping and processing technologies for high-spectral-efficiency optical systems
NASA Astrophysics Data System (ADS)
Jia, Zhensheng; Chien, Hung-Chang; Zhang, Junwen; Dong, Ze; Cai, Yi; Yu, Jianjun
2013-12-01
The implementations of super-Nyquist pulse generation, both in a digital field using a digital-to-analog converter (DAC) or an optical filter at transmitter side, are introduced. Three corresponding signal processing algorithms at receiver are presented and compared for high spectral-efficiency (SE) optical systems employing the spectral prefiltering. Those algorithms are designed for the mitigation towards inter-symbol-interference (ISI) and inter-channel-interference (ICI) impairments by the bandwidth constraint, including 1-tap constant modulus algorithm (CMA) and 3-tap maximum likelihood sequence estimation (MLSE), regular CMA and digital filter with 2-tap MLSE, and constant multi-modulus algorithm (CMMA) with 2-tap MLSE. The principles and prefiltering tolerance are given through numerical and experimental results.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Yang, Heming; Zhao, Difu; Qiu, Kun
2016-07-01
We introduce digital coherent superposition (DCS) into optical access network and propose a DCS-OFDM-PON upstream transmission scheme using intensity modulator and collective self-coherent detection. The generated OFDM signal is real based on Hermitian symmetry, which can be used to estimate the common phase error (CPE) by complex conjugate subcarrier pairs without any pilots. In simulation, we transmit an aggregated 40 Gb/s optical OFDM signal from two ONUs. The transmission performance with DCS is slightly better after 25 km transmission without relative transmission time delay. The fiber distance for different ONUs to RN are not same in general and there is relative transmission time delay between ONUs, which causes inter-carrier-interference (ICI) power increasing and degrades the transmission performance. The DCS can mitigate the ICI power and the DCS-OFDM-PON upstream transmission outperforms the conventional OFDM-PON. The CPE estimation is by using two pairs of complex conjugate subcarriers without redundancy. The power variation can be 9 dB in DCS-OFDM-PON, which is enough to tolerate several kilometers fiber length difference between the ONUs.
Zhang, Lijia; Liu, Bo; Xin, Xiangjun
2015-06-15
A secure enhanced coherent optical multi-carrier system based on Stokes vector scrambling is proposed and experimentally demonstrated. The optical signal with four-dimensional (4D) modulation space has been scrambled intra- and inter-subcarriers, where a multi-layer logistic map is adopted as the chaotic model. An experiment with 61.71-Gb/s encrypted multi-carrier signal is successfully demonstrated with the proposed method. The results indicate a promising solution for the physical secure optical communication.
Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng
2017-01-01
In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109
Interference evidence for Rashba-type spin splitting on a semimetallic WT e 2 surface
Li, Qing; Yan, Jiaqiang; Yang, Biao; ...
2016-09-13
Here, semimetallic tungsten ditelluride displays an extremely large nonsaturating magnetoresistance, which is thought to arise from the perfect n–p charge compensation with low carrier densities in WTe 2. We find a strong Rashba spin-orbit effect in density functional calculations due to the noncentrosymmetric structure. This lifts twofold spin degeneracy of the bands. A prominent umklapp interference pattern is observed by our scanning tunneling microscopic measurements at 4.2 K, which differs distinctly from the surface atomic structure demonstrated at 77 K. The energy dependence of umklapp interference shows a strong correspondence with densities of states integrated from ARPES measurement, manifesting amore » fact that the bands are spin-split on the opposite sides of Γ. Spectroscopic survey reveals the electron/hole asymmetry changes alternately with lateral locations along the b axis, providing a microscopic picture for double-carrier transport of semimetallic WTe 2. The conclusion is further supported by our ARPES results and Shubnikov–de Haas (SdH) oscillations measurements.« less
Butler, Christopher John; Yang, Po-Ya; Sankar, Raman; Lien, Yen-Neng; Lu, Chun-I; Chang, Luo-Yueh; Chen, Chia-Hao; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong
2016-09-28
Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-06-11
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
Minimizing End-to-End Interference in I/O Stacks Spanning Shared Multi-Level Buffer Caches
ERIC Educational Resources Information Center
Patrick, Christina M.
2011-01-01
This thesis presents an end-to-end interference minimizing uniquely designed high performance I/O stack that spans multi-level shared buffer cache hierarchies accessing shared I/O servers to deliver a seamless high performance I/O stack. In this thesis, I show that I can build a superior I/O stack which minimizes the inter-application interference…
Tone calibration technique: A digital signaling scheme for mobile applications
NASA Technical Reports Server (NTRS)
Davarian, F.
1986-01-01
Residual carrier modulation is conventionally used in a communication link to assist the receiver with signal demodulation and detection. Although suppressed carrier modulation has a slight power advantage over the residual carrier approach in systems enjoying a high level of stability, it lacks sufficient robustness to be used in channels severely contaminated by noise, interference and propagation effects. In mobile links, in particular, the vehicle motion and multipath waveform propagation affect the received carrier in an adverse fashion. A residual carrier scheme that uses a pilot carrier to calibrate a mobile channel against multipath fading anomalies is described. The benefits of this scheme, known as tone calibration technique, are described. A brief study of the system performance in the presence of implementation anomalies is also given.
NASA Astrophysics Data System (ADS)
Milas, Vasilis; Koletta, Maria; Constantinou, Philip
2003-07-01
This paper provides the results of interference and compatibility studies in order to assess the sharing conditions between Fixed Satellite Service (FSS) and Fixed Service provided by High Altitude Platform Stations (HAPS) in the same operational frequency bands and discusses the most important operational parameters that have an impact on the interference calculations. To characterize interference phenomena between the two systems carrier to interference (C/I) ratios are evaluated. Simulation results under the scenario of a realistic deployment of HAPS and the use of different satellite configurations are presented. An interesting result derived from the simulations is that FSS/GSO Earth Stations and HAPS ground stations may coexist in the HAPS coverage area under certain considerations.
NASA Astrophysics Data System (ADS)
Gramajo, A. A.; Della Picca, R.; Arbó, D. G.
2017-08-01
We present a theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser with both fields linearly polarized in the same direction. In particular, we study the energy distribution of photoelectrons emitted perpendicularly to the polarization direction. As we previously showed in Gramajo et al. [Phys. Rev. A 94, 053404 (2016), 10.1103/PhysRevA.94.053404] for parallel emission, by means of a very simple semiclassical model which considers electron trajectories born at different ionization times, the electron energy spectrum can be interpreted as the interplay of intra- and intercycle interferences. However, contrary to the case of parallel emission the intracycle interference pattern stems from the coherent superposition of four electron trajectories giving rise to (i) interference of electron trajectories born during the same half cycle (intra-half-cycle interference) and (ii) interference between electron trajectories born during the first half cycle with those born during the second half cycle (inter-half-cycle interference). The intercycle interference is responsible for the formation of the sidebands. We also show that the destructive inter-half-cycle interference for the absorption and emission of an even number of IR laser photons is responsible for the characteristic sidebands in the perpendicular direction separated by twice the IR photon energy. This contrasts with the emission along the polarization axis (all sideband orders are present) since intra-half-cycle interferences do not exist in that case. The intracycle interference pattern works as a modulation of the sidebands and, in the same way, it is modulated by the intra-half-cycle interference pattern. We analyze the dependence of the energy spectrum on the laser intensity and the time delay between the XUV pulse and the IR laser. Finally, we show that our semiclassical simulations are in very good agreement with quantum calculations within the strong-field approximation and the numerical solution of the time-dependent Schrödinger equation, giving rise to nonzero emission, in contraposition to other theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Kavya; Mondal, Partha Pratim, E-mail: partha@iap.iisc.ernet.in
We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).
Large inter-individual and intra-individual variability in the effect of perceptual load
Yeshurun, Yaffa
2017-01-01
This study examined whether the recurrent difficulty to replicate results obtained with paradigms measuring distractor processing as a function of perceptual load is due to individual differences. We first reanalyzed, at the individual level, the data of eight previously reported experiments. These reanalyses revealed substantial inter-individual differences, with particularly low percentage of participants whose performance matched the load theory’s predictions (i.e., larger distractor interference with low than high levels of load). Moreover, frequently the results were opposite to the theory's predictions–larger interference in the high than low load condition; and often a reversed compatibility effect emerged–better performance in the incompatible than neutral condition. Subsequently, seven observers participated in five identical experimental sessions. If the observed inter-individual differences are due to some stable trait or perceptual capacity, similar results should have emerged in all sessions of a given participant. However, all seven participants showed large between-sessions variations with similar patterns to those found between participants. These findings question the theoretical foundation implemented with these paradigms, as none of the theories suggested thus far can account for such inter- and intra-individual differences. Thus, these paradigms should be used with caution until further research will provide better understanding of what they actually measure. PMID:28406997
Time manages interference in visual short-term memory.
Smith, Amy V; McKeown, Denis; Bunce, David
2017-09-01
Emerging evidence suggests that age-related declines in memory may reflect a failure in pattern separation, a process that is believed to reduce the encoding overlap between similar stimulus representations during memory encoding. Indeed, behavioural pattern separation may be indexed by a visual continuous recognition task in which items are presented in sequence and observers report for each whether it is novel, previously viewed (old), or whether it shares features with a previously viewed item (similar). In comparison to young adults, older adults show a decreased pattern separation when the number of items between "old" and "similar" items is increased. Yet the mechanisms of forgetting underpinning this type of recognition task are yet to be explored in a cognitively homogenous group, with careful control over the parameters of the task, including elapsing time (a critical variable in models of forgetting). By extending the inter-item intervals, number of intervening items and overall decay interval, we observed in a young adult sample (N = 35, M age = 19.56 years) that the critical factor governing performance was inter-item interval. We argue that tasks using behavioural continuous recognition to index pattern separation in immediate memory will benefit from generous inter-item spacing, offering protection from inter-item interference.
Richter, Anni; Richter, Sylvia; Barman, Adriana; Soch, Joram; Klein, Marieke; Assmann, Anne; Libeau, Catherine; Behnisch, Gusalija; Wüstenberg, Torsten; Seidenbecher, Constanze I.; Schott, Björn H.
2013-01-01
Dopamine has been implicated in the fine-tuning of complex cognitive and motor function and also in the anticipation of future rewards. This dual function of dopamine suggests that dopamine might be involved in the generation of active motivated behavior. The DRD2 TaqIA polymorphism of the dopamine D2 receptor gene (rs1800497) has previously been suggested to affect striatal function with carriers of the less common A1 allele exhibiting reduced striatal D2 receptor density and increased risk for addiction. Here we aimed to investigate the influences of DRD2 TaqIA genotype on the modulation of interference processing by reward and punishment. Forty-six young, healthy volunteers participated in a behavioral experiment, and 32 underwent functional magnetic resonance imaging (fMRI). Participants performed a flanker task with a motivation manipulation (monetary reward, monetary loss, neither, or both). Reaction times (RTs) were shorter in motivated flanker trials, irrespective of congruency. In the fMRI experiment motivation was associated with reduced prefrontal activation during incongruent vs. congruent flanker trials, possibly reflecting increased processing efficiency. DRD2 TaqIA genotype did not affect overall RTs, but interacted with motivation on the congruency-related RT differences, with A1 carriers showing smaller interference effects to reward alone and A2 homozygotes exhibiting a specific interference reduction during combined reward (REW) and punishment trials (PUN). In fMRI, anterior cingulate activity showed a similar pattern of genotype-related modulation. Additionally, A1 carriers showed increased anterior insula activation relative to A2 homozygotes. Our results point to a role for genetic variations of the dopaminergic system in individual differences of cognition-motivation interaction. PMID:23760450
Kiani, Mehdi; Ghovanloo, Maysam
2015-02-01
A fully-integrated near-field wireless transceiver has been presented for simultaneous data and power transmission across inductive links, which operates based on pulse delay modulation (PDM) technique. PDM is a low-power carrier-less modulation scheme that offers wide bandwidth along with robustness against strong power carrier interference, which makes it suitable for implantable neuroprosthetic devices, such as retinal implants. To transmit each bit, a pattern of narrow pulses are generated at the same frequency of the power carrier across the transmitter (Tx) data coil with specific time delays to initiate decaying ringing across the tuned receiver (Rx) data coil. This ringing shifts the zero-crossing times of the undesired power carrier interference on the Rx data coil, resulting in a phase shift between the signals across Rx power and data coils, from which the data bit stream can be recovered. A PDM transceiver prototype was fabricated in a 0.35- μm standard CMOS process, occupying 1.6 mm(2). The transceiver achieved a measured 13.56 Mbps data rate with a raw bit error rate (BER) of 4.3×10(-7) at 10 mm distance between figure-8 data coils, despite a signal-to-interference ratio (SIR) of -18.5 dB across the Rx data coil. At the same time, a class-D power amplifier, operating at 13.56 MHz, delivered 42 mW of regulated power across a separate pair of high-Q power coils, aligned with the data coils. The PDM data Tx and Rx power consumptions were 960 pJ/bit and 162 pJ/bit, respectively, at 1.8 V supply voltage.
NASA Technical Reports Server (NTRS)
Reilly, Charles H.; Walton, Eric K.; Mata, Fernando; Mount-Campbell, Clark A.; Olen, Carl A.
1990-01-01
Consideration is given to the problem of allotting GEO locations to communication satellites so as to maximize the smallest aggregate carrier-to-interference (C/I) ratio calculated at any test point (assumed earth station). The location allotted to each satellite must be within the satellite's service arc, and angular separation constraints are enforced for each pair of satellites to control single-entry EMI. Solutions to this satellite system synthesis problem (SSSP) are found by embedding two heuristic procedures for the satellite location problem (SLP), in a binary search routine to find an estimate of the largest increment to the angular separation values that permits a feasible solution to SLP and SSSP. Numerical results for a 183-satellite, 208-beam example problem are presented.
NASA Technical Reports Server (NTRS)
Sydor, John T.
1988-01-01
Samples of speech modulated by narrowband frequency modulation (NBFM) (cellular) and amplitude companded single sideband (ACSSB) radios were subjected to simulated co- and adjacent channel interference environments typical of proposed frequency division multiple access (FDMA) mobile satellite systems. These samples were then listened to by a group of evaluators whose subjective responses to the samples were used to produce a series of graphs showing the relationship between subjective acceptability, carrier to noise density (C/No), carrier to interference ratio (C/I), and frequency offset. The results show that in a mobile satellite environment, ACSSB deteriorates more slowly than NBFM. The co- and adjacent channel protection ratios for both modulation techniques were roughly the same, even though the mechanism for signal deterioration is different.
A Novel Capacity Analysis for Wireless Backhaul Mesh Networks
NASA Astrophysics Data System (ADS)
Chung, Tein-Yaw; Lee, Kuan-Chun; Lee, Hsiao-Chih
This paper derived a closed-form expression for inter-flow capacity of a backhaul wireless mesh network (WMN) with centralized scheduling by employing a ring-based approach. Through the definition of an interference area, we are able to accurately describe a bottleneck collision area for a WMN and calculate the upper bound of inter-flow capacity. The closed-form expression shows that the upper bound is a function of the ratio between transmission range and network radius. Simulations and numerical analysis show that our analytic solution can better estimate the inter-flow capacity of WMNs than that of previous approach.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-01-01
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610
Koutsis, G; Panas, M; Giogkaraki, E; Karadima, G; Sfagos, C; Vassilopoulos, D
2009-02-01
Elevated ApoA1 levels have been associated with decreased dementia risk. The A-allele of the APOA1 -75G/A promoter polymorphism has been associated with elevated ApoA1 levels. We sought to investigate the effect of the APOA1 -75G/A promoter polymorphism on cognitive performance in patients with multiple sclerosis (MS). A total of 138 patients with MS and 43 controls were studied and underwent neuropsychological assessment with Rao's Brief Repeatable Battery and the Stroop test. All patients were genotyped for APOA1. APOA1 A-allele carriers displayed superior overall cognitive performance compared with non-carriers (P 0.008) and had a three-fold decrease in the relative risk of overall cognitive impairment (OR 0.29, 95% CI 0.11-0.74). Regarding performance on individual cognitive domains, although APOA1 A-allele carriers performed better than non-carriers on all tests, this was significant only for semantic verbal fluency and the Stroop interference task (P 0.036 and 0.018, respectively). We found an association of the APOA1 -75G/A promoter polymorphism with cognitive performance in MS. This effect was most prominent on semantic verbal fluency and the Stroop interference task.
Induction of viral interference by IPNV-carrier cells on target cells: A cell co-culture study.
Parreño, Ricardo; Torres, Susana; Almagro, Lucía; Belló-Pérez, Melissa; Estepa, Amparo; Perez, Luis
2016-11-01
IPNV is a salmonid birnavirus that possesses the ability to establish asymptomatic persistent infections in a number of valuable fish species. The presence of IPNV may interfere with subsequent infection by other viruses. In the present study we show that an IPNV-carrier cell line (EPC IPNV ) can induce an antiviral state in fresh EPC by co-cultivating both cell types in three different ways: a "droplet" culture system, a plastic chamber setup, and a transmembrane (Transwell ® ) system. All three cell co-culture methods were proven useful to study donor/target cell interaction. Naïve EPC cells grown in contact with EPC IPNV cells develop resistance to VHSV superinfection. The transmembrane system seems best suited to examine gene expression in donor and target cells separately. Our findings point to the conclusion that one or more soluble factors produced by the IPNV carrier culture induce the innate immune response within the target cells. This antiviral response is associated to the up-regulation of interferon (ifn) and mx gene expression in target EPC cells. To our knowledge this is the first article describing co-culture systems to study the interplay between virus-carrier cells and naive cells in fish. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Tunable, high-sensitive measurement of inter-dot transition via tunneling induced absorption
NASA Astrophysics Data System (ADS)
Peng, Yandong; Yang, Aihong; Chen, Bing; Li, Lei; Liu, Shande; Guo, Hongju
2016-10-01
A tunable, narrow absorption spectrum induced by resonant tunneling is demonstrated and proposed for measuring interdot tunneling. Tunneling-induced absorption (TIA) arises from constructive interference between different transition paths, and the large nonlinear TIA significantly enhances the total absorption. The narrow nonlinear TIA spectrum is sensitive to inter-dot tunneling, and its sensor characteristics, including sensitivity and bandwidth, are investigated in weak-coupling and strong-coupling regimes, respectively.
NASA Astrophysics Data System (ADS)
Seo, Junyeong; Sung, Youngchul
2018-06-01
In this paper, an efficient transmit beam design and user scheduling method is proposed for multi-user (MU) multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) downlink, based on Pareto-optimality. The proposed beam design and user scheduling method groups simultaneously-served users into multiple clusters with practical two users in each cluster, and then applies spatical zeroforcing (ZF) across clusters to control inter-cluster interference (ICI) and Pareto-optimal beam design with successive interference cancellation (SIC) to two users in each cluster to remove interference to strong users and leverage signal-to-interference-plus-noise ratios (SINRs) of interference-experiencing weak users. The proposed method has flexibility to control the rates of strong and weak users and numerical results show that the proposed method yields good performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djalali, Chaden; Paolone, Michael; Weygand, Dennis
2014-09-01
Although the phenomena of r – w interference has been studied at great length in pionic decay channel over the past 50 years, a study of the interference in a purely electromagnetic production and decay channel has never been performed on an elementary proton target until now. The only published photo-production data of the r - w leptonic decay channel was obtained in the early seventies on C and Be. An investigation of the r - w interference on a Hydrogen was recently completed at Jefferson Lab with the CLAS detector. The di-lepton spectra was fit with two inter- feringmore » relativistic Breit-Wigner functions, and the interference phase was extracted. Preliminary results will be compared to the previous experimental studies in nuclei.« less
Carrier frequency offset estimation for an acoustic-electric channel using 16 QAM modulation
NASA Astrophysics Data System (ADS)
Cunningham, Michael T.; Anderson, Leonard A.; Wilt, Kyle R.; Chakraborty, Soumya; Saulnier, Gary J.; Scarton, Henry A.
2016-05-01
Acoustic-electric channels can be used to send data through metallic barriers, enabling communications where electromagnetic signals are ineffective. This paper considers an acoustic-electric channel that is formed by mounting piezoelectric transducers on metallic barriers that are separated by a thin water layer. The transducers are coupled to the barriers using epoxy and the barriers are positioned to axially-align the PZTs, maximizing energy transfer efficiency. The electrical signals are converted by the transmitting transducers into acoustic waves, which propagate through the elastic walls and water medium to the receiving transducers. The reverberation of the acoustic signals in these channels can produce multipath distortion with a significant delay spread that introduces inter-symbol interference (ISI) into the received signal. While the multipath effects can be severe, the channel does not change rapidly which makes equalization easier. Here we implement a 16-QAM system on this channel, including a method for obtaining accurate carrier frequency offset (CFO) estimates in the presence of the quasi-static multipath propagation. A raised-power approach is considered but found to suffer from excessive data noise resulting from the ISI. An alternative approach that utilizes a pilot tone burst at the start of a data packet is used for CFO estimation and found to be effective. The autocorrelation method is used to estimate the frequency of the received burst. A real-time prototype of the 16 QAM system that uses a Texas Instruments MSP430 microcontroller-based transmitter and a personal computer-based receiver is presented along with performance results.
Amplitude modulation detection with concurrent frequency modulation.
Nagaraj, Naveen K
2016-09-01
Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.
DOT National Transportation Integrated Search
2017-03-30
A 1 dB decrease in the carrier-to-noise (C/N) ratio is equivalent to a -6 dB interference-to-noise (I/N) ratio and a 1 dB increase in the noise floor ((I+N)/N). Regulations alternate between referencing the 1 dB decrease in C/N, -6 dB I/N ratio, and ...
Effect of sex, age and genetics on crossover interference in cattle
Wang, Zhiying; Shen, Botong; Jiang, Jicai; Li, Jinquan; Ma, Li
2016-01-01
Crossovers generated by homologous recombination ensure proper chromosome segregation during meiosis. Crossover interference results in chiasmata being more evenly distributed along chromosomes, but the mechanism underlying crossover interference remains elusive. Based on large pedigrees of Holstein and Jersey cattle with genotype data, we extracted three-generation families, including 147,327 male and 71,687 female meioses in Holstein, and 108,163 male and 37,008 female meioses in Jersey, respectively. We identified crossovers in these meioses and fitted the Housworth-Stahl “interference-escape” model to study crossover interference patterns in the cattle genome. Our result reveals that the degree of crossover interference is stronger in females than in males. We found evidence for inter-chromosomal variation in the level of crossover interference, with smaller chromosomes exhibiting stronger interference. In addition, crossover interference levels decreased with maternal age. Finally, sex-specific GWAS analyses identified one locus near the NEK9 gene on chromosome 10 to have a significant effect on crossover interference levels. This locus has been previously associated with recombination rate in cattle. Collectively, this large-scale analysis provided a comprehensive description of crossover interference across chromosome, sex and age groups, identified associated candidate genes, and produced useful insights into the mechanism of crossover interference. PMID:27892966
Gessoni, G; Valverde, S; Valle, L; Gessoni, F; Caruso, P; Valle, R
2017-08-01
Activated protein C resistance (APCr) leads to hypercoagulability and is due, often but not exclusively, to Factor V Leiden (FVL). The aim of this study was to assess the ex vivo and in vitro interference of the direct factor Xa inhibitor rivaroxaban (RIV) on a prothrombinase-based assay for APCr detection. An ex vivo study was performed on fresh plasma samples obtained from 44 subjects with FV wild-type and seven with FVL heterozygous, all treated with RIV. An in vitro study was performed on 15 plasma samples (six from normal subjects, six from heterozygous, and three from homozygous FVL carriers, all frozen specimens) spiked with RIV. RIV concentration was evaluated using a chromogenic assay, and APCr was evaluated by a prothrombinase-based assay. No significant interference of RIV on APCr results obtained by a prothrombinase-based assay was observed for drug concentrations up to 400 ng/mL in FV wild-type and FVL carriers (homozygous and heterozygous). These results were confirmed both ex vivo and in vitro. RIV did not significantly interfere with the prothrombinase-based assay used for the assessment of APCr, and this was observed to occur independently of FV status. However, only concentrations up to 400 ng/mL were tested and, therefore, what occurs in the presence of higher doses remains to be investigated. © 2017 John Wiley & Sons Ltd.
George, Nimta; Peter, Valsa S; Peter, M C Subhash
2013-01-15
Adrenaline and cortisol, the major stress hormones, are known for its direct control on stress response in fish. Likewise, as an important stress modifier hormone, thyroid hormone has also been implicated in stress response of fish. We tested whether the hypothesis on the phenomenon of inter-hormonal interference, a process that explains the hormonal interactions, operates in fish particularly between adrenaline, cortisol and thyroid hormones. To achieve this goal, indices of acid-base, osmotic and metabolic regulations were quantified after adrenaline challenge in propranolol pre-treated air-breathing fish (Anabas testudineus). Short-term adrenaline (10 ng g(-1)) injection for 30 min produced a rise in plasma cortisol without affecting plasma T(3) and T(4). On the contrary, blocking of adrenaline action with a non-selective blocker, propranolol (25 ng g(-1)) for 90 min reduced plasma cortisol along with plasma T(4) and that indicate a possible interference of these hormones in the absence of adrenaline challenge. Similarly, a reduction in plasma T(3) was found after adrenaline challenge in propranolol pre-treated fish and that suggests a functional synergistic interference of adrenaline with T(3). Adrenaline challenge in these fish, however, failed to abolish this propranolol effect. The remarkable systemic hypercapnia and acidosis by propranolol pre-treatment were reversed by adrenaline challenge, pointing to a direct action of adrenaline on acid-base indices probably by a mechanism which may not require β-adrenergic receptor systems. Interestingly, the prominent adrenaline-induced hyperglycemia, hyperlactemia and hyperuremea were not altered by propranolol treatment. Similarly, adrenaline challenge promoted and propranolol reduced the osmotic competencies of the gills, kidneys and liver of this fish as evident in the sodium and proton pump activities. The modified physiologic actions of adrenaline and its modified interaction with THs and cortisol in blocked fish indicate an interaction of adrenaline with cortisol and THs. Our physiologic evidences thus support the hypothesis of the phenomenon of inter-hormonal interference. Copyright © 2012 Elsevier Inc. All rights reserved.
Laterally Translating Seal Carrier For A Drilling Mud Motor Sealed Bearing Assembly
Dietle, Lannie
1993-03-23
A sealing and lubrication assembly for rotating shafts intended for operation in an abrasive environment and wherein the rotary shaft may have lateral translation or excursion during its rotation. A housing receives the rotary shaft in bearing supporting relation and defines a lubricant chamber about the shaft. A seal carrier is movably positioned about the rotary shaft and has non-rotatable articulating or laterally translating relation with the housing. A high pressure rotary shaft seal is supported by the seal carrier and maintains bearing and sealing engagement with the rotary shaft during its lateral translation or excursion. The seal carrier is hydraulic force balanced and thus is not subject to pressure induced loads that might otherwise interfere with its articulation or lateral translation.
LDPC product coding scheme with extrinsic information for bit patterned media recoding
NASA Astrophysics Data System (ADS)
Jeong, Seongkwon; Lee, Jaejin
2017-05-01
Since the density limit of the current perpendicular magnetic storage system will soon be reached, bit patterned media recording (BPMR) is a promising candidate for the next generation storage system to achieve an areal density beyond 1 Tb/in2. Each recording bit is stored in a fabricated magnetic island and the space between the magnetic islands is nonmagnetic in BPMR. To approach recording densities of 1 Tb/in2, the spacing of the magnetic islands must be less than 25 nm. Consequently, severe inter-symbol interference (ISI) and inter-track interference (ITI) occur. ITI and ISI degrade the performance of BPMR. In this paper, we propose a low-density parity check (LDPC) product coding scheme that exploits extrinsic information for BPMR. This scheme shows an improved bit error rate performance compared to that in which one LDPC code is used.
Coherent detection of position errors in inter-satellite laser communications
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu
2007-09-01
Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.
Single- and dual-carrier microwave noise abatement in the deep space network. [microwave antennas
NASA Technical Reports Server (NTRS)
Bathker, D. A.; Brown, D. W.; Petty, S. M.
1975-01-01
The NASA/JPL Deep Space Network (DSN) microwave ground antenna systems are presented which simultaneously uplink very high power S-band signals while receiving very low level S- and X-band downlinks. Tertiary mechanisms associated with elements give rise to self-interference in the forms of broadband noise burst and coherent intermodulation products. A long-term program to reduce or eliminate both forms of interference is described in detail. Two DSN antennas were subjected to extensive interference testing and practical cleanup program; the initial performance, modification details, and final performance achieved at several planned stages are discussed. Test equipment and field procedures found useful in locating interference sources are discussed. Practices deemed necessary for interference-free operations in the DSN are described. Much of the specific information given is expected to be easily generalized for application in a variety of similar installations. Recommendations for future investigations and individual element design are given.
NASA Technical Reports Server (NTRS)
Stuhr, F. V.; Kent, S. S.; Galvez, J. L.; Luaces, B. G.; Pasero, G. R.; Urech, J. M.
1976-01-01
In support of the ongoing NASA-European Space Agency (ESA) effort to understand and control possible interference between missions, testing was conducted at the Madrid Deep Space Station from July 1975 to February 1976 to characterize the effect on Viking 1975 telecommunication link performance of Geodetic Earth-Orbiting Satellite (GEOS) downlink signals. The prime use of the data was to develop a capability to predict GEOS interference effects for evaluation of Viking 1975 mission impacts and possible temporary GEOS shutdown. Also, the data would serve as a basis for assessment of the GEOS impact on missions other than Viking as well as for more general interference applications. Performances of the reference receiver, telemetry, and planetary ranging were measured in the presence of various types of GEOS-related interference, including an unmodulated GEOS carrier and simulation of the actual spectrum by an ESA-supplied GEOS suitcase model.
InGaAsP/InP optical waveguide switch operated by a carrier-induced change in the refractive index
NASA Astrophysics Data System (ADS)
Mikami, O.; Nakagome, H.
1985-11-01
Waveguided semiconductor optical switches operated by a carrier-induced change in the refractive-index associated with the plasma dispersion are proposed. InGaAsP/InP four-port switches having two intersecting single-mode channel waveguides are fabricated by selective liquid-phase epitaxy and investigated at 1.5 microns wavelength. Optical switching is observed as a result of mode interference in the waveguide intersection region.
A Magnetic-Balanced Inductive Link for the Simultaneous Uplink Data and Power Telemetry
Liu, Dake; Li, Min
2017-01-01
When using the conventional two-coil inductive link for the simultaneous wireless power and data transmissions in implantable biomedical sensor devices, the strong power carrier could overwhelm the uplink data signal and even saturate the external uplink receiver. To address this problem, we propose a new magnetic-balanced inductive link for our implantable glaucoma treatment device. In this inductive link, an extra coil is specially added for the uplink receiving. The strong power carrier interference is minimized to approach zero by balanced canceling of the magnetic field of the external power coil. The implant coil is shared by the wireless power harvesting and the uplink data transmitting. Two carriers (i.e., 2-MHz power carrier and 500-kHz uplink carrier) are used for the wireless power transmission and the uplink data transmission separately. In the experiments, the prototype of this link achieves as high as 65.72 dB improvement of the signal-to-interference ratio (SIR) compared with the conventional two-coil inductive link. Benefiting from the significant improvement of SIR, the implant transmitter costs only 0.2 mW of power carrying 50 kbps of binary phase shift keying data and gets a bit error rate of 1 × 10−7, even though the coupling coefficient is as low as 0.005. At the same time, 5 mW is delivered to the load with maximum power transfer efficiency of 58.8%. This magnetic-balanced inductive link is useful for small-sized biomedical sensor devices, which require transmitting data and power simultaneously under ultra-weak coupling. PMID:28767090
A Magnetic-Balanced Inductive Link for the Simultaneous Uplink Data and Power Telemetry.
Gong, Chen; Liu, Dake; Miao, Zhidong; Li, Min
2017-08-02
When using the conventional two-coil inductive link for the simultaneous wireless power and data transmissions in implantable biomedical sensor devices, the strong power carrier could overwhelm the uplink data signal and even saturate the external uplink receiver. To address this problem, we propose a new magnetic-balanced inductive link for our implantable glaucoma treatment device. In this inductive link, an extra coil is specially added for the uplink receiving. The strong power carrier interference is minimized to approach zero by balanced canceling of the magnetic field of the external power coil. The implant coil is shared by the wireless power harvesting and the uplink data transmitting. Two carriers (i.e., 2-MHz power carrier and 500-kHz uplink carrier) are used for the wireless power transmission and the uplink data transmission separately. In the experiments, the prototype of this link achieves as high as 65.72 dB improvement of the signal-to-interference ratio (SIR) compared with the conventional two-coil inductive link. Benefiting from the significant improvement of SIR, the implant transmitter costs only 0.2 mW of power carrying 50 kbps of binary phase shift keying data and gets a bit error rate of 1 × 10 - 7 , even though the coupling coefficient is as low as 0.005. At the same time, 5 mW is delivered to the load with maximum power transfer efficiency of 58.8%. This magnetic-balanced inductive link is useful for small-sized biomedical sensor devices, which require transmitting data and power simultaneously under ultra-weak coupling.
47 CFR 2.807 - Statutory exceptions.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Carriers transporting radiofrequency devices without trading in them. (b) Radiofrequency devices manufactured solely for export. (c) The manufacture, assembly, or installation of radiofrequency devices for... device shall be operated if it causes harmful interference to radio communications. (d) Radiofrequency...
Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou
Sun, Yanbo; Xue, Rui; Zhao, Danfeng; Wang, Dun
2017-01-01
With L band frequency allocations for satellite navigation getting more crowded, S band (2483.5–2500 MHz) is already allocated for navigation services, where Globalstar broadcasts downlink communications to user terminals. The Indian Regional Navigation Satellite System (IRNSS) is transmitting navigation signals and Galileo exploits some potential signals in S band. Also, several candidate S band signals based on binary offset carrier (BOC), binary phase shift keying (BPSK), continuous phase modulation (CPM) and minimum shift keying-BOC (MSK-BOC) are suggested for BeiDou system (BDS). In quite narrow S band, mutual interference among these systems is inevitable, thus the compatibility issue is particularly significant for S band signal design. To explore desired S band signals for BDS, the paper firstly describes a comprehensive compatibility evaluation methods based on effective carrier-to-noise ratio degradation for acquisition and code tracking. Then a real simulation is established using space constellations, modulation schemes and received power. Finally, the worst mutual interference of BDS candidate signals with Galileo, IRNSS and Globalstar is calculated and compared. The results indicate that CPM signal is easier to allow peaceful coexistence of other systems with minimal mutual interference in S band compared to other BDS candidates. PMID:28475142
Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou.
Sun, Yanbo; Xue, Rui; Zhao, Danfeng; Wang, Dun
2017-05-05
With L band frequency allocations for satellite navigation getting more crowded, S band (2483.5-2500 MHz) is already allocated for navigation services, where Globalstar broadcasts downlink communications to user terminals. The Indian Regional Navigation Satellite System (IRNSS) is transmitting navigation signals and Galileo exploits some potential signals in S band. Also, several candidate S band signals based on binary offset carrier (BOC), binary phase shift keying (BPSK), continuous phase modulation (CPM) and minimum shift keying-BOC (MSK-BOC) are suggested for BeiDou system (BDS). In quite narrow S band, mutual interference among these systems is inevitable, thus the compatibility issue is particularly significant for S band signal design. To explore desired S band signals for BDS, the paper firstly describes a comprehensive compatibility evaluation methods based on effective carrier-to-noise ratio degradation for acquisition and code tracking. Then a real simulation is established using space constellations, modulation schemes and received power. Finally, the worst mutual interference of BDS candidate signals with Galileo, IRNSS and Globalstar is calculated and compared. The results indicate that CPM signal is easier to allow peaceful coexistence of other systems with minimal mutual interference in S band compared to other BDS candidates.
Population pharmacokinetic study of memantine: effects of clinical and genetic factors.
Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Wilhelm, Laurence; Michon, Agnès; Thomazic, Valérie; Alnawaqil, Abdel-Messieh; Maurer, Sophie; Zumbach, Serge; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B
2013-03-01
Memantine, a frequently prescribed anti-dementia drug, is mainly eliminated unchanged by the kidneys, partly via tubular secretion. Considerable inter-individual variability in plasma concentrations has been reported. We aimed to investigate clinical and genetic factors influencing memantine disposition. A population pharmacokinetic study was performed including data from 108 patients recruited in a naturalistic setting. Patients were genotyped for common polymorphisms in renal cation transporters (SLC22A1/2/5, SLC47A1, ABCB1) and nuclear receptors (NR1I2, NR1I3, RXR, PPAR) involved in transporter expression. The average clearance was 5.2 L/h with a 27 % inter-individual variability (percentage coefficient of variation). Glomerular filtration rate (p = 0.007) and sex (p = 0.001) markedly influenced memantine clearance. NR1I2 rs1523130 was identified as the unique significant genetic covariate for memantine clearance (p = 0.006), with carriers of the NR1I2 rs1523130 CT/TT genotypes presenting a 16 % slower memantine elimination than carriers of the CC genotype. The better understanding of inter-individual variability of memantine disposition might be beneficial in the context of individual dose optimization.
Feng, Hanlin; Ge, Jia; Xiao, Shilin; Fok, Mable P
2014-05-19
In this paper, we present a novel Rayleigh backscattering (RB) noise mitigation scheme based on central carrier suppression for 10 Gb/s loop-back wavelength division multiplexing passive optical network (WDM-PON). Microwave modulated multi-subcarrier optical signal is used as downstream seeding light, while cascaded semiconductor optical amplifier (SOA) are used in the optical network unit (ONU) for suppressing the central carrier of the multi-subcarrier upstream signal. With central carrier suppression, interference generated by carrier RB noise at low frequency region is eliminated successfully. Transmission performance over 45 km single mode fiber (SMF) is studied experimentally, and the optical-signal-to-Rayleigh-noise-ratio (OSRNR) can be reduced to 15 dB with central carrier suppression ratio (CCSR) of 21 dB. Receiver sensitivity is further improved by 6 dB with the use of microwave photonic filter (MPF) for suppressing residual upstream microwave signal and residual carrier RB at high frequency region.
New hybrid frequency reuse method for packet loss minimization in LTE network.
Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H
2015-11-01
This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.
Evans, P; Fairman, B
2001-10-01
Reliable trace metal analysis of environmental samples is dependent upon the availability of high accuracy, matrix reference standards. Here, we present Cd, Cu, Ni, Pb and Zn isotope dilution determination for an estuary water certified reference material (LGC 6016). This work highlights the need for high-accuracy techniques in the development of trace element CRMs rather than conventional inter-laboratory trials. Certification of the estuary water LGC6016 was initially determined from a consensus mean from 14 laboratories but this was found to be unsatisfactory due to the large discrepancies in the reported concentrations. The material was re-analysed using isotope dilution ICP-MS techniques. Pb and Cd were determined using a conventional quadrupole ICP-MS (Elan 5000). Cu, Zn and Ni were determined using a magnetic sector ICP-MS (Finnigan Element), which allowed significant polyatomic interferences to be overcome. Using the magnetic sector instrument, precise mass calibration to within 0.02 amu permitted identification of the interferences. Most interferences derived from the sample matrix. For example, the high Na content causes interferences on 63Cu, due to the formation of 40Ar23Na and 23Na2 16O1H, which in a conventional quadrupole instrument would relate to an erroneous increase in signal intensity by up to 20%. For each analyte a combined uncertainty calculation was performed following the Eurachem/GTAC and ISO guideline. For each element a combined uncertainty of 2-3% was found, which represents a 10-fold improvement compared to certification by inter-laboratory comparison. Analysis of the combined uncertainty budget indicates that the majority of systematic uncertainty derives from the instrumental isotope ratio measurements.
Polaron formation in normal state optical conductivity of iron-based superconductor
NASA Astrophysics Data System (ADS)
Choudhary, K. K.; Lodhi, Pavitra Devi; Kaurav, Netram
2018-05-01
Normal state Optical conductivity σ(ω) of Iron-Based superconductor LaFeAsO have been investigated using polaron formation mechanism. The coherent Drude free carrier excitations as well as the incoherent motion of carriers leading to a polaron formation, originated from inter and intra layer transitions of charge carriers are incorporated in the present model. Coherent motion of Drude carriers obtained from an effective interaction potential leads to a peak at zero frequency regime which is an indication of metallic conduction in superconducting materials and also produces a long tail at higher frequencies infrared region. Whereas, the incoherent motion i.e. hopping of carriers from Fe to Fe in the FeAs layer and from FeAs layer to LaO layer produces two different peaks at around 100 cm-1 and 430 cm-1 respectively. Two contributions, Drude and hopping carriers successfully explain the anomalies observed in the optical conductivity of metallic state of the iron-based superconductors.
Inter-BSs virtual private network for privacy and security enhanced 60 GHz radio-over-fiber system
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Chen, Chen; Zhang, Wei; Jin, Wei; Qiu, Kun; Li, Changchun; Jiang, Ning
2013-06-01
A novel inter-basestations (inter-BSs) based virtual private network (VPN) for the privacy and security enhanced 60 GHz radio-over-fiber (RoF) system using optical code-division multiplexing (OCDM) is proposed and demonstrated experimentally. By establishing inter-BSs VPN overlaying the network structure of a 60 GHz RoF system, the express and private paths for the communication of end-users under different BSs can be offered. In order to effectively establish the inter-BSs VPN, the OCDM encoding/decoding technology is employed in the RoF system. In each BS, a 58 GHz millimeter-wave (MMW) is used as the inter-BSs VPN channel, while a 60 GHz MMW is used as the common central station (CS)-BSs communication channel. The optical carriers used for the downlink, uplink and VPN link transmissions are all simultaneously generated in a lightwave-centralized CS, by utilizing four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA). The obtained results properly verify the feasibility of our proposed configuration of the inter-BSs VPN in the 60 GHz RoF system.
1990-09-01
simplest form the modulators are systems. 1) The inter -band absorption edges at operated as non-resonant (single-pass) which the electro-absorption...transitions in -0111- 1,’. three different wavelength bands indicated. It is the NIR inter -band transition which is of interest in this E’l Iwork. 0...quartz crystal resonator is a vector quantity. 12 random vibration at 100 Hz away from the Therefore, the frequency during acceleration carrier. Of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Linlong; Chongqing institute of green and intelligent technology, Chinese Academy of Sciences, Chongqing, 401122; Du, Jinglei, E-mail: dujl@scu.edu.cn
We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.
On the Effects of a Spacecraft Subcarrier Unbalanced Modulator
NASA Technical Reports Server (NTRS)
Nguyen, Tien Manh
1993-01-01
This paper presents mathematical models with associated analysis of the deleterious effects which a spacecraft's subcarrier unbalanced modulator has on the performance of a phase-modulated residual carrier communications link. The undesired spectral components produced by the phase and amplitude imbalances in the subcarrier modulator can cause (1) potential interference to the carrier tracking and (2) degradation in the telemetry bit signal-to-noise ratio (SNR). A suitable model for the unbalanced modulator is developed and the threshold levels of undesired components that fall into the carrier tracking loop are determined. The distribution of the carrier phase error caused by the additive White Gaussian noise (AWGN) and undesired component at the residual RF carrier is derived for the limiting cases. Further, this paper analyses the telemetry bit signal-to-noise ratio degradations due to undesirable spectral components as well as the carrier tracking phase error induced by phase and amplitude imbalances. Numerical results which indicate the sensitivity of the carrier tracking loop and the telemetry symbol-error rate (SER) to various parameters of the models are also provided as a tool in the design of the subcarrier balanced modulator.
Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun
2017-01-01
Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR. PMID:28489064
Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun
2017-05-10
Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR.
Electromagnetic immunity of infusion pumps to GSM mobile phones: a systematic review.
Calcagnini, Giovanni; Censi, Federica; Triventi, Michele; Mattei, Eugenio; Bartolini, Pietro
2007-01-01
Electromagnetic interference with life-sustaining medical care devices has been reported by various groups. Previous studies have demonstrated that volumetric and syringe pumps are susceptible to false alarm buzzing and blocking, when exposed to various electromagnetic sources. The risk of electromagnetic interference depends on several factors such as the phone-emitted power, distance and carrier frequency, phone model and antenna type. The main recommendations and the relevant harmonized standard are also reported and discussed. >From the data available in literature emerges that, for distances lower than 1 m there is a non negligible risk of electromagnetic interferences, although significant differences exists in the reported minimum distances. Interference effects clinically relevant for the patients are rare. No permanent damage to the pumps has been ever reported, although in several cases intervention of personnel is required to resume normal operation.
Jaspar, Mathieu; Dideberg, Vinciane; Bours, Vincent; Maquet, Pierre; Collette, Fabienne
2015-04-01
Genetic variability related to the catechol-O-methyltransferase (COMT) gene has received increasing attention in the last 15years, in particular as a potential modulator of the neural substrates underlying inhibitory processes and updating in working memory (WM). In an event-related functional magnetic resonance imaging (fMRI) study, we administered a modified version of the Sternberg probe recency task (Sternberg, 1966) to 43 young healthy volunteers, varying the level of interference across successive items. The task was divided into two parts (high vs. low interference) to induce either proactive or reactive control processes. The participants were separated into three groups according to their COMT Val(158)Met genotype [Val/Val (VV); Val/Met (VM); Met/Met (MM)]. The general aim of the study was to determine whether COMT polymorphism has a modulating effect on the neural substrates of interference resolution during WM processing. Results indicate that interfering trials were associated with greater involvement of frontal cortices (bilateral medial frontal gyrus, left precentral and superior frontal gyri, right inferior frontal gyrus) in VV homozygous subjects (by comparison to Met allele carriers) only in the proactive condition of the task. In addition, analysis of peristimulus haemodynamic responses (PSTH) revealed that the genotype-related difference observed in the left SFG was specifically driven by a larger increase in activity from the storage to the recognition phase of the interfering trials in VV homozygous subjects. These results confirm the impact of COMT genotype on inhibitory processes during a WM task, with an advantage for Met allele carriers. Interestingly, this impact on frontal areas is present only when the level of interference is high, and especially during the transition from storage to recognition in the left superior frontal gyrus. Copyright © 2015 Elsevier Inc. All rights reserved.
Analysis of separation of the space shuttle orbiter from a large transport airplane
NASA Technical Reports Server (NTRS)
Wilhite, A. W.
1977-01-01
The feasibility of safely separating the space shuttle orbiter (140A/B) from the top of a large carrier vehicle (the C-5 airplane) at subsonic speeds was investigated. The longitudinal equations of motion for both vehicles were numerically integrated using a digital computer program which incorporates experimentally derived interference aerodynamic data to analyze the separation maneuver for various initial conditions. Separation of the space shuttle orbiter from a carrier vehicle was feasible for a range of dynamic-pressure and flight-path-angle conditions. By using an autopilot, the vehicle attitudes were held constant which ensured separation. Carrier-vehicle engine thrust, landing gear, and spoilers provide some flexibility in the separation maneuver.
Trillo, C; Doval, A F; López-Vázquez, J C
2010-07-05
Phase evaluation methods based on the 2D spatial Fourier transform of a speckle interferogram with spatial carrier usually assume that the Fourier spectrum of the interferogram has a trimodal distribution, i. e. that the side lobes corresponding to the interferential terms do not overlap the other two spectral terms, which are related to the intensity of the object and reference beams, respectively. Otherwise, part of the spectrum of the object beam is inside the inverse-transform window of the selected interference lobe and induces an error in the resultant phase map. We present a technique for the acquisition and processing of speckle interferogram sequences that separates the interference lobes from the other spectral terms when the aforementioned assumption does not apply and regardless of the temporal bandwidth of the phase signal. It requires the recording of a sequence of interferograms with spatial and temporal carriers, and their processing with a 3D Fourier transform. In the resultant 3D spectrum, the spatial and temporal carriers separate the conjugate interferential terms from each other and from the term related to the object beam. Experimental corroboration is provided through the measurement of the amplitude of surface acoustic waves in plates with a double-pulsed TV holography setup. The results obtained with the proposed method are compared to those obtained with the processing of individual interferograms with the regular spatial-carrier 2D Fourier transform method.
Throughput assurance of wireless body area networks coexistence based on stochastic geometry
Wang, Yinglong; Shu, Minglei; Wu, Shangbin
2017-01-01
Wireless body area networks (WBANs) are expected to influence the traditional medical model by assisting caretakers with health telemonitoring. Within WBANs, the transmit power of the nodes should be as small as possible owing to their limited energy capacity but should be sufficiently large to guarantee the quality of the signal at the receiving nodes. When multiple WBANs coexist in a small area, the communication reliability and overall throughput can be seriously affected due to resource competition and interference. We show that the total network throughput largely depends on the WBANs distribution density (λp), transmit power of their nodes (Pt), and their carrier-sensing threshold (γ). Using stochastic geometry, a joint carrier-sensing threshold and power control strategy is proposed to meet the demand of coexisting WBANs based on the IEEE 802.15.4 standard. Given different network distributions and carrier-sensing thresholds, the proposed strategy derives a minimum transmit power according to varying surrounding environment. We obtain expressions for transmission success probability and throughput adopting this strategy. Using numerical examples, we show that joint carrier-sensing thresholds and transmit power strategy can effectively improve the overall system throughput and reduce interference. Additionally, this paper studies the effects of a guard zone on the throughput using a Matern hard-core point process (HCPP) type II model. Theoretical analysis and simulation results show that the HCPP model can increase the success probability and throughput of networks. PMID:28141841
NASA Technical Reports Server (NTRS)
Leucht, David K.; Koslosky, Marie J.; Kobe, David L.; Wu, Jya-Chang C.; Vavra, David A.
2011-01-01
The Space Environments Testbed (SET) is a flight controller data system for the Common Carrier Assembly. The SET-1 flight software provides the command, telemetry, and experiment control to ground operators for the SET-1 mission. Modes of operation (see dia gram) include: a) Boot Mode that is initiated at application of power to the processor card, and runs memory diagnostics. It may be entered via ground command or autonomously based upon fault detection. b) Maintenance Mode that allows for limited carrier health monitoring, including power telemetry monitoring on a non-interference basis. c) Safe Mode is a predefined, minimum power safehold configuration with power to experiments removed and carrier functionality minimized. It is used to troubleshoot problems that occur during flight. d) Operations Mode is used for normal experiment carrier operations. It may be entered only via ground command from Safe Mode.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Discovery. 2.120 Section 2... COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Procedure in Inter Partes Proceedings § 2.120 Discovery. (a... to disclosure and discovery shall apply in opposition, cancellation, interference and concurrent use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Discovery. 2.120 Section 2... COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Procedure in Inter Partes Proceedings § 2.120 Discovery. (a... to disclosure and discovery shall apply in opposition, cancellation, interference and concurrent use...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Discovery. 2.120 Section 2... COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Procedure in Inter Partes Proceedings § 2.120 Discovery. (a... to disclosure and discovery shall apply in opposition, cancellation, interference and concurrent use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Discovery. 2.120 Section 2... COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Procedure in Inter Partes Proceedings § 2.120 Discovery. (a... to disclosure and discovery shall apply in opposition, cancellation, interference and concurrent use...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Discovery. 2.120 Section 2... COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Procedure in Inter Partes Proceedings § 2.120 Discovery. (a... to disclosure and discovery shall apply in opposition, cancellation, interference and concurrent use...
Iterative decoding of SOVA and LDPC product code for bit-patterned media recoding
NASA Astrophysics Data System (ADS)
Jeong, Seongkwon; Lee, Jaejin
2018-05-01
The demand for high-density storage systems has increased due to the exponential growth of data. Bit-patterned media recording (BPMR) is one of the promising technologies to achieve the density of 1Tbit/in2 and higher. To increase the areal density in BPMR, the spacing between islands needs to be reduced, yet this aggravates inter-symbol interference and inter-track interference and degrades the bit error rate performance. In this paper, we propose a decision feedback scheme using low-density parity check (LDPC) product code for BPMR. This scheme can improve the decoding performance using an iterative approach with extrinsic information and log-likelihood ratio value between iterative soft output Viterbi algorithm and LDPC product code. Simulation results show that the proposed LDPC product code can offer 1.8dB and 2.3dB gains over the one LDPC code at the density of 2.5 and 3 Tb/in2, respectively, when bit error rate is 10-6.
22q11.2 Deletion Syndrome Is Associated With Impaired Auditory Steady-State Gamma Response
Pellegrino, Giovanni; Birknow, Michelle Rosgaard; Kjær, Trine Nørgaard; Baaré, William Frans Christiaan; Didriksen, Michael; Olsen, Line; Werge, Thomas; Mørup, Morten; Siebner, Hartwig Roman
2018-01-01
Abstract Background The 22q11.2 deletion syndrome confers a markedly increased risk for schizophrenia. 22q11.2 deletion carriers without manifest psychotic disorder offer the possibility to identify functional abnormalities that precede clinical onset. Since schizophrenia is associated with a reduced cortical gamma response to auditory stimulation at 40 Hz, we hypothesized that the 40 Hz auditory steady-state response (ASSR) may be attenuated in nonpsychotic individuals with a 22q11.2 deletion. Methods Eighteen young nonpsychotic 22q11.2 deletion carriers and a control group of 27 noncarriers with comparable age range (12–25 years) and sex ratio underwent 128-channel EEG. We recorded the cortical ASSR to a 40 Hz train of clicks, given either at a regular inter-stimulus interval of 25 ms or at irregular intervals jittered between 11 and 37 ms. Results Healthy noncarriers expressed a stable ASSR to regular but not in the irregular 40 Hz click stimulation. Both gamma power and inter-trial phase coherence of the ASSR were markedly reduced in the 22q11.2 deletion group. The ability to phase lock cortical gamma activity to regular auditory 40 Hz stimulation correlated with the individual expression of negative symptoms in deletion carriers (ρ = −0.487, P = .041). Conclusions Nonpsychotic 22q11.2 deletion carriers lack efficient phase locking of evoked gamma activity to regular 40 Hz auditory stimulation. This abnormality indicates a dysfunction of fast intracortical oscillatory processing in the gamma-band. Since ASSR was attenuated in nonpsychotic deletion carriers, ASSR deficiency may constitute a premorbid risk marker of schizophrenia. PMID:28521049
47 CFR 27.70 - Information exchange.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS... activated or an existing base or fixed station is modified: (1) Location; (2) Effective radiated power; (3... identify the source if interference is encountered when the base or fixed station is activated. [72 FR...
The architecture of blind equalizer for MIMO free space optical communication system
NASA Astrophysics Data System (ADS)
Li, Hongwei; Huang, Yongmei
2016-10-01
The free space optical (FSO) communication system has attracted many researchers from different countries, owning to its advantages such as high security, high speed and anti-interference. Among all kinds of the channels of the FSO communication system, the atmosphere channel is very difficult to deal with for two typical disadvantages at least. The one is the scintillation of the optical carrier intensity caused by the atmosphere turbulence and the other is the multipath effect by the optical scattering. A lot of studies have shown that the MIMO (Multiple Input Multiple Output) technology can overcome the scintillation of the optical carrier through the atmosphere effectively. So the background of this paper is a MIMO system which includes multiple optical transmitting antennas and multiple optical receiving antennas. A number of particles such as hazes, water droplets and aerosols exit in the atmosphere widely. When optical carrier meets these particles, the scattering phenomenon is inevitable, which leads to the multipath effect. As a result, a optical pulse transmitted by the optical transmitter becomes wider, to some extent, when it gets to the optical receiver due to the multipath effect. If the information transmission rate is quite low, there is less relationship between the multipath effect and the bit error rate (BER) of the communication system. Once the information transmission rate increases to a high level, the multipath effect will produce the problem called inter symbol inference (ISI) seriously and the bit error rate will increase severely. In order to take the advantage of the FSO communication system, the inter symbol inference problem must be solved. So it is necessary to use the channel equalization technology. This paper aims at deciding a equalizer and designing suitable equalization algorithm for a MIMO free space optical communication system to overcome the serious problem of bit error rate. The reliability and the efficiency of communication are two important indexes. For a MIMO communication system, there are two typical equalization methods. The first method, every receiving antenna has an independent equalizer without the information derived from the other receiving antennas. The second, the information derived from all of the receiving antennas mixes with each other, according to some definite rules, which is called space-time equalization. The former is discussed in this paper. The equalization algorithm concludes training mode and non training mode. The training mode needs training codes transmitted by the transmitter during the whole communication process and this mode reduces the communication efficiency more or less. In order to improve the communication efficiency, the blind equalization algorithm, a non training mode, is used to solve the parameter of the equalizer. In this paper, firstly, the atmosphere channel is described focusing on the scintillation and multipath effect of the optical carrier. Then, the structure of a equalizer of MIMO free space optical communication system is introduced. In the next part of this paper, the principle of the blind equalization algorithm is introduced. In addition, the simulation results are showed. In the end of this paper, the conclusions and the future work are discussed.
Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet
NASA Technical Reports Server (NTRS)
Holladay, Jon; McClendon, Randy (Technical Monitor)
2002-01-01
The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post-landing operations. These unique requirements combined with a success-oriented schedule of four flights within a ten-month period have provided numerous opportunities for understanding and improving operations processes. Furthermore, it has increased the knowledge base of future Payload Carrier and Launch Vehicle hardware and requirement developments. Discussion of the process flows and target areas for process improvement are provided in the subject paper. Special emphasis is also placed on supplying guidelines for hardware development. The combination of process knowledge and hardware development knowledge will provide a comprehensive overview for future vehicle developments as related to integration and transportation of payloads.
A Precision, Low-Cost GPS-Based Synchronization Scheme for Improved AM Reception.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen Fulton; Moore, Anthony
2009-01-01
This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to ~1 part in 109 or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station s carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station s audio at the receiver and concurrent distortion of the audio modulation from the distant station(s)more » and often cause listeners to tune out due to the poor reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; HD will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1-2K), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long-term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific (AM broadcast) transmitter carrier frequency desired. The stability of the disciplining source, typically ~ 1 part in 109 to 1011, is thus transferred to the final AM transmitter carrier output frequency. Generally, an AM radio listener during the evening and nighttime hours, and to a lesser extent in the early morning, receives undesired skywave signals from several distant stations as well as the desired local (groundwave) signal. If all of these signals are within about 0.01-0.001 Hz of each other, any resulting carrier beats will be of such long periods that the beats will be effectively suppressed by the action of the receiver s AGC circuitry and thus be unnoticeable to the listener. Many modern, synthesizer-based transmitters can directly lock to the precision disciplined 10-MHz source, while older units usually require references at either1 e, 2 e, or 4 e the final frequency. In these latter cases, the existing transmitter crystal can usually be satisfactorily pulled via injection locking. The effectiveness of the synchronization concept to reduce interference effects was demonstrated in a laboratory test setup. Many hours of careful subjective listening were conducted, with the two interfering units both precisely on-frequency with the main unit (synchronous operation) and with the two interferers at various frequency offsets, from below 1 Hz to above 10 Hz.« less
NASA Astrophysics Data System (ADS)
Jacobsen, Gunnar; Xu, Tianhua; Popov, Sergei; Sergeyev, Sergey; Zhang, Yimo
2012-12-01
We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.
Laser Frequency Noise in Coherent Optical Systems: Spectral Regimes and Impairments.
Kakkar, Aditya; Rodrigo Navarro, Jaime; Schatz, Richard; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Louchet, Hadrien; Popov, Sergei; Jacobsen, Gunnar
2017-04-12
Coherent communication networks are based on the ability to use multiple dimensions of the lightwave together with electrical domain compensation of transmission impairments. Electrical-domain dispersion compensation (EDC) provides many advantages such as network flexibility and enhanced fiber nonlinearity tolerance, but makes the system more susceptible to laser frequency noise (FN), e.g. to the local oscillator FN in systems with post-reception EDC. Although this problem has been extensively studied, statistically, for links assuming lasers with white-FN, many questions remain unanswered. Particularly, the influence of a realistic non-white FN-spectrum due to e.g., the presence of 1/f-flicker and carrier induced noise remains elusive and a statistical analysis becomes insufficient. Here we provide an experimentally validated theory for coherent optical links with lasers having general non-white FN-spectrum and EDC. The fundamental reason of the increased susceptibility is shown to be FN-induced symbol displacement that causes timing jitter and/or inter/intra symbol interference. We establish that different regimes of the laser FN-spectrum cause a different set of impairments. The influence of the impairments due to some regimes can be reduced by optimizing the corresponding mitigation algorithms, while other regimes cause irretrievable impairments. Theoretical boundaries of these regimes and corresponding criteria applicable to system/laser design are provided.
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-01-01
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257
Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.
Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng
2017-04-29
Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.
Phase-dependent above-barrier ionization of excited-state electrons.
Yang, Weifeng; Song, Xiaohong; Chen, Zhangjin
2012-05-21
The carrier-envelope phase (CEP)-dependent above-barrier ionization (ABI) has been investigated in order to probe the bound-state electron dynamics. It is found that when the system is initially prepared in the excited state, the ionization yield asymmetry between left and right sides can occur both in low-energy and high-energy parts of the photoelectron spectra. Moreover, in electron momentum map, a new interference effect along the direction perpendicular to the laser polarization is found. We show that this interference is related to the competition among different excited states. The interference effect is dependent on CEPs of few-cycle probe pulses, which can be used to trace the superposition information and control the electron wave packet of low excited states.
A beacon interval shifting scheme for interference mitigation in body area networks.
Kim, Seungku; Kim, Seokhwan; Kim, Jin-Woo; Eom, Doo-Seop
2012-01-01
This paper investigates the issue of interference avoidance in body area networks (BANs). IEEE 802.15 Task Group 6 presented several schemes to reduce such interference, but these schemes are still not proper solutions for BANs. We present a novel distributed TDMA-based beacon interval shifting scheme that reduces interference in the BANs. A design goal of the scheme is to avoid the wakeup period of each BAN coinciding with other networks by employing carrier sensing before a beacon transmission. We analyze the beacon interval shifting scheme and investigate the proper back-off length when the channel is busy. We compare the performance of the proposed scheme with the schemes presented in IEEE 802.15 Task Group 6 using an OMNeT++ simulation. The simulation results show that the proposed scheme has a lower packet loss, energy consumption, and delivery-latency than the schemes of IEEE 802.15 Task Group 6.
A Beacon Interval Shifting Scheme for Interference Mitigation in Body Area Networks
Kim, Seungku; Kim, Seokhwan; Kim, Jin-Woo; Eom, Doo-Seop
2012-01-01
This paper investigates the issue of interference avoidance in body area networks (BANs). IEEE 802.15 Task Group 6 presented several schemes to reduce such interference, but these schemes are still not proper solutions for BANs. We present a novel distributed TDMA-based beacon interval shifting scheme that reduces interference in the BANs. A design goal of the scheme is to avoid the wakeup period of each BAN coinciding with other networks by employing carrier sensing before a beacon transmission. We analyze the beacon interval shifting scheme and investigate the proper back-off length when the channel is busy. We compare the performance of the proposed scheme with the schemes presented in IEEE 802.15 Task Group 6 using an OMNeT++ simulation. The simulation results show that the proposed scheme has a lower packet loss, energy consumption, and delivery-latency than the schemes of IEEE 802.15 Task Group 6. PMID:23112639
Performance of unbalanced QPSK in the presence of noisy reference and crosstalk
NASA Technical Reports Server (NTRS)
Divsalar, D.; Yuen, J. H.
1979-01-01
The problem of transmitting two telemetry data streams having different rates and different powers using unbalanced quadriphase shift keying (UQPSK) signaling is considered. It is noted that the presence of a noisy carrier phase reference causes a degradation in detection performance in coherent communications systems and that imperfect carrier synchronization not only attenuates the main demodulated signal voltage in UQPSK but also produces interchannel interference (crosstalk) which degrades the performance still further. Exact analytical expressions for symbol error probability of UQPSK in the presence of noise phase reference are derived.
General Theory of Carrier-Envelope Phase Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roudnev, V.; Esry, B. D.
2007-11-30
We present a general framework for understanding carrier-envelope phase (CEP) effects in a quantum system interacting with an intense, short laser pulse. We establish a simple connection between the CEP and the wave function that can be exploited to obtain the full CEP dependence of an observable given the wave function at a single CEP. Within this framework, all CEP effects are interpreted as interference between different photon amplitudes which, in turn, can be used to put limits on the pulse lengths and intensities required to see significant CEP effects.
NASA Astrophysics Data System (ADS)
Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro
When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.
Pobre, Karl; Tashani, Mohamed; Ridda, Iman; Rashid, Harunor; Wong, Melanie; Booy, Robert
2014-03-14
With the availability of newer conjugate vaccines, immunization schedules have become increasingly complex due to the potential for unpredictable immunologic interference such as 'carrier priming' and 'carrier induced epitopic suppression'. Carrier priming refers to an augmented antibody response to a carbohydrate portion of a glycoconjugate vaccine in an individual previously primed with the carrier protein. This review aims to provide a critical evaluation of the available data on carrier priming (and suppression) and conceptualize ways by which this phenomenon can be utilized to strengthen vaccination schedules. We conducted this literature review by searching well-known databases to date to identify relevant studies, then extracted and synthesized the data on carrier priming of widely used conjugate polysaccharide vaccines, such as, pneumococcal conjugate vaccine (PCV), meningococcal conjugate vaccine (MenCV) and Haemophilus influenzae type b conjugate vaccines (HibV). We found evidence of carrier priming with some conjugate vaccines, particularly HibV and PCV, in both animal and human models but controversy surrounds MenCV. This has implications for the immunogenicity of conjugate polysaccharide vaccines following the administration of tetanus-toxoid or diphtheria-toxoid containing vaccine (such as DTP). Available evidence supports a promising role for carrier priming in terms of maximizing the immunogenicity of conjugate vaccines and enhancing immunization schedule by making it more efficient and cost effective. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lipid and polymeric carrier-mediated nucleic acid delivery
Zhu, Lin; Mahato, Ram I
2010-01-01
Importance of the field Nucleic acids such as plasmid DNA, antisense oligonucleotide, and RNA interference (RNAi) molecules, have a great potential to be used as therapeutics for the treatment of various genetic and acquired diseases. To design a successful nucleic acid delivery system, the pharmacological effect of nucleic acids, the physiological condition of the subjects or sites, and the physicochemical properties of nucleic acid and carriers have to be thoroughly examined. Areas covered in this review The commonly used lipids, polymers and corresponding delivery systems are reviewed in terms of their characteristics, applications, advantages and limitations. What the reader will gain This article aims to provide an overview of biological barriers and strategies to overcome these barriers by properly designing effective synthetic carriers for nucleic acid delivery. Take home message A thorough understanding of biological barriers and the structure–activity relationship of lipid and polymeric carriers is the key for effective nucleic acid therapy. PMID:20836625
Zheng, Kaibo; Chen, Yani; Sun, Yong; ...
2018-01-01
Photo-generated charge carrier dynamics in Ruddlesden–Popper 2D perovskites with linear ( n -BA) and branched (iso-BA) butylamine as spacing cations have been studied by using transient absorption and time-resolved photoluminescence spectroscopies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Kaibo; Chen, Yani; Sun, Yong
Photo-generated charge carrier dynamics in Ruddlesden–Popper 2D perovskites with linear ( n -BA) and branched (iso-BA) butylamine as spacing cations have been studied by using transient absorption and time-resolved photoluminescence spectroscopies.
NASA Technical Reports Server (NTRS)
Esterhuizen, Stephan
2012-01-01
NASA's twin GRAIL [1] spacecraft (Ebb and Flow) arrived at Earth's Moon on New Year's Day, 2012. GRAIL's primary mission is to create a high-resolution map of the Moon's gravitational field by measuring very precisely the change in distance between the two spacecraft [2]. Each spacecraft transmits two signals to the other spacecraft, a PRN code modulated on a 2 GHz carrier (S-band), as well as an unmodulated carrier at roughly 33 GHz (Ka-band). Since it's not feasible to synchronize the two GRAIL spacecraft's clocks via GPS (as was done with GRACE), the S-band signals are used as a time-transfer link to synchronize either Ebb's clock to Flow or vice versa. As an independent measure to determine the clock offset of the GRAIL ultra-stable oscillators to UTC(NIST), an experiment was conducted where our JPL team used a large antenna on Earth to eavesdrop on the inter-spacecraft time-transfer link.
NASA Astrophysics Data System (ADS)
Xin, Wei
1997-10-01
A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.
A Study on Cognitive Radio Coexisting with Cellular Systems
NASA Astrophysics Data System (ADS)
Tandai, Tomoya; Horiguchi, Tomoya; Deguchi, Noritaka; Tomizawa, Takeshi; Tomioka, Tazuko
Cognitive Radios (CRs) are expected to perform more significant role in the view of efficient utilization of the spectrum resources in the future wireless communication networks. In this paper, a cognitive radio coexisting with cellular systems is proposed. In the case that a cellular system adopts Frequency Division Duplex (FDD) as a multiplexing scheme, the proposed CR terminals communicate in local area on uplink channels of the cellular system with transmission powers that don't interfere with base stations of the cellular system. Alternatively, in the case that a cellular system adopts Time Division Duplex (TDD), the CR terminals communicate on uplink slots of the cellular system. However if mobile terminals in the cellular system are near the CR network, uplink signals from the mobile terminals may interfere with the CR communications. In order to avoid interference from the mobile terminals, the CR terminal performs carrier sense during a beginning part of uplink slot, and only when the level of detected signal is below a threshold, then the CR terminal transmits a signal during the remained period of the uplink slot. In this paper, both the single carrier CR network that uses one frequency channel of the cellular system and the multicarrier CR network that uses multiple frequency channels of the cellular system are considered. The probabilities of successful CR communications, the average throughputs of the CR communications according to the positions of the CR network, and the interference levels from cognitive radio network to base stations of the cellular system are evaluated in the computer simulation then the effectiveness of the proposed network is clarified.
Daneshmand, Saeed; Marathe, Thyagaraja; Lachapelle, Gérard
2016-10-31
The use of antenna arrays in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its superior capability to suppress both narrowband and wideband interference. However, the phase distortions resulting from array processing may limit the applicability of these methods for high precision applications using carrier phase based positioning techniques. This paper studies the phase distortions occurring with the adaptive blind beamforming method in which satellite angle of arrival (AoA) information is not employed in the optimization problem. To cater to non-stationary interference scenarios, the array weights of the adaptive beamformer are continuously updated. The effects of these continuous updates on the tracking parameters of a GNSS receiver are analyzed. The second part of this paper focuses on reducing the phase distortions during the blind beamforming process in order to allow the receiver to perform carrier phase based positioning by applying a constraint on the structure of the array configuration and by compensating the array uncertainties. Limitations of the previous methods are studied and a new method is proposed that keeps the simplicity of the blind beamformer structure and, at the same time, reduces tracking degradations while achieving millimetre level positioning accuracy in interference environments. To verify the applicability of the proposed method and analyze the degradations, array signals corresponding to the GPS L1 band are generated using a combination of hardware and software simulators. Furthermore, the amount of degradation and performance of the proposed method under different conditions are evaluated based on Monte Carlo simulations.
77 FR 7041 - Changes to Implement Inter Partes Review Proceedings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... comments with the public is more easily accomplished. Electronic comments are preferred to be submitted in... public inspection at the Board of Patent Appeals and Interferences, currently located in Madison East..., on, or after the effective date. DATES: The Office solicits comments from the public on this proposed...
On Dangerous Anthropogenic Interference and Climate Change Risk (Invited)
NASA Astrophysics Data System (ADS)
Mann, M. E.
2009-12-01
The United Nations Framework Convention on Climate Change (UNFCCC) commits signatory nations (which includes all major nations including the United States) to stabilizing greenhouse gas concentrations at levels short of Dangerous Anthropogenic Interference (“ DAI”) with the climate. To properly define DAI, one must take into account issues that are not only scientific, but, economic, political, and ethical in nature. Defining DAI is furthermore complicated by the inter-generational and regionally-disaggregated nature of the risks associated with climate change. In this talk, I will explore the nature of anthropogenic climate change risks and the notion of DAI.
Interference graph-based dynamic frequency reuse in optical attocell networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan
2017-11-01
Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).
Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex
NASA Astrophysics Data System (ADS)
Shao, Dongkai; Yotprayoonsak, Peerapong; Saunajoki, Ville; Ahlskog, Markus; Virtanen, Jorma; Kangas, Veijo; Volodin, Alexander; Van Haesendonck, Chris; Burdanova, Maria; Mosley, Connor D. W.; Lloyd-Hughes, James
2018-04-01
We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.
Nanoscale molecular communication networks: a game-theoretic perspective
NASA Astrophysics Data System (ADS)
Jiang, Chunxiao; Chen, Yan; Ray Liu, K. J.
2015-12-01
Currently, communication between nanomachines is an important topic for the development of novel devices. To implement a nanocommunication system, diffusion-based molecular communication is considered as a promising bio-inspired approach. Various technical issues about molecular communications, including channel capacity, noise and interference, and modulation and coding, have been studied in the literature, while the resource allocation problem among multiple nanomachines has not been well investigated, which is a very important issue since all the nanomachines share the same propagation medium. Considering the limited computation capability of nanomachines and the expensive information exchange cost among them, in this paper, we propose a game-theoretic framework for distributed resource allocation in nanoscale molecular communication systems. We first analyze the inter-symbol and inter-user interference, as well as bit error rate performance, in the molecular communication system. Based on the interference analysis, we formulate the resource allocation problem as a non-cooperative molecule emission control game, where the Nash equilibrium is found and proved to be unique. In order to improve the system efficiency while guaranteeing fairness, we further model the resource allocation problem using a cooperative game based on the Nash bargaining solution, which is proved to be proportionally fair. Simulation results show that the Nash bargaining solution can effectively ensure fairness among multiple nanomachines while achieving comparable social welfare performance with the centralized scheme.
NASA Astrophysics Data System (ADS)
Zhang, Junwen; Yu, Jianjun; Wang, Jing; Xu, Mu; Cheng, Lin; Lu, Feng; Shen, Shuyi; Yan, Yan; Cho, Hyunwoo; Guidotti, Daniel; Chang, Gee-kung
2017-01-01
Fifth-generation (5G) wireless access network promises to support higher access data rate with more than 1,000 times capacity with respect to current long-term evolution (LTE) systems. New radio-access-technologies (RATs) based on higher carrier frequencies to millimeter-wave (MMW) radio-over-fiber, and carrier-aggregation (CA) using multi-band resources are intensively studied to support the high data rate access and effectively use of frequency resources in heterogeneous mobile network (Het-Net). In this paper, we investigate several enabling technologies for MMW RoF systems in 5G Het-Net. Efficient mobile fronthaul (MFH) solutions for 5G centralized radio access network (C-RAN) and beyond are proposed, analyzed and experimentally demonstrated based on the analog scheme. Digital predistortion based on memory polynomial for analog MFH linearization are presented with improved EVM performances and receiver sensitivity. We also propose and experimentally demonstrate a novel inter-/intra- RAT CA scheme for 5G Het- Net. The real-time standard 4G-LTE signal is carrier-aggregated with three broadband 60GHz MMW signals based on proposed optical-domain band-mapping method. RATs based on new waveforms have also been studied here to achieve higher spectral-efficiency (SE) in asynchronous environments. Full-duplex asynchronous quasi-gapless carrier aggregation scheme for MMW ROF inter-/intra-RAT based on the FBMC is also presented with 4G-LTE signals. Compared with OFDM-based signals with large guard-bands, FBMC achieves higher spectral-efficiency with better EVM performance at less received power and smaller guard-bands.
RACOON: a multiuser QoS design for mobile wireless body area networks.
Cheng, Shihheng; Huang, Chingyao; Tu, Chun Chen
2011-10-01
In this study, Random Contention-based Resource Allocation (RACOON) medium access control (MAC) protocol is proposed to support the quality of service (QoS) for multi-user mobile wireless body area networks (WBANs). Different from existing QoS designs that focus on a single WBAN, a multiuser WBAN QoS should further consider both inter-WBAN interference and inter-WBAN priorities. Similar problems have been studied in both overlapped wireless local area networks (WLANs) and Bluetooth piconets that need QoS supports. However, these solutions are designed for non-medical transmissions that do not consider any priority scheme for medical applications. Most importantly, these studies focus on only static or low mobility networks. Network mobility of WBANs will introduce unnecessary inter-network collisions and energy waste, which are not considered by these solutions. The proposed multiuser-QoS protocol, RACOON, simultaneously satisfies the inter WBAN QoS requirements and overcomes the performance degradation caused by WBAN mobility. Simulation results verify that RACOON provides better latency and energy control, as compared with WBAN QoS protocols without considering the inter-WBAN requirements.
Smith, Ryan P.; Roos, Peter A.; Wahlstrand, Jared K.; Pipis, Jessica A.; Rivas, Maria Belmonte; Cundiff, Steven T.
2007-01-01
We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of less than 5 mHz using a 1 s gate time. With the resulting stable frequency comb, we measure the optical frequency of the iodine transition [127I2 R(127) 11-5 i component] to be 473 612 214 712.96 ± 0.66 kHz, well within the uncertainty of the CIPM recommended value. The stability of the quantum interference technique is high enough such that it does not limit the measurements. PMID:27110472
77 FR 67171 - Comprehensive Review of Licensing and Operating Rules for Satellite Services
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... operators of space stations that carry common-carrier voice or paging communications to report outages of 30... addressing radio frequency interference characteristics and orbital parameters of space stations and revise... Vol. 77 Thursday, No. 217 November 8, 2012 Part III Federal Communications Commission 47 CFR Part...
47 CFR 22.599 - Assignment of 72-76 MHz channels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 22.599 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service Point-To-Point Operation § 22.599 Assignment of 72-76 MHz channels. Because of the potential for interference to the reception of TV Channels 4 and 5...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2012 CFR
2012-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2013 CFR
2013-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2014 CFR
2014-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
47 CFR 80.383 - Vessel Traffic Services (VTS) system frequencies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... protection areas provided there is no interference to VTS communications within the VTS areas. [51 FR 31213... geographic radio protected areas. (a) Assigned frequencies: Vessel Traffic Control Frequencies Carrier frequencies (MHz) Geographic areas 156.250 Seattle. 156.550 New York, New Orleans, 2 Houston, Prince William...
Kostenbauder, Adnah G.
1988-01-01
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.
Kostenbauder, A.G.
1988-06-28
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.
Determination of niobium in the parts per million range in rocks
Grimaldi, F.S.
1960-01-01
A modified niobium thiocyanate spectrophotometric procedure relatively insensitive to titanium interference is presented. Elements such as tungsten, molybdenum, vanadium, and rhenium, which seriously interfere in the spectrophotometric determination of niobium, are separated by simple sodium hydroxide fusion and leach; iron and magnesium are used as carriers for the niobium. Tolerance limits are given for 28 elements in the spectrophotometric method. Specific application is made to the determination of niobium in the parts per million range in rocks. The granite G-1 contains 0.0022% niobium and the diabase W-1 0.00096% niobium.
47 CFR 22.603 - 488-494 MHz fixed service in Hawaii.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false 488-494 MHz fixed service in Hawaii. 22.603 Section 22.603 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... fixed service in Hawaii. Before filing applications for authorization of inter-island control and/or...
Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo
2018-01-01
Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.
Wójcik, Paweł; Adamowski, Janusz
2017-01-01
The spin filtering effect in the bilayer nanowire with quantum point contact is investigated theoretically. We demonstrate the new mechanism of the spin filtering based on the lateral inter-subband spin-orbit coupling, which for the bilayer nanowires has been reported to be strong. The proposed spin filtering effect is explained as the joint effect of the Landau-Zener intersubband transitions caused by the hybridization of states with opposite spin (due to the lateral Rashba SO interaction) and the confinement of carriers in the quantum point contact region. PMID:28358141
ERIC Educational Resources Information Center
1971
Introducing the pupil to the science of ecology is the purpose of Scholastic's Earth Corps Ecology/Conservation Study Kits for grades 3-6. Simple terms are used to show how all living things are inter-related to their environment, to demonstrate the intricate and delicate balance of nature, and to point out how man's interference with nature's…
47 CFR 90.242 - Travelers' information stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the modulation limiter and the modulated stage. At audio frequencies between 3 kHz and 20 kHz this...' information stations. (a) The frequencies 530 through 1700 kHz in 10 kHz increments may be assigned to the... consideration of possible cross-modulation and inter-modulation interference effects which may result from the...
Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping.
Xiang, Meng; Fu, Songnian; Tang, Ming; Tang, Haoyuan; Shum, Perry; Liu, Deming
2014-07-14
The performance of Nyquist WDM superchannel using advanced modulation formats with coherent detection is degraded due to the existence of both inter-symbol interference (ISI) and inter-channel interference (ICI). Here, we propose and numerically investigate a Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping (RS-DSS), achieving a spectral efficiency up to 7.44 bit/s/Hz with 7% hard-decision forward error correction (HD-FEC) overhead. Compared with Nyquist WDM superchannel using 16QAM and RS-DSS, the proposed system has 1.4 dB improvement of required OSNR at BER = 10(-3) in the case of back-to-back (B2B) transmission. Furthermore, the range of launched optical power allowed beyond HD-FEC threshold is drastically increased from -6 dBm to 1.2 dBm, after 960 km SSMF transmission with EDFA-only. In particular, no more than 1.8 dB required OSNR penalty at BER = 10(-3) is achieved for the proposed system even with the phase difference between channels varying from 0 to 360 degree.
NASA Astrophysics Data System (ADS)
Hartle, Rainer; Cohen, Guy; Reichman, David R.; Millis, Andrew J.
2014-03-01
A recently developed hierarchical quantum master equation approach is used to investigate nonequilibrium electron transport through an interacting double quantum dot system in the regime where the inter-dot coupling is weaker than the coupling to the electrodes. The corresponding eigenstates provide tunneling paths that may interfere constructively or destructively, depending on the energy of the tunneling electrons. Electron-electron interactions are shown to quench these interference effects in bias-voltage dependent ways, leading, in particular, to negative differential resistance, population inversion and an enhanced broadening of resonances in the respective transport characteristics. Relaxation times are found to be very long, and to be correlated with very slow dynamics of the inter-dot coherences (off diagonal density matrix elements). The ability of the hierarchical quantum master equation approach to access very long time scales is crucial for the study of this physics. This work is supported by the National Science Foundation (NSF DMR-1006282 and NSF CHE-1213247), the Yad Hanadiv-Rothschild Foundation (via a Rothschild Fellowship for GC) and the Alexander von Humboldt Foundation (via a Feodor Lynen fellowship for RH).
Design of 2*6 optical hybrid in inter-satellite coherent laser communications
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Liu, De'an; Wan, Lingyu; Zhou, Yu
2008-08-01
Compared with direct detection, homodyne binary phase shift keying receivers can achieve the best sensitivity theoretically, and became the trend of the research and application in inter-satellite coherent laser communications. In coherent optical communication systems an optical hybrid is an essential component of the receiver. It demodulates the incoming signal by mixing it with the local oscillator. We present a design of a 2*6 optical hybrid. 4 output ports of the hybrid give the narrow mixed beams of the incoming signal and the local oscillator shifted by 90°for communication, and the others give the wide mixed beams with a shifted degree of 180°for position errors detection. CCD captures the interference pattern from the wide beams, and then the pattern is processed and analyzed by the computer. Target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signals of PAT (pointing, acquisition and tracking) subsystem drive the receiver telescope to keep tracking to the target. The application extends to coherent laser rang finder.
NASA Astrophysics Data System (ADS)
Torres, Jhon James Granada; Soto, Ana María Cárdenas; González, Neil Guerrero
2016-10-01
In the context of gridless optical multicarrier systems, we propose a method for intercarrier interference (ICI) mitigation which allows bit error correction in scenarios of nonspectral flatness between the subcarriers composing the multicarrier system and sub-Nyquist carrier spacing. We propose a hybrid ICI mitigation technique which exploits the advantages of signal equalization at both levels: the physical level for any digital and analog pulse shaping, and the bit-data level and its ability to incorporate advanced correcting codes. The concatenation of these two complementary techniques consists of a nondata-aided equalizer applied to each optical subcarrier, and a hard-decision forward error correction applied to the sequence of bits distributed along the optical subcarriers regardless of prior subchannel quality assessment as performed in orthogonal frequency-division multiplexing modulations for the implementation of the bit-loading technique. The impact of the ICI is systematically evaluated in terms of bit-error-rate as a function of the carrier frequency spacing and the roll-off factor of the digital pulse-shaping filter for a simulated 3×32-Gbaud single-polarization quadrature phase shift keying Nyquist-wavelength division multiplexing system. After the ICI mitigation, a back-to-back error-free decoding was obtained for sub-Nyquist carrier spacings of 28.5 and 30 GHz and roll-off values of 0.1 and 0.4, respectively.
Analysis of Multi-Antenna GNSS Receiver Performance under Jamming Attacks.
Vagle, Niranjana; Broumandan, Ali; Lachapelle, Gérard
2016-11-17
Although antenna array-based Global Navigation Satellite System (GNSS) receivers can be used to mitigate both narrowband and wideband electronic interference sources, measurement distortions induced by array processing methods are not suitable for high precision applications. The measurement distortions have an adverse effect on the carrier phase ambiguity resolution, affecting the navigation solution. Depending on the array attitude information availability and calibration parameters, different spatial processing methods can be implemented although they distort carrier phase measurements in some cases. This paper provides a detailed investigation of the effect of different array processing techniques on array-based GNSS receiver measurements and navigation performance. The main novelty of the paper is to provide a thorough analysis of array-based GNSS receivers employing different beamforming techniques from tracking to navigation solution. Two beamforming techniques, namely Power Minimization (PM) and Minimum Power Distortionless Response (MPDR), are being investigated. In the tracking domain, the carrier Doppler, Phase Lock Indicator (PLI), and Carrier-to-Noise Ratio (C/N₀) are analyzed. Pseudorange and carrier phase measurement distortions and carrier phase position performance are also evaluated. Performance analyses results from simulated GNSS signals and field tests are provided.
Radio Science Measurements with Suppressed Carrier
NASA Technical Reports Server (NTRS)
Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal
2013-01-01
Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.
Opportunistic tri-band carrier aggregation in licensed spectrum for multi-operator 5G hetnet
NASA Astrophysics Data System (ADS)
Maksymuk, Taras; Kyryk, Maryan; Klymash, Mykhailo; Jo, Minho; Romaniuk, Ryszard; Kotyra, Andrzej; Zhanpeisova, Aizhan; Kozbekova, Ainur
2017-08-01
Increasing capacity of mobile networks is a real challenge due to rapid increasing of traffic demands and spectrum scarcity. Carrier aggregation technology is aimed to increase the user data rate by combining the throughput of few spectrum bands, even if they are not physically collocated. Utilization of unlicensed Wi-Fi 5 GHz band for mobile transmission opens new perspectives for carrier aggregation due to vast amount of spectrum range, which can be available for aggregation to supplement data rates for end users. There are many solutions proposed to enable mobile data transmission in unlicensed band without disturbing interference for the existing Wi-Fi users. The paper presents a new approach for opportunistic carrier aggregation in licensed and unlicensed band for multi-operator 5G network. It allows multiple network operators to utilize unlicensed spectrum opportunistically if it is not currently used by Wi-Fi or other mobile network operators. Performance of the proposed approach has been simulated in case of two competing operators. Simulation results reveal that applying the proposed method ensures achieving satisfactory performance of carrier aggregation for the case of two network operators.
Evaluation of electrosurgical interference to low-power spread-spectrum local area net transceivers.
Gibby, G L; Schwab, W K; Miller, W C
1997-11-01
To study whether an electrosurgery device interferes with the operation of a low-power spread-spectrum wireless network adapter. Nonrandomized, unblinded trials with controls, conducted in the corridor of our institution's operating suite using two portable computers equipped with RoamAbout omnidirectional 250 mW spread-spectrum 928 MHz wireless network adapters. To simulate high power electrosurgery interference, a 100-watt continuous electrocoagulation arc was maintained five feet from the receiving adapter, while device reported signal to noise values were measured at 150 feet and 400 feet distance between the wireless-networked computers. At 150 feet range, and with continuous 100-watt electrocoagulation arc five feet from one computer, error-corrected local area net throughput was measured by sending and receiving a large file multiple times. The reported signal to noise (N = 50) decreased with electrocoagulation from 36.42+/-3.47 (control) to 31.85+/-3.64 (electrocoagulation) (p < 0.001) at 400 feet inter-adapter distance, and from 64.53+/-1.43 (control) to 60.12+/-3.77 (electrocoagulation) (p < 0.001) at 150 feet inter-adapter distance. There was no statistically significant change in network throughput (average 93 kbyte/second) at 150 feet inter-adapter distance, either transmitting or receiving during continuous 100 Watt electrocoagulation arc. The manufacturer indicates "acceptable" performance will be obtained with signal to noise values as low as 20. In view of this, while electrocoagulation affects this spread spectrum network adapter, the effects are small even at 400 feet. At a distance of 150 feet, no discernible effect on network communications was found, suggesting that if other obstructions are minimal, within a wide range on one floor of an operating suite, network communications may be maintained using the technology of this wireless spread spectrum network adapter. The impact of such adapters on cardiac pacemakers should be studied. Wireless spread spectrum network adapters are an attractive technology for mobile computer communications in the operating room.
Phase compensation with fiber optic surface profile acquisition and reconstruction system
NASA Astrophysics Data System (ADS)
Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting
2015-02-01
A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.
Promoting Primary School Students' Daily Report Card Participation through the "Carrier Pigeon"
ERIC Educational Resources Information Center
Perle, Jonathan G.; Curtis, David F.
2017-01-01
Disruptive behaviors are some of the most commonly presented concerns in the classroom. Without intervention, such difficulties may lead to higher teacher frustration and a higher rate of negative teacher feedback, and they may interfere with students' learning opportunities and result in poorer academic and life adjustment outcomes (Landrum,…
Dirac electrons in quantum rings
NASA Astrophysics Data System (ADS)
Gioia, L.; Zülicke, U.; Governale, M.; Winkler, R.
2018-05-01
We consider quantum rings realized in materials where the dynamics of charge carriers mimics that of two-dimensional (2D) Dirac electrons. A general theoretical description of the ring-subband structure is developed that applies to a range of currently available 2D systems, including graphene, transition-metal dichalcogenides, and narrow-gap semiconductor quantum wells. We employ the scattering-matrix approach to calculate the electronic two-terminal conductance through the ring and investigate how it is affected by Dirac-electron interference. The interplay of pseudospin chirality and hard-wall confinement is found to distinctly affect the geometric phase that is experimentally accessible in mesoscopic-conductance measurements. We derive an effective Hamiltonian for the azimuthal motion of charge carriers in the ring that yields deeper insight into the physical origin of the observed transport effects, including the unique behavior exhibited by the lowest ring subband in the normal and topological (i.e., band-inverted) regimes. Our paper provides a unified approach to characterizing confined Dirac electrons, which can be used to explore the design of valley- and spintronic devices based on quantum interference and the confinement-tunable geometric phase.
Work-family conflict and sleep disturbance: the Malaysian working women study.
Aazami, Sanaz; Mozafari, Mosayeb; Shamsuddin, Khadijah; Akmal, Syaqirah
2016-01-01
This study aimed at assessing effect of the four dimensions of work-family conflicts (strain and time-based work interference into family and family interference into work) on sleep disturbance in Malaysian working women. This cross-sectional study was conducted among 325 Malaysian married working women. Multiple-stage simple random sampling method was used to recruit women from public service departments of Malaysia. Self-administrated questionnaires were used to measure the study variables and data were analyzed using SPSS version 21. We found that high level of the four dimensions of work-family conflicts significantly increase sleep disturbance. Our analyses also revealed an age-dependent effect of the work-family conflict on sleep disturbance. Women in their 20 to 30 yr old suffer from sleep disturbance due to high level of time-based and strain-based work-interference into family. However, the quality of sleep among women aged 30-39 were affected by strain-based family-interference into work. Finally, women older than 40 yr had significantly disturbed sleep due to strain-based work-interference into family as well as time-based family interference into work. Our findings showed that sleep quality of working women might be disturbed by experiencing high level of work-family conflict. However, the effects of inter-role conflicts on sleep varied among different age groups.
Dotsinsky, Ivan
2005-01-01
Background Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Method Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. Results The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. Conclusion The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression. PMID:16309558
Dotsinsky, Ivan
2005-11-26
Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression.
38 CFR 3.1606 - Transportation items.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Procuring permit for shipment. (3) Shipping case. When a box purchased for interment purposes is also used... one removal by hearse direct from common carrier plus one later removal by hearse to place of burial... death and (2) Charge for one later removal by hearse to place of burial. These charges will not exceed...
ERIC Educational Resources Information Center
1971
Introducing the pupil to the science of ecology is the purpose of Scholastic's Earth Corps Ecology/Conservation Study Kits for grades 3-6. Simple terms are used to show how all living things are inter-related to their environment, to demonstrate the intricate and delicate balance of nature, and to point out how man's interference with nature's…
The dependence of graphene Raman D-band on carrier density.
Liu, Junku; Li, Qunqing; Zou, Yuan; Qian, Qingkai; Jin, Yuanhao; Li, Guanhong; Jiang, Kaili; Fan, Shoushan
2013-01-01
Raman spectroscopy has been an integral part of graphene research and can provide information about graphene structure, electronic characteristics, and electron-phonon interactions. In this study, the characteristics of the graphene Raman D-band, which vary with carrier density, are studied in detail, including the frequency, full width half-maximum, and intensity. We find the Raman D-band frequency increases for hole doping and decreases for electron doping. The Raman D-band intensity increases when the Fermi level approaches half of the excitation energy and is higher in the case of electron doping than that of hole doping. These variations can be explained by electron-phonon interaction theory and quantum interference between different Raman pathways in graphene. The intensity ratio of Raman D- and G-band, which is important for defects characterization in graphene, shows a strong dependence on carrier density.
Fast interaction of atoms with crystal surfaces: coherent lighting
NASA Astrophysics Data System (ADS)
Gravielle, M. S.
2017-11-01
Quantum coherence of incident waves results essential for the observation of interference patterns in grazing incidence fast atom diffraction (FAD). In this work we investigate the influence of the impact energy and projectile mass on the transversal length of the surface area that is coherently illuminated by the atomic beam, after passing through a collimating aperture. Such a transversal coherence length controls the general features of the interference structures, being here derived by means of the Van Cittert-Zernike theorem. The coherence length is then used to build the initial coherent wave packet within the Surface Initial Value Representation (SIVR) approximation. The SIVR approach is applied to fast He and Ne atoms impinging grazingly on a LiF(001) surface along a low-indexed crystallographic direction. We found that with the same collimating setup, by varying the impact energy we would be able to control the interference mechanism that prevails in FAD patterns, switching between inter-cell and unit-cell interferences. These findings are relevant to use FAD spectra adequately as a surface analysis tool, as well as to choose the appropriate collimating scheme for the observation of interference effects in a given collision system.
Interferometry of Klein tunnelling electrons in graphene quantum rings
NASA Astrophysics Data System (ADS)
de Sousa, D. J. P.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.
2017-01-01
We theoretically study a current switch that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning either the height or the width of a potential barrier in the ring arms. By varying the parameters of the potential barriers, the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate with a high on/off ratio.
Moving target detection for frequency agility radar by sparse reconstruction
NASA Astrophysics Data System (ADS)
Quan, Yinghui; Li, YaChao; Wu, Yaojun; Ran, Lei; Xing, Mengdao; Liu, Mengqi
2016-09-01
Frequency agility radar, with randomly varied carrier frequency from pulse to pulse, exhibits superior performance compared to the conventional fixed carrier frequency pulse-Doppler radar against the electromagnetic interference. A novel moving target detection (MTD) method is proposed for the estimation of the target's velocity of frequency agility radar based on pulses within a coherent processing interval by using sparse reconstruction. Hardware implementation of orthogonal matching pursuit algorithm is executed on Xilinx Virtex-7 Field Programmable Gata Array (FPGA) to perform sparse optimization. Finally, a series of experiments are performed to evaluate the performance of proposed MTD method for frequency agility radar systems.
Moving target detection for frequency agility radar by sparse reconstruction.
Quan, Yinghui; Li, YaChao; Wu, Yaojun; Ran, Lei; Xing, Mengdao; Liu, Mengqi
2016-09-01
Frequency agility radar, with randomly varied carrier frequency from pulse to pulse, exhibits superior performance compared to the conventional fixed carrier frequency pulse-Doppler radar against the electromagnetic interference. A novel moving target detection (MTD) method is proposed for the estimation of the target's velocity of frequency agility radar based on pulses within a coherent processing interval by using sparse reconstruction. Hardware implementation of orthogonal matching pursuit algorithm is executed on Xilinx Virtex-7 Field Programmable Gata Array (FPGA) to perform sparse optimization. Finally, a series of experiments are performed to evaluate the performance of proposed MTD method for frequency agility radar systems.
Nakamura, Moriya; Kamio, Yukiyoshi; Miyazaki, Tetsuya
2010-01-01
We experimentally demonstrate linewidth-tolerant real-time 40-Gbit/s(10-Gsymbol/s) 16-quadrature amplitude modulation. We achieved bit-error rates of <10(-9) using an external-cavity laser diode with a linewidth of 200 kHz and <10(-7) using a distributed-feedback laser diode with a linewidth of 30 MHz, thanks to the phase-noise canceling capability provided by self-homodyne detection using a pilot carrier. Pre-equalization based on digital signal processing was employed to suppress intersymbol interference caused by the limited-frequency bandwidth of electrical components.
Joint channel estimation and multi-user detection for multipath fading channels in DS-CDMA systems
NASA Astrophysics Data System (ADS)
Wu, Sau-Hsuan; Kuo, C.-C. Jay
2002-11-01
The technique of joint blind channel estimation and multiple access interference (MAI) suppression for an asynchronous code-division multiple-access (CDMA) system is investigated in this research. To identify and track dispersive time-varying fading channels and to avoid the phase ambiguity that come with the second-order statistic approaches, a sliding-window scheme using the expectation maximization (EM) algorithm is proposed. The complexity of joint channel equalization and symbol detection for all users increases exponentially with system loading and the channel memory. The situation is exacerbated if strong inter-symbol interference (ISI) exists. To reduce the complexity and the number of samples required for channel estimation, a blind multiuser detector is developed. Together with multi-stage interference cancellation using soft outputs provided by this detector, our algorithm can track fading channels with no phase ambiguity even when channel gains attenuate close to zero.
Zero-forcing pre-coding for MIMO WiMAX transceivers: Performance analysis and implementation issues
NASA Astrophysics Data System (ADS)
Cattoni, A. F.; Le Moullec, Y.; Sacchi, C.
Next generation wireless communication networks are expected to achieve ever increasing data rates. Multi-User Multiple-Input-Multiple-Output (MU-MIMO) is a key technique to obtain the expected performance, because such a technique combines the high capacity achievable using MIMO channel with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm able to mitigate the multi-user interference of the MU-MIMO systems in the context of a realistic WiMAX application scenario. Simulation results show that pre-coding can significantly increase the channel capacity. Furthermore, the paper presents several feasibility considerations for implementation of the analyzed technique in a possible FPGA-based software defined radio.
COOPERATIVE ROUTING FOR DYNAMIC AERIAL LAYER NETWORKS
2018-03-01
Advisor, Computing & Communications Division Information Directorate This report is published in the interest of scientific and technical...information accumulation at the physical layer, and study the cooperative routing and resource allocation problems associated with such SU networks...interference power constraint is studied . In [Shi2012Joint], an optimal power and sub-carrier allocation strategy to maximize SUs’ throughput subject to
Iterative Overlap FDE for Multicode DS-CDMA
NASA Astrophysics Data System (ADS)
Takeda, Kazuaki; Tomeba, Hiromichi; Adachi, Fumiyuki
Recently, a new frequency-domain equalization (FDE) technique, called overlap FDE, that requires no GI insertion was proposed. However, the residual inter/intra-block interference (IBI) cannot completely be removed. In addition to this, for multicode direct sequence code division multiple access (DS-CDMA), the presence of residual interchip interference (ICI) after FDE distorts orthogonality among the spreading codes. In this paper, we propose an iterative overlap FDE for multicode DS-CDMA to suppress both the residual IBI and the residual ICI. In the iterative overlap FDE, joint minimum mean square error (MMSE)-FDE and ICI cancellation is repeated a sufficient number of times. The bit error rate (BER) performance with the iterative overlap FDE is evaluated by computer simulation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... radio astronomy service in the 1610.6-1613.8 MHz band against interference from 1.6/2.4 GHz Mobile... System. During periods of radio astronomy observations, land mobile earth stations shall not operate when... astronomy sites: Observatory Latitude (DMS) Longitude (DMS) Arecibo, PR 18 20 46 66 45 11 Green Bank...
Code of Federal Regulations, 2010 CFR
2010-10-01
... radio astronomy service in the 1610.6-1613.8 MHz band against interference from 1.6/2.4 GHz Mobile... System. During periods of radio astronomy observations, land mobile earth stations shall not operate when... astronomy sites: Observatory Latitude (DMS) Longitude (DMS) Arecibo, PR 18 20 46 66 45 11 Green Bank...
Code of Federal Regulations, 2011 CFR
2011-10-01
... radio astronomy service in the 1610.6-1613.8 MHz band against interference from 1.6/2.4 GHz Mobile... System. During periods of radio astronomy observations, land mobile earth stations shall not operate when... astronomy sites: Observatory Latitude (DMS) Longitude (DMS) Arecibo, PR 18 20 46 66 45 11 Green Bank...
A study on the achievable data rate in massive MIMO system
NASA Astrophysics Data System (ADS)
Salh, Adeeb; Audah, Lukman; Shah, Nor Shahida M.; Hamzah, Shipun A.
2017-09-01
The achievable high data rates depend on the ability of massive multi-input-multi-output (MIMO) for the fifth-generation (5G) cellular networks, where the massive MIMO systems can support very high energy and spectral efficiencies. A major challenge in mobile broadband networks is how to support the throughput in the future 5G, where the highlight of 5G expected to provide high speed internet for every user. The performance massive MIMO system increase with linear minimum mean square error (MMSE), zero forcing (ZF) and maximum ratio transmission (MRT) when the number of antennas increases to infinity, by deriving the closed-form approximation for achievable data rate expressions. Meanwhile, the high signal-to-noise ratio (SNR) can be mitigated by using MMSE, ZF and MRT, which are used to suppress the inter-cell interference signals between neighboring cells. The achievable sum rate for MMSE is improved based on the distributed users inside cell, mitigated the inter-cell interference caused when send the same signal by other cells. By contrast, MMSE is better than ZF in perfect channel state information (CSI) for approximately 20% of the achievable sum rate.
Two-pole microring weight banks.
Tait, Alexander N; Wu, Allie X; Ferreira de Lima, Thomas; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R
2018-05-15
Weighted addition is an elemental multi-input to single-output operation that can be implemented with high-performance photonic devices. Microring (MRR) weight banks bring programmable weighted addition to silicon photonics. Prior work showed that their channel limits are affected by coherent inter-channel effects that occur uniquely in weight banks. We fabricate two-pole designs that exploit this inter-channel interference in a way that is robust to dynamic tuning and fabrication variation. Scaling analysis predicts a channel count improvement of 3.4-fold, which is substantially greater than predicted by incoherent analysis used in conventional MRR devices. Advances in weight bank design expand the potential of reconfigurable analog photonic networks and multivariate microwave photonics.
Thermoelectric band engineering: The role of carrier scattering
NASA Astrophysics Data System (ADS)
Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse
2017-11-01
Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.
Local gene silencing in plants via synthetic dsRNA and carrier peptide.
Numata, Keiji; Ohtani, Misato; Yoshizumi, Takeshi; Demura, Taku; Kodama, Yutaka
2014-10-01
Quick and facile transient RNA interference (RNAi) is one of the most valuable plant biotechnologies for analysing plant gene functions. To establish a novel double-strand RNA (dsRNA) delivery system for plants, we developed an ionic complex of synthetic dsRNA with a carrier peptide in which a cell-penetrating peptide is fused with a polycation sequence as a gene carrier. The dsRNA-peptide complex is 100-300 nm in diameter and positively charged. Infiltration of the complex into intact leaf cells of Arabidopsis thaliana successfully induced rapid and efficient down-regulation of exogenous and endogenous genes such as yellow fluorescent protein and chalcone synthase. The present method realizes quick and local gene silencing in specific tissues and/or organs in plants. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Current-phase relations in low carrier density graphene Josephson junctions
NASA Astrophysics Data System (ADS)
Kratz, Philip; Amet, Francois; Watson, Christopher; Moler, Kathryn; Ke, Chung; Borzenets, Ivan; Watanabe, Kenji; Taniguchi, Takashi; Deacon, Russell; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb
Ideal Dirac semimetals have the unique property of being gate tunable to arbitrarily low electron and hole carrier concentrations near the Dirac point, without suffering from conduction channel pinch-off or Fermi level pinning to band edges and deep-level charge traps, which are common in typical semiconductors. SNS junctions, where N is a Dirac semimetal, can provide a versatile platform for studying few-mode superconducting weak links, with potential device applications for superconducting logic and qubits. We will use an inductive readout technique, scanning superconducting quantum interference device (SQUID) magnetometry, to measure the current-phase relations of high-mobility graphene SNS junctions as a function of temperature and carrier density, complementing magnetic Fraunhofer diffraction analysis from transport measurements which previously have assumed sinusoidal current-phase relations for junction Andreev modes. Deviations from sinusoidal behavior convey information about resonant scattering processes, dissipation, and ballistic modes in few-mode superconducting weak links.
Kim, Eok Bong; Lee, Jae-hwan; Trung, Luu Tran; Lee, Wong-Kyu; Yu, Dai-Hyuk; Ryu, Han Young; Nam, Chang Hee; Park, Chang Yong
2009-11-09
We developed an optical frequency synthesizer (OFS) with the carrier-envelope-offset frequency locked to 0 Hz achieved using the "direct locking method." This method differs from a conventional phaselock method in that the interference signal from a self-referencing f-2f interferometer is directly fed back to the carrier-envelope-phase control of a femtosecond laser in the time domain. A comparison of the optical frequency of the new OFS to that of a conventional OFS stabilized by a phase-lock method showed that the frequency comb of the new OFS was not different to that of the conventional OFS within an uncertainty of 5.68x10(-16). As a practical application of this OFS, we measured the absolute frequency of an acetylene-stabilized diode laser serving as an optical frequency standard in optical communications.
Remote NMR/MRI detection of laser polarized gases
Pines, Alexander; Saxena, Sunil; Moule, Adam; Spence, Megan; Seeley, Juliette A.; Pierce, Kimberly L.; Han, Song-I; Granwehr, Josef
2006-06-13
An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb--Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.
Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine
2018-01-01
Behavioral evidence for the link between numerical and spatial representations comes from the spatial-numerical association of response codes (SNARC) effect, consisting in faster reaction times to small/large numbers with the left/right hand respectively. The SNARC effect is, however, characterized by considerable intra- and inter-individual variability. It depends not only on the explicit or implicit nature of the numerical task, but also relates to interference control. To determine whether the prevalence of the latter relation in the elderly could be ascribed to younger individuals’ ceiling performances on executive control tasks, we determined whether the SNARC effect related to Stroop and/or Flanker effects in 26 young adults with ADHD. We observed a divergent pattern of correlation depending on the type of numerical task used to assess the SNARC effect and the type of interference control measure involved in number-space associations. Namely, stronger number-space associations during parity judgments involving implicit magnitude processing related to weaker interference control in the Stroop but not Flanker task. Conversely, stronger number-space associations during explicit magnitude classifications tended to be associated with better interference control in the Flanker but not Stroop paradigm. The association of stronger parity and magnitude SNARC effects with weaker and better interference control respectively indicates that different mechanisms underlie these relations. Activation of the magnitude-associated spatial code is irrelevant and potentially interferes with parity judgments, but in contrast assists explicit magnitude classifications. Altogether, the present study confirms the contribution of interference control to number-space associations also in young adults. It suggests that magnitude-associated spatial codes in implicit and explicit tasks are monitored by different interference control mechanisms, thereby explaining task-related intra-individual differences in number-space associations. PMID:29881363
Work-family conflict and sleep disturbance: the Malaysian working women study
AAZAMI, Sanaz; MOZAFARI, Mosayeb; SHAMSUDDIN, Khadijah; AKMAL, Syaqirah
2015-01-01
This study aimed at assessing effect of the four dimensions of work-family conflicts (strain and time-based work interference into family and family interference into work) on sleep disturbance in Malaysian working women. This cross-sectional study was conducted among 325 Malaysian married working women. Multiple-stage simple random sampling method was used to recruit women from public service departments of Malaysia. Self-administrated questionnaires were used to measure the study variables and data were analyzed using SPSS version 21. We found that high level of the four dimensions of work-family conflicts significantly increase sleep disturbance. Our analyses also revealed an age-dependent effect of the work-family conflict on sleep disturbance. Women in their 20 to 30 yr old suffer from sleep disturbance due to high level of time-based and strain-based work-interference into family. However, the quality of sleep among women aged 30–39 were affected by strain-based family-interference into work. Finally, women older than 40 yr had significantly disturbed sleep due to strain-based work-interference into family as well as time-based family interference into work. Our findings showed that sleep quality of working women might be disturbed by experiencing high level of work-family conflict. However, the effects of inter-role conflicts on sleep varied among different age groups. PMID:26423332
Mirror-assisted coherent backscattering from the Mollow sidebands
NASA Astrophysics Data System (ADS)
Piovella, N.; Teixeira, R. Celistrino; Kaiser, R.; Courteille, Ph. W.; Bachelard, R.
2017-11-01
In front of a mirror, the radiation of weakly driven large disordered clouds presents an interference fringe in the backward direction, on top of an incoherent background. Although strongly driven atoms usually present little coherent scattering, we show here that the mirror-assisted version can produce high contrast fringes, for arbitrarily high saturation parameters. The contrast of the fringes oscillates with the Rabi frequency of the atomic transition and the distance between the mirror and the atoms, due to the coherent interference between the carrier and the Mollow sidebands of the saturated resonant fluorescence spectrum emitted by the atoms. The setup thus represents a powerful platform to study the spectral properties of ensembles of correlated scatterers.
Stroop Dilution Depends on the Nature of the Color Carrier but Not on Its Location
ERIC Educational Resources Information Center
Cho, Yang Seok; Lien, Mei-Ching; Proctor, Robert W.
2006-01-01
Stroop dilution is the reduction of the Stroop effect in the presence of a neutral word. It has been attributed to competition for attention between the color word and neutral word, to competition between all stimuli in the visual field, and to perceptual interference. Five experiments tested these accounts. The critical manipulation was whether…
2014-12-01
Australia. These two standards have dominated the TV market for almost 60 years. With the advent of the digital age, NTSC and PAL have lost considerable...Sk(ell, Ktps(ell,:)+1)=-2; % TPS carriers with -2 end % FFT (one based) indices for data (Sdata), pilots (Spilots), TPS ( Stps ) , % nulls
Code of Federal Regulations, 2014 CFR
2014-01-01
... foreign airport, to the extent that this does not interfere with employees' safety and security duties as... individuals with a vision or hearing impairment at airports? 382.53 Section 382.53 Aeronautics and Space... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Airport Facilities § 382.53 What...
Code of Federal Regulations, 2012 CFR
2012-01-01
... foreign airport, to the extent that this does not interfere with employees' safety and security duties as... individuals with a vision or hearing impairment at airports? 382.53 Section 382.53 Aeronautics and Space... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Airport Facilities § 382.53 What...
Code of Federal Regulations, 2013 CFR
2013-01-01
... foreign airport, to the extent that this does not interfere with employees' safety and security duties as... individuals with a vision or hearing impairment at airports? 382.53 Section 382.53 Aeronautics and Space... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Airport Facilities § 382.53 What...
Simplified power control method for cellular mobile communication
NASA Astrophysics Data System (ADS)
Leung, Y. W.
1994-04-01
The centralized power control (CPC) method measures the gain of the communication links between every mobile and every base station in the cochannel cells and determines optimal transmitter power to maximize the minimum carrier-to-interference ratio. The authors propose a simplified power control method which has nearly the same performance as the CPC method but which involves much smaller measurement overhead.
An analysis of bi-directional use of frequencies for satellite communications
NASA Technical Reports Server (NTRS)
Whyte, W. A., Jr.; Miller, E. F.; Sullivan, T.; Miller, J. E.
1986-01-01
The bi-directional use of frequencies allocated for space communications has the potential to double the orbit/spectrum capacity available. The technical feasibility of reverse band use (RBU) at C-band (4 GHz uplinks and 6 GHz downlinks) is studied. The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbital separation requirements between RBU and FBU satellite systems are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintianed between RBU and FBU satellites separated by less than 0.5 deg., and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU Earth stations require separation distances fo less than 10 km at a rain rate of 13.5 mm/hr escalating to less than 100 km at a rain rate of 178 mm/hr for Earth station antennas in the 3 to 10 m range.
NASA Astrophysics Data System (ADS)
Marraccini, Philip J.; Jezzini, Moises A.; Peters, Frank H.
2016-05-01
Designing photonic integrated circuits (PICs) with packaging in mind is important since this impacts the performance of the final product. In coherent optical communication applications there are a large number of DC and RF lines that need routed to connect the PIC to the outer packaging. These RF lines should be impedance matched to the devices, isolated from each other, low loss and protected against electromagnetic interference (EMI) over the frequency range of interest to achieve the performance required for the application. Multilevel low temperature co-fired ceramic (LTCC) boards can be used as a carrier board connecting the PIC to the packaging due to its good RF performance, machinability, compatibility with hermetic sealing, and ability to integrate drivers into the board. Flexibility with layer numbers enables additional layers for shielding against electromagnetic interference or increased space for routing electrical connections. In this paper the design, simulations, and measured results for a set of 4 phase matched transmission lines in LTCC that would be used with an IQ MZM are presented. The measured 3dB bandwidth for a set of four phase matched transmission lines for an IQ MZM was measured to be 19.8 GHz.
Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R
2012-07-01
A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
Hoffmann, Stefan A.; Kruse, Sabrina M.; Arndt, Katja M.
2016-01-01
Abstract We have investigated transcriptional interference between convergent genes in E. coli and demonstrate substantial interference for inter-promoter distances of as far as 3 kb. Interference can be elicited by both strong σ70 dependent and T7 promoters. In the presented design, a strong promoter driving gene expression of a ‘forward’ gene interferes with the expression of a ‘reverse’ gene by a weak promoter. This arrangement allows inversely correlated gene expression without requiring further regulatory components. Thus, modulation of the activity of the strong promoter alters expression of both the forward and the reverse gene. We used this design to develop a dual selection system for conditional operator site binding, allowing positive selection both for binding and for non-binding to DNA. This study demonstrates the utility of this novel system using the Lac repressor as a model protein for conditional DNA binding, and spectinomycin and chloramphenicol resistance genes as positive selection markers in liquid culture. Randomized LacI libraries were created and subjected to subsequent dual selection, but mispairing IPTG and selection cues in respect to the wild-type LacI response, allowing the isolation of a LacI variant with a reversed IPTG response within three rounds of library generation and dual selection. PMID:26932362
Single-shot detection and direct control of carrier phase drift of midinfrared pulses.
Manzoni, Cristian; Först, Michael; Ehrke, Henri; Cavalleri, Andrea
2010-03-01
We introduce a scheme for single-shot detection and correction of the carrier-envelope phase (CEP) drift of femtosecond pulses at mid-IR wavelengths. Difference frequency mixing between the mid-IR field and a near-IR gate pulse generates a near-IR frequency-shifted pulse, which is then spectrally interfered with a replica of the gate pulse. The spectral interference pattern contains shot-to-shot information of the CEP of the mid-IR field, and it can be used for simultaneous correction of its slow drifts. We apply this technique to detect and compensate long-term phase drifts at 17 microm wavelength, reducing fluctuations to only 110 mrad over hours of operation.
A Precision, Low-Cost GPS-Based Transmitter Synchronization Scheme for Improved AM Reception
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen Fulton; Moore, Anthony
2009-01-01
This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to {approx}1 part in 10{sup 9} or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station's carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station's audio at the receiver and concurrent distortion of the audio modulation from the distant station(s) andmore » often cause listeners to ldquotune outrdquo due to the low reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; hybrid digital (HD) signals will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1000-$2000), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long- term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific carrier frequency desired. The stability of the disciplining source, typically {approx}1 part in 10{sup 9} to 10{sup 11}, is thus transferred to the final AM transmitter carrier output frequency.« less
Absorption spectrum of a two-level system subjected to a periodic pulse sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotso, H. F.; Dobrovitski, V. V.
We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less
Wang, Jer-Chyi; Karmakar, Rajat Subhra; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen
2015-01-01
The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications. PMID:25569756
Wang, Jer-Chyi; Karmakar, Rajat Subhra; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen
2015-01-05
The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications.
Absorption spectrum of a two-level system subjected to a periodic pulse sequence
Fotso, H. F.; Dobrovitski, V. V.
2017-06-01
We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less
Development of analytic intermodal freight networks for use within a GIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, F.; Xiong, D.; Middendorf, D.
1997-05-01
The paper discusses the practical issues involved in constructing intermodal freight networks that can be used within GIS platforms to support inter-regional freight routing and subsequent (for example, commodity flow) analysis. The procedures described can be used to create freight-routable and traffic flowable interstate and intermodal networks using some combination of highway, rail, water and air freight transportation. Keys to realistic freight routing are the identification of intermodal transfer locations and associated terminal functions, a proper handling of carrier-owned and operated sub-networks within each of the primary modes of transport, and the ability to model the types of carrier servicesmore » being offered.« less
H2 as a Possible Carrier of the DIBs?
NASA Astrophysics Data System (ADS)
Ubachs, W.
2014-02-01
In the 1990s the hydrogen molecule, by far the most abundant molecular species in the interstellar medium, has been proposed as a possible carrier of the diffuse interstellar bands. While some remarkable coincidences were found in the rich spectrum of inter-Rydberg transitions of this molecule with DIB-features, both in frequency position as in linewidth, some open issues remained on a required non-linear optical pumping scheme that should explain the population of certain intermediate levels and act as a selection mechanism. Recently a similar scheme has been proposed relating the occurrence of the UV-bump (the ubiquitous 2170 Å extinction feature) to the spectrum of H2, therewith reviving the H2 hypothesis.
Electromagnetic interference with pacemakers caused by portable media players.
Thaker, Jay P; Patel, Mehul B; Jongnarangsin, Krit; Liepa, Valdis V; Thakur, Ranjan K
2008-04-01
Electromagnetic fields generated by electrical devices may cause interference with permanent pacemakers. Media players are becoming a common mode of portable entertainment. The most common media players used worldwide are iPods. These devices are often carried in a shirt chest pocket, which may place the devices close to an implanted pacemaker. The purpose of this study was to determine if iPods cause interference with pacemakers. In this prospective, single-blinded study, 100 patients who had cardiac pacemakers were tested with four types of iPods to assess for interference. Patients were monitored by a single-channel ECG monitor as well as the respective pacemaker programmer via the telemetry wand. iPods were tested by placing them 2 inches anterior to the pacemaker and wand for up to 10 seconds. To simulate actual use, standard-issue headphones were plugged into the iPods. To maintain consistency, the volume was turned up maximally, and the equalizer was turned off. A subset of 25 patients underwent testing on 2 separate days to assess for reproducibility of interference. Pacemaker interference was categorized as type I or type II telemetry interference. Type I interference was associated with atrial and/or ventricular high rates on rate histograms. Type II interference did not affect pacemaker rate counters. Electromagnetic emissions from the four iPods also were evaluated in a Faraday cage to determine the mechanism of the observed interference. One hundred patients (63 men and 37 women; mean age 77.1 +/- 7.6 years) with 11 single-chamber pacemakers and 89 dual-chamber pacemakers underwent 800 tests. The incidence of any type of interference was 51% of patients and 20% of tests. Type I interference was seen in 19% of patients and type II in 32% of patients. Reproducibility testing confirmed that interference occurred regardless of pacing configuration (unipolar or bipolar), pacing mode (AAI, VVI, or DDD), and from one day to the next. Electromagnetic emissions testing from the iPods demonstrated maximum emissions in the pacemaker carrier frequency range when the iPod was turned "on" with the headphones attached. iPods placed within 2 inches of implanted pacemakers monitored via the telemetry wand can cause interference with pacemakers.
Riffe, Matthew J.; Twieg, Michael D.; Gudino, Natalia; Blumenthal, Colin J.; Heilman, Jeremy A.; Griswold, Mark A.
2013-01-01
Purpose Single sideband amplitude modulation (SSB) is an appealing platform for highly parallel wireless MRI detector arrays because the spacing between channels is ideally limited only by the MRI signal bandwidth. However this assumes that no other sources of interference are present outside that bandwidth. This work investigates the practical interference between multiple SSB-encoded MRI signals. Methods Noise from coil preamplifiers and carrier bleed-through are identified as sources of interference. Two different SSB systems were designed for 1.5T with different noise filtering properties. We show how the differences between the filtered noise profiles impact the received MR signal’s dynamic range (DRsig) and image signal-to-noise ratio (SNR) through simulation, bench measurements, and phantom imaging experiments. Results When operating individually in the MR scanner, both SSB systems were shown to minimally impact the original DRsig and SNR. On the other hand, when all eight channels were operating simultaneously, an average SNR loss was observed to be 12% in the one system, while a second system with more complex filtering was able to achieve a 3% loss in SNR. Conclusion Successful wireless transmission of multiple SSB-encoded MRI signals is possible as long as channel interference is properly managed through design and simulation. PMID:23413242
NASA Astrophysics Data System (ADS)
Klimov, Victor I.
2017-05-01
Understanding and controlling carrier transport and recombination dynamics in colloidal quantum dot films is key to their application in electronic and optoelectronic devices. Towards this end, we have conducted transient photocurrent measurements to monitor transport through quantum confined band edge states in lead selenide quantum dots films as a function of pump fluence, temperature, electrical bias, and surface treatment. Room temperature dynamics reveal two distinct timescales of intra-dot geminate processes followed by non-geminate inter-dot processes. The non-geminate kinetics is well described by the recombination of holes with photoinjected and pre-existing electrons residing in mid-gap states. We find the mobility of the quantum-confined states shows no temperature dependence down to 6 K, indicating a tunneling mechanism of early time photoconductance. We present evidence of the importance of the exciton fine structure in controlling the low temperature photoconductance, whereby the nanoscale enhanced exchange interaction between electrons and holes in quantum dots introduces a barrier to charge separation. Finally, side-by-side comparison of photocurrent transients using excitation with low- and high-photon energies (1.5 vs. 3.0 eV) reveals clear signatures of carrier multiplication (CM), that is, generation of multiple excitons by single photons. Based on photocurrent measurements of quantum dot solids and optical measurements of solution based samples, we conclude that the CM efficiency is unaffected by strong inter-dot coupling. Therefore, the results of previous numerous spectroscopic CM studies conducted on dilute quantum dot suspensions should, in principle, be reproducible in electronically coupled QD films used in devices.
Peng, Ming; Liu, Jin; Lu, Dan; Yang, Yong-Jian
2012-09-01
Blonanserin is a novel atypical antipsychotic agent for the treatment of schizophrenia. Ethyl alcohol, isopropyl alcohol and toluene are utilized in the synthesis route of this bulk drug. A new validated gas chromatographic (GC) method for the simultaneous determination of residual solvents in blonanserin is described in this paper. Blonanserin was dissolved in N, N-dimethylformamide to make a sample solution that was directly injected into a DB-624 column. A postrun oven temperature at 240°C for approximately 2 h after the analysis cycle was performed to wash out blonanserin residue in the GC column. Quantitation was performed by external standard analyses and the validation was carried out according to International Conference on Harmonization validation guidelines Q2A and Q2B. The method was shown to be specific (no interference in the blank solution), linear (correlation coefficients ≥0.99998, n = 10), accurate (average recoveries between 94.1 and 101.7%), precise (intra-day and inter-day precision ≤2.6%), sensitive (limit of detection ≤0.2 ng, and limit of quantitation ≤0.7 ng), robust (small variations of carrier gas flow, initial oven temperature, temperature ramping rate, injector and detector temperatures did not significantly affect the system suitability test parameters and peak areas) and stable (reference standard and sample solutions were stable over 48 h). This extensively validated method is ready to be used for the quality control of blonanserin.
Micoli, Francesca; Adamo, Roberto; Costantino, Paolo
2018-06-15
Currently licensed glycoconjugate vaccines are composed of a carbohydrate moiety covalently linked to a protein carrier. Polysaccharides are T-cell independent antigens able to directly stimulate B cells to produce antibodies. Disease burden caused by polysaccharide-encapsulated bacteria is highest in the first year of life, where plain polysaccharides are not generally immunogenic, limiting their use as vaccines. This limitation has been overcome by covalent coupling carbohydrate antigens to proteins that provide T cell epitopes. In addition to the protein carriers currently used in licensed glycoconjugate vaccines, there is a search for new protein carriers driven by several considerations: (i) concerns that pre-exposure or co-exposure to a given carrier can lead to immune interference and reduction of the anti-carbohydrate immune response; (ii) increasing interest to explore the dual role of proteins as carrier and protective antigen; and (iii) new ways to present carbohydrates antigens to the immune system. Protein carriers can be directly coupled to activated glycans or derivatized to introduce functional groups for subsequent conjugation. Proteins can be genetically modified to pre-determine the site of glycans attachment by insertion of unnatural amino acids bearing specific functional groups, or glycosylation consensus sequences for in vivo expression of the glycoconjugate. A large portion of the new protein carriers under investigation are recombinant ones, but more complex systems such as Outer Membrane Vesicles and other nanoparticles are being investigated. Selection criteria for new protein carriers are based on several aspects including safety, manufacturability, stability, reactivity toward conjugation, and preclinical evidence of immunogenicity of corresponding glycoconjugates. Characterization panels of protein carriers include tests before conjugation, after derivatization when applicable, and after conjugation. Glycoconjugate vaccines based on non-covalent association of carrier systems to carbohydrates are being investigated with promising results in animal models. The ability of these systems to convert T-independent carbohydrate antigens into T-dependent ones, in comparison to traditional glycoconjugates, needs to be assessed in humans.
Articulatory settings of French-English bilingual speakers
NASA Astrophysics Data System (ADS)
Wilson, Ian
2005-04-01
The idea of a language-specific articulatory setting (AS), an underlying posture of the articulators during speech, has existed for centuries [Laver, Historiogr. Ling. 5 (1978)], but until recently it had eluded direct measurement. In an analysis of x-ray movies of French and English monolingual speakers, Gick et al. [Phonetica (in press)] link AS to inter-speech posture, allowing measurement of AS without interference from segmental targets during speech, and they give quantitative evidence showing AS to be language-specific. In the present study, ultrasound and Optotrak are used to investigate whether bilingual English-French speakers have two ASs, and whether this varies depending on the mode (monolingual or bilingual) these speakers are in. Specifically, for inter-speech posture of the lips, lip aperture and protrusion are measured using Optotrak. For inter-speech posture of the tongue, tongue root retraction, tongue body and tongue tip height are measured using optically-corrected ultrasound. Segmental context is balanced across the two languages ensuring that the sets of sounds before and after an inter-speech posture are consistent across languages. By testing bilingual speakers, vocal tract morphology across languages is controlled for. Results have implications for L2 acquisition, specifically the teaching and acquisition of pronunciation.
Strong RFI observed in protected 21 cm band at Zurich observatory, Switzerland
NASA Astrophysics Data System (ADS)
Monstein, C.
2014-03-01
While testing a new antenna control software tool, the telescope was moved to the most western azimuth position pointing to our own building. While de-accelerating the telescope, the spectrometer showed strong broadband radio frequency interference (RFI) and two single-frequency carriers around 1412 and 1425 MHz, both of which are in the internationally protected band. After lengthy analysis it was found out, that the Webcam AXIS2000 was the source for both the broadband and single-frequency interference. Switching off the Webcam solved the problem immediately. So, for future observations of 21 cm radiation, all nearby electronics has to be switched off. Not only the Webcam but also all unused PCs, printers, networks, monitors etc.
Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity
NASA Technical Reports Server (NTRS)
Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor
2011-01-01
The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.
1981-01-15
system is attacted to the delivery aircraft until it Impacto a target, it is exposed to electromagnetic radiation from emitters aboard the delivery...homogeneous, isotropic, ambient medium may be a lossy dielectric. Antenna computations include cur- rent distribution, input impedance, radiation...permissible ambient interference level in the system, and when determining the expected signal-to-inter- ference ratio of the signal transmission circuits
NASA Astrophysics Data System (ADS)
Li, Wei; Huang, Zhitong; Li, Haoyue; Ji, Yuefeng
2018-04-01
Visible light communication (VLC) is a promising candidate for short-range broadband access due to its integration of advantages for both optical communication and wireless communication, whereas multi-user access is a key problem because of the intra-cell and inter-cell interferences. In addition, the non-flat channel effect results in higher losses for users in high frequency bands, which leads to unfair qualities. To solve those issues, we propose a power adaptive multi-filter carrierless amplitude and phase access (PA-MF-CAPA) scheme, and in the first step of this scheme, the MF-CAPA scheme utilizing multiple filters as different CAP dimensions is used to realize multi-user access. The character of orthogonality among the filters in different dimensions can mitigate the effect of intra-cell and inter-cell interferences. Moreover, the MF-CAPA scheme provides different channels modulated on the same frequency bands, which further increases the transmission rate. Then, the power adaptive procedure based on MF-CAPA scheme is presented to realize quality fairness. As demonstrated in our experiments, the MF-CAPA scheme yields an improved throughput compared with multi-band CAP access scheme, and the PA-MF-CAPA scheme enhances the quality fairness and further improves the throughput compared with the MF-CAPA scheme.
All-electric spin modulator based on a two-dimensional topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xianbo; Ai, Guoping; Liu, Ying
2016-01-18
We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarizationmore » rotator by replacing the drain electrode with a non-magnetic material.« less
Zhou, Wen-Yi; Li, Shan-Shan; Song, Jie-Yao; Jiang, Min; Jiang, Tian-Jia; Liu, Jin-Yun; Liu, Jin-Huai; Huang, Xing-Jiu
2018-04-03
Mutual interference is a severe issue that occurs during the electrochemical detection of heavy metal ions. This limitation presents a notable drawback for its high sensitivity to specific targets. Here, we present a high electrochemical sensitivity of ∼237.1 μA cm -2 μM -1 toward copper(II) [Cu(II)] based on oxygen-deficient titanium dioxide (TiO 2- x ) nanosheets. We fully demonstrated an atomic-level relationship between electrochemical behaviors and the key factors, including the high-energy (001) facet percentage, oxygen vacancy concentration, surface -OH content, and charge carrier density, is fully demonstrated. These four factors were quantified using Raman, electron spin resonance, X-ray photoelectron spectroscopy spectra, and Mott-Schottky plots. In the mutual interference investigation, we selected cadmium(II) [Cd(II)] as the target ion because of the significant difference in its stripping potential (∼700 mV). The results show that the Cd(II) can enhance the sensitivity of TiO 2- x nanosheets toward Cu(II), exhibiting an electron-induced mutual interference effect, as demonstrated by X-ray absorption fine structure spectra.
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...
2015-03-30
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less
Distributed vibration fiber sensing system based on Polarization Diversity Receiver
NASA Astrophysics Data System (ADS)
Zhang, Junan; Jiang, Peng; Hu, Zhengliang; Hu, Yongming
2016-10-01
In this paper, we propose a distributed vibration fiber sensing system based on Polarization Diversity Receiver(PDR). We use Acoustic Optical Modulator(AOM) to generate pulse light and an unbalanced M-Z interferometer to generate two pulse light with a certain time delay in the same period. As the pulse lights propagating in fibers, the Backward Rayleigh scattering lights will interfere with each other. The vibration on the fiber will change the length and refractive index of fiber which results in the change of the phase of the interference signal. Hence, one arm of the M-Z interferometer is modulated by a sinusoidal phase-generated carrier(PGC) signal, and PGC demodulation algorithm has been used to acquire phase information from the Backward Rayleigh scattering lights. In order to overcome the influence of polarization-induced fading and enhance Signal Noise Ratio(SNR), we set a PDR before the photo detector. The Polarization Diversity Receiver segregates the interfere light into two lights with orthogonal states of polarization. Hence, there is always one channel has a better interfere light signal. The experiments are presented to verify the effectiveness of the distributed vibration fiber sensing system proposed.
Ultrafast Terahertz Nonlinear Optics of Landau Level Transitions in a Monolayer Graphene
NASA Astrophysics Data System (ADS)
Yumoto, Go; Matsunaga, Ryusuke; Hibino, Hiroki; Shimano, Ryo
2018-03-01
We investigated the ultrafast terahertz (THz) nonlinearity in a monolayer graphene under the strong magnetic field using THz pump-THz probe spectroscopy. An ultrafast suppression of the Faraday rotation associated with inter-Landau level (LL) transitions is observed, reflecting the Dirac electron character of nonequidistant LLs with large transition dipole moments. A drastic modulation of electron distribution in LLs is induced by far off-resonant THz pulse excitation in the transparent region. Numerical simulation based on the density matrix formalism without rotating-wave approximation reproduces the experimental results. Our results indicate that the strong light-matter coupling regime is realized in graphene, with the Rabi frequency exceeding the carrier wave frequency and even the relevant energy scale of the inter-LL transition.
NASA Astrophysics Data System (ADS)
Gatto, A.; Parolari, P.; Boffi, P.
2018-05-01
Frequency division multiplexing (FDM) is attractive to achieve high capacities in multiple access networks characterized by direct modulation and direct detection. In this paper we take into account point-to-point intra- and inter-datacenter connections to understand the performance of FDM operation compared with the ones achievable with standard multiple carrier modulation approach based on discrete multitone (DMT). DMT and FDM allow to match the non-uniform and bandwidth-limited response of the system under test, associated with the employment of low-cost directly-modulated sources, such as VCSELs with high-frequency chirp, and with fibre-propagation in presence of chromatic dispersion. While for very short distances typical of intra-datacentre communications, the huge number of DMT subcarriers permits to increase the transported capacity with respect to the FDM employment, in case of few tens-km reaches typical of inter-datacentre connections, the capabilities of FDM are more evident, providing system performance similar to the case of DMT application.
Single-cell-based system to monitor carrier driven cellular auxin homeostasis
2013-01-01
Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388
Development of scanning graphene Hall probes for magnetic microscopy
NASA Astrophysics Data System (ADS)
Schaefer, Brian T.; Wang, Lei; McEuen, Paul L.; Nowack, Katja C.
We discuss our progress on developing scanning Hall probes fabricated from hexagonal boron nitride (hBN)-encapsulated graphene, with the goal to image magnetic fields with submicron resolution. In contrast to scanning superconducting quantum interference device (SQUID) microscopy, this technique is compatible with a large applied magnetic field and not limited to cryogenic temperatures. The field sensitivity of a Hall probe depends inversely on carrier density, while the primary source of noise in the measurement is Johnson noise originating from the device resistance. hBN-encapsulated graphene demonstrates high carrier mobility at low carrier densities, therefore making it an ideal material for sensitive Hall probes. Furthermore, engineering the dielectric environment of graphene by encapsulating in hBN reduces low-frequency charge noise and disorder from the substrate. We outline our plans for adapting these devices for scanning, including characterization of the point spread function with a scanned current loop and fabrication of a deep-etched structure that enables positioning the sensitive area within 100 nanometers of the sample surface.
Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.
Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès
2015-01-01
Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Kang, Le; Chen, Yan; Li, Gang; Wang, Lan; Hu, Chun; Yang, Peng
2018-03-01
A fluorescent 2,7-dimethoxy-substituted calix[4]carbazole (1) is facilely synthesized. The spectral behaviors of both the guest-induced switchable conformation of 1 and its abilities serving as the stabilizer and molecular carrier of curcumin are investigated. UV-vis, fluorescence and NMR spectral results show that upon binding to curcumin, the 1,3-alternate conformation of 1 is converted to be the cone one. The relative high association constant (6.4 × 106 M- 1) of 1 binding to curcumin enables it to stabilize the curcumin, to suppress its degradation, and to sustainably deliver it into the EYPC vesicles within 20 h. Moreover, the cytotoxicity assay shows that 1 does not interfere the antiproliferative activities of curcumin. All these properties endow 1 the potential capability of serving as the molecular drug carrier. Our current result may pave the way looking for more efficient fluorescent calixcarbazoles and thereof spectral utilities.
An airman with tuberculous uveitis: case study.
Haddon, R
2000-12-01
Tuberculosis is endemic, with nearly 2 billion carriers worldwide. Aviation medical examiners should be alert to both its pulmonary and extrapulmonary manifestations, especially in the international traveler. Uveitis is a rare presentation of tuberculosis, but that diagnosis must be considered in the differential, even in the absence of pulmonary disease. Promptly treated, tuberculosis should not interfere with the resumption of a career in aviation, and does not generally require special follow up.
Multimodality Imaging of RNA Interference
Nayak, Tapas R.; Krasteva, Lazura K.; Cai, Weibo
2013-01-01
The discovery of small interfering RNAs (siRNAs) and their potential to knock down virtually any gene of interest has ushered in a new era of RNA interference (RNAi). Clinical use of RNAi faces severe limitations due to inefficiency delivery of siRNA or short hairpin RNA (shRNA). Many molecular imaging techniques have been adopted in RNAi-related research for evaluation of siRNA/shRNA delivery, biodistribution, pharmacokinetics, and the therapeutic effect. In this review article, we summarize the current status of in vivo imaging of RNAi. The molecular imaging techniques that have been employed include bioluminescence/fluorescence imaging, magnetic resonance imaging/spectroscopy, positron emission tomography, single-photon emission computed tomography, and various combinations of these techniques. Further development of non-invasive imaging strategies for RNAi, not only focusing on the delivery of siRNA/shRNA but also the therapeutic efficacy, is critical for future clinical translation. Rigorous validation will be needed to confirm that biodistribution of the carrier is correlated with that of siRNA/shRNA, since imaging only detects the label (e.g. radioisotopes) but not the gene or carrier themselves. It is also essential to develop multimodality imaging approaches for realizing the full potential of therapeutic RNAi, as no single imaging modality may be sufficient to simultaneously monitor both the gene delivery and silencing effect of RNAi. PMID:23745567
Nakata, Toshihiko; Ninomiya, Takanori
2006-10-10
A general solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging is presented. Phase-modulated heterodyne interference light generated by a linear region of periodic displacement is captured by a charge-coupled device image sensor, in which the interference light is sampled at a sampling rate lower than the Nyquist frequency. The frequencies of the components of the light, such as the sideband and carrier (which include photodisplacement and topography information, respectively), are downconverted and sampled simultaneously based on the integration and sampling effects of the sensor. A general solution of frequency and amplitude in this downconversion is derived by Fourier analysis of the sampling procedure. The optimal frequency condition for the heterodyne beat signal, modulation signal, and sensor gate pulse is derived such that undesirable components are eliminated and each information component is converted into an orthogonal function, allowing each to be discretely reproduced from the Fourier coefficients. The optimal frequency parameters that maximize the sideband-to-carrier amplitude ratio are determined, theoretically demonstrating its high selectivity over 80 dB. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a speed corresponding to an acquisition time of only 0.26 s per 256 x 256 pixel area.
Between-Trial Forgetting Due to Interference and Time in Motor Adaptation.
Kim, Sungshin; Oh, Youngmin; Schweighofer, Nicolas
2015-01-01
Learning a motor task with temporally spaced presentations or with other tasks intermixed between presentations reduces performance during training, but can enhance retention post training. These two effects are known as the spacing and contextual interference effect, respectively. Here, we aimed at testing a unifying hypothesis of the spacing and contextual interference effects in visuomotor adaptation, according to which forgetting between trials due to either spaced presentations or interference by another task will promote between-trial forgetting, which will depress performance during acquisition, but will promote retention. We first performed an experiment with three visuomotor adaptation conditions: a short inter-trial-interval (ITI) condition (SHORT-ITI); a long ITI condition (LONG-ITI); and an alternating condition with two alternated opposite tasks (ALT), with the same single-task ITI as in LONG-ITI. In the SHORT-ITI condition, there was fastest increase in performance during training and largest immediate forgetting in the retention tests. In contrast, in the ALT condition, there was slowest increase in performance during training and little immediate forgetting in the retention tests. Compared to these two conditions, in the LONG-ITI, we found intermediate increase in performance during training and intermediate immediate forgetting. To account for these results, we fitted to the data six possible adaptation models with one or two time scales, and with interference in the fast, or in the slow, or in both time scales. Model comparison confirmed that two time scales and some degree of interferences in either time scale are needed to account for our experimental results. In summary, our results suggest that retention following adaptation is modulated by the degree of between-trial forgetting, which is due to time-based decay in single adaptation task and interferences in multiple adaptation tasks.
Yamakata, Akira; Yoshida, Masaaki; Kubota, Jun; Osawa, Masatoshi; Domen, Kazunari
2011-07-27
Recombination kinetics of photogenerated electrons in n-type and p-type GaN photoelectrodes active for H(2) and O(2) evolution, respectively, from water was examined by time-resolved IR absorption (TR-IR) spectroscopy. Illumination of a GaN film with UV pulse (355 nm and 6 ns in duration) gives transient interference spectra in both transmittance and reflection modes. Simulation shows that the interference spectra are caused by photogenerated electrons. We observed that recombination in the microsecond region is greatly affected by the applied potentials, the lifetime becoming longer at negative and positive potentials for n- and p-type GaN electrodes, respectively. There is a good correlation between potential dependence of the steady-state reaction efficiency and that of the number of surviving electrons in the millisecond region. We also performed potential jump measurement to examine the shift in Fermi level by photogenerated charge carriers. In the case of n-type GaN, the electrode potential jumps to the negative side by accumulation of electrons in the bulk. However, in the case of p-type GaN, the electrode potential first jumps to the negative side within 20 μs and gradually shifts to the positive side in a few milliseconds, while the number of charge carriers is constant at >0.2 ms. This two-step process is ascribed to electron transport from the bulk to the surface of GaN, because the electrode potential is sensitive to the number of electrons in the bulk. The results confirm that TR-IR combined with potential jump measurement provides useful information for understanding the behavior of charge carriers in photoelectrochemical systems.
Analytic theory of high-order-harmonic generation by an intense few-cycle laser pulse
NASA Astrophysics Data System (ADS)
Frolov, M. V.; Manakov, N. L.; Popov, A. M.; Tikhonova, O. V.; Volkova, E. A.; Silaev, A. A.; Vvedenskii, N. V.; Starace, Anthony F.
2012-03-01
We present a theoretical model for describing the interaction of an electron, weakly bound in a short-range potential, with an intense, few-cycle laser pulse. General definitions for the differential probability of above-threshold ionization and for the yield of high-order-harmonic generation (HHG) are presented. For HHG we then derive detailed analytic expressions for the spectral density of generated radiation in terms of the key laser parameters, including the number N of optical cycles in the pulse and the carrier-envelope phase (CEP). In particular, in the tunneling approximation, we provide detailed derivations of the closed-form formulas presented briefly by M. V. Frolov [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.021405 83, 021405(R) (2011)], which were used to describe key features of HHG by both H and Xe atom targets in an intense, few-cycle laser pulse. We then provide a complete analysis of the dependence of the HHG spectrum on both N and the CEP φ of an N-cycle laser pulse. Most importantly, we show analytically that the structure of the HHG spectrum stems from interference between electron wave packets originating from electron ionization from neighboring half-cycles near the peak of the intensity envelope of the few-cycle laser pulse. Such interference is shown to be very sensitive to the CEP. The usual HHG spectrum for a monochromatic driving laser field (comprising harmonic peaks at odd multiples of the carrier frequency and spaced by twice the carrier frequency) is shown analytically to occur only in the limit of very large N, and begins to form, as N increases, in the energy region beyond the HHG plateau cutoff.
NASA Astrophysics Data System (ADS)
Chou, Szu-Ting
Delivery has been the major obstacle for nucleic acid therapeutics, including the RNA interference (RNAi) approach. Mixson's lab has been focused on the development of a non-viral peptide-based delivery system, HK (histidine-lysine) polymers, which have shown promise as carriers of plasmids and small interference RNA (siRNA) in several cell lines and in tumor-bearing models. In a previous study, a four-branched peptide, denoted H3K(+H)4b, with the predominant repeating -HHHK- sequence in the branch, has been shown to be the most effective and least toxic carrier in vitro and in vivo.. Building on these results, I utilized different approaches including several structure and stability molecular characterization methods to study polyplex and to develop more effective carriers for improved therapy with siRNAs targeting malignancies. To understand the role of histidine in the stability of the H3K(+H)4b/siRNA polyplex, the physicochemical properties were investigated. With the use of isothermal titration calorimetry and heteronuclear single quantum coherence NMR, histidines were shown to form hydrogen bonds with siRNA, which enhanced the stability and biological activity of the polyplexes. In addition, to enhance resistance to nucleases and to target the tumors selectively, H3K(+H)4b was chemically modified with different patterns of polyethylene glycol (PEG) and cyclic RGD (Arg-Gly-Asp, cRGD) peptide conjugates. The luciferase marker gene expressed stably by tumor xenografts in mouse models was targeted in order to evaluate the efficacy of HK carriers of siRNA that differed in location and number of cRGD-PEG attachments. The most effective carrier was (RGD-PEG)4H3K(+H) (RP-HK), which has a cRGD-PEG on each of its four terminal branches. Consistent with its prolonged stability, as observed by pharmacokinetic studies, the RP-HK polyplex down-regulated luciferase activity in tumor xenografts by nearly 70% compared with the untreated group. Subsequently, the RP-HK polyplex was used to target the Raf-1 oncogene, an important mediator of tumor cell growth and angiogenesis. As in the luciferase studies, the polyplex reduced Raf-1 mRNA by more than 75%, and more importantly, the treatment inhibited the tumor growth by 60% in a mouse model. We anticipate that further design and engineering of HK carriers will improve the predictability and therapeutic activity of siRNA polyplexes in cancer treatment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... radio astronomy service in the 1610.6-1613.8 MHz band against interference from 1.6/2.4 GHz Mobile... System. (i) In the band 1610.6-1613.8 MHz, within a 160 km radius of the following radio astronomy sites... attenuated so that the power flux density it produces in the 1610.6-1613.8 MHz band at any radio astronomy...
Code of Federal Regulations, 2014 CFR
2014-10-01
... radio astronomy service in the 1610.6-1613.8 MHz band against interference from 1.6/2.4 GHz Mobile... System. (i) In the band 1610.6-1613.8 MHz, within a 160 km radius of the following radio astronomy sites... attenuated so that the power flux density it produces in the 1610.6-1613.8 MHz band at any radio astronomy...
Technical Digest of the 1998 Summer Topical Meeting on Organic Optics and Optoelectronics
1998-07-01
substantially larger voltages (~2x), however, signal distortion and inter- symbol interference due to multiple RF reflections limit their...technology as data page composers. Texas Instrument’s DMD 0-7803-4953-9/98$10.00©1998 IEEE system has already been used in this capacity in several... lithography for fabricating and integrating the heads and sliders. The application of MEMS components and micromachined optical bench packaging techniques
Maire, Micheline; Reichert, Carolin F.; Gabel, Virginie; Viola, Antoine U.; Krebs, Julia; Strobel, Werner; Landolt, Hans-Peter; Bachmann, Valérie; Cajochen, Christian; Schmidt, Christina
2014-01-01
Under sleep loss, vigilance is reduced and attentional failures emerge progressively. It becomes difficult to maintain stable performance over time, leading to growing performance variability (i.e., state instability) in an individual and among subjects. Task duration plays a major role in the maintenance of stable vigilance levels, such that the longer the task, the more likely state instability will be observed. Vulnerability to sleep-loss-dependent performance decrements is highly individual and is also modulated by a polymorphism in the human clock gene PERIOD3 (PER3). By combining two different protocols, we manipulated sleep-wake history by once extending wakefulness for 40 h (high sleep pressure condition) and once by imposing a short sleep-wake cycle by alternating 160 min of wakefulness and 80 min naps (low sleep pressure condition) in a within-subject design. We observed that homozygous carriers of the long repeat allele of PER3 (PER35/5) experienced a greater time-on-task dependent performance decrement (i.e., a steeper increase in the number of lapses) in the Psychomotor Vigilance Task compared to the carriers of the short repeat allele (PER34/4). These genotype-dependent effects disappeared under low sleep pressure conditions, and neither motivation, nor perceived effort accounted for these differences. Our data thus suggest that greater sleep-loss related attentional vulnerability based on the PER3 polymorphism is mirrored by a greater state instability under extended wakefulness in the short compared to the long allele carriers. Our results undermine the importance of time-on-task related aspects when investigating inter-individual differences in sleep loss-induced behavioral vulnerability. PMID:24639634
Dual function microscope for quantitative DIC and birefringence imaging
NASA Astrophysics Data System (ADS)
Li, Chengshuai; Zhu, Yizheng
2016-03-01
A spectral multiplexing interferometry (SXI) method is presented for integrated birefringence and phase gradient measurement on label-free biological specimens. With SXI, the retardation and orientation of sample birefringence are simultaneously encoded onto two separate spectral carrier waves, generated by a crystal retarder oriented at a specific angle. Thus sufficient information for birefringence determination can be obtained from a single interference spectrum, eliminating the need for multiple acquisitions with mechanical rotation or electrical modulation. In addition, with the insertion of a Nomarski prism, the setup can then acquire quantitative differential interference contrast images. Red blood cells infected by malaria parasites are imaged for birefringence retardation as well as phase gradient. The results demonstrate that the SXI approach can achieve both quantitative phase imaging and birefringence imaging with a single, high-sensitivity system.
Sun, Shan; Gao, Jiang-Yun; Liao, Wan-Jin; Li, Qing-Jun; Zhang, Da-Yong
2007-01-01
Background and Aims Flexistyly is a sexual dimorphism where there are two morphs that differ in the temporal expression of sexual function and also involve reciprocal movement of the stigmatic surface through a vertical axis during the flowering period. The adaptive significance of flexistyly has been interpreted as a floral mechanism for outcrossing, but it may also function to reduce sexual interference in which styles and stigmas impede the pollen export. Here these two explanations of flexistyly were tested in Alpinia blepharocalyx through a hand-pollination experiment. Methods Hand-pollinations were performed in two temporal morphs and consisted of two sequential pollination treatments, namely self-pollination in the morning and inter-morph pollination in the afternoon (treatment 1) or conversely inter-morph pollination in the morning and self-pollination in the afternoon (treatment 2), and two simultaneous self- and inter-morph cross-pollination treatments either in the morning (treatment 3) or in the afternoon (treatment 4). Seed paternity was then determined to assess relative success of self- versus cross-pollen using allozyme markers. Key Results In the sequential pollination treatments, whether the stigmas of recipients are receptive in the morning is crucial to the success of the pollen deposited. When the cataflexistylous (protandrous) morph served as pollen recipient, early-arriving pollen in the morning can sire only a very small proportion (<15%) of seeds because the stigmas were then unreceptive. However, when the anaflexistylous (protogynous) morph served as pollen recipient, early pollen did gain a large competitive advantage over the late pollen, particularly when cross-pollen arrived first. Simultaneous self- and inter-morph cross-pollination indicated that outcross-pollen is more competitive than self-pollen on receptive stigmas. Conclusions Differential maturing of male and female organs in Alpinia blepharocalyx is sufficient for selfing avoidance, obviating the need for style movements. Instead, the upward style curvature of the cataflexistylous morph in the morning and the anaflexistylous morph in the afternoon most likely represents a means of reducing interference with pollen export. PMID:17237211
Wahlstrand, J K; Zhang, H; Choi, S B; Sipe, J E; Cundiff, S T
2011-11-07
A static electric field enables coherent control of the photoexcited carrier density in a semiconductor through the interference of one- and two-photon absorption. An experiment using optical detection is described. The polarization dependence of the signal is consistent with a calculation using a 14-band k · p model for GaAs. We also describe an electrical measurement. A strong enhancement of the phase-dependent photocurrent through a metal-semiconductor-metal structure is observed when a bias of a few volts is applied. The dependence of the signal on bias and laser spot position is studied. The field-induced enhancement of the signal could increase the sensitivity of semiconductor-based carrier-envelope phase detectors, useful in stabilizing mode-locked lasers for use in frequency combs.
NASA Astrophysics Data System (ADS)
Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani
2015-05-01
For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.
The impact of junior doctors' worktime arrangements on their fatigue and well-being.
Tucker, Philip; Brown, Menna; Dahlgren, Anna; Davies, Gwyneth; Ebden, Philip; Folkard, Simon; Hutchings, Hayley; Akerstedt, Torbjörn
2010-11-01
Many doctors report working excessively demanding schedules that comply with the European Working Time Directive (EWTD). We compared groups of junior doctors working on different schedules in order to identify which features of schedule design most negatively affected their fatigue and well-being in recent weeks. Completed by 336 doctors, the questionnaires focused on the respondents' personal circumstances, work situation, work schedules, sleep, and perceptions of fatigue, work-life balance and psychological strain. Working 7 consecutive nights was associated with greater accumulated fatigue and greater work-life interference, compared with working just 3 or 4 nights. Having only 1 rest day after working nights was associated with increased fatigue. Working a weekend on-call between 2 consecutive working weeks was associated with increased work-life interference. Working frequent on-calls (either on weekends or during the week) was associated with increased work-life interference and psychological strain. Inter-shift intervals of <10 hours were associated with shorter periods of sleep and increased fatigue. The number of hours worked per week was positively associated with work-life interference and fatigue on night shifts. The current findings identify parameters, in addition to those specified in the EWTD, for designing schedules that limit their impact on doctors' fatigue and well-being.
Network Centric Communications for Expeditionary or Carrier Strike Groups
2011-12-01
known as Modulating Retroreflector (MRR) mode. In this configuration, a source laser transmits a beam to an optical receiver which receives the...be adapted for use at sea and found that interference was a key issue. SPAWAR Systems Center Pacific has spent over a decade trying to address this...ad-hoc wireless technology non-proprietary and radio agnostic. One of the issues with wireless technologies used at sea is the issue of ― beam
Nasal carriers are more likely to acquire exogenous Staphylococcus aureus strains than non-carriers.
Ghasemzadeh-Moghaddam, H; Neela, V; van Wamel, W; Hamat, R A; Shamsudin, M Nor; Hussin, N Suhaila Che; Aziz, M N; Haspani, M S Mohammad; Johar, A; Thevarajah, S; Vos, M; van Belkum, A
2015-11-01
We performed a prospective observational study in a clinical setting to test the hypothesis that prior colonization by a Staphylococcus aureus strain would protect, by colonization interference or other processes, against de novo colonization and, hence, possible endo-infections by newly acquired S. aureus strains. Three hundred and six patients hospitalized for >7 days were enrolled. For every patient, four nasal swabs (days 1, 3, 5, and 7) were taken, and patients were identified as carriers when a positive nasal culture for S. aureus was obtained on day 1 of hospitalization. For all patients who acquired methicillin-resistant S. aureus (MRSA) or methicillin-susceptible S. aureus via colonization and/or infection during hospitalization, strains were collected. We note that our study may suffer from false-negative cultures, local problems with infection control and hospital hygiene, or staphylococcal carriage at alternative anatomical sites. Among all patients, 22% were prior carriers of S. aureus, including 1.9% whom carried MRSA upon admission. The overall nasal staphylococcal carriage rate among dermatology patients was significantly higher than that among neurosurgery patients (n = 25 (55.5%) vs. n = 42 (16.1%), p 0.005). This conclusion held when the carriage definition included individuals who were nasal culture positive on day 1 and day 3 of hospitalization (p 0.0001). All MRSA carriers were dermatology patients. There was significantly less S. aureus acquisition among non-carriers than among carriers during hospitalization (p 0.005). The mean number of days spent in the hospital before experiencing MRSA acquisition in nasal carriers was 5.1, which was significantly lower than the score among non-carriers (22 days, p 0.012). In conclusion, we found that nasal carriage of S. aureus predisposes to rather than protects against staphylococcal acquisition in the nose, thereby refuting our null hypothesis. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Why Do Model Tropical Cyclones Intensify More Rapidly at Low Latitudes?
2015-05-01
angularmomentum, greatly surpass the effects of rotational stiffness (inertial stability) and evaporative-wind feedback that have been proposed in...sification in a quiescent environment and have examined, inter alia, the effect of latitude on vortex evolution (e.g., DeMaria and Pickle 1988; Smith et al... Coriolis parameter. This time scale is about 16 h for latitudes of interest considered by Carrier, and it emerges by determining the time re- quired
Effects of nicotine on response inhibition and interference control.
Ettinger, Ulrich; Faiola, Eliana; Kasparbauer, Anna-Maria; Petrovsky, Nadine; Chan, Raymond C K; Liepelt, Roman; Kumari, Veena
2017-04-01
Nicotine is a cholinergic agonist with known pro-cognitive effects in the domains of alerting and orienting attention. However, its effects on attentional top-down functions such as response inhibition and interference control are less well characterised. Here, we investigated the effects of 7 mg transdermal nicotine on performance on a battery of response inhibition and interference control tasks. A sample of N = 44 healthy adult non-smokers performed antisaccade, stop signal, Stroop, go/no-go, flanker, shape matching and Simon tasks, as well as the attentional network test (ANT) and a continuous performance task (CPT). Nicotine was administered in a within-subjects, double-blind, placebo-controlled design, with order of drug administration counterbalanced. Relative to placebo, nicotine led to significantly shorter reaction times on a prosaccade task and on CPT hits but did not significantly improve inhibitory or interference control performance on any task. Instead, nicotine had a negative influence in increasing the interference effect on the Simon task. Nicotine did not alter inter-individual associations between reaction times on congruent trials and error rates on incongruent trials on any task. Finally, there were effects involving order of drug administration, suggesting practice effects but also beneficial nicotine effects when the compound was administered first. Overall, our findings support previous studies showing positive effects of nicotine on basic attentional functions but do not provide direct evidence for an improvement of top-down cognitive control through acute administration of nicotine at this dose in healthy non-smokers.
Demi, Libertario; Viti, Jacopo; Kusters, Lieneke; Guidi, Francesco; Tortoli, Piero; Mischi, Massimo
2013-11-01
The speed of sound in the human body limits the achievable data acquisition rate of pulsed ultrasound scanners. To overcome this limitation, parallel beamforming techniques are used in ultrasound 2-D and 3-D imaging systems. Different parallel beamforming approaches have been proposed. They may be grouped into two major categories: parallel beamforming in reception and parallel beamforming in transmission. The first category is not optimal for harmonic imaging; the second category may be more easily applied to harmonic imaging. However, inter-beam interference represents an issue. To overcome these shortcomings and exploit the benefit of combining harmonic imaging and high data acquisition rate, a new approach has been recently presented which relies on orthogonal frequency division multiplexing (OFDM) to perform parallel beamforming in transmission. In this paper, parallel transmit beamforming using OFDM is implemented for the first time on an ultrasound scanner. An advanced open platform for ultrasound research is used to investigate the axial resolution and interbeam interference achievable with parallel transmit beamforming using OFDM. Both fundamental and second-harmonic imaging modalities have been considered. Results show that, for fundamental imaging, axial resolution in the order of 2 mm can be achieved in combination with interbeam interference in the order of -30 dB. For second-harmonic imaging, axial resolution in the order of 1 mm can be achieved in combination with interbeam interference in the order of -35 dB.
Interference Drop Scheme: Enhancing QoS Provision in Multi-Hop Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Luo, Chang-Yi; Komuro, Nobuyoshi; Takahashi, Kiyoshi; Kasai, Hiroyuki; Ueda, Hiromi; Tsuboi, Toshinori
Ad hoc networking uses wireless technologies to construct networks with no physical infrastructure and so are expected to provide instant networking in areas such as disaster recovery sites and inter-vehicle communication. Unlike conventional wired networks services, services in ad hoc networks are easily disrupted by the frequent changes in traffic and topology. Therefore, solutions to assure the Quality of Services (QoS) in ad hoc networks are different from the conventional ones used in wired networks. In this paper, we propose a new queue management scheme, Interference Drop Scheme (IDS) for ad hoc networks. In the conventional queue management approaches such as FIFO (First-in First-out) and RED (Random Early Detection), a queue is usually managed by a queue length limit. FIFO discards packets according to the queue limit, and RED discards packets in an early and random fashion. IDS, on the other hand, manages the queue according to wireless interference time, which increases as the number of contentions in the MAC layer increases. When there are many MAC contentions, IDS discards TCP data packets. By observing the interference time and discarding TCP data packets, our simulation results show that IDS improves TCP performance and reduces QoS violations in UDP in ad hoc networks with chain, grid, and random topologies. Our simulation results also demonstrate that wireless interference time is a better metric than queue length limit for queue management in multi-hop ad hoc networks.
Effect of low body temperature on associative interference in conditioned taste aversion.
Christianson, John P; Anderson, Mathew J; Misanin, James R; Hinderliter, Charles F
2005-06-01
When two novel conditioned stimuli precede an unconditioned stimulus (US), the interval between the two conditioned stimuli (CS1 and CS2) influences the magnitude of the CS-US associability of each CS. As the interval between CS1 and CS2 increases, the associability of CS1 with the US decreases due to interference by CS2 and the associability of CS2 increases, given its temporal proximity to the US. Because hypothermia has been reported to increase the interval at which conditioned taste aversions can be formed, its influence was examined on the above relationship, i.e., how interference from CS2 affects the associability of CS1 with the US. Rats received a conditioned taste aversion procedure where CS1 and CS2 were presented either one after the other or separated by an 80-min. delay. For all subjects, the US or pseudo-US was presented immediately after CS2. When hypothermia was interpolated between the two flavor stimuli that were spaced 80 min. apart, CS2-interference with the CS1-US association was greatly attenuated. We propose that hypothermia modifies internal timing mechanisms such that the externally timed 80-min. CS1-CS2 interval was perceived as much shorter for rats made hypothermic. As a result of this perceived shortened inter-CS interval, CS2 produced less interference for the CS1-US association than would be expected for such a relatively long delay between CS1 and CS2.
A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network
2016-05-09
an optimal wireless transmission schedule for a predetermined set of links without the addition of routing is NP-Hard [5]. We effectively bypass the... wireless communications have used omni-directional antennas, where a user’s transmission inter- feres with others users in all directions. Different...interference from some particular transmission . Hence, δ = ∆(Ḡc) = max(i,j)∈E |Fij |. IV. ALGORITHM FOR RAPIDLY DETERMINING WIRELESS NETWORK CAPACITY In
Psychological Analyses of Courageous Performance in Military Personnel
1986-11-01
schedule HR heart rate IBI inter- beat interval N number of subjects NS not statistically significant P probability PCA principal components analysis RAQ...tones in the range of 400 to 600 Hz, set at a level of 60 dB, transmitted for 1 sec binaurally through earphones from a commercial oscillator. The...because of interference on the recording trace. Cardiac activity was measured in terms of heart rate (HR). The number of beats /minute was estimared by
[Managing comprehensive care: a case study in a health district in Bahia State, Brazil].
dos Santos, Adriano Maia; Giovanella, Ligia
2016-03-01
This study analyzed management of comprehensive care in a health district in Bahia State, Brazil, at the political, institutional, organizational, and healthcare practice levels and the challenges for establishing coordinated care between municipalities. The information sources were semi-structured interviews with administrators, focal groups with healthcare professionals and users, institutional documents, and observations. A comprehensive and critical analysis was produced with dialectical hermeneutics as the reference. The results show that the Inter-Administrators Regional Commission was the main regional governance strategy. There is a fragmentation between various points and lack of communications linkage in the network. Private interests and partisan political interference overlook the formally agreed-upon flows and create parallel circuits, turning the right to health into currency for trading favors. Such issues hinder coordination of comprehensive care in the inter-municipal network.
Light-field-driven currents in graphene
NASA Astrophysics Data System (ADS)
Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter
2017-10-01
The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in graphene take place on a hitherto unexplored timescale, faster than electron-electron scattering (tens of femtoseconds) and electron-phonon scattering (hundreds of femtoseconds). We expect these results to have direct ramifications for band-structure tomography and light-field-driven petahertz electronics.
Light-field-driven currents in graphene.
Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B; Hommelhoff, Peter
2017-10-12
The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10 -15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10 -18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in graphene take place on a hitherto unexplored timescale, faster than electron-electron scattering (tens of femtoseconds) and electron-phonon scattering (hundreds of femtoseconds). We expect these results to have direct ramifications for band-structure tomography and light-field-driven petahertz electronics.
MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm
Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.
2014-01-01
The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339
2014-03-27
Access (OFDMA) signal so that jamming effectiveness can be assessed; referred to in this research as Battle Damage Assessment ( BDA ). The research extends...the 802.16 Wireless Metropolitan Area Network (MAN) OFDMA standard, and presents a novel method for performing BDA via observation of Sub Carrier (SC...interferer is also evaluated where the blind demodulator’s performance is degraded. BDA is achieved via observing SC LA modulation behavior of the
Telemetering and telecommunications research
NASA Technical Reports Server (NTRS)
Osborne, William; Paz, Robert; Ross, Michael; Kopp, Brian; Ashley, Norm
1993-01-01
The New Mexico State University (NMSU) Center for Space Telemetering and Telecommunications systems is engaged in advanced communications systems research. Four areas of study that are being sponsored concern investigations into the use of trellis-coded modulation (TCM). In particular, two areas concentrate on carrier synchronization research in TCM M-ary phase shift key (MPSK) systems. A third research topic is the study of interference effects on TCM, while the fourth research area is in the field of concatenated TCM systems.
How to Tackle the Challenge of siRNA Delivery with Sequence-Defined Oligoamino Amides.
Reinhard, Sören; Wagner, Ernst
2017-01-01
RNA interference (RNAi) as a mechanism of gene regulation provides exciting opportunities for medical applications. Synthetic small interfering RNA (siRNA) triggers the knockdown of complementary mRNA sequences in a catalytic fashion and has to be delivered into the cytosol of the targeted cells. The design of adequate carrier systems to overcome multiple extracellular and intracellular roadblocks within the delivery process has utmost importance. Cationic polymers form polyplexes through electrostatic interaction with negatively charged nucleic acids and present a promising class of carriers. Issues of polycations regarding toxicity, heterogeneity, and polydispersity can be overcome by solid-phase-assisted synthesis of sequence-defined cationic oligomers. These medium-sized highly versatile nucleic acid carriers display low cytotoxicity and can be modified and tailored in multiple ways to meet specific requirements of nucleic acid binding, polyplex size, shielding, targeting, and intracellular release of the cargo. In this way, sequence-defined cationic oligomers can mimic the dynamic and bioresponsive behavior of viruses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tunneling through superlattices: the effect of anisotropy and kinematic coupling.
Halilov, S V; Huang, X Y; Hytha, M; Stephenson, R; Yiptong, A; Takeuchi, H; Cody, N; Mears, R J
2012-12-12
The tunneling of carriers in stratified superlattice systems is analyzed in terms of the constituent effective mass tensor. The focus is on the effects on the tunneling which are caused by the side regions of an intervening barrier. Depending on the covalency and work function in the constituent layers of a superlattice, it is concluded that the kinematics in the regions on either side determined by the effective carrier mass and its interference with the band offset at heterojunctions leads to either a constructive or a destructive effect on the tunneling current. As an example, Si(1-x)Ge(x)/Si and Al(x)Ga(1-x)As/GaAs superlattices are demonstrated to reduce the tunneling current at certain fractional thicknesses and stoichiometries of the constituent slabs without affecting the lateral mobility. The findings show, in general, how manipulation of the carrier's effective mass tensor through stoichiometric/structural modulation of the heterostructure may be used to control the tunneling current through a given potential barrier, given that the characteristic de Broglie wavelength exceeds all the constituent dimensions, thus offering a method complementary to high-k technologies.
GAB2 Alleles Modify Alzheimer’s Risk in APOE ε4 Carriers
Reiman, Eric M.; Webster, Jennifer A.; Myers, Amanda J.; Hardy, John; Dunckley, Travis; Zismann, Victoria L.; Joshipura, Keta D.; Pearson, John V.; Hu-Lince, Diane; Huentelman, Matthew J.; Craig, David W.; Coon, Keith D.; Liang, Winnie S.; Herbert, RiLee H.; Beach, Thomas; Rohrer, Kristen C.; Zhao, Alice S.; Leung, Doris; Bryden, Leslie; Marlowe, Lauren; Kaleem, Mona; Mastroeni, Diego; Grover, Andrew; Heward, Christopher B.; Ravid, Rivka; Rogers, Joseph; Hutton, Michael L.; Melquist, Stacey; Petersen, Ron C.; Alexander, Gene E.; Caselli, Richard J.; Kukull, Walter; Papassotiropoulos, Andreas; Stephan, Dietrich A.
2008-01-01
SUMMARY The apolipoprotein E (APOE) ε4 allele is the best established genetic risk factor for late-onset Alzheimer’s disease (LOAD). We conducted genome-wide surveys of 502,627 single-nucleotide polymorphisms (SNPs) to characterize and confirm other LOAD susceptibility genes. In ε4 carriers from neuropathologically verified discovery, neuropathologically verified replication, and clinically characterized replication cohorts of 1411 cases and controls, LOAD was associated with six SNPs from the GRB-associated binding protein 2 (GAB2) gene and a common haplotype encompassing the entire GAB2 gene. SNP rs2373115 (p = 9 × 10−11) was associated with an odds ratio of 4.06 (confidence interval 2.81–14.69), which interacts with APOE ε4 to further modify risk. GAB2 was overexpressed in pathologically vulnerable neurons; the Gab2 protein was detected in neurons, tangle-bearing neurons, and dystrophic neuritis; and interference with GAB2 gene expression increased tau phosphorylation. Our findings suggest that GAB2 modifies LOAD risk in APOE ε4 carriers and influences Alzheimer’s neuropathology. PMID:17553421
Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff
1999-02-02
An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.
Ashok, Aditya; Vijayaraghavan, S N; Unni, Gautam E; Nair, Shantikumar V; Shanmugam, Mariyappan
2018-04-27
The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO 2 ) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO 2 show a distribution of ∼10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO 2 , is observed to be imposed by trapping and de-trapping processes via SnO 2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO 2 . The photo-generated charge carriers are captured and released by the SnO 2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.
NASA Astrophysics Data System (ADS)
Ashok, Aditya; Vijayaraghavan, S. N.; Unni, Gautam E.; Nair, Shantikumar V.; Shanmugam, Mariyappan
2018-04-01
The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO2) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO2 show a distribution of ˜10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO2, is observed to be imposed by trapping and de-trapping processes via SnO2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO2. The photo-generated charge carriers are captured and released by the SnO2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.
Nonlinear THz Plamonic Disk Resonators
NASA Astrophysics Data System (ADS)
Seren, Huseyin; Zhang, Jingdi; Keiser, George; Maddox, Scott; Fan, Kebin; Cao, Lingyue; Bank, Seth; Zhang, Xin; Averitt, Richard
2013-03-01
Particle surface plasmons (PPSs) at visible wavelengths continue to be actively investigated with the goal of nanoscale control of light. In contrast, terahertz (THz) surface plasmon experiments are at a nascent stage of investigation. Doped semiconductors with proper carrier density and mobility support THz PSPs. One approach is to utilize thick doped films etched into subwavelength disks. Given the ease of tuning the semiconductor carrier density, THz PSPs are tunable and exhibit interesting nonlinear THz plasmonic effects. We created THz PSP structures using MBE grown 2um thick InAs films with a doping concentration of 1e17cm-3 on 500um thick semi-insulating GaAs substrate. We patterned 40um diameter disks with a 60um period by reactive ion etching. Our THz time-domain measurements reveal a resonance at 1.1THz which agrees well with simulation results using a Drude model. A nonlinear response occurs at high THz electric field strengths (>50kV/cm). In particular, we observed a redshift and quenching of the resonance due to impact ionization which resulted in changes in the carrier density and effective mass due to inter-valley scattering.
Guzmán, R; Carpintero, G; Gordon, C; Orbe, L
2016-10-15
We demonstrate and compare two different photonic-based signal sources for generating the carrier wave in a wireless communication link operating in the millimeter-wave range. The first signal source uses the optical heterodyne technique to generate a 113 GHz carrier wave frequency, while the second employs a different technique based on a pulsed mode-locked source with 100 GHz repetition rate frequency. The two optical sources were fabricated in a multi-project wafer run from an active/passive generic integration platform process using standardized building blocks, including multimode interference reflectors which allow us to define the structures on chip, without the need for cleaved facet mirrors. We highlight the superior performance of the mode-locked sources over an optical heterodyne technique. Error-free transmission was achieved in this experiment.
Short Ballistic Josephson Coupling in Planar Graphene Junctions with Inhomogeneous Carrier Doping
NASA Astrophysics Data System (ADS)
Park, Jinho; Lee, Jae Hyeong; Lee, Gil-Ho; Takane, Yositake; Imura, Ken-Ichiro; Taniguchi, Takashi; Watanabe, Kenji; Lee, Hu-Jong
2018-02-01
We report on short ballistic (SB) Josephson coupling in junctions embedded in a planar heterostructure of graphene. Ballistic Josephson coupling is confirmed by the Fabry-Perot-type interference of the junction critical current Ic . The product of Ic and the normal-state junction resistance RN , normalized by the zero-temperature gap energy Δ0 of the superconducting electrodes, turns out to be exceptionally large close to 2, an indication of strong Josephson coupling in the SB junction limit. However, Ic shows a temperature dependence that is inconsistent with the conventional short-junction-like behavior based on the standard Kulik-Omel'yanchuk prediction. We argue that this feature stems from the effects of inhomogeneous carrier doping in graphene near the superconducting contacts, although the junction is in fact in the short-junction limit.
Radar RFI at Goldstone DSS 12 and DSS 16
NASA Astrophysics Data System (ADS)
Slobin, S. D.; Peng, T. K.
1990-02-01
Radio frequency interference (RFI) from the DSS 14 Goldstone Solar System Radar (GSSR) was investigated at DSS 12 and DSS 16 with the goal of assisting in the choice of the location of future DSN antennas. Total power measurements at both locations were made at the S-band carrier frequency of 2320 MHz. X-band measurements at the carrier frequency of 8495 MHz could not be made. Exciter-chain output spectrum and klystron output spectrum measurements were made at S- and X-bands using a probable worst-case modulation of the radar signal (short pseudorandom number (PN) code length and short pulse length). Based on these measurements, it is estimated that RFI levels in the DSN receiving bands at both sites (above 10-deg elevation) would be below -192 dBm for a 1-Hz bandwidth
Radar RFI at Goldstone DSS 12 and DSS 16
NASA Technical Reports Server (NTRS)
Slobin, S. D.; Peng, T. K.
1990-01-01
Radio frequency interference (RFI) from the DSS 14 Goldstone Solar System Radar (GSSR) was investigated at DSS 12 and DSS 16 with the goal of assisting in the choice of the location of future DSN antennas. Total power measurements at both locations were made at the S-band carrier frequency of 2320 MHz. X-band measurements at the carrier frequency of 8495 MHz could not be made. Exciter-chain output spectrum and klystron output spectrum measurements were made at S- and X-bands using a probable worst-case modulation of the radar signal (short pseudorandom number (PN) code length and short pulse length). Based on these measurements, it is estimated that RFI levels in the DSN receiving bands at both sites (above 10-deg elevation) would be below -192 dBm for a 1-Hz bandwidth
NASA Astrophysics Data System (ADS)
Ueno, Yoshiyasu; Nakamoto, Ryouichi; Sakaguchi, Jun; Suzuki, Rei
2006-12-01
In frequency ranges above 200-300 GHz, the second slowest relaxation in the optical response (such as carrier-cooling relaxation having a time constant of 1-2 ps) of a semiconductor optical amplifier inside the conventional delayed-interference signal-wavelength converter (DISC) scheme is thought to start the distortion of all-optically gated waveforms. In this work, we design a digital optical-spectrum-synthesizer block that is part of the expanded DISC scheme. Our numerically calculated spectra, waveforms, and eye diagrams with assumed pseudorandom digital data pulses indicate that this synthesizer significantly removes strong distortion from the gated waveforms. A signal-to-noise ratio of 20 dB was obtained from our random-data eye diagram, providing proof of effectiveness in principle.
Experimental formation of a fractional vortex in a superconducting bi-layer
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.
2018-05-01
We report the experimental formation of a fractional vortex generated by using a thin superconducting bi-layer in the form of a niobium bi-layer, observed as a magnetic flux distribution image taken by a scanning superconducting quantum interference device (SQUID) microscope. Thus, we demonstrated that multi-component superconductivity can be realized by an s-wave conventional superconductor, because, in these superconductors, the magnetic flux is no longer quantized as it is destroyed by the existence of an inter-component phase soliton (i-soliton).
NASA Astrophysics Data System (ADS)
Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras
2017-11-01
A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.
Frequency domain tailoring for intra-pulse frequency mixing.
Ernotte, G; Lassonde, P; Légaré, F; Schmidt, B E
2016-10-17
Generating mid infrared (MIR) pulses by difference frequency generation (DFG) is often a trade-off between the maximum stability given by all-inline intra-pulse arrangements and the independent control of pulse parameters with inter-pulse pump-probe like scenarios. We propose a coalescence between both opposing approaches by realizing an all-inline inter-pulse DFG scheme employing a 4-f setup. This allows independent manipulation of the amplitude, delay and polarization of the two corresponding spectral side bands of a supercontinuum source while maintaining 20 attoseconds jitter without any feedback stabilization. After filamentation in air, the broadened Ti:Sa spectrum is tailored in a 4-f setup to generate tunable MIR pulses. In this manner, 2 µm, 4.8 µJ, 26.5 fs and carrier-envelope-phase (CEP) stabilized pulses are generated in a single DFG stage.
Arashiro, Patricia; Eisenberg, Iris; Kho, Alvin T.; Cerqueira, Antonia M. P.; Canovas, Marta; Silva, Helga C. A.; Pavanello, Rita C. M.; Verjovski-Almeida, Sergio; Kunkel, Louis M.; Zatz, Mayana
2009-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder that has been associated with a contraction of 3.3-kb repeats on chromosome 4q35. FSHD is characterized by a wide clinical inter- and intrafamilial variability, ranging from wheelchair-bound patients to asymptomatic carriers. Our study is unique in comparing the gene expression profiles from related affected, asymptomatic carrier, and control individuals. Our results suggest that the expression of genes on chromosome 4q is altered in affected and asymptomatic individuals. Remarkably, the changes seen in asymptomatic samples are largely in products of genes encoding several chemokines, whereas the changes seen in affected samples are largely in genes governing the synthesis of GPI-linked proteins and histone acetylation. Besides this, the affected patient and related asymptomatic carrier share the 4qA161 haplotype. Thus, these polymorphisms by themselves do not explain the pathogenicity of the contracted allele. Interestingly, our results also suggest that the miRNAs might mediate the regulatory network in FSHD. Together, our results support the previous evidence that FSHD may be caused by transcriptional dysregulation of multiple genes, in cis and in trans, and suggest some factors potentially important for FSHD pathogenesis. The study of the gene expression profiles from asymptomatic carriers and related affected patients is a unique approach to try to enhance our understanding of the missing link between the contraction in D4Z4 repeats and muscle disease, while minimizing the effects of differences resulting from genetic background. PMID:19339494
Martos, Laura; Fernández-Pardo, Álvaro; Oto, Julia; Medina, Pilar; España, Francisco; Navarro, Silvia
2017-01-01
microRNAs are promising biomarkers in biological fluids in several diseases. Different plasma RNA isolation protocols and carriers are available, but their efficiencies have been scarcely compared. Plasma microRNAs were isolated using a phenol and column-based procedure and a column-based procedure, in the presence or absence of two RNA carriers (yeast RNA and MS2 RNA). We evaluated the presence of PCR inhibitors and the relative abundance of certain microRNAs by qRT-PCR. Furthermore, we analyzed the association between different isolation protocols, the relative abundance of the miRNAs in the sample, the GC content and the free energy of microRNAs. In all microRNAs analyzed, the addition of yeast RNA as a carrier in the different isolation protocols used gave lower raw Cq values, indicating higher microRNA recovery. Moreover, this increase in microRNAs recovery was dependent on their own relative abundance in the sample, their GC content and the free-energy of their own most stable secondary structure. Furthermore, the normalization of microRNA levels by an endogenous microRNA is more reliable than the normalization by plasma volume, as it reduced the difference in microRNA fold abundance between the different isolation protocols evaluated. Our thorough study indicates that a standardization of pre- and analytical conditions is necessary to obtain reproducible inter-laboratory results in plasma microRNA studies. PMID:29077772
Dou, Haiyang; Bai, Guoyi; Ding, Liang; Li, Yueqiu; Lee, Seungho
2015-11-27
In this study, sedimentation field-flow fractionation (SdFFF) was, for the first time, applied for determination of size distribution of Hβ zeolite particles modified by citric acid (CA-Hβ). Effects of the particle dispersion and the carrier liquid composition (type of dispersing reagent (surfactant) and salt added in the carrier liquid, ionic strength, and pH) on SdFFF elution behavior of CA-Hβ zeolite particles were systematically investigated. Also the SdFFF separation efficiency of the particles was discussed in terms of the forces such as van der Waals, hydrophobic, and induced-dipole interactions. Results reveal that the type of salt and pH of the carrier liquid significantly affect the SdFFF separation efficiency of the zeolite particles. It was found that addition of a salt (NaN3) into the carrier liquid affects the characteristic of the SdFFF channel surface. It was found that the use of an acidic medium (pH 3.2) leads to a particle-channel interaction, while the use of a basic medium (pH 10.6) promotes an inter-particle hydrophobic interaction. Result from SdFFF was compared with those from scanning electron microscopy (SEM) and dynamic light scattering (DLS). It seems that, once the experimental conditions are optimized, SdFFF becomes a valuable tool for size characterization of the zeolite particles. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluating System Parameters on a Dragonfly using Simulation and Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav; Jain, Nikhil; Livnat, Yarden
The dragon y topology is becoming a popular choice for build- ing high-radix, low-diameter networks with high-bandwidth links. Even with a powerful network, preliminary experi- ments on Edison at NERSC have shown that for communica- tion heavy applications, job interference and thus presumably job placement remains an important factor. In this paper, we explore the e ects of job placement, job sizes, parallel workloads and network con gurations on network through- put to better understand inter-job interference. We use a simulation tool called Damsel y to model the network be- havior of Edison and study the impact of various systemmore » parameters on network throughput. Parallel workloads based on ve representative communication patters are used and the simulation studies on up to 131,072 cores are aided by a new visualization of the dragon y network.« less
Barrier Effects in Non-retinotopic Feature Attribution
Aydin, Murat; Herzog, Michael H.; Öğmen, Haluk
2011-01-01
When objects move in the environment, their retinal images can undergo drastic changes and features of different objects can be inter-mixed in the retinal image. Notwithstanding these changes and ambiguities, the visual system is capable of establishing correctly feature-object relationships as well as maintaining individual identities of objects through space and time. Recently, by using a Ternus-Pikler display, we have shown that perceived motion correspondences serve as the medium for non-retinotopic attribution of features to objects. The purpose of the work reported in this manuscript was to assess whether perceived motion correspondences provide a sufficient condition for feature attribution. Our results show that the introduction of a static “barrier” stimulus can interfere with the feature attribution process. Our results also indicate that the barrier stops feature attribution based on interferences related to the feature attribution process itself rather than on mechanisms related to perceived motion. PMID:21767561
Low Cost Anti-Jam Digital Data-Links Techniques Investigations. Volume II.
1979-05-01
to spectrum-spreading factors of the order of lO 3 to 104. It is also shown that the amount of gain is a function not only of the interference to...from a standard coherent product demodulation of the band-pass radio-frequency signal. A vector-Markov data generating model is hypothesized, as in...E/N( where S is total carrier power, K is number of samples per symbol, and L(AO) is a modulation loss factor of the modulation index, A . L(AO
2007-01-01
synchronization ; vm(k) white Gaussian noise with average power σ2. If the Doppler shift f m,k is significant, then it causes the received signal ym(k) to be time ...intersymbol interference (ISI) to extend over 20-300 symbols at a data rate of 2-10 kilosymbols per second. Another obstacle is the time -varying Doppler... synchronization that employs a phase-locked loop (PLL) or delay-locked loop (DLL). However, the DFE and PLL/DLL have to interact in a nonlinear fashion
Media Access Time-Rearrangement of Wireless LAN for a Multi-Radio Collocated Platform
NASA Astrophysics Data System (ADS)
Shin, Sang-Heon; Kim, Chul; Park, Sang Kyu
With the advent of new Radio Access Technologies (RATs), it is inevitable that several RATs will co-exist, especially in the license-exempt band. In this letter, we present an in-depth adaptation of the proactive time-rearrangement (PATRA) scheme for IEEE 802.11 WLAN. The PATRA is a time division approach for reducing interference from a multi-radio device. Because IEEE 802.11 is based on carrier sensing and contention mechanism, it is the most suitable candidate to adapt the PATRA.
NASA Technical Reports Server (NTRS)
Groumpos, P. P.; Dimitriadis, B. D.; Whyte, W.
1984-01-01
Protection ratios, the ratio of wanted-to-unwanted signal power at the receiver input, for acceptable picture quality were experimentally evaluated for four different still pictures. The variation of carrier-to-interference, C/I, with picture impairment grade is investigated when different noise levels are present. Results are presented which show the relationship between the impairment grade and the C/I ratio for FM/TV co-channel systems under variable S/N conditions.
Chermansky, Christopher J; Krlin, Ryan M; Holley, Thomas D; Woo, Howard H; Winters, J Christian
2011-11-01
We retrospectively assessed patient safety and satisfaction after magnetic resonance imaging (MRI) in patients with an InterStim® unit. The records of all patients implanted with InterStim® between 1998 and 2006 were reviewed. Nine of these patients underwent MRI following InterStim® implantation. The patients' neurologists requested the MRI exams for medical reasons. Both 0.6 Tesla (T) and 1.5 T machines were used. Patient safety, interference of implanted pulse generator (IPG) with radiological interpretation, and patient satisfaction were assessed in these patients. The first patient in the series had IPG failure following MRI. For this patient, the voltage amplitude was set to zero, the IPG was turned off, and the IPG magnetic switch was left on. The patient underwent MRI uneventfully; however, the IPG did not function upon reprogramming. The IPG magnetic switch was turned off for the eight subsequent patients, all of whom underwent MRI safely. In addition, all of their IPGs functioned appropriately following reprogramming. Of the 15 MRIs performed, the lumbar spine was imaged in eight studies, the pelvis was imaged in one study, and the remaining examinations involved imaging the brain or cervical spine. Neither the IPG nor the sacral leads interfered with MRI interpretation. None of the eight patients perceived a change in perception or satisfaction following MRI. Although we don't advocate the routine use of MRI following InterStim® implantation, our experience suggests MRI may be feasible under controlled conditions and without adverse events. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-11-01
Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.
Estimation and uncertainty analysis of dose response in an inter-laboratory experiment
NASA Astrophysics Data System (ADS)
Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.
2016-02-01
An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.
NASA Astrophysics Data System (ADS)
Wang, Yao; Vijaya Kumar, B. V. K.
2017-05-01
The increased track density in bit patterned media recording (BPMR) causes increased inter-track interference (ITI), which degrades the bit error rate (BER) performance. In order to mitigate the effect of the ITI, signals from multiple tracks can be equalized by a 2D equalizer with 1D target. Usually, the 2D fixed equalizer coefficients are obtained by using a pseudo-random bit sequence (PRBS) for training. In this study, a 2D variable equalizer is proposed, where various sets of 2D equalizer coefficients are predetermined and stored for different ITI patterns besides the usual PRBS training. For data detection, as the ITI patterns are unknown in the first global iteration, the main and adjacent tracks are equalized with the conventional 2D fixed equalizer, detected with Bahl-Cocke-Jelinek-Raviv (BCJR) detector and decoded with low-density parity-check (LDPC) decoder. Then using the estimated bit information from main and adjacent tracks, the ITI pattern for each island of the main track can be estimated and the corresponding 2D variable equalizers are used to better equalize the bits on the main track. This process is executed iteratively by feeding back the main track information. Simulation results indicate that for both single-track and two-track detection, the proposed 2D variable equalizer can achieve better BER and frame error rate (FER) compared to that with the 2D fixed equalizer.
NASA Astrophysics Data System (ADS)
Pöhler, Denis; Lutz, Erik; Horbanski, Martin; Lampel, Johannes; Platt, Ulrich
2017-04-01
Nitrogen Oxides (NOx = NO2 + NO) play a major role in air pollution and atmospheric chemistry. Beside health effects they influence e.g. acid rain, ozone and oxidation capacity. But precise NO2 and NO measurements are still difficult. State of the art NO2 / NO instruments show significant interferences e.g. to H2O and HONO, problems of zero point and calibration drifts, temperature and also vibration influences. Other systems, especially low cost sensors, feature significant problems in terms of measurement accuracy and reliability. To overcome these problems we developed a direct spectroscopic NO2 / NOx ICAD instrument (Iterative Cavity Enhanced DOAS). It feature high accuracy, is relatively small, mobile and requires only low power consumption. During a side by side (s-b-s) inter-comparison campaign at the Meteorological Observatory Hohenpeißenberg (DWD) 2016 the performance of different instruments for NO2, NO and NOx were investigated under natural and artificial conditions. The concentration ranged from few ppt up to 100ppb. The inter-comparison demonstrates excellent performance of our ICAD in terms of accuracy and drift. In comparison to other techniques it features no interferences to different humidity's, temperatures and interfering gases. Also the zero point and calibration is absolutely stable. As the instrument is also much simpler and easier to operate, it has many advantages in comparison to other instruments. The characteristics of the instruments and results of the campaign will be presented.
A glimpse of gluons through deeply virtual compton scattering on the proton.
Defurne, M; Jiménez-Argüello, A Martí; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Hyde, C E; Iqbal, S; Itard, F; Kang, H; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Mazouz, M; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Camacho, C Muñoz; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P
2017-11-10
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.
Georgiades, N.P.; Polzik, E.S.; Kimble, H.J.
1999-02-02
An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies are disclosed. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100`s THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 {micro}m to 1.66 {micro}m for fiber optics can be accomplished with a nearly continuous frequency coverage. 7 figs.
NASA Astrophysics Data System (ADS)
Zhang, B.; Kumar, S.; Yan, L.-S.; Willner, A. E.
2007-12-01
We demonstrate experimentally >3 dB extinction ratio improvement at the output of SOA-based delayed-interference signal converter (DISC) using optical off-centered filtering. Through careful modeling of the carrier and the phase dynamics, we explain in detail the origin of sub-pulses in the wavelength converted output, with an emphasis on the time-resolved frequency chirping of the output signal. Through our simulations we conclude that the sub-pulses and the main-pulses are oppositely chirped, which is also verified experimentally by analyzing the output with a chirp form analyzer. We propose and demonstrate an optical off-center filtering technique which effectively suppresses these sub-pulses. The effects of filter detuning and phase bias adjustment in the delayed-interferometer are experimentally characterized and optimized, leading to a >3 dB extinction ratio enhancement of the output signal.
Flight Crew Sleep in Long-Haul Aircraft Bunk Facilities: Survey Results
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Miller, Donna L.; Gregory, Kevin B.; Dinges, David F.; Shafto, Michael G. (Technical Monitor)
1995-01-01
Modem long-haul aircraft can fly up to 16 continuous hours and provide a 24-hour, global capability. Extra (augmented) flight crew are available on long flights to allow planned rest periods, on a rotating basis, away from the flight deck in onboard crew rest facilities (2 bunks). A NASA/FAA study is under-way to examine the quantity and quality of sleep obtained in long-haul aircraft bunks and the factors that promote or interfere with that sleep. The first phase of the study involved a retrospective survey, followed by a second phase field study to collect standard polysomnographic data during inflight bunk sleep periods. A summary of the Phase I survey results are reported here. A multi-part 54-question retrospective survey was completed by 1,404 flight crew (37% return rate) at three different major US air carriers flying B747-100, 200, 400, and MD- 11 long-haul aircraft. The questions examined demographics, quantity and quality of sleep at home and in onboard bunks, factors that promote or interfere with sleep, and effects on subsequent performance and alertness. Flight crew reported a mean bunk sleep latency of 39.4 mins (SD=28.3 mins) (n=1,276) and a mean total sleep time of 2.2 hrs (SD=1.3 hrs) (n=603). (Different flight lengths could affect overall time available for sleep.) Crew rated 25 factors for their interference or promotion of bunk sleep. Figure I portrays the average ratings for each factor across all three carriers. A principal components analysis of the 25 factors revealed three areas that promoted bunk sleep: physiological (e.g., readiness for sleep), physical environment (e.g., bunk size, privacy), and personal comfort (e.g., blankets, pillows). Five areas were identified that interfered with sleep: environmental disturbance (e.g., background noise, turbulence), luminosity (e.g., lighting), personal disturbances (e.g., bathroom trips, random thoughts), environmental discomfort (e.g., low humidity, cold), and interpersonal disturbances (e.g., bunk partner).
The detailed characteristics of positive corona current pulses in the line-to-plane electrodes
NASA Astrophysics Data System (ADS)
Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU
2018-05-01
The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.
NASA Astrophysics Data System (ADS)
Kerbstadt, S.; Pengel, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.
2018-06-01
We report on bichromatic multiphoton ionization of xenon atoms (Xe) to demonstrate carrier-envelope-phase (CEP) control of lateral asymmetries in the photoelectron momentum distribution. In the experiments, we employ a 4 f polarization pulse shaper to sculpture bichromatic fields with commensurable center frequencies ω1:ω2=7 :8 from an over-octave-spanning CEP-stable white light supercontinuum by spectral amplitude and phase modulation. The bichromatic fields are spectrally tailored to induce controlled interferences of 7- vs 8-photon quantum pathways in the 5 P3 /2 ionization continuum of Xe. The CEP sensitivity of the asymmetric final-state wave function arises from coherent superposition of continuum states with opposite parity. Our results demonstrate that shaper-generated bichromatic fields with tailored center frequency ratio are a suitable tool to localize CEP-sensitive asymmetries in a specific photoelectron kinetic-energy window.
Optical phase locked loop for transparent inter-satellite communications.
Herzog, F; Kudielka, K; Erni, D; Bächtold, W
2005-05-16
A novel type of optical phase locked loop (OPLL), optimized for homodyne inter-satellite communication, is presented. The loop employs a conventional 180? 3 dB optical hybrid and an AC-coupled balanced front end. No residual carrier transmission is required for phase locking. The loop accepts analog as well as digital data and various modulation formats. The only requirement to the transmitted user signal is a constant envelope. Phase error extraction occurs through applying a small sinusoidal local oscillator (LO) phase disturbance, while measuring its impact on the power of the baseband output signal. First experimental results indicate a receiver sensitivity of 36 photons/bit (-55.7 dBm) for a BER of 10 ;-9, when transmitting a PRBS-31 signal at a data rate of 400 Mbit/s. The system setup employs diode-pumped Nd:YAG lasers at a wavelength of 1.06 mum.
Optical phase locked loop for transparent inter-satellite communications
NASA Astrophysics Data System (ADS)
Herzog, F.; Kudielka, K.; Erni, D.; Bächtold, W.
2005-05-01
A novel type of optical phase locked loop (OPLL), optimized for homodyne inter-satellite communication, is presented. The loop employs a conventional 180◦ 3 dB optical hybrid and an AC-coupled balanced front end. No residual carrier transmission is required for phase locking. The loop accepts analog as well as digital data and various modulation formats. The only requirement to the transmitted user signal is a constant envelope. Phase error extraction occurs through applying a small sinusoidal local oscillator (LO) phase disturbance, while measuring its impact on the power of the baseband output signal. First experimental results indicate a receiver sensitivity of 36 photons/bit (-55.7 dBm) for a BER of 10 ^-9, when transmitting a PRBS-31 signal at a data rate of 400 Mbit/s. The system setup employs diode-pumped Nd:YAG lasers at a wavelength of 1.06 μm.
Ussher, Simon J; Milne, Angela; Landing, William M; Attiq-ur-Rehman, Kakar; Séguret, Marie J M; Holland, Toby; Achterberg, Eric P; Nabi, Abdul; Worsfold, Paul J
2009-10-12
A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II)+Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100microM concentrations of sulphite a reduction time of 4h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.
NASA Technical Reports Server (NTRS)
Rock, Stephen M.; LeMaster, Edward A.
2001-01-01
Pseudolites can extend the availability of GPS-type positioning systems to a wide range of applications not possible with satellite-only GPS. One such application is Mars exploration, where the centimeter-level accuracy and high repeatability of CDGPS would make it attractive for rover positioning during autonomous exploration, sample collection, and habitat construction if it were available. Pseudolites distributed on the surface would allow multiple rovers and/or astronauts to share a common navigational reference. This would help enable cooperation for complicated science tasks, reducing the need for instructions from Earth and increasing the likelihood of mission success. Conventional GPS Pseudolite arrays require that the devices be pre-calibrated through a Survey of their locations, typically to sub-centimeter accuracy. This is a problematic task for robots on the surface of another planet. By using the GPS signals that the Pseudolites broadcast, however, it is possible to have the array self-survey its own relative locations, creating a SelfCalibrating Pseudolite Array (SCPA). This requires the use of GPS transceivers instead of standard pseudolites. Surveying can be done either at carrier- or code-phase levels. An overview of SCPA capabilities, system requirements, and self-calibration algorithms is presented in another work. The Aerospace Robotics Laboratory at Statif0id has developed a fully operational prototype SCPA. The array is able to determine the range between any two transceivers with either code- or carrier-phase accuracy, and uses this inter-transceiver ranging to determine the at-ray geometry. This paper presents results from field tests conducted at Stanford University demonstrating the accuracy of inter-transceiver ranging and its viability and utility for array localization, and shows how transceiver motion may be utilized to refine the array estimate by accurately determining carrier-phase integers and line biases. It also summarizes the overall system requirements and architecture, and describes the hardware and software used in the prototype system.
The impact of occupational load carriage on carrier mobility: a critical review of the literature.
Carlton, Simon D; Orr, Robin M
2014-01-01
Military personnel and firefighters are required to carry occupational loads and complete tasks in hostile and unpredictable environments where a lack of mobility may risk lives. This review critically examines the literature investigating the impacts of load carriage on the mobility of these specialist personnel. Several literature databases, reference lists, and subject matter experts were employed to identify relevant studies. Studies meeting the inclusion criteria were critiqued using the Downs and Black protocol. Inter-rater agreement was determined by Cohen's κ. Twelve original research studies, which included male and female participants from military and firefighting occupations, were critiqued (κ = .81). A review of these papers found that as the carried load weight increased, carrier mobility during aerobic tasks (like road marching) and anaerobic tasks (like obstacle course negotiation) decreased. As such, it can be concluded that the load carried by some specialist personnel may increase their occupational risk by reducing their mobility.
NASA Astrophysics Data System (ADS)
Choi, Wookjin; Inoue, Junichi; Tsutsui, Yusuke; Sakurai, Tsuneaki; Seki, Shu
2017-11-01
A unique concerted analysis comprising non-contact microwave conductivity measurements and impedance spectroscopy was developed to simultaneously assess the charge carrier mobility and injection barriers. The frequency dependence of the microwave conductivity as well as the electrical current was analyzed by applying sinusoidal voltage to determine the equivalent circuit parameters. Based on the temperature dependence of the circuit parameters, the energy of the injection barrier was estimated to be 0.4 eV with the Richardson-Schottky model, and the band-like transport was confirmed with the negative temperature coefficient with the β value of 1.4 in the intra-layer conduction of C8-BTBT. In contrast, the increase in the resistance of the C8-BTBT layer with decreasing temperature implied the occurrence of hopping-like transport in the inter-layer conduction of C8-BTBT.
Interaction of charge carriers with lattice and molecular phonons in crystalline pentacene
NASA Astrophysics Data System (ADS)
Girlando, Alberto; Grisanti, Luca; Masino, Matteo; Brillante, Aldo; Della Valle, Raffaele G.; Venuti, Elisabetta
2011-08-01
The computational protocol we have developed for the calculation of local (Holstein) and non-local (Peierls) carrier-phonon coupling in molecular organic semiconductors is applied to both the low temperature and high temperature bulk crystalline phases of pentacene. The electronic structure is calculated by the semimpirical INDO/S (Intermediate Neglect of Differential Overlap with Spectroscopic parametrization) method. In the phonon description, the rigid molecule approximation is removed, allowing mixing of low-frequency intra-molecular modes with inter-molecular (lattice) phonons. A clear distinction remains between the low-frequency phonons, which essentially modulate the transfer integral from a molecule to another (Peierls coupling), and the high-frequency intra-molecular phonons, which modulate the on-site energy (Holstein coupling). The results of calculation agree well with the values extracted from experiment. The comparison with similar calculations made for rubrene allows us to discuss the implications for the current models of mobility.
Theory and simulation of photogeneration and transport in Si-SiOx superlattice absorbers
2011-01-01
Si-SiOx superlattices are among the candidates that have been proposed as high band gap absorber material in all-Si tandem solar cell devices. Owing to the large potential barriers for photoexited charge carriers, transport in these devices is restricted to quantum-confined superlattice states. As a consequence of the finite number of wells and large built-in fields, the electronic spectrum can deviate considerably from the minibands of a regular superlattice. In this article, a quantum-kinetic theory based on the non-equilibrium Green's function formalism for an effective mass Hamiltonian is used for investigating photogeneration and transport in such devices for arbitrary geometry and operating conditions. By including the coupling of electrons to both photons and phonons, the theory is able to provide a microscopic picture of indirect generation, carrier relaxation, and inter-well transport mechanisms beyond the ballistic regime. PMID:21711827
Harmonics distribution of iron oxide nanoparticles solutions under diamagnetic background
NASA Astrophysics Data System (ADS)
Saari, Mohd Mawardi; Che Lah, Nurul Akmal; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji
2018-04-01
The static and dynamic magnetizations of low concentrated multi-core iron oxide nanoparticles solutions were investigated by a specially developed high-Tc Superconducting Quantum Interference Device (SQUID) magnetometer. The size distribution of iron oxide cores was determined from static magnetization curves concerning different concentrations. The simulated harmonics distribution was compared to the experimental results. Effect of the diamagnetic background from carrier liquid to harmonics distribution was investigated with respect to different intensity and position of peaks in the magnetic moment distribution using a numerical simulation. It was found that the diamagnetic background from carrier liquid of iron oxide nanoparticles affected the harmonics distribution as their concentration decreased and depending on their magnetic moment distribution. The first harmonic component was susceptible to the diamagnetic contribution of carrier liquid when the concentration was lower than 24 μg/ml. The second and third harmonics were affected when the peak position of magnetic moment distribution was smaller than m = 10-19 Am2 and the concentration was 10 ng/ml. A highly sensitive detection up to sub-nanogram of iron oxide nanoparticles in solutions can be achieved by utilizing second and third harmonic components.
The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition.
Nieratschker, Vanessa; Kiefer, Christoph; Giel, Katrin; Krüger, Rejko; Plewnia, Christian
2015-01-01
Transcranial direct current stimulation (tDCS) is increasingly discussed as a new option to support the cognitive rehabilitation in neuropsychiatric disorders. However, the therapeutic impact of tDCS is limited by high inter-individual variability. Genetic factors most likely contribute to this variability by modulating the effects of tDCS. We aimed to investigate the influence of the COMT Val(108/158)Met polymorphism on cathodal tDCS effects on executive functioning. Cathodal tDCS was applied to the left dorsolateral prefrontal cortex (dlPFC) during the performance of a parametric Go/No-Go test. We demonstrate an impairing effect of cathodal tDCS to the dlPFC on response inhibition. This effect was only found in individuals homozygous for the Val-allele of the COMT Val(108/158)Met polymorphism. No effects of stimulation on executive functions in Met-allele carriers were detected. Our data indicate that i) cathodal, excitability reducing tDCS, interferes with inhibitory cognitive control, ii) the left dlPFC is critically involved in the neuronal network underlying the control of response inhibition, and iii) the COMT Val(108/158)Met polymorphism modulates the impact of cathodal tDCS on inhibitory control. Together with our previous finding that anodal tDCS selectively impairs set-shifting abilities in COMT Met/Met homozygous individuals, these results indicate that genetic factors modulate effects of tDCS on cognitive performance. Therefore, future tDCS research should account for genetic variability in the design and analysis of neurocognitive as well as therapeutic applications to reduce the variability of results and facilitate individualized neurostimulation approaches. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Hongjun; Yin, Hao; Gong, Xiangwu; Dong, Feihong; Ren, Baoquan; He, Yuanzhi; Wang, Jingchao
2016-01-01
This paper investigates the performance of integrated wireless sensor and multibeam satellite networks (IWSMSNs) under terrestrial interference. The IWSMSNs constitute sensor nodes (SNs), satellite sinks (SSs), multibeam satellite and remote monitoring hosts (RMHs). The multibeam satellite covers multiple beams and multiple SSs in each beam. The SSs can be directly used as SNs to transmit sensing data to RMHs via the satellite, and they can also be used to collect the sensing data from other SNs to transmit to the RMHs. We propose the hybrid one-dimensional (1D) and 2D beam models including the equivalent intra-beam interference factor β from terrestrial communication networks (TCNs) and the equivalent inter-beam interference factor α from adjacent beams. The terrestrial interference is possibly due to the signals from the TCNs or the signals of sinks being transmitted to other satellite networks. The closed-form approximations of capacity per beam are derived for the return link of IWSMSNs under terrestrial interference by using the Haar approximations where the IWSMSNs experience the Rician fading channel. The optimal joint decoding capacity can be considered as the upper bound where all of the SSs’ signals can be jointly decoded by a super-receiver on board the multibeam satellite or a gateway station that knows all of the code books. While the linear minimum mean square error (MMSE) capacity is where all of the signals of SSs are decoded singularly by a multibeam satellite or a gateway station. The simulations show that the optimal capacities are obviously higher than the MMSE capacities under the same conditions, while the capacities are lowered by Rician fading and converge as the Rician factor increases. α and β jointly affect the performance of hybrid 1D and 2D beam models, and the number of SSs also contributes different effects on the optimal capacity and MMSE capacity of the IWSMSNs. PMID:27754438
Deterministic filtering of breakdown flashing at telecom wavelengths
NASA Astrophysics Data System (ADS)
Marini, Loris; Camphausen, Robin; Eggleton, Benjamin J.; Palomba, Stefano
2017-11-01
Breakdown flashes are undesired photo-emissions from the active area of single-photon avalanche photo-diodes. They arise from radiative recombinations of hot carriers generated during an avalanche and can induce crosstalk, compromise the measurement of optical quantum states, and hinder the security of quantum communications. Although the spectrum of this emission extends over hundreds of nanometers, active quenching may lead to a smaller uncertainty in the time of emission, thus enabling deterministic filtering. Our results pave the way to broadband interference mitigation in time-correlated single-photon applications.
Insecticide solvents: interference with insecticidal action.
Brattsten, L B; Wilkinson, C F
1977-06-10
Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans.
Self-referenced interferometer for cylindrical surfaces.
Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef
2015-11-20
We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.
EDTA analysis on the Roche MODULAR analyser.
Davidson, D F
2007-05-01
Patient specimens can be subject to subtle interference from cross contamination by liquid-based, potassium-containing EDTA anticoagulant, leading to misinterpretation of results. A rapid method for EDTA analysis to detect such contamination is described. An in-house EDTA assay on the Roche MODULAR analyser was assessed for accuracy and precision by comparison with an adjusted calcium difference measurement (atomic absorption and o-cresolphthalein complexone colorimetry). EDTA method versus adjusted calcium difference showed: slope = 1.038 (95% confidence interval [CI] 0.949-1.131); intercept = 0.073 (95% CI 0.018-0.132) mmol/L; r = 0.914; n = 94. However, inter-assay precision of the calcium difference method was estimated to be poorer (coefficient of variation 24.8% versus 3.4% for the automated colorimetric method at an EDTA concentration of 0.25 mmol/L). Unequivocal contamination was observed at an EDTA concentration of > or =0.2 mmol/L. The automated method showed positive interference from haemolysis and negative interference from oxalate. The method was unaffected by lipaemia (triglycerides <20 mmol/L), icterus (bilirubin <500 micromol/L), glucose (<100 mmol/L), iron (<100 micromol/L), and citrate, phosphate or fluoride (all <2.5 mmol/L). The automated colorimetric assay described is an accurate, precise and rapid (3 min) means of detecting EDTA contamination of unhaemolysed biochemistry specimens.
Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats
Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi
2015-01-01
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed ‘jamming’ and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats’ response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats’ response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. PMID:26702045
Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.
Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi
2015-12-22
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed 'jamming' and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats' response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats' response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. © 2015 The Author(s).
Differential effects of non-informative vision and visual interference on haptic spatial processing
van Rheede, Joram J.; Postma, Albert; Kappers, Astrid M. L.
2008-01-01
The primary purpose of this study was to examine the effects of non-informative vision and visual interference upon haptic spatial processing, which supposedly derives from an interaction between an allocentric and egocentric reference frame. To this end, a haptic parallelity task served as baseline to determine the participant-dependent biasing influence of the egocentric reference frame. As expected, large systematic participant-dependent deviations from veridicality were observed. In the second experiment we probed the effect of non-informative vision on the egocentric bias. Moreover, orienting mechanisms (gazing directions) were studied with respect to the presentation of haptic information in a specific hemispace. Non-informative vision proved to have a beneficial effect on haptic spatial processing. No effect of gazing direction or hemispace was observed. In the third experiment we investigated the effect of simultaneously presented interfering visual information on the haptic bias. Interfering visual information parametrically influenced haptic performance. The interplay of reference frames that subserves haptic spatial processing was found to be related to both the effects of non-informative vision and visual interference. These results suggest that spatial representations are influenced by direct cross-modal interactions; inter-participant differences in the haptic modality resulted in differential effects of the visual modality. PMID:18553074
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaobu; Huang, Renke; Huang, Zhenyu
The objective of this research work is to develop decoupled modulation control methods for damping inter-area oscillations with low frequencies, so the damping control can be more effective and easier to design with less interference among different oscillation modes in the power system. A signal-decoupling algorithm was developed that can enable separation of multiple oscillation frequency contents and extraction of a “pure” oscillation frequency mode that are fed into Power System Stabilizers (PSSs) as the modulation input signals. As a result, instead of introducing interferences between different oscillation modes from the traditional approaches, the output of the new PSS modulationmore » control signal mainly affects only one oscillation mode of interest. The new decoupled modulation damping control algorithm has been successfully developed and tested on the standard IEEE 4-machine 2-area test system and a minniWECC system. The results are compared against traditional modulation controls, which demonstrates the validity and effectiveness of the newly-developed decoupled modulation damping control algorithm.« less
Li, Zhe; Erkilinc, M Sezer; Galdino, Lidia; Shi, Kai; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I
2016-12-12
Single-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers. In this paper, we compare the performance of a number of recently proposed digital signal processing-based SSBI compensation schemes, including the use of single- and two-stage linearization filters, an iterative linearization filter and a SSBI estimation and cancellation technique. Their performance is assessed experimentally using a 7 × 25 Gb/s wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquist-subcarrier modulation system operating at a net information spectral density of 2.3 (b/s)/Hz.
NASA Astrophysics Data System (ADS)
Bambace, Luís Antonio Waack; Ceballos, Décio Castilho
CDMA Mobile Satellite Systems (CDMA MSS) are able to co-directional, co-frequency and co-coverage sharing, and they are strongly interdependent in case of such a sharing. It is also known that the success of any telecommunication project is the use of the correct media to each task. Operators have a clear sight of such a media adequacy in traditional systems, but not necessarily in the case of Mobile Satellite Systems. This creates a risk that a wrong market objective operator causes trouble to other systems. This paper deals with the sharing alternatives for up to four CDMA MSS operating in the same frequency band, and analysts both: satellite to user downlink and user to satellite uplink. The influence of several items in capacity is here treated. The scope includes: downlink power flux density: code availability; single system internal interference; inter-system interference; diversity schemes: average link impairments, margins; user cooperation; terminal specifications and the dependence of the insulation between RHCP and LHCP with fade.
Coexistence Analysis of Adjacent Long Term Evolution (LTE) Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aulama, Mohannad M.; Olama, Mohammed M
As the licensing and deployment of Long term evolution (LTE) systems are ramping up, the study of coexistence of LTE systems is an essential topic in civil and military applications. In this paper, we present a coexistence study of adjacent LTE systems aiming at evaluating the effect of inter-system interference on system capacity and performance as a function of some of the most common mitigation techniques: frequency guard band, base station (BS) antenna coupling loss, and user equipment (UE) antenna spacing. A system model is constructed for two collocated macro LTE networks. The developed model takes into consideration the RFmore » propagation environment, power control scheme, and adjacent channel interference. Coexistence studies are performed for a different combination of time/frequency division duplex (TDD/FDD) systems under three different guard-bands of 0MHz, 5MHz, and 10MHz. Numerical results are presented to advice the minimum frequency guard band, BS coupling loss, and UE antenna isolation required for a healthy system operation.« less
Gnipová, Anna; Šubrtová, Karolína; Panicucci, Brian; Horváth, Anton; Lukeš, Julius
2015-01-01
The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote. PMID:25616281
Grasso, Gianvito; Deriu, Marco Agostino; Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine. PMID:29088239
Beyer, K; Nuscher, B
1996-12-10
The interaction of cardiolipin with the isolated ADP/ATP carrier protein from beef heart mitochondria has been studied by means of the unmasking of a single cysteinyl residue, Cys56, which accompanies the conformational transition of the protein [Leblanc, P., & Clauser, H, (1972) FEBS Lett. 23, 107-113]. The unmasking was monitored by using the static fluorescence of the sulfhydryl reagent N-(1-pyrenyl)maleimide (PYM). The rate of PYM binding that was observed after initiation of the conformational transition by ADP was drastically reduced in the presence of cardiolipin (CL). Phospholipids other than CL were much less effective. It can be shown that the conformational transition and the binding reaction are both affected by CL, although to varying extents. An enhancement of the rate of the ADP-dependent PYM binding was observed upon digestion of the protein bound phospholipid by phospholipase A2. The phospholipase treatment also led to an increased ADP-independent PYM binding, thus indicating that the ADP control of the carrier transition was gradually lost. The ADP control could be fully restored through the addition of CL, provided that the phospholipase incubation had been terminated after approximately 1 h. These results will be discussed in relation to an earlier report of tight cardiolipin binding [Beyer, K., & Klingenberg, M. (1985) Biochemistry 24, 3821-3826] and to current structural models of the ADP/ATP carrier protein.
Behaviour of tetraalkylammonium ions in high-field asymmetric waveform ion mobility spectrometry.
Aksenov, Alexander A; Kapron, James T
2010-05-30
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an ion-filtering technique recently adapted for use with liquid chromatography/mass spectrometry (LC/MS) to remove interferences during analysis of complex matrices. This is the first systematic study of a series of singly charged tetraalkylammonium ions by FAIMS-MS. The compensation voltage (CV) is the DC offset of the waveform which permits the ion to emerge from FAIMS and it was determined for each member of the series under various conditions. The electrospray ionization conditions explored included spray voltage, vaporizer temperature, and sheath and auxiliary gas pressure. The FAIMS conditions explored included carrier gas flow rate, electrode temperature and composition of the carrier gas. Optimum desolvation was achieved using sufficient carrier gas (flow rate > or = 2 L/min) to ensure stable response. Low-mass ions (m/z 100-200) are more susceptible to changes in electrode temperature and gas composition than high mass ions (m/z 200-700). As a result of this study, ions are reliably analyzed using standard FAIMS conditions (dispersion voltage -5000 V, carrier gas flow rate 3 L/min, 50% helium/50%nitrogen, inner electrode temperature 70 degrees C and outer electrode temperature 90 degrees C). Variation of FAIMS conditions may be of great use for the separation of very low mass tetraalkylammonium (TAA) ions from other TAA ions. The FAIMS conditions do not appear to have a major effect on higher mass ions. Copyright 2010 John Wiley & Sons, Ltd.
Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame.
Bouayad-Gervais, Samir H; Lubell, William D
2013-11-28
The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallization of 9 indicated a R,S-configuration in the solid state; however, the aza-residue chiral center was considerably flattened relative to its natural amino acid counterpart. On tasting, the authors considered aza-aspartame 9 to be slightly bitter or tasteless. The lack of bitter sweet taste of aza-aspartame 9 may be due to flattening from sp2 hybridization in the urea as well as a high barrier for sp3 nitrogen inter-conversion, both of which may interfere with recognition by taste receptors.
Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming
NASA Astrophysics Data System (ADS)
Chang, John
Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic beamformer. The solution is two-part. A novel highly-scalable photonic beamformer is first proposed and experimentally verified. A "blind" search algorithm called the guided accelerated random search (GARS) algorithm is then shown. A maximum cancellation of 37 dB is achieved within 50 iterations, a real-world time of 1-3 seconds, while the presence of a signal of interest (SOI) is maintained.
Koene, S; Timmermans, J; Weijers, G; de Laat, P; de Korte, C L; Smeitink, J A M; Janssen, M C H; Kapusta, L
2017-03-01
Cardiomyopathy is a common complication of mitochondrial disorders, associated with increased mortality. Two dimensional speckle tracking echocardiography (2DSTE) can be used to quantify myocardial deformation. Here, we aimed to determine the usefulness of 2DSTE in detecting and monitoring subtle changes in myocardial dysfunction in carriers of the 3243A>G mutation in mitochondrial DNA. In this retrospective pilot study, 30 symptomatic and asymptomatic carriers of the mitochondrial 3243A>G mutation of whom two subsequent echocardiograms were available were included. We measured longitudinal, circumferential and radial strain using 2DSTE. Results were compared to published reference values. Speckle tracking was feasible in 90 % of the patients for longitudinal strain. Circumferential and radial strain showed low face validity (low number of images with sufficient quality; suboptimal tracking) and were therefore rejected for further analysis. Global longitudinal strain showed good face validity, and was abnormal in 56-70 % (depending on reference values used) of the carriers (n = 27). Reproducibility was good (mean difference of 0.83 for inter- and 0.40 for intra-rater reproducibility; ICC 0.78 and 0.89, respectively). The difference between the first and the second measurement exceeded the measurement variance in 39 % of the cases (n = 23; feasibility of follow-up 77 %). Even in data collected as part of clinical care, two-dimensional strain echocardiography seems a feasible method to detect and monitor subtle changes in longitudinal myocardial deformation in adult carriers of the mitochondrial 3243A>G mutation. Based on our data and the reported accuracy of global longitudinal strain in other studies, we suggest the use of global longitudinal strain in a prospective follow-up or intervention study.
Ryuzaki, Sou; Onoe, Jun
2013-01-01
Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.
Ryuzaki, Sou; Onoe, Jun
2013-01-01
Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells. PMID:23853702
Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul
2018-05-22
The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.
Pecetta, S; Lo Surdo, P; Tontini, M; Proietti, D; Zambonelli, C; Bottomley, M J; Biagini, M; Berti, F; Costantino, P; Romano, M R
2015-01-03
Glycoconjugate vaccines play an enormous role in preventing infectious diseases. The main carrier proteins used in commercial conjugate vaccines are the non-toxic mutant of diphtheria toxin (CRM197), diphtheria toxoid (DT) and tetanus toxoid (TT). Modern childhood routine vaccination schedules include the administration of several vaccines simultaneously or in close sequence, increasing the concern that the repeated exposure to conjugates based on these carrier proteins might interfere with the anti-polysaccharide response. Extending previous observations we show here that priming mice with CRM197 or DT does not suppress the response to the carbohydrate moiety of CRM197 meningococcal serogroup A (MenA) conjugates, while priming with DT can suppress the response to DT-MenA conjugates. To explain these findings we made use of biophysical and immunochemical techniques applied mainly to MenA conjugates. Differential scanning calorimetry and circular dichroism data revealed that the CRM197 structure was altered by the chemical conjugation, while DT and the formaldehyde-treated form of CRM197 were less impacted, depending on the degree of glycosylation. Investigating the binding and avidity properties of IgGs induced in mice by non-conjugated carriers, we found that CRM197 induced low levels of anti-carrier antibodies, with decreased avidity for its MenA conjugates and poor binding to DT and respective MenA conjugates. In contrast, DT induced high antibody titers able to bind with comparable avidity both the protein and its conjugates but showing very low avidity for CRM197 and related conjugates. The low intrinsic immunogenicity of CRM197 as compared to DT, the structural modifications induced by glycoconjugation and detoxification processes, resulting in conformational changes in CRM197 and DT epitopes with consequent alteration of the antibody recognition and avidity, might explain the different behavior of CRM197 and DT in a carrier priming context. Copyright © 2014 Elsevier Ltd. All rights reserved.
An experimental study of adsorption interference in binary mixtures flowing through activated carbon
NASA Technical Reports Server (NTRS)
Madey, R.; Photinos, P. J.
1983-01-01
The isothermal transmission through activated carbon adsorber beds at 25 C of acetaldehyde-propane and acetylene-ethane mixtures in a helium carrier gas was measured. The inlet concentration of each component was in the range between 10 ppm and 500 ppm. The constant inlet volumetric flow rate was controlled at 200 cc (STP)/min in the acetaldehyde-propane experiments and at 50 cc (STP)/min in the acetaldehyde-ethane experiments. Comparison of experimental results with the corresponding single-component experiments under similar conditions reveals interference phenomena between the components of the mixtures as evidenced by changes in both the adsorption capacity and the dispersion number. Propane was found to displace acetaldehyde from the adsorbed state. The outlet concentration profiles of propane in the binary mixtures tend to become more diffuse than the corresponding concentration profiles of the one-component experiments. Similar features were observed with mixtures of acetylene and ethane; however, the displacement of acetylene by ethane is less pronounced.
Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio
2014-11-07
Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Problems relevant to town incoming radio TV links
NASA Technical Reports Server (NTRS)
Tomati, L.
1984-01-01
The degradations produced on the wanted TV signal by an interfering signal are examined. The TV protection ratios to be respected are also examined in case of co-channel interference and adjacent channels. Problems related to the possible disturbances produced by the interfering signal on the AGC and the squelch of the interred receiver are also taken into account. Some solutions normally adopted for the above problems are examined, including improvement of the antenna directivity, suitable filtering, and polarization discrimination. Finally, some problems related to the propagation I urban areas for what concerns the possible distortions on a color TV signal are examined.
An ultrawide-bandwidth single-sideband modulator for terahertz frequencies
NASA Astrophysics Data System (ADS)
Meijer, A. S.; Berden, G.; Arslanov, D. D.; Ozerov, M.; Jongma, R. T.; van der Zande, W. J.
2016-11-01
Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s-1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.
Joint Acoustic and Modulation Frequency
NASA Astrophysics Data System (ADS)
Atlas, Les; Shamma, Shihab A.
2003-12-01
There is a considerable evidence that our perception of sound uses important features which is related to underlying signal modulations. This topic has been studied extensively via perceptual experiments, yet there are few, if any, well-developed signal processing methods which capitalize on or model these effects. We begin by summarizing evidence of the importance of modulation representations from psychophysical, physiological, and other sources. The concept of a two-dimensional joint acoustic and modulation frequency representation is proposed. A simple single sinusoidal amplitude modulator of a sinusoidal carrier is then used to illustrate properties of an unconstrained and ideal joint representation. Added constraints are required to remove or reduce undesired interference terms and to provide invertibility. It is then noted that the constraints would also apply to more general and complex cases of broader modulation and carriers. Applications in single-channel speaker separation and in audio coding are used to illustrate the applicability of this joint representation. Other applications in signal analysis and filtering are suggested.
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)
1991-01-01
A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.
Carrier Envelope Phase Effect of a Long Duration Pulse in the Low Frequency Region
NASA Astrophysics Data System (ADS)
Zhao, Xi; Yang, Yu-Jun; Liu, Xue-Shen; Wang, Bing-Bing
2014-04-01
Using the characteristic of small energy difference between two high Rydberg states, we theoretically investigate the carrier envelope phase (CEP) effect in a bound-bound transition of an atom in a low-frequency long laser pulse with tens of optical cycles. Particularly, we first prepare a Rydberg state of a hydrogen-like atom by a laser field with the resonant frequency between this state and the ground state. Then by using a low-frequency long laser pulse interacting with this Rydberg atom, we calculate the population of another Rydberg state nearby this Rydberg state at the end of the laser pulse and find that the population changes dramatically with the CEP of the low-frequency pulse. This CEP effect is attributed to the interference between the positive-frequency and negative-frequency components in one-photon transition. These results may provide a method to measure the CEP value of a long laser pulse with low frequency.
Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.
Jurgeit, Andreas; McDowell, Robert; Moese, Stefan; Meldrum, Eric; Schwendener, Reto; Greber, Urs F
2012-01-01
Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV) and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+)-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.
Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J
2015-06-01
A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.
Interplay of Chiral and Helical States in a Quantum Spin Hall Insulator Lateral Junction
Calvo, M. R.; de Juan, F.; Ilan, R.; ...
2017-11-29
Here, we study the electronic transport across an electrostatically-gated lateral junction in a HgTe quantum well, a canonical 2D topological insulator, with and without applied magnetic field. We control carrier density inside and outside a junction region independently and hence tune the number and nature of 1D edge modes propagating in each of those regions. Outside the 2D gap, magnetic field drives the system to the quantum Hall regime, and chiral states propagate at the edge. In this regime, we observe fractional plateaus which reflect the equilibration between 1D chiral modes across the junction. As carrier density approaches zero inmore » the central region and at moderate fields, we observe oscillations in resistance that we attribute to Fabry-Perot interference in the helical states, enabled by the broken time reversal symmetry. At higher fields, those oscillations disappear, in agreement with the expected absence of helical states when band inversion is lifted.« less
Interplay of Chiral and Helical States in a Quantum Spin Hall Insulator Lateral Junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, M. R.; de Juan, F.; Ilan, R.
Here, we study the electronic transport across an electrostatically-gated lateral junction in a HgTe quantum well, a canonical 2D topological insulator, with and without applied magnetic field. We control carrier density inside and outside a junction region independently and hence tune the number and nature of 1D edge modes propagating in each of those regions. Outside the 2D gap, magnetic field drives the system to the quantum Hall regime, and chiral states propagate at the edge. In this regime, we observe fractional plateaus which reflect the equilibration between 1D chiral modes across the junction. As carrier density approaches zero inmore » the central region and at moderate fields, we observe oscillations in resistance that we attribute to Fabry-Perot interference in the helical states, enabled by the broken time reversal symmetry. At higher fields, those oscillations disappear, in agreement with the expected absence of helical states when band inversion is lifted.« less
[New toxicological patterns of nanomaterials, nanostructures and nanoparticles].
Mazzotta, M; Mazzotta, A D; Fernández, M; Tamborino, B; De Filippis, G
2012-01-01
Nanomaterials engineered as nanotubes, quantum-dots, dendrimers or hybrid systems are increasing themselves by an annual mean rate of 4-5%, with rapid spread in various sectors e.g. biomedical. The liposolubility through membranes and the hydrosolubility through active transport do not interfere with nanoparticles below a certain size, which without activation processes and carrier, transport through thanks to capillaries, to intracellular pores (60 - 70 nm) and fissures (4 - 6 nm) in the same membranes. Conversely, in the processes of pinocytosis/endocytosis energy and carrier are required and endocytosis clathrin/caveolae mediated,is respectively for nanoparticles higher or lower than 200 nm. In occupational hazard nanostructures ranging from a few nm up to 100 - 150 nm have the ability to affect several organs through inhalation, intestinal, parental or dermal route of access. New toxicological aspects are associated to the capacity of nanomaterials of being more or less biocompatible or hydrosoluble, of creating bonds with proteins or to determine accumulation in the cells due to an incomplete elimination process.
Quantum and Classical Plasmonic Phenomena in Nanoparticle Arrays
NASA Astrophysics Data System (ADS)
Govorov, Alexander; Besteiro, Lucas; Khosravi Khorashad, Larousse; Kong, Xiang-Tian; Roller, Eva-Maria; Liedl, Tim
Using both classical and quantum approaches, we model plasmonic phenomena in nanoparticle (NP) dimers and trimers. Using a model of three nanoparticles, we propose a mechanism of non-dissipative and ultrafast plasmon passage assisted by hot spots. For this, the NP trimer should include two Au-NPs and one Ag-NP. In the Au-Ag-Au trimer, the two Au-plasmons become coupled via the virtual plasmon of the Ag-NP. The efficient and ultra-fast passage of the Au-plasmons assisted by the virtual Ag-plasmon only becomes possible when the inter-NP gaps in the trimer are small. In this coupling regime, the inter-NP gap regions become plasmonic hot spots that greatly enhance the plasmonic passage effect. At this moment, the plasmonic passage phenomenon was already observed experimentally using optical spectroscopy and the DNA-origami NP complexes. Other systems of our interest were a NP dimer and a nanostar with plasmonic hot spots. For those systems, we predict strong enhancement of the generation of energetic (hot) carriers.
NASA Astrophysics Data System (ADS)
Molina-Sanchez, Alejandro; Sangalli, Davide; Wirtz, Ludger; Marini, Andrea
In a time-dependent Kerr experiment a circularly polarized laser field is used to selectively populate the K+/- electronic valleys of single-layer WSe2. This carrier population corresponds to a finite pseudospin polarization that dictates the valleytronic properties of WSe2, but whose decay mechanism still remains largely debated. Time-dependent Kerr experiments provide an accurate way to visualize the pseudospin dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized and short pump pulse. We present here a clear, accurate and parameter-free description of the valley pseudospin dynamics in single-layer WSe2. By using an ab-initio approach we solve unambiguously the long standing debate about the dominant mechanism that drives the valley depolarization. Our results are in excellent agreement with recent time-dependent Kerr experiments. The decay dynamics and peculiar temperature dependence is explained in terms of electron phonon mediated processes that induce spin-flip inter-valley transitions.
Infrared photodetectors based on graphene van der Waals heterostructures
NASA Astrophysics Data System (ADS)
Ryzhii, V.; Ryzhii, M.; Svintsov, D.; Leiman, V.; Mitin, V.; Shur, M. S.; Otsuji, T.
2017-08-01
We propose and evaluate the graphene layer (GL) infrared photodetectors (GLIPs) based on the van der Waals (vdW) heterostructures with the radiation absorbing GLs. The operation of the GLIPs is associated with the electron photoexcitation from the GL valence band to the continuum states above the inter-GL barriers (either via tunneling or direct transitions to the continuum states). Using the developed device model, we calculate the photodetector characteristics as functions of the GL-vdW heterostructure parameters. We show that due to a relatively large efficiency of the electron photoexcitation and low capture efficiency of the electrons propagating over the barriers in the inter-GL layers, GLIPs should exhibit the elevated photoelectric gain and detector responsivity as well as relatively high detectivity. The possibility of high-speed operation, high conductivity, transparency of the GLIP contact layers, and the sensitivity to normally incident IR radiation provides additional potential advantages in comparison with other IR photodetectors. In particular, the proposed GLIPs can compete with unitravelling-carrier photodetectors.
Correlating optical infrared and electronic properties of low tellurium doped GaSb bulk crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roodenko, K., E-mail: kroodenko@intelliepi.com; Liao, P.-K.; Lan, D.
2016-04-07
Control over the Te doping concentration is especially challenging in the mass-production of optically transparent, high-resistivity Te-doped GaSb crystals. Driven by the necessity to perform fast, robust, and non-destructive quality control of the Te doping homogeneity of the optically transparent large-diameter GaSb wafers, we correlated electronic and optical infrared properties of Te-doped GaSb crystals. The study was based on the experimental Hall and Fourier-Transform Infrared (FTIR) data collected from over 50 samples of the low-doped n-type material (carrier concentration of 6 × 10{sup 16} cm{sup −3} to 7 × 10{sup 17} cm{sup −3}) and the Te-doped p-type GaSb (4.6 ×more » 10{sup 15} cm{sup −3} to 1 × 10{sup 16} cm{sup −3}). For the n-type GaSb, the analysis of the FTIR data was performed using free carrier absorption model, while for the p-type material, the absorption was modeled using inter-valence band absorption mechanism. Using the correlation between the Hall and the IR data, FTIR maps across the wafers allow a fast and reliable way to estimate carrier concentration profile within the wafer.« less
Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene
Koh, Weon-kyu; Koposov, Alexey Y.; Stewart, John T.; ...
2013-06-18
Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through “doping;” however, persistent electronic doping of these NCs remains a challenge. In this paper, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene. This allows injecting up to eight electrons per NC into the band-edge state and maintaining the doping level for at least a month at room temperature. Doping is confirmedmore » by inter- and intra-band optical absorption, as well as by carrier dynamics. In conclusion, FET measurements of doped NC films and the demonstration of a p-n diode provide additional evidence that the developed doping procedure allows for persistent incorporation of electrons into the quantum-confined NC states.« less
Quantitative polarized light microscopy using spectral multiplexing interferometry.
Li, Chengshuai; Zhu, Yizheng
2015-06-01
We propose an interferometric spectral multiplexing method for measuring birefringent specimens with simple configuration and high sensitivity. The retardation and orientation of sample birefringence are simultaneously encoded onto two spectral carrier waves, generated interferometrically by a birefringent crystal through polarization mixing. A single interference spectrum hence contains sufficient information for birefringence determination, eliminating the need for mechanical rotation or electrical modulation. The technique is analyzed theoretically and validated experimentally on cellulose film. System simplicity permits the possibility of mitigating system birefringence background. Further analysis demonstrates the technique's exquisite sensitivity as high as ∼20 pm for retardation measurement.
NASA Astrophysics Data System (ADS)
Uluta, K.; Deer, D.; Skarlatos, Y.
2006-08-01
The electrical conductivity and absorption coefficient of amorphous indium oxide thin films, thermally evaporated on glass substrates at room temperature, were evaluated. For direct transitions the variation of the optical band gap with thickness was determined and this variation was supposed to appear due to the variation of localized gap states, whereas the variation of conductivity with thickness was supposed to be due to the variation of carrier concentration. We attribute the variation of absorption coefficient with thickness to the variation of optical band gap energy rather than optical interference.
High-speed photodiodes for InP-based photonic integrated circuits.
Rouvalis, E; Chtioui, M; Tran, M; Lelarge, F; van Dijk, F; Fice, M J; Renaud, C C; Carpintero, G; Seeds, A J
2012-04-09
We demonstrate the feasibility of monolithic integration of evanescently coupled Uni-Traveling Carrier Photodiodes (UTC-PDs) having a bandwidth exceeding 100 GHz with Multimode Interference (MMI) couplers. This platform is suitable for active-passive, butt-joint monolithic integration with various Multiple Quantum Well (MQW) devices for narrow linewidth millimeter-wave photomixing sources. The fabricated devices achieved a high 3-dB bandwidth of up to 110 GHz and a generated output power of more than 0 dBm (1 mW) at 120 GHz with a flat frequency response over the microwave F-band (90-140 GHz).
Orbital photogalvanic effects in quantum-confined structures
NASA Astrophysics Data System (ADS)
Karch, J.; Tarasenko, S. A.; Olbrich, P.; Schönberger, T.; Reitmaier, C.; Plohmann, D.; Kvon, Z. D.; Ganichev, S. D.
2010-09-01
We report on the circular and linear photogalvanic effects caused by free-carrier absorption of terahertz radiation in electron channels on (001)-oriented and miscut silicon surfaces. The photocurrent behaviour upon variation of the radiation polarization state, wavelength, gate voltage, and temperature is studied. We present the microscopic and phenomenological theory of the photogalvanic effects, which describes well the experimental results. In particular, it is demonstrated that the circular (photon-helicity sensitive) photocurrent in silicon-based structures is of pure orbital nature originating from the quantum interference of different pathways contributing to the absorption of monochromatic radiation.
Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission
NASA Technical Reports Server (NTRS)
Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.
2002-01-01
We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.
Inter-satellites x-ray communication system
NASA Astrophysics Data System (ADS)
Mou, Huan; Li, Bao-quan
2017-02-01
An inter-satellite X-ray communication system is presented in this paper. X-ray has a strong penetrating power without almost attenuation for transmission in outer space when the energy of X-ray photons is more than 10KeV and the atmospheric pressure is lower than 10-1 Pa, so it is convincing of x-ray communication in inter-satellite communication and deep space exploration. Additionally, using X-ray photons as information carriers can be used in some communication applications that laser communication and radio frequency (RF) communication are not available, such as ionization blackout area communication. The inter-satellites X-ray communication system, including the grid modulated X-ray source, the high-sensitivity X-ray detector and the transmitting and receiving antenna, is described explicitly. As the X-ray transmitter, a vacuum-sealed miniature modulated X-ray source has been fabricated via the single-step brazing process in a vacuum furnace. Pulse modulation of X-rays, by means of controlling the voltage value of the grid electrode, is realized. Three focusing electrodes, meanwhile, are used to make the electron beam converge and finally 150μm focusing spot diameter is obtained. The X-ray detector based on silicon avalanche photodiodes (APDs) is chosen as the communication receiver on account of its high temporal resolution and non-vacuum operating environment. Furthermore, considering x-ray emission characteristic and communication distance of X-rays, the multilayer nested rotary parabolic optics is picked out as transmitting and receiving antenna. And as a new concept of the space communication, there will be more important scientific significance and application prospects, called "Next-Generation Communications".
Aisenberg, D; Sapir, A; Close, A; Henik, A; d'Avossa, G
2018-01-31
Participants are slower to report a feature, such as color, when the target appears on the side opposite the instructed response, than when the target appears on the same side. This finding suggests that target location, even when task-irrelevant, interferes with response selection. This effect is magnified in older adults. Lengthening the inter-trial interval, however, suffices to normalize the congruency effect in older adults, by re-establishing young-like sequential effects (Aisenberg et al., 2014). We examined the neurological correlates of age related changes by comparing BOLD signals in young and old participants performing a visual version of the Simon task. Participants reported the color of a peripheral target, by a left or right-hand keypress. Generally, BOLD responses were greater following incongruent than congruent targets. Also, they were delayed and of smaller amplitude in old than young participants. BOLD responses in visual and motor regions were also affected by the congruency of the previous target, suggesting that sequential effects may reflect remapping of stimulus location onto the hand used to make a response. Crucially, young participants showed larger BOLD responses in right anterior cerebellum to incongruent targets, when the previous target was congruent, but smaller BOLD responses to incongruent targets when the previous target was incongruent. Old participants, however, showed larger BOLD responses to congruent than incongruent targets, irrespective of the previous target congruency. We conclude that aging may interfere with the trial by trial updating of the mapping between the task-irrelevant target location and response, which takes place during the inter-trial interval in the cerebellum and underlays sequential effects in a Simon task. Copyright © 2017 Elsevier Ltd. All rights reserved.
iDEAS: A web-based system for dry eye assessment.
Remeseiro, Beatriz; Barreira, Noelia; García-Resúa, Carlos; Lira, Madalena; Giráldez, María J; Yebra-Pimentel, Eva; Penedo, Manuel G
2016-07-01
Dry eye disease is a public health problem, whose multifactorial etiology challenges clinicians and researchers making necessary the collaboration between different experts and centers. The evaluation of the interference patterns observed in the tear film lipid layer is a common clinical test used for dry eye diagnosis. However, it is a time-consuming task with a high degree of intra- as well as inter-observer variability, which makes the use of a computer-based analysis system highly desirable. This work introduces iDEAS (Dry Eye Assessment System), a web-based application to support dry eye diagnosis. iDEAS provides a framework for eye care experts to collaboratively work using image-based services in a distributed environment. It is composed of three main components: the web client for user interaction, the web application server for request processing, and the service module for image analysis. Specifically, this manuscript presents two automatic services: tear film classification, which classifies an image into one interference pattern; and tear film map, which illustrates the distribution of the patterns over the entire tear film. iDEAS has been evaluated by specialists from different institutions to test its performance. Both services have been evaluated in terms of a set of performance metrics using the annotations of different experts. Note that the processing time of both services has been also measured for efficiency purposes. iDEAS is a web-based application which provides a fast, reliable environment for dry eye assessment. The system allows practitioners to share images, clinical information and automatic assessments between remote computers. Additionally, it save time for experts, diminish the inter-expert variability and can be used in both clinical and research settings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks
Li, Ming; Chen, Pengpeng; Gao, Shouwan
2016-01-01
Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170
Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.
Li, Ming; Chen, Pengpeng; Gao, Shouwan
2016-09-13
Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.
Circadian Gene Variants Influence Sleep and the Sleep Electroencephalogram in Humans
Chang, Anne-Marie; Bjonnes, Andrew; Aeschbach, Daniel; Buxton, Orfeu M.; Gooley, Joshua J.; Anderson, Clare; Van Reen, Eliza; Cain, Sean W.; Czeisler, Charles A.; Duffy, Jeanne F.; Lockley, Steven W.; Shea, Steven; Scheer, Frank A.J.L.; Saxena, Richa
2017-01-01
The sleep electroencephalogram is highly heritable in humans and yet little is known about the genetic basis of inter-individual differences in sleep architecture. The aim of this study was to identify associations between candidate circadian gene variants and the polysomnogram, recorded under highly controlled laboratory conditions during a baseline, overnight, 8-h sleep opportunity. A candidate gene approach was employed to analyze single nucleotide polymorphisms from five circadian-related genes in a two-phase analysis of 84 healthy young adults (28 F; 23.21 ± 2.97 years) of European ancestry. A common variant in Period2 (PER2) was associated with 20 minutes less slow wave sleep (SWS) in carriers of the minor allele than in non-carriers, representing a 22% difference in SWS duration. Moreover, spectral analysis in a subset of samples (n=37), showed the same PER2 polymorphism was associated with reduced EEG power density in the low delta range (0.25–1.0 Hz) during non-REM sleep and lower slow-wave activity (0.75–4.5 Hz) in the early part of the sleep episode. These results indicate the involvement of PER2 in the homeostatic process of sleep. Additionally, a rare variant in Melatonin Receptor 1B was associated with longer REM sleep latency, with minor allele carriers exhibiting an average of 65 minutes (87%) longer latency from sleep onset to REM sleep, compared to non-carriers. These findings suggest that circadian-related genes may modulate sleep architecture and the sleep EEG, including specific parameters previously implicated in the homeostatic regulation of sleep. PMID:27089043
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Hong, Xuezhi; Liu, Jie; Guo, Changjian
2018-04-01
In this work, we investigate and experimentally demonstrate an orthogonal frequency division multiplexing (OFDM) based high speed wavelength-division multiplexed (WDM) visible light communication (VLC) system using an inter-block data precoding and superimposed pilots (DP-SP) based channel estimation (CE) scheme. The residual signal-to-pilot interference (SPI) can be eliminated by using inter-block data precoding, resulting in a significant improvement in estimated accuracy and the overall system performance compared with uncoded SP based CE scheme. We also study the power allocation/overhead problem of the training for DP-SP, uncoded SP and conventional preamble based CE schemes, from which we obtain the optimum signal-to-pilot power ratio (SPR)/overhead percentage for all above cases. Intra-symbol frequency-domain averaging (ISFA) is also adopted to further enhance the accuracy of CE. By using the DP-SP based CE scheme, aggregate data rates of 1.87-Gbit/s and 1.57-Gbit/s are experimentally demonstrated over 0.8-m and 2-m indoor free space transmission, respectively, using a commercially available red, green and blue (RGB) light emitting diode (LED) with WDM. Experimental results show that the DP-SP based CE scheme is comparable to the conventional preamble based CE scheme in term of received Q factor and data rate while entailing a much smaller overhead-size.
Inter-satellite links for satellite autonomous integrity monitoring
NASA Astrophysics Data System (ADS)
Rodríguez-Pérez, Irma; García-Serrano, Cristina; Catalán Catalán, Carlos; García, Alvaro Mozo; Tavella, Patrizia; Galleani, Lorenzo; Amarillo, Francisco
2011-01-01
A new integrity monitoring mechanisms to be implemented on-board on a GNSS taking advantage of inter-satellite links has been introduced. This is based on accurate range and Doppler measurements not affected neither by atmospheric delays nor ground local degradation (multipath and interference). By a linear combination of the Inter-Satellite Links Observables, appropriate observables for both satellite orbits and clock monitoring are obtained and by the proposed algorithms it is possible to reduce the time-to-alarm and the probability of undetected satellite anomalies.Several test cases have been run to assess the performances of the new orbit and clock monitoring algorithms in front of a complete scenario (satellite-to-satellite and satellite-to-ground links) and in a satellite-only scenario. The results of this experimentation campaign demonstrate that the Orbit Monitoring Algorithm is able to detect orbital feared events when the position error at the worst user location is still under acceptable limits. For instance, an unplanned manoeuvre in the along-track direction is detected (with a probability of false alarm equals to 5 × 10-9) when the position error at the worst user location is 18 cm. The experimentation also reveals that the clock monitoring algorithm is able to detect phase jumps, frequency jumps and instability degradation on the clocks but the latency of detection as well as the detection performances strongly depends on the noise added by the clock measurement system.
Korte, Erik A; Pozzi, Nicole; Wardrip, Nina; Ayyoubi, M Tayyeb; Jortani, Saeed A
2018-07-01
There are 13 million blood transfusions each year in the US. Limitations in the donor pool, storage capabilities, mass casualties, access in remote locations and reactivity of donors all limit the availability of transfusable blood products to patients. HBOC-201 (Hemopure®) is a second-generation glutaraldehyde-polymer of bovine hemoglobin, which can serve as an "oxygen bridge" to maintain oxygen carrying capacity while transfusion products are unavailable. Hemopure presents the advantages of extended shelf life, ambient storage, and limited reactive potential, but its extracellular location can also cause significant interference in modern laboratory analyzers similar to severe hemolysis. Observed error in 26 commonly measured analytes was determined on 4 different analytical platforms in plasma from a patient therapeutically transfused Hemopure as well as donor blood spiked with Hemopure at a level equivalent to the therapeutic loading dose (10% v/v). Significant negative error ratios >50% of the total allowable error (>0.5tAE) were reported in 23/104 assays (22.1%), positive bias of >0.5tAE in 26/104 assays (25.0%), and acceptable bias between -0.5tAE and 0.5tAE error ratio was reported in 44/104 (42.3%). Analysis failed in the presence of Hemopure in 11/104 (10.6%). Observed error is further subdivided by platform, wavelength, dilution and reaction method. Administration of Hemopure (or other hemoglobin-based oxygen carriers) presents a challenge to laboratorians tasked with analyzing patient specimens. We provide laboratorians with a reference to evaluate patient samples, select optimal analytical platforms for specific analytes, and predict possible bias beyond the 4 analytical platforms included in this study. Copyright © 2018 Elsevier B.V. All rights reserved.
Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals
NASA Astrophysics Data System (ADS)
Bhattacharya, Sayak; John, Sajeev
2018-04-01
We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.
Nonuniform distribution of phase noise in distributed acoustic sensing based on phase-sensitive OTDR
NASA Astrophysics Data System (ADS)
Yu, Zhijie; Lu, Yang; Meng, Zhou
2017-10-01
A phase-sensitive optical time-domain reflectometry (∅-OTDR) implements distributed acoustic sensing (DAS) due to its ability for high sensitivity vibration measurement. Phase information of acoustic vibration events can be acquired by interrogation of the vibration-induced phase change between coherent Rayleigh scattering light from two points of the sensing fiber. And DAS can be realized when applying phase generated carrier (PGC) algorithm to the whole sensing fiber while the sensing fiber is transformed into a series of virtual sensing channels. Minimum detectable vibration of a ∅-OTDR is limited by phase noise level. In this paper, nonuniform distribution of phase noise of virtual sensing channels in a ∅-OTDR is investigated theoretically and experimentally. Correspondence between the intensity of Rayleigh scattering light and interference fading as well as polarization fading is analyzed considering inner interference of coherent Rayleigh light scattered from a multitude of scatters within pulse duration, and intensity noise related to the intensity of Rayleigh scattering light can be converted to phase noise while measuring vibration-induced phase change. Experiments are performed and the results confirm the predictions of the theoretical analysis. This study is essential for acquiring insight into nonuniformity of phase noise in DAS based on a ∅-OTDR, and would put forward some feasible methods to eliminate the effect of interference fading and polarization fading and optimize the minimum detectable vibration of a ∅-OTDR.
Determinants of acquisition and carriage of Staphylococcus aureus in infancy.
Peacock, Sharon J; Justice, Anita; Griffiths, D; de Silva, G D I; Kantzanou, M N; Crook, Derrick; Sleeman, Karen; Day, Nicholas P J
2003-12-01
Nasal carriage of Staphylococcus aureus is a major risk factor for invasive S. aureus disease. The aim of this study was to define factors associated with carriage. We conducted a prospective, longitudinal community-based study of infants and their mothers for a period of 6 months following delivery. The epidemiology of carriage was examined for 100 infant-mother pairs. Infant carriage varied significantly with age, falling from 40 to 50% during the first 8 weeks to 21% by 6 months. Determinants of infant S. aureus carriage included maternal carriage, breastfeeding, and number of siblings. Bacterial typing of S. aureus was performed by pulsed-field gel electrophoresis and multilocus sequence typing. The majority of individuals carried a single strain of S. aureus over time, and the mother was the usual source for colonizing isolates in infants. The effect of other components of the normal nasal flora on the development of S. aureus carriage was examined in 157 consecutive infants. Negative associations (putative bacterial interference) between S. aureus and other species occurred early in infancy but were not sustained. An increasing antistaphylococcal effect observed over time was not attributable to bacterial interference. S. aureus carriage in infants is likely to be determined by a combination of host, environmental, and bacterial factors, but bacterial interference does not appear to be an ultimate determinant of carrier status.
Chang, Yue-Yue; Wu, Hai-Long; Fang, Huan; Wang, Tong; Liu, Zhi; Ouyang, Yang-Zi; Ding, Yu-Jie; Yu, Ru-Qin
2018-06-15
In this study, a smart and green analytical method based on the second-order calibration algorithm coupled with excitation-emission matrix (EEM) fluorescence was developed for the determination of rhodamine dyes illegally added into chilli samples. The proposed method not only has the advantage of high sensitivity over the traditional fluorescence method but also fully displays the "second-order advantage". Pure signals of analytes were successfully extracted from severely interferential EEMs profiles via using alternating trilinear decomposition (ATLD) algorithm even in the presence of common fluorescence problems such as scattering, peak overlaps and unknown interferences. It is worth noting that the unknown interferents can denote different kinds of backgrounds, not only refer to a constant background. In addition, the method using interpolation method could avoid the information loss of analytes of interest. The use of "mathematical separation" instead of complicated "chemical or physical separation" strategy can be more effective and environmentally friendly. A series of statistical parameters including figures of merit and RSDs of intra- (≤1.9%) and inter-day (≤6.6%) were calculated to validate the accuracy of the proposed method. Furthermore, the authoritative method of HPLC-FLD was adopted to verify the qualitative and quantitative results of the proposed method. Compared with the two methods, it also showed that the ATLD-EEMs method has the advantages of accuracy, rapidness, simplicity and green, which is expected to be developed as an attractive alternative method for simultaneous and interference-free determination of rhodamine dyes illegally added into complex matrices. Copyright © 2018. Published by Elsevier B.V.
Decision feedback equalizer for holographic data storage.
Kim, Kyuhwan; Kim, Seung Hun; Koo, Gyogwon; Seo, Min Seok; Kim, Sang Woo
2018-05-20
Holographic data storage (HDS) has attracted much attention as a next-generation storage medium. Because HDS suffers from two-dimensional (2D) inter-symbol interference (ISI), the partial-response maximum-likelihood (PRML) method has been studied to reduce 2D ISI. However, the PRML method has various drawbacks. To solve the problems, we propose a modified decision feedback equalizer (DFE) for HDS. To prevent the error propagation problem, which is a typical problem in DFEs, we also propose a reliability factor for HDS. Various simulations were executed to analyze the performance of the proposed methods. The proposed methods showed fast processing speed after training, superior bit error rate performance, and consistency.
Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks
Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang
2018-01-01
In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439
Controlling interferometric properties of nanoporous anodic aluminium oxide
2012-01-01
A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated. PMID:22280884
Host-Pathogen interactions modulated by small RNAs.
Islam, Waqar; Islam, Saif Ul; Qasim, Muhammad; Wang, Liande
2017-07-03
Biological processes such as defense mechanisms and microbial offense strategies are regulated through RNA induced interference in eukaryotes. Genetic mutations are modulated through biogenesis of small RNAs which directly impacts upon host development. Plant defense mechanisms are regulated and supported by a diversified group of small RNAs which are involved in streamlining several RNA interference pathways leading toward the initiation of pathogen gene silencing mechanisms. In the similar context, pathogens also utilize the support of small RNAs to launch their offensive attacks. Also there are strong evidences about the active involvement of these RNAs in symbiotic associations. Interestingly, small RNAs are not limited to the individuals in whom they are produced; they also show cross kingdom influences through variable interactions with other species thus leading toward the inter-organismic gene silencing. The phenomenon is understandable in the microbes which utilize these mechanisms to overcome host defense line. Understanding the mechanism of triggering host defense strategies can be a valuable step toward the generation of disease resistant host plants. We think that the cross kingdom trafficking of small RNA is an interesting insight that is needed to be explored for its vitality.
Dispaldro, Marco; Corradi, Nicola
2015-01-01
The purpose of this study is to evaluate whether children with Specific Language Impairment (SLI) have a deficit in processing a sequence of two visual stimuli (S1 and S2) presented at different inter-stimulus intervals and in different spatial locations. In particular, the core of this study is to investigate whether S1 identification is disrupted due to a retroactive interference of S2. To this aim, two experiments were planned in which children with SLI and children with typical development (TD), matched by age and non-verbal IQ, were compared (Experiment 1: SLI n=19; TD n=19; Experiment 2: SLI n=16; TD n=16). Results show group differences in the ability to identify a single stimulus surrounded by flankers (Baseline level). Moreover, children with SLI show a stronger negative interference of S2, both for temporal and spatial modulation. These results are discussed in the light of an attentional processing limitation in children with SLI. Copyright © 2015 Elsevier Ltd. All rights reserved.
Central Corneal Thickness Reproducibility among Ten Different Instruments.
Pierro, Luisa; Iuliano, Lorenzo; Gagliardi, Marco; Ambrosi, Alessandro; Rama, Paolo; Bandello, Francesco
2016-11-01
To assess agreement between one ultrasonic (US) and nine optical instruments for the measurement of central corneal thickness (CCT), and to evaluate intra- and inter-operator reproducibility. In this observational cross-sectional study, two masked operators measured CCT thickness twice in 28 healthy eyes. We used seven spectral-domain optical coherence tomography (SD-OCT) devices, one time-domain OCT, one Scheimpflug camera, and one US-based instrument. Inter- and intra-operator reproducibility was evaluated by intraclass correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman test analysis. Instrument-to-instrument reproducibility was determined by ANOVA for repeated measurements. We also tested how the devices disagreed regarding systemic bias and random error using a structural equation model. Mean CCT of all instruments ranged from 536 ± 42 μm to 577 ± 40 μm. An instrument-to-instrument correlation test showed high values among the 10 investigated devices (correlation coefficient range 0.852-0.995; p values <0.0001 in all cases). The highest correlation coefficient values were registered between 3D OCT-2000 Topcon-Spectral OCT/SLO Opko (0.995) and Cirrus HD-OCT Zeiss-RS-3000 Nidek (0.995), whereas the lowest were seen between SS-1000 CASIA and Spectral OCT/SLO Opko (0.852). ICC and CV showed excellent inter- and intra-operator reproducibility for all optic-based devices, except for the US-based device. Bland-Altman analysis demonstrated low mean biases between operators. Despite highlighting good intra- and inter-operator reproducibility, we found that a scale bias between instruments might interfere with thorough CCT monitoring. We suggest that optimal monitoring is achieved with the same operator and the same device.
Onoue, Satomi; Hosoi, Kazuhiro; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Nakamura, Kazuichi; Ohno, Yasuo; Kojima, Hajime
2014-06-01
A previous multi-center validation study demonstrated high transferability and reliability of reactive oxygen species (ROS) assay for photosafety evaluation. The present validation study was undertaken to verify further the applicability of different solar simulators and assay performance. In 7 participating laboratories, 2 standards and 42 coded chemicals, including 23 phototoxins and 19 non-phototoxic drugs/chemicals, were assessed by the ROS assay using two different solar simulators (Atlas Suntest CPS series, 3 labs; and Seric SXL-2500V2, 4 labs). Irradiation conditions could be optimized using quinine and sulisobenzone as positive and negative standards to offer consistent assay outcomes. In both solar simulators, the intra- and inter-day precisions (coefficient of variation; CV) for quinine were found to be below 10%. The inter-laboratory CV for quinine averaged 15.4% (Atlas Suntest CPS) and 13.2% (Seric SXL-2500V2) for singlet oxygen and 17.0% (Atlas Suntest CPS) and 7.1% (Seric SXL-2500V2) for superoxide, suggesting high inter-laboratory reproducibility even though different solar simulators were employed for the ROS assay. In the ROS assay on 42 coded chemicals, some chemicals (ca. 19-29%) were unevaluable because of limited solubility and spectral interference. Although several false positives appeared with positive predictivity of ca. 76-92% (Atlas Suntest CPS) and ca. 75-84% (Seric SXL-2500V2), there were no false negative predictions in both solar simulators. A multi-center validation study on the ROS assay demonstrated satisfactory transferability, accuracy, precision, and predictivity, as well as the availability of other solar simulators. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mischak, Harald; Vlahou, Antonia; Ioannidis, John P A
2013-04-01
Mass spectrometry platforms have attracted a lot of interest in the last 2 decades as profiling tools for native peptides and proteins with clinical potential. However, limitations associated with reproducibility and analytical robustness, especially pronounced with the initial SELDI systems, hindered the application of such platforms in biomarker qualification and clinical implementation. The scope of this article is to give a short overview on data available on performance and on analytical robustness of the different platforms for peptide profiling. Using the CE-MS platform as a paradigm, data on analytical performance are described including reproducibility (short-term and intermediate repeatability), stability, interference, quantification capabilities (limits of detection), and inter-laboratory variability. We discuss these issues by using as an example our experience with the development of a 273-peptide marker for chronic kidney disease. Finally, we discuss pros and cons and means for improvement and emphasize the need to test in terms of comparative clinical performance and impact, different platforms that pass reasonably well analytical validation tests. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Inter-area correlations in the ventral visual pathway reflect feature integration
Freeman, Jeremy; Donner, Tobias H.; Heeger, David J.
2011-01-01
During object perception, the brain integrates simple features into representations of complex objects. A perceptual phenomenon known as visual crowding selectively interferes with this process. Here, we use crowding to characterize a neural correlate of feature integration. Cortical activity was measured with functional magnetic resonance imaging, simultaneously in multiple areas of the ventral visual pathway (V1–V4 and the visual word form area, VWFA, which responds preferentially to familiar letters), while human subjects viewed crowded and uncrowded letters. Temporal correlations between cortical areas were lower for crowded letters than for uncrowded letters, especially between V1 and VWFA. These differences in correlation were retinotopically specific, and persisted when attention was diverted from the letters. But correlation differences were not evident when we substituted the letters with grating patches that were not crowded under our stimulus conditions. We conclude that inter-area correlations reflect feature integration and are disrupted by crowding. We propose that crowding may perturb the transformations between neural representations along the ventral pathway that underlie the integration of features into objects. PMID:21521832
Currie, Joshua D; Stewman, Shannon; Schimizzi, Gregory; Slep, Kevin C; Ma, Ao; Rogers, Stephen L
2011-11-01
Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure-function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH(2)-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.
Techniques for characterization and eradication of potato cyst nematode: a review.
Bairwa, Aarti; Venkatasalam, E P; Sudha, R; Umamaheswari, R; Singh, B P
2017-09-01
Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida . Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.
Nakshatri, Harikrishna; Anjanappa, Manjushree; Bhat-Nakshatri, Poornima
2015-01-01
Recent reports of widespread genetic variation affecting regulation of gene expression raise the possibility of significant inter-individual differences in stem-progenitor-mature cell hierarchy in adult organs. This has not been explored because of paucity of methods to quantitatively assess subpopulation of normal epithelial cells on individual basis. We report the remarkable inter-individual differences in differentiation capabilities as documented by phenotypic heterogeneity in stem-progenitor-mature cell hierarchy of the normal breast. Ethnicity and genetic predisposition are partly responsible for this heterogeneity, evidenced by the finding that CD44+/CD24- and PROCR+/EpCAM- multi-potent stem cells were elevated significantly in African American women compared with Caucasians. ALDEFLUOR+ luminal stem/progenitor cells were lower in BRCA1-mutation carriers compared with cells from healthy donors (p = 0.0014). Moreover, tumor and adjoining-normal breast cells of the same patients showed distinct CD49f+/EpCAM+ progenitor, CD271+/EpCAM- basal, and ALDEFLUOR+ cell profiles. These inter-individual differences in the rate of differentiation in the normal breast may contribute to a substantial proportion of transcriptome, epigenome, and signaling pathway alterations and consequently has the potential to spuriously magnify the extent of documented tumor-specific gene expression. Therefore, comparative analysis of phenotypically defined subpopulations of normal and tumor cells on an individual basis may be required to identify cancer-specific aberrations. PMID:26311223
Nakshatri, Harikrishna; Anjanappa, Manjushree; Bhat-Nakshatri, Poornima
2015-08-27
Recent reports of widespread genetic variation affecting regulation of gene expression raise the possibility of significant inter-individual differences in stem-progenitor-mature cell hierarchy in adult organs. This has not been explored because of paucity of methods to quantitatively assess subpopulation of normal epithelial cells on individual basis. We report the remarkable inter-individual differences in differentiation capabilities as documented by phenotypic heterogeneity in stem-progenitor-mature cell hierarchy of the normal breast. Ethnicity and genetic predisposition are partly responsible for this heterogeneity, evidenced by the finding that CD44+/CD24- and PROCR+/EpCAM- multi-potent stem cells were elevated significantly in African American women compared with Caucasians. ALDEFLUOR+ luminal stem/progenitor cells were lower in BRCA1-mutation carriers compared with cells from healthy donors (p = 0.0014). Moreover, tumor and adjoining-normal breast cells of the same patients showed distinct CD49f+/EpCAM+ progenitor, CD271+/EpCAM- basal, and ALDEFLUOR+ cell profiles. These inter-individual differences in the rate of differentiation in the normal breast may contribute to a substantial proportion of transcriptome, epigenome, and signaling pathway alterations and consequently has the potential to spuriously magnify the extent of documented tumor-specific gene expression. Therefore, comparative analysis of phenotypically defined subpopulations of normal and tumor cells on an individual basis may be required to identify cancer-specific aberrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamooz, Saeed; Breeding, John Eric; Justice, T Alan
As MicroTCA expands into applications beyond the telecommunications industry from which it originated, it faces new challenges in the area of inter-blade communications. The ability to achieve deterministic, low-latency communications between blades is critical to realizing a scalable architecture. In the past, legacy bus architectures accomplished inter-blade communications using dedicated parallel buses across the backplane. Because of limited fabric resources on its backplane, MicroTCA uses the carrier hub (MCH) for this purpose. Unfortunately, MCH products from commercial vendors are limited to standard bus protocols such as PCI Express, Serial Rapid IO and 10/40GbE. While these protocols have exceptional throughput capability,more » they are neither deterministic nor necessarily low-latency. To overcome this limitation, an MCH has been developed based on the Xilinx Virtex-7 690T FPGA. This MCH provides the system architect/developer complete flexibility in both the interface protocol and routing of information between blades. In this paper, we present the application of this configurable MCH concept to the Machine Protection System under development for the Spallation Neutron Sources's proton accelerator. Specifically, we demonstrate the use of the configurable MCH as a 12x4-lane crossbar switch using the Aurora protocol to achieve a deterministic, low-latency data link. In this configuration, the crossbar has an aggregate bandwidth of 48 GB/s.« less
Kuo, Yung-Chih; Kuo, Chan-Ying
2008-03-03
Transport of antiretroviral agents across the blood-brain barrier (BBB) is of key importance to the treatment for the acquired immunodeficiency syndrome (AIDS). In this study, impact of exposure to electromagnetic field (EMF) on the permeability of saquinavir (SQV) across BBB was investigated. The in vitro BBB model was based on human brain-microvascular endothelial cells (HBMEC), and the concentration of SQV in receiver chamber of the transport system was evaluated. Polybutylcyanoacrylate (PBCA), methylmethacrylate-sulfopropylmethacrylate (MMA-SPM), and solid lipid nanoparticle (SLN) were employed as carriers for the delivery systems. Cytotoxicity of SLN decreased as content of cacao butter increased. Power of 5mV was apposite for the study on HBMEC without obvious apoptosis. Square wave produced greater permeability than sine and triangle waves. The carrier order on permeability of SQV across HBMEC monolayer under exposure to EMF was SLN>PBCA>MMA-SPM. Also, a larger frequency, modulation or depth of amplitude modulation (AM), or modulation or deviation of frequency modulation (FM) yielded a greater permeability. Besides, enhancement of permeability by AM wave was more significant than that by FM wave. Transport behavior of SQV across BBB was strongly influenced by the combination of nanoparticulate PBCA, MMA-SPM, and SLN with EMF exposure. This combination would be beneficial to the clinical application to the therapy of AIDS and other brain-related diseases.
Taino, G; Frigerio, F
2004-01-01
The potential effects of electromagnetic fields is a problem that interest the public opinion, as the modern society expose all people to electromagnetic non ionizing radiations. The problem has a particular and important meaning facing the return to normal life and work conditions of a cardiopatic subject bearing a pacemaker (PM) or implantable cardioverter defibrillator (ICD). Electromagnetic interferences can produce temporary or permanent malfunctions in these devices. Checking for the absence of electromagnetic interferences is necessary considering that correct functioning of these medical devices is essential for the life of the bearer. Precautions normally adopted by these subjects are generally adequate to ensure protection from interferences present in life environment; for occupational environment, there is often lack of adequate information, also due to late involving of the doctor specialist in occupational health. This work intends to study in depth a specific job, a carpentry-workshop with welding activities, starting with a case of a PM bearer who asked a doctor specialist in occupational health to evaluate the problems involved in his return to work. Electric and magnetic fields produced by equipments present in the workshop were measured and compared to data supplied by the literature to evaluate the possibility of interactions in the normally functioning of implanted electronic devices. On the basis of our experience, we have found some criterions for specific risk assessement to adopt for the definition of operative protocols for return to work of PM or ICD carriers, also considering the lack of specific procedures and indications for the doctor specialist in occupational health. The collected information and data from the literature suggest that welding can be a risk for a subject with PM; as observed in experimental conditions, electromagnetic radiations can alter particular sensitive devices and those with uncorrected settings.
A glimpse of gluons through deeply virtual compton scattering on the proton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Defurne, Maxime; Jimenez-Arguello, A. Marti; Ahmed, Z.
The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process,more » in which the final photon is emitted by the electron rather than the proton. Here, we report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.« less
Marovca, Blerim; Vonderheit, Andreas; Grotzer, Michael A.; Eckert, Cornelia; Cario, Gunnar; Wollscheid, Bernd; Horvath, Peter
2014-01-01
Interactions with the bone marrow microenvironment are essential for leukemia survival and disease progression. We developed an imaging-based RNAi platform to identify protective cues from bone marrow derived mesenchymal stromal cells (MSC) that promote survival of primary acute lymphoblastic leukemia (ALL) cells. Using a candidate gene approach, we detected distinct responses of individual ALL cases to RNA interference with stromal targets. The strongest effects were observed when interfering with solute carrier family 3 member 2 (SLC3A2) expression, which forms the cystine transporter xc− when associated with SLC7A11. Import of cystine and metabolism to cysteine by stromal cells provides the limiting substrate to generate and maintain glutathione in ALL. This metabolic interaction reduces oxidative stress in ALL cells that depend on stromal xc−. Indeed, cysteine depletion using cysteine dioxygenase resulted in leukemia cell death. Thus, functional evaluation of intercellular interactions between leukemia cells and their microenvironment identifies a selective dependency of ALL cells on stromal metabolism for a relevant subgroup of cases, providing new opportunities to develop more personalized approaches to leukemia treatment. PMID:25415224
A glimpse of gluons through deeply virtual compton scattering on the proton
Defurne, Maxime; Jimenez-Arguello, A. Marti; Ahmed, Z.; ...
2017-11-10
The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process,more » in which the final photon is emitted by the electron rather than the proton. Here, we report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.« less
NASA Astrophysics Data System (ADS)
Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.
2018-02-01
Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.
Bai, Neng; Xia, Cen; Li, Guifang
2012-10-08
We propose and experimentally demonstrate single-carrier adaptive frequency-domain equalization (SC-FDE) to mitigate multipath interference (MPI) for the transmission of the fundamental mode in a few-mode fiber. The FDE approach reduces computational complexity significantly compared to the time-domain equalization (TDE) approach while maintaining the same performance. Both FDE and TDE methods are evaluated by simulating long-haul fundamental-mode transmission using a few-mode fiber. For the fundamental mode operation, the required tap length of the equalizer depends on the differential mode group delay (DMGD) of a single span rather than DMGD of the entire link.
VLF Radio Field Strength Measurement of power line carrier system in San Diego, California
NASA Technical Reports Server (NTRS)
Mertel, H. K.
1981-01-01
The radio frequency interference (RFI) potential was evaluated for a Powerline Carriet (PLC) installed in San Diego which monitors the performance of an electrical power system. The PLC system generated 30 amperes at 5.79 kHz. The RF radiations were measured to be (typically) 120 dBuV/m at the beginning of the 12 kV powerline and 60 dBuV/m at the end of the powerline. The RF fields varied inversely as the distance squared. Measurements were also performed with a 45 kHz PLC system. The RF fields were of similar amplitude.
Efficient cooling of quantized vibrations using a four-level configuration
NASA Astrophysics Data System (ADS)
Yan, Lei-Lei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang
2016-12-01
Cooling vibrational degrees of freedom down to ground states is essential to observation of quantum properties of systems with mechanical vibration. We propose two cooling schemes employing four internal levels of the systems, which achieve the ground-state cooling in an efficient fashion by completely deleting the carrier and first-order blue-sideband transitions. The schemes, based on quantum interference and Stark-shift gates, are robust to fluctuations of laser intensity and frequency. The feasibility of the schemes is justified using current laboratory technology. In practice, our proposal readily applies to a nanodiamond nitrogen-vacancy center levitated in an optical trap or attached to a cantilever.
UHF FM receiver having improved frequency stability and low RFI emission
Lupinetti, Francesco
1990-02-27
A UHF receiver which converts UHF modulated carrier signals to baseband video signals without any heterodyne or frequency conversion stages. A bandpass filter having a fixed frequency first filters the signals. A low noise amplifier amplifies the filtered signal and applies the signal through further amplification stages to a limited FM demodulator circuit. The UHF signal is directly converted to a baseband video signal. The baseband video signal is clamped by a clamping circuit before driving a monitor. Frequency stability for the receivers is at a theoretical maximum, and interference to adjacent receivers is eliminated due to the absence of a local oscillator.
Optical Nonlinearities in Semiconductors for Limiting.
NASA Astrophysics Data System (ADS)
Wu, Yuan-Yen
I have conducted detailed experimental and theoretical studies of the nonlinear optical properties of semiconductor materials useful for optical limiting. I have constructed optical limiters utilizing two-photon absorption along with photogenerated carrier defocusing as well as the bound electronic nonlinearity using the semiconducting material ZnSe. I have optimized the focusing geometry to achieve a large dynamic range while maintaining a low limiting energy for the device. The ZnSe monolithic optical limiter has achieved a limiting energy as low as 13 nJ (corresponding to 300W peak power) and a dynamic range as large as 10 ^5 at 532 nm using psec pulses. Theoretical analysis showed that the ZnSe device has a broad-band response covering the wavelength range from 550 nm to 800 nm. Moreover, I found that existing theoretical models (e.g. the Auston model and the band-resonant model using Boltzmann statistics) adequately describe the photo-generated carriers refractive nonlinearity in ZnSe. Material nonlinear optical parameters, such as the two-photon absorption coefficient beta _2 = 5.5 cm/GW, the refraction per unit carrier density sigma_{rm n} = -0.8cdot 10^ {-21}cm^3 and the bound electronic refraction n_2 = -4cdot 10^{ -11}esu, have been measured via time-integrated beam distortion experiments in the near field. A numerical code has been written to simulate the beam distortion in order to extract the previously mentioned material parameters. In addition, I have performed time-resolved distortion measurements that provide an intuitive picture of the carrier generation process via two-photon absorption. I also characterized the optical nonlinearities in a ZnSe Fabry-Perot thin film structure (an interference filter). I concluded that the nonlinear absorption alone in the thin film is insufficient to build an effective optical limiter, as it did not show a net change in refraction using psec pulses. An innovative numerical program was developed to simulate the nonlinear beam propagation inside the Fabry-Perot structure. For comparison, pump-probe experiments were performed using both thin film and bulk ZnSe. The results showed relatively long carrier lifetimes (>300 psec) in both samples. A numerical code was written to fit the pump-probe experimental results. The fitting yielded that carrier lifetimes (recombination through traps), radiative decay rate, two-photon absorption coefficient as well as the free carrier absorption coefficient for ZnSe bulk material.
Susceptibility study of audio recording devices to electromagnetic stimulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.
2014-02-01
Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less
Ultra-Smooth ZnS Films Grown on Silicon via Pulsed Laser Deposition
NASA Astrophysics Data System (ADS)
Reidy, Christopher; Tate, Janet
2011-10-01
Ultra-smooth, high quality ZnS films were grown on (100) and (111) oriented Si wafers via pulsed laser deposition with a KrF excimer laser in UHV (10-9 Torr). The resultant films were examined with optical spectroscopy, electron diffraction, and electron probe microanalysis. The films have an rms roughness of ˜1.5 nm, and the film stoichiometry is approximately Zn:S :: 1:0.87. Additionally, each film exhibits an optical interference pattern which is not a function of probing location on the sample, indicating excellent film thickness uniformity. Motivation for high-quality ZnS films comes from a proposed experiment to measure carrier amplification via impact ionization at the boundary between a wide-gap and a narrow-gap semiconductor. If excited charge carriers in a sufficiently wide-gap harvester can be extracted into a narrow-gap host material, impact ionization may occur. We seek near-perfect interfaces between ZnS, with a direct gap between 3.3 and 3.7 eV, and Si, with an indirect gap of 1.1 eV.
Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi
2015-01-20
Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces themore » NEGF results, including optical Dirac Fabry-Pérot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.« less
Korecká, Lucie; Jankovicová, Barbora; Krenková, Jana; Hernychová, Lenka; Slováková, Marcela; Le-Nell, Anne; Chmelik, Josef; Foret, Frantisek; Viovy, Jean-Louis; Bilková, Zusana
2008-02-01
We report an efficient and streamlined way to improve the analysis and identification of peptides and proteins in complex mixtures of soluble proteins, cell lysates, etc. By using the shotgun proteomics methodology combined with bioaffinity purification we can remove or minimize the interference contamination of a complex tryptic digest and so avoid the time-consuming separation steps before the final MS analysis. We have proved that by means of enzymatic fragmentation (endoproteinases with Arg-C or/and Lys-C specificity) connected with the isolation of specific peptides we can obtain a simplified peptide mixture for easier identification of the entire protein. A new bioaffinity sorbent was developed for this purpose. Anhydrotrypsin (AHT), an inactive form of trypsin with an affinity for peptides with arginine (Arg) or lysine (Lys) at the C-terminus, was immobilized onto micro/nanoparticles with superparamagnetic properties (silica magnetite particles (SiMAG)-Carboxyl, Chemicell, Germany). This AHT carrier with a determined binding capacity (26.8 nmol/mg of carrier) was tested with a model peptide, human neurotensin, and the resulting MS spectra confirmed the validity of this approach.
Baseband pulse shaping for pi /4 FQPSK in nonlinearly amplified mobile channels
NASA Astrophysics Data System (ADS)
Subasinghe-Dias, Dileeka; Feher, Kamilo
1994-10-01
We apply baseband pulse shaping techniques for pi /4 QPSK in order to reduce the spectral regeneration of the bandlimited carrier after nonlinear amplification. These Feher's patented techniques, namely, pi /4 FQPSK (superposed QPSK) and pi /4 CTPSK (controlled transition PSK), may also be noncoherently demodulated. Application of these techniques is in fast fading, power efficient channels, typical of the mobile radio environment. Patents related to FQPSK are described. Computer simulation and experimental studies demonstrate that with these baseband waveshaping techniques, carrier envelope fluctuations are significantly reduced, and the out-of-band power after nonlinear amplification is suppressed by up to 20 dB compared to pi /4 QPSK. In frequency noninterleaved land or satellite mobile radio systems operating in a nonlinear, fading and ACI (adjacent channel interference) environment, these techniques may achieve 20%-50% higher spectral efficiency compared to pi /4 QPSK. In mobile cellular systems using pi /4 QPSK, such as the new North American and the Japanese digital cellular systems, the application of these baseband pulse shapes may allow more convenient and less costly amplifier linearization.
Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W
2013-11-01
Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in white noise. Relative to control stimuli that contain no inter-aural timing differences, dichotic pitch stimuli typically elicit an object related negativity (ORN) response, associated with the perceptual segregation of the tone and the carrier noise into distinct auditory objects. Autistic children failed to demonstrate an ORN, suggesting a failure of segregation; however, comparison with the ORNs of age-matched typically developing controls narrowly failed to attain significance. More striking, the autistic children demonstrated a significant differential response to the pitch stimulus, peaking at around 50 ms. This was not present in the control group, nor has it been found in other groups tested using similar stimuli. This response may be a neural signature of atypical processing of pitch in at least some autistic individuals.
Magneto-optical effects in semimetallic Bi 1–xSb x (x=0.015)
Dordevic, S. V.; Wolf, M. S.; Stojilovic, N.; ...
2012-09-12
We report the results of infrared and magneto-optical spectroscopy study on electrodynamic response of bismuth doped with 1.5% of antimony. The spectra are presented for temperatures down to 4.2 K, and in magnetic fields as high as 18 T. The results reveal strong magneto-optical activity, similar to pure bismuth, however there are some differences introduced by antimony doping. Analysis of optical functions reveals that the two type of charge carriers respond differently to external magnetic field. Finally, when the system enters the extreme quantum regime, both the inter- and intraband Landau Level transition are observed in the spectra.
Bradley, Bekh; Westen, Drew; Mercer, Kristina B; Binder, Elisabeth B; Jovanovic, Tanja; Crain, Daniel; Wingo, Aliza; Heim, Christine
2011-05-01
The ability to effectively regulate emotions and a secure attachment style are critical for maintaining mental health across the life span. The experience of childhood maltreatment interferes with normal development of emotional regulation and dramatically increases risk for a wide range of psychiatric disorders in adulthood. The central nervous system oxytocin systems are critically involved in mediating social attachment and buffering psychophysiological responses to stress. We therefore investigated the impact of childhood maltreatment and an oxytocin receptor (OXTR) single nucleotide polymorphism (rs53576) and their interaction on emotional dysregulation and attachment style in adulthood in a sample of low-income, African American men and women recruited from primary care clinics of an urban, public hospital. Consistent with prior research, we found that the severity of childhood maltreatment was associated with increased levels of emotional dysregulation in adulthood. Childhood maltreatment was also positively associated with ratings of disorganized/unresolved adult attachment style and negatively associated with ratings of secure adult attachment style. There was no direct association between rs53576 and emotional dysregulation or ratings of adult attachment style. However, there were significant interactions between rs53576 and childhood maltreatment in predicting level of adult emotional dysregulation and attachment style. Specifically, G/G genotype carriers were at risk for increased emotional dysregulation when exposed to three or more categories of childhood abuse. In addition, G/G genotype carriers exhibited enhanced disorganized adult attachment style when exposed to severe childhood abuse compared to A/A and A/G carriers. Our findings suggest that A allele carriers of OXTR rs53576 are resilient against the effects of severe childhood adversity, by protection against emotional dysregulation and disorganized attachment.
BRADLEY, BEKH; WESTEN, DREW; MERCER, KRISTINA B.; BINDER, ELISABETH B.; JOVANOVIC, TANJA; CRAIN, DANIEL; WINGO, ALIZA; HEIM, CHRISTINE
2015-01-01
The ability to effectively regulate emotions and a secure attachment style are critical for maintaining mental health across the life span. The experience of childhood maltreatment interferes with normal development of emotional regulation and dramatically increases risk for a wide range of psychiatric disorders in adulthood. The central nervous system oxytocin systems are critically involved in mediating social attachment and buffering psychophysiological responses to stress. We therefore investigated the impact of childhood maltreatment and an oxytocin receptor (OXTR) single nucleotide polymorphism (rs53576) and their interaction on emotional dysregulation and attachment style in adulthood in a sample of low-income, African American men and women recruited from primary care clinics of an urban, public hospital. Consistent with prior research, we found that the severity of childhood maltreatment was associated with increased levels of emotional dysregulation in adulthood. Childhood maltreatment was also positively associated with ratings of disorganized/unresolved adult attachment style and negatively associated with ratings of secure adult attachment style. There was no direct association between rs53576 and emotional dysregulation or ratings of adult attachment style. However, there were significant interactions between rs53576 and childhood maltreatment in predicting level of adult emotional dysregulation and attachment style. Specifically, G/G genotype carriers were at risk for increased emotional dysregulation when exposed to three or more categories of childhood abuse. In addition, G/G genotype carriers exhibited enhanced disorganized adult attachment style when exposed to severe childhood abuse compared to A/A and A/G carriers. Our findings suggest that A allele carriers of OXTR rs53576 are resilient against the effects of severe childhood adversity, by protection against emotional dysregulation and disorganized attachment. PMID:23786688
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.
1996-01-01
Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.
Multiple Hub Network Choice in the Liberalized European Market
NASA Technical Reports Server (NTRS)
Berechman, Joseph; deWit, Jaap
1997-01-01
A key question that so far has received relatively little attention in the germane literature is that of the changes at various airports as a result of the EU liberalization policies. That is, presently, most major European airports still benefit from the so-called home-carrier phenomenon where the country's publicly or semi-publicly owned carrier uses the country's main airport as its gateway hub and, consequently, the home-carrier is also the principal user of this airport (in terms of proportion of total aircraft movements, number of passengers transported, connections, slots ownership, etc.). The country's main airport has substantially benefited from these monopoly conditions of airline captivity, strongly determined by the bilateral system of international air transport regulation. Therefore, European major airports were used to operate in essentially different markets, compared to the increasingly competitive markets of their home based carriers. This partly explains relative stability of transport volumes and financial results of European major airports compared to the relatively volatile financial results of most European national airlines. However, the liberalization of European aviation is likely to change this situation. Market access is open now to all community carriers, i.e. carriers with majority ownership and effective control in the hands of EU citizens. Ticket prices are free, governments can only intervene in case of dumping or excessive pricing. A community airline can choose its seat in any of the 15 member states. Licensing procedures are harmonized between member states. In the last few months community carriers have had unrestricted route access within the EU. Most probably this development will be extended to countries inside and outside Europe. Last year the European Commission got the mandate to start negotiations with 10 other European countries. In the meantime the EC has also started negotiations with the USA on so-called soft rights. In the meantime, open skies agreements have been concluded between the USA and most of the EU member states to facilitate strategic alliances between airlines of the states involved. As a result of this on-going liberalization the model of the single 'national' carrier using the national home base as its single hub for the designated third, fourth and sixth freedom operations will stepwise disappear. Within the EU the concept of the national carrier has already been replaced by that of the community carrier. State ownership in more and more European carriers is reduced. On the longer run mergers or even bankruptcy will further undermine the "single national carrier - single national hub" model in Europe. In the meantime, strategic alliances between national carriers in Europe will already reduce the airlines' loyalty to a single airport. Profit maximization and accountability to share holders will supersede the loyalty of these newly emerging alliances, probably looking for the opportunities of a multiple hub network to adequately cover the whole European market. As a consequence, some European airports might see a substantial decline in arriving, departing and transfer traffic, thus in revenues and financial solvency, as well as in their connection to other inter-continental and intra-European destinations. At the same time, other airports might realize a significant increase in traffic as they will be sought after by the profit maximizing airlines as their major gateway hubs. Which will be the losing airports and which will be the winning ones? Can airports anticipate the actions of airlines in deregulated markets and utilize policies which will improve their relative position? If so, what should be these anticipatory policies? These questions become the more urgent, since an increasing number of major European airports will be privatized in the near future. Although increasing airport congestion in Europe will also be reflected in a growing demand pressure for airport slots, this is not a guarantee for a stable transport volume growth of individual airports. The more volatile the market is, the more vulnerable privatized airports become. Therefore, the main issue of this study is the analysis of the opportunities of major European airports to become a central hub as a result of the network choices made by the new European airlines in a completely liberalized market. In a previous study (Berechman and de Wit, 1996), we already explored the potential of Amsterdam Airport Schiphol of becoming the major West-European hub, once European aviation markets are deregulated. A major hindrance of that study was the use of a single hub-and-spoke network. For example that model could not analyze the viability of different combinations of European hubs within a multiple hub network of alternative airline alliances. In this study, we have formulated the model of a multi-hub network where two West-European airports are used for inter-continental and intra-European travel to enable a more realistic analysis of hub choice. Like the previous one also this multi-hub model is primarily used to assess the potential ability of Amsterdam Airport Schiphol for becoming a major West-European hub. Thus, in particular, the policy tests focus on this airport in a double hub network.
Optical continuum generation on a silicon chip
NASA Astrophysics Data System (ADS)
Jalali, Bahram; Boyraz, Ozdal; Koonath, Prakash; Raghunathan, Varun; Indukuri, Tejaswi; Dimitropoulos, Dimitri
2005-08-01
Although the Raman effect is nearly two orders of magnitude stronger than the electronic Kerr nonlinearity in silicon, under pulsed operation regime where the pulse width is shorter than the phonon response time, Raman effect is suppressed and Kerr nonlinearity dominates. Continuum generation, made possible by the non-resonant Kerr nonlinearity, offers a technologically and economically appealing path to WDM communication at the inter-chip or intra-chip levels. We have studied this phenomenon experimentally and theoretically. Experimentally, a 2 fold spectral broadening is obtained by launching ~4ps optical pulses with 2.2GW/cm2 peak power into a conventional silicon waveguide. Theoretical calculations, that include the effect of two-photon-absorption, free carrier absorption and refractive index change indicate that up to >30 times spectral broadening is achievable in an optimized device. The broadening is due to self phase modulation and saturates due to two photon absorption. Additionally, we find that free carrier dynamics also contributes to the spectral broadening and cause the overall spectrum to be asymmetric with respect to the pump wavelength.
Prediction of a mobile two-dimensional electron gas at the LaSc O3 /BaSn O3 (001) interface
NASA Astrophysics Data System (ADS)
Paudel, Tula R.; Tsymbal, Evgeny Y.
2017-12-01
Two-dimensional electron gases (2DEG) at oxide interfaces, such as LaAl O3 /SrTi O3 (001), have aroused significant interest due to their high carrier density (˜1014c m-2 ) and strong lateral confinement (˜1 nm). However, these 2DEGs are normally hosted by the weakly dispersive and degenerate d bands (e.g., Ti -3 d bands), which are strongly coupled to the lattice, causing mobility of such 2DEGs to be relatively low at room temperature (˜1 c m2/Vs ). Here, we propose using oxide host materials with the conduction bands formed from s electrons to increase carrier mobility and soften its temperature dependence. Using first-principles density functional theory calculations, we investigate LaSc O3 /BaSn O3 (001) heterostructure and as a model system, where the conduction band hosts the s -like carriers. We find that the polar discontinuity at this interface leads to electronic reconstruction resulting in the formation of the 2DEG at this interface. The conduction electrons reside in the highly dispersive Sn -5 s bands, which have a large band width and a low effective mass. The predicted 2DEG is expected to be highly mobile even at room temperature due to the reduced electron-phonon scattering via the inter-band scattering channel. A qualitatively similar behavior is predicted for a doped BaSn O3 , where a monolayer of BaO is replaced with LaO. We anticipate that the quantum phenomena associated with these 2DEGs to be more pronounced owing to the high mobility of the carriers.
[STRESS DUE TO THE WORK-LIFE CONFLICT: ADVICES FROM APPLIED RESEARCH FOR COPING IT].
Poerio, Vincenzo
2015-01-01
Unlike most of the work-related stress research, which emphasizes how to manage stressors and maximize the psychological well-being, the present article focuses on one particular kind of stressor: the experience of conflict or interference between demands at work and responsibilities and commitments outside of the work setting, especially in respect offamily life and one's personal life. Referred to as "work-family conflict" or (more recently) "work-life conflict", this stressor has been demonstrated in research since the 1990s to exert a considerable impact on individuals' well-being along with other areas such as family functioning and even performance on the job. In contrast to the intra-role conflict, which refers to interference between roles within a single domain (e.g., the work context), work-family (or work-life) conflict is a form of inter-role interference which occurs when there is conflict across domains. In the 1980s and 1990s, research and writing in this area focused predominantly on work versus family, but in recent years the "non-work" component has been expanded to include other aspects of people's lives. For simplicity, we will refer to the two major spheres as the "work domain" (i.e., a person's paid employment) and the "life domain" (which comprises all other dimensions of life, including family, recreation, community activities and personal life). Although this classification is not entirely appropriate, it enables differentiation between the two spheres.
A review on environmental factors regulating arsenic methylation in humans.
Tseng, Chin-Hsiao
2009-03-15
Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers.
Pore-Confined Carriers and Biomolecules in Mesoporous Silica for Biomimetic Separation and Targeting
NASA Astrophysics Data System (ADS)
Zhou, Shanshan
Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through the membrane is demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic catalysis and biomimetic separations can be combined on this nanostructured composite platform. The successful development of biomimetic nanocomposite membrane can provide for efficient dilute aqueous solute upgrading or separations using engineered carrier/catalyst/support systems. While the carrier-mediated biomimetic membranes hold great potential, fully understanding of the transport processes in composite synthetic membranes is essential for improve the membrane performance. Electrochemical impedance spectroscopy (EIS) technique is demonstrated to be a useful tool for characterizing the thin film pore accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid bilayer with high electrically insulation is essential for detecting activity of proteins or biomimetic carriers in the bilayer. This study provides insights for making better barriers on mesoporous support for carrier-mediated membrane separation process. Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule loading are potential for encapsulating dsRNA within the pores to achieve effective delivery of dsRNA to insects for RNA interference (RNAi). The mobility of dsRNA in the nanopores of the pSNPs is expected to have a functional effect on delivery of dsRNA to insects. The importance of pores to a mobile dsRNA network is demonstrated by the lack of measurable mobility for both lengths of RNA on nonporous materials. In addition, when the dsRNA could not penetrate the pores, dsRNA mobility is also not measurable at the surface of the particle. Thus, the pores seem to serve as a "sink" in providing a mobile network of dsRNA on the surface of the particle. This work successfully demonstrates the loading of RNA on functionalized pSNPs and identified factors that affects RNA loading and releasing, which provides basis for the delivery of RNA-loaded silica particles in vivo.
Symbol interval optimization for molecular communication with drift.
Kim, Na-Rae; Eckford, Andrew W; Chae, Chan-Byoung
2014-09-01
In this paper, we propose a symbol interval optimization algorithm in molecular communication with drift. Proper symbol intervals are important in practical communication systems since information needs to be sent as fast as possible with low error rates. There is a trade-off, however, between symbol intervals and inter-symbol interference (ISI) from Brownian motion. Thus, we find proper symbol interval values considering the ISI inside two kinds of blood vessels, and also suggest no ISI system for strong drift models. Finally, an isomer-based molecule shift keying (IMoSK) is applied to calculate achievable data transmission rates (achievable rates, hereafter). Normalized achievable rates are also obtained and compared in one-symbol ISI and no ISI systems.
Soft-information flipping approach in multi-head multi-track BPMR systems
NASA Astrophysics Data System (ADS)
Warisarn, C.; Busyatras, W.; Myint, L. M. M.
2018-05-01
Inter-track interference is one of the most severe impairments in bit-patterned media recording system. This impairment can be effectively handled by a modulation code and a multi-head array jointly processing multiple tracks; however, such a modulation constraint has never been utilized to improve the soft-information. Therefore, this paper proposes the utilization of modulation codes with an encoded constraint defined by the criteria for soft-information flipping during a three-track data detection process. Moreover, we also investigate the optimal offset position of readheads to provide the most improvement in system performance. The simulation results indicate that the proposed systems with and without position jitter are significantly superior to uncoded systems.
Design and Validation of High Date Rate Ka-Band Software Defined Radio for Small Satellite
NASA Technical Reports Server (NTRS)
Xia, Tian
2016-01-01
The Design and Validation of High Date Rate Ka- Band Software Defined Radio for Small Satellite project will develop a novel Ka-band software defined radio (SDR) that is capable of establishing high data rate inter-satellite links with a throughput of 500 megabits per second (Mb/s) and providing millimeter ranging precision. The system will be designed to operate with high performance and reliability that is robust against various interference effects and network anomalies. The Ka-band radio resulting from this work will improve upon state of the art Ka-band radios in terms of dimensional size, mass and power dissipation, which limit their use in small satellites.
Thermoelectric effect in an Aharonov-Bohm ring with an embedded quantum dot.
Zheng, Jun; Chi, Feng; Lu, Xiao-Dong; Zhang, Kai-Cheng
2012-02-28
Thermoelectric effect is studied in an Aharonov-Bohm interferometer with an embedded quantum dot (QD) in the Coulomb blockade regime. The electrical conductance, electron thermal conductance, thermopower, and thermoelectric figure-of-merit are calculated by using the Keldysh Green's function method. It is found that the figure-of-merit ZT of the QD ring may be quite high due to the Fano effect originated from the quantum interference effect. Moreover, the thermoelectric efficiency is sensitive to the magnitude of the dot-lead and inter-lead coupling strengthes. The effect of intradot Coulomb repulsion on ZT is significant in the weak-coupling regime, and then large ZT values can be obtained at rather high temperature.
Chen, Chen; Mei, Heng; Shi, Wei; Deng, Jun; Zhang, Bo; Guo, Tao; Wang, Huafang; Hu, Yu
2013-01-01
Injured endothelium is an important target for drug and/or gene therapy because brain microvascular endothelial cells (BMECs) play critical roles in various pathophysiological conditions. RNA-mediated gene silencing presents a new therapeutic approach for treating such diseases, but major challenge is to ensure minimal toxicity and target delivery of siRNA to injured BMECs. Injured BMECs overexpress tissue factor (TF), which the fusion protein EGFP-EGF1 could be targeted to. In this study, TNF alpha (TNF-α) was chosen as a stimulus for primary BMECs to produce injured endothelium in vitro. The EGFP-EGF1-PLGA nanoparticles (ENPs) with loaded TF-siRNA were used as a new carrier for targeted delivery to the injured BMECs. The nanoparticles then produced intracellular RNA interference against TF. We compared ENP-based transfections with NP-mediated transfections, and our studies show that the ENP-based transfections result in a more efficient downregulation of TF. Our findings also show that the TF siRNA-loaded ENPs had minimal toxicity, with almost 96% of the cells viable 24 h after transfection while Lipofectamine-based transfections resulted in only 75% of the cells. Therefore, ENP-based transfection could be used for efficient siRNA transfection to injured BMECs and for efficient RNA interference (RNAi). This transfection could serve as a potential treatment for diseases, such as stroke, atherosclerosis and cancer. PMID:23593330
Alfimova, M V; Monakhov, M V; Abramova, L I; Golubev, S A; Golimbet, V E
2009-01-01
An association study of variations in the DTNBP1 (P1763 and P1578) and 5-HTR2A (T102C and A-1438G) genes with short-term verbal memory efficiency and its component process variables was carried out in 405 patients with schizophrenia and 290 healthy controls. All subjects were asked to recall immediately two sets of 10 words. Total recall, List 1 recall, immediate recall or attention span, proactive interference and a number of intrusions were measured. Patients significantly differed from controls by all memory variables. The efficiency of test performance, efficiency of immediate memory, effect of proactive interference as well as number of intrusions were decreased in the group of patients. Both 5-HTR2A polymorphisms were associated with short-term verbal memory efficiency in the combined sample, with the worst performance observed in carriers of homozygous CC (T102C) and GG (A-1438G) genotypes. The significant effect of the P1763 (DTNBP1) marker on the component process variables (proactive interference and intrusions) was found while its effect on the total recall was non-significant. The homozygotes for GG (P1763) had the worst scores. Overall, the data obtained are in line with the conception of DTNBP1 and 5-HTR2A involvement in different component process variables of memory in healthy subjects and patients with schizophrenia.
Mitigation of solvent interference using a short packed column prior to ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Mossaddegh, Mehdi
2017-05-15
This paper introduces a novel approach to overcome the solvent interference in corona discharge-ion mobility spectrometry (CD-IMS) based on the time-resolved signals of the solvent and the analyte. To that end, a short Teflon tube was filled with a low amount of squalene or OV-1, which was prepared and located between the injection port and the entrance of the CD-IMS cell. Through this procedure, a sufficient delay (~5s) was obtained between the introduction of the solvent and the analyte into the reaction region of IMS. This resulted in removing the proton by solvent molecules, as well as increasing the effective collision during the analyte ionization, thereby providing an analysis with more sensitivity, accuracy, and precision. To show the column efficiency, ethion and diazinon (organophosphorus pesticides) were selected as the test compounds and their solutions were analyzed by the proposed method. The amount of sorbent, carrier gas flow rate, and the sorbent temperature affecting the sorbent efficiency were optimized by employing the response surface methodology and the central composite design. The proposed method was exhaustively validated in terms of sensitivity, linearity, and repeatability. In particular, the feasibility of direct injection was successfully verified by the satisfactory results, as compared with those achieved without the prior column. The methodology used in this study is very simple and inexpensive, which can overcome the solvent interference when a solution is directly injected into the CD-IMS. Copyright © 2017 Elsevier B.V. All rights reserved.
Dughiero, Fabrizio; Forzan, Michele; Bertani, Roberta
2017-01-01
Ferrofluids are nanomaterials consisting of magnetic nanoparticles that are dispersed in a carrier fluid. Their physical properties, and hence their field of application are determined by intertwined compositional, structural, and magnetic characteristics, including interparticle magnetic interactions. Magnetic nanoparticles were prepared by thermal decomposition of iron(III) chloride hexahydrate (FeCl3·6H2O) in 2-pyrrolidone, and were then dispersed in two different fluids, water and polyethylene glycol 400 (PEG). A number of experimental techniques (especially, transmission electron microscopy, Mössbauer spectroscopy and superconducting quantum interference device (SQUID) magnetometry) were employed to study both the as-prepared nanoparticles and the ferrofluids. We show that, with the adopted synthesis parameters of temperature and FeCl3 relative concentration, nanoparticles are obtained that mainly consist of maghemite and present a high degree of structural disorder and strong spin canting, resulting in a low saturation magnetization (~45 emu/g). A remarkable feature is that the nanoparticles, ultimately due to the presence of 2-pyrrolidone at their surface, are arranged in nanoflower-shape structures, which are substantially stable in water and tend to disaggregate in PEG. The different arrangement of the nanoparticles in the two fluids implies a different strength of dipolar magnetic interactions, as revealed by the analysis of their magnetothermal behavior. The comparison between the magnetic heating capacities of the two ferrofluids demonstrates the possibility of tailoring the performances of the produced nanoparticles by exploiting the interplay with the carrier fluid. PMID:29113079
Spizzo, Federico; Sgarbossa, Paolo; Sieni, Elisabetta; Semenzato, Alessandra; Dughiero, Fabrizio; Forzan, Michele; Bertani, Roberta; Del Bianco, Lucia
2017-11-05
Ferrofluids are nanomaterials consisting of magnetic nanoparticles that are dispersed in a carrier fluid. Their physical properties, and hence their field of application are determined by intertwined compositional, structural, and magnetic characteristics, including interparticle magnetic interactions. Magnetic nanoparticles were prepared by thermal decomposition of iron(III) chloride hexahydrate (FeCl₃·6H₂O) in 2-pyrrolidone, and were then dispersed in two different fluids, water and polyethylene glycol 400 (PEG). A number of experimental techniques (especially, transmission electron microscopy, Mössbauer spectroscopy and superconducting quantum interference device (SQUID) magnetometry) were employed to study both the as-prepared nanoparticles and the ferrofluids. We show that, with the adopted synthesis parameters of temperature and FeCl₃ relative concentration, nanoparticles are obtained that mainly consist of maghemite and present a high degree of structural disorder and strong spin canting, resulting in a low saturation magnetization (~45 emu/g). A remarkable feature is that the nanoparticles, ultimately due to the presence of 2-pyrrolidone at their surface, are arranged in nanoflower-shape structures, which are substantially stable in water and tend to disaggregate in PEG. The different arrangement of the nanoparticles in the two fluids implies a different strength of dipolar magnetic interactions, as revealed by the analysis of their magnetothermal behavior. The comparison between the magnetic heating capacities of the two ferrofluids demonstrates the possibility of tailoring the performances of the produced nanoparticles by exploiting the interplay with the carrier fluid.
NASA Astrophysics Data System (ADS)
Wu, Shudong; Cheng, Liwen; Wang, Qiang
2018-07-01
We theoretically investigate the effects of the unintentional background concentration, indium composition and defect density of intrinsic layer (i-layer) on the photovoltaic performance of InGaN p-i-n homojunction solar cells by solving the Poisson and steady-state continuity equations. The built-in electric field and carrier generation rate depend on the position within the i-layer. The collection efficiency, short circuit current density, open circuit voltage, fill factor, and conversion efficiency are found to depend strongly on the background concentration, thickness, indium composition, and defect density of the i-layer. With increasing the background concentration, the maximum thickness of field-bearing i-layer decreases, and the width of depletion region may become even too small to cover the whole i-layer, resulting in a serious decrease of the carrier collection. Some oscillations as a function of indium composition are found in the short circuit current density and conversion efficiency at high indium composition and low defect density due to the interference between the absorbance and the generation rate of carriers. The defect density degrades seriously the overall photovoltaic performance, and its effect on the photovoltaic performance is roughly seven orders of magnitude higher than the previously reported values [Feng et al., J. Appl. Phys. 108 (2010) 093118]. As a result, the high crystalline quality InGaN with high indium composition is a key factor in the device performance of III-nitride based solar cells.
Particle and Photon Detection: Counting and Energy Measurement
Janesick, James; Tower, John
2016-01-01
Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor’s read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398
[Health education for varicose ulcer patients through group activities].
da Silva, Jodo Luis Almeida; Lopes, Marta Julia Marques
2006-06-01
It is a report on the group activities carried out with carriers of varicose ulcer in a health unit in Porto Alegre, Rio Grande do Sul, Brazil. The varicose ulcer presents factors, besides the biological ones, which interfere in the cicatrization, in the relapse cases and in its effective resolution. The proposed activities aimed at producing behavior changes with the intention of achieving self-care, providing information, socializing the participants, and stimulating cooperation, searching for joint solutions, aggregating interdisciplinary spirit and improving the care. Two groups have been formed and a thematic schedule established. The results have showed higher adhesion to the treatment, behavioral changes, and adapted and more effective attitudes of the health team.
NASA Technical Reports Server (NTRS)
Walp, R. M.
1972-01-01
The results of a study to develop and define requirements for the high power S-band experiment for the ATS-G are summarized. The objectives of the experiment are: (1) to demonstrate high power technology at S-band frequencies in orbiting spacecraft, (2) to employ high power carrier from the spacecraft for conducting interference measurements with Instructional Television Fixed Service systems, and (3) to provide means for performing educationally oriented applications experiments. Experiment organization and operation, and hardware for flight on the ATS-G spacecraft are described. Earth stations designed for the experiment as well as other special ground equipment are also described.
Research on the method of precise alignment technology of atmospheric laser communication
NASA Astrophysics Data System (ADS)
Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan; Ma, Shi-wei; Chen, Jian
2016-10-01
Atmosphere laser communication takes advantage of laser as the carrier transmitting the voice, data, and image information in the atmosphere. Because of its high reliability, strong anti-interference ability, the advantages of easy installation, it has great potential and development space in the communications field. In the process of establish communication, the capture, targeting and tracking of the communication signal is the key technology. This paper introduce a method of targeting the signal spot in the process of atmosphere laser communication, which through the way of making analog signal addition and subtraction directly and normalized to obtain the target azimuth information to drive the servo system to achieve precise alignment of tracking.
Experimental demonstration of an efficient hybrid equalizer for short-reach optical SSB systems
NASA Astrophysics Data System (ADS)
Zhu, Mingyue; Ying, Hao; Zhang, Jing; Yi, Xingwen; Qiu, Kun
2018-02-01
We propose an efficient enhanced hybrid equalizer combining the feed forward equalization (FFE) with a modified Volterra filter to mitigate the linear and nonlinear interference for the short-reach optical single side-band (SSB) system. The optical SSB signal is generated by a relatively low-cost dual-drive Mach-Zehnder modulator (DDMZM). The two driving signals are a pair of Hilbert signals with Nyquist pulse-shaped four-level pulse amplitude modulation (NPAM-4). After the fiber transmission, the neighboring received symbols are strongly correlated due to the pulse spreading in time domain caused by the chromatic dispersion (CD). At the receiver equalization stage, the FFE followed by higher order terms of modified Volterra filter, which utilizes the forward and backward neighboring symbols to construct the kernels with strong correlation, are used as an enhanced hybrid equalizer to mitigate the inter symbol interference (ISI) and nonlinear distortion due to the interaction of the CD and the square-law detection. We experimentally demonstrate that the optical SSB NPAM-4 signal of 40 Gb/s transmitting over 80 km standard single mode fiber (SSMF) with a bit-error-rate (BER) of 7 . 59 × 10-4.
Sacheli, Lucia Maria; Christensen, Andrea; Giese, Martin A; Taubert, Nick; Pavone, Enea Francesco; Aglioti, Salvatore Maria; Candidi, Matteo
2015-02-17
During social interactions people automatically apply stereotypes in order to rapidly categorize others. Racial differences are among the most powerful cues that drive these categorizations and modulate our emotional and cognitive reactivity to others. We investigated whether implicit racial bias may also shape hand kinematics during the execution of realistic joint actions with virtual in- and out-group partners. Caucasian participants were required to perform synchronous imitative or complementary reach-to-grasp movements with avatars that had different skin color (white and black) but showed identical action kinematics. Results demonstrate that stronger visuo-motor interference (indexed here as hand kinematics differences between complementary and imitative actions) emerged: i) when participants were required to predict the partner's action goal in order to on-line adapt their own movements accordingly; ii) during interactions with the in-group partner, indicating the partner's racial membership modulates interactive behaviors. Importantly, the in-group/out-group effect positively correlated with the implicit racial bias of each participant. Thus visuo-motor interference during joint action, likely reflecting predictive embodied simulation of the partner's movements, is affected by cultural inter-individual differences.
Host-Pathogen interactions modulated by small RNAs
Islam, Waqar; Islam, Saif ul; Qasim, Muhammad; Wang, Liande
2017-01-01
ABSTRACT Biological processes such as defense mechanisms and microbial offense strategies are regulated through RNA induced interference in eukaryotes. Genetic mutations are modulated through biogenesis of small RNAs which directly impacts upon host development. Plant defense mechanisms are regulated and supported by a diversified group of small RNAs which are involved in streamlining several RNA interference pathways leading toward the initiation of pathogen gene silencing mechanisms. In the similar context, pathogens also utilize the support of small RNAs to launch their offensive attacks. Also there are strong evidences about the active involvement of these RNAs in symbiotic associations. Interestingly, small RNAs are not limited to the individuals in whom they are produced; they also show cross kingdom influences through variable interactions with other species thus leading toward the inter-organismic gene silencing. The phenomenon is understandable in the microbes which utilize these mechanisms to overcome host defense line. Understanding the mechanism of triggering host defense strategies can be a valuable step toward the generation of disease resistant host plants. We think that the cross kingdom trafficking of small RNA is an interesting insight that is needed to be explored for its vitality. PMID:28430077
Living the academic life: A model for work-family conflict.
Beigi, Mina; Shirmohammadi, Melika; Kim, Sehoon
2015-01-01
Work-family conflict (WFC) is an inter-role conflict, which suggests that fulfilling expectations of family roles makes it difficult to satisfy expectations of work roles, and vice versa. Living an academic life includes balancing multiple work demands and family responsibilities, which may generate WFC for many faculty members. Researchers have emphasized the need for further studies of how faculty integrate work and family demands. This study explores WFC among Iranian faculty. We examine relationships among work hours, time spent with family, work-interference with family (WIF), family-interference with work (FIW), and job satisfaction. Faculty members from 25 Iranian public universities completed a questionnaire. Structural equation modeling was used to test hypotheses in a single model. Findings suggest a positive relationship between faculty weekly work hours and WIF, and between time spent with family and FIW. WIF correlated negatively with job satisfaction, and work hours correlated positively with job satisfaction. Time spent with family and FIW had no influence on job satisfaction, and spouse employment moderated the relationship between WIF and job satisfaction. Findings have implications for human resources and organizational development professionals seeking insight into how faculty members and other knowledge workers experience work-family interrelationships.
Shakleya, Diaa M.
2011-01-01
A validated method for simultaneous LCMSMS quantification of nicotine, cocaine, 6-acetylmorphine (6AM), codeine, and metabolites in 100 mg fetal human brain was developed and validated. After homogenization and solid-phase extraction, analytes were resolved on a Hydro-RP analytical column with gradient elution. Empirically determined linearity was from 5–5,000 pg/mg for cocaine and benzoylecgonine (BE), 25–5,000 pg/mg for cotinine, ecgonine methyl ester (EME) and 6AM, 50–5000 pg/mg for trans-3-hydroxycotinine (OH-cotinine) and codeine, and 250–5,000 pg/mg for nicotine. Potential endogenous and exogenous interferences were resolved. Intra- and inter-assay analytical recoveries were ≥92%, intra- and inter-day and total assay imprecision were ≤14% RSD and extraction efficiencies were ≥67.2% with ≤83% matrix effect. Method applicability was demonstrated with a postmortem fetal brain containing 40 pg/mg cotinine, 65 pg/mg OH-cotinine, 13 pg/mg cocaine, 34 pg/mg EME, and 525 pg/mg BE. This validated method is useful for determination of nicotine, opioid, and cocaine biomarkers in brain. PMID:19229524
Katsuki, Hiroyuki; Ohmori, Kenji
2016-09-28
We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H 2 ) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H 2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.
Validity of an Observation Method for Assessing Pain Behavior in Individuals With Multiple Sclerosis
Cook, Karon F.; Roddey, Toni S.; Bamer, Alyssa M.; Amtmann, Dagmar; Keefe, Francis J
2012-01-01
Context Pain is a common and complex experience for individuals who live with multiple sclerosis (MS) that interferes with physical, psychological and social function. A valid and reliable tool for quantifying observed pain behaviors in MS is critical to understanding how pain behaviors contribute to pain-related disability in this clinical population. Objectives To evaluate the reliability and validity of a pain behavioral observation protocol in individuals who have MS. Methods Community-dwelling volunteers with multiple sclerosis (N=30), back pain (N=5), or arthritis (N=8) were recruited based on clinician referrals, advertisements, fliers, web postings, and participation in previous research. Participants completed measures of pain severity, pain interference, and self-reported pain behaviors and were videotaped doing typical activities (e.g., walking, sitting). Two coders independently recorded frequencies of pain behaviors by category (e.g., guarding, bracing) and inter-rater reliability statistics were calculated. Naïve observers reviewed videotapes of individuals with MS and rated their pain. Spearman correlations were calculated between pain behavior frequencies and self-reported pain and pain ratings by naïve observers. Results Inter-rater reliability estimates indicated the reliability of pain codes in the MS sample. Kappa coefficients ranged from moderate agreement (sighing = 0.40) to substantial agreement (guarding = 0.83). These values were comparable to those obtained in the combined back pain and arthritis sample. Concurrent validity was supported by correlations with self-reported pain (0.46-0.53) and with self-reports of pain behaviors (0.58). Construct validity was supported by finding of 0.87 correlation between total pain behaviors observed by coders and mean pain ratings by naïve observers. Conclusion Results support use of the pain behavior observation protocol for assessing pain behaviors of individuals with MS. Valid assessments of pain behaviors of individuals with MS in could lead to creative interventions in the management of chronic pain in this population. PMID:23159684
Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr
2015-02-27
We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.
Thiophene-Based Organic Semiconductors.
Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan
2017-10-24
Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).
NASA Astrophysics Data System (ADS)
Ishii, Hiroyuki; Honma, Keisuke; Kobayashi, Nobuhiko; Hirose, Kenji
2012-06-01
We present a methodology to study the charge-transport properties of organic semiconductors by the time-dependent wave-packet diffusion method, taking the polaron effects into account. As an example, we investigate the transport properties of single-crystal pentacene organic semiconductors coupled with inter- and intramolecular vibrations within the mixed Holstein and Peierls model, which describes both hopping and bandlike transport behaviors due to small and large polaron formations. Taking into account static disorders, which inevitably exist in the molecular crystals, we present the temperature dependence of charge-transport properties in competition among the thermal fluctuation of molecular motions, the polaron formation, and the static disorders.
Non-Implanted Gallium-Arsenide and its Subsequent Annealing Effects.
NASA Astrophysics Data System (ADS)
Liou, Lih-Yeh
Infrared spectroscopy is used to study ion-implanted GaAs and its subsequent annealing effects. The damage in the implantation region causes a change in dielectric constant resulting in an infrared reflection spectrum which shows the interference pattern of a multilayer structure. Reflection data are fitted by values calculated from a physically realistic model by using computer codes. The first part in this work studies the solid state regrowth of amorphous GaAs made by Be implantation at -100(DEGREES)C. The regrowth temperature is around 200(DEGREES)C. The regrowth starts with a narrowing of the transition region and the transformation of the implanted layer from as-implanted amorphous (a-l) state to thermally-stablized amorphous (a-ll) state. The non-epitaxial recrystallization from both the surface and the interfacial region follows. The final regrown layer has a slightly higher refractive index than the crystalline value, indicating a high residual defect concentration. The temperature dependent regrowth velocity and the activation energy for this process are determined. The second part studies the free carrier activation in Be-implanted GaAs. Free holes are activated with prolonged annealing at 400(DEGREES)C ((TURN)50 hours) or a shorter time at higher temperature. The carrier contribution to the dielectric constant is calculated from the classical model and best fit to the reflection results show that the carrier profile can be approximated by a two half-Gaussians joined smoothly at their peaks. The peak position for the profile occurs deeper than that for the Be impurity profile measured by SIMS. The carrier distribution is speculated to be the result of the Be impurity, Ga vacancy and possible compensating defect distributions. The final part studies the free carrier removal by proton implantation in heavily doped, high carrier density, n-type GaAs. The as-implantation region is highly compensated until annealed at 550(DEGREES)C. After annealing between 300 and 400(DEGREES)C, the infrared results show a partially compensated region diffused deeply into substrate from the as-implanted region. The SIMS measurements show a well correlated hydrogen diffusion layer which suggests that the compensation defect is hydrogen related. After 500(DEGREES)C, the hydrogen diffusion layer is still observed, but the compensation layer has disappeared. The diffusion coefficient of the compensating defect and the activation energy for this process are determined. Carbon -implanted GaAs having a high carrier density substrate is also measured and compared with the H-implanted cases. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).
NASA Astrophysics Data System (ADS)
Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui
2012-08-01
Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.
Sensitivity to changes in amplitude envelope
NASA Astrophysics Data System (ADS)
Gallun, Erick; Hafter, Ervin R.; Bonnel, Anne-Marie
2002-05-01
Detection of a brief increment in a tonal pedestal is less well predicted by energy-detection (e.g., Macmillan, 1973; Bonnel and Hafter, 1997) than by sensitivity to changes in the stimulus envelope. As this implies a mechanism similar to an envelope extractor (Viemeister, 1979), sinusoidal amplitude modulation was used to mask a single ramped increment (10, 45, or 70 ms) added to a 1000-ms pedestal with carrier frequency (cf)=477 Hz. As in informational masking (Neff, 1994) and ``modulation-detection interference'' (Yost and Sheft, 1989), interference occurred with masker cfs of 477 and 2013 Hz. While slight masking was found with modulation frequencies (mfs) from 16 to 96 Hz, masking grew inversely with still lower mfs, being greatest for mf=4 Hz. This division is reminiscent of that said to separate sensations of ``roughness'' and ``beats,'' respectively (Terhardt, 1974), with the latter also being related to durations associated with auditory groupings in music and speech. Importantly, this result held for all of the signal durations and onset-offset ramps tested, suggesting that an increment on a pedestal is treated as a single auditory object whose detection is most difficult in the presence of other objects (in this case, ``beats'').
Patkowski, Mateusz; Królikowska, Aleksandra; Reichert, Paweł
2016-01-01
The reconstruction of the anterior cruciate ligament (ACL) of the knee joint is a standard in ACL complete rupture treatment in athletes. One of the weakest points of this procedure is tibial fixation of grafts. The aim was, firstly, to evaluate patients 3-4 years after primary ACL reconstruction with the use of autologous ipsilateral STGR grafts and with tibial fixation using a bioabsorbable interference screw composed of PLLA-HA or WasherLoc, comparing the postoperative result to the preoperative condition and, secondly, to compare the results between the two groups of patients with different tibial fixation. Group I consisted of 20 patients with a bioabsorbable interference screw composed of PLLA-HA tibial fixation. In Group II, there were 22 patients after ACL reconstruction with the use of WasherLoc tibial fixation. The Lachman test, pivot-shift test, Lysholm Knee Scoring Scale and 2000 International Knee Documentation Committee (2000 IKDC) Subjective Knee Evaluation Form were used to evaluate the results. The intra-group comparison of the results of the 2000 IKDC Subjective Knee Evaluation Form and Lysholm Knee Scoring Scale obtained in the groups studied showed statistically significant differences between the evaluation performed preoperatively and postoperatively. The inter-group comparison of the results of the 2000 IKDC Subjective Knee Evaluation Form and Lysholm Knee Scoring Scale obtained postoperatively showed no statistically significant differences between the two groups. An evaluation 3-4 years after ACL reconstruction with the use of autologous ipsilateral STGR grafts demonstrated significant progress from the preoperative condition to the postoperative result in patients with tibial fixation using a bioabsorbable interference screw composed of PLLA-HA as well as in patients with WasherLoc tibial fixation. There were no differences found between the two groups of patients after ACL reconstruction in terms of manual stability testing or a subjective assessment of knee joint outcomes.
Intestinal absorption of water-soluble vitamins in health and disease.
Said, Hamid M
2011-08-01
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. © The Authors Journal compilation © 2011 Biochemical Society
Intestinal absorption of water-soluble vitamins in health and disease
Said, Hamid M.
2014-01-01
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. PMID:21749321
The Impact of Creutzfeldt–Jakob Disease on Surgical Practice
Lumley, John SP
2008-01-01
Creutzfeldt–Jakob disease (CJD) is characterised by abnormal prion protein that can replicate and replace nervous tissue, with rapid lethal neurodegenerative consequences. The transmissible nature of CJD has been known for half a century and transmission has occurred through neurosurgical procedures. Variant Creutzfeldt–Jakob disease (vCJD) emerged in 1996, and the presence of abnormal prion in lymphatic tissue extended the number of surgical specialties dealing with infected material; transmission through blood transfusion raised the possibilities of a large carrier pool and spread of epidemic proportion. The abnormal prion is difficult to remove and this could influence future decontamination programmes. Contaminated instruments must be withdrawn from surgical practice, and this can interfere with the efficient running of a surgical unit and optimal patient care. There is an urgent need for reliable methods for the detection of abnormal prion, within and outside the body. These will help to clarify the epidemiology of CJD, and to reduce its transmission via blood and tissue. They will also allow determination of the efficacy of new decontamination products in surgical practice, and the value of any treatment of sufferers and carriers of CJD. In the meantime, continued vigilance and informed regulation of all aspects of CJD must remain. PMID:18325202
Taherkhani, Samira; Mohammadi, Mahmood; Daoud, Jamal; Martel, Sylvain; Tabrizian, Maryam
2014-05-27
The targeted and effective delivery of therapeutic agents remains an unmet goal in the field of controlled release systems. Magnetococcus marinus MC-1 magnetotactic bacteria (MTB) are investigated as potential therapeutic carriers. By combining directional magnetotaxis-microaerophilic control of these self-propelled agents, a larger amount of therapeutics can be delivered surpassing the diffusion limits of large drug molecules toward hard-to-treat hypoxic regions in solid tumors. The potential benefits of these carriers emphasize the need to develop an adequate method to attach therapeutic cargos, such as drug-loaded nanoliposomes, without substantially affecting the cell's ability to act as delivery agents. In this study, we report on a strategy for the attachment of liposomes to MTB (MTB-LP) through carbodiimide chemistry. The attachment efficacy, motility, and magnetic response of the MTB-LP were investigated. Results confirm that a substantial number of nanoliposomes (∼70) are efficiently linked with MTB without compromising functionality and motility. Cytotoxicity assays using three different cell types (J774, NIH/3T3, and Colo205) reveal that liposomal attachments to MTB formulation improve the biocompatibility of MTB, whereas attachment does not interfere with liposomal uptake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, R.; Heebner, J.
In this study, we demonstrate a novel, single-shot recording technology for transient optical signals. A resolution of 0.4 ps over a record length of 54 ps was demonstrated. Here, a pump pulse crossing through a signal samples a diagonal “slice” of space–time, enabling a camera to record spatially the time content of the signal. Unlike related X (2)-based cross-correlation techniques, here the signal is sampled through optically pumped carriers that modify the refractive index of a silicon wafer. Surrounding the wafer with birefringent retarders enables two time-staggered, orthogonally polarized signal copies to probe the wafer. Recombining the copies at amore » final crossed polarizer destructively interferes with them, except during the brief stagger window, where a differential phase shift is incurred. This enables the integrating response of the rapidly excited but persistent carriers to be optically differentiated. Lastly, this sampling mechanism has several advantages that enable scaling to long record lengths, including making use of large, inexpensive semiconductor wafers, eliminating the need for phase matching, broad insensitivity to the spectral and angular properties of the pump, and overall hardware simplicity.« less
Muir, R.; Heebner, J.
2017-10-24
In this study, we demonstrate a novel, single-shot recording technology for transient optical signals. A resolution of 0.4 ps over a record length of 54 ps was demonstrated. Here, a pump pulse crossing through a signal samples a diagonal “slice” of space–time, enabling a camera to record spatially the time content of the signal. Unlike related X (2)-based cross-correlation techniques, here the signal is sampled through optically pumped carriers that modify the refractive index of a silicon wafer. Surrounding the wafer with birefringent retarders enables two time-staggered, orthogonally polarized signal copies to probe the wafer. Recombining the copies at amore » final crossed polarizer destructively interferes with them, except during the brief stagger window, where a differential phase shift is incurred. This enables the integrating response of the rapidly excited but persistent carriers to be optically differentiated. Lastly, this sampling mechanism has several advantages that enable scaling to long record lengths, including making use of large, inexpensive semiconductor wafers, eliminating the need for phase matching, broad insensitivity to the spectral and angular properties of the pump, and overall hardware simplicity.« less
Cremer, Signe E; Krogh, Anne K H; Hedström, Matilda E K; Christiansen, Liselotte B; Tarnow, Inge; Kristensen, Annemarie T
2018-06-01
Platelet microparticles (PMPs) are subcellular procoagulant vesicles released upon platelet activation. In people with clinical diseases, alterations in PMP concentrations have been extensively investigated, but few canine studies exist. This study aims to validate a canine flow cytometric protocol for PMP quantification and to assess the influence of calcium on PMP concentrations. Microparticles (MP) were quantified in citrated whole blood (WB) and platelet-poor plasma (PPP) using flow cytometry. Anti-CD61 antibody and Annexin V (AnV) were used to detect platelets and phosphatidylserine, respectively. In 13 healthy dogs, CD61 + /AnV - concentrations were analyzed with/without a calcium buffer. CD61 + /AnV - , CD61 + /AnV + , and CD61 - /AnV + MP quantification were validated in 10 healthy dogs. The coefficient of variation (CV) for duplicate (intra-assay) and parallel (inter-assay) analyses and detection limits (DLs) were calculated. CD61 + /AnV - concentrations were higher in calcium buffer; 841,800 MP/μL (526,000-1,666,200) vs without; 474,200 MP/μL (278,800-997,500), P < .05. In WB, PMP were above DLs and demonstrated acceptable (<20%) intra-assay and inter-assay CVs in 9/10 dogs: 1.7% (0.5-8.9) and 9.0% (0.9-11.9), respectively, for CD61 + /AnV - and 2.4% (0.2-8.7) and 7.8% (0.0-12.8), respectively, for CD61 + /AnV + . Acceptable CVs were not seen for the CD61 - /AnV + MP. In PPP, quantifications were challenged by high inter-assay CV, overlapping DLs and hemolysis and lipemia interfered with quantification in 5/10 dogs. Calcium induced higher in vitro PMP concentrations, likely due to platelet activation. PMP concentrations were reliably quantified in WB, indicating the potential for clinical applications. PPP analyses were unreliable due to high inter-CV and DL overlap, and not obtainable due to hemolysis and lipemia interference. © 2018 American Society for Veterinary Clinical Pathology.
Zhao, Hongbo; Chen, Yuying; Feng, Wenquan; Zhuang, Chen
2018-05-25
Inter-satellite links are an important component of the new generation of satellite navigation systems, characterized by low signal-to-noise ratio (SNR), complex electromagnetic interference and the short time slot of each satellite, which brings difficulties to the acquisition stage. The inter-satellite link in both Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) adopt the long code spread spectrum system. However, long code acquisition is a difficult and time-consuming task due to the long code period. Traditional folding methods such as extended replica folding acquisition search technique (XFAST) and direct average are largely restricted because of code Doppler and additional SNR loss caused by replica folding. The dual folding method (DF-XFAST) and dual-channel method have been proposed to achieve long code acquisition in low SNR and high dynamic situations, respectively, but the former is easily affected by code Doppler and the latter is not fast enough. Considering the environment of inter-satellite links and the problems of existing algorithms, this paper proposes a new long code acquisition algorithm named dual-channel acquisition method based on the extended replica folding algorithm (DC-XFAST). This method employs dual channels for verification. Each channel contains an incoming signal block. Local code samples are folded and zero-padded to the length of the incoming signal block. After a circular FFT operation, the correlation results contain two peaks of the same magnitude and specified relative position. The detection process is eased through finding the two largest values. The verification takes all the full and partial peaks into account. Numerical results reveal that the DC-XFAST method can improve acquisition performance while acquisition speed is guaranteed. The method has a significantly higher acquisition probability than folding methods XFAST and DF-XFAST. Moreover, with the advantage of higher detection probability and lower false alarm probability, it has a lower mean acquisition time than traditional XFAST, DF-XFAST and zero-padding.
Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery
NASA Astrophysics Data System (ADS)
Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan
2016-03-01
Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications.