Detecting dominant motion patterns in crowds of pedestrians
NASA Astrophysics Data System (ADS)
Saqib, Muhammad; Khan, Sultan Daud; Blumenstein, Michael
2017-02-01
As the population of the world increases, urbanization generates crowding situations which poses challenges to public safety and security. Manual analysis of crowded situations is a tedious job and usually prone to errors. In this paper, we propose a novel technique of crowd analysis, the aim of which is to detect different dominant motion patterns in real-time videos. A motion field is generated by computing the dense optical flow. The motion field is then divided into blocks. For each block, we adopt an Intra-clustering algorithm for detecting different flows within the block. Later on, we employ Inter-clustering for clustering the flow vectors among different blocks. We evaluate the performance of our approach on different real-time videos. The experimental results show that our proposed method is capable of detecting distinct motion patterns in crowded videos. Moreover, our algorithm outperforms state-of-the-art methods.
Shimoyama, Hiromitsu
2018-05-07
Calmodulin (CaM) is a multifunctional calcium-binding protein, which regulates various biochemical processes. CaM acts via structural changes and complex forming with its target enzymes. CaM has two globular domains (N-lobe and C-lobe) connected by a long linker region. Upon calcium binding, the N-lobe and C-lobe undergo local conformational changes, after that, entire CaM wraps the target enzyme through a large conformational change. However, the regulation mechanism, such as allosteric interactions regulating the conformational changes, is still unclear. In order to clarify the allosteric interactions, in this study, experimentally obtained 'real' structures are compared to 'model' structures lacking the allosteric interactions. As the allosteric interactions would be absent in calcium-free CaM (apo-CaM), allostery-eliminated calcium-bound CaM (holo-CaM) models were constructed by combining the apo-CaM's linker and the holo-CaM's N- and C-lobe. Before the comparison, the 'real' and 'model' structures were clustered and cluster-cluster relationship was determined by a principal component analysis. The structures were compared based on the relationship, then, a distance map and a contact probability analysis clarified that the inter-domain motion is regulated by several groups of inter-domain contacting residue pairs. The analyses suggested that these residues cause inter-domain translation and rotation, and as a consequence, the motion encourage structural diversity. The resultant diversity would contribute to the functional versatility of CaM.
Moritsugu, Kei; Koike, Ryotaro; Yamada, Kouki; Kato, Hiroaki; Kidera, Akinori
2015-01-01
Molecular dynamics (MD) simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a “Motion Tree”, to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC) transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory. PMID:26148295
NASA Astrophysics Data System (ADS)
Pan, Patricia Wang; Dickson, Russell J.; Gordon, Heather L.; Rothstein, Stuart M.; Tanaka, Shigenori
2005-01-01
Functionally relevant motion of proteins has been associated with a number of atoms moving in a concerted fashion along so-called "collective coordinates." We present an approach to extract collective coordinates from conformations obtained from molecular dynamics simulations. The power of this technique for differentiating local structural fuctuations between classes of conformers obtained by clustering is illustrated by analyzing nanosecond-long trajectories for the response regulator protein Spo0F of Bacillus subtilis, generated both in vacuo and using an implicit-solvent representation. Conformational clustering is performed using automated histogram filtering of the inter-Cα distances. Orthogonal (varimax) rotation of the vectors obtained by principal component analysis of these interresidue distances for the members of individual clusters is key to the interpretation of collective coordinates dominating each conformational class. The rotated loadings plots isolate significant variation in interresidue distances, and these are associated with entire mobile secondary structure elements. From this we infer concerted motions of these structural elements. For the Spo0F simulations employing an implicit-solvent representation, collective coordinates obtained in this fashion are consistent with the location of the protein's known active sites and experimentally determined mobile regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Chen, Guanrong
All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding ormore » deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.« less
NASA Astrophysics Data System (ADS)
Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong
2014-06-01
All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.
Membership, binarity, and rotation of F-G-K stars in the open cluster Blanco 1
NASA Astrophysics Data System (ADS)
Mermilliod, J.-C.; Platais, I.; James, D. J.; Grenon, M.; Cargile, P. A.
2008-07-01
Context: The nearby open cluster Blanco 1 is of considerable astrophysical interest for formation and evolution studies of open clusters because it is the third highest Galactic latitude cluster known. It has been observed often, but so far no definitive and comprehensive membership determination is readily available. Aims: An observing programme was carried out to study the stellar population of Blanco 1, and especially the membership and binary frequency of the F5-K0 dwarfs. Methods: We obtained radial-velocities with the CORAVEL spectrograph in the field of Blanco 1 for a sample of 148 F-G-K candidate stars in the magnitude range 10 < V < 14. New proper motions and UBVI CCD photometric data from two extensive surveys were obtained independently and are used to establish reliable cluster membership assignments in concert with radial-velocity data. Results: The membership of 68 stars is confirmed on the basis of proper motion, radial velocity, and photometric criteria. Fourteen spectroscopic- and suspected binaries (2 SB2s, 9 SB1s, 3 SB?) have been discovered among the confirmed members. Thirteen additional stars are located above the main sequence or close to the binary ridge, with radial velocities and proper motions supporting their membership. These are probable binaries with wide separations. Nine binaries (7 SB1 and 2 SB2) were detected among the field stars. The spectroscopic binary frequency among members is 20% (14/68); however, the overall binary rate reaches 40% (27/68) if one includes the photometric binaries. The cluster mean heliocentric radial velocity is +5.53 ± 0.11 km s-1 based on the most reliable 49 members. The V sin i distribution is similar to that of the Pleiades, confirming the age similarities between the two clusters. Conclusions: This study clearly demonstrates that, in spite of the cluster's high Galactic latitude, three membership criteria - radial velocity, proper motion, and photometry - are necessary for performing a reliable membership selection. Furthermore, even with accurate and extensive data, ambiguous cases still remain. Based on observations collected with the Danish 1.54-m and the Swiss telescopes at the European Southern Observatory, La Silla, Chile, and with the old YALO 1-m telescope at the Cerro Tololo InterAmerican Observatory, Chile. Table [see full textsee full textsee full textsee full textsee full textsee full text] is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Shi, F; Tian, Z
2014-06-01
Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motionmore » pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable to motion ranges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, S.
1992-01-01
An equivalent circuit model was postulated for PFSI (perfluoro-sulfanate-ionomer) polymers. It successfully models three different dielectric relaxation mechanisms taking place within long and short sidechain PFSI's in an alternating electric field. The three dielectric processes are long-range ion inter-cluster hopping in the low frequency region, short-range intra-cluster polarization occurred in frequencies at about 10[sup 3] to 10[sup 6] Hz, and Debye-like orientation of water molecules taking place at very high frequencies. When membranes are annealed in the proximity of the glass transition temperature of ionic clusters, the packing of sulfonate groups becomes more efficient. This is by the fact thatmore » the symmetrical parameter of the distribution of relaxation time of the Cole-Cole equation increases with annealing time. The cluster activities of the long and short sidechain polymers act differently in different electrolyte solutions. The sidechains of the long sidechain polymer act like a spring, it contracts while the material was equilibrated in low concentration solutions and it expands as equilibrated in concentrated solutions. The cluster dimension of the long sidechain material does not vary too much. The cluster dimension of short sidechain polymers can vary significantly on different electrolyte solutions.« less
Inter-segmental motions of the foot: differences between younger and older healthy adult females.
Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Lee, Doo Jae; Bae, Kee Jeong; Lee, Kyoung Min; Choi, In Ho
2017-01-01
Although accumulative evidence exists that support the applicability of multi-segmental foot models (MFMs) in evaluating foot motion in various pathologic conditions, little is known of the effect of aging on inter-segmental foot motion. The objective of this study was to evaluate differences in inter-segmental motion of the foot between older and younger adult healthy females during gait using a MFM with 15-marker set. One hundred symptom-free females, who had no radiographic evidence of osteoarthritis, were evaluated using MFM with 15-marker set. They were divided into young ( n = 50, 20-35 years old) and old ( n = 50, 60-69 years old) groups. Coefficients of multiple correlations were evaluated to assess the similarity of kinematic curve. Inter-segmental angles (hindfoot, forefoot, and hallux) were calculated at each gait phase. To evaluate the effect of gait speed on intersegmental foot motion, subgroup analysis was performed according to the similar speed of walking. Kinematic curves showed good or excellent similarity in most parameters. Range of motion in the sagittal ( p < 0.001) and transverse ( p = 0.001) plane of the hallux, and sagittal ( p = 0.023) plane of the forefoot was lower in older females. The dorsiflexion ( p = 0.001) of the hallux at terminal stance and pre-swing phases was significantly lower in older females. When we compared young and older females with similar speed, these differences remained. Although the overall kinematic pattern was similar between young and older females, reduced range of inter-segmental motion was observed in the older group. Our results suggest that age-related changes need to be considered in studies evaluating inter-segmental motion of the foot.
Wagoner, Amanda L; Allen, Matthew J; Zindl, Claudia; Litsky, Alan; Orsher, Robert; Ben-Amotz, Ron
2018-04-16
Various materials are used to construct splints for mid-diaphyseal tibial fracture stabilization. The objective of this study was to compare construct stiffness and inter-fragmentary bone motion when fibreglass (FG) or thermoplastic (TP) splints are applied to either the lateral or cranial aspect of the tibia in a mid-diaphyseal fracture model. A coaptation bandage was applied to eight cadaveric canine pelvic limbs, with a custom-formed splint made of either FG or TP material applied to either the lateral or cranial aspect of the osteotomized tibia. Four-point bending tests were performed to evaluate construct stiffness and inter-fragmentary motion in both frontal and sagittal planes. For a given material, FG or TP, construct stiffness was not affected by splint location. Construct stiffness was significantly greater with cranial FG splints than with cranial TP splints ( p < 0.05), but this difference was not significant when comparing splints applied laterally ( p = 0.15). Inter-fragmentary motions in the sagittal and frontal planes were similar across splint types for cranial splints, but for lateral splints there was a 64% reduction in frontal plane motion when FG was used as the splint material ( p = 0.03). FG produces a stiffer construct, but the difference is not reflected in a reduction in inter-fragmentary motion. For lateral splints, FG splints are associated with reduced inter-fragmentary motion as compared with TP and may therefore have slight superiority for this application. Schattauer GmbH Stuttgart.
Bedekar, Nilima; Suryawanshi, Mayuri; Rairikar, Savita; Sancheti, Parag; Shyam, Ashok
2014-01-01
Evaluation of range of motion (ROM) is integral part of assessment of musculoskeletal system. This is required in health fitness and pathological conditions; also it is used as an objective outcome measure. Several methods are described to check spinal flexion range of motion. Different methods for measuring spine ranges have their advantages and disadvantages. Hence, a new device was introduced in this study using the method of dual inclinometer to measure lumbar spine flexion range of motion (ROM). To determine Intra and Inter-rater reliability of mobile device goniometer in measuring lumbar flexion range of motion. iPod mobile device with goniometer software was used. The part being measure i.e the back of the subject was suitably exposed. Subject was standing with feet shoulder width apart. Spinous process of second sacral vertebra S2 and T12 were located, these were used as the reference points and readings were taken. Three readings were taken for each: inter-rater reliability as well as the intra-rater reliability. Sufficient rest was given between each flexion movement. Intra-rater reliability using ICC was r=0.920 and inter-rater r=0.812 at CI 95%. Validity r=0.95. Mobile device goniometer has high intra-rater reliability. The inter-rater reliability was moderate. This device can be used to assess range of motion of spine flexion, representing uni-planar movement.
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K
2013-03-01
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Kim, I; Ye, S
Purpose: This study aimed to assess inter- and intra-fractional motion for extremity Soft Tissue Sarcoma (STS) patients, by using in-house real-time optical image-based monitoring system (ROIMS) with infra-red (IR) external markers. Methods: Inter- and intra-fractional motions for five extremity (1 upper, 4 lower) STS patients received postoperative 3D conformal radiotherapy (3D-CRT) were measured by registering the image acquired by ROIMS with the planning CT image (REG-ROIMS). To compare with the X-ray image-based monitoring, pre- and post-treatment cone beam computed tomography (CBCT) scans were performed once per week and registered with planning CT image as well (REG-CBCT). If the CBCT scanmore » is not feasible due to the large couch shift, AP and LR on-board imager (OBI) images were acquired. The comparison was done by calculating mutual information (MI) of those registered images. Results: The standard deviation (SD) of the inter-fractional motion was 2.6 mm LR, 2.8 mm SI, and 2.0 mm AP, and the SD of the intra-fractional motion was 1.4 mm, 2.1 mm, and 1.3 mm in each axis, respectively. The SD of rotational inter-fractional motion was 0.6° pitch, 0.9° yaw, and 0.8° roll and the SD of rotational intra-fractional motion was 0.4° pitch, 0.9° yaw, and 0.7° roll. The derived averaged MI values were 0.83, 0.92 for REG-CBCT without rotation and REG-ROIMS with rotation, respectively. Conclusion: The in-house real-time optical image-based monitoring system was implemented clinically and confirmed the feasibility to assess inter- and intra-fractional motion for extremity STS patients while the daily basis and real-time CBCT scan is not feasible in clinic.« less
Inter-fraction variations in respiratory motion models
NASA Astrophysics Data System (ADS)
McClelland, J. R.; Hughes, S.; Modat, M.; Qureshi, A.; Ahmad, S.; Landau, D. B.; Ourselin, S.; Hawkes, D. J.
2011-01-01
Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.
How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework.
Mantovani, Giulia; Lamontagne, Mario
2017-04-01
The choice of marker set is a source of variability in motion analysis. Studies exist which assess the performance of marker sets when direct kinematics is used, but these results cannot be extrapolated to the inverse kinematic framework. Therefore, the purpose of this study was to examine the sensitivity of kinematic outcomes to inter-marker set variability in an inverse kinematic framework. The compared marker sets were plug-in-gait, University of Ottawa motion analysis model and a three-marker-cluster marker set. Walking trials of 12 participants were processed in opensim. The coefficient of multiple correlations was very good for sagittal (>0.99) and transverse (>0.92) plane angles, but worsened for the transverse plane (0.72). Absolute reliability indices are also provided for comparison among studies: minimum detectable change values ranged from 3 deg for the hip sagittal range of motion to 16.6 deg of the hip transverse range of motion. Ranges of motion of hip and knee abduction/adduction angles and hip and ankle rotations were significantly different among the three marker configurations (P < 0.001), with plug-in-gait producing larger ranges of motion. Although the same model was used for all the marker sets, the resulting minimum detectable changes were high and clinically relevant, which warns for caution when comparing studies that use different marker configurations, especially if they differ in the joint-defining markers.
Analysis of 3D vortex motion in a dusty plasma
NASA Astrophysics Data System (ADS)
Mulsow, M.; Himpel, M.; Melzer, A.
2017-12-01
Dust clusters of about 50-1000 particles have been confined near the sheath region of a gaseous radio-frequency plasma discharge. These compact clusters exhibit a vortex motion which has been reconstructed in full three dimensions from stereoscopy. Smaller clusters are found to show a competition between solid-like cluster structure and vortex motion, whereas larger clusters feature very pronounced vortices. From the three-dimensional analysis, the dust flow field has been found to be nearly incompressible. The vortices in all observed clusters are essentially poloidal. The dependence of the vorticity on the cluster size is discussed. Finally, the vortex motion has been quantitatively attributed to radial gradients of the ion drag force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan Rezaeian, N; Chi, Y; Zhou, Y
2016-06-15
Purpose: We are conducting a clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer. Doses to three targets, prostate, intra-prostatic lesion, and pelvic lymph node (PLN) region, are escalated to three different levels via simultaneous integrated boost technique. Inter-/intra-fractional organ motions deteriorate planned dose distribution. This study aims at developing a dose reconstruction system to comprehensively understand the impacts of organ motion in our clinical trial. Methods: A 4D dose reconstruction system has been developed for this study. Using a GPU-based Monte-Carlo dose engine and delivery log file, the system is able to reconstruct dose on staticmore » or dynamic anatomy. For prostate and intra-prostatic targets, intra-fractional motion is the main concern. Motion trajectory acquired from Calypso in previously treated SBRT patients were used to perform 4D dose reconstructions. For pelvic target, inter-fractional motion is one concern. Eight patients, each with four cone beam CTs, were used to derive fractional motion. The delivered dose was reconstructed on the deformed anatomy. Dosimetric parameters for delivered dose distributions of the three targets were extracted and compared with planned levels. Results: For prostate intra-fractional motion, the mean 3D motion amplitude during beam delivery ranged from 1.5mm to 5.0mm and the average among all patients was 2.61mm. Inter-fractional motion for the PLN target was more significant. The average amplitude among patients was 4mm with the largest amplitude up to 9.6mm. The D95% deviation from planned level for prostate PTVs and GTVs are on average less than<0.1% and this deviation for intra-prostatic lesion PTVs and GTVs were more prominent. The dose at PLN was significantly affected with D{sub 95}% reduced by up to 44%. Conclusion: Intra-/inter-fractional organ motion is a concern for high-risk prostate SBRT, particularly for the PLN target. Our dose reconstruction approach can also serve as the basis to guide treatment adaptation.« less
Are Earthquake Clusters/Supercycles Real or Random?
NASA Astrophysics Data System (ADS)
Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.
2016-12-01
Long records of earthquakes at plate boundaries such as the San Andreas or Cascadia often show that large earthquakes occur in temporal clusters, also termed supercycles, separated by less active intervals. These are intriguing because the boundary is presumably being loaded by steady plate motion. If so, earthquakes resulting from seismic cycles - in which their probability is small shortly after the past one, and then increases with time - should occur quasi-periodically rather than be more frequent in some intervals than others. We are exploring this issue with two approaches. One is to assess whether the clusters result purely by chance from a time-independent process that has no "memory." Thus a future earthquake is equally likely immediately after the past one and much later, so earthquakes can cluster in time. We analyze the agreement between such a model and inter-event times for Parkfield, Pallet Creek, and other records. A useful tool is transformation by the inverse cumulative distribution function, so the inter-event times have a uniform distribution when the memorylessness property holds. The second is via a time-variable model in which earthquake probability increases with time between earthquakes and decreases after an earthquake. The probability of an event increases with time until one happens, after which it decreases, but not to zero. Hence after a long period of quiescence, the probability of an earthquake can remain higher than the long-term average for several cycles. Thus the probability of another earthquake is path dependent, i.e. depends on the prior earthquake history over multiple cycles. Time histories resulting from simulations give clusters with properties similar to those observed. The sequences of earthquakes result from both the model parameters and chance, so two runs with the same parameters look different. The model parameters control the average time between events and the variation of the actual times around this average, so models can be strongly or weakly time-dependent.
The young star cluster population of M51 with LEGUS - II. Testing environmental dependences
NASA Astrophysics Data System (ADS)
Messa, Matteo; Adamo, A.; Calzetti, D.; Reina-Campos, M.; Colombo, D.; Schinnerer, E.; Chandar, R.; Dale, D. A.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Elmegreen, B. G.; Fumagalli, M.; Johnson, K. E.; Kruijssen, J. M. D.; Östlin, G.; Shabani, F.; Smith, L. J.; Whitmore, B. C.
2018-06-01
It has recently been established that the properties of young star clusters (YSCs) can vary as a function of the galactic environment in which they are found. We use the cluster catalogue produced by the Legacy Extragalactic UV Survey (LEGUS) collaboration to investigate cluster properties in the spiral galaxy M51. We analyse the cluster population as a function of galactocentric distance and in arm and inter-arm regions. The cluster mass function exhibits a similar shape at all radial bins, described by a power law with a slope close to -2 and an exponential truncation around 105 M⊙. While the mass functions of the YSCs in the spiral arm and inter-arm regions have similar truncation masses, the inter-arm region mass function has a significantly steeper slope than the one in the arm region, a trend that is also observed in the giant molecular cloud mass function and predicted by simulations. The age distribution of clusters is dependent on the region considered, and is consistent with rapid disruption only in dense regions, while little disruption is observed at large galactocentric distances and in the inter-arm region. The fraction of stars forming in clusters does not show radial variations, despite the drop in the H2 surface density measured as a function of galactocentric distance. We suggest that the higher disruption rate observed in the inner part of the galaxy is likely at the origin of the observed flat cluster formation efficiency radial profile.
Denoising Algorithm for CFA Image Sensors Considering Inter-Channel Correlation.
Lee, Min Seok; Park, Sang Wook; Kang, Moon Gi
2017-05-28
In this paper, a spatio-spectral-temporal filter considering an inter-channel correlation is proposed for the denoising of a color filter array (CFA) sequence acquired by CCD/CMOS image sensors. Owing to the alternating under-sampled grid of the CFA pattern, the inter-channel correlation must be considered in the direct denoising process. The proposed filter is applied in the spatial, spectral, and temporal domain, considering the spatio-tempo-spectral correlation. First, nonlocal means (NLM) spatial filtering with patch-based difference (PBD) refinement is performed by considering both the intra-channel correlation and inter-channel correlation to overcome the spatial resolution degradation occurring with the alternating under-sampled pattern. Second, a motion-compensated temporal filter that employs inter-channel correlated motion estimation and compensation is proposed to remove the noise in the temporal domain. Then, a motion adaptive detection value controls the ratio of the spatial filter and the temporal filter. The denoised CFA sequence can thus be obtained without motion artifacts. Experimental results for both simulated and real CFA sequences are presented with visual and numerical comparisons to several state-of-the-art denoising methods combined with a demosaicing method. Experimental results confirmed that the proposed frameworks outperformed the other techniques in terms of the objective criteria and subjective visual perception in CFA sequences.
NASA Astrophysics Data System (ADS)
Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.
2017-09-01
We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stemkens, B; Glitzner, M; Kontaxis, C
Purpose: To assess the dose deposition in simulated single-fraction MR-Linac treatments of renal cell carcinoma, when inter-cycle respiratory motion variation is taken into account using online MRI. Methods: Three motion characterization methods, with increasing complexity, were compared to evaluate the effect of inter-cycle motion variation and drifts on the accumulated dose for an SBRT kidney MR-Linac treatment: 1) STATIC, in which static anatomy was assumed, 2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, based on the respiratory phase and 3) PCA, in which 3D volumes were generated using a PCA-model, enabling the detection of inter-cycle variations and drifts. An experimentalmore » ITV-based kidney treatment was simulated in a 1.5T magnetic field on three volunteer datasets. For each volunteer a retrospectively sorted 4D-MRI (ten respiratory phases) and fast 2D cine-MR images (temporal resolution = 476ms) were acquired to simulate MR-imaging during radiation. For each method, the high spatio-temporal resolution 3D volumes were non-rigidly registered to obtain deformation vector fields (DVFs). Using the DVFs, pseudo-CTs (generated from the 4D-MRI) were deformed and the dose was accumulated for the entire treatment. The accuracies of all methods were independently determined using an additional, orthogonal 2D-MRI slice. Results: Motion was most accurately estimated using the PCA method, which correctly estimated drifts and inter-cycle variations (RMSE=3.2, 2.2, 1.1mm on average for STATIC, AVG-RESP and PCA, compared to the 2DMRI slice). Dose-volume parameters on the ITV showed moderate changes (D99=35.2, 32.5, 33.8Gy for STATIC, AVG-RESP and PCA). AVG-RESP showed distinct hot/cold spots outside the ITV margin, which were more distributed for the PCA scenario, since inter-cycle variations were not modeled by the AVG-RESP method. Conclusion: Dose differences were observed when inter-cycle variations were taken into account. The increased inter-cycle randomness in motion as captured by the PCA model mitigates the local (erroneous) hotspots estimated by the AVG-RESP method.« less
Borra, Elena; Visco-Comandini, Federica; Averbeck, Bruno B.
2017-01-01
The statistical structure of intrinsic parietal and parieto-frontal connectivity in monkeys was studied through hierarchical cluster analysis. Based on their inputs, parietal and frontal areas were grouped into different clusters, including a variable number of areas that in most instances occupied contiguous architectonic fields. Connectivity tended to be stronger locally: that is, within areas of the same cluster. Distant frontal and parietal areas were targeted through connections that in most instances were reciprocal and often of different strength. These connections linked parietal and frontal clusters formed by areas sharing basic functional properties. This led to five different medio-laterally oriented pillar domains spanning the entire extent of the parieto-frontal system, in the posterior parietal, anterior parietal, cingulate, frontal, and prefrontal cortex. Different information processing streams could be identified thanks to inter-domain connectivity. These streams encode fast hand reaching and its control, complex visuomotor action spaces, hand grasping, action/intention recognition, oculomotor intention and visual attention, behavioral goals and strategies, and reward and decision value outcome. Most of these streams converge on the cingulate domain, the main hub of the system. All of them are embedded within a larger eye–hand coordination network, from which they can be selectively set in motion by task demands. PMID:28275714
Update of membership and mean proper motion of open clusters from UCAC5 catalog
NASA Astrophysics Data System (ADS)
Dias, W. S.; Monteiro, H.; Assafin, M.
2018-06-01
We present mean proper motions and membership probabilities of individual stars for optically visible open clusters, which have been determined using data from the UCAC5 catalog. This follows our previous studies with the UCAC2 and UCAC4 catalogs, but now using improved proper motions in the GAIA reference frame. In the present study results were obtained for a sample of 1108 open clusters. For five clusters, this is the first determination of mean proper motion, and for the whole sample, we present results with a much larger number of identified astrometric member stars than on previous studies. It is the last update of our Open cluster Catalog based on proper motion data only. Future updates will count on astrometric, photometric and spectroscopic GAIA data as input for analyses.
Large-scale motions in the universe: Using clusters of galaxies as tracers
NASA Technical Reports Server (NTRS)
Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard
1995-01-01
Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).
Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H
2018-04-27
Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neuroanatomical correlates of biological motion detection.
Gilaie-Dotan, Sharon; Kanai, Ryota; Bahrami, Bahador; Rees, Geraint; Saygin, Ayse P
2013-02-01
Biological motion detection is both commonplace and important, but there is great inter-individual variability in this ability, the neural basis of which is currently unknown. Here we examined whether the behavioral variability in biological motion detection is reflected in brain anatomy. Perceptual thresholds for detection of biological motion and control conditions (non-biological object motion detection and motion coherence) were determined in a group of healthy human adults (n=31) together with structural magnetic resonance images of the brain. Voxel based morphometry analyzes revealed that gray matter volumes of left posterior superior temporal sulcus (pSTS) and left ventral premotor cortex (vPMC) significantly predicted individual differences in biological motion detection, but showed no significant relationship with performance on the control tasks. Our study reveals a neural basis associated with the inter-individual variability in biological motion detection, reliably linking the neuroanatomical structure of left pSTS and vPMC with biological motion detection performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Anharmonic effects in large-amplitude vibrations of metal clusters
NASA Astrophysics Data System (ADS)
Karpeshin, F. F.; da Providência, J.; Providência, C.; da Providência, J., Jr.
2002-03-01
Two types of extreme collective motion, large-amplitude many-phonon vibration of the ionic core and rotation of the cluster with high angular momenta, are considered. The interplay between vibration and collective motion towards fission is discussed. A new mechanism of formation and rupture of the neck is proposed which is based on the Franck-Condon principle, and accounts for the interplay between vibration and fission. Under rotation, the change of the shape of the cluster and a phase transition from axially symmetric to triaxial ellipsoid are predicted. For studying the effects, vibrational motion can be induced by laser radiation. Rotational motion may arise in collisions of clusters.
Analysis of ground-motion simulation big data
NASA Astrophysics Data System (ADS)
Maeda, T.; Fujiwara, H.
2016-12-01
We developed a parallel distributed processing system which applies a big data analysis to the large-scale ground motion simulation data. The system uses ground-motion index values and earthquake scenario parameters as input. We used peak ground velocity value and velocity response spectra as the ground-motion index. The ground-motion index values are calculated from our simulation data. We used simulated long-period ground motion waveforms at about 80,000 meshes calculated by a three dimensional finite difference method based on 369 earthquake scenarios of a great earthquake in the Nankai Trough. These scenarios were constructed by considering the uncertainty of source model parameters such as source area, rupture starting point, asperity location, rupture velocity, fmax and slip function. We used these parameters as the earthquake scenario parameter. The system firstly carries out the clustering of the earthquake scenario in each mesh by the k-means method. The number of clusters is determined in advance using a hierarchical clustering by the Ward's method. The scenario clustering results are converted to the 1-D feature vector. The dimension of the feature vector is the number of scenario combination. If two scenarios belong to the same cluster the component of the feature vector is 1, and otherwise the component is 0. The feature vector shows a `response' of mesh to the assumed earthquake scenario group. Next, the system performs the clustering of the mesh by k-means method using the feature vector of each mesh previously obtained. Here the number of clusters is arbitrarily given. The clustering of scenarios and meshes are performed by parallel distributed processing with Hadoop and Spark, respectively. In this study, we divided the meshes into 20 clusters. The meshes in each cluster are geometrically concentrated. Thus this system can extract regions, in which the meshes have similar `response', as clusters. For each cluster, it is possible to determine particular scenario parameters which characterize the cluster. In other word, by utilizing this system, we can obtain critical scenario parameters of the ground-motion simulation for each evaluation point objectively. This research was supported by CREST, JST.
WIYN OPEN CLUSTER STUDY. LV. ASTROMETRY AND MEMBERSHIP IN NGC 6819
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platais, Imants; Gosnell, Natalie M.; Meibom, Soren
2013-08-01
We present proper motions and astrometric membership analysis for 15,750 stars around the intermediate-age open cluster NGC 6819. The accuracy of relative proper motions for well-measured stars ranges from {approx}0.2 mas yr{sup -1} within 10' of the cluster center to 1.1 mas yr{sup -1} outside this radius. In the proper motion vector-point diagram, the separation between the cluster members and field stars is convincing down to V {approx} 18 and within 10' from the cluster center. The formal sum of membership probabilities indicates a total of {approx}2500 cluster members down to V {approx} 22. We confirm the cluster membership ofmore » several variable stars, including some eclipsing binaries. The estimated absolute proper motion of NGC 6819 is {mu}{sub x}{sup abs}=-2.6{+-}0.5 and {mu}{sub y}{sup abs}=-4.2{+-}0.5 mas yr{sup -1}. A cross-identification between the proper motion catalog and a list of X-ray sources in the field of NGC 6819 resulted in a number of new likely optical counterparts, including a candidate CV. For the first time we show that there is significant differential reddening toward NGC 6819.« less
Multi-temporal clustering of continental floods and associated atmospheric circulations
NASA Astrophysics Data System (ADS)
Liu, Jianyu; Zhang, Yongqiang
2017-12-01
Investigating clustering of floods has important social, economic and ecological implications. This study examines the clustering of Australian floods at different temporal scales and its possible physical mechanisms. Flood series with different severities are obtained by peaks-over-threshold (POT) sampling in four flood thresholds. At intra-annual scale, Cox regression and monthly frequency methods are used to examine whether and when the flood clustering exists, respectively. At inter-annual scale, dispersion indices with four-time variation windows are applied to investigate the inter-annual flood clustering and its variation. Furthermore, the Kernel occurrence rate estimate and bootstrap resampling methods are used to identify flood-rich/flood-poor periods. Finally, seasonal variation of horizontal wind at 850 hPa and vertical wind velocity at 500 hPa are used to investigate the possible mechanisms causing the temporal flood clustering. Our results show that: (1) flood occurrences exhibit clustering at intra-annual scale, which are regulated by climate indices representing the impacts of the Pacific and Indian Oceans; (2) the flood-rich months occur from January to March over northern Australia, and from July to September over southwestern and southeastern Australia; (3) stronger inter-annual clustering takes place across southern Australia than northern Australia; and (4) Australian floods are characterised by regional flood-rich and flood-poor periods, with 1987-1992 identified as the flood-rich period across southern Australia, but the flood-poor period across northern Australia, and 2001-2006 being the flood-poor period across most regions of Australia. The intra-annual and inter-annual clustering and temporal variation of flood occurrences are in accordance with the variation of atmospheric circulation. These results provide relevant information for flood management under the influence of climate variability, and, therefore, are helpful for developing flood hazard mitigation schemes.
Globular Clusters: Absolute Proper Motions and Galactic Orbits
NASA Astrophysics Data System (ADS)
Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.
2018-04-01
We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.
Astrometry in the globular cluster M13. II. Membership probabilities from old proper motions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cudworth, K.
Astrometric cluster membership probabilities have been derived from proper motions measured by other authors for stars in the region of the globular cluster M13. Several stars of individual interest are discussed.
Shimamura, Yoshio; Kaneko, Kazuo; Kume, Kazuhiko; Maeda, Mutsuhiro; Iwase, Hideaki
2006-07-01
Previous studies have demonstrated the safe passive range of ankle motion for inter-bone stiffness after internal fixation under load but there is a lack of information about the safe range of ankle motion for early rehabilitation in the absence of loading. The present study was designed to assess the effect of ankle movement on inter-bone displacement characteristics of medial malleolus fractures following three types of internal fixation to determine the safe range of motion. Five lower legs obtained during autopsy were used to assess three types of internal fixation (two with Kirschner-wires alone; two with Kirschner-wires plus tension band wiring; and, one with an AO/ASIF malleolar screw alone). Following a simulated fracture by sawing through the medial malleolus the displacement between the fractured bone ends was measured during a passive range of movement with continuous monitoring using omega (Omega) shaped transducers and a biaxial flexible goniometer. Statistical analysis was performed with repeated measures analysis of variance. Inter-bone displacement was not proportional to the magnitude of movement throughout the range of ankle motion as, when separation exceeded 25 microm, there was increasingly wide separation as plantar-flexion or dorsal-flexion was increased. There was no statistical significant difference between the small amount of inter-bone displacement observed with three types of fixation within the safe range of dorsal-flexion and plantar-flexion for early rehabilitation. However the inter-bone separation when fixation utilized two Kirschner-wires alone tended to be greater than when using the other two types of fixation during dorsal-flexion and eversion. The present study revealed a reproducible range of ankle motion for early rehabilitation which was estimated to be within the range of 20 degrees of dorsal-flexion and 10 degrees of plantar-flexion without eversion. Also, internal fixation with two Kirschner-wires alone does not seem to provide stability achieved by the other two forms of fixation.
VizieR Online Data Catalog: Proper motions of PM2000 open clusters (Krone-Martins+, 2010)
NASA Astrophysics Data System (ADS)
Krone-Martins, A.; Soubiran, C.; Ducourant, C.; Teixeira, R.; Le Campion, J. F.
2010-04-01
We present lists of proper-motions and kinematic membership probabilities in the region of 49 open clusters or possible open clusters. The stellar proper motions were taken from the Bordeaux PM2000 catalogue. The segregation between cluster and field stars and the assignment of membership probabilities was accomplished by applying a fully automated method based on parametrisations for the probability distribution functions and genetic algorithm optimisation heuristics associated with a derivative-based hill climbing algorithm for the likelihood optimization. (3 data files).
NASA Astrophysics Data System (ADS)
Choi, Jiwoong; Leblanc, Lawrence; Choi, Sanghun; Haghighi, Babak; Hoffman, Eric; Lin, Ching-Long
2017-11-01
The goal of this study is to assess inter-subject variability in delivery of orally inhaled drug products to small airways in asthmatic lungs. A recent multiscale imaging-based cluster analysis (MICA) of computed tomography (CT) lung images in an asthmatic cohort identified four clusters with statistically distinct structural and functional phenotypes associating with unique clinical biomarkers. Thus, we aimed to address inter-subject variability via inter-cluster variability. We selected a representative subject from each of the 4 asthma clusters as well as 1 male and 1 female healthy controls, and performed computational fluid and particle simulations on CT-based airway models of these subjects. The results from one severe and one non-severe asthmatic cluster subjects characterized by segmental airway constriction had increased particle deposition efficiency, as compared with the other two cluster subjects (one non-severe and one severe asthmatics) without airway constriction. Constriction-induced jets impinging on distal bifurcations led to excessive particle deposition. The results emphasize the impact of airway constriction on regional particle deposition rather than disease severity, demonstrating the potential of using cluster membership to tailor drug delivery. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837. XSEDE.
Discrete Element Model for Suppression of Coffee-Ring Effect
NASA Astrophysics Data System (ADS)
Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan
2017-02-01
When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future.
Triggered dynamics in a model of different fault creep regimes
Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina
2014-01-01
The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397
Structure preserving clustering-object tracking via subgroup motion pattern segmentation
NASA Astrophysics Data System (ADS)
Fan, Zheyi; Zhu, Yixuan; Jiang, Jiao; Weng, Shuqin; Liu, Zhiwen
2018-01-01
Tracking clustering objects with similar appearances simultaneously in collective scenes is a challenging task in the field of collective motion analysis. Recent work on clustering-object tracking often suffers from poor tracking accuracy and terrible real-time performance due to the neglect or the misjudgment of the motion differences among objects. To address this problem, we propose a subgroup motion pattern segmentation framework based on a multilayer clustering structure and establish spatial constraints only among objects in the same subgroup, which entails having consistent motion direction and close spatial position. In addition, the subgroup segmentation results are updated dynamically because crowd motion patterns are changeable and affected by objects' destinations and scene structures. The spatial structure information combined with the appearance similarity information is used in the structure preserving object tracking framework to track objects. Extensive experiments conducted on several datasets containing multiple real-world crowd scenes validate the accuracy and the robustness of the presented algorithm for tracking objects in collective scenes.
Proper motions of five OB stars with candidate dusty bow shocks in the Carina Nebula
NASA Astrophysics Data System (ADS)
Kiminki, Megan M.; Smith, Nathan; Reiter, Megan; Bally, John
2017-06-01
We constrain the proper motions of five OB stars associated with candidate stellar wind bow shocks in the Carina Nebula using Hubble Space Telescope ACS imaging over 9-10 yr baselines. These proper motions allow us to directly compare each star's motion to the orientation of its candidate bow shock. Although these stars are saturated in our imaging, we assess their motion by the shifts required to minimize residuals in their airy rings. The results limit the direction of each star's motion to sectors less than 90° wide. None of the five stars are moving away from the Carina Nebula's central clusters as runaway stars would be, confirming that a candidate bow shock is not necessarily indicative of a runaway star. Two of the five stars are moving tangentially relative to the orientation of their candidate bow shocks, both of which point at the OB cluster Trumpler 14. In these cases, the large-scale flow of the interstellar medium, powered by feedback from the cluster, appears to dominate over the motion of the star in producing the observed candidate bow shock. The remaining three stars all have some component of motion towards the central clusters, meaning that we cannot distinguish whether their candidate bow shocks are indicators of stellar motion, of the flow of ambient gas or of density gradients in their surroundings. In addition, these stars' lack of outward motion hints that the distributed massive-star population in Carina's South Pillars region formed in place, rather than migrating out from the association's central clusters.
One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys
NASA Astrophysics Data System (ADS)
Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.
2002-12-01
One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.
A system for learning statistical motion patterns.
Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve
2006-09-01
Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.
Two- and three-cluster decays of light nuclei within a hyperspherical harmonics approach
NASA Astrophysics Data System (ADS)
Vasilevsky, V. S.; Lashko, Yu. A.; Filippov, G. F.
2018-06-01
We consider a set of three-cluster systems (4He, 7Li, 7Be, 8Be, 10Be) within a microscopic model which involves hyperspherical harmonics to represent intercluster motion. We selected three-cluster systems which have at least one binary channel. Our aim is to study whether hyperspherical harmonics are able, and under what conditions, to describe two-body channel(s) (nondemocratic motion) or if they are suitable for describing the three-cluster continuum only (democratic motion). It is demonstrated that a rather restricted number of hyperspherical harmonics allows us to describe bound states and scattering states in the two-body continuum for a three-cluster system.
Cluster membership probability: polarimetric approach
NASA Astrophysics Data System (ADS)
Medhi, Biman J.; Tamura, Motohide
2013-04-01
Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.
Clustering Of Left Ventricular Wall Motion Patterns
NASA Astrophysics Data System (ADS)
Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.
1982-11-01
A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.
Yan, Chao-Gan; Cheung, Brian; Kelly, Clare; Colcombe, Stan; Craddock, R. Cameron; Di Martino, Adriana; Li, Qingyang; Zuo, Xi-Nian; Castellanos, F. Xavier; Milham, Michael P.
2014-01-01
Functional connectomics is one of the most rapidly expanding areas of neuroimaging research. Yet, concerns remain regarding the use of resting-state fMRI (R-fMRI) to characterize inter-individual variation in the functional connectome. In particular, recent findings that “micro” head movements can introduce artifactual inter-individual and group-related differences in R-fMRI metrics have raised concerns. Here, we first build on prior demonstrations of regional variation in the magnitude of framewise displacements associated with a given head movement, by providing a comprehensive voxel-based examination of the impact of motion on the BOLD signal (i.e., motion-BOLD relationships). Positive motion-BOLD relationships were detected in primary and supplementary motor areas, particularly in low motion datasets. Negative motion-BOLD relationships were most prominent in prefrontal regions, and expanded throughout the brain in high motion datasets (e.g., children). Scrubbing of volumes with FD > 0.2 effectively removed negative but not positive correlations; these findings suggest that positive relationships may reflect neural origins of motion while negative relationships are likely to originate from motion artifact. We also examined the ability of motion correction strategies to eliminate artifactual differences related to motion among individuals and between groups for a broad array of voxel-wise R-fMRI metrics. Residual relationships between motion and the examined R-fMRI metrics remained for all correction approaches, underscoring the need to covary motion effects at the group-level. Notably, global signal regression reduced relationships between motion and inter-individual differences in correlation-based R-fMRI metrics; Z-standardization (mean-centering and variance normalization) of subject-level maps for R-fMRI metrics prior to group-level analyses demonstrated similar advantages. Finally, our test-retest (TRT) analyses revealed significant motion effects on TRT reliability for R-fMRI metrics. Generally, motion compromised reliability of R-fMRI metrics, with the exception of those based on frequency characteristics – particularly, amplitude of low frequency fluctuations (ALFF). The implications of our findings for decision-making regarding the assessment and correction of motion are discussed, as are insights into potential differences among volume-based metrics of motion. PMID:23499792
Figure-ground segregation modulates apparent motion.
Ramachandran, V S; Anstis, S
1986-01-01
We explored the relationship between figure-ground segmentation and apparent motion. Results suggest that: static elements in the surround can eliminate apparent motion of a cluster of dots in the centre, but only if the cluster and surround have similar "grain" or texture; outlines that define occluding surfaces are taken into account by the motion mechanism; the brain uses a hierarchy of precedence rules in attributing motion to different segments of the visual scene. Being designated as "figure" confers a high rank in this scheme of priorities.
Computational Motion Phantoms and Statistical Models of Respiratory Motion
NASA Astrophysics Data System (ADS)
Ehrhardt, Jan; Klinder, Tobias; Lorenz, Cristian
Breathing motion is not a robust and 100 % reproducible process, and inter- and intra-fractional motion variations form an important problem in radiotherapy of the thorax and upper abdomen. A widespread consensus nowadays exists that it would be useful to use prior knowledge about respiratory organ motion and its variability to improve radiotherapy planning and treatment delivery. This chapter discusses two different approaches to model the variability of respiratory motion. In the first part, we review computational motion phantoms, i.e. computerized anatomical and physiological models. Computational phantoms are excellent tools to simulate and investigate the effects of organ motion in radiation therapy and to gain insight into methods for motion management. The second part of this chapter discusses statistical modeling techniques to describe the breathing motion and its variability in a population of 4D images. Population-based models can be generated from repeatedly acquired 4D images of the same patient (intra-patient models) and from 4D images of different patients (inter-patient models). The generation of those models is explained and possible applications of those models for motion prediction in radiotherapy are exemplified. Computational models of respiratory motion and motion variability have numerous applications in radiation therapy, e.g. to understand motion effects in simulation studies, to develop and evaluate treatment strategies or to introduce prior knowledge into the patient-specific treatment planning.
Predicting lower mantle heterogeneity from 4-D Earth models
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.
2016-04-01
The Earth's lower mantle is characterized by two large-low-shear velocity provinces (LLSVPs), approximately ˜15000 km in diameter and 500-1000 km high, located under Africa and the Pacific Ocean. The spatial stability and chemical nature of these LLSVPs are debated. Here, we compare the lower mantle structure predicted by forward global mantle flow models constrained by tectonic reconstructions (Bower et al., 2015) to an analysis of five global tomography models. In the dynamic models, spanning 230 million years, slabs subducting deep into the mantle deform an initially uniform basal layer containing 2% of the volume of the mantle. Basal density, convective vigour (Rayleigh number Ra), mantle viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify a set of equally-spaced points (average separation ˜0.45°) on the Earth's surface into two groups of points with similar variations in present-day temperature between 1000-2800 km depth, for each model case. Below ˜2400 km depth, this procedure reveals a high-temperature cluster in which mantle temperature is significantly larger than ambient and a low-temperature cluster in which mantle temperature is lower than ambient. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the African and Pacific LLSVPs revealed by a similar cluster analysis of five tomography models (Lekic et al., 2012). Model success is quantified by computing the accuracy and sensitivity of the predicted temperature clusters in predicting the low-velocity cluster obtained from tomography (Lekic et al., 2012). In these cases, the accuracy varies between 0.61-0.80, where a value of 0.5 represents the random case, and the sensitivity ranges between 0.18-0.83. The largest accuracies and sensitivities are obtained for models with Ra ≈ 5 x 107, no asthenosphere (or an asthenosphere restricted to the oceanic domain), and a basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).
Carroll, M; Cheung, J; Zhang, L; Court, L
2012-06-01
To understand the dose-response of the esophagus in photon and proton therapy, it is important to appreciate the variations in delivered dose caused by inter- and intra-fraction motion. Four lung cancer patients were identified who had experienced grade 3 esophagitis during their treatment, and for whom their esophagus was close, but not encompassed by, the treatment volume. Each patient had been treated with proton therapy using 35-37 2Gy fractions, and had received weekly 4DCT imaging. IMRT plans were also created using the same treatment planning constraints. In-house image registration software was used to deform the esophagus contour from the treatment plan to each phase of the 4DCT for each weekly image set. Daily setup using both bony and soft tissue (GTV) registration was simulated, and the treatment dose calculated for each CT image. Changes to the esophagus DVH relative to the treatment plan were quantified in terms of the relative volume of the esophagus receiving 45, 55, and 65Gy (V45, V55 and V65). For all combinations of treatment modality (photon, proton) and setup method (bony, GTV), intra-fraction motion resulted in a range of V45, V55 and V65 from 3.6 to 5.5%. Inter-fraction motion comparing daily exhale or inhale phases showed the range of V45, V55 and V65 from 8.5 to 18.6% (exhale) and 9.8 to 16.3% (inhale). Inter-fractional motion resulted in larger variations in dose delivered to the esophagus than intra-fractional motion. The inter-fraction range for V45, V55 and V65 varied by around 10% between patients. The treatment modality (photon, proton) and setup technique (bony, GTV) had minimal impact on the results. © 2012 American Association of Physicists in Medicine.
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-04-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-06-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
Martens, Jonas; Daly, Daniel; Deschamps, Kevin; Staes, Filip; Fernandes, Ricardo J
2016-12-01
Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zügner, Roland; Tranberg, Roy; Lisovskaja, Vera; Shareghi, Bita; Kärrholm, Johan
2017-07-01
We simultaneously examined 14 patients with OTS and dynamic radiostereometric analysis (RSA) to evaluate the accuracy of both skin- and a cluster-marker models. The mean differences between the OTS and RSA system in hip flexion, abduction, and rotation varied up to 9.5° for the skin-marker and up to 11.3° for the cluster-marker models, respectively. Both models tended to underestimate the amount of flexion and abduction, but a significant systematic difference between the marker and RSA evaluations could only be established for recordings of hip abduction using cluster markers (p = 0.04). The intra-class correlation coefficient (ICC) was 0.7 or higher during flexion for both models and during abduction using skin markers, but decreased to 0.5-0.6 when abduction motion was studied with cluster markers. During active hip rotation, the two marker models tended to deviate from the RSA recordings in different ways with poor correlations at the end of the motion (ICC ≤0.4). During active hip motions soft tissue displacements occasionally induced considerable differences when compared to skeletal motions. The best correlation between RSA recordings and the skin- and cluster-marker model was found for studies of hip flexion and abduction with the skin-marker model. Studies of hip abduction with use of cluster markers were associated with a constant underestimation of the motion. Recordings of skeletal motions with use of skin or cluster markers during hip rotation were associated with high mean errors amounting up to about 10° at certain positions. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1515-1522, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Inter-Joint Coordination in Producing Kicking Velocity of Taekwondo Kicks
Kim, Young Kwan; Kim, Yoon Hyuk; Im, Shin Ja
2011-01-01
The purpose of this study was to investigate joint kinematics of the kicking leg in Taekwondo and to examine the role of inter-joint coordination of the leg in producing the kicking velocity. A new inter-joint coordination index that encompasses three- dimensional hip and knee motions, was defined and applied to the joint kinematic results. Twelve elite Taekwondo athletes participated in this study and performed the back kick, thrashing kick, turning-back kick and roundhouse kick. Our results indicate that the back kick utilized a combination of hip and knee extension to produce the kicking velocity, and was characterized by a pushlike movement. The thrashing kick and turning-back kick utilized a greater degree of hip abduction than the roundhouse kick and back kick, and included complicated knee motions. The new index successfully categorized the thrashing kick and turning-back kick into a push-throw continuum, indicating a change from negative index (opposite direction) to positive index (same direction) of hip and knee motions at the end of the movement. This strategy of push-throw continuum increases the kicking velocity at the moment of impact by applying a throwlike movement pattern. Key points A variety of Taekwondo kicks have unique inter-joint coordination of the kicking leg. The back kick used a combination of hip and knee extension to produce the kicking velocity, and was characterized by a pushlike movement. The new index explained well the inter-joint coordination of three DOF joint motions of two joints in producing kicking velocity (positive values for throwlike movements and negative values for pushlike movements). The index successfully categorized the thrashing kick and turning-back kick into a push-throw continuum. PMID:24149292
Inter-joint coordination in producing kicking velocity of taekwondo kicks.
Kim, Young Kwan; Kim, Yoon Hyuk; Im, Shin Ja
2011-01-01
The purpose of this study was to investigate joint kinematics of the kicking leg in Taekwondo and to examine the role of inter-joint coordination of the leg in producing the kicking velocity. A new inter-joint coordination index that encompasses three- dimensional hip and knee motions, was defined and applied to the joint kinematic results. Twelve elite Taekwondo athletes participated in this study and performed the back kick, thrashing kick, turning-back kick and roundhouse kick. Our results indicate that the back kick utilized a combination of hip and knee extension to produce the kicking velocity, and was characterized by a pushlike movement. The thrashing kick and turning-back kick utilized a greater degree of hip abduction than the roundhouse kick and back kick, and included complicated knee motions. The new index successfully categorized the thrashing kick and turning-back kick into a push-throw continuum, indicating a change from negative index (opposite direction) to positive index (same direction) of hip and knee motions at the end of the movement. This strategy of push-throw continuum increases the kicking velocity at the moment of impact by applying a throwlike movement pattern. Key pointsA variety of Taekwondo kicks have unique inter-joint coordination of the kicking leg.The back kick used a combination of hip and knee extension to produce the kicking velocity, and was characterized by a pushlike movement.The new index explained well the inter-joint coordination of three DOF joint motions of two joints in producing kicking velocity (positive values for throwlike movements and negative values for pushlike movements).The index successfully categorized the thrashing kick and turning-back kick into a push-throw continuum.
Inter- and Intrafraction Uncertainty in Prostate Bed Image-Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kitty; Palma, David A.; Department of Oncology, University of Western Ontario, London
2012-10-01
Purpose: The goals of this study were to measure inter- and intrafraction setup error and prostate bed motion (PBM) in patients undergoing post-prostatectomy image-guided radiotherapy (IGRT) and to propose appropriate population-based three-dimensional clinical target volume to planning target volume (CTV-PTV) margins in both non-IGRT and IGRT scenarios. Methods and Materials: In this prospective study, 14 patients underwent adjuvant or salvage radiotherapy to the prostate bed under image guidance using linac-based kilovoltage cone-beam CT (kV-CBCT). Inter- and intrafraction uncertainty/motion was assessed by offline analysis of three consecutive daily kV-CBCT images of each patient: (1) after initial setup to skin marks, (2)more » after correction for positional error/immediately before radiation treatment, and (3) immediately after treatment. Results: The magnitude of interfraction PBM was 2.1 mm, and intrafraction PBM was 0.4 mm. The maximum inter- and intrafraction prostate bed motion was primarily in the anterior-posterior direction. Margins of at least 3-5 mm with IGRT and 4-7 mm without IGRT (aligning to skin marks) will ensure 95% of the prescribed dose to the clinical target volume in 90% of patients. Conclusions: PBM is a predominant source of intrafraction error compared with setup error and has implications for appropriate PTV margins. Based on inter- and estimated intrafraction motion of the prostate bed using pre- and post-kV-CBCT images, CBCT IGRT to correct for day-to-day variances can potentially reduce CTV-PTV margins by 1-2 mm. CTV-PTV margins for prostate bed treatment in the IGRT and non-IGRT scenarios are proposed; however, in cases with more uncertainty of target delineation and image guidance accuracy, larger margins are recommended.« less
NASA Astrophysics Data System (ADS)
Kopylova, F. G.; Kopylov, A. I.
2017-10-01
We present results of the study of peculiar motions of 57 clusters and groups of galaxies in the regions of the Corona Borealis (CrB), Bootes (Boo), Z5029/A1424, A1190, A1750/A1809 superclusters of galaxies and the galaxy clusters located beyond massive structures (0.05 < z < 0.10). Using the SDSS (Data Release 8) data, a sample of early-type galaxies was compiled in the systems under study, their fundamental planes were built, and relative distances and peculiar velocities were determined. Within the galaxy superclusters, significant peculiar motions along the line of sight are observed with rms deviations of 652 ± 50 kms-1—in CrB, 757 ± 70 kms-1—in Boo. In the most massive A2065 cluster in the CrB supercluster, no peculiar velocity was found. Peculiar motions of the other galaxy clusters can be caused by their gravitational interaction both with A2065 and with the A2142 supercluster. It has been found that there are two superclusters projected onto each other in the region of the Bootes supercluster with a radial velocity difference of about 4000 kms-1. In the Z 5029/A1424 supercluster near the rich Z5029 cluster, the most considerable peculiar motions with a rms deviations of 1366 ± 170 kms-1 are observed. The rms deviations of peculiar velocities of 20 clusters that do not belong to large-scale structures is equal to 0 ± 20 kms-1. The whole sample of the clusters under study has the mean peculiar velocity equal to 83 ± 130 kms-1 relative to the cosmic microwave background.
NASA Astrophysics Data System (ADS)
Pavel-Mititean, Luciana M.; Rowbottom, Carl G.; Hector, Charlotte L.; Partridge, Mike; Bortfeld, Thomas; Schlegel, Wolfgang
2004-06-01
A geometric model is presented which allows calculation of the dosimetric consequences of rectal motion in prostate radiotherapy. Variations in the position of the rectum are measured by repeat CT scanning during the courses of treatment of five patients. Dose distributions are calculated by applying the same conformal treatment plan to each imaged fraction and rectal dose-surface histograms produced. The 2D model allows isotropic expansion and contraction in the plane of each CT slice. By summing the dose to specific volume elements tracked by the model, composite dose distributions are produced that explicitly include measured inter-fraction motion for each patient. These are then used to estimate effective dose-surface histograms (DSHs) for the entire treatment. Results are presented showing the magnitudes of the measured target and rectal motion and showing the effects of this motion on the integral dose to the rectum. The possibility of using such information to calculate normal tissue complication probabilities (NTCP) is demonstrated and discussed.
A survey for low-mass stellar and substellar members of the Hyades open cluster
NASA Astrophysics Data System (ADS)
Melnikov, Stanislav; Eislöffel, Jochen
2018-03-01
Context. Unlike young open clusters (with ages < 250 Myr), the Hyades cluster (age 600 Myr) has a clear deficit of very low-mass stars (VLM) and brown dwarfs (BD). Since this open cluster has a low stellar density and covers several tens of square degrees on the sky, extended surveys are required to improve the statistics of the VLM/BD objects in the cluster. Aim. We search for new VLM stars and BD candidates in the Hyades cluster to improve the present-day cluster mass function down to substellar masses. Methods: An imaging survey of the Hyades with a completeness limit of 21.m5 in the R band and 20.m5 in the I band was carried out with the 2k × 2k CCD Schmidt camera at the 2 m Alfred Jensch Telescope in Tautenburg. We performed a photometric selection of the cluster member candidates by combining results of our survey with 2MASS JHKs photometry Results: We present a photometric and proper motion survey covering 23.4 deg2 in the Hyades cluster core region. Using optical/IR colour-magnitude diagrams, we identify 66 photometric cluster member candidates in the magnitude range 14.m7 < I < 20.m5. The proper motion measurements are based on several all-sky surveys with an epoch difference of 60-70 yr for the bright objects. The proper motions allowed us to discriminate the cluster members from field objects and resulted in 14 proper motion members of the Hyades. We rediscover Hy 6 as a proper motion member and classify it as a substellar object candidate (BD) based on the comparison of the observed colour-magnitude diagram with theoretical model isochrones. Conclusions: With our results, the mass function of the Hyades continues to be shallow below 0.15 M⊙ indicating that the Hyades have probably lost their lowest mass members by means of dynamical evolution. We conclude that the Hyades core represents the "VLM/BD desert" and that most of the substeller objects may have already left the volume of the cluster.
Pellegrini, Michael; Zoghi, Maryam; Jaberzadeh, Shapour
2018-01-12
Cluster analysis and other subgrouping techniques have risen in popularity in recent years in non-invasive brain stimulation research in the attempt to investigate the issue of inter-individual variability - the issue of why some individuals respond, as traditionally expected, to non-invasive brain stimulation protocols and others do not. Cluster analysis and subgrouping techniques have been used to categorise individuals, based on their response patterns, as responder or non-responders. There is, however, a lack of consensus and consistency on the most appropriate technique to use. This systematic review aimed to provide a systematic summary of the cluster analysis and subgrouping techniques used to date and suggest recommendations moving forward. Twenty studies were included that utilised subgrouping techniques, while seven of these additionally utilised cluster analysis techniques. The results of this systematic review appear to indicate that statistical cluster analysis techniques are effective in identifying subgroups of individuals based on response patterns to non-invasive brain stimulation. This systematic review also reports a lack of consensus amongst researchers on the most effective subgrouping technique and the criteria used to determine whether an individual is categorised as a responder or a non-responder. This systematic review provides a step-by-step guide to carrying out statistical cluster analyses and subgrouping techniques to provide a framework for analysis when developing further insights into the contributing factors of inter-individual variability in response to non-invasive brain stimulation.
Cervical motion assessment using virtual reality.
Sarig-Bahat, Hilla; Weiss, Patrice L; Laufer, Yocheved
2009-05-01
Repeated measures of cervical motion in asymptomatic subjects. To introduce a virtual reality (VR)-based assessment of cervical range of motion (ROM); to establish inter and intratester reliability of the VR-based assessment in comparison with conventional assessment in asymptomatic individuals; and to evaluate the effect of a single VR session on cervical ROM. Cervical ROM and clinical issues related to neck pain is frequently studied. A wide variety of methods is available for evaluation of cervical motion. To date, most methods rely on voluntary responses to an assessor's instructions. However, in day-to-day life, head movement is generally an involuntary response to multiple stimuli. Therefore, there is a need for a more functional assessment method, using sensory stimuli to elicit spontaneous neck motion. VR attributes may provide a methodology for achieving this goal. A novel method was developed for cervical motion assessment utilizing an electromagnetic tracking system and a VR game scenario displayed via a head mounted device. Thirty asymptomatic participants were assessed by both conventional and VR-based methods. Inter and intratester repeatability analyses were performed. The effect of a single VR session on ROM was evaluated. Both assessments showed non-biased results between tests and between testers (P > 0.1). Full-cycle repeatability coefficients ranged between 15.0 degrees and 29.2 degrees with smaller values for rotation and for the VR assessment. A single VR session significantly increased ROM, with largest effect found in the rotation direction. Inter and intratester reliability was supported for both the VR-based and the conventional methods. Results suggest better repeatability for the VR method, with rotation being more precise than flexion/extension. A single VR session was found to be effective in increasing cervical motion, possibly due to its motivating effect.
Gao, Zhongyang; Song, Hui; Ren, Fenggang; Li, Yuhuan; Wang, Dong; He, Xijing
2017-12-01
The aim of the present study was to evaluate the reliability of the Cartesian Optoelectronic Dynamic Anthropometer (CODA) motion system in measuring the cervical range of motion (ROM) and verify the construct validity of the CODA motion system. A total of 26 patients with cervical spondylosis and 22 patients with anterior cervical fusion were enrolled and the CODA motion analysis system was used to measure the three-dimensional cervical ROM. Intra- and inter-rater reliability was assessed by interclass correlation coefficients (ICCs), standard error of measurement (SEm), Limits of Agreements (LOA) and minimal detectable change (MDC). Independent samples t-tests were performed to examine the differences of cervical ROM between cervical spondylosis and anterior cervical fusion patients. The results revealed that in the cervical spondylosis group, the reliability was almost perfect (intra-rater reliability: ICC, 0.87-0.95; LOA, -12.86-13.70; SEm, 2.97-4.58; inter-rater reliability: ICC, 0.84-0.95; LOA, -13.09-13.48; SEm, 3.13-4.32). In the anterior cervical fusion group, the reliability was high (intra-rater reliability: ICC, 0.88-0.97; LOA, -10.65-11.08; SEm, 2.10-3.77; inter-rater reliability: ICC, 0.86-0.96; LOA, -10.91-13.66; SEm, 2.20-4.45). The cervical ROM in the cervical spondylosis group was significantly higher than that in the anterior cervical fusion group in all directions except for left rotation. In conclusion, the CODA motion analysis system is highly reliable in measuring cervical ROM and the construct validity was verified, as the system was sufficiently sensitive to distinguish between the cervical spondylosis and anterior cervical fusion groups based on their ROM.
Dixit, Anshuman; Verkhivker, Gennady M.
2012-01-01
Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients. PMID:22624053
On the inter-stitch interaction in biaxial non-crimp fabrics
NASA Astrophysics Data System (ADS)
Colin, David; Bel, Sylvain; Hans, Thorsten; Hartmann, Mathias
2018-05-01
Simulation models of fiber reinforcements at the scale of fibers possibly reproduce important deformation mechanisms and can offer predictive capabilities on the macroscopic mechanical behavior. Although potential deformation mechanisms are already listed in the literature, these phenomena should be experimentally investigated to evaluate their relevance in simulation at the scale of fibers. This study focuses on the inter-stitch interaction of Non-Crimp Fabric (NCF) and aims at quantifying the relative motion of the stitching yarns. To this end, controlled shear deformation was introduced on +/-45° biaxial tricot stitched NCF. The stitching yarns have been colored on the backside of the sample while the front face remained uncolored. Therefore, an inter-stitch relative motion can be observed if an uncolored portion of the stitching yarn appears on the back face of the sample. The samples were observed during the experiments with a digital microscope in order to measure the uncolored portion of the yarns on the back face. Thus, the stitching yarn movement can be quantified for various shear angles. A significant relative motion was observed compared to the original stitching length. Based on this study, the authors argue that the inter-stitch sliding is a relevant deformation mechanism for biaxial tricot stitched NCF at the scale of fibers.
A Proper Motion Search for Stars Escaping from Globular Clusters with High Velocities
NASA Astrophysics Data System (ADS)
Meusinger, H.; Scholz, R.-D.; Irwin, M.
The dynamical evolution of globular clusters, in particular during the late phases, may be strongly influenced by the energy transfer from binaries to passing stars. As a by-product of this process, stars with high velocities are expected, perhaps high enough to escape from the cluster. Accurate proper motions are the only suitable tool to identify candidates for such high-velocity cluster stars. In order to perform such a search, we use a catalogue of absolute proper motions and UBV magnitudes for about 104 stars with B < 20 in a field of 10 square degrees centered on the globular cluster M3. The data were derived from more than 80 photographic plates taken between 1965 and 1995 with the Tautenburg Schmidt telescope and measured by means of the APM facility, Cambridge. The stellar sample is complete to B = 18.5 and comprises nearly all post-main-sequence stars in the halo of M3 and its surrounding. The proper motions are of Hipparcos-like accuracy (median error 1 mas/yr) in this magnitude range. We find several dozens of candidates, distributed over the whole field, with proper motions and colours consistent with the assumption of their origin from the cluster. Further conclusions can be drawn only on the basis of radial velocity measurements for the candidates and of estimates for the field-star contamination by means of simulations of the Galactic structure and kinematics in this field.
Gas and galaxies in filaments between clusters of galaxies. The study of A399-A401
NASA Astrophysics Data System (ADS)
Bonjean, V.; Aghanim, N.; Salomé, P.; Douspis, M.; Beelen, A.
2018-01-01
We have performed a multi-wavelength analysis of two galaxy cluster systems selected with the thermal Sunyaev-Zel'dovich (tSZ) effect and composed of cluster pairs and an inter-cluster filament. We have focused on one pair of particular interest: A399-A401 at redshift z 0.073 seperated by 3 Mpc. We have also performed the first analysis of one lower-significance newly associated pair: A21-PSZ2 G114.09-34.34 at z 0.094, separated by 4.2 Mpc. We have characterised the intra-cluster gas using the tSZ signal from Planck and, when possible, the galaxy optical and infrared (IR) properties based on two photometric redshift catalogues: 2MPZ and WISExSCOS. From the tSZ data, we measured the gas pressure in the clusters and in the inter-cluster filaments. In the case of A399-A401, the results are in perfect agreement with previous studies and, using the temperature measured from the X-rays, we further estimate the gas density in the filament and find n0 = (4.3 ± 0.7) × 10-4 cm-3. The optical and IR colour-colour and colour-magnitude analyses of the galaxies selected in the cluster system, together with their star formation rate, show no segregation between galaxy populations, both in the clusters and in the filament of A399-A401. Galaxies are all passive, early type, and red and dead. The gas and galaxy properties of this system suggest that the whole system formed at the same time and corresponds to a pre-merger, with a cosmic filament gas heated by the collapse. For the other cluster system, the tSZ analysis was performed and the pressure in the clusters and in the inter-cluster filament was constrained. However, the limited or nonexistent optical and IR data prevent us from concluding on the presence of an actual cosmic filament or from proposing a scenario.
NASA Astrophysics Data System (ADS)
Yearley, Eric; Zarraga, Isidro (Dan); Godfrin, Paul (Doug); Perevozchikova, Tatiana; Wagner, Norman; Liu, Yun
2013-03-01
Concentrated therapeutic protein formulations offer numerous delivery and stability challenges. In particular, it has been found that several therapeutic proteins exhibit a large increase in viscosity as a function of concentration that may be dependent on the protein-protein interactions. Small-Angle Neutron Scattering (SANS) and Neutron Spin Echo (NSE) investigations have been performed to probe the protein-protein interactions and diffusive properties of highly concentrated MAbs. The SANS data demonstrate that the inter-particle interactions for a highly viscous MAb at high concentrations (MAb1) are highly attractive, anisotropic and change significantly with concentration while the viscosity and interactions do not differ considerably for MAb2. The NSE results furthermore indicate that MAb1 and MAb2 have strong concentration dependencies of dynamics at high Q that are correlated to the translational motion of the proteins. Finally, it has also been revealed that the individual MAb1 proteins form small clusters at high concentrations in contrast to the MAb2 proteins, which are well-dispersed. It is proposed that the formation of these clusters is the primary cause of the dramatic increase in viscosity of MAb1 in crowded or concentrated environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, P; Smith, W; Tom Baker Cancer Centre, Calgary, AB
2015-06-15
Purpose This study quantifies errors associated with MR-guided High Dose Rate (HDR) gynecological brachytherapy. Uncertainties in this treatment results from contouring, organ motion between imaging and treatment delivery, dose calculation, and dose delivery. We focus on interobserver and inter-modality variability in contouring and the motion of organs at risk (OARs) in the time span between the MR and CT scans (∼1 hour). We report the change in organ volume and position of center of mass (CM) between the two imaging modalities. Methods A total of 8 patients treated with MR-guided HDR brachytherapy were included in this study. Two observers contouredmore » the bladder and rectum on both MR and CT scans. The change in OAR volume and CM position between the MR and CT imaging sessions on both image sets were calculated. Results The absolute mean bladder volume change between the two imaging modalities is 67.1cc. The absolute mean inter-observer difference in bladder volume is much lower at 15.5cc (MR) and 11.0cc (CT). This higher inter-modality volume difference suggests a real change in the bladder filling between the two imaging sessions. Change in Rectum volume inter-observer standard error of means (SEM) is 3.18cc (MR) and 3.09cc (CT), while the inter-modality SEM is 3.65cc (observer 1), and 2.75cc (observer 2). The SEM for rectum CM position in the superior-inferior direction was approximately three times higher than in other directions for both the inter—observer (0.77 cm, 0.92 cm for observers 1 and 2, respectively) and inter-modality (0.91 cm, 0.95 cm for MR and CT, respectively) variability. Conclusion Bladder contours display good consistency between different observers on both CT and MR images. For rectum contouring the highest inconsistency stems from the observers’ choice of the superior-inferior borders. A complete analysis of a larger patient cohort will enable us to separate the true organ motion from the inter-observer variability.« less
A method for determining the radius of an open cluster from stellar proper motions
NASA Astrophysics Data System (ADS)
Sánchez, Néstor; Alfaro, Emilio J.; López-Martínez, Fátima
2018-04-01
We propose a method for calculating the radius of an open cluster in an objective way from an astrometric catalogue containing, at least, positions and proper motions. It uses the minimum spanning tree in the proper motion space to discriminate cluster stars from field stars and it quantifies the strength of the cluster-field separation by means of a statistical parameter defined for the first time in this paper. This is done for a range of different sampling radii from where the cluster radius is obtained as the size at which the best cluster-field separation is achieved. The novelty of this strategy is that the cluster radius is obtained independently of how its stars are spatially distributed. We test the reliability and robustness of the method with both simulated and real data from a well-studied open cluster (NGC 188), and apply it to UCAC4 data for five other open clusters with different catalogued radius values. NGC 188, NGC 1647, NGC 6603, and Ruprecht 155 yielded unambiguous radius values of 15.2 ± 1.8, 29.4 ± 3.4, 4.2 ± 1.7, and 7.0 ± 0.3 arcmin, respectively. ASCC 19 and Collinder 471 showed more than one possible solution, but it is not possible to know whether this is due to the involved uncertainties or due to the presence of complex patterns in their proper motion distributions, something that could be inherent to the physical object or due to the way in which the catalogue was sampled.
Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.
King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T
2012-01-01
Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.
Powell, Douglas W; Long, Benjamin; Milner, Clare E; Zhang, Songning
2011-02-01
The functions of the medial longitudinal arch have been the focus of much research in recent years. Several studies have shown kinematic differences between high- and low-arched runners. No literature currently compares the inter-segmental foot motion of high- and low-arched recreational athletes. The purpose of this study was to examine inter-segmental foot motion in the frontal plane during dynamic loading activities in high- and low-arched female athletes. Inter-segmental foot motions were examined in 10 high- and 10 low-arched female recreational athletes. Subjects performed five barefooted trials in each of the following randomized movements: walking, running, downward stepping and landing. Three-dimensional kinematic data were recorded. High-arched athletes had smaller peak ankle eversion angles in walking, running and downward stepping than low-arched athletes. At the rear-midfoot joint high-arched athletes reached peak eversion later in walking and downward stepping than the low-arched athletes. The high-arched athletes had smaller peak mid-forefoot eversion angles in walking, running and downward stepping than the low-arched athletes. The current findings show that differences in foot kinematics between the high- and low-arched athletes were in position and not range of motion within the foot. Copyright © 2010 Elsevier B.V. All rights reserved.
Proper motions and membership probabilities of stars in the region of globular cluster NGC 6366
NASA Astrophysics Data System (ADS)
Sariya, Devesh P.; Yadav, R. K. S.
2015-12-01
Context. NGC 6366 is a metal-rich globular cluster that is relatively unstudied. It is a kinematically interesting cluster, reported as belonging to the slowly rotating halo system, which is unusual given its metallicity and spatial location in the Galaxy. Aims: The purpose of this research is to determine the relative proper motion and membership probability of the stars in the region of globular cluster NGC 6366. To target cluster members reliably during spectroscopic surveys without including field stars, a good proper motion and membership probability catalogue of NGC 6366 is needed. Methods: To derive relative proper motions, the archival data from the Wide Field Imager mounted on the ESO 2.2 m telescope have been reduced using a high precision astrometric software. The images used are in the B,V, and I photometric bands with an epoch gap of ~3.2 yr. The calibrated BVI magnitudes have been determined using recent data for secondary standard stars. Results: We determined relative proper motions and cluster membership probabilities for 2530 stars in the field of globular cluster NGC 6366. The median proper motion rms errors for stars brighter than V ~ 18 mag is ~2 mas yr-1, which gradually increases to ~5 mas yr-1 for stars having magnitudes V ~ 20 mag. Based on the membership catalogue, we checked the membership status of the X-ray sources and variable stars of NGC 6366 mentioned in the literature. We also provide the astronomical community with an electronic catalogue that includes B, V, and I magnitudes; relative proper motions; and membership probabilities of the stars in the region of NGC 6366. Based on observations with the MPG/ESO 2.2 m and ESO/VLT telescopes, located at La Silla and Paranal Observatory, Chile, under DDT programs 164.O-0561(F), 71.D-0220(A) and the archive material.Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A59
2013-01-01
Summary of background data Recent smartphones, such as the iPhone, are often equipped with an accelerometer and magnetometer, which, through software applications, can perform various inclinometric functions. Although these applications are intended for recreational use, they have the potential to measure and quantify range of motion. The purpose of this study was to estimate the intra and inter-rater reliability as well as the criterion validity of the clinometer and compass applications of the iPhone in the assessment cervical range of motion in healthy participants. Methods The sample consisted of 28 healthy participants. Two examiners measured cervical range of motion of each participant twice using the iPhone (for the estimation of intra and inter-reliability) and once with the CROM (for the estimation of criterion validity). Estimates of reliability and validity were then established using the intraclass correlation coefficient (ICC). Results We observed a moderate intra-rater reliability for each movement (ICC = 0.65-0.85) but a poor inter-rater reliability (ICC < 0.60). For the criterion validity, the ICCs are moderate (>0.50) to good (>0.65) for movements of flexion, extension, lateral flexions and right rotation, but poor (<0.50) for the movement left rotation. Conclusion We found good intra-rater reliability and lower inter-rater reliability. When compared to the gold standard, these applications showed moderate to good validity. However, before using the iPhone as an outcome measure in clinical settings, studies should be done on patients presenting with cervical problems. PMID:23829201
Calculating the Motion and Direction of Flux Transfer Events with Cluster
NASA Technical Reports Server (NTRS)
Collado-Vega, Yaireska M.; Sibeck, David Gary
2011-01-01
We use multi-point timing analysis to determine the orientation and motion of flux transfer events (FTEs) detected by the four Cluster spacecraft on the high-latitude dayside and flank magnetopause during 2002 and 2003. During these years, the distances between the Cluster spacecraft were greater than 1000 km, providing the tetrahedral configuration needed to select events and determine velocities. Each velocity and location will be examined in detail and compared to the velocities and locations determined by the predictions of the component and antiparallel reconnection models for event formation, orientation, motion, and acceleration for a wide range of spacecraft locations and solar wind conditions.
Atrial fibrillation detection by heart rate variability in Poincare plot.
Park, Jinho; Lee, Sangwook; Jeon, Moongu
2009-12-11
Atrial fibrillation (AFib) is one of the prominent causes of stroke, and its risk increases with age. We need to detect AFib correctly as early as possible to avoid medical disaster because it is likely to proceed into a more serious form in short time. If we can make a portable AFib monitoring system, it will be helpful to many old people because we cannot predict when a patient will have a spasm of AFib. We analyzed heart beat variability from inter-beat intervals obtained by a wavelet-based detector. We made a Poincare plot using the inter-beat intervals. By analyzing the plot, we extracted three feature measures characterizing AFib and non-AFib: the number of clusters, mean stepping increment of inter-beat intervals, and dispersion of the points around a diagonal line in the plot. We divided distribution of the number of clusters into two and calculated mean value of the lower part by k-means clustering method. We classified data whose number of clusters is more than one and less than this mean value as non-AFib data. In the other case, we tried to discriminate AFib from non-AFib using support vector machine with the other feature measures: the mean stepping increment and dispersion of the points in the Poincare plot. We found that Poincare plot from non-AFib data showed some pattern, while the plot from AFib data showed irregularly irregular shape. In case of non-AFib data, the definite pattern in the plot manifested itself with some limited number of clusters or closely packed one cluster. In case of AFib data, the number of clusters in the plot was one or too many. We evaluated the accuracy using leave-one-out cross-validation. Mean sensitivity and mean specificity were 91.4% and 92.9% respectively. Because pulse beats of ventricles are less likely to be influenced by baseline wandering and noise, we used the inter-beat intervals to diagnose AFib. We visually displayed regularity of the inter-beat intervals by way of Poincare plot. We tried to design an automated algorithm which did not require any human intervention and any specific threshold, and could be installed in a portable AFib monitoring system.
Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.
Alexiadis, Dimitrios S; Sergiadis, George D
2007-01-01
Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ang; Yu, Heng; Tozzi, Paolo
2016-04-10
We search for bulk motions in the intracluster medium (ICM) of massive clusters showing evidence of an ongoing or recent major merger with spatially resolved spectroscopy in Chandra CCD data. We identify a sample of six merging clusters with >150 ks Chandra exposure in the redshift range 0.1 < z < 0.3. By performing X-ray spectral analysis of projected ICM regions selected according to their surface brightness, we obtain the projected redshift maps for all of these clusters. After performing a robust analysis of the statistical and systematic uncertainties in the measured X-ray redshift z{sub X}, we check whether or not themore » global z{sub X} distribution differs from that expected when the ICM is at rest. We find evidence of significant bulk motions at more than 3σ in A2142 and A115, and less than 2σ in A2034 and A520. Focusing on single regions, we identify significant localized velocity differences in all of the merger clusters. We also perform the same analysis on two relaxed clusters with no signatures of recent mergers, finding no signs of bulk motions, as expected. Our results indicate that deep Chandra CCD data enable us to identify the presence of bulk motions at the level of v{sub BM} > 1000 km s{sup −1} in the ICM of massive merging clusters at 0.1 < z < 0.3. Although the CCD spectral resolution is not sufficient for a detailed analysis of the ICM dynamics, Chandra CCD data constitute a key diagnostic tool complementing X-ray bolometers on board future X-ray missions.« less
Li, Hai-juan; Zhao, Xin; Jia, Qing-fei; Li, Tian-lai; Ning, Wei
2012-08-01
The achenes morphological and micro-morphological characteristics of six species of genus Taraxacum from northeastern China as well as SRAP cluster analysis were observed for their classification evidences. The achenes were observed by microscope and EPMA. Cluster analysis was given on the basis of the size, shape, cone proportion, color and surface sculpture of achenes. The Taraxacum inter-species achene shape characteristic difference is obvious, particularly spinulose distribution and size, achene color and achene size; with the Taraxacum plant achene shape the cluster method T. antungense Kitag. and the T. urbanum Kitag. should combine for the identical kind; the achene morphology cluster analysis and the SRAP tagged molecule systematics's cluster result retrieves in the table with "the Chinese flora". The class group to divide the result is consistent. Taraxacum plant achene shape characteristic stable conservative, may carry on the inter-species division and the sibship analysis according to the achene shape characteristic combination difference; the achene morphology cluster analysis as well as the SRAP tagged molecule systematics confirmation support dandelion classification result of "the Chinese flora".
Pendulum Motion in Main Parachute Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.; Machin, Ricardo A.
2015-01-01
The coupled dynamics of a cluster of parachutes to a payload are notoriously difficult to predict. Often the payload is designed to be insensitive to the range of attitude and rates that might occur, but spacecraft generally do not have the mass and volume budgeted for this robust of a design. The National Aeronautics and Space Administration (NASA) Orion Capsule Parachute Assembly System (CPAS) implements a cluster of three mains for landing. During testing of the Engineering Development Unit (EDU) design, it was discovered that with a cluster of two mains (a fault tolerance required for human rating) the capsule coupled to the parachute cluster could get into a limit cycle pendulum motion which would exceed the spacecraft landing capability. This pendulum phenomenon could not be predicted with the existing models and simulations. A three phased effort has been undertaken to understand the consequence of the pendulum motion observed, and explore potential design changes that would mitigate this phenomenon. This paper will review the early analysis that was performed of the pendulum motion observed during EDU testing, summarize the analysis ongoing to understand the root cause of the pendulum phenomenon, and discuss the modeling and testing that is being pursued to identify design changes that would mitigate the risk.
Inter-joint coordination between hips and trunk during downswings: Effects on the clubhead speed.
Choi, Ahnryul; Lee, In-Kwang; Choi, Mun-Taek; Mun, Joung Hwan
2016-10-01
Understanding of the inter-joint coordination between rotational movement of each hip and trunk in golf would provide basic knowledge regarding how the neuromuscular system organises the related joints to perform a successful swing motion. In this study, we evaluated the inter-joint coordination characteristics between rotational movement of the hips and trunk during golf downswings. Twenty-one right-handed male professional golfers were recruited for this study. Infrared cameras were installed to capture the swing motion. The axial rotation angle, angular velocity and inter-joint coordination were calculated by the Euler angle, numerical difference method and continuous relative phase, respectively. A more typical inter-joint coordination demonstrated in the leading hip/trunk than trailing hip/trunk. Three coordination characteristics of the leading hip/trunk reported a significant relationship with clubhead speed at impact (r < -0.5) in male professional golfers. The increased rotation difference between the leading hip and trunk in the overall downswing phase as well as the faster rotation of the leading hip compared to that of the trunk in the early downswing play important roles in increasing clubhead speed. These novel inter-joint coordination strategies have the great potential to use a biomechanical guideline to improve the golf swing performance of unskilled golfers.
Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects
NASA Astrophysics Data System (ADS)
Gaia Collaboration; van Leeuwen, F.; Vallenari, A.; Jordi, C.; Lindegren, L.; Bastian, U.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J.-L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J.-M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J.-B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I.-C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; vanLeeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H.-H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P.-M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A.-M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D.-W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A.-T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J.-M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.
2017-05-01
Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. Aims: We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. Methods: Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. Results: Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. Conclusions: The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs. Tables D.1 to D.19 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19
VizieR Online Data Catalog: 1876 open clusters multimembership catalog (Sampedro+, 2017)
NASA Astrophysics Data System (ADS)
Sampedro, L.; Dias, W. S.; Alfaro, E. J.; Monteiro, H.; Molino, A.
2017-10-01
We use version 3.5 of the New Optically Visible Open Clusters and Candidates catalogue (hereafter DAML02; Dias et al., 2002, Cat. B/ocl), to select a sample of 2167 open clusters to be analysed. The stellar positions and the proper motions are taken from the UCAC4 (Zacharias et al., 2013, Cat. I/322). The catalogue contains data for over 113 million stars (105 million of them with proper-motion data), and is complete down to magnitude R=16. The positional accuracy of the listed objects is about 15-100mas per coordinate, depending on the magnitude. Formal errors in proper motions range from about 1 to 10mas/yr, depending on the magnitude and the observational history. Systematic errors in the proper motions are estimated to be about 1-4mas/yr. (2 data files).
NASA Astrophysics Data System (ADS)
Pessa, Ismael; Tejos, Nicolas; Barrientos, L. Felipe; Werk, Jessica; Bielby, Richard; Padilla, Nelson; Morris, Simon L.; Prochaska, J. Xavier; Lopez, Sebastian; Hummels, Cameron
2018-07-01
Cosmological simulations predict that a significant fraction of the low-z baryon budget resides in large-scale filaments in the form of a diffuse plasma at temperatures T ˜ 105 - 107 K. However, direct observation of this so-called warm-hot intergalactic medium (WHIM) has been elusive. In the Λcold dark matter paradigm, galaxy clusters correspond to the nodes of the cosmic web at the intersection of several large-scale filamentary threads. In previous work, we used HST/COS data to conduct the first survey of broad H I Lyα absorbers (BLAs) potentially produced by WHIM in inter-cluster filaments. We targeted a single QSO, namely Q1410, whose sightline intersects seven independent inter-cluster axes at impact parameters <3 Mpc (comoving), and found a tentative excess of a factor of ˜4 with respect to the field. Here, we further investigate the origin of these BLAs by performing a blind galaxy survey within the Q1410 field using VLT/MUSE. We identified 77 sources and obtained the redshifts for 52 of them. Out of the total sample of seven BLAs in inter-cluster axes, we found three without any galaxy counterpart to stringent luminosity limits (˜4 × 108 L⊙ ˜0.01 L*), providing further evidence that these BLAs may represent genuine WHIM detections. We combined this sample with other suitable BLAs from the literature and inferred the corresponding baryon mean density for these filaments in the range Ω ^fil_bar= 0.02-0.04. Our rough estimates are consistent with the predictions from numerical simulations but still subject to large systematic uncertainties, mostly from the adopted geometry, ionization corrections, and density profile.
A four-dimensional motion field atlas of the tongue from tagged and cine magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye
2017-02-01
Representation of human tongue motion using three-dimensional vector fields over time can be used to better understand tongue function during speech, swallowing, and other lingual behaviors. To characterize the inter-subject variability of the tongue's shape and motion of a population carrying out one of these functions it is desirable to build a statistical model of the four-dimensional (4D) tongue. In this paper, we propose a method to construct a spatio-temporal atlas of tongue motion using magnetic resonance (MR) images acquired from fourteen healthy human subjects. First, cine MR images revealing the anatomical features of the tongue are used to construct a 4D intensity image atlas. Second, tagged MR images acquired to capture internal motion are used to compute a dense motion field at each time frame using a phase-based motion tracking method. Third, motion fields from each subject are pulled back to the cine atlas space using the deformation fields computed during the cine atlas construction. Finally, a spatio-temporal motion field atlas is created to show a sequence of mean motion fields and their inter-subject variation. The quality of the atlas was evaluated by deforming cine images in the atlas space. Comparison between deformed and original cine images showed high correspondence. The proposed method provides a quantitative representation to observe the commonality and variability of the tongue motion field for the first time, and shows potential in evaluation of common properties such as strains and other tensors based on motion fields.
A Four-dimensional Motion Field Atlas of the Tongue from Tagged and Cine Magnetic Resonance Imaging.
Xing, Fangxu; Prince, Jerry L; Stone, Maureen; Wedeen, Van J; Fakhri, Georges El; Woo, Jonghye
2017-01-01
Representation of human tongue motion using three-dimensional vector fields over time can be used to better understand tongue function during speech, swallowing, and other lingual behaviors. To characterize the inter-subject variability of the tongue's shape and motion of a population carrying out one of these functions it is desirable to build a statistical model of the four-dimensional (4D) tongue. In this paper, we propose a method to construct a spatio-temporal atlas of tongue motion using magnetic resonance (MR) images acquired from fourteen healthy human subjects. First, cine MR images revealing the anatomical features of the tongue are used to construct a 4D intensity image atlas. Second, tagged MR images acquired to capture internal motion are used to compute a dense motion field at each time frame using a phase-based motion tracking method. Third, motion fields from each subject are pulled back to the cine atlas space using the deformation fields computed during the cine atlas construction. Finally, a spatio-temporal motion field atlas is created to show a sequence of mean motion fields and their inter-subject variation. The quality of the atlas was evaluated by deforming cine images in the atlas space. Comparison between deformed and original cine images showed high correspondence. The proposed method provides a quantitative representation to observe the commonality and variability of the tongue motion field for the first time, and shows potential in evaluation of common properties such as strains and other tensors based on motion fields.
Running and rotating: modelling the dynamics of migrating cell clusters
NASA Astrophysics Data System (ADS)
Copenhagen, Katherine; Gov, Nir; Gopinathan, Ajay
Collective motion of cells is a common occurrence in many biological systems, including tissue development and repair, and tumor formation. Recent experiments have shown cells form clusters in a chemical gradient, which display three different phases of motion: translational, rotational, and random. We present a model for cell clusters based loosely on other models seen in the literature that involves a Vicsek-like alignment as well as physical collisions and adhesions between cells. With this model we show that a mechanism for driving rotational motion in this kind of system is an increased motility of rim cells. Further, we examine the details of the relationship between rim and core cells, and find that the phases of the cluster as a whole are correlated with the creation and annihilation of topological defects in the tangential component of the velocity field.
NASA Astrophysics Data System (ADS)
Mendez, Martin O.; Palacios-Hernandez, Elvia R.; Alba, Alfonso; Kortelainen, Juha M.; Tenhunen, Mirja L.; Bianchi, Anna M.
Automatic sleep staging based on inter-beat fluctuations and motion signals recorded through a pressure bed sensor during sleep is presented. The analysis of the sleep was based on the three major divisions of the sleep time: Wake, non-rapid eye movement (nREM) and rapid eye movement (REM) sleep stages. Twelve sleep recordings, from six females working alternate shift, with their respective annotations were used in the study. Six recordings were acquired during the night and six during the day after a night shift. A Time-Variant Autoregressive Model was used to extract features from inter-beat fluctuations which later were fed to a Support Vector Machine classifier. Accuracy, Kappa index, and percentage in wake, REM and nREM were used as performance measures. Comparison between the automatic sleep staging detection and the standard clinical annotations, shows mean values of 87% for accuracy 0.58 for kappa index, and mean errors of 5% for sleep stages. The performance measures were similar for night and day sleep recordings. In this sample of recordings, the results suggest that inter-beat fluctuations and motions acquired in non-obtrusive way carried valuable information related to the sleep macrostructure and could be used to support to the experts in extensive evaluation and monitoring of sleep.
Measurement of cervical flexor endurance following whiplash.
Kumbhare, Dinesh A; Balsor, Brad; Parkinson, William L; Harding Bsckin, Peter; Bedard, Michel; Papaioannou, Alexandra; Adachi, Jonathan D
2005-07-22
To investigate measurement properties of a practical test of cervical flexor endurance (CFE) in whiplash patients including inter-rater reliability, sensitivity to clinical change, criterion related validity against the Neck Disability Index (NDI), and discriminant validity for injured versus uninjured populations. Two samples were recruited, 81 whiplash patients, and a convenience sample of 160 subjects who were not seeking treatment and met criteria for normal pain and range of motion. CFE was measured using a stopwatch while the subject, in crook lying, held their head against gravity to fatigue. Inter-rater reliability in whiplash patients was in a range considered 'almost perfect' (Intraclass Correlation=0.96). CFE had greater inter-subject variability than the NDI or range of motion in any of three planes. However, the effect size for improvement in CFE over treatment was as large as the effect sizes for all of those measures. In multivariate regression, CFE changes accounted for changes on the NDI better than the three ranges of motion. CFE discriminated whiplash patients who were within six months of injury (n=71) from age and gender matched normals with high effect size (ES=1.5). These findings provide evidence of reliability and validity for CFE measurement, and demonstrate that CFE detects clinical improvements. Variance on CFE emphasizes the need to consider inter-, and intra-subject standard deviations to interpret scores.
NGC 2548: clumpy spatial and kinematic structure in an intermediate-age Galactic cluster
NASA Astrophysics Data System (ADS)
Vicente, Belén; Sánchez, Néstor; Alfaro, Emilio J.
2016-09-01
NGC 2548 is a ˜400-500 Myr old open cluster with evidence of spatial substructures likely caused by its interaction with the Galactic disc. In this work we use precise astrometric data from the Carte du Ciel - San Fernando (CdC-SF) catalogue to study the clumpy structure in this cluster. We confirm the fragmented structure of NGC 2548 but, additionally, the relatively high precision of our kinematic data lead us to the first detection of substructures in the proper motion space of a stellar cluster. There are three spatially separated cores each of which has its own counterpart in the proper motion distribution. The two main cores lie nearly parallel to the Galactic plane whereas the third one is significantly fainter than the others and it moves towards the Galactic plane separating from the rest of the cluster. We derive core positions and proper motions, as well as the stars belonging to each core.
The Origin Billions Star Survey: Galactic Explorer
2006-10-18
Using OBSS, it will be possible to measure proper motions of galaxies (the motion in the plane of the sky) out to the distance of the Virgo Cluster ...within the Milky Way, as well as the local group toward the Virgo Cluster , will also be discerned at the microarcsecond level. All of this will be...supercluster of galaxies, dark matter, star for- mation, open clusters , the solar system, and the celestial ref- erence frame. This research was supported by
The peculiar velocities of rich clusters in the hot and cold dark matter scenarios
NASA Technical Reports Server (NTRS)
Rhee, George F.; West, Michael J.; Villumsen, Jens V.
1993-01-01
We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias parameter, i.e., models in which the peculiar velocities of clusters are large enough that the errors do not render the analysis impracticable.
Classical plasma dynamics of Mie-oscillations in atomic clusters
NASA Astrophysics Data System (ADS)
Kull, H.-J.; El-Khawaldeh, A.
2018-04-01
Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].
Detection of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect
NASA Technical Reports Server (NTRS)
Hand, Nick; Addison, Graeme E.; Aubourg, Eric; Battaglia, Nick; Battistelli, Elia S.; Bizyaev, Dmitry; Bond, J. Richard; Brewington, Howard; Brinkmann, Jon; Brown, Benjamin R.;
2012-01-01
Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time detect motions of galaxy clusters and groups via microwave background .temperature distortions due to the kinematic Sunyaev.Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. The mean pairwise momentum of clusters is measured. at a statistical. significance of 3.8 sigma, and the signal is consistent with the growth of cosmic structure in the standard model of cosmology
Motion estimation in the frequency domain using fuzzy c-planes clustering.
Erdem, C E; Karabulut, G Z; Yanmaz, E; Anarim, E
2001-01-01
A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.
Determination of proper motions in the Pleiades cluster
NASA Astrophysics Data System (ADS)
Schilbach, E.
1991-04-01
For 458 stars in the Pleiades field from the catalog of Eichhorn et al. (1970) proper motions were derived on Tautenburg and CERGA Schmidt telescope plates measured with the automated measuring machine MAMA in Paris. The catalog positions were considered as first epoch coordinates with an epoch difference of ca. 33 years to the observations. The results show good coincidence of proper motions derived with both Schmidt telescopes within the error bars. Comparison with proper motions determined by Vasilevskis et al. (1979) displays some significant differences but no systematic effects depending on plate coordinates or magnitudes could be found. An accuracy of 0.3 arcsec/100a for one proper motion component was estimated. According to the criterion of common proper motion 34 new cluster members were identified.
Stirred, Not Clumped: Evolution of Temperature Profiles in the Outskirts of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T.
2016-12-01
Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the use of galaxy clusters as cosmological probes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D; Kishan, A; Santhanam, A
Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the firstmore » frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric effect of these results.« less
The Impact of Motion Induced Interruptions on Cognitive Performance
2014-07-23
found that even participants presenting with minor physiological effects of motion experienced a decline in multitasking performance. Further, Yu...literature has investigated the impact of task based interruptions such as being inter- rupted by a phone call or writing an email . In these...Engineers Journal. 102 (2) 65-72. Matsangas, P. (2013). The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance
Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.
Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan
2015-11-01
Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Branching points in the low-temperature dipolar hard sphere fluid
NASA Astrophysics Data System (ADS)
Rovigatti, Lorenzo; Kantorovich, Sofia; Ivanov, Alexey O.; Tavares, José Maria; Sciortino, Francesco
2013-10-01
In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying inter-cluster connections according to their topology, and then employ this classification to analyse the geometric and thermodynamic properties of each class of defects, as extracted from state-of-the-art equilibrium Monte Carlo simulations. By computing the average density and energetic cost of each defect class, we find that the relevant contribution to inter-cluster interactions is indeed provided by (rare) three-way junctions and by four-way junctions arising from parallel or anti-parallel locally linear aggregates. All other (numerous) defects are either intra-cluster or associated to low cluster-cluster interaction energies, suggesting that these defects do not play a significant part in the thermodynamic description of the self-assembly processes of dipolar hard spheres.
NASA Astrophysics Data System (ADS)
ZuHone, J. A.; Miller, E. D.; Bulbul, E.; Zhuravleva, I.
2018-02-01
Hitomi made the first direct measurements of galaxy cluster gas motions in the Perseus cluster, which implied that its core is fairly “quiescent,” with velocities less than ∼200 km s‑1, despite the presence of an active galactic nucleus and sloshing cold fronts. Building on previous work, we use synthetic Hitomi/X-ray Spectrometer (SXS) observations of the hot plasma of a simulated cluster with sloshing gas motions and varying viscosity to analyze its velocity structure in a similar fashion. We find that sloshing motions can produce line shifts and widths similar to those measured by Hitomi. We find these measurements are unaffected by the value of the gas viscosity, since its effects are only manifested clearly on angular scales smaller than the SXS ∼1‧ PSF. The PSF biases the line shift of regions near the core as much as ∼40–50 km s‑1, so it is crucial to model this effect carefully. We also infer that if sloshing motions dominate the observed velocity gradient, Perseus must be observed from a line of sight that is somewhat inclined from the plane of these motions, but one that still allows the spiral pattern to be visible. Finally, we find that assuming isotropy of motions can underestimate the total velocity and kinetic energy of the core in our simulation by as much as ∼60%. However, the total kinetic energy in our simulated cluster core is still less than 10% of the thermal energy in the core, in agreement with the Hitomi observations.
Exploring the Internal Dynamics of Globular Clusters
NASA Astrophysics Data System (ADS)
Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration
2018-01-01
Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.
Hoenig, Helen M; Amis, Kristopher; Edmonds, Carol; Morgan, Michelle S; Landerman, Lawrence; Caves, Kevin
2017-01-01
Background There is limited research about the effects of video quality on the accuracy of assessments of physical function. Methods A repeated measures study design was used to assess reliability and validity of the finger-nose test (FNT) and the finger-tapping test (FTT) carried out with 50 veterans who had impairment in gross and/or fine motor coordination. Videos were scored by expert raters under eight differing conditions, including in-person, high definition video with slow motion review and standard speed videos with varying bit rates and frame rates. Results FTT inter-rater reliability was excellent with slow motion video (ICC 0.98-0.99) and good (ICC 0.59) under the normal speed conditions. Inter-rater reliability for FNT 'attempts' was excellent (ICC 0.97-0.99) for all viewing conditions; for FNT 'misses' it was good to excellent (ICC 0.89) with slow motion review but substantially worse (ICC 0.44) on the normal speed videos. FTT criterion validity (i.e. compared to slow motion review) was excellent (β = 0.94) for the in-person rater and good ( β = 0.77) on normal speed videos. Criterion validity for FNT 'attempts' was excellent under all conditions ( r ≥ 0.97) and for FNT 'misses' it was good to excellent under all conditions ( β = 0.61-0.81). Conclusions In general, the inter-rater reliability and validity of the FNT and FTT assessed via video technology is similar to standard clinical practices, but is enhanced with slow motion review and/or higher bit rate.
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2013-01-01
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one – to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance. PMID:23967099
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2013-01-01
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.
Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen
2017-09-25
In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalarvo, Niina H; Gourdon, Olivier; Bi, Zhonghe
2013-01-01
Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activationmore » energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.« less
Parel, I; Cutti, A G; Fiumana, G; Porcellini, G; Verni, G; Accardo, A P
2012-04-01
To measure the scapulohumeral rhythm (SHR) in outpatient settings, the motion analysis protocol named ISEO (INAIL Shoulder and Elbow Outpatient protocol) was developed, based on inertial and magnetic sensors. To complete the sensor-to-segment calibration, ISEO requires the involvement of an operator for sensor placement and for positioning the patient's arm in a predefined posture. Since this can affect the measure, this study aimed at quantifying ISEO intra- and inter-operator agreement. Forty subjects were considered, together with two operators, A and B. Three measurement sessions were completed for each subject: two by A and one by B. In each session, the humerus and scapula rotations were measured during sagittal and scapular plane elevation movements. ISEO intra- and inter-operator agreement were assessed by computing, between sessions, the: (1) similarity of the scapulohumeral patterns through the Coefficient of Multiple Correlation (CMC(2)), both considering and excluding the difference of the initial value of the scapula rotations between two sessions (inter-session offset); (2) 95% Smallest Detectable Difference (SDD(95)) in scapula range of motion. Results for CMC(2) showed that the intra- and inter-operator agreement is acceptable (median≥0.85, lower-whisker ≥ 0.75) for most of the scapula rotations, independently from the movement and the inter-session offset. The only exception is the agreement for scapula protraction-retraction and for scapula medio-lateral rotation during abduction (inter-operator), which is acceptable only if the inter-session offset is removed. SDD(95) values ranged from 4.4° to 8.6° for the inter-operator and between 4.9° and 8.5° for the intra-operator agreement. In conclusion, ISEO presents a high intra- and inter-operator agreement, particularly with the scapula inter-session offset removed. Copyright © 2011 Elsevier B.V. All rights reserved.
STIRRED, NOT CLUMPED: EVOLUTION OF TEMPERATURE PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T., E-mail: avestruz@uchicago.edu
Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the usemore » of galaxy clusters as cosmological probes.« less
Spellmon, Nicholas; Sun, Xiaonan; Sirinupong, Nualpun; Edwards, Brian; Li, Chunying; Yang, Zhe
2015-01-01
SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open-closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative correlated inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to by a twisting motion of the C-lobe with respect to the N-lobe and a clamshell-like motion between the lobes. Dynamical network analysis defines possible allosteric paths for the correlated dynamics. There are nine communities in the dynamical network with six in the N-lobe and three in the C-lobe, and the communication between the lobes is mediated by a lobe-bridging β hairpin. This study provides insight into the dynamical nature of SMYD2 and could facilitate better understanding of SMYD2 substrate specificity.
The orbital motion of the quintuplet cluster—a common origin for the arches and quintuplet clusters?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolte, A.; Hußmann, B.; Habibi, M.
2014-07-10
We investigate the orbital motion of the Quintuplet cluster near the Galactic center with the aim of constraining formation scenarios of young, massive star clusters in nuclear environments. Three epochs of adaptive optics high-angular resolution imaging with the Keck/NIRC2 and Very Large Telescope/NAOS-CONICA systems were obtained over a time baseline of 5.8 yr, delivering an astrometric accuracy of 0.5-1 mas yr{sup –1}. Proper motions were derived in the cluster reference frame and were used to distinguish cluster members from the majority of the dense field star population toward the inner bulge. Fitting the cluster and field proper motion distributions withmore » two-dimensional (2D) Gaussian models, we derive the orbital motion of the cluster for the first time. The Quintuplet is moving with a 2D velocity of 132 ± 15 km s{sup –1} with respect to the field along the Galactic plane, which yields a three-dimensional orbital velocity of 167 ± 15 km s{sup –1} when combined with the previously known radial velocity. From a sample of 119 stars measured in three epochs, we derive an upper limit to the velocity dispersion of σ{sub 1D} < 10 km s{sup –1} in the core of the Quintuplet cluster. Knowledge of the three velocity components of the Quintuplet allows us to model the cluster orbit in the potential of the inner Galaxy. Under the assumption that the Quintuplet is located in the central 200 pc at the present time, these simulations exclude the possibility that the cluster is moving on a circular orbit. Comparing the Quintuplet's orbit with our earlier measurements of the Arches' orbit, we discuss the possibility that both clusters originated in the same area of the central molecular zone (CMZ). According to the model of Binney et al., two families of stable cloud orbits are located along the major and minor axes of the Galactic bar, named x1 and x2 orbits, respectively. The formation locus of these clusters is consistent with the outermost x2 orbit and might hint at cloud collisions at the transition region between the x1 and x2 orbital families located at the tip of the minor axis of the Galactic bar. The formation of young, massive star clusters in circumnuclear rings is discussed in the framework of the channeling in of dense gas by the bar potential. We conclude that the existence of a large-scale bar plays a major role in supporting ongoing star and cluster formation, not only in nearby spiral galaxies with circumnuclear rings, but also in the Milky Way's CMZ.« less
Deep HST Imaging in 47 Tucanae: A Global Dynamical Model
NASA Astrophysics Data System (ADS)
Heyl, J.; Caiazzo, I.; Richer, H.; Anderson, J.; Kalirai, J.; Parada, J.
2017-12-01
Multi-epoch observations with the Advanced Camera Survey and WFC3 on the Hubble Space Telescope provide a unique and comprehensive probe of stellar dynamics within 47 Tucanae. We confront analytic models of the globular cluster with the observed stellar proper motions that probe along the main sequence from just above 0.8-0.1M ⊙ as well as white dwarfs younger than 1 Gyr. One field lies just beyond the half-light radius where dynamical models (e.g., lowered Maxwellian distributions) make robust predictions for the stellar proper motions. The observed proper motions in this outer field show evidence for anisotropy in the velocity distribution as well as skewness; the latter is evidence of rotation. The measured velocity dispersions and surface brightness distributions agree in detail with a rotating anisotropic model of the stellar distribution function with mild dependence of the proper-motion dispersion on mass. However, the best-fitting models underpredict the rotation and skewness of the stellar velocities. In the second field, centered on the core of the cluster, the mass segregation in proper motion is much stronger. Nevertheless the model developed in the outer field can be extended inward by taking this mass segregation into account in a heuristic fashion. The proper motions of the main-sequence stars yield a mass estimate of the cluster of 1.31+/- 0.02× {10}6{M}⊙ at a distance of 4.7 kpc. By comparing the proper motions of a sample of giant and subgiant stars with the observed radial velocities we estimate the distance to the cluster kinematically to be 4.29 ± 0.47 kpc.
Applying a Resources Framework to Analysis of the Force and Motion Conceptual Evaluation
ERIC Educational Resources Information Center
Smith, Trevor I.; Wittman, Michael C.
2008-01-01
We suggest one redefinition of common clusters of questions used to analyze student responses on the Force and Motion Conceptual Evaluation. Our goal is to propose a methodology that moves beyond an analysis of student learning defined by correct responses, either on the overall test or on clusters of questions defined solely by content. We use…
Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B
2012-04-01
Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models. Copyright © 2011 Elsevier B.V. All rights reserved.
Sarig Bahat, Hilla; Sprecher, Elliot; Sela, Itamar; Treleaven, Julia
2016-07-01
The use of virtual reality (VR) for assessment and intervention of neck pain has previously been used and shown reliable for cervical range of motion measures. Neck VR enables analysis of task-oriented neck movement by stimulating responsive movements to external stimuli. Therefore, the purpose of this study was to establish inter-tester reliability of neck kinematic measures so that it can be used as a reliable assessment and treatment tool between clinicians. This reliability study included 46 asymptomatic participants, who were assessed using the neck VR system which displayed an interactive VR scenario via a head-mounted device, controlled by neck movements. The objective of the interactive assessment was to hit 16 targets, randomly appearing in four directions, as fast as possible. Each participant was tested twice by two different testers. Good reliability was found of neck motion kinematic measures in flexion, extension, and rotation (0.64-0.93 inter-class correlation). High reliability was shown for peak velocity globally (0.93), in left rotation (0.9), right rotation and extension (0.88), and flexion (0.86). Mean velocity had a good global reliability (0.84), except for left rotation directed movement with moderate reliability (0.68). Minimal detectable change for peak velocity ranged from 41 to 53 °/s, while mean velocity ranged from 20 to 25 °/s. The results suggest high reliability for peak and mean velocity as measured by the interactive Neck VR assessment of neck motion kinematics. VR appears to provide a reliable and more ecologically valid method of cervical motion evaluation than previous conventional methodologies.
Comfort Contours: Inter-Axis Equivalence
NASA Astrophysics Data System (ADS)
Griefahn, B.; Bröde, P.
1997-07-01
Inter-axis equivalence for sinusoidal vibrations as stipulated by ISO/DIS 2631 for seated persons was studied by adjusting the acceleration of a horizontal sinusoidal test vibration (x∨y) until it caused equal sensation as a vertical sinusoidal reference motion of the same frequency. The reference vibrations consisted of sine waves ranging from 1·6 to 12·5Hz and were presented with three weighted accelerations ofazw=0·3, 0·6 and 1·2ms-2r.m.s. (reference contours). 26 subjects (15 men, 11 women, 20-55yrs, 153-187cm) participated in the respective experiments. Based on the three reference contours, predicted values for horizontal motions were calculated by using the weighting factors provided in ISO/DIS 2631. The International standard was confirmed insofar as the shape of the contours determined for horizontal motions was independent from vibration magnitudes as sensitivity to fore-and-aft and to lateral motions was similar. However, the accelerations adjusted for horizontal vibrations were considerably lower than predicted, suggesting that the weighing factors provided in ISO/DIS 2631 need to be corrected.
Cross Layered Multi-Meshed Tree Scheme for Cognitive Networks
2011-06-01
Meshed Tree Routing protocol wireless ad hoc networks ,” Second IEEE International Workshop on Enabling Technologies and Standards for Wireless Mesh ...and Sensor Networks , 2004 43. Chen G.; Stojmenovic I., “Clustering and routing in mobile wireless networks ,” Technical Report TR-99-05, SITE, June...Cross-layer optimization, intra-cluster routing , packet forwarding, inter-cluster routing , mesh network communications,
Tang, Haijing; Wang, Siye; Zhang, Yanjun
2013-01-01
Clustering has become a common trend in very long instruction words (VLIW) architecture to solve the problem of area, energy consumption, and design complexity. Register-file-connected clustered (RFCC) VLIW architecture uses the mechanism of global register file to accomplish the inter-cluster data communications, thus eliminating the performance and energy consumption penalty caused by explicit inter-cluster data move operations in traditional bus-connected clustered (BCC) VLIW architecture. However, the limit number of access ports to the global register file has become an issue which must be well addressed; otherwise the performance and energy consumption would be harmed. In this paper, we presented compiler optimization techniques for an RFCC VLIW architecture called Lily, which is designed for encryption systems. These techniques aim at optimizing performance and energy consumption for Lily architecture, through appropriate manipulation of the code generation process to maintain a better management of the accesses to the global register file. All the techniques have been implemented and evaluated. The result shows that our techniques can significantly reduce the penalty of performance and energy consumption due to access port limitation of global register file. PMID:23970841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken
2015-05-18
We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizesmore » of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.« less
Including foreshocks and aftershocks in time-independent probabilistic seismic hazard analyses
Boyd, Oliver S.
2012-01-01
Time‐independent probabilistic seismic‐hazard analysis treats each source as being temporally and spatially independent; hence foreshocks and aftershocks, which are both spatially and temporally dependent on the mainshock, are removed from earthquake catalogs. Yet, intuitively, these earthquakes should be considered part of the seismic hazard, capable of producing damaging ground motions. In this study, I consider the mainshock and its dependents as a time‐independent cluster, each cluster being temporally and spatially independent from any other. The cluster has a recurrence time of the mainshock; and, by considering the earthquakes in the cluster as a union of events, dependent events have an opportunity to contribute to seismic ground motions and hazard. Based on the methods of the U.S. Geological Survey for a high‐hazard site, the inclusion of dependent events causes ground motions that are exceeded at probability levels of engineering interest to increase by about 10% but could be as high as 20% if variations in aftershock productivity can be accounted for reliably.
NASA Astrophysics Data System (ADS)
Ginanjar, Irlandia; Pasaribu, Udjianna S.; Indratno, Sapto W.
2017-03-01
This article presents the application of the principal component analysis (PCA) biplot for the needs of data mining. This article aims to simplify and objectify the methods for objects clustering in PCA biplot. The novelty of this paper is to get a measure that can be used to objectify the objects clustering in PCA biplot. Orthonormal eigenvectors, which are the coefficients of a principal component model representing an association between principal components and initial variables. The existence of the association is a valid ground to objects clustering based on principal axes value, thus if m principal axes used in the PCA, then the objects can be classified into 2m clusters. The inter-city buses are clustered based on maintenance costs data by using two principal axes PCA biplot. The buses are clustered into four groups. The first group is the buses with high maintenance costs, especially for lube, and brake canvass. The second group is the buses with high maintenance costs, especially for tire, and filter. The third group is the buses with low maintenance costs, especially for lube, and brake canvass. The fourth group is buses with low maintenance costs, especially for tire, and filter.
Progress on the Cluster Mission
NASA Technical Reports Server (NTRS)
Kivelson, Margaret; Khurana, Krishan; Acuna, Mario (Technical Monitor)
2002-01-01
Prof M. G. Kivelson and Dr. K. K. Khurana (UCLA (University of California, Los Angeles)) are co-investigators on the Cluster Magnetometer Consortium (CMC) that provided the fluxgate magnetometers and associated mission support for the Cluster Mission. The CMC designated UCLA as the site with primary responsibility for the inter-calibration of data from the four spacecraft and the production of fully corrected data critical to achieving the mission objectives. UCLA will also participate in the analysis and interpretation of the data. The UCLA group here reports its excellent progress in developing fully intra-calibrated data for large portions of the mission and an excellent start in developing inter-calibrated data for selected time intervals, especially extended intervals in August, 2001 on which a workshop held at ESTEC in March, 2002 focused. In addition, some scientific investigations were initiated and results were reported at meetings.
Evaluating Combinations of Ranked Lists and Visualizations of Inter-Document Similarity.
ERIC Educational Resources Information Center
Allan, James; Leuski, Anton; Swan, Russell; Byrd, Donald
2001-01-01
Considers how ideas from document clustering can be used to improve retrieval accuracy of ranked lists in interactive systems and how to evaluate system effectiveness. Describes a TREC (Text Retrieval Conference) study that constructed and evaluated systems that present the user with ranked lists and a visualization of inter-document similarities.…
Reproducibility of cervical range of motion in patients with neck pain
Hoving, Jan Lucas; Pool, Jan JM; van Mameren, Henk; Devillé, Walter JLM; Assendelft, Willem JJ; de Vet, Henrica CW; de Winter, Andrea F; Koes, Bart W; Bouter, Lex M
2005-01-01
Background Reproducibility measurements of the range of motion are an important prerequisite for the interpretation of study results. The aim of the study is to assess the intra-rater and inter-rater reproducibility of the measurement of active Range of Motion (ROM) in patients with neck pain using the Cybex Electronic Digital Inclinometer-320 (EDI-320). Methods In an outpatient clinic in a primary care setting 32 patients with at least 2 weeks of pain and/or stiffness in the neck were randomly assessed, in a test- retest design with blinded raters using a standardized measurement protocol. Cervical flexion-extension, lateral flexion and rotation were assessed. Results Reliability expressed by the Intraclass Correlation Coefficient (ICC) was 0.93 (lateral flexion) or higher for intra-rater reliability and 0.89 (lateral flexion) or higher for inter-rater reliability. The 95% limits of agreement for intra-rater agreement, expressing the range of the differences between two ratings were -2.5 ± 11.1° for flexion-extension, -0.1 ± 10.4° for lateral flexion and -5.9 ± 13.5° for rotation. For inter-rater agreement the limits of agreement were 3.3 ± 17.0° for flexion-extension, 0.5 ± 17.0° for lateral flexion and -1.3 ± 24.6° for rotation. Conclusion In general, the intra-rater reproducibility and the inter-rater reproducibility were good. We recommend to compare the reproducibility and clinical applicability of the EDI-320 inclinometer with other cervical ROM measures in symptomatic patients. PMID:16351719
Messier 35 (NGC 2168) DANCe. I. Membership, proper motions, and multiwavelength photometry
NASA Astrophysics Data System (ADS)
Bouy, H.; Bertin, E.; Barrado, D.; Sarro, L. M.; Olivares, J.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Ribas, Á.; Beletsky, Y.
2015-03-01
Context. Messier 35 (NGC 2168) is an important young nearby cluster. Its age, richness and relative proximity make it an ideal target for stellar evolution studies. The Kepler K2 mission recently observed it and provided a high accuracy photometric time series of a large number of sources in this area of the sky. Identifying the cluster's members is therefore of high importance to optimize the interpretation and analysis of the Kepler K2 data. Aims: We aim to identify the cluster's members by deriving membership probabilities for the sources within 1° of the cluster's center, which is farther away than equivalent previous studies. Methods: We measure accurate proper motions and multiwavelength (optical and near-infrared) photometry using ground-based archival images of the cluster. We use these measurements to compute membership probabilities. The list of candidate members from the literature is used as a training set to identify the cluster's locus in a multidimensional space made of proper motions, luminosities, and colors. Results: The final catalog includes 338 892 sources with multiwavelength photometry. Approximately half (194 452) were detected at more than two epochs and we measured their proper motion and used it to derive membership probability. A total of 4349 candidate members with membership probabilities greater than 50% are found in this sample in the luminosity range between 10 mag and 22 mag. The slow proper motion of the cluster and the overlap of its sequence with the field and background sequences in almost all color-magnitude and color-color diagrams complicate the analysis and the contamination level is expected to be significant. Our study, nevertheless, provides a coherent and quantitative membership analysis of Messier 35 based on a large fraction of the best ground-based data sets obtained over the past 18 years. As such, it represents a valuable input for follow-up studies using, in particular, the Kepler K2 photometric time series. Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A120
The Effect of Selected Cinemagraphic Elements on Audience Perception of Mediated Concepts.
ERIC Educational Resources Information Center
Orr, Quinn
This study is to explore cinemagraphic and visual elements and their inter-relations through the reinterpretation of previous research and literature. The cinemagraphic elements of visual images (camera angle, camera motion, subject motion, color, and lighting) work as a language requiring a proper grammar for the messages to be conveyed in their…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Dolly, S; Anastasio, M
Purpose: Head and neck (H&N) internal organ motion has previously been determined with low frequency and temporary nature based on population-based pre- and post-treatment studies. Using immobilization masks and adding a 4–6 mm planning-tumor-volume margin, geometric uncertainties of patients are routinely considered clinically inconsequential in H&N radiotherapy. Using the first commercially-available MR-IGRT system, we conducted the first quantitative study on inter-patient, intra- and inter-fractional H&N internal motion patterns to evaluate the necessity of individualized asymmetric internal margins. Methods: Ninety cine sagittal MR image sequences were acquired during the entire treatment course (6–7 weeks) of three H&N cancer patients using themore » ViewRay™ MR-IGRT system. The images were 5 mm thick and acquired at 4 frames/per second. One of the patients had a tracheostomy tube. The cross-sectional H&N airway (nasopharynx, oropharynx, and laryngopharynx portions) movement was analyzed comprehensively using in-house developed motion detection software. Results: Large inter-patient variations of swallowing frequency (0–1 times/per fraction), swallowing duration (1–3 seconds), and pharyngeal cross-sectional area (238–2516 mm2) were observed. Extensive pharyngeal motion occurred during swallowing, while nonzero and periodic change of airway geometry was observed in resting. For patient 1 with tracheostomy tube replacement, 30.3%, 30.0%, 48.7% and 0.3% of total frames showed ≥ 4 mm displacements in the anterior, posterior, inferior, and superior airway boundaries, respectively; similarly, (5.7%, 0.0%, 0.0%, 0.3%) and (23.3%, 0.0%, 35.7%, 1.7%) occurred for patients 2 and 3. Area overlapping coefficients with respect to the first frame were 76.3+/−6.4%, 90.3+/−0.6%, and 92.3+/−1.2% for the three patients, respectively. Conclusion: Both the resting and swallowing motions varied in frequency and amplitude among the patients and across fractions of a patient’s treatment. Patients receiving surgery that alters their respiratory and swallowing behavior can have significant intra-fractional internal motion. Patient-specific organ/tumor motion analysis may yield individualized asymmetric internal margins and improve the therapeutic ratio.« less
Numerical study on inter-tidal transports in coastal seas
NASA Astrophysics Data System (ADS)
Mao, Xinyan; Jiang, Wensheng; Zhang, Ping; Feng, Shizuo
2016-06-01
Inter-tidal (subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al. (2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian inter-tidal concentration (LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is numerically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as `flat-bottom', `stairs' and `cape' case, respectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the `flat-bottom' case still meets the convectively weakly nonlinear condition. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the dependence of the LIS (Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coastlines, and that in the latter region is due to the presence of the estuarine salinity front.
Liu, Hong; Yan, Meng; Song, Enmin; Wang, Jie; Wang, Qian; Jin, Renchao; Jin, Lianghai; Hung, Chih-Cheng
2016-05-01
Myocardial motion estimation of tagged cardiac magnetic resonance (TCMR) images is of great significance in clinical diagnosis and the treatment of heart disease. Currently, the harmonic phase analysis method (HARP) and the local sine-wave modeling method (SinMod) have been proven as two state-of-the-art motion estimation methods for TCMR images, since they can directly obtain the inter-frame motion displacement vector field (MDVF) with high accuracy and fast speed. By comparison, SinMod has better performance over HARP in terms of displacement detection, noise and artifacts reduction. However, the SinMod method has some drawbacks: 1) it is unable to estimate local displacements larger than half of the tag spacing; 2) it has observable errors in tracking of tag motion; and 3) the estimated MDVF usually has large local errors. To overcome these problems, we present a novel motion estimation method in this study. The proposed method tracks the motion of tags and then estimates the dense MDVF by using the interpolation. In this new method, a parameter estimation procedure for global motion is applied to match tag intersections between different frames, ensuring specific kinds of large displacements being correctly estimated. In addition, a strategy of tag motion constraints is applied to eliminate most of errors produced by inter-frame tracking of tags and the multi-level b-splines approximation algorithm is utilized, so as to enhance the local continuity and accuracy of the final MDVF. In the estimation of the motion displacement, our proposed method can obtain a more accurate MDVF compared with the SinMod method and our method can overcome the drawbacks of the SinMod method. However, the motion estimation accuracy of our method depends on the accuracy of tag lines detection and our method has a higher time complexity. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Shea, T; Bamber, J; Harris, E
Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation templatemore » matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion would also be prudent. This work is support by Cancer Research UK Programme Grant C33589/A19727.« less
Cell-to-cell variation sets a tissue-rheology–dependent bound on collective gradient sensing
Camley, Brian A.; Rappel, Wouter-Jan
2017-01-01
When a single cell senses a chemical gradient and chemotaxes, stochastic receptor–ligand binding can be a fundamental limit to the cell’s accuracy. For clusters of cells responding to gradients, however, there is a critical difference: Even genetically identical cells have differing responses to chemical signals. With theory and simulation, we show collective chemotaxis is limited by cell-to-cell variation in signaling. We find that when different cells cooperate, the resulting bias can be much larger than the effects of ligand–receptor binding. Specifically, when a strongly responding cell is at one end of a cell cluster, cluster motion is biased toward that cell. These errors are mitigated if clusters average measurements over times long enough for cells to rearrange. In consequence, fluid clusters are better able to sense gradients: We derive a link between cluster accuracy, cell-to-cell variation, and the cluster rheology. Because of this connection, increasing the noisiness of individual cell motion can actually increase the collective accuracy of a cluster by improving fluidity. PMID:29114053
Matsumoto, Akihiro; Tachibana, Masao
2017-01-01
Even when the body is stationary, the whole retinal image is always in motion by fixational eye movements and saccades that move the eye between fixation points. Accumulating evidence indicates that the brain is equipped with specific mechanisms for compensating for the global motion induced by these eye movements. However, it is not yet fully understood how the retina processes global motion images during eye movements. Here we show that global motion images evoke novel coordinated firing in retinal ganglion cells (GCs). We simultaneously recorded the firing of GCs in the goldfish isolated retina using a multi-electrode array, and classified each GC based on the temporal profile of its receptive field (RF). A moving target that accompanied the global motion (simulating a saccade following a period of fixational eye movements) modulated the RF properties and evoked synchronized and correlated firing among local clusters of the specific GCs. Our findings provide a novel concept for retinal information processing during eye movements.
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yurie, E-mail: ok-yu@fuji.waseda.jp; Yanao, Tomohiro, E-mail: yanao@waseda.jp; Koon, Wang Sang, E-mail: koon@cds.caltech.edu
2015-04-07
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internalmore » centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.« less
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
NASA Astrophysics Data System (ADS)
Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang
2015-04-01
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.
Clermont, Gilles; Chen, Lujie; Dubrawski, Artur W.; Ren, Dianxu; Hoffman, Leslie A.; Pinsky, Michael R.; Hravnak, Marilyn
2018-01-01
Cardiorespiratory instability (CRI) in monitored step-down unit (SDU) patients has a variety of etiologies, and likely manifests in patterns of vital signs (VS) changes. We explored use of clustering techniques to identify patterns in the initial CRI epoch (CRI1; first exceedances of VS beyond stability thresholds after SDU admission) of unstable patients, and inter-cluster differences in admission characteristics and outcomes. Continuous noninvasive monitoring of heart rate (HR), respiratory rate (RR), and pulse oximetry (SpO2) were sampled at 1/20 Hz. We identified CRI1 in 165 patients, employed hierarchical and k-means clustering, tested several clustering solutions, used 10-fold cross validation to establish the best solution and assessed inter-cluster differences in admission characteristics and outcomes. Three clusters (C) were derived: C1) normal/high HR and RR, normal SpO2 (n = 30); C2) normal HR and RR, low SpO2 (n = 103); and C3) low/normal HR, low RR and normal SpO2 (n = 32). Clusters were significantly different based on age (p < 0.001; older patients in C2), number of comorbidities (p = 0.008; more C2 patients had ≥ 2) and hospital length of stay (p = 0.006; C1 patients stayed longer). There were no between-cluster differences in SDU length of stay, or mortality. Three different clusters of VS presentations for CRI1 were identified. Clusters varied on age, number of comorbidities and hospital length of stay. Future study is needed to determine if there are common physiologic underpinnings of VS clusters which might inform clinical decision-making when CRI first manifests. PMID:28229353
Metastable Autoionizing States of Molecules and Radicals in Highly Energetic Environment
2016-03-22
electronic states. The specific aims are to develop and calibrate complex-scaled equation-of-motion coupled cluster (cs-EOM- CC ) and CAP (complex...absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and CAP- augmented EOM-CCSD methods for excitation energies...motion coupled cluster (cs-EOM- CC ) and CAP (complex absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and
A method for acquiring random range uncertainty probability distributions in proton therapy
NASA Astrophysics Data System (ADS)
Holloway, S. M.; Holloway, M. D.; Thomas, S. J.
2018-01-01
In treatment planning we depend upon accurate knowledge of geometric and range uncertainties. If the uncertainty model is inaccurate then the plan will produce under-dosing of the target and/or overdosing of OAR. We aim to provide a method for which centre and site-specific population range uncertainty due to inter-fraction motion can be quantified to improve the uncertainty model in proton treatment planning. Daily volumetric MVCT data from previously treated radiotherapy patients has been used to investigate inter-fraction changes to water equivalent path-length (WEPL). Daily image-guidance scans were carried out for each patient and corrected for changes in CTV position (using rigid transformations). An effective depth algorithm was used to determine residual range changes, after corrections had been applied, throughout the treatment by comparing WEPL within the CTV at each fraction for several beam angles. As a proof of principle this method was used to quantify uncertainties for inter-fraction range changes for a sample of head and neck patients of Σ=3.39 mm, σ = 4.72 mm and overall mean = -1.82 mm. For prostate Σ=5.64 mm, σ = 5.91 mm and overall mean = 0.98 mm. The choice of beam angle for head and neck did not affect the inter-fraction range error significantly; however this was not the same for prostate. Greater range changes were seen using a lateral beam compared to an anterior beam for prostate due to relative motion of the prostate and femoral heads. A method has been developed to quantify population range changes due to inter-fraction motion that can be adapted for the clinic. The results of this work highlight the importance of robust planning and analysis in proton therapy. Such information could be used in robust optimisation algorithms or treatment plan robustness analysis. Such knowledge will aid in establishing beam start conditions at planning and for establishing adaptive planning protocols.
Evaluating the Efficacy of the Cloud for Cluster Computation
NASA Technical Reports Server (NTRS)
Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom
2012-01-01
Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.
VizieR Online Data Catalog: Catalogue of variable stars in open clusters (Zejda+, 2012)
NASA Astrophysics Data System (ADS)
Zejda, M.; Paunzen, E.; Baumann, B.; Mikulasek, Z.; Liska, J.
2012-08-01
The catalogue of variable stars in open clusters were prepared by cross-matching of Variable Stars Index (http://www.aavso.org/vsx) version Apr 29, 2012 (available online, Cat. B/vsx) against the version 3.1. catalogue of open clusters DAML02 (Dias et al. 2002A&A...389..871D, Cat. B/ocl) available on the website http://www.astro.iag.usp.br/~wilton. The open clusters were divided into two categories according to their size, where the limiting diameter was 60 arcmin. The list of all suspected variables and variable stars located within the fields of open clusters up to two times of given cluster radius were generated (Table 1). 8938 and 9127 variable stars are given in 461 "smaller" and 74 "larger" clusters, respectively. All found variable stars were matched against the PPMXL catalog of positions and proper motions within the ICRS (Roeser et al., 2010AJ....139.2440R, Cat. I/317). Proper motion data were included in our catalogue. Unfortunately, a homogeneous data set of mean cluster proper motions has not been available until now. Therefore we used the following sources (sorted alphabetically) to compile a new catalogue: Baumgardt et al. (2000, Cat. J/A+AS/146/251): based on the Hipparcos catalogue Beshenov & Loktin (2004A&AT...23..103B): based on the Tycho-2 catalogue Dias et al. (2001, Cat. J/A+A/376/441, 2002A&A...389..871D, Cat. B/ocl): based on the Tycho-2 catalogue Dias et al. (2006, Cat. J/A+A/446/949): based on the UCAC2 catalog (Zacharias et al., 2004AJ....127.3043Z, Cat. I/289) Frinchaboy & Majewski (2008, Cat. J/AJ/136/118): based on the Tycho-2 catalogue Kharchenko et al. (2005, J/A+A/438/1163): based on the ASCC2.5 catalogue (Kharchenko, 2001KFNT...17..409K, Cat. I/280) Krone-Martins et al. (2010, Cat. J/A+A/516/A3): based on the Bordeaux PM2000 proper motion catalogue (Ducourant et al., 2006A&A...448.1235D, Cat. I/300) Robichon et al. (1999, Cat. J/A+A/345/471): based on the Hipparcos catalogue van Leeuwen (2009A&A...497..209V): based on the new Hipparcos catalogue. In total, a catalogue of proper motions for 879 open clusters (Table 2), from which 436 have more than one available measurement, was compiled. (3 data files).
NASA Astrophysics Data System (ADS)
Bhowmik, Debsindhu; Shrestha, Utsab; Dhindsa, Gurpreet; Sharp, Melissa; Stingaciu, Laura R.; Chu, Xiang-Qiang; Xiang-Qiang Chu Team
Deep-sea microorganisms have the ability to survive under extreme conditions, such as high pressure and high temperature. In this work, we used the combination of the neutron spin-echo (NSE) and the small angle neutron scattering (SANS) techniques to study the inter-domain motions of the inorganic pyrophosphate (IPPase) enzyme derived from thermostable microorganisms Thermococcus thioreducens. The IPPase has hexameric quaternary structure with molecular mass of approx. 120kDa (each subunit of 20kDa), which is a large oligomeric structure. The understanding of its slow inter-domain motions can be the key to explain how they are able to perform catalytic activity at higher temperature compared to mesophilic enzymes, thus leading to adapt to extreme environment present at the seabed. The NSE can probe these slow motions directly in the time domain up to several tens of nanoseconds at the nanometers length scales, while the corresponding structural change can be explored by the SANS. Our results provide a better picture of the local flexibility and conformational substates unique to these types of proteins, which will help us better understandthe relation between protein dynamics and their biological activities
Determination of the masses of globular clusters using proper motions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninkovich, S.
1984-09-01
Published proper motions of stars in the fields of the globular clusters M 15, M 92, and M 13 (Cudworth, 1976 Cudworth and Monet, 1979) are compiled in tables and used to estimate the masses of the clusters by the method of Naumova and Ogorodnikov (1973). Masses of the order of 10 to the 8th solar mass are calculated, as compared to an M 13 mass of about 10 to the 6th solar mass determined by the virial theorem. The higher masses are considered indicative of the actual cluster masses despite the distortion introduced by the presence in the fieldmore » of stars not belonging to the clusters. It is suggested that the difference between these estimates and the smaller masses proposed by previous authors may represent unobservable peripheral dwarf stars or some invisible mass (like the so-called missing mass of the Galaxy).« less
Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring
2012-01-01
Background Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. Results The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Conclusions Our results demonstrate that the method we present here using a k-modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family. PMID:22793672
Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring.
Durston, Kirk K; Chiu, David Ky; Wong, Andrew Kc; Li, Gary Cl
2012-07-13
Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Our results demonstrate that the method we present here using a k-modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
A Pilot Study of the Kinematics of the Open Cluster IC 4756.
NASA Astrophysics Data System (ADS)
Upgren, A. R.; Lee, J. T.; Weis, E. W.
1998-12-01
In 1982 a working group of I.A.U. Commission 24 was established in order to provide parallax standard fields (IAU Transactions, XVIIIB,127 1982). Three of these fields for regular trigonometric parallax observation are centered on open clusters; the Pleiades, Praesepe and IC4756. Very few studies on IC4756 have been made; one is by Herzog and Sanders (AAPS, 19, 211 1975). The Van Vleck Observatory began normal parallax observations of IC4756 with its 0.5m astrometric refractor in 1980. A few observations were also obtained in 1963. Using Yale PDS machine, Lee has measured two of these early plates and two from 1997-98. The proper motion differences among the stars from different plate pair solutions are about 0.0008"/yr, and the mean proper motion of member stars is about 0.003"/yr, with respect to the mean motion of the field stars. The epoch difference of 34 years appears sufficient for accurate measures of the internal motion of the member stars. This cluster has also been observed with the 1.5m reflector of the U.S. Naval Observatory and the 0.65m McCormick Observatory refractor. These observations may also become available for the motion study.
Anatomy of a Merger: A Deep Chandra Observation of Abell 115
NASA Astrophysics Data System (ADS)
Forman, William R.
2017-08-01
A deep Chandra observation of Abell 115 provides a unique probe of the anatomy of cluster mergers. The X-ray image shows two prominent subclusters, A115N (north) and A115S (south) with a projected separation of almost 1 Mpc. The X-ray subclusters each have ram-pressure stripped tails that unambiguously indicate the directions of motion. The central BCG of A115N hosts the radio source 3C28 which shows a pair of jets, almost perpendicular to the direction of the sucluster's motion. The jets terminate in lobes each of which has a "tail" pointing IN the direction of motion of the subcluster. The Chandra analysis provides details of the merger including the velocities of the subclusters both through analysis of the cold front and a weak shock. The motion of A115N through the cluster generates counter-rotating vortices in the subcluster gas that form the two radio tails. Hydrodynamic modeling yields circulation velocities within the A115N sub cluster. Thus, the radio emitting plasma acts as a dye tracing the motions of the X-ray emitting plasma. A115S shows two "cores", one coincident with the BCG and a second appears as a ram pressure stripped tail.
Modeling of Cluster-Induced Turbulence in Particle-Laden Channel Flow
NASA Astrophysics Data System (ADS)
Baker, Michael; Capecelatro, Jesse; Kong, Bo; Fox, Rodney; Desjardins, Olivier
2017-11-01
A phenomenon often observed in gas-solid flows is the formation of mesoscale clusters of particles due to the relative motion between the solid and fluid phases that is sustained through the dampening of collisional particle motion from interphase momentum coupling inside these clusters. The formation of such sustained clusters, leading to cluster-induced turbulence (CIT), can have a significant impact in industrial processes, particularly in regards to mixing, reaction progress, and heat transfer. Both Euler-Lagrange (EL) and Euler-Euler anisotropic Gaussian (EE-AG) approaches are used in this work to perform mesoscale simulations of CIT in fully developed gas-particle channel flow. The results from these simulations are applied in the development of a two-phase Reynolds-Averaged Navier-Stokes (RANS) model to capture the wall-normal flow characteristics in a less computationally expensive manner. Parameters such as mass loading, particle size, and gas velocity are varied to examine their respective impact on cluster formation and turbulence statistics. Acknowledging support from the NSF (AN:1437865).
Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.
Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun
2018-02-27
The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.
Inter-segment foot motion in girls using a three-dimensional multi-segment foot model.
Jang, Woo Young; Lee, Dong Yeon; Jung, Hae Woon; Lee, Doo Jae; Yoo, Won Joon; Choi, In Ho
2018-05-06
Several multi-segment foot models (MFMs) have been introduced for in vivo analyses of dynamic foot kinematics. However, the normal gait patterns of healthy children and adolescents remain uncharacterized. We sought to determine normal foot kinematics according to age in clinically normal female children and adolescents using a Foot 3D model. Fifty-eight girls (age 7-17 years) with normal function and without radiographic abnormalities were tested. Three representative strides from five separate trials were analyzed. Kinematic data of foot segment motion were tracked and evaluated using an MFM with a 15-marker set (Foot 3D model). As controls, 50 symptom-free female adults (20-35 years old) were analyzed. In the hindfoot kinematic analysis, plantar flexion motion in the pre-swing phase was significantly greater in girls aged 11 years or older than in girls aged <11 years, thereby resulting in a larger sagittal range of motion. Coronal plane hindfoot motion exhibited pronation, whereas transverse plane hindfoot motion exhibited increased internal rotation in girls aged <11 years. Hallux valgus angles increased significantly in girls aged 11 years or older. The foot progression angle showed mildly increased internal rotation in the loading response phase and the swing phase in girls aged <11 years old. The patterns of inter-segment foot motion in girls aged 11 years or older showed low-arch kinematic characteristics, whereas those in girls aged 11 years or older were more similar to the patterns in young adult women. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiao, Jieqing; Salinas, Cristian A.; Searle, Graham E.; Gunn, Roger N.; Schnabel, Julia A.
2012-02-01
Dynamic Positron Emission Tomography is a powerful tool for quantitative imaging of in vivo biological processes. The long scan durations necessitate motion correction, to maintain the validity of the dynamic measurements, which can be particularly challenging due to the low signal-to-noise ratio (SNR) and spatial resolution, as well as the complex tracer behaviour in the dynamic PET data. In this paper we develop a novel automated expectation-maximisation image registration framework that incorporates temporal tracer kinetic information to correct for inter-frame subject motion during dynamic PET scans. We employ the Zubal human brain phantom to simulate dynamic PET data using SORTEO (a Monte Carlo-based simulator), in order to validate the proposed method for its ability to recover imposed rigid motion. We have conducted a range of simulations using different noise levels, and corrupted the data with a range of rigid motion artefacts. The performance of our motion correction method is compared with pairwise registration using normalised mutual information as a voxel similarity measure (an approach conventionally used to correct for dynamic PET inter-frame motion based solely on intensity information). To quantify registration accuracy, we calculate the target registration error across the images. The results show that our new dynamic image registration method based on tracer kinetics yields better realignment of the simulated datasets, halving the target registration error when compared to the conventional method at small motion levels, as well as yielding smaller residuals in translation and rotation parameters. We also show that our new method is less affected by the low signal in the first few frames, which the conventional method based on normalised mutual information fails to realign.
Rotational velocities of newly discovered, low-mass members of the Alpha Persei cluster
NASA Technical Reports Server (NTRS)
Stauffer, John R.; Hartmann, Lee W.; Jones, Burton F.
1989-01-01
About 30 new, low-mass members of the young open cluster Alpha Persei are identified via a proper-motion study and subsequent photometric and spectroscopic observations. Membership in the cluster is confirmed for a number of the fainter proper-motion candidates from Heckman, Dieckvoss, and Kox (1956). Coordinates, finding charts, BVRI photometry, and rotational velocities are provided for most of the stars. At least two of the stars show peculiar H-alpha emission profiles, with weak but very broad emission wings, and relatively narrow absorption reversals. The rotational velocity distribution for low-mass stars in the Alpha Per cluster are compared with recently derived rotational velocity distributions for T Tauri stars, placing strong constraints on the mechanisms for angular momentum loss during pre-main-sequence evolution.
Bipartite flocking for multi-agent systems
NASA Astrophysics Data System (ADS)
Fan, Ming-Can; Zhang, Hai-Tao; Wang, Miaomiao
2014-09-01
This paper addresses the bipartite flock control problem where a multi-agent system splits into two clusters upon internal or external excitations. Using structurally balanced signed graph theory, LaSalle's invariance principle and Barbalat's Lemma, we prove that the proposed algorithm guarantees a bipartite flocking behavior. In each of the two disjoint clusters, all individuals move with the same direction. Meanwhile, every pair of agents in different clusters moves with opposite directions. Moreover, all agents in the two separated clusters approach a common velocity magnitude, and collision avoidance among all agents is ensured as well. Finally, the proposed bipartite flock control method is examined by numerical simulations. The bipartite flocking motion addressed by this paper has its references in both natural collective motions and human group behaviors such as predator-prey and panic escaping scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govind, Niranjan; Sushko, Petr V.; Hess, Wayne P.
2009-03-05
We present a study of the electronic excitations in insulating materials using an embedded- cluster method. The excited states of the embedded cluster are studied systematically using time-dependent density functional theory (TDDFT) and high-level equation-of-motion coupled cluster (EOMCC) methods. In particular, we have used EOMCC models with singles and doubles (EOMCCSD) and two approaches which account for the e®ect of triply excited con¯gurations in non-iterative and iterative fashions. We present calculations of the lowest surface excitations of the well-studied potassium bromide (KBr) system and compare our results with experiment. The bulk-surface exciton shift is also calculated at the TDDFT levelmore » and compared with experiment.« less
Scherman Rydhög, Jonas; Riisgaard de Blanck, Steen; Josipovic, Mirjana; Irming Jølck, Rasmus; Larsen, Klaus Richter; Clementsen, Paul; Lars Andersen, Thomas; Poulsen, Per Rugaard; Fredberg Persson, Gitte; Munck Af Rosenschold, Per
2017-04-01
The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath-hold (DIBH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients. Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm. A mean reduction of 2-6mm in marker excursion in DIBH versus FB was seen in the anterior-posterior (AP), left-right (LR) and cranio-caudal (CC) directions. Lymph node motion during DIBH originated from cardiac motion. The systematic- (standard deviation (SD) of all the mean marker positions) and random errors (root-mean-square of the intra-BH SD) during DIBH were 0.5 and 0.3mm (AP), 0.5 and 0.3mm (LR), 0.8 and 0.4mm (CC), respectively. The mean inter-breath-hold shifts were -0.3mm (AP), -0.2mm (LR), and -0.2mm (CC). Intra- and inter-breath-hold uncertainty of tumours and lymph nodes were small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. Copyright © 2017 Elsevier B.V. All rights reserved.
Long-term observations of the pulsars in 47 Tucanae - II. Proper motions, accelerations and jerks
NASA Astrophysics Data System (ADS)
Freire, P. C. C.; Ridolfi, A.; Kramer, M.; Jordan, C.; Manchester, R. N.; Torne, P.; Sarkissian, J.; Heinke, C. O.; D'Amico, N.; Camilo, F.; Lorimer, D. R.; Lyne, A. G.
2017-10-01
This paper is the second in a series where we report the results of the long-term timing of the millisecond pulsars (MSPs) in 47 Tucanae with the Parkes 64-m radio telescope. We obtain improved timing parameters that provide additional information for studies of the cluster dynamics: (a) the pulsar proper motions yield an estimate of the proper motion of the cluster as a whole (μα = 5.00 ± 0.14 mas yr - 1, μδ = - 2.84 ± 0.12 mas yr - 1) and the motion of the pulsars relative to each other. (b) We measure the second spin-period derivatives caused by the change of the pulsar line-of-sight accelerations; 47 Tuc H, U and possibly J are being affected by nearby objects. (c) For 10 binary systems, we now measure changes in the orbital period caused by their acceleration in the gravitational field of the cluster. From all these measurements, we derive a cluster distance no smaller than ˜4.69 kpc and show that the characteristics of these MSPs are very similar to their counterparts in the Galactic disc. We find no evidence in favour of an intermediate mass black hole at the centre of the cluster. Finally, we describe the orbital behaviour of four 'black widow' systems. Two of them, 47 Tuc J and O, exhibit orbital variability similar to that observed in other such systems, while for 47 Tuc I and R the orbits seem to be remarkably stable. It appears therefore that not all 'black widows' have unpredictable orbital behaviour.
Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters
NASA Astrophysics Data System (ADS)
ZuHone, J. A.; Miller, E. D.; Simionescu, A.; Bautz, M. W.
2016-04-01
Astro-H will be the first X-ray observatory to employ a high-resolution microcalorimeter, capable of measuring the shift and width of individual spectral lines to the precision necessary for estimating the velocity of the diffuse plasma in galaxy clusters. This new capability is expected to bring significant progress in understanding the dynamics, and therefore the physics, of the intracluster medium. However, because this plasma is optically thin, projection effects will be an important complicating factor in interpreting future Astro-H measurements. To study these effects in detail, we performed an analysis of the velocity field from simulations of a galaxy cluster experiencing gas sloshing and generated synthetic X-ray spectra, convolved with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the sloshing motions produce velocity signatures that will be observable by Astro-H in nearby clusters: the shifting of the line centroid produced by the fast-moving cold gas underneath the front surface, and line broadening produced by the smooth variation of this motion along the line of sight. The line shapes arising from inviscid or strongly viscous simulations are very similar, indicating that placing constraints on the gas viscosity from these measurements will be difficult. Our spectroscopic analysis demonstrates that, for adequate exposures, Astro-H will be able to recover the first two moments of the velocity distribution of these motions accurately, and in some cases multiple velocity components may be discerned. The simulations also confirm the importance of accurate treatment of point-spread function scattering in the interpretation of Astro-H/SXS spectra of cluster plasmas.
Nghia, Nguyen Anh; Kadir, Jugah; Sunderasan, E; Puad Abdullah, Mohd; Malik, Adam; Napis, Suhaimi
2008-10-01
Morphological features and Inter Simple Sequence Repeat (ISSR) polymorphism were employed to analyse 21 Corynespora cassiicola isolates obtained from a number of Hevea clones grown in rubber plantations in Malaysia. The C. cassiicola isolates used in this study were collected from several states in Malaysia from 1998 to 2005. The morphology of the isolates was characteristic of that previously described for C. cassiicola. Variations in colony and conidial morphology were observed not only among isolates but also within a single isolate with no inclination to either clonal or geographical origin of the isolates. ISSR analysis delineated the isolates into two distinct clusters. The dendrogram created from UPGMA analysis based on Nei and Li's coefficient (calculated from the binary matrix data of 106 amplified DNA bands generated from 8 ISSR primers) showed that cluster 1 encompasses 12 isolates from the states of Johor and Selangor (this cluster was further split into 2 sub clusters (1A, 1B), sub cluster 1B consists of a unique isolate, CKT05D); while cluster 2 comprises of 9 isolates that were obtained from the other states. Detached leaf assay performed on selected Hevea clones showed that the pathogenicity of representative isolates from cluster 1 (with the exception of CKT05D) resembled that of race 1; and isolates in cluster 2 showed pathogenicity similar to race 2 of the fungus that was previously identified in Malaysia. The isolate CKT05D from sub cluster 1B showed pathogenicity dissimilar to either race 1 or race 2.
Measuring diversity in Gossypium hirsutum using the CottonSNP63K Array
USDA-ARS?s Scientific Manuscript database
A CottonSNP63K array and accompanying cluster file has been developed and includes 45,104 intra-specific SNPs and 17,954 inter-specific SNPs for automated genotyping of cotton (Gossypium spp.) samples. Development of the cluster file included genotyping of 1,156 samples, a subset of which were iden...
A reliability study of the new sensors for movement analysis (SHARIF-HMIS).
Abedi, Mohen; Manshadi, Farideh Dehghan; Zavieh, Minoo Khalkhali; Ashouri, Sajad; Azimi, Hadi; Parnanpour, Mohamad
2016-04-01
SHARIF-HMIS is a new inertial sensor designed for movement analysis. The aim of the present study was to assess the inter-tester and intra-tester reliability of some kinematic parameters in different lumbar motions making use of this sensor. 24 healthy persons and 28 patients with low back pain participated in the current reliability study. The test was performed in five different lumbar motions consisting of lumbar flexion in 0, 15, and 30° in the right and left directions. For measuring inter-tester reliability, all the tests were carried out twice on the same day separately by two physiotherapists. Intra-tester reliability was assessed by reproducing the tests after 3 days by the same physiotherapist. The present study revealed satisfactory inter- and intra-tester reliability indices in different positions. ICCs for intra-tester reliability ranged from 0.65 to 0.98 and 0.59 to 0.81 for healthy and patient participants, respectively. Also, ICCs for inter-tester reliability ranged from 0.65 to 0.92 for the healthy and 0.65 to 0.87 for patient participants. In general, it can be inferred from the results that measuring the kinematic parameters in lumbar movements using inertial sensors enjoys acceptable reliability. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Toth-Tascau, Mirela; Balanean, Flavia; Krepelka, Mircea
2013-10-01
Musculoskeletal impairment of the upper limb can cause difficulties in performing basic daily activities. Three dimensional motion analyses can provide valuable data of arm movement in order to precisely determine arm movement and inter-joint coordination. The purpose of this study was to develop a method to evaluate the degree of impairment based on the influence of shoulder movements in the amplitude of elbow flexion and extension based on the assumption that a lack of motion of the elbow joint will be compensated by an increased shoulder activity. In order to develop and validate a statistical model, one healthy young volunteer has been involved in the study. The activity of choice simulated blowing the nose, starting from a slight flexion of the elbow and raising the hand until the middle finger touches the tip of the nose and return to the start position. Inter-joint coordination between the elbow and shoulder movements showed significant correlation. Statistical regression was used to fit an equation model describing the influence of shoulder movements on the elbow mobility. The study provides a brief description of the kinematic analysis protocol and statistical models that may be useful in describing the relation between inter-joint movements of daily activities.
Study of Electron Gas on a Neutron-Rich Nuclear Pasta
NASA Astrophysics Data System (ADS)
Ramirez-Homs, Enrique
This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho < 0.015 fm-3) and low temperatures (T < 1MeV ). The simulations were performed by varying the Coulomb interaction strength on systems of isospin symmetric and asymmetric matter with periodic boundary conditions. The effect was quantified on the fragment size multiplicity, the inter-particle distance, the isospin content of the clusters, the nucleon mobility and cluster persistence, and on the nuclear structure shapes. The existence of the nuclear pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.
A Conceptual Framework for Tactical Private Satellite Networks
2008-09-01
will be deployed on a controlled basis so as not to consume valuable bandwidth during critical time windows. Faults inside the network can be tracked ... attitude control , timing, and navigation - More precise station keeping - Optical LANs and inter-satellite links - Inter satellite links - New...Cluster operations, such as electromagnetic formation flying systems and remote attitude determination systems. • Distributed spacecraft computing
O'Donnell, Andrew P.; Kurama, Yahya C.; Kalkan, Erol; Taflanidis, Alexandros A.
2017-01-01
This paper experimentally evaluates four methods to scale earthquake ground-motions within an ensemble of records to minimize the statistical dispersion and maximize the accuracy in the dynamic peak roof drift demand and peak inter-story drift demand estimates from response-history analyses of nonlinear building structures. The scaling methods that are investigated are based on: (1) ASCE/SEI 7–10 guidelines; (2) spectral acceleration at the fundamental (first mode) period of the structure, Sa(T1); (3) maximum incremental velocity, MIV; and (4) modal pushover analysis. A total of 720 shake-table tests of four small-scale nonlinear building frame specimens with different static and dynamic characteristics are conducted. The peak displacement demands from full suites of 36 near-fault ground-motion records as well as from smaller “unbiased” and “biased” design subsets (bins) of ground-motions are included. Out of the four scaling methods, ground-motions scaled to the median MIV of the ensemble resulted in the smallest dispersion in the peak roof and inter-story drift demands. Scaling based on MIValso provided the most accurate median demands as compared with the “benchmark” demands for structures with greater nonlinearity; however, this accuracy was reduced for structures exhibiting reduced nonlinearity. The modal pushover-based scaling (MPS) procedure was the only method to conservatively overestimate the median drift demands.
On the relative motions of long-lived Pacific mantle plumes.
Konrad, Kevin; Koppers, Anthony A P; Steinberger, Bernhard; Finlayson, Valerie A; Konter, Jasper G; Jackson, Matthew G
2018-02-27
Mantle plumes upwelling beneath moving tectonic plates generate age-progressive chains of volcanos (hotspot chains) used to reconstruct plate motion. However, these hotspots appear to move relative to each other, implying that plumes are not laterally fixed. The lack of age constraints on long-lived, coeval hotspot chains hinders attempts to reconstruct plate motion and quantify relative plume motions. Here we provide 40 Ar/ 39 Ar ages for a newly identified long-lived mantle plume, which formed the Rurutu hotspot chain. By comparing the inter-hotspot distances between three Pacific hotspots, we show that Hawaii is unique in its strong, rapid southward motion from 60 to 50 Myrs ago, consistent with paleomagnetic observations. Conversely, the Rurutu and Louisville chains show little motion. Current geodynamic plume motion models can reproduce the first-order motions for these plumes, but only when each plume is rooted in the lowermost mantle.
Hand kinematics of piano playing
Flanders, Martha; Soechting, John F.
2011-01-01
Dexterous use of the hand represents a sophisticated sensorimotor function. In behaviors such as playing the piano, it can involve strong temporal and spatial constraints. The purpose of this study was to determine fundamental patterns of covariation of motion across joints and digits of the human hand. Joint motion was recorded while 5 expert pianists played 30 excerpts from musical pieces, which featured ∼50 different tone sequences and fingering. Principal component analysis and cluster analysis using an expectation-maximization algorithm revealed that joint velocities could be categorized into several patterns, which help to simplify the description of the movements of the multiple degrees of freedom of the hand. For the thumb keystroke, two distinct patterns of joint movement covariation emerged and they depended on the spatiotemporal patterns of the task. For example, the thumb-under maneuver was clearly separated into two clusters based on the direction of hand translation along the keyboard. While the pattern of the thumb joint velocities differed between these clusters, the motions at the metacarpo-phalangeal and proximal-phalangeal joints of the four fingers were more consistent. For a keystroke executed with one of the fingers, there were three distinct patterns of joint rotations, across which motion at the striking finger was fairly consistent, but motion of the other fingers was more variable. Furthermore, the amount of movement spillover of the striking finger to the adjacent fingers was small irrespective of the finger used for the keystroke. These findings describe an unparalleled amount of independent motion of the fingers. PMID:21880938
Improved optical flow motion estimation for digital image stabilization
NASA Astrophysics Data System (ADS)
Lai, Lijun; Xu, Zhiyong; Zhang, Xuyao
2015-11-01
Optical flow is the instantaneous motion vector at each pixel in the image frame at a time instant. The gradient-based approach for optical flow computation can't work well when the video motion is too large. To alleviate such problem, we incorporate this algorithm into a pyramid multi-resolution coarse-to-fine search strategy. Using pyramid strategy to obtain multi-resolution images; Using iterative relationship from the highest level to the lowest level to obtain inter-frames' affine parameters; Subsequence frames compensate back to the first frame to obtain stabilized sequence. The experiment results demonstrate that the promoted method has good performance in global motion estimation.
2002-01-01
feedback signals were derived from the motion of the platform rather than directly measured, though an actual spacecraft would likely utilize... large position error spikes due to target motion reversal. Of course, these tracking errors are highly dependent on the feedback gains chosen for the...Key Words: MQW Retromodulators, Modulating Retroreflector(s),Inter- spacecraft communications and navigation, space control
The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 6362
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Thompson, I. B.; Rozyczka, M.; Pych, W.; Narloch, W.
2014-12-01
The field of the globular cluster NGC 6362 was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for 69 periodic variable stars including 34 known RR Lyr stars, 10 known objects of other types and 25 newly detected variable stars. Among the latter we identified 18 proper-motion members of the cluster: seven detached eclipsing binaries (DEBs), six SX Phe stars, two W UMa binaries, two spotted red giants, and a very interesting eclipsing binary composed of two red giants - the first example of such a system found in a globular cluster. Five of the DEBs are located at the turnoff region, and the remaining two are redward of the lower main sequence. Eighty-four objects from the central 9×9 arcmin2 of the cluster were found in the region of cluster blue stragglers. Of these 70 are proper motion (PM) members of NGC 6362 (including all SX Phe and two W UMa stars), and five are field stars. The remaining nine objects lacking PM information are located at the very core of the cluster, and as such they are likely genuine blue stragglers.
WIYN open cluster study: photometric determination of binary mass ratios
NASA Astrophysics Data System (ADS)
Cai, Kai; Durisen, Richard H.; Deliyannis, Constantine P.
Taking advantage of WIYN Open Cluster Survey (WOCS) precision photometry, we have developed a method using appropriate Yonsei-Yale Isochrones to determine primary masses M2 and q (=M2/M1) for cluster binary stars and applied it to proper motion members of M35.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tofflemire, Benjamin M.; Gosnell, Natalie M.; Mathieu, Robert D.
2014-10-01
The open cluster NGC 6791 has been the focus of much recent study due to its intriguing combination of old age and high metallicity (∼8 Gyr, [Fe/H] = +0.30), as well as its location within the Kepler field. As part of the WIYN Open Cluster Study, we present precise (σ = 0.38 km s{sup –1}) radial velocities for proper motion candidate members of NGC 6791 from Platais et al. Our survey, extending down to g' ∼ 16.8, is comprised of the evolved cluster population, including blue stragglers, giants, and horizontal branch stars. Of the 280 proper-motion-selected stars above our magnitudemore » limit, 93% have at least one radial velocity measurement and 79% have three measurements over the course of at least 200 days, sufficient for secure radial-velocity-determined membership of non-velocity-variable stars. The Platais et al. proper motion catalog includes 12 anomalous horizontal branch candidates blueward of the red clump, of which we find only 4 to be cluster members. Three fall slightly blueward of the red clump and the fourth is consistent with being a blue straggler. The cleaned color-magnitude diagram shows a richly populated red giant branch and a blue straggler population. Half of the blue stragglers are in binaries. From our radial velocity measurement distribution, we find the cluster's radial velocity dispersion to be σ {sub c} = 0.62 ± 0.10 km s{sup –1}. This corresponds to a dynamical mass of ∼4600 M {sub ☉}.« less
Non-trivial Clustering and Inter-Event Triggering in Microseismicity Induced by Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Davidsen, J.; Maghsoudi, S.; Eaton, D. W. S.
2016-12-01
For induced microseismicity associated with hydraulic fracturing, the frequency-magnitude distribution is typically characterized by a falloff with increasing magnitude that is signicantly faster than what is observed for tectonic seismicity. This characteristic is thought to be a consequence of a break in scale invariance arising from mechanical layering that typifies many shale gas and tight oil reservoirs. Here, we provide evidence that this specific geometry also leads to magnitude correlations between consecutive microseismic events such that events with similar magnitudes tend to cluster in space and time. We show that this behavior is independent of the specic site where the hydraulic fracturing is performed, using three widely separated case studies from Noth America. In addition, we provide evidence for a significant amount of non-trivial spatio-temporal clustering due to the presence of inter-event triggering in these case studies. This indicaties that pore pressure diffusion and the knowledge of injection rates alone is insufficient for seismic hazard assessment. Using novel methods from statistical seismology, we find specifically that these triggering cascades exhibit features that also characterize tectonic aftershock sequences such as the empirical Omori-Utsu relation and the productivity relation. This is confirmed by an independent analysis of the inter-event times. Their distribution can be described by a universal functional form characterized by two power-laws. One exponent can be directly related to the presence of inter-event triggering following the Omori-Utsu relation. The other one is a reflection of the intrinsic spatial variation in the microseismic response rates.
Baker, Nancy A; Cook, James R; Redfern, Mark S
2009-01-01
This paper describes the inter-rater and intra-rater reliability, and the concurrent validity of an observational instrument, the Keyboard Personal Computer Style instrument (K-PeCS), which assesses stereotypical postures and movements associated with computer keyboard use. Three trained raters independently rated the video clips of 45 computer keyboard users to ascertain inter-rater reliability, and then re-rated a sub-sample of 15 video clips to ascertain intra-rater reliability. Concurrent validity was assessed by comparing the ratings obtained using the K-PeCS to scores developed from a 3D motion analysis system. The overall K-PeCS had excellent reliability [inter-rater: intra-class correlation coefficients (ICC)=.90; intra-rater: ICC=.92]. Most individual items on the K-PeCS had from good to excellent reliability, although six items fell below ICC=.75. Those K-PeCS items that were assessed for concurrent validity compared favorably to the motion analysis data for all but two items. These results suggest that most items on the K-PeCS can be used to reliably document computer keyboarding style.
Brokaw, Elizabeth B; Murray, Theresa M; Nef, Tobias; Lum, Peter S; Brokaw, Elizabeth B; Nichols, Diane; Holley, Rahsaan J
2011-01-01
After a stroke abnormal joint coordination of the arm may limit functional movement and recovery. To aid in training inter-joint movement coordination a haptic guidance method for functional driven rehabilitation after stroke called Time Independent Functional Training (TIFT) has been developed for the ARMin III robot. The mode helps retraining inter-joint coordination during functional movements, such as putting an object on a shelf, pouring from a pitcher, and sorting objects into bins. A single chronic stroke subject was tested for validation of the modality. The subject was given 1.5 hrs of robotic therapy twice a week for 4 weeks. The therapy and the results of training the single stroke subject are discussed. The subject showed a decrease in training joint error for the sorting task across training sessions and increased self-selected movement time in training. In kinematic reaching analysis the subject showed improvements in range of motion and joint coordination in a reaching task, as well as improvements in supination-pronation range of motion at the wrist. © 2011 IEEE
HST Proper Motions of Distant Globular Clusters: Constraining the Formation & Mass of the Milky Way
NASA Astrophysics Data System (ADS)
Sohn, S. Tony; van der Marel, Roeland P.; Deason, Alis; Bellini, Andrea; Besla, Gurtina; Watkins, Laura
2018-04-01
Proper motions (PMs) are required to calculate accurate orbits of globular clusters (GCs) in the Milky Way (MW) halo. We present our HST program to create a PM database for 20 GCs at distances of R GC = 10-100 kpc. Targets are discussed along with PM measurement methods. We also describe how our PM results can be used for Gaia as an external check, and discuss the synergy between HST and Gaia as astrometric instruments in the coming years.
Stretched exponentials and power laws in granular avalanching
NASA Astrophysics Data System (ADS)
Head, D. A.; Rodgers, G. J.
1999-02-01
We introduce a model for granular surface flow which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.
NASA Astrophysics Data System (ADS)
Koppers, Anthony A. P.; Gowen, Molly D.; Colwell, Lauren E.; Gee, Jeffrey S.; Lonsdale, Peter F.; Mahoney, John J.; Duncan, Robert A.
2011-12-01
In this study we present 42 new 40Ar/39Ar incremental heating age determinations that contribute to an updated age progression for the Louisville seamount trail. Louisville is the South Pacific counterpart to the Hawaiian-Emperor seamount trail, both trails representing intraplate volcanism over the same time interval (˜80 Ma to present) and being examples of primary hot spot lineaments. Our data provide evidence for an age-progressive trend from 71 to 21 Ma. Assuming fixed hot spots, this makes possible a direct comparison to the Hawaiian-Emperor age progression and the most recent absolute plate motion (APM) model (WK08G) of Wessel and Kroenke (2008). We observe that for the Louisville seamount trail the measured ages are systematically older relative to both the WK08G model predictions and Hawaiian seamount ages, with offsets ranging up to 6 Myr. Taking into account the uncertainty about the duration of eruption and magmatic succession at individual Louisville volcanoes, these age offsets should be considered minimum estimates, as our sampling probably tended to recover the youngest lava flows. These large deviations point to either a contribution of inter-hot spot motion between the Louisville and Hawaiian hot spots or to a more easterly location of the Louisville hot spot than the one inferred in the WK08G model. Both scenarios are investigated in this paper, whereby the more eastern hot spot location (52.0°S, 134.5°W versus 52.4°S, 137.2°W) reduces the average age offset, but still results in a relatively large maximum offset of 3.7 Myr. When comparing the new ages to the APM models (S04P, S04G) by Steinberger et al. (2004) that attempt to compensate for the motion of hot spots in the Pacific (Hawaii) or globally (Hawaii, Louisville, Reunion and Walvis), the measured and predicted ages are more in agreement, showing only a maximum offset of 2.3 Myr with respect to the S04G model. At face value these more advanced APM models, which consider both plate and hot spot motions, therefore provide a better fit to the new Louisville age data. The fit is particularly good for seamounts younger than 50 Ma, a period for which there is little predicted motion for the Louisville hot spot and little inter-hot spot motion with Hawaii. However, discrepancies in the Louisville age-distance record prior to 50 Ma indicate there is an extra source of inter-hot spot motion between Louisville and the other Pacific hot spots that was not corrected for in the global S04G model. Finally, based on six new 40Ar/39Ar age dates, the 169°W bend in the Louisville seamount trail seems to have formed at least 3 Myr before the formation of the Hawaiian-Emperor bend. The timing of the most acute parts of both bends thus appears to be asynchronous, which would require other processes (e.g., plume motions) than a global plate motion change between 50 and 47 Ma to explain these two observations.
VizieR Online Data Catalog: HSTPROMO catalogs. II. Kinematic profiles (Watkins+, 2015)
NASA Astrophysics Data System (ADS)
Watkins, L. L.; van der Marel, R. P.; Bellini, A.; Anderson, J.
2015-07-01
In Bellini et al. (2014, J/ApJ/797/115, Paper 1), we recently presented a set of Hubble Space Telescope (HST) proper-motion catalogs for 22 Milky Way globular clusters. These catalogs are the result of a search through archival HST data to find fields in Galactic globular clusters that had been previously observed for other projects at multiple epochs, allowing us to measure proper motions. Thanks to both the stability and longevity of HST, we were able to achieve exceptional precision over baselines of up to 12yr. We begin here an analysis of the kinematical profiles and maps for each of the 22 clusters. (2 data files).
NASA Astrophysics Data System (ADS)
Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.
2018-04-01
An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.
Data mining in the young open cluster IC2391
NASA Astrophysics Data System (ADS)
Dodd, R. J.
2004-12-01
Large-scale astrometric and photometric data bases have been used to search for and confirm stellar membership of the open cluster IC2391. 125 stars were found that satisfied criteria for membership based on proper motion components and BRI photometry from the United States Naval Observatory B (USNO-B) catalogue and JHK photometry from the Two Micron All Sky Survey (2MASS) catalogue. This listing was compared with others recently published. A distance to the cluster of 147.7 +/- 5.5 pc was found with mean proper motion components, from the Tycho2 catalogue of (-25.04 +/- 1.53 masyr-1+23.19+/-1.23 masyr-1). A revised Trumpler classification of II3r is suggested. Luminosity and mass functions for the candidate stars were constructed and compared with those of field stars and other clusters.
Flowrate behavior and clustering of self-driven robots in a channel
NASA Astrophysics Data System (ADS)
Tian, Bo; Sun, Wang-Ping; Li, Ming; Jiang, Rui; Hu, Mao-Bin
2018-03-01
In this paper, the collective motion of self-driven robots is studied experimentally and theoretically. In the channel, the flowrate of robots increases with the density linearly, even if the density of the robots tends to 1.0. There is no abrupt drop in the flowrate, similar to the collective motion of ants. We find that the robots will adjust their velocities by a serial of tiny collisions. The speed-adjustment will affect both robots involved in the collision, and will help to maintain a nearly uniform velocity for the robots. As a result, the flowrate drop will disappear. In the motion, the robots neither gather together nor scatter completely. Instead, they form some clusters to move together. These clusters are not stable during the moving process, but their sizes follow a power-law-alike distribution. We propose a theoretical model to simulate this collective motion process, which can reproduce these behaviors well. Analytic results about the flowrate behavior are also consistent with experiments. Project supported by the Key Research and Development Program, China (Grant No. 2016YFC0802508) and the National Natural Science Foundation of China (Grant Nos. 11672289 and 11422221).
Dolidze-35: Results for a Possible Open Cluster
NASA Astrophysics Data System (ADS)
Gulledge, Deborah J.; Borges, Richard A.; Juelfs, Elizabeth; Allyn Smith, J.; Olive, Mary E.; McDonald, Christopher P.; Williams, Sarah M.; Cohen, Eden M.; Gawel, Jason D.; McCole, Bambi A.; Robertson, Jacob M.; Wilson, Tyler; Young, William J.; Buckner, Spencer L.; Allen, Nic R.; Head, H. Hope
2016-01-01
Dolidze-35 is an under-observed northern hemisphere open cluster. It is noted in WEBDA as "No data available for this cluster". As such, we chose this cluster as an undergraduate class project to investigate its existence. We present SDSS-ugriz magnitudes for the possible cluster and cross these with existing JHK data obtained from 2MASS. Selection of possible members is aided by the proper motion study of Krone-Martins (2010).
Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory
NASA Astrophysics Data System (ADS)
Wu, Jianlan; Gong, Zhihao; Tang, Zhoufei
2015-08-01
For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.
Multifractal Approach to Time Clustering of Earthquakes. Application to Mt. Vesuvio Seismicity
NASA Astrophysics Data System (ADS)
Codano, C.; Alonzo, M. L.; Vilardo, G.
The clustering structure of the Vesuvian earthquakes occurring is investigated by means of statistical tools: the inter-event time distribution, the running mean and the multifractal analysis. The first cannot clearly distinguish between a Poissonian process and a clustered one due to the difficulties of clearly distinguishing between an exponential distribution and a power law one. The running mean test reveals the clustering of the earthquakes, but looses information about the structure of the distribution at global scales. The multifractal approach can enlighten the clustering at small scales, while the global behaviour remains Poissonian. Subsequently the clustering of the events is interpreted in terms of diffusive processes of the stress in the earth crust.
Gait patterns in hemiplegic patients with equinus foot deformity.
Manca, M; Ferraresi, G; Cosma, M; Cavazzuti, L; Morelli, M; Benedetti, M G
2014-01-01
Equinus deformity of the foot is a common feature of hemiplegia, which impairs the gait pattern of patients. The aim of the present study was to explore the role of ankle-foot deformity in gait impairment. A hierarchical cluster analysis was used to classify the gait patterns of 49 chronic hemiplegic patients with equinus deformity of the foot, based on temporal-distance parameters and joint kinematic measures obtained by an innovative protocol for motion assessment in the sagittal, frontal, and transverse planes, synthesized by parametrical analysis. Cluster analysis identified five subgroups of patients with homogenous levels of dysfunction during gait. Specific joint kinematic abnormalities were found, according to the speed of progression in each cluster. Patients with faster walking were those with less ankle-foot complex impairment or with reduced range of motion of ankle-foot complex, that is with a stiff ankle-foot complex. Slow walking was typical of patients with ankle-foot complex instability (i.e., larger motion in all the planes), severe equinus and hip internal rotation pattern, and patients with hip external rotation pattern. Clustering of gait patterns in these patients is helpful for a better understanding of dysfunction during gait and delivering more targeted treatment.
Dementin, Sébastien; Belle, Valérie; Bertrand, Patrick; Guigliarelli, Bruno; Adryanczyk-Perrier, Géraldine; De Lacey, Antonio L; Fernandez, Victor M; Rousset, Marc; Léger, Christophe
2006-04-19
In NiFe hydrogenases, electrons are transferred from the active site to the redox partner via a chain of three Iron-Sulfur clusters, and the surface-exposed [4Fe4S] cluster has an unusual His(Cys)3 ligation. When this Histidine (H184 in Desulfovibrio fructosovorans) is changed into a cysteine or a glycine, a distal cubane is still assembled but the oxidative activity of the mutants is only 1.5 and 3% of that of the WT, respectively. We compared the activities of the WT and engineered enzymes for H2 oxidation, H+ reduction and H/D exchange, under various conditions: (i) either with the enzyme directly adsorbed onto an electrode or using soluble redox partners, and (ii) in the presence of exogenous ligands whose binding to the exposed Fe of H184G was expected to modulate the properties of the distal cluster. Protein film voltammetry proved particularly useful to unravel the effects of the mutations on inter and intramolecular electron transfer (ET). We demonstrate that changing the coordination of the distal cluster has no effect on cluster assembly, protein stability, active-site chemistry and proton transfer; however, it slows down the first-order rates of ET to and from the cluster. All-sulfur coordination is actually detrimental to ET, and intramolecular (uphill) ET is rate determining in the glycine variant. This demonstrates that although [4Fe4S] clusters are robust chemical constructs, the direct protein ligands play an essential role in imparting their ability to transfer electrons.
THE EFFECT OF UNRESOLVED BINARIES ON GLOBULAR CLUSTER PROPER-MOTION DISPERSION PROFILES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchini, P.; Norris, M. A.; Ven, G. van de
2016-03-20
High-precision kinematic studies of globular clusters (GCs) require an accurate knowledge of all possible sources of contamination. Among other sources, binary stars can introduce systematic biases in the kinematics. Using a set of Monte Carlo cluster simulations with different concentrations and binary fractions, we investigate the effect of unresolved binaries on proper-motion dispersion profiles, treating the simulations like Hubble Space Telescope proper-motion samples. Since GCs evolve toward a state of partial energy equipartition, more-massive stars lose energy and decrease their velocity dispersion. As a consequence, on average, binaries have a lower velocity dispersion, since they are more-massive kinematic tracers. Wemore » show that, in the case of clusters with high binary fractions (initial binary fractions of 50%) and high concentrations (i.e., closer to energy equipartition), unresolved binaries introduce a color-dependent bias in the velocity dispersion of main-sequence stars of the order of 0.1–0.3 km s{sup −1} (corresponding to 1%−6% of the velocity dispersion), with the reddest stars having a lower velocity dispersion, due to the higher fraction of contaminating binaries. This bias depends on the ability to distinguish binaries from single stars, on the details of the color–magnitude diagram and the photometric errors. We apply our analysis to the HSTPROMO data set of NGC 7078 (M15) and show that no effect ascribable to binaries is observed, consistent with the low binary fraction of the cluster. Our work indicates that binaries do not significantly bias proper-motion velocity-dispersion profiles, but should be taken into account in the error budget of kinematic analyses.« less
The Chromospheric Activity and Ages of M Dwarf Stars in Wide Binary Systems
NASA Astrophysics Data System (ADS)
Silvestri, Nicole M.; Hawley, Suzanne L.; Oswalt, Terry D.
2005-05-01
We investigate the relationship between age and chromospheric activity for 139 M dwarf stars in wide binary systems with white dwarf companions. The age of each system is determined from the cooling age of its white dwarf component. The current limit for activity-age relations found for M dwarfs in open clusters is 4 Gyr. Our unique approach to finding ages for M stars allows for the exploration of this relationship at ages older than 4 Gyr. The general trend of stars remaining active for a longer time at a later spectral type is confirmed. However, our larger sample and greater age range reveal additional complexity in assigning age based on activity alone. We find that M dwarfs in wide binaries older than 4 Gyr depart from the loglinear relation for clusters and are found to have activity at magnitudes, colors, and masses that are brighter, bluer, and more massive than predicted by the cluster relation. In addition to our activity-age results, we present the measured radial velocities and complete space motions for 161 white dwarf stars in wide binaries. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium; the Cerro Tololo Inter-American Observatory 4.0 m telescope, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF) as part of the National Optical Astronomy Observatory (NOAO), which also operates Kitt Peak National Observatory in Tucson, Arizona; and the SARA Observatory 0.9 m telescope at Kitt Peak, which is owned and operated by the Southeastern Association for Research in Astronomy (http://www.saraobservatory.org).
A novel method for quantifying arm motion similarity.
Zhi Li; Hauser, Kris; Roldan, Jay Ryan; Milutinovic, Dejan; Rosen, Jacob
2015-08-01
This paper proposes a novel task-independent method for quantifying arm motion similarity that can be applied to any kinematic/dynamic variable of interest. Given two arm motions for the same task, not necessarily with the same completion time, it plots the time-normalized curves against one another and generates four real-valued features. To validate these features we apply them to quantify the relationship between healthy and paretic arm motions of chronic stroke patients. Studying both unimanual and bimanual arm motions of eight chronic stroke patients, we find that inter-arm coupling that tends to synchronize the motions of both arms in bimanual motions, has a stronger effect at task-relevant joints than at task-irrelevant joints. It also revealed that the paretic arm suppresses the shoulder flexion of the non-paretic arm, while the latter encourages the shoulder rotation of the former.
VizieR Online Data Catalog: The Seven Sisters DANCe. I. Pleiades (Bouy+, 2015)
NASA Astrophysics Data System (ADS)
Bouy, H.; Bertin, E.; Sarro, L. M.; Barrado, D.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Berihuete, A.; Olivares, J.; Beletsky, Y.
2015-02-01
Position, proper motion, multi-wavelength ugrizYJHK photometry and membership probability to the Pleiades cluster for 1972245 sources. Present-day system bolometric luminosity and mass-functions of the Pleiades cluster. Empirical sequence of the Pleiades cluster in ugrizYJHK and BT,VT,JHK photometric systems. (7 data files).
NASA Astrophysics Data System (ADS)
Ferreira, G. G.; Borges, E.; Braga, J. P.; Belchior, J. C.
Cluster structures are discussed in a nonrigid analysis, using a modified minima search method based on stochastic processes and classical dynamics simulations. The relaxation process is taken into account considering the internal motion of the Cl2 molecule. Cluster structures are compared with previous works in which the Cl2 molecule is assumed to be rigid. The interactions are modeled using pair potentials: the Aziz and Lennard-Jones potentials for the Ar==Ar interaction, a Morse potential for the Cl==Cl interaction, and a fully spherical/anisotropic Morse-Spline-van der Waals (MSV) potential for the Ar==Cl interaction. As expected, all calculated energies are lower than those obtained in a rigid approximation; one reason may be attributed to the nonrigid contributions of the internal motion of the Cl2 molecule. Finally, the growing processes in molecular clusters are discussed, and it is pointed out that the growing mechanism can be affected due to the nonrigid initial conditions of smaller clusters such as ArnCl2 (n ? 4 or 5), which are seeds for higher-order clusters.
Dependence of muscle moment arms on in-vivo three-dimensional kinematics of the knee
Navacchia, Alessandro; Kefala, Vasiliki; Shelburne, Kevin B.
2016-01-01
Quantification of muscle moment arms is important for clinical evaluation of muscle pathology and treatment, and for estimating muscle and joint forces in musculoskeletal models. Moment arms estimated with musculoskeletal models often assume a default motion of the knee derived from measurements of passive cadaveric flexion. However, knee kinematics are unique to each person and activity. The objective of this study was to estimate moment arms of the knee muscles with in vivo subject- and activity-specific kinematics from seven healthy subjects performing seated knee extension and single-leg lunge to show changes between subjects and activities. 3D knee motion was measured with a high-speed stereo-radiography system. Moment arms of ten muscles were estimated in OpenSim by replacing the default knee motion with in vivo measurements. Estimated inter-subject moment arm variability was similar to previously reported in vitro measurements. RMS deviations up to 9.0 mm (35.2% of peak value) were observed between moment arms estimated with subject-specific knee extension and passive cadaveric motion. The degrees of freedom that most impacted inter-activity differences were superior/inferior and anterior/posterior translations. Musculoskeletal simulations used to estimate in vivo muscle forces and joint loads may provide significantly different results when subject- and activity-specific kinematics are implemented. PMID:27620064
Dependence of Muscle Moment Arms on In Vivo Three-Dimensional Kinematics of the Knee.
Navacchia, Alessandro; Kefala, Vasiliki; Shelburne, Kevin B
2017-03-01
Quantification of muscle moment arms is important for clinical evaluation of muscle pathology and treatment, and for estimating muscle and joint forces in musculoskeletal models. Moment arms estimated with musculoskeletal models often assume a default motion of the knee derived from measurements of passive cadaveric flexion. However, knee kinematics are unique to each person and activity. The objective of this study was to estimate moment arms of the knee muscles with in vivo subject- and activity-specific kinematics from seven healthy subjects performing seated knee extension and single-leg lunge to show changes between subjects and activities. 3D knee motion was measured with a high-speed stereo-radiography system. Moment arms of ten muscles were estimated in OpenSim by replacing the default knee motion with in vivo measurements. Estimated inter-subject moment arm variability was similar to previously reported in vitro measurements. RMS deviations up to 9.0 mm (35.2% of peak value) were observed between moment arms estimated with subject-specific knee extension and passive cadaveric motion. The degrees of freedom that most impacted inter-activity differences were superior/inferior and anterior/posterior translations. Musculoskeletal simulations used to estimate in vivo muscle forces and joint loads may provide significantly different results when subject- and activity-specific kinematics are implemented.
Joint Video Stitching and Stabilization from Moving Cameras.
Guo, Heng; Liu, Shuaicheng; He, Tong; Zhu, Shuyuan; Zeng, Bing; Gabbouj, Moncef
2016-09-08
In this paper, we extend image stitching to video stitching for videos that are captured for the same scene simultaneously by multiple moving cameras. In practice, videos captured under this circumstance often appear shaky. Directly applying image stitching methods for shaking videos often suffers from strong spatial and temporal artifacts. To solve this problem, we propose a unified framework in which video stitching and stabilization are performed jointly. Specifically, our system takes several overlapping videos as inputs. We estimate both inter motions (between different videos) and intra motions (between neighboring frames within a video). Then, we solve an optimal virtual 2D camera path from all original paths. An enlarged field of view along the virtual path is finally obtained by a space-temporal optimization that takes both inter and intra motions into consideration. Two important components of this optimization are that (1) a grid-based tracking method is designed for an improved robustness, which produces features that are distributed evenly within and across multiple views, and (2) a mesh-based motion model is adopted for the handling of the scene parallax. Some experimental results are provided to demonstrate the effectiveness of our approach on various consumer-level videos and a Plugin, named "Video Stitcher" is developed at Adobe After Effects CC2015 to show the processed videos.
Coding tools investigation for next generation video coding based on HEVC
NASA Astrophysics Data System (ADS)
Chen, Jianle; Chen, Ying; Karczewicz, Marta; Li, Xiang; Liu, Hongbin; Zhang, Li; Zhao, Xin
2015-09-01
The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. This paper provides the evidence that there is still potential for further coding efficiency improvements. A brief overview of HEVC is firstly given in the paper. Then, our improvements on each main module of HEVC are presented. For instance, the recursive quadtree block structure is extended to support larger coding unit and transform unit. The motion information prediction scheme is improved by advanced temporal motion vector prediction, which inherits the motion information of each small block within a large block from a temporal reference picture. Cross component prediction with linear prediction model improves intra prediction and overlapped block motion compensation improves the efficiency of inter prediction. Furthermore, coding of both intra and inter prediction residual is improved by adaptive multiple transform technique. Finally, in addition to deblocking filter and SAO, adaptive loop filter is applied to further enhance the reconstructed picture quality. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. The simulation results show that significant performance improvement over HEVC standard can be achieved, especially for the high resolution video materials.
Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO
Braaf, Boy; Vienola, Kari V.; Sheehy, Christy K.; Yang, Qiang; Vermeer, Koenraad A.; Tiruveedhula, Pavan; Arathorn, David W.; Roorda, Austin; de Boer, Johannes F.
2012-01-01
In phase-resolved OCT angiography blood flow is detected from phase changes in between A-scans that are obtained from the same location. In ophthalmology, this technique is vulnerable to eye motion. We address this problem by combining inter-B-scan phase-resolved OCT angiography with real-time eye tracking. A tracking scanning laser ophthalmoscope (TSLO) at 840 nm provided eye tracking functionality and was combined with a phase-stabilized optical frequency domain imaging (OFDI) system at 1040 nm. Real-time eye tracking corrected eye drift and prevented discontinuity artifacts from (micro)saccadic eye motion in OCT angiograms. This improved the OCT spot stability on the retina and consequently reduced the phase-noise, thereby enabling the detection of slower blood flows by extending the inter-B-scan time interval. In addition, eye tracking enabled the easy compounding of multiple data sets from the fovea of a healthy volunteer to create high-quality eye motion artifact-free angiograms. High-quality images are presented of two distinct layers of vasculature in the retina and the dense vasculature of the choroid. Additionally we present, for the first time, a phase-resolved OCT angiogram of the mesh-like network of the choriocapillaris containing typical pore openings. PMID:23304647
SU-E-P-25: Evaluation of Motion in Pancreas SBRT Treatment Deliveries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, L; Halvorsen, P
2015-06-15
Purpose: Stereotactic Body Radiation Therapy (SBRT) procedures for pancreatic cancer present a challenge in motion management because the target is directly adjacent to critical structures and the target is subject to significant respiratory motion. Gated treatment is usually planned with a tight (few mm) PTV margin. The positioning and setup relies on on-board-imaging (OBI) of internal fiducials. This study evaluates the corrections for inter- and intra-fractional target motion as evidenced by the OBI. Methods: 20 patients with gated pancreas SBRT treatment were setup with KV imaging guidance before and during each treatment. The couch position was fine-tuned to align withmore » the internal fiducials for each patient. The data for 148 intra- and 111 inter-fractional couch movements were captured and analyzed. Results: The mean ± standard deviation of couch shifts for the initial daily setup is 4.9±4.1 mm for couch vertical, 5.3±4.6 mm for couch longitudinal, and 3.7±4.0 mm for couch lateral. The mean ± standard deviation of intra-treatment adjustments are 1.1±1.6, 2.5±3.8, and 1.1±1.8 mm for couch vertical, longitudinal and lateral. The probability of intra-fractional motion in the three orthogonal directions with magnitude no more than 2 mm, 3 mm and 5 mm is 55%, 68% and 84% respectively. Conclusion: The intra-treatment target motion for pancreas SBRT patients indicates that a PTV margin of 5mm may be necessary.« less
On the Distribution of Orbital Poles of Milky Way Satellites
NASA Astrophysics Data System (ADS)
Palma, Christopher; Majewski, Steven R.; Johnston, Kathryn V.
2002-01-01
In numerous studies of the outer Galactic halo some evidence for accretion has been found. If the outer halo did form in part or wholly through merger events, we might expect to find coherent streams of stars and globular clusters following orbits similar to those of their parent objects, which are assumed to be present or former Milky Way dwarf satellite galaxies. We present a study of this phenomenon by assessing the likelihood of potential descendant ``dynamical families'' in the outer halo. We conduct two analyses: one that involves a statistical analysis of the spatial distribution of all known Galactic dwarf satellite galaxies (DSGs) and globular clusters, and a second, more specific analysis of those globular clusters and DSGs for which full phase space dynamical data exist. In both cases our methodology is appropriate only to members of descendant dynamical families that retain nearly aligned orbital poles today. Since the Sagittarius dwarf (Sgr) is considered a paradigm for the type of merger/tidal interaction event for which we are searching, we also undertake a case study of the Sgr system and identify several globular clusters that may be members of its extended dynamical family. In our first analysis, the distribution of possible orbital poles for the entire sample of outer (Rgc>8 kpc) halo globular clusters is tested for statistically significant associations among globular clusters and DSGs. Our methodology for identifying possible associations is similar to that used by Lynden-Bell & Lynden-Bell, but we put the associations on a more statistical foundation. Moreover, we study the degree of possible dynamical clustering among various interesting ensembles of globular clusters and satellite galaxies. Among the ensembles studied, we find the globular cluster subpopulation with the highest statistical likelihood of association with one or more of the Galactic DSGs to be the distant, outer halo (Rgc>25 kpc), second-parameter globular clusters. The results of our orbital pole analysis are supported by the great circle cell count methodology of Johnston, Hernquist, & Bolte. The space motions of the clusters Pal 4, NGC 6229, NGC 7006, and Pyxis are predicted to be among those most likely to show the clusters to be following stream orbits, since these clusters are responsible for the majority of the statistical significance of the association between outer halo, second-parameter globular clusters and the Milky Way DSGs. In our second analysis, we study the orbits of the 41 globular clusters and six Milky Way-bound DSGs having measured proper motions to look for objects with both coplanar orbits and similar angular momenta. Unfortunately, the majority of globular clusters with measured proper motions are inner halo clusters that are less likely to retain memory of their original orbit. Although four potential globular cluster/DSG associations are found, we believe three of these associations involving inner halo clusters to be coincidental. While the present sample of objects with complete dynamical data is small and does not include many of the globular clusters that are more likely to have been captured by the Milky Way, the methodology we adopt will become increasingly powerful as more proper motions are measured for distant Galactic satellites and globular clusters, and especially as results from the Space Interferometry Mission (SIM) become available.
A uniform approach for programming distributed heterogeneous computing systems
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-01-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater’s performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations. PMID:25844015
A uniform approach for programming distributed heterogeneous computing systems.
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-12-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.
Consensus of satellite cluster flight using an energy-matching optimal control method
NASA Astrophysics Data System (ADS)
Luo, Jianjun; Zhou, Liang; Zhang, Bo
2017-11-01
This paper presents an optimal control method for consensus of satellite cluster flight under a kind of energy matching condition. Firstly, the relation between energy matching and satellite periodically bounded relative motion is analyzed, and the satellite energy matching principle is applied to configure the initial conditions. Then, period-delayed errors are adopted as state variables to establish the period-delayed errors dynamics models of a single satellite and the cluster. Next a novel satellite cluster feedback control protocol with coupling gain is designed, so that the satellite cluster periodically bounded relative motion consensus problem (period-delayed errors state consensus problem) is transformed to the stability of a set of matrices with the same low dimension. Based on the consensus region theory in the research of multi-agent system consensus issues, the coupling gain can be obtained to satisfy the requirement of consensus region and decouple the satellite cluster information topology and the feedback control gain matrix, which can be determined by Linear quadratic regulator (LQR) optimal method. This method can realize the consensus of satellite cluster period-delayed errors, leading to the consistency of semi-major axes (SMA) and the energy-matching of satellite cluster. Then satellites can emerge the global coordinative cluster behavior. Finally the feasibility and effectiveness of the present energy-matching optimal consensus for satellite cluster flight is verified through numerical simulations.
Ringe, Kristina Imeen; Luetkens, Julian A; Fimmers, Rolf; Hammerstingl, Renate Maria; Layer, Günter; Maurer, Martin H; Nähle, Claas Philip; Michalik, Sabine; Reimer, Peter; Schraml, Christina; Schreyer, Andreas G; Stumpp, Patrick; Vogl, Thomas J; Wacker, Frank K; Willinek, Winfried; Kukuk, Guido Mattias
2018-04-01
To assess the interrater agreement and reliability of experienced abdominal radiologists in the characterization and grading of arterial phase gadoxetate disodium-related respiratory motion artifact on liver MRI. This prospective multicenter study was initiated by the working group for abdominal imaging within the German Roentgen Society (DRG), and approved by the local IRB of each participating center. 11 board-certified radiologists independently reviewed 40 gadoxetate disodium-enhanced liver MRI datasets. Motion artifacts in the arterial phase were assessed on a 5-point scale. Interrater agreement and reliability were calculated using the intraclass correlation coefficient (ICC) and Kendall coefficient of concordance (W), with p < 0.05 deemed significant. The ICC for interrater agreement and reliability were 0.983 (CI 0.973 - 0.990) and 0.985 (CI 0.978 - 0.991), respectively (both p < 0.0001), indicating excellent agreement and reliability. Kendall's W for interrater agreement was 0.865. A severe motion artifact, defined as a mean motion score ≥ 4 in the arterial phase was observed in 12 patients. In these specific cases, a motion score ≥ 4 was assigned by all readers in 75 % (n = 9/12 cases). Differentiation and grading of arterial phase respiratory motion artifact is possible with a high level of inter-/intrarater agreement and interrater reliability, which is crucial for assessing the incidence of this phenomenon in larger multicenter studies. · Inter- and intrarater agreement for motion artifact scoring is excellent among experienced readers.. · Interrater reliability for motion artifact scoring is excellent among experienced readers.. · Characterization of severe motion artifacts proved feasible in this multicenter study.. · Ringe KI, Luetkens JA, Fimmers R et al. Characterization of Severe Arterial Phase Respiratory Motion Artifact on Gadoxetate Disodium-Enhanced MRI - Assessment of Interrater Agreement and Reliability. Fortschr Röntgenstr 2017; 190: 341 - 347. © Georg Thieme Verlag KG Stuttgart · New York.
Design and preliminary biomechanical analysis of artificial cervical joint complex.
Jian, Yu; Lan-Tao, Liu; Zhao, Jian-ning; Jian-ning, Zhao
2013-06-01
To design an artificial cervical joint complex (ACJC) prosthesis for non-fusion reconstruction after cervical subtotal corpectomy, and to evaluate the biomechanical stability, preservation of segment movements and influence on adjacent inter-vertebral movements of this prosthesis. The prosthesis was composed of three parts: the upper/lower joint head and the middle artificial vertebrae made of Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloy and polyethylene with a ball-and-socket joint design resembling the multi-axial movement in normal inter-vertebral spaces. Biomechanical tests of intact spine (control), Orion locking plate system and ACJC prosthesis were performed on formalin-fixed cervical spine specimens from 21 healthy cadavers to compare stability, range of motion (ROM) of the surgical segment and ROM of adjacent inter-vertebral spaces. As for stability of the whole lower cervical spine, there was no significant difference of flexion, extension, lateral bending and torsion between intact spine group and ACJC prosthesis group. As for segment movements, difference in flexion, lateral bending or torsion between ACJC prosthesis group and control group was not statistically significant, while ACJC prosthesis group showed an increase in extension (P < 0.05) compared to that of the control group. In addition, ACJC prosthesis group demonstrated better flexion, extension and lateral bending compared to those of Orion plating system group (P < 0.05). Difference in adjacent inter-vertebral ROM of the ACJC prosthesis group was not statistically significant compared to that of the control group. After cervical subtotal corpectomy, reconstruction with ACJC prosthesis not only obtained instant stability, but also reserved segment motions effectively, without abnormal gain of mobility at adjacent inter-vertebral spaces.
Cao, Xinyi; Zhao, Dayong; Xu, Huimin; Huang, Rui; Zeng, Jin; Yu, Zhongbo
2018-06-11
To investigate the differences in the interactions of microbial communities in two regions in Taihu Lake with different nutrient loadings [Meiliang Bay (MLB) and Xukou Bay (XKB)], water samples were collected and both intra- and inter-kingdom microbial community interactions were examined with network analysis. It is demonstrated that all of the bacterioplankton, microeukaryotes and inter-kingdom communities networks in Taihu Lake were non-random. For the networks of bacterioplankton and inter-kingdom community in XKB, higher clustering coefficient and average degree but lower average path length indexes were observed, indicating the nodes in XKB were more clustered and closely connected with plenty edges than those of MLB. The bacterioplankton and inter-kingdom networks were considerably larger and more complex with more module hubs and connectors in XKB compared with those of MLB, whereas the microeukaryotes networks were comparable and had no module hubs or connectors in the two lake zones. The phyla of Acidobacteria, Cyanobacteria and Planctomycetes maintained greater cooperation with other phyla in XKB, rather than competition. The relationships between microbial communities and environmental factors in MLB were weaker. Compared with the microbial community networks of XKB, less modules in networks of MLB were significantly correlated with total phosphorous and total nitrogen.
NASA Astrophysics Data System (ADS)
Niederhofer, Florian; Cioni, Maria-Rosa L.; Rubele, Stefano; Schmidt, Thomas; Bekki, Kenji; de Grijs, Richard; Emerson, Jim; Ivanov, Valentin D.; Oliveira, Joana M.; Petr-Gotzens, Monika G.; Ripepi, Vincenzo; Sun, Ning-Chen; van Loon, Jacco Th.
2018-05-01
We use deep multi-epoch point-spread function (PSF) photometry taken with the Visible and Infrared Survey Telescope for Astronomy (VISTA) to measure and analyze the proper motions of stars within the Galactic globular cluster 47 Tucanae (47 Tuc, NGC 104). The observations are part of the ongoing near-infrared VISTA survey of the Magellanic Cloud system (VMC). The data analyzed in this study correspond to one VMC tile, which covers a total sky area of 1.77 deg2. Absolute proper motions with respect to 9070 background galaxies are calculated from a linear regression model applied to the positions of stars in 11 epochs in the Ks filter. The data extend over a total time baseline of about 17 months. We found an overall median proper motion of the stars within 47 Tuc of (μαcos(δ), μδ) = (+5.89 ± 0.02 (statistical) ± 0.13 (systematic), -2.14 ± 0.02 (statistical) ± 0.08 (systematic)) mas yr-1, based on the measurements of 35 000 individual sources between 5' and 42' from the cluster center. We compared our result to the proper motions from the newest US Naval Observatory CCD Astrograph Catalog (UCAC5), which includes data from the Gaia data release 1. Selecting cluster members ( 2700 stars), we found a median proper motion of (μαcos(δ), μδ) = (+5.30 ± 0.03 (statistical) ± 0.70 (systematic), -2.70 ± 0.03 (statistical) ± 0.70 (systematic)) mas yr-1. Comparing the results with measurements in the literature, we found that the values derived from the VMC data are consistent with the UCAC5 result, and are close to measurements obtained using the Hubble Space Telescope. We combined our proper motion results with radial velocity measurements from the literature and reconstructed the orbit of 47 Tuc, finding that the cluster is on an orbit with a low ellipticity and is confined within the inner 7.5 kpc of the Galaxy. We show that the use of an increased time baseline in combination with PSF-determined stellar centroids in crowded regions significantly improves the accuracy of the method. In future works, we will apply the methods described here to more VMC tiles to study in detail the kinematics of the Magellanic Clouds. Based on observations made with VISTA at the Paranal Observatory under program ID 179.B-2003.
Phosphorylation-induced changes in the energetic frustration in human Tank binding kinase 1.
Husain, Shahrukh; Kumar, Vijay; Hassan, Md Imtaiyaz
2018-07-14
Tank binding kinase 1 (TBK-1) plays an important role in immunity, inflammation, autophagy, cell growth and proliferation. Nevertheless, a key molecular and structural detail of TBK-1 phosphorylation and activation has been largely unknown. Here we investigated the energy landscape of phosphorylated (active) and unphosphorylated (inactive) forms of human TBK-1 to characterize the interplay between phosphorylation and local frustration. By employing the algorithm equipped with energy function and implemented in Frustratometer web-server (http://www.frustratometer.tk), we quantify the role of frustration in the activation of TBK-1. Accordingly, the conformational changes were observed in phosphoregulated active and inactive TBK-1. Substantial changes in frustration, flexibility and interatomic motions were observed among different forms of TBK-1. Structurally rigid kinase domain constitutes a minimally frustrated hub in the core of the catalytic domain, and highly frustrated clusters mainly at the C-lobe might enable the conformational transitions during activation. Also, a large network of highly frustrated interactions is found in the SDD domain of TBK-1 involved in protein-protein interactions and dimerization. The contact maps of the activation loop and α-C helix of kinase domain showed significant changes upon phosphorylation. Cross correlation analysis indicate that both intra and inter subunit correlated motions increases with phosphorylation of TBK-1. Phosphorylation thus introduces subtle changes in long-range contacts that might lead to significant conformational change of TBK-1. Copyright © 2018 Elsevier Ltd. All rights reserved.
Functional cortical network in alpha band correlates with social bargaining.
Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals' alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts.
Functional Cortical Network in Alpha Band Correlates with Social Bargaining
Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240
Chapter two: Phenomenology of tsunamis II: scaling, event statistics, and inter-event triggering
Geist, Eric L.
2012-01-01
Observations related to tsunami catalogs are reviewed and described in a phenomenological framework. An examination of scaling relationships between earthquake size (as expressed by scalar seismic moment and mean slip) and tsunami size (as expressed by mean and maximum local run-up and maximum far-field amplitude) indicates that scaling is significant at the 95% confidence level, although there is uncertainty in how well earthquake size can predict tsunami size (R2 ~ 0.4-0.6). In examining tsunami event statistics, current methods used to estimate the size distribution of earthquakes and landslides and the inter-event time distribution of earthquakes are first reviewed. These methods are adapted to estimate the size and inter-event distribution of tsunamis at a particular recording station. Using a modified Pareto size distribution, the best-fit power-law exponents of tsunamis recorded at nine Pacific tide-gauge stations exhibit marked variation, in contrast to the approximately constant power-law exponent for inter-plate thrust earthquakes. With regard to the inter-event time distribution, significant temporal clustering of tsunami sources is demonstrated. For tsunami sources occurring in close proximity to other sources in both space and time, a physical triggering mechanism, such as static stress transfer, is a likely cause for the anomalous clustering. Mechanisms of earthquake-to-earthquake and earthquake-to-landslide triggering are reviewed. Finally, a modification of statistical branching models developed for earthquake triggering is introduced to describe triggering among tsunami sources.
78 FR 18961 - Gulf of Mexico Fishery Management Council; Public Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... Management for Recreational Red Snapper; discuss Red Snapper 5-year IFQ Review and IFQ Inter-sector Trading... Migratory Pelagic Zones; and, receive a summary of South Atlantic Council Motions and Recommendations for...
A multimembership catalogue for 1876 open clusters using UCAC4 data
NASA Astrophysics Data System (ADS)
Sampedro, L.; Dias, W. S.; Alfaro, E. J.; Monteiro, H.; Molino, A.
2017-10-01
The main objective of this work is to determine the cluster members of 1876 open clusters, using positions and proper motions of the astrometric fourth United States Naval Observatory (USNO) CCD Astrograph Catalog (UCAC4). For this purpose, we apply three different methods, all based on a Bayesian approach, but with different formulations: a purely parametric method, another completely non-parametric algorithm and a third, recently developed by Sampedro & Alfaro, using both formulations at different steps of the whole process. The first and second statistical moments of the members' phase-space subspace, obtained after applying the three methods, are compared for every cluster. Although, on average, the three methods yield similar results, there are also specific differences between them, as well as for some particular clusters. The comparison with other published catalogues shows good agreement. We have also estimated, for the first time, the mean proper motion for a sample of 18 clusters. The results are organized in a single catalogue formed by two main files, one with the most relevant information for each cluster, partially including that in UCAC4, and the other showing the individual membership probabilities for each star in the cluster area. The final catalogue, with an interface design that enables an easy interaction with the user, is available in electronic format at the Stellar Systems Group (SSG-IAA) web site (http://ssg.iaa.es/en/content/sampedro-cluster-catalog).
Oberle, Michael; Wohlwend, Nadia; Jonas, Daniel; Maurer, Florian P; Jost, Geraldine; Tschudin-Sutter, Sarah; Vranckx, Katleen; Egli, Adrian
2016-01-01
The technical, biological, and inter-center reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI TOF MS) typing data has not yet been explored. The aim of this study is to compare typing data from multiple centers employing bioinformatics using bacterial strains from two past outbreaks and non-related strains. Participants received twelve extended spectrum betalactamase-producing E. coli isolates and followed the same standard operating procedure (SOP) including a full-protein extraction protocol. All laboratories provided visually read spectra via flexAnalysis (Bruker, Germany). Raw data from each laboratory allowed calculating the technical and biological reproducibility between centers using BioNumerics (Applied Maths NV, Belgium). Technical and biological reproducibility ranged between 96.8-99.4% and 47.6-94.4%, respectively. The inter-center reproducibility showed a comparable clustering among identical isolates. Principal component analysis indicated a higher tendency to cluster within the same center. Therefore, we used a discriminant analysis, which completely separated the clusters. Next, we defined a reference center and performed a statistical analysis to identify specific peaks to identify the outbreak clusters. Finally, we used a classifier algorithm and a linear support vector machine on the determined peaks as classifier. A validation showed that within the set of the reference center, the identification of the cluster was 100% correct with a large contrast between the score with the correct cluster and the next best scoring cluster. Based on the sufficient technical and biological reproducibility of MALDI-TOF MS based spectra, detection of specific clusters is possible from spectra obtained from different centers. However, we believe that a shared SOP and a bioinformatics approach are required to make the analysis robust and reliable.
Management of Energy Consumption on Cluster Based Routing Protocol for MANET
NASA Astrophysics Data System (ADS)
Hosseini-Seno, Seyed-Amin; Wan, Tat-Chee; Budiarto, Rahmat; Yamada, Masashi
The usage of light-weight mobile devices is increasing rapidly, leading to demand for more telecommunication services. Consequently, mobile ad hoc networks and their applications have become feasible with the proliferation of light-weight mobile devices. Many protocols have been developed to handle service discovery and routing in ad hoc networks. However, the majority of them did not consider one critical aspect of this type of network, which is the limited of available energy in each node. Cluster Based Routing Protocol (CBRP) is a robust/scalable routing protocol for Mobile Ad hoc Networks (MANETs) and superior to existing protocols such as Ad hoc On-demand Distance Vector (AODV) in terms of throughput and overhead. Therefore, based on this strength, methods to increase the efficiency of energy usage are incorporated into CBRP in this work. In order to increase the stability (in term of life-time) of the network and to decrease the energy consumption of inter-cluster gateway nodes, an Enhanced Gateway Cluster Based Routing Protocol (EGCBRP) is proposed. Three methods have been introduced by EGCBRP as enhancements to the CBRP: improving the election of cluster Heads (CHs) in CBRP which is based on the maximum available energy level, implementing load balancing for inter-cluster traffic using multiple gateways, and implementing sleep state for gateway nodes to further save the energy. Furthermore, we propose an Energy Efficient Cluster Based Routing Protocol (EECBRP) which extends the EGCBRP sleep state concept into all idle member nodes, excluding the active nodes in all clusters. The experiment results show that the EGCBRP decreases the overall energy consumption of the gateway nodes up to 10% and the EECBRP reduces the energy consumption of the member nodes up to 60%, both of which in turn contribute to stabilizing the network.
Simulating Electrophoresis with Discrete Charge and Drag
NASA Astrophysics Data System (ADS)
Mowitz, Aaron J.; Witten, Thomas A.
A charged asymmetric rigid cluster of colloidal particles in saline solution can respond in exotic ways to an electric field: it may spin or move transversely. These distinctive motions arise from the drag force of the neutralizing countercharge surrounding the cluster. Because of this drag, calculating the motion of arbitrary asymmetric objects with nonuniform charge is impractical by conventional methods. Here we present a new method of simulating electrophoresis, in which we replace the continuous object and the surrounding countercharge with discrete point-draggers, called Stokeslets. The balance of forces imposes a linear, self-consistent relation among the drag and Coulomb forces on the Stokeslets, which allows us to easily determine the object's motion via matrix inversion. By explicitly enforcing charge+countercharge neutrality, the simulation recovers the distinctive features of electrophoretic motion to few-percent accuracy using as few as 1000 Stokeslets. In particular, for uniformly charged objects, we observe the characteristic Smoluchowski independence of mobility on object size and shape. We then discuss electrophoretic motion of asymmetric objects, where our simulation method is particularly advantageous. This work is supported by a Grant from the US-Israel Binational Science Foundation.
LiCo2As3O10: une nouvelle structure à tunnels interconnectés
Ben Smida, Youssef; Guesmi, Abderrahmen; Driss, Ahmed
2013-01-01
The title compound, lithium dicobalt(II) triarsenate, LiCo2As3O10, was synthesized by a solid-state reaction. The As atoms and four out of seven O atoms lie on special positions, all with site symmetry m. The Li atoms are disordered over two independent special (site symmetry -1) and general positions with occupancies of 0.54 (7) and 0.23 (4), respectively. The structure model is supported by bond-valence-sum (BVS) and charge-distribution (CHARDI) methods. The structure can be described as a three-dimensional framework constructed from bi-octahedral Co2O10 dimers edge-connected to As3O10 groups. It delimits two sets of tunnels, running parallel to the a and b axes, the latter being the larger. The Li+ ions are located within the intersections of the tunnels. The possible motion of the alkali cations has been investigated by means of the BVS model. This simulation shows that the Li+ motion appears to be easier mainly along the b-axis direction and that this material may possess interesting conduction properties. PMID:23794970
Primordial random motions and angular momenta of galaxies and galaxy clusters.
NASA Technical Reports Server (NTRS)
Silk, J.; Lea, S.
1973-01-01
We study the decay of primordial random motions of galaxies and galaxy clusters in an expanding universe by solving a kinetic equation for the relaxation of differential energy spectra N(E, t). Systematic dissipative energy losses are included, involving gravitational drag by, and accretion of, intergalactic matter, as well as the effect of collisions with other systems. Formal and numerical solutions are described for two distinct modes of galaxy formation in a turbulent medium, corresponding to formation at a distinct epoch and to continuous formation of galaxies. We show that any primordial random motions of galaxies at the present epoch can amount to at most a few km/sec, and that collisions at early epochs can lead to the acquisition of significant amounts of primordial angular momentum.
The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster M12
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Thompson, I. B.; Narloch, W.; Pych, W.; Rozyczka, M.
2015-09-01
The field of the globular cluster M12 (NGC 6218) was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for thirty-six periodic or likely periodic variable stars. Thirty-four of these are new detections. Among the latter we identified twenty proper-motion members of the cluster: six detached or semi-detached eclipsing binaries, five contact binaries, five SX Phe pulsators, and three yellow stragglers. Two of the eclipsing binaries are located in the turnoff region, one on the lower main sequence and the remaining three among the blue stragglers. Two contact systems are blue stragglers, and the remaining three reside in the turnoff region. In the blue straggler region a total of 103 objects were found, of which 42 are proper motion members of M12, and another four are field stars. 55 of the remaining objects are located within two core radii from the center of the cluster, and as such they are likely genuine blue stragglers. We also report the discoveries of a radial color gradient of M12, and the shortest period among contact systems in globular clusters in general.
Convective Self-Sustained Motion in Mixtures of Chemically Active and Passive Particles.
Shklyaev, Oleg E; Shum, Henry; Yashin, Victor V; Balazs, Anna C
2017-08-15
We develop a model to describe the behavior of a system of active and passive particles in solution that can undergo spontaneous self-organization and self-sustained motion. The active particles are uniformly coated with a catalyst that decomposes the reagent in the surrounding fluid. The resulting variations in the fluid density give rise to a convective flow around the active particles. The generated fluid flow, in turn, drives the self-organization of both the active and passive particles into clusters that undergo self-sustained propulsion along the bottom wall of a microchamber. This propulsion continues until the reagents in the solution are consumed. Depending on the number of active and passive particles and the structure of the self-organized cluster, these assemblies can translate, spin, or remain stationary. We also illustrate a scenario in which the geometry of the container is harnessed to direct the motion of a self-organized, self-propelled cluster. The findings provide guidelines for creating autonomously moving active particles, or chemical "motors" that can transport passive cargo in microfluidic devices.
Evaluation of Hands-On Clinical Exam Performance Using Marker-less Video Tracking.
Azari, David; Pugh, Carla; Laufer, Shlomi; Cohen, Elaine; Kwan, Calvin; Chen, Chia-Hsiung Eric; Yen, Thomas Y; Hu, Yu Hen; Radwin, Robert
2014-09-01
This study investigates the potential of using marker-less video tracking of the hands for evaluating hands-on clinical skills. Experienced family practitioners attending a national conference were recruited and asked to conduct a breast examination on a simulator that simulates different clinical presentations. Videos were made of the clinician's hands during the exam and video processing software for tracking hand motion to quantify hand motion kinematics was used. Practitioner motion patterns indicated consistent behavior of participants across multiple pathologies. Different pathologies exhibited characteristic motion patterns in the aggregate at specific parts of an exam, indicating consistent inter-participant behavior. Marker-less video kinematic tracking therefore shows promise in discriminating between different examination procedures, clinicians, and pathologies.
A Search for Cosmic String Loops Using GADGET-2 Cosmological N-Body Simulator
NASA Astrophysics Data System (ADS)
Braverman, William; Cousins, Bryce; Jia, Hewei
2018-01-01
Cosmic string loops are an extremely elusive hypothetical entity that have eluded the grasp of physicists and astronomers since their existence was postulated in the 1970’s. Finding evidence of their existence could be the first empirical evidence of string theory.Simulating their basic motion in a cold dark matter background using GADGET-2 allows us to predict where they may cluster during large scale structure formation (if they cluster at all). Here, we present our progress in placing cosmic strings into GADGET-2 with their basic equations of motion to lay a ground work for more complex simulations to find where these strings cluster. Ultimately, these simulations could lay a groundwork as to where future microlensing and gravitational wave observatories should look for cosmic strings.
Relative tracking control of constellation satellites considering inter-satellite link
NASA Astrophysics Data System (ADS)
Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.
2017-11-01
In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.
Tochio, Naoya; Umehara, Kohei; Uewaki, Jun-ichi; Flechsig, Holger; Kondo, Masaharu; Dewa, Takehisa; Sakuma, Tetsushi; Yamamoto, Takashi; Saitoh, Takashi; Togashi, Yuichi; Tate, Shin-ichi
2016-01-01
Transcription activator-like effector (TALE) nuclease (TALEN) is widely used as a tool in genome editing. The DNA binding part of TALEN consists of a tandem array of TAL-repeats that form a right-handed superhelix. Each TAL-repeat recognises a specific base by the repeat variable diresidue (RVD) at positions 12 and 13. TALEN comprising the TAL-repeats with periodic mutations to residues at positions 4 and 32 (non-RVD sites) in each repeat (VT-TALE) exhibits increased efficacy in genome editing compared with a counterpart without the mutations (CT-TALE). The molecular basis for the elevated efficacy is unknown. In this report, comparison of the physicochemical properties between CT- and VT-TALEs revealed that VT-TALE has a larger amplitude motion along the superhelical axis (superhelical motion) compared with CT-TALE. The greater superhelical motion in VT-TALE enabled more TAL-repeats to engage in the target sequence recognition compared with CT-TALE. The extended sequence recognition by the TAL-repeats improves site specificity with limiting the spatial distribution of FokI domains to facilitate their dimerization at the desired site. Molecular dynamics simulations revealed that the non-RVD mutations alter inter-repeat hydrogen bonding to amplify the superhelical motion of VT-TALE. The TALEN activity is associated with the inter-repeat hydrogen bonding among the TAL repeats. PMID:27883072
NASA Astrophysics Data System (ADS)
Davidge, Lindsey; Ebinger, Cynthia; Ruiz, Mario; Tepp, Gabrielle; Amelung, Falk; Geist, Dennis; Coté, Dustin; Anzieta, Juan
2017-03-01
Basaltic shield volcanoes of the western Galápagos islands are among the most rapidly deforming volcanoes worldwide, but little was known of the internal structure and brittle deformation processes accompanying inflation and deflation cycles. A 15-station broadband seismic array was deployed on and surrounding Sierra Negra volcano, Galápagos from July 2009 through June 2011 to characterize seismic strain patterns during an inter-eruption inflation period and to evaluate single and layered magma chamber models for ocean island volcanoes. We compare precise earthquake locations determined from a 3D velocity model and from a double difference cluster method. Using first-motion of P-arrivals, we determine focal mechanisms for 8 of the largest earthquakes (ML ≤ 1.5) located within the array. Most of the 2382 earthquakes detected by the array occurred beneath the broad (∼9 km-wide) Sierra Negra caldera, at depths from surface to about 8 km below sea level. Although outside our array, frequent and larger magnitude (ML ≤ 3.4) earthquakes occurred at Alcedo and Fernandina volcano, and in a spatial cluster beneath the shallow marine platform between Fernandina and Sierra Negra volcanoes. The time-space relations and focal mechanism solutions from a 4-day long period of intense seismicity June 4-9, 2010 along the southeastern flank of Sierra Negra suggests that the upward-migrating earthquake swarm occurred during a small volume intrusion at depths 5-8 km subsurface, but there was no detectable signal in InSAR data to further constrain geometry and volume. Focal mechanisms of earthquakes beneath the steep intra-caldera faults and along the ring fault system are reverse and strike-slip. These new seismicity data integrated with tomographic, geodetic, and petrological models indicate a stratified magmatic plumbing system: a shallow sill beneath the large caldera that is supplied by magma from a large volume deeper feeding system. The large amplitude inter-eruption inflation of the shallow sill beneath the Sierra Negra caldera is accompanied by only very small magnitude earthquakes, although historical records indicate that larger magnitude earthquakes (Mw <6) occur during eruptions, trapdoor faulting episodes without eruptions, and large volume flank intrusions.
Transient slowing down relaxation dynamics of the supercooled dusty plasma liquid after quenching.
Su, Yen-Shuo; Io, Chong-Wai; I, Lin
2012-07-01
The spatiotemporal evolutions of microstructure and motion in the transient relaxation toward the steady supercooled liquid state after quenching a dusty plasma Wigner liquid, formed by charged dust particles suspended in a low pressure discharge, are experimentally investigated through direct optical microscopy. It is found that the quenched liquid slowly evolves to a colder state with more heterogeneities in structure and motion. Hopping particles and defects appear in the form of clusters with multiscale cluster size distributions. Via the structure rearrangement induced by the reduced thermal agitation from the cold thermal bath after quenching, the temporarily stored strain energy can be cascaded through the network to different newly distorted regions and dissipated after transferring to nonlinearly coupled motions with different scales. It leads to the observed self-similar multiscale slowing down relaxation with power law increases of structural order and structural relaxation time, the similar power law decreases of particle motions at different time scales, and the stronger and slower fluctuations with increasing waiting time toward the new steady state.
Visual Target Tracking in the Presence of Unknown Observer Motion
NASA Technical Reports Server (NTRS)
Williams, Stephen; Lu, Thomas
2009-01-01
Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.
NASA Astrophysics Data System (ADS)
Mahoney, A. R.; Kasper, J.; Winsor, P.
2015-12-01
Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards contaminants entrained in the ice. This work demonstrates the ability of low-cost easily-deployable Ice Trackers to generate to generate data of both scientific and operational value.
NASA Astrophysics Data System (ADS)
Fontanarosa, Davide; van der Meer, Skadi; Bamber, Jeffrey; Harris, Emma; O'Shea, Tuathan; Verhaegen, Frank
2015-02-01
In modern radiotherapy, verification of the treatment to ensure the target receives the prescribed dose and normal tissues are optimally spared has become essential. Several forms of image guidance are available for this purpose. The most commonly used forms of image guidance are based on kilovolt or megavolt x-ray imaging. Image guidance can also be performed with non-harmful ultrasound (US) waves. This increasingly used technique has the potential to offer both anatomical and functional information. This review presents an overview of the historical and current use of two-dimensional and three-dimensional US imaging for treatment verification in radiotherapy. The US technology and the implementation in the radiotherapy workflow are described. The use of US guidance in the treatment planning process is discussed. The role of US technology in inter-fraction motion monitoring and management is explained, and clinical studies of applications in areas such as the pelvis, abdomen and breast are reviewed. A companion review paper (O’Shea et al 2015 Phys. Med. Biol. submitted) will extensively discuss the use of US imaging for intra-fraction motion quantification and novel applications of US technology to RT.
Fontanarosa, Davide; van der Meer, Skadi; Bamber, Jeffrey; Harris, Emma; O'Shea, Tuathan; Verhaegen, Frank
2015-02-07
In modern radiotherapy, verification of the treatment to ensure the target receives the prescribed dose and normal tissues are optimally spared has become essential. Several forms of image guidance are available for this purpose. The most commonly used forms of image guidance are based on kilovolt or megavolt x-ray imaging. Image guidance can also be performed with non-harmful ultrasound (US) waves. This increasingly used technique has the potential to offer both anatomical and functional information.This review presents an overview of the historical and current use of two-dimensional and three-dimensional US imaging for treatment verification in radiotherapy. The US technology and the implementation in the radiotherapy workflow are described. The use of US guidance in the treatment planning process is discussed. The role of US technology in inter-fraction motion monitoring and management is explained, and clinical studies of applications in areas such as the pelvis, abdomen and breast are reviewed. A companion review paper (O'Shea et al 2015 Phys. Med. Biol. submitted) will extensively discuss the use of US imaging for intra-fraction motion quantification and novel applications of US technology to RT.
NASA Astrophysics Data System (ADS)
Zhang, Congyao; Yu, Qingjuan; Lu, Youjun
2018-03-01
The massive galaxy cluster “El Gordo” (ACT-CL J0102–4915) is a rare merging system with a high collision speed suggested by multi-wavelength observations and theoretical modeling. Zhang et al. propose two types of mergers, a nearly head-on merger and an off-axis merger with a large impact parameter, to reproduce most of the observational features of the cluster using numerical simulations. The different merger configurations of the two models result in different gas motion in the simulated clusters. In this paper, we predict the kinetic Sunyaev–Zel’dovich (kSZ) effect, the relativistic correction of the thermal Sunyaev–Zel’dovich (tSZ) effect, and the X-ray spectrum of this cluster, based on the two proposed models. We find that (1) the amplitudes of the kSZ effect resulting from the two models are both on the order of ΔT/T ∼ 10‑5 but their morphologies are different, which trace the different line-of-sight velocity distributions of the systems; (2) the relativistic correction of the tSZ effect around 240 GHz can be possibly used to constrain the temperature of the hot electrons heated by the shocks; and (3) the shift between the X-ray spectral lines emitted from different regions of the cluster can be significantly different in the two models. The shift and the line broadening can be up to ∼25 eV and 50 eV, respectively. We expect that future observations of the kSZ effect and the X-ray spectral lines (e.g., by ALMA, XARM) will provide a strong constraint on the gas motion and the merger configuration of ACT-CL J0102–4915.
2014-03-20
reserved. Printed in the U.S.A. CHARACTERIZATION OF THE PRAESEPE STAR CLUSTER BY PHOTOMETRY AND PROPER MOTIONS WITH 2MASS , PPMXL, AND Pan-STARRS P. F. Wang1... 2MASS ) and the Sloan Digital Sky Survey (SDSS) data, covering a sky area of 100 deg2, Adams et al. (2002) extended the lower main sequence to 0.1M, and...incompleteness is caused by the detection limits of USNO-B1 and 2MASS . Recently, Khalaj & Baumgardt (2013) used SDSS and PPMXL data to characterize
Galaxy Cluster Bulk Flows and Collision Velocities in QUMOND
NASA Astrophysics Data System (ADS)
Katz, Harley; McGaugh, Stacy; Teuben, Peter; Angus, G. W.
2013-07-01
We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in ΛCDM simulations. The bulk motions of clusters attain ~1000 km s-1 by low redshift, comparable to observations whereas ΛCDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in ΛCDM, potentially providing an explanation for "pink elephants" like El Gordo. However, it is not obvious that the cluster mass function can be recovered.
Cold fronts and shocks formed by gas streams in galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.
2018-05-01
Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.
HIGH-RESOLUTION IMAGES OF ORBITAL MOTION IN THE ORION TRAPEZIUM CLUSTER WITH THE LBT AO SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Close, L. M.; Males, J. R.; Skemer, A.
2012-04-20
The new 8.4 m LBT adaptive secondary AO system, with its novel pyramid wavefront sensor, was used to produce very high Strehl ({approx}> 75% at 2.16 {mu}m) near-infrared narrowband (Br{gamma}: 2.16 {mu}m and [Fe II]: 1.64 {mu}m) images of 47 young ({approx}1 Myr) Orion Trapezium {theta}{sup 1} Ori cluster members. The inner {approx}41 Multiplication-Sign 53'' of the cluster was imaged at spatial resolutions of {approx}0.''050 (at 1.64 {mu}m). A combination of high spatial resolution and high S/N yielded relative binary positions to {approx}0.5 mas accuracies. Including previous speckle data, we analyze a 15 year baseline of high-resolution observations of thismore » cluster. We are now sensitive to relative proper motions of just {approx}0.3 mas yr{sup -1} (0.6 km s{sup -1} at 450 pc); this is a {approx}7 Multiplication-Sign improvement in orbital velocity accuracy compared to previous efforts. We now detect clear orbital motions in the {theta}{sup 1} Ori B{sub 2} B{sub 3} system of 4.9 {+-} 0.3 km s{sup -1} and 7.2 {+-} 0.8 km s{sup -1} in the {theta}{sup 1} Ori A{sub 1} A{sub 2} system (with correlations of P.A. versus time at >99% confidence). All five members of the {theta}{sup 1} Ori B system appear likely a gravitationally bound 'mini-cluster'. The very lowest mass member of the {theta}{sup 1} Ori B system (B{sub 4}; mass {approx}0.2 M{sub Sun }) has, for the first time, a clearly detected motion (at 4.3 {+-} 2.0 km s{sup -1}; correlation = 99.7%) w.r.t. B{sub 1}. However, B{sub 4} is most likely in a long-term unstable (non-hierarchical) orbit and may 'soon' be ejected from this 'mini-cluster'. This 'ejection' process could play a major role in the formation of low-mass stars and brown dwarfs.« less
The velocity field of clusters of galaxies within 100 megaparsecs. II - Northern clusters
NASA Technical Reports Server (NTRS)
Mould, J. R.; Akeson, R. L.; Bothun, G. D.; Han, M.; Huchra, J. P.; Roth, J.; Schommer, R. A.
1993-01-01
Distances and peculiar velocities for galaxies in eight clusters and groups have been determined by means of the near-infrared Tully-Fisher relation. With the possible exception of a group halfway between us and the Hercules Cluster, we observe peculiar velocities of the same order as the measuring errors of about 400 km/s. The present sample is drawn from the northern Galactic hemisphere and delineates a quiet region in the Hubble flow. This contrasts with the large-scale flows seen in the Hydra-Centaurus and Perseus-Pisces regions. We compare the observed peculiar velocities with predictions based upon the gravity field inferred from the IRAS redshift survey. The differences between the observed and predicted peculiar motions are generally small, except near dense structures, where the observed motions exceed the predictions by significant amounts. Kinematic models of the velocity field are also compared with the data. We cannot distinguish between parameterized models with a great attractor or models with a bulk flow.
Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys
NASA Astrophysics Data System (ADS)
Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi
2011-10-01
The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.
Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A
2018-07-01
Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.
NASA Astrophysics Data System (ADS)
Kah, L. C.; Kronyak, R. E.; Van Beek, J.; Nachon, M.; Mangold, N.; Thompson, L. M.; Wiens, R. C.; Grotzinger, J. P.; Schieber, J.
2015-12-01
The Murray formation in its type section at Pahrump Hills, consists of approximately 14 meters of recessive-weathering mudstone interbedded with decimeter-scale cross-bedded sandstone in the upper portions of the exposed section. Mudstone textures vary from massive, to poorly laminated, to well laminated. Unusual 3-dimensional crystal clusters and dendrites occur in the lowermost part of the section and are erosionally resistant with respect to the host rock. Crystal clusters consist of elongate lathes that occur within individual blocks of the fractured substrate. Individual lathes show tabular morphologies with a pseudo-rectangular cross-section and the three dimensional morphology of the crystal clusters cross-cut host rock lamination with little or no deformation. Dendritic structures are typically larger and show predominantly planar growth aligned with bedding planes. Individual lathes within the dendrites are elongate and pseudo-rectangular in cross-section. Unlike crystal clusters, dendritic morphologies appear to nucleate at bedrock fractures and near mineralized veins. Here we show evidence that crystal clusters and dendrites are post-depositional, potentially burial diagenetic features. Association of features with through-going fractures suggests that fractures may have been a primary transport pathway for ions responsible for dendrite growth. Even where dendrites do not occur, enhanced cementation suggests that fluids permeated the rock matrix. We suggest that growth of clusters proceeded as inter-particle crystal growth, wherein mineral growth within inter-particle spaces resulted in cementation and porosity loss, with little further effect on the rock matrix. Crystal clusters and dendrites are most likely to form when mineral saturation states are highest, for instance with initial intrusion of fracture-borne fluids and mixing with ambient pore fluids, and thus emphasize the importance of fractures in ion transport during late diagenesis.
Farmer, Jocelyn R; Ong, Mei-Sing; Barmettler, Sara; Yonker, Lael M; Fuleihan, Ramsay; Sullivan, Kathleen E; Cunningham-Rundles, Charlotte; Walter, Jolan E
2017-01-01
Common variable immunodeficiency (CVID) is increasingly recognized for its association with autoimmune and inflammatory complications. Despite recent advances in immunophenotypic and genetic discovery, clinical care of CVID remains limited by our inability to accurately model risk for non-infectious disease development. Herein, we demonstrate the utility of unbiased network clustering as a novel method to analyze inter-relationships between non-infectious disease outcomes in CVID using databases at the United States Immunodeficiency Network (USIDNET), the centralized immunodeficiency registry of the United States, and Partners, a tertiary care network in Boston, MA, USA, with a shared electronic medical record amenable to natural language processing. Immunophenotypes were comparable in terms of native antibody deficiencies, low titer response to pneumococcus, and B cell maturation arrest. However, recorded non-infectious disease outcomes were more substantial in the Partners cohort across the spectrum of lymphoproliferation, cytopenias, autoimmunity, atopy, and malignancy. Using unbiased network clustering to analyze 34 non-infectious disease outcomes in the Partners cohort, we further identified unique patterns of lymphoproliferative (two clusters), autoimmune (two clusters), and atopic (one cluster) disease that were defined as CVID non-infectious endotypes according to discrete and non-overlapping immunophenotypes. Markers were both previously described {high serum IgE in the atopic cluster [odds ratio (OR) 6.5] and low class-switched memory B cells in the total lymphoproliferative cluster (OR 9.2)} and novel [low serum C3 in the total lymphoproliferative cluster (OR 5.1)]. Mortality risk in the Partners cohort was significantly associated with individual non-infectious disease outcomes as well as lymphoproliferative cluster 2, specifically (OR 5.9). In contrast, unbiased network clustering failed to associate known comorbidities in the adult USIDNET cohort. Together, these data suggest that unbiased network clustering can be used in CVID to redefine non-infectious disease inter-relationships; however, applicability may be limited to datasets well annotated through mechanisms such as natural language processing. The lymphoproliferative, autoimmune, and atopic Partners CVID endotypes herein described can be used moving forward to streamline genetic and biomarker discovery and to facilitate early screening and intervention in CVID patients at highest risk for autoimmune and inflammatory progression.
Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach
NASA Astrophysics Data System (ADS)
Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori
2018-06-01
Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.
Bannikova, A A; Bulatova, N Sh; Kramerov, D A
2006-06-01
Genetic exchange among chromosomal races of the common shrew Sorex araneus and the problem of reproductive barriers have been extensively studied by means of such molecular markers as mtDNA, microsatellites, and allozymes. In the present study, the interpopulation and interracial polymorphism in the common shrew was derived, using fingerprints generated by amplified DNA regions flanked by short interspersed repeats (SINEs)-interSINE PCR (IS-PCR). We used primers, complementary to consensus sequences of two short retroposons: mammalian element MIR and the SOR element from the genome of Sorex araneus. Genetic differentiation among eleven populations of the common shrew from eight chromosome races was estimated. The NP and MJ analyses, as well as multidimensional scaling showed that all samples examined grouped into two main clusters, corresponding to European Russia and Siberia. The bootstrap support of the European Russia cluster in the NJ and MP analyses was respectively 76 and 61%. The bootstrap index for the Siberian cluster was 100% in both analyses; the Tomsk race, included into this cluster, was separated with the bootstrap support of NJ/MP 92/95%.
SU-E-J-158: Audiovisual Biofeedback Reduces Image Artefacts in 4DCT: A Digital Phantom Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, S; Kipritidis, J; Lee, D
2015-06-15
Purpose: Irregular breathing motion has a deleterious impact on 4DCT image quality. The breathing guidance system: audiovisual biofeedback (AVB) is designed to improve breathing regularity, however, its impact on 4DCT image quality has yet to be quantified. The purpose of this study was to quantify the impact of AVB on thoracic 4DCT image quality by utilizing the digital eXtended Cardiac Torso (XCAT) phantom driven by lung tumor motion patterns. Methods: 2D tumor motion obtained from 4 lung cancer patients under two breathing conditions (i) without breathing guidance (free breathing), and (ii) with guidance (AVB). There were two breathing sessions, yieldingmore » 8 tumor motion traces. This tumor motion was synchronized with the XCAT phantom to simulate 4DCT acquisitions under two acquisition modes: (1) cine mode, and (2) prospective respiratory-gated mode. Motion regularity was quantified by the root mean square error (RMSE) of displacement. The number of artefacts was visually assessed for each 4DCT and summed up for each breathing condition. Inter-session anatomic reproducibility was quantified by the mean absolute difference (MAD) between the Session 1 4DCT and Session 2 4DCT. Results: AVB improved tumor motion regularity by 30%. In cine mode, the number of artefacts was reduced from 61 in free breathing to 40 with AVB, in addition to AVB reducing the MAD by 34%. In gated mode, the number of artefacts was reduced from 63 in free breathing to 51 with AVB, in addition to AVB reducing the MAD by 23%. Conclusion: This was the first study to compare the impact of breathing guidance on 4DCT image quality compared to free breathing, with AVB reducing the amount of artefacts present in 4DCT images in addition to improving inter-session anatomic reproducibility. Results thus far suggest that breathing guidance interventions could have implications for improving radiotherapy treatment planning and interfraction reproducibility.« less
Human Guidance Behavior Decomposition and Modeling
NASA Astrophysics Data System (ADS)
Feit, Andrew James
Trained humans are capable of high performance, adaptable, and robust first-person dynamic motion guidance behavior. This behavior is exhibited in a wide variety of activities such as driving, piloting aircraft, skiing, biking, and many others. Human performance in such activities far exceeds the current capability of autonomous systems in terms of adaptability to new tasks, real-time motion planning, robustness, and trading safety for performance. The present work investigates the structure of human dynamic motion guidance that enables these performance qualities. This work uses a first-person experimental framework that presents a driving task to the subject, measuring control inputs, vehicle motion, and operator visual gaze movement. The resulting data is decomposed into subspace segment clusters that form primitive elements of action-perception interactive behavior. Subspace clusters are defined by both agent-environment system dynamic constraints and operator control strategies. A key contribution of this work is to define transitions between subspace cluster segments, or subgoals, as points where the set of active constraints, either system or operator defined, changes. This definition provides necessary conditions to determine transition points for a given task-environment scenario that allow a solution trajectory to be planned from known behavior elements. In addition, human gaze behavior during this task contains predictive behavior elements, indicating that the identified control modes are internally modeled. Based on these ideas, a generative, autonomous guidance framework is introduced that efficiently generates optimal dynamic motion behavior in new tasks. The new subgoal planning algorithm is shown to generate solutions to certain tasks more quickly than existing approaches currently used in robotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhou, S; Cai, W; Hurwitz, M
2015-06-15
Purpose: Respiratory-correlated cone-beam CT (4DCBCT) images acquired immediately prior to treatment have the potential to represent patient motion patterns and anatomy during treatment, including both intra- and inter-fractional changes. We develop a method to generate patient-specific motion models based on 4DCBCT images acquired with existing clinical equipment and used to generate time varying volumetric images (3D fluoroscopic images) representing motion during treatment delivery. Methods: Motion models are derived by deformably registering each 4DCBCT phase to a reference phase, and performing principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated by optimizing the resulting PCAmore » coefficients iteratively through comparison of the cone-beam projections simulating kV treatment imaging and digitally reconstructed radiographs generated from the motion model. Patient and physical phantom datasets are used to evaluate the method in terms of tumor localization error compared to manually defined ground truth positions. Results: 4DCBCT-based motion models were derived and used to generate 3D fluoroscopic images at treatment time. For the patient datasets, the average tumor localization error and the 95th percentile were 1.57 and 3.13 respectively in subsets of four patient datasets. For the physical phantom datasets, the average tumor localization error and the 95th percentile were 1.14 and 2.78 respectively in two datasets. 4DCBCT motion models are shown to perform well in the context of generating 3D fluoroscopic images due to their ability to reproduce anatomical changes at treatment time. Conclusion: This study showed the feasibility of deriving 4DCBCT-based motion models and using them to generate 3D fluoroscopic images at treatment time in real clinical settings. 4DCBCT-based motion models were found to account for the 3D non-rigid motion of the patient anatomy during treatment and have the potential to localize tumor and other patient anatomical structures at treatment time even when inter-fractional changes occur. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc., Palo Alto, CA. The project was also supported, in part, by Award Number R21CA156068 from the National Cancer Institute.« less
Takagiwa, Yoshiki; Kimura, Kaoru
2014-08-01
In this article, we review the characteristic features of icosahedral cluster solids, metallic-covalent bonding conversion (MCBC), and the thermoelectric properties of Al-based icosahedral quasicrystals and approximants. MCBC is clearly distinguishable from and closely related to the well-known metal-insulator transition. This unique bonding conversion has been experimentally verified in 1/1-AlReSi and 1/0-Al 12 Re approximants by the maximum entropy method and Rietveld refinement for powder x-ray diffraction data, and is caused by a central atom inside the icosahedral clusters. This helps to understand pseudogap formation in the vicinity of the Fermi energy and establish a guiding principle for tuning the thermoelectric properties. From the electron density distribution analysis, rigid heavy clusters weakly bonded with glue atoms are observed in the 1/1-AlReSi approximant crystal, whose physical properties are close to icosahedral Al-Pd-TM (TM: Re, Mn) quasicrystals. They are considered to be an intermediate state among the three typical solids: metals, covalently bonded networks (semiconductor), and molecular solids. Using the above picture and detailed effective mass analysis, we propose a guiding principle of weakly bonded rigid heavy clusters to increase the thermoelectric figure of merit ( ZT ) by optimizing the bond strengths of intra- and inter-icosahedral clusters. Through element substitutions that mainly weaken the inter-cluster bonds, a dramatic increase of ZT from less than 0.01 to 0.26 was achieved. To further increase ZT , materials should form a real gap to obtain a higher Seebeck coefficient.
A Subband Coding Method for HDTV
NASA Technical Reports Server (NTRS)
Chung, Wilson; Kossentini, Faouzi; Smith, Mark J. T.
1995-01-01
This paper introduces a new HDTV coder based on motion compensation, subband coding, and high order conditional entropy coding. The proposed coder exploits the temporal and spatial statistical dependencies inherent in the HDTV signal by using intra- and inter-subband conditioning for coding both the motion coordinates and the residual signal. The new framework provides an easy way to control the system complexity and performance, and inherently supports multiresolution transmission. Experimental results show that the coder outperforms MPEG-2, while still maintaining relatively low complexity.
On dynamic gas ablation from spherical galaxies
NASA Astrophysics Data System (ADS)
Nepveu, M.
1981-05-01
Two-dimensional, time dependent gas dynamic calculations are presented on the transonic motion of galaxies through a cluster medium. Lea and De Young's (1976) calculations are extended to include violent behavior in the center. On time scales of 10 to the 8th yr, galaxies in clusters can already lose a significant fraction of their gaseous content (up to 50% has been found in the calculations). This dynamic ablation occurs through rarefaction rather than shock heating. Explosions in spherical galaxies become effective as mechanisms for gas removal only if the galaxy moves with respect to its surroundings. Speculations are made on stripping of spiral galaxies (moving head-on in a cluster); the Gunn and Gott (1972) stripping formula is put to doubt. A method is suggested to obtain information on the state of motion of field galaxies.
GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Harley; McGaugh, Stacy; Teuben, Peter
We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants''more » like El Gordo. However, it is not obvious that the cluster mass function can be recovered.« less
Finding Semirigid Domains in Biomolecules by Clustering Pair-Distance Variations
Schreiner, Wolfgang
2014-01-01
Dynamic variations in the distances between pairs of atoms are used for clustering subdomains of biomolecules. We draw on a well-known target function for clustering and first show mathematically that the assignment of atoms to clusters has to be crisp, not fuzzy, as hitherto assumed. This reduces the computational load of clustering drastically, and we demonstrate results for several biomolecules relevant in immunoinformatics. Results are evaluated regarding the number of clusters, cluster size, cluster stability, and the evolution of clusters over time. Crisp clustering lends itself as an efficient tool to locate semirigid domains in the simulation of biomolecules. Such domains seem crucial for an optimum performance of subsequent statistical analyses, aiming at detecting minute motional patterns related to antigen recognition and signal transduction. PMID:24959586
Dating the Tidal Disruption of Globular Clusters with GAIA Data on Their Stellar Streams
NASA Astrophysics Data System (ADS)
Bose, Sownak; Ginsburg, Idan; Loeb, Abraham
2018-05-01
The Gaia mission promises to deliver precision astrometry at an unprecedented level, heralding a new era for discerning the kinematic and spatial coordinates of stars in our Galaxy. Here, we present a new technique for estimating the age of tidally disrupted globular cluster streams using the proper motions and parallaxes of tracer stars. We evolve the collisional dynamics of globular clusters within the evolving potential of a Milky Way-like halo extracted from a cosmological ΛCDM simulation and analyze the resultant streams as they would be observed by Gaia. The simulations sample a variety of globular cluster orbits, and account for stellar evolution and the gravitational influence of the disk of the Milky Way. We show that a characteristic timescale, obtained from the dispersion of the proper motions and parallaxes of stars within the stream, is a good indicator for the time elapsed since the stream has been freely expanding away due to the tidal disruption of the globular cluster. This timescale, in turn, places a lower limit on the age of the cluster. The age can be deduced from astrometry using a modest number of stars, with the error on this estimate depending on the proximity of the stream and the number of tracer stars used.
On the Connection between Turbulent Motions and Particle Acceleration in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Eckert, D.; Gaspari, M.; Vazza, F.; Gastaldello, F.; Tramacere, A.; Zimmer, S.; Ettori, S.; Paltani, S.
2017-07-01
Giant radio halos are megaparsec-scale diffuse radio sources associated with the central regions of galaxy clusters. The most promising scenario to explain the origin of these sources is that of turbulent re-acceleration, in which MeV electrons injected throughout the formation history of galaxy clusters are accelerated to higher energies by turbulent motions mostly induced by cluster mergers. In this Letter, we use the amplitude of density fluctuations in the intracluster medium as a proxy for the turbulent velocity and apply this technique to a sample of 51 clusters with available radio data. Our results indicate a segregation in the turbulent velocity of radio halo and radio quiet clusters, with the turbulent velocity of the former being on average higher by about a factor of two. The velocity dispersion recovered with this technique correlates with the measured radio power through the relation {P}{radio}\\propto {σ }v3.3+/- 0.7, which implies that the radio power is nearly proportional to the turbulent energy rate. In case turbulence cascades without being dissipated down to the particle acceleration scales, our results provide an observational confirmation of a key prediction of the turbulent re-acceleration model and possibly shed light on the origin of radio halos.
High-Tc superconductivity: The t-J-V model and its applications
NASA Astrophysics Data System (ADS)
Roy, K.; Pal, P.; Nath, S.; Ghosh, N. K.
2017-05-01
We present numerical results of the t-J-V model in an 8-site tilted square cluster using exact diagonalization (ED) method with periodic boundary conditions. Effective hopping amplitude initially increases with inter-site Coulomb repulsion (V), but decreases at larger V's. The hole-hole correlation decreases with inter-site distances at smaller V. With the increase of Coulomb repulsion, the system becomes ordered. The specific heat curves confirm the non-Fermi liquid behavior of the system under t-J-V model.
Effect of a Near Fault on the Seismic Response of a Base-Isolated Structure with a Soft Storey
NASA Astrophysics Data System (ADS)
Athamnia, B.; Ounis, A.; Abdeddaim, M.
2017-12-01
This study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.
NASA Astrophysics Data System (ADS)
Palma, T.; Clariá, J. J.; Geisler, D.; Piatti, A. E.; Ahumada, A. V.
Based on CCD images obtained in the Washington system at Cerro Tololo Inter-American Observatory, we determine ages and metallicities of 8 unstudied star clusters of the Large Magellanic Cloud (LMC). We find that they are intermediate-age (1-2 Gyr) and relatively metal-poor, although the metallicities are mainly determined from isochrones and are not strongly constrained. The study of this cluster sample will soon be extended to almost a hundred practically unstudied LMC star clusters. FULL TEXT IN SPANISH
Collective gradient sensing: fundamental bounds, cluster mechanics, and cell-to-cell variability
NASA Astrophysics Data System (ADS)
Camley, Brian
Many eukaryotic cells chemotax, sensing and following chemical gradients. However, experiments have shown that even under conditions when single cells do not chemotax, small clusters may still follow a gradient. Similar collective motion is also known to occur in response to gradients in substrate stiffness or electric potential (collective durotaxis or galvanotaxis). How can cell clusters sense a gradient that individual cells ignore? I discuss possible ``collective guidance'' mechanisms underlying this motion, where individual cells measure the mean value of the attractant, but need not measure its gradient to give rise to directional motility for a cell cluster. I show that the collective guidance hypothesis can be directly tested by looking for strong orientational effects in pairs of cells chemotaxing. Collective gradient sensing also has a new wrinkle in comparison to single-cell chemotaxis: to accurately determine a gradient direction, a cluster must integrate information from cells with highly variable properties. When is cell-to-cell variation a limiting factor in sensing accuracy? I provide some initial answers, and discuss how cell clusters can sense gradients in a way that is robust to cell-to-cell variation. Interestingly, these strategies may depend on the cluster's mechanics; I develop a bound that links the cluster's chemotactic accuracy and its rheology. This suggests that in some circumstances, mechanical transitions (e.g. unjamming) can control tactic accuracy. Work supported by NIH Grant No. P01 GM078586, NIH Grant No. F32GM110983.
NASA Technical Reports Server (NTRS)
Prosser, Charles F.
1993-01-01
The results of a combined astrometric, photometric, and spectroscopic program to identify members of the open cluster IC 4665 are presented. Numerous new proper motion/photometric candidate members and at least 23 M dwarfs with H-alpha emission have been identified. A reanalysis of IC 4665 age using different methods yields conflicting results ranging from about 3 X 10 exp 7 yr to the age of the Pleiades. This study provides a list of candidate cluster members in the intermediate and low-mass regime of this cluster. Future spectroscopic observations of these candidates should eventually identify true cluster members.
Paramagnetic colloids: Chaotic routes to clusters and molecules
NASA Astrophysics Data System (ADS)
Abdi, Hamed; Soheilian, Rasam; Erb, Randall M.; Maloney, Craig E.
2018-03-01
We present computer simulations and experiments on dilute suspensions of superparamagnetic particles subject to rotating magnetic fields. We focus on chains of four particles and their decay routes to stable structures. At low rates, the chains track the external field. At intermediate rates, the chains break up but perform a periodic (albeit complex) motion. At sufficiently high rates, the chains generally undergo chaotic motion at short times and decay to either closely packed clusters or more dispersed, colloidal molecules at long times. We show that the transition out of the chaotic states can be described as a Poisson process in both simulation and experiment.
Burchett, John; Shankar, Mohan; Hamza, A Ben; Guenther, Bob D; Pitsianis, Nikos; Brady, David J
2006-05-01
We use pyroelectric detectors that are differential in nature to detect motion in humans by their heat emissions. Coded Fresnel lens arrays create boundaries that help to localize humans in space as well as to classify the nature of their motion. We design and implement a low-cost biometric tracking system by using off-the-shelf components. We demonstrate two classification methods by using data gathered from sensor clusters of dual-element pyroelectric detectors with coded Fresnel lens arrays. We propose two algorithms for person identification, a more generalized spectral clustering method and a more rigorous example that uses principal component regression to perform a blind classification.
Dragging force on galaxies due to streaming dark matter
NASA Technical Reports Server (NTRS)
Hara, Tetsuya; Miyoshi, Shigeru
1990-01-01
It has been reported that galaxies in large regions (approx. 10(exp 2) Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600 km/sec or more with respect to the rest frame determined by the microwave background radiation. On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So the authors investigated whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events. It seems that, although each galaxy will not follow the motion of dark matter, clusters of galaxies may represent the velocity field of dark matter. The origin of the velocity field of dark matter would be due to the initial adiabatic perturbations and, in fact, the observed peculiar velocities of clusters are within the allowed region constrained from the isotropy of the microwave background radiation.
Detailed studies om three open clusters from Gaia ESO Survey (GES)
NASA Astrophysics Data System (ADS)
Balaguer-Núnez, L.; Casamiquela, L.; Jordana, N.; Massana, P.; Jordi, C.; Masana, E.
2017-03-01
We present results for the intermediate-age and old open clusters NGC 6633, NGC 6705 (M 11) and NGC 2682 (M 67). We have used new Str ̈omgren-Crawford photometry, proper motions from ROA observations and spectral information from Gaia-ESO Survey (GES), to study the physical parameters of the stars in the three cluster's areas. The astrometric studies cover an area of about 1°x2° and down to r' ˜ 17 while our INT-WFC CCD intermediate-band photometry covers an area of about 40'x40' down to V ˜ 19. The stars of those areas selected as cluster members from their proper motions, are classified into photometric regions and their physical parameters determined, using uvbyHβ photometry and standard relations among colour indices for each of the photometric regions of the HR diagram. That allows us to determine reddening, distances, absolute magnitudes, spectral types, effective temperatures, gravities and metallicities, thus providing an astrophysical characterization of the clusters. These results are compared with the physical parameters obtained from GES spectral data as well as radial velocities to confirm membership. All these data lead us to a comparison of photometric and spectroscopic physical parameters.
VizieR Online Data Catalog: MWSC IV. 63 new open clusters (Scholz+, 2015)
NASA Astrophysics Data System (ADS)
Scholz, R.-D.; Kharchenko, N. V.; Piskunov, A. E.; Roeser, S.; Schilbach, E.
2015-08-01
We first selected high-quality samples from the 2MAst and UCAC4 catalogues for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15mas/yr) within+/-50mas/yr, the sky outside a thin Galactic plane zone (|b|<5°) was binned in small areas ('sky pixels') of 0.25x0.25°2, Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. In total we discovered 692 density enhancements (regarded as cluster candidates). These candidates were cross-identified with known objects. Unidentified objects were passed through the standard MWSC pipeline (described in Kharchenko et al., 2012, Cat. J/A+A/543/A156) for verification, cluster membership construction and structure, kinematic and astrophysical parameter determination. The basic stellar data were taken from the all-sky catalogue 2MAst (2MASS with Astrometry), that was extracted from the all-sky catalogues PPMXL (Roeser et al. 2010, Cat.) and 2MASS (Cutri et al. 2003, Cat.
Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.
2015-01-01
Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450
NASA Astrophysics Data System (ADS)
Lau, Erwin T.; Gaspari, Massimo; Nagai, Daisuke; Coppi, Paolo
2017-11-01
The Hitomi X-ray satellite has provided the first direct measurements of the plasma velocity dispersion in a galaxy cluster. It finds a relatively “quiescent” gas with a line-of-sight velocity dispersion {σ }v,{los}≃ 160 {km} {{{s}}}-1, at 30-60 kpc from the cluster center. This is surprising given the presence of jets and X-ray cavities that indicates on-going activity and feedback from the active galactic nucleus (AGN) at the cluster center. Using a set of mock Hitomi observations generated from a suite of state-of-the-art cosmological cluster simulations, and an isolated but higher resolution simulation of gas physics in the cluster core, including the effects of cooling and AGN feedback, we examine the likelihood of Hitomi detecting a cluster with the observed velocities. As long as the Perseus has not experienced a major merger in the last few gigayears, and AGN feedback is operating in a “‘gentle” mode, we reproduce the level of gas motions observed by Hitomi. The frequent mechanical AGN feedback generates net line-of-sight velocity dispersions ˜ 100{--}200 {km} {{{s}}}-1, bracketing the values measured in the Perseus core. The large-scale velocity shear observed across the core, on the other hand, is generated mainly by cosmic accretion such as mergers. We discuss the implications of these results for AGN feedback physics and cluster cosmology and progress that needs to be made in both simulations and observations, including a Hitomi re-flight and calorimeter-based instruments with higher spatial resolution.
Oberle, Michael; Wohlwend, Nadia; Jonas, Daniel; Maurer, Florian P.; Jost, Geraldine; Tschudin-Sutter, Sarah; Vranckx, Katleen; Egli, Adrian
2016-01-01
Background The technical, biological, and inter-center reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI TOF MS) typing data has not yet been explored. The aim of this study is to compare typing data from multiple centers employing bioinformatics using bacterial strains from two past outbreaks and non-related strains. Material/Methods Participants received twelve extended spectrum betalactamase-producing E. coli isolates and followed the same standard operating procedure (SOP) including a full-protein extraction protocol. All laboratories provided visually read spectra via flexAnalysis (Bruker, Germany). Raw data from each laboratory allowed calculating the technical and biological reproducibility between centers using BioNumerics (Applied Maths NV, Belgium). Results Technical and biological reproducibility ranged between 96.8–99.4% and 47.6–94.4%, respectively. The inter-center reproducibility showed a comparable clustering among identical isolates. Principal component analysis indicated a higher tendency to cluster within the same center. Therefore, we used a discriminant analysis, which completely separated the clusters. Next, we defined a reference center and performed a statistical analysis to identify specific peaks to identify the outbreak clusters. Finally, we used a classifier algorithm and a linear support vector machine on the determined peaks as classifier. A validation showed that within the set of the reference center, the identification of the cluster was 100% correct with a large contrast between the score with the correct cluster and the next best scoring cluster. Conclusions Based on the sufficient technical and biological reproducibility of MALDI-TOF MS based spectra, detection of specific clusters is possible from spectra obtained from different centers. However, we believe that a shared SOP and a bioinformatics approach are required to make the analysis robust and reliable. PMID:27798637
Calculating Proper Motions in the WFCAM Science Archive for the UKIRT Infrared Deep Sky Surveys
NASA Astrophysics Data System (ADS)
Collins, R.; Hambly, N.
2012-09-01
The ninth data release from the UKIRT Infrared Deep Sky Surveys (hereafter UKIDSS DR9), represents five years worth of observations by its wide-field camera (WFCAM) and will be the first to include proper motion values in its source catalogues for the shallow, wide-area surveys; the Large Area Survey (LAS), Galactic Clusters Survey (GCS) and (ultimately) Galactic Plane Survey (GPS). We, the Wide Field Astronomy Unit (WFAU) at the University of Edinburgh who prepare these regular data releases in the WFCAM Science Archive (WSA), describe in this paper how we make optimal use of the individual detection catalogues from each observation to derive high-quality astrometric fits for the positions of each detection enabling us to calculate a proper motion solution across multiple epochs and passbands when constructing a merged source catalogue. We also describe how the proper motion solutions affect the calculation of the various attributes provided in the database source catalogue tables, what measures of data quality we provide and a demonstration of the results for observations of the Pleiades cluster.
Wang, Zengjian; Zhang, Delong; Liang, Bishan; Chang, Song; Pan, Jinghua; Huang, Ruiwang; Liu, Ming
2016-01-01
Biological motion perception (BMP) refers to the ability to perceive the moving form of a human figure from a limited amount of stimuli, such as from a few point lights located on the joints of a moving body. BMP is commonplace and important, but there is great inter-individual variability in this ability. This study used multiple regression model analysis to explore the association between BMP performance and intrinsic brain activity, in order to investigate the neural substrates underlying inter-individual variability of BMP performance. The resting-state functional magnetic resonance imaging (rs-fMRI) and BMP performance data were collected from 24 healthy participants, for whom intrinsic brain networks were constructed, and a graph-based network efficiency metric was measured. Then, a multiple linear regression model was used to explore the association between network regional efficiency and BMP performance. We found that the local and global network efficiency of many regions was significantly correlated with BMP performance. Further analysis showed that the local efficiency rather than global efficiency could be used to explain most of the BMP inter-individual variability, and the regions involved were predominately located in the Default Mode Network (DMN). Additionally, discrimination analysis showed that the local efficiency of certain regions such as the thalamus could be used to classify BMP performance across participants. Notably, the association pattern between network nodal efficiency and BMP was different from the association pattern of static directional/gender information perception. Overall, these findings show that intrinsic brain network efficiency may be considered a neural factor that explains BMP inter-individual variability. PMID:27853427
Blue Stragglers and Other Stars of Mass Consumption in Globular Clusters
NASA Astrophysics Data System (ADS)
Panurach, Teresa; Leigh, Nathan
2018-01-01
Simulations of globular clusters suggest that collisions between main-sequence (MS) stars happen frequently. Stellar evolution models show that these collision products can be photometrically identified, appearing off the MS locus. These collision products can appear brighter and bluer than the MS turnoff, called “blue stragglers,” or even less massive and redder than the MS. We use proper motion-cleaned photometry from the Hubble Space Telescope of 38 globular clusters to identify candidate collision products. We compare the spectral energy distributions of our candidates to theoretical templates for single and multiple star systems, to constrain the possible presence of a binary companion and test consistency with theoretical stellar evolution models for collision products. For the BSs, we also compare the observed velocities from the proper motion catalog along with mass estimates derived from isochrone-fitting to theoretical predictions for both the collision and binary mass transfer models and find better agreement with the former.
Characteristics of DC electric fields in transient plasma sheet events
NASA Astrophysics Data System (ADS)
Laakso, H. E.; Escoubet, C. P.; Masson, A.
2015-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
Multi-point Measurements of Relativistic Electrons in the Magnetosphere
NASA Astrophysics Data System (ADS)
Li, X.; Selesnick, R.; Baker, D. N.; Blake, J. B.; Schiller, Q.; Blum, L. W.; Zhao, H.; Jaynes, A. N.; Kanekal, S.
2014-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
Riboldi, Marco; Gianoli, Chiara; Chirvase, Cezarina I.; Villa, Gaetano; Paganelli, Chiara; Summers, Paul E.; Tagaste, Barbara; Pella, Andrea; Fossati, Piero; Ciocca, Mario; Baroni, Guido; Valvo, Francesca; Orecchia, Roberto
2016-01-01
Particle therapy (PT) has shown positive therapeutic results in local control of locally advanced pancreatic lesions. PT effectiveness is highly influenced by target localization accuracy both in space, since the pancreas is located in proximity to radiosensitive vital organs, and in time as it is subject to substantial breathing‐related motion. The purpose of this preliminary study was to quantify pancreas range of motion under typical PT treatment conditions. Three common immobilization devices (vacuum cushion, thermoplastic mask, and compressor belt) were evaluated on five male patients in prone and supine positions. Retrospective four‐dimensional magnetic resonance imaging data were reconstructed for each condition and the pancreas was manually segmented on each of six breathing phases. A k‐means algorithm was then applied on the manually segmented map in order to obtain clusters representative of the three pancreas segments: head, body, and tail. Centers of mass (COM) for the pancreas and its segments were computed, as well as their displacements with respect to a reference breathing phase (beginning exhalation). The median three‐dimensional COM displacements were in the range of 3 mm. Latero–lateral and superior–inferior directions had a higher range of motion than the anterior–posterior direction. Motion analysis of the pancreas segments showed slightly lower COM displacements for the head cluster compared to the tail cluster, especially in prone position. Statistically significant differences were found within patients among the investigated setups. Hence a patient‐specific approach, rather than a general strategy, is suggested to define the optimal treatment setup in the frame of a millimeter positioning accuracy. PACS number(s): 87.55.‐x, 87.57.nm, 87.61 PMID:27685119
A simulation study of particle energization observed by THEMIS spacecraft during a substorm
NASA Astrophysics Data System (ADS)
Ashour-Abdalla, Maha; Bosqued, Jean-Michel; El-Alaoui, Mostafa; Peroomian, Vahe; Zhou, Meng; Richard, Robert; Walker, Raymond; Runov, Andrei; Angelopoulos, Vassilis
2009-09-01
Energetic ions with hundreds of keV energy are frequently observed in the near-Earth tail during magnetospheric substorms. We examined the sources and acceleration of ions during a magnetospheric substorm on 1 March 2008 by using Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Cluster observations and numerical simulations. Four of the THEMIS spacecraft were aligned at yGSM = 6 RE during a very large substorm (AE = 1200) while the Cluster spacecraft were located about 5 RE above the auroral ionosphere. For 2 h before the substorm, Cluster observed ionospheric oxygen flowing out into the magnetosphere. After substorm onset the THEMIS P3 and P4 spacecraft located in the near-Earth tail (xGSM = -9 RE and -8 RE, respectively) observed large fluxes of energetic ions up to 500 keV. We used calculations of millions of ions of solar wind and ionospheric origin in the time-dependent electric and magnetic fields from a global magnetohydrodynamic simulation of this event to study the source of these ions and their acceleration. The simulation did a good job of reproducing the particle observations. Both solar wind protons and ionospheric oxygen were accelerated by nonadiabatic motion across large (>˜5 mV/m) total electric fields (both potential and induced). The acceleration occurred in the "wall" region of the near-Earth tail where nonadiabatic motion dominates over convection and the particles move rapidly across the tail. The acceleration occurred mostly in regions with large electric fields and nonadiabatic motion. There was relatively little acceleration in regions with large electric fields and adiabatic motion or small electric fields and nonadiabatic motion. Prior to substorm onset, ionospheric ions were a significant contributor to the cross-tail current, but after onset, solar wind ions become more dominant.
Khong, Wei Xin; Marimuthu, Kalisvar; Teo, Jeanette; Ding, Yichen; Xia, Eryu; Lee, Jia Jun; Ong, Rick Twee-Hee; Venkatachalam, Indumathi; Cherng, Benjamin; Pada, Surinder Kaur; Choong, Weng Lam; Smitasin, Nares; Ooi, Say Tat; Deepak, Rama Narayana; Kurup, Asok; Fong, Raymond; Van La, My; Tan, Thean Yen; Koh, Tse Hsien; Lin, Raymond Tzer Pin; Tan, Eng Lee; Krishnan, Prabha Unny; Singh, Siddharth; Pitout, Johann D; Teo, Yik-Ying; Yang, Liang; Ng, Oon Tek
2016-11-01
Owing to gene transposition and plasmid conjugation, New Delhi metallo-β-lactamase (NDM) is typically identified among varied Enterobacteriaceae species and STs. We used WGS to characterize the chromosomal and plasmid molecular epidemiology of NDM transmission involving four institutions in Singapore. Thirty-three Enterobacteriaceae isolates (collection years 2010-14) were sequenced using short-read sequencing-by-synthesis and analysed. Long-read single molecule, real-time sequencing (SMRTS) was used to characterize genetically a novel plasmid pSg1-NDM carried on Klebsiella pneumoniae ST147. In 20 (61%) isolates, bla NDM was located on the pNDM-ECS01 plasmid in the background of multiple bacterial STs, including eight K. pneumoniae STs and five Escherichia coli STs. In six (18%) isolates, a novel bla NDM -positive plasmid, pSg1-NDM, was found only in K. pneumoniae ST147. The pSg1-NDM-K. pneumoniae ST147 clone (Sg1-NDM) was fully sequenced using SMRTS. pSg1-NDM, a 90 103 bp IncR plasmid, carried genes responsible for resistance to six classes of antimicrobials. A large portion of pSg1-NDM had no significant homology to any known plasmids in GenBank. pSg1-NDM had no conjugative transfer region. Combined chromosomal-plasmid phylogenetic analysis revealed five clusters of clonal bacterial NDM-positive plasmid transmission, of which two were inter-institution clusters. The largest inter-institution cluster involved six K. pneumoniae ST147-pSg1-NDM isolates. Fifteen patients were involved in transmission clusters, of which four had ward contact, six had hospital contact and five had an unknown transmission link. A combined sequencing-by-synthesis and SMRTS approach can determine effectively the transmission clusters of bla NDM and genetically characterize novel plasmids. Plasmid molecular epidemiology is important to understanding NDM spread as bla NDM -positive plasmids can conjugate extensively across species and STs. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lim, J X; Toh, R X; Chook, S K H; Sebastin, S J; Karjalainen, T
2014-06-01
Previous studies have established the role of quantitative measurements of palmar abduction strength of the thumb (PAST). This study compares the reliability of the 'make' versus the 'break' test in measuring PAST in healthy volunteers. In a 'make' test, the body part being tested is positioned at the start of its range of motion and the participant is asked to exert his/her maximal force. In a 'break' test, increasing force is applied to a body part after it has completed its range of motion, until the joint being tested gives way. PAST was measured in both hands in 100 healthy volunteers using a handheld device. Two examiners measured PAST using both the 'make' and 'break' test to determine inter-rater reliability. The tests were repeated in 30 volunteers 6 weeks after the initial testing to determine intra-rater reliability. Our results showed that the 'make' test has better inter and intra-rater reliability.
NASA Astrophysics Data System (ADS)
Huang, Jing; Zhou, Yanzi; Xie, Daiqian
2018-04-01
We report a new full-dimensional ab initio potential energy surface for the Ar-HF van der Waals complex at the level of coupled-cluster singles and doubles with noniterative inclusion of connected triples levels [CCSD(T)] using augmented correlation-consistent quintuple-zeta basis set (aV5Z) plus bond functions. Full counterpoise correction was employed to correct the basis-set superposition error. The hypersurface was fitted using artificial neural network method with a root mean square error of 0.1085 cm-1 for more than 8000 ab initio points. The complex was found to prefer a linear Ar-H-F equilibrium structure. The three-dimensional discrete variable representation method and the Lanczos propagation algorithm were then employed to calculate the rovibrational states without separating inter- and intra- molecular nuclear motions. The calculated vibrational energies of Ar-HF differ from the experiment values within about 1 cm-1 on the first four HF vibrational states, and the predicted pure rotational energies on (0000) and (1000) vibrational states are deviated from the observed value by about 1%, which shows the accuracy of our new PES.
Catavitello, Giovanna; Ivanenko, Yuri P.; Lacquaniti, Francesco
2015-01-01
The rich repertoire of locomotor behaviors in quadrupedal animals requires flexible inter-limb and inter-segmental coordination. Here we studied the kinematic coordination of different gaits (walk, trot, gallop, and swim) of six dogs (Canis lupus familiaris) and, in particular, the planar covariation of limb segment elevation angles. The results showed significant variations in the relative duration of rearward limb movement, amplitude of angular motion, and inter-limb coordination, with gait patterns ranging from a lateral sequence of footfalls during walking to a diagonal sequence in swimming. Despite these differences, the planar law of inter-segmental coordination was maintained across different gaits in both forelimbs and hindlimbs. Notably, phase relationships and orientation of the covariation plane were highly limb specific, consistent with the functional differences in their neural control. Factor analysis of published muscle activity data also demonstrated differences in the characteristic timing of basic activation patterns of the forelimbs and hindlimbs. Overall, the results demonstrate that the planar covariation of inter-segmental coordination has emerged for both fore- and hindlimbs and all gaits, although in a limb-specific manner. PMID:26218076
Yamamoto, Susumu; Ghosh, Avishek; Nienhuys, Han-Kwang; Bonn, Mischa
2010-10-28
We present experimental results on femtosecond time-resolved surface vibrational spectroscopy aimed at elucidating the sub-picosecond reorientational dynamics of surface molecules. The approach, which relies on polarization- and time-resolved surface sum frequency generation (SFG), provides a general means to monitor interfacial reorientational dynamics through vibrations inherent in surface molecules in their electronic ground state. The technique requires an anisotropic vibrational excitation of surface molecules using orthogonally polarized infrared excitation light. The decay of the resulting anisotropy is followed in real-time. We employ the technique to reveal the reorientational dynamics of vibrational transition dipoles of long-chain primary alcohols on the water surface, and of water molecules at the water-air interface. The results demonstrate that, in addition to reorientational motion of specific molecules or molecular groups at the interface, inter- and intramolecular energy transfer processes can serve to scramble the initial anisotropy very efficiently. In the two exemplary cases demonstrated here, energy transfer occurs much faster than reorientational motion of interfacial molecules. This has important implications for the interpretation of static SFG spectra. Finally, we suggest experimental schemes and strategies to decouple effects resulting from energy transfer from those associated with surface molecular motion.
Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E; Tiscar, Pedro A; Viñegla, Benjamin; Linares, Juan C; Gómez-Gómez, Lourdes; Ahrazem, Oussama
2012-01-01
Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei's genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei's genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups-Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco-while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.
Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E.; Tiscar, Pedro A.; Viñegla, Benjamin; Linares, Juan C.; Gómez-Gómez, Lourdes; Ahrazem, Oussama
2012-01-01
Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei’s genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei’s genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups—Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco—while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra. PMID:22754321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwa, Stefan L.S., E-mail: s.kwa@erasmusmc.nl; Al-Mamgani, Abrahim; Osman, Sarah O.S.
2015-09-01
Purpose: The purpose of this study was to verify clinical target volume–planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion. Methods and Materials: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and aftermore » dose delivery. A mixed online-offline setup correction protocol (“O2 protocol”) was designed to compensate for both inter- and intrafraction motion. Results: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm). Conclusions: With adequate image guidance and CTV-PTV margins in LR, CC, and AP directions of 3, 5, and 3 mm, respectively, excellent target coverage in SVCI could be ensured.« less
du Rose, Alister; Breen, Alan
2016-03-10
Intervertebral motion impairment is widely thought to be related to chronic back disability, however, the movements of inter-vertebral pairs are not independent of each other and motion may also be related to morphology. Furthermore, maximum intervertebral range of motion (IV-RoMmax) is difficult to measure accurately in living subjects. The purpose of this study was to explore possible relationships between (IV-RoMmax) and lordosis, initial attainment rate and IV-RoMmax at other levels during weight-bearing flexion using quantitative fluoroscopy (QF). Continuous QF motion sequences were recorded during controlled active sagittal flexion of 60° in 18 males (mean age 27.6 SD 4.4) with no history of low back pain in the previous year. IV-RoMmax, lordotic angle, and initial attainment rate at all inter-vertebral levels from L2-S1 were extracted. Relationships between IV-RoMmax and the other variables were explored using correlation coefficients, and simple linear regression was used to determine the effects of any significant relationships. Within and between observer repeatability of IV-RoMmax and initial attainment rate measurements were assessed in a sub-set of ten participants, using the intra-class correlation coefficient (ICC) and standard error of measurement (SEM). QF measurements were highly repeatable, the lowest ICC for IV-RoMmax, being 0.94 (0.80-0.99) and highest SEM (0.76°). For initial attainment rate the lowest ICC was 0.84 (0.49-0.96) and the highest SEM (0.036). The results also demonstrated significant positive and negative correlations between IV-RoMmax and IV-RoMmax at other lumbar levels (r = -0.64-0.65), lordosis (r = -0.52-0.54), and initial attainment rate (r = -0.64-0.73). Simple linear regression analysis of all significant relationships showed that these predict between 28 and 42 % of the variance in IV-RoMmax. This study found weak to moderate effects of individual kinematic variables and lumbar lordosis on IV-RoMmax at other intervertebral levels. These effects, when combined, may be important when such levels are being considered by healthcare professionals as potential sources of pain generation. Multivariate investigations in larger samples are warranted.
NASA Astrophysics Data System (ADS)
Bouy, H.; Bertin, E.; Moraux, E.; Cuillandre, J.-C.; Bouvier, J.; Barrado, D.; Solano, E.; Bayo, A.
2013-06-01
Context. The kinematic properties of the different classes of objects in a given association hold important clues about the history of its members, and offer a unique opportunity to test the predictions of the various models of stellar formation and evolution. Aims: DANCe (standing for dynamical analysis of nearby clusters) is a survey program aimed at deriving a comprehensive and homogeneous census of the stellar and substellar content of a number of nearby (<1 kpc) young (<500 Myr) associations. Whenever possible, members will be identified based on their kinematics properties, ensuring little contamination from background and foreground sources. Otherwise, the dynamics of previously confirmed members will be studied using the proper motion measurements. We present here the method used to derive precise proper motion measurements, using the Pleiades cluster as a test bench. Methods: Combining deep wide-field multi-epoch panchromatic images obtained at various obervatories over up to 14 years, we derived accurate proper motions for the sources in the field of the survey. The datasets cover ≈80 square degrees, centered around the Seven Sisters. Results: Using new tools, we have computed a catalog of 6 116 907 unique sources, including proper motion measurements for 3 577 478 of them. The catalog covers the magnitude range between i = 12 ~ 24 mag, achieving a proper motion accuracy <1 mas y-1 for sources as faint as i = 22.5 mag. We estimate that our final accuracy reaches 0.3 mas yr-1 in the best cases, depending on magnitude, observing history, and the presence of reference extragalactic sources for the anchoring onto the ICRS. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.
Yang, Yang; Saleemi, Imran; Shah, Mubarak
2013-07-01
This paper proposes a novel representation of articulated human actions and gestures and facial expressions. The main goals of the proposed approach are: 1) to enable recognition using very few examples, i.e., one or k-shot learning, and 2) meaningful organization of unlabeled datasets by unsupervised clustering. Our proposed representation is obtained by automatically discovering high-level subactions or motion primitives, by hierarchical clustering of observed optical flow in four-dimensional, spatial, and motion flow space. The completely unsupervised proposed method, in contrast to state-of-the-art representations like bag of video words, provides a meaningful representation conducive to visual interpretation and textual labeling. Each primitive action depicts an atomic subaction, like directional motion of limb or torso, and is represented by a mixture of four-dimensional Gaussian distributions. For one--shot and k-shot learning, the sequence of primitive labels discovered in a test video are labeled using KL divergence, and can then be represented as a string and matched against similar strings of training videos. The same sequence can also be collapsed into a histogram of primitives or be used to learn a Hidden Markov model to represent classes. We have performed extensive experiments on recognition by one and k-shot learning as well as unsupervised action clustering on six human actions and gesture datasets, a composite dataset, and a database of facial expressions. These experiments confirm the validity and discriminative nature of the proposed representation.
Adaptive Radiation for Lung Cancer
Gomez, Daniel R.; Chang, Joe Y.
2011-01-01
The challenges of lung cancer radiotherapy are intra/inter-fraction tumor/organ anatomy/motion changes and the need to spare surrounding critical structures. Evolving radiotherapy technologies, such as four-dimensional (4D) image-based motion management, daily on-board imaging and adaptive radiotherapy based on volumetric images over the course of radiotherapy, have enabled us to deliver higher dose to target while minimizing normal tissue toxicities. The image-guided radiotherapy adapted to changes of motion and anatomy has made the radiotherapy more precise and allowed ablative dose delivered to the target using novel treatment approaches such as intensity-modulated radiation therapy, stereotactic body radiation therapy, and proton therapy in lung cancer, techniques used to be considered very sensitive to motion change. Future clinical trials using real time tracking and biological adaptive radiotherapy based on functional images are proposed. PMID:20814539
Cluster dynamics and cluster size distributions in systems of self-propelled particles
NASA Astrophysics Data System (ADS)
Peruani, F.; Schimansky-Geier, L.; Bär, M.
2010-12-01
Systems of self-propelled particles (SPP) interacting by a velocity alignment mechanism in the presence of noise exhibit rich clustering dynamics. Often, clusters are responsible for the distribution of (local) information in these systems. Here, we investigate the properties of individual clusters in SPP systems, in particular the asymmetric spreading behavior of clusters with respect to their direction of motion. In addition, we formulate a Smoluchowski-type kinetic model to describe the evolution of the cluster size distribution (CSD). This model predicts the emergence of steady-state CSDs in SPP systems. We test our theoretical predictions in simulations of SPP with nematic interactions and find that our simple kinetic model reproduces qualitatively the transition to aggregation observed in simulations.
Huang, Chen-Yu; Keall, Paul; Rice, Adam; Colvill, Emma; Ng, Jin Aun; Booth, Jeremy T
2017-09-01
Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was <0.1 mm or <0.1°, respectively. The accuracy of reproducing dynamic patient motion was <0.3 mm. The motion platform's range met the need to reproduce clinically relevant translation and rotation ranges and its accuracy met the TG 142 requirements for SABR. The range, velocity and acceleration of the motion platform are sufficient to reproduce lung and prostate tumor motion for motion management. Programmable motion platforms are valuable tools in the investigation, quality assurance and commissioning of motion management systems in radiation oncology.
The Orion Nebula Cluster as a Paradigm of Star Formation
NASA Astrophysics Data System (ADS)
Robberto, Massimo
2014-10-01
We propose a 52-orbit Treasury Program to investigate two fundamental questions of star formation: a) the low-mass tail of the IMF, down to a few Jupiter masses; b) the dynamical evolution of clusters, as revealed by stellar proper motions. We target the Orion Nebula Cluster (ONC) using WFC3 and ACS in coordinated parallel mode to perform a synoptic survey in the 1.345micron H2O feature and Ic broad-band. Our main objectives are: 1) to discover and classify ~500 brown dwarfs and planetary-mass objects in the field, extending the IMF down to lowest masses formed by gravitational collapse. Using the latest generation of high contrast image processing we will also search for faint companions, reaching down to sub-arcsecond separations and 1E-4 flux ratios. 2) to derive high precision (~0.2km/s) relative proper motions of low-mass stars and substellar objects (about 1000 sources total), leveraging on first epoch data obtained by our previous HST Treasury Program about 10 years ago. These data will unveil the cluster dynamics: velocity dispersion vs. mass, substructures, and the fraction of escaping sources. Only HST can access the IR H2O absorption feature sensitive to the effective temperature of substellar objects, while providing the exceptionally stable PSF needed for the detection of faint companions, and the identical ACS platform for our second epoch proper-motion survey. This program will provide the definitive HST legacy dataset on the ONC. Our High-Level Science Products will be mined by the community, both statistically to constrain competing theories of star formation, and to study in depth the multitude of exotic sources harboured by the cluster.
A proper motion study of the globular cluster M55
NASA Astrophysics Data System (ADS)
Zloczewski, K.; Kaluzny, J.; Thompson, I. B.
2011-07-01
We have derived the absolute proper motion (PM) of the globular cluster M55 using a large set of CCD images collected with the du Pont telescope between 1997 and 2008. We find (μα cos δ, μδ) = (-3.31 ± 0.10, -9.14 ± 0.15) mas yr-1 relative to background galaxies. Membership status was determined for 16 945 stars with 14 < V < 21 from the central part of the cluster. The PM catalogue includes 52 variables, of which 43 are probable members of M55. This sample not only is dominated by pulsating blue straggler stars, but also includes five eclipsing binaries, three of which are main-sequence objects. The survey also identified several candidate blue, yellow and red straggler stars belonging to the cluster. We detected 15 likely members of the Sgr dSph galaxy located behind M55. The average PM for these stars was measured to be (μα cos δ, μδ) = (-2.23 ± 0.14, -1.83 ± 0.24) mas yr-1.
Cool Core Disruption in Abell 1763
NASA Astrophysics Data System (ADS)
Douglass, Edmund; Blanton, Elizabeth L.; Clarke, Tracy E.; Randall, Scott W.; Edwards, Louise O. V.; Sabry, Ziad
2017-01-01
We present the analysis of a 20 ksec Chandra archival observation of the massive galaxy cluster Abell 1763. A model-subtracted image highlighting excess cluster emission reveals a large spiral structure winding outward from the core to a radius of ~950 kpc. We measure the gas of the inner spiral to have significantly lower entropy than non-spiral regions at the same radius. This is consistent with the structure resulting from merger-induced motion of the cluster’s cool core, a phenomenon seen in many systems. Atypical of spiral-hosting clusters, an intact cool core is not detected. Its absence suggests the system has experienced significant disruption since the initial dynamical encounter that set the sloshing core in motion. Along the major axis of the elongated ICM distribution we detect thermal features consistent with the merger event most likely responsible for cool core disruption. The merger-induced transition towards non-cool core status will be discussed. The interaction between the powerful (P1.4 ~ 1026 W Hz-1) cluster-center WAT radio source and its ICM environment will also be discussed.
Participation in the Cluster Magnetometer Consortium for the Cluster Mission
NASA Technical Reports Server (NTRS)
Kivelson, Margaret
1997-01-01
Prof. M. G. Kivelson (UCLA) and Dr. R. C. Elphic (LANL) are Co-investigators on the Cluster Magnetometer Consortium (CMC) that provided the fluxgate magnetometers and associated mission support for the Cluster Mission. The CMC designated UCLA as the site with primary responsibility for the inter-calibration of data from the four spacecraft and the production of fully corrected data critical to achieving the mission objectives. UCLA was also charged with distributing magnetometer data to the U.S. Co-investigators. UCLA also supported the Technical Management Team, which was responsible for the detailed design of the instrument and its interface. In this final progress report we detail the progress made by the UCLA team in achieving the mission objectives.
Locality-Aware CTA Clustering For Modern GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ang; Song, Shuaiwen; Liu, Weifeng
2017-04-08
In this paper, we proposed a novel clustering technique for tapping into the performance potential of a largely ignored type of locality: inter-CTA locality. We first demonstrated the capability of the existing GPU hardware to exploit such locality, both spatially and temporally, on L1 or L1/Tex unified cache. To verify the potential of this locality, we quantified its existence in a broad spectrum of applications and discussed its sources of origin. Based on these insights, we proposed the concept of CTA-Clustering and its associated software techniques. Finally, We evaluated these techniques on all modern generations of NVIDIA GPU architectures. Themore » experimental results showed that our proposed clustering techniques could significantly improve on-chip cache performance.« less
An Electroencephalography Network and Connectivity Analysis for Deception in Instructed Lying Tasks
Wang, Yue; Ng, Wu Chun; Ng, Khoon Siong; Yu, Ke; Wu, Tiecheng; Li, Xiaoping
2015-01-01
Deception is an impactful social event that has been the focus of an abundance of researches over recent decades. In this paper, an electroencephalography (EEG) study is presented regarding the cognitive processes of an instructed liar/truth-teller during the time window of stimulus (question) delivery period (SDP) prior to their deceptive/truthful responses towards questions related to authentic (WE: with prior experience) and fictional experience (NE: no prior experience). To investigate deception in non-experienced events, the subjects were given stimuli in a mock interview scenario that induced them to fabricate lies. To analyze the data, frequency domain network and connectivity analysis was performed in the source space in order to provide a more systematic level understanding of deception during SDP. This study reveals several groups of neuronal generators underlying both the instructed lying (IL) and the instructed truth-telling (IT) conditions for both tasks during the SDP. Despite the similarities existed in these group components, significant differences were found in the intra- and inter-group connectivity between the IL and IT conditions in either task. Additionally, the response time was found to be positively correlated with the clustering coefficient of the inferior frontal gyrus (44R) in the WE-IL condition and positively correlated with the clustering coefficient of the precuneus (7L) and the angular gyrus (39R) in the WE-IT condition. However, the response time was found to be marginally negatively correlated with the clustering coefficient of the secondary auditory cortex (42L) in the NE-IL condition and negatively correlated with the clustering coefficient of the somatosensory association cortex (5L, R) in the NE-IT condition. Therefore, these results provide complementary and intuitive evidence for the differences between the IL and IT conditions in SDP for two types of deception tasks, thus elucidating the electrophysiological mechanisms underlying SDP of deception from regional, inter-regional, network, and inter-network scale analyses. PMID:25679784
Saki, Sahar; Bagheri, Hedayat; Deljou, Ali; Zeinalabedini, Mehrshad
2016-01-01
Descurainia sophia is a valuable medicinal plant in family of Brassicaceae. To determine the range of diversity amongst D. sophia in Iran, 32 naturally distributed plants belonging to six natural populations of the Iranian plateau were investigated by inter-simple sequence repeat (ISSR) markers. The average percentage of polymorphism produced by 12 ISSR primers was 86 %. The PIC values for primers ranged from 0.22 to 0.40 and Rp values ranged between 6.5 and 19.9. The relative genetic diversity of the populations was not high (Gst =0.32). However, the value of gene flow revealed by the ISSR marker was high (Nm = 1.03). UPGMA clustering method based on Jaccard similarity coefficient grouped the genotypes into two major clusters. Graph results from Neighbor-Net Network generated after a 1000 bootstrap test using Jaccard coefficient, and STRUCTURE analysis confirmed the UPGMA clustering. The first three PCAs represented 57.31 % of the total variation. The high levels of genetic diversity were observed within populations, which is useful in breeding and conservation programs. ISSR is found to be an eligible marker to study genetic diversity of D. sophia.
Detecting subject-specific activations using fuzzy clustering
Seghier, Mohamed L.; Friston, Karl J.; Price, Cathy J.
2007-01-01
Inter-subject variability in evoked brain responses is attracting attention because it may reflect important variability in structure–function relationships over subjects. This variability could be a signature of degenerate (many-to-one) structure–function mappings in normal subjects or reflect changes that are disclosed by brain damage. In this paper, we describe a non-iterative fuzzy clustering algorithm (FCP: fuzzy clustering with fixed prototypes) for characterizing inter-subject variability in between-subject or second-level analyses of fMRI data. The approach identifies the contribution of each subject to response profiles in voxels surviving a classical F-statistic criterion. The output identifies subjects who drive activation in specific cortical regions (local effects) or in voxels distributed across neural systems (global effects). The sensitivity of the approach was assessed in 38 normal subjects performing an overt naming task. FCP revealed that several subjects had either abnormally high or abnormally low responses. FCP may be particularly useful for characterizing outlier responses in rare patients or heterogeneous populations. In these cases, atypical activations may not be detected by standard tests, under parametric assumptions. The advantage of using FCP is that it searches all voxels systematically and can identify atypical activation patterns in a quantitative and unsupervised manner. PMID:17478103
Interface Prostheses With Classifier-Feedback-Based User Training.
Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai
2017-11-01
It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.
Application of constrained k-means clustering in ground motion simulation validation
NASA Astrophysics Data System (ADS)
Khoshnevis, N.; Taborda, R.
2017-12-01
The validation of ground motion synthetics has received increased attention over the last few years due to the advances in physics-based deterministic and hybrid simulation methods. Unlike for low frequency simulations (f ≤ 0.5 Hz), for which it has become reasonable to expect a good match between synthetics and data, in the case of high-frequency simulations (f ≥ 1 Hz) it is not possible to match results on a wiggle-by-wiggle basis. This is mostly due to the various complexities and uncertainties involved in earthquake ground motion modeling. Therefore, in order to compare synthetics with data we turn to different time series metrics, which are used as a means to characterize how the synthetics match the data on qualitative and statistical sense. In general, these metrics provide GOF scores that measure the level of similarity in the time and frequency domains. It is common for these scores to be scaled from 0 to 10, with 10 representing a perfect match. Although using individual metrics for particular applications is considered more adequate, there is no consensus or a unified method to classify the comparison between a set of synthetic and recorded seismograms when the various metrics offer different scores. We study the relationship among these metrics through a constrained k-means clustering approach. We define 4 hypothetical stations with scores 3, 5, 7, and 9 for all metrics. We put these stations in the category of cannot-link constraints. We generate the dataset through the validation of the results from a deterministic (physics-based) ground motion simulation for a moderate magnitude earthquake in the greater Los Angeles basin using three velocity models. The maximum frequency of the simulation is 4 Hz. The dataset involves over 300 stations and 11 metrics, or features, as they are understood in the clustering process, where the metrics form a multi-dimensional space. We address the high-dimensional feature effects with a subspace-clustering analysis, generate a final labeled dataset of stations, and discuss the within-class statistical characteristics of each metric. Labeling these stations is the first step towards developing a unified metric to evaluate ground motion simulations in an application-independent manner.
Origin of matter and space-time in the big bang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, G. J.; Kajino, T.; Yamazaki, D.
We review the case for and against a bulk cosmic motion resulting from the quantum entanglement of our universe with the multiverse beyond our horizon. Within the current theory for the selection of the initial state of the universe from the landscape multiverse there is a generic prediction that pre-inflation quantum entanglement with other universes should give rise to a cosmic bulk flow with a correlation length of order horizon size and a velocity field relative to the expansion frame of the universe. Indeed, the parameters of this motion are are tightly constrained. A robust prediction can be deduced indicatingmore » that there should be an overall motion of of about 800 km/s relative to the background space time as defined by the cosmic microwave background (CMB). This talk will summarize the underlying theoretical motivation for this hypothesis. Of course our motion relative to the background space time (CMB dipole) has been known for decades and is generally attributed to the gravitational pull of the local super cluster. However, this cosmic peculiar velocity field has been recently deduced out to very large distances well beyond that of the local super cluster by using X-ray galaxy clusters as tracers of matter motion. This is achieved via the kinematic component of the Sunyaev-Zeldovich (KSZ) effect produced by Compton scattering of cosmic microwave background photons from the local hot intracluster gas. As such, this method measures peculiar velocity directly in the frame of the cluster. Similar attempts by our group and others have attempted to independently assess this bulk flow via Type la supernova redshifts. In this talk we will review the observation case for and against the existence of this bulk flow based upon the observations and predictions of the theory. If this interpretation is correct it has profound implications in that we may be observing for the first time both the physics that occurred before the big bang and the existence of the multiverse beyond our horizon.« less
NASA Astrophysics Data System (ADS)
Seo, Junyeong; Sung, Youngchul
2018-06-01
In this paper, an efficient transmit beam design and user scheduling method is proposed for multi-user (MU) multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) downlink, based on Pareto-optimality. The proposed beam design and user scheduling method groups simultaneously-served users into multiple clusters with practical two users in each cluster, and then applies spatical zeroforcing (ZF) across clusters to control inter-cluster interference (ICI) and Pareto-optimal beam design with successive interference cancellation (SIC) to two users in each cluster to remove interference to strong users and leverage signal-to-interference-plus-noise ratios (SINRs) of interference-experiencing weak users. The proposed method has flexibility to control the rates of strong and weak users and numerical results show that the proposed method yields good performance.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-09-25
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-01-01
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731
InterProSurf: a web server for predicting interacting sites on protein surfaces
Negi, Surendra S.; Schein, Catherine H.; Oezguen, Numan; Power, Trevor D.; Braun, Werner
2009-01-01
Summary A new web server, InterProSurf, predicts interacting amino acid residues in proteins that are most likely to interact with other proteins, given the 3D structures of subunits of a protein complex. The prediction method is based on solvent accessible surface area of residues in the isolated subunits, a propensity scale for interface residues and a clustering algorithm to identify surface regions with residues of high interface propensities. Here we illustrate the application of InterProSurf to determine which areas of Bacillus anthracis toxins and measles virus hemagglutinin protein interact with their respective cell surface receptors. The computationally predicted regions overlap with those regions previously identified as interface regions by sequence analysis and mutagenesis experiments. PMID:17933856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelin Jeba, K.; Latha, M. M., E-mail: lathaisaac@yahoo.com; Jain, Sudhir R.
2015-11-15
The nonlinear dynamics of intra- and inter-spine interaction models of alpha-helical proteins is investigated by proposing a Hamiltonian using the first quantized operators. Hamilton's equations of motion are derived, and the dynamics is studied by constructing the trajectories and phase space plots in both cases. The phase space plots display a chaotic behaviour in the dynamics, which opens questions about the relationship between the chaos and exciton-exciton and exciton-phonon interactions. This is verified by plotting the Lyapunov characteristic exponent curves.
An extended two-lane car-following model accounting for inter-vehicle communication
NASA Astrophysics Data System (ADS)
Ou, Hui; Tang, Tie-Qiao
2018-04-01
In this paper, we develop a novel car-following model with inter-vehicle communication to explore each vehicle's movement in a two-lane traffic system when an incident occurs on a lane. The numerical results show that the proposed model can perfectly describe each vehicle's motion when an incident occurs, i.e., no collision occurs while the classical full velocity difference (FVD) model produces collision on each lane, which shows the proposed model is more reasonable. The above results can help drivers to reasonably adjust their driving behaviors when an incident occurs in a two-lane traffic system.
Using Open Clusters to Trace the Local Milky Way Rotation Curve and Velocity Field
NASA Astrophysics Data System (ADS)
Frinchaboy, Peter M.; Majewski, S. R.
2006-12-01
Establishing the rotation curve of the Milky Way is one of the fundamental contributions needed to understand the Galaxy and its mass distribution. We have undertaken a systematic spectroscopic survey of open star clusters which can serve as tracers of Galactic disk dynamics. We report on our initial sample of 67 clusters for which the Hydra multi-fiber spectrographs on the WIYN and Blanco telescopes have delivered 1-2 km/s radial velocities (RVs) of many dozens of stars in the fields of each cluster, which are used to derive cluster membership and bulk cluster kinematics when combined with Tycho-2 proper motions. The clusters selected for study have a broad spatial distribution in order to be sensitive to the disk velocity field in all Galactic quadrants and across a Galactocentric radius range as much as 3.0 kpc from the solar circle. Through analysis of the cluster sample, we find (1) the rotation velocity of the LSR is 221 (+2,-4) km/s, (2) the local rotation curve is declining with radius having a slope of -9.0 km/s/kpc, (3) we find (using R_0 = 8.5 kpc) the following Galactic parameters: A = 17.0 km/s/kpc and B = -8.9 km/s/kpc, which yields a Galaxy mass within of 1.5 R_0 of M = 0.9 ± 0.2 x 10^11 solar masses and a M/L of 5.9 in solar units. We also explore the distribution of the local velocity field and find evidence for non-circular motion due to the sprial arms.
Nonlinear dust-lattice waves: a modified Toda lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, N. F.
Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.
`Inter-Arrival Time' Inspired Algorithm and its Application in Clustering and Molecular Phylogeny
NASA Astrophysics Data System (ADS)
Kolekar, Pandurang S.; Kale, Mohan M.; Kulkarni-Kale, Urmila
2010-10-01
Bioinformatics, being multidisciplinary field, involves applications of various methods from allied areas of Science for data mining using computational approaches. Clustering and molecular phylogeny is one of the key areas in Bioinformatics, which help in study of classification and evolution of organisms. Molecular phylogeny algorithms can be divided into distance based and character based methods. But most of these methods are dependent on pre-alignment of sequences and become computationally intensive with increase in size of data and hence demand alternative efficient approaches. `Inter arrival time distribution' (IATD) is a popular concept in the theory of stochastic system modeling but its potential in molecular data analysis has not been fully explored. The present study reports application of IATD in Bioinformatics for clustering and molecular phylogeny. The proposed method provides IATDs of nucleotides in genomic sequences. The distance function based on statistical parameters of IATDs is proposed and distance matrix thus obtained is used for the purpose of clustering and molecular phylogeny. The method is applied on a dataset of 3' non-coding region sequences (NCR) of Dengue virus type 3 (DENV-3), subtype III, reported in 2008. The phylogram thus obtained revealed the geographical distribution of DENV-3 isolates. Sri Lankan DENV-3 isolates were further observed to be clustered in two sub-clades corresponding to pre and post Dengue hemorrhagic fever emergence groups. These results are consistent with those reported earlier, which are obtained using pre-aligned sequence data as an input. These findings encourage applications of the IATD based method in molecular phylogenetic analysis in particular and data mining in general.
Lacquaniti, F; Ivanenko, Y P; Zago, M
2002-10-01
The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power output over a gait cycle (3, 4), phase control could be used for limiting the overall energy expenditure with increasing speed (22). Adaptation to different walking conditions, such as changes in body posture, body weight unloading and backward walk, also involves inter-segmental phase tuning, as does the maturation of limb kinematics in toddlers.
SU-E-T-558: Assessing the Effect of Inter-Fractional Motion in Esophageal Sparing Plans.
Williamson, R; Bluett, J; Niedzielski, J; Liao, Z; Gomez, D; Court, L
2012-06-01
To compare esophageal dose distributions in esophageal sparing IMRT plans with predicted dose distributions which include the effect of inter-fraction motion. Seven lung cancer patients were used, each with a standard and an esophageal sparing plan (74Gy, 2Gy fractions). The average max dose to esophagus was 8351cGy and 7758cGy for the standard and sparing plans, respectively. The average length of esophagus for which the total circumference was treated above 60Gy (LETT60) was 9.4cm in the standard plans and 5.8cm in the sparing plans. In order to simulate inter-fractional motion, a three-dimensional rigid shift was applied to the calculated dose field. A simulated course of treatment consisted of a single systematic shift applied throughout the treatment as well a random shift for each of the 37 fractions. Both systematic and random shifts were generated from Gaussian distributions of 3mm and 5mm standard deviation. Each treatment course was simulated 1000 times to obtain an expected distribution of the delivered dose. Simulated treatment dose received by the esophagus was less than dose seen in the treatment plan. The average reduction in maximum esophageal dose for the standard plans was 234cGy and 386cGY for the 3mm and 5mm Gaussian distributions, respectively. The average reduction in LETT60 was 0.6cm and 1.7cm, for the 3mm and 5mm distributions respectively. For the esophageal sparing plans, the average reduction in maximum esophageal dose was 94cGy and 202cGy for 3mm and 5mm Gaussian distributions, respectively. The average change in LETT60 for the esophageal sparing plans was smaller, at 0.1cm (increase) and 0.6cm (reduction), for the 3mm and 5mm distributions, respectively. Interfraction motion consistently reduced the maximum doses to the esophagus for both standard and esophageal sparing plans. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, H.
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
TU-AB-BRB-02: Stochastic Programming Methods for Handling Uncertainty and Motion in IMRT Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkelbach, J.
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
Attention Modulates Spatio-temporal Grouping
Aydın, Murat; Herzog, Michael H.; Öğmen, Haluk
2011-01-01
Dynamic stimuli are ubiquitous in natural viewing conditions implying that grouping operations need to operate, not only in space, but also jointly in space and time. Moreover, in natural viewing, attention plays an important role in controlling how resources are allocated. We investigated how attention interacts with spatiotemporal perceptual grouping by using a bistable stimulus, called the Ternus-Pikler display. Ternus-Pikler displays can give rise to two different motion percepts, called Element Motion (EM) and Group Motion (GM), the former dominating at short Inter-Stimulus Intervals (ISIs) and the latter at long ISIs. Our results indicate that GM grouping requires more attentional resources than EM grouping. Different theoretical accounts of perceptual grouping and attention are discussed and evaluated in the light of the current results. PMID:21266181
NASA Astrophysics Data System (ADS)
Takahashi, A.; Hashimoto, M.; Hu, J. C.; Fukahata, Y.
2017-12-01
Taiwan Island is composed of many geological structures. The main tectonic feature is the collision of the Luzon volcanic arc with the Eurasian continent, which propagates westward and generates complicated crustal deformation. One way to model crustal deformation is to divide Taiwan island into man rigid blocks that moves relatively each other along the boundaries (deformation zones) of the blocks. Since earthquakes tend to occur in the deformation zones, identification of such tectonic boundaries is important. So far, many tectonic boundaries have been proposed on the basis of geology, geomorphology, seismology and geodesy. However, which is the most significant boundary depends on disciplines and there is no way to objectively classify them. Here, we introduce an objective method to identify significant tectonic boundaries with a hierarchical representation proposed by Simpson et al. [2012].We apply a hierarchical agglomerative clustering algorithm to dense GNSS horizontal velocity data in Taiwan. One of the significant merits of the hierarchical representation of the clustering results is that we can consistently explore crustal structures from larger to smaller scales. This is because a higher hierarchy corresponds to a larger crustal structure, and a lower hierarchy corresponds to a smaller crustal structure. Relative motion between clusters can be obtained from this analysis.The first major boundary is identified along the eastern margin of the Longitudinal Valley, which corresponds to the separation of the Philippine Sea plate and the Eurasian continental margin. The second major boundary appears along the Chaochou fault and the Chishan fault in southwestern Taiwan. The third major boundary appears along the eastern margin of the coastal plane. The identified major clusters can be divided into several smaller blocks without losing consistency with geological boundaries. For example, the Fengshun fault, concealed beneath thick sediment layers, is identified. Furthermore, obtained relative motion between clusters demands a reverse fault or a left lateral fault in the off shore of the coastal range.Our clustering based block modeling is consistent with tectonics of Taiwan, implying that observed crustal deformation in Taiwan can be attributed to motion or deformation of shallow structures.
Universal partitioning of the hierarchical fold network of 50-residue segments in proteins
Ito, Jun-ichi; Sonobe, Yuki; Ikeda, Kazuyoshi; Tomii, Kentaro; Higo, Junichi
2009-01-01
Background Several studies have demonstrated that protein fold space is structured hierarchically and that power-law statistics are satisfied in relation between the numbers of protein families and protein folds (or superfamilies). We examined the internal structure and statistics in the fold space of 50 amino-acid residue segments taken from various protein folds. We used inter-residue contact patterns to measure the tertiary structural similarity among segments. Using this similarity measure, the segments were classified into a number (Kc) of clusters. We examined various Kc values for the clustering. The special resolution to differentiate the segment tertiary structures increases with increasing Kc. Furthermore, we constructed networks by linking structurally similar clusters. Results The network was partitioned persistently into four regions for Kc ≥ 1000. This main partitioning is consistent with results of earlier studies, where similar partitioning was reported in classifying protein domain structures. Furthermore, the network was partitioned naturally into several dozens of sub-networks (i.e., communities). Therefore, intra-sub-network clusters were mutually connected with numerous links, although inter-sub-network ones were rarely done with few links. For Kc ≥ 1000, the major sub-networks were about 40; the contents of the major sub-networks were conserved. This sub-partitioning is a novel finding, suggesting that the network is structured hierarchically: Segments construct a cluster, clusters form a sub-network, and sub-networks constitute a region. Additionally, the network was characterized by non-power-law statistics, which is also a novel finding. Conclusion Main findings are: (1) The universe of 50 residue segments found here was characterized by non-power-law statistics. Therefore, the universe differs from those ever reported for the protein domains. (2) The 50-residue segments were partitioned persistently and universally into some dozens (ca. 40) of major sub-networks, irrespective of the number of clusters. (3) These major sub-networks encompassed 90% of all segments. Consequently, the protein tertiary structure is constructed using the dozens of elements (sub-networks). PMID:19454039
The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 3201
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Rozyczka, M.; Thompson, I. B.; Narloch, W.; Mazur, B.; Pych, W.; Schwarzenberg-Czerny, A.
2016-01-01
The field of the globular cluster NGC 3201 was monitored between 1998 and 2009 in a search for variable stars. BV light curves were obtained for 152 periodic or likely periodic variables, fifty-seven of which are new detections. Thirty-seven newly detected variables are proper motion members of the cluster. Among them we found seven detached or semi-detached eclipsing binaries, four contact binaries, and eight SX Phe pulsators. Four of the eclipsing binaries are located in the turnoff region, one on the lower main sequence and the remaining two slightly above the subgiant branch. Two contact systems are blue stragglers, and another two reside in the turnoff region. In the blue straggler region a total of 266 objects were found, of which 140 are proper motion (PM) members of NGC 3201, and another nineteen are field stars. Seventy-eight of the remaining objects for which we do not have PM data are located within the half-light radius from the center of the cluster, and most of them are likely genuine blue stragglers. Four variable objects in our field of view were found to coincide with X-ray sources: three chromospherically active stars and a quasar at a redshift z≍0.5.
Radio Measurements of the Stellar Proper Motions in the Core of the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Dzib, Sergio A.; Loinard, Laurent; Rodríguez, Luis F.; Gómez, Laura; Forbrich, Jan; Menten, Karl M.; Kounkel, Marina A.; Mioduszewski, Amy J.; Hartmann, Lee; Tobin, John J.; Rivera, Juana L.
2017-01-01
Using multi-epoch Very Large Array observations, covering a time baseline of 29.1 years, we have measured the proper motions of 88 young stars with compact radio emission in the core of the Orion Nebula Cluster (ONC) and the neighboring BN/KL region. Our work increases the number of young stars with measured proper motion at radio frequencies by a factor of 2.5 and enables us to perform a better statistical analysis of the kinematics of the region than was previously possible. Most stars (79 out of 88) have proper motions consistent with a Gaussian distribution centered on \\overline{{μ }α \\cos δ }=1.07+/- 0.09 mas yr-1, and \\overline{{μ }δ }=-0.84+/- 0.16 mas yr-1, with velocity dispersions of {σ }α =1.08+/- 0.07 mas yr-1, {σ }δ =1.27+/- 0.15 mas yr-1. We looked for organized movements of these stars but found no clear indication of radial expansion/contraction or rotation. The remaining nine stars in our sample show peculiar proper motions that differ from the mean proper motions of the ONC by more than 3σ. One of these stars, V 1326 Ori, could have been expelled from the Orion Trapezium 7000 years ago. Two could be related to the multi-stellar disintegration in the BN/KL region, in addition to the previously known sources BN, I and n. The others either have high uncertainties (so their anomalous proper motions are not firmly established) or could be foreground objects.
Vision based obstacle detection and grouping for helicopter guidance
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Chatterji, Gano
1993-01-01
Electro-optical sensors can be used to compute range to objects in the flight path of a helicopter. The computation is based on the optical flow/motion at different points in the image. The motion algorithms provide a sparse set of ranges to discrete features in the image sequence as a function of azimuth and elevation. For obstacle avoidance guidance and display purposes, these discrete set of ranges, varying from a few hundreds to several thousands, need to be grouped into sets which correspond to objects in the real world. This paper presents a new method for object segmentation based on clustering the sparse range information provided by motion algorithms together with the spatial relation provided by the static image. The range values are initially grouped into clusters based on depth. Subsequently, the clusters are modified by using the K-means algorithm in the inertial horizontal plane and the minimum spanning tree algorithms in the image plane. The object grouping allows interpolation within a group and enables the creation of dense range maps. Researchers in robotics have used densely scanned sequence of laser range images to build three-dimensional representation of the outside world. Thus, modeling techniques developed for dense range images can be extended to sparse range images. The paper presents object segmentation results for a sequence of flight images.
Cazade, Pierre-André; Berezovska, Ganna; Meuwly, Markus
2015-05-01
The nature of ligand motion in proteins is difficult to characterize directly using experiment. Specifically, it is unclear to what degree these motions are coupled. All-atom simulations are used to sample ligand motion in truncated Hemoglobin N. A transition network analysis including ligand- and protein-degrees of freedom is used to analyze the microscopic dynamics. Clustering of two different subsets of MD trajectories highlights the importance of a diverse and exhaustive description to define the macrostates for a ligand-migration network. Monte Carlo simulations on the transition matrices from one particular clustering are able to faithfully capture the atomistic simulations. Contrary to clustering by ligand positions only, including a protein degree of freedom yields considerably improved coarse grained dynamics. Analysis with and without imposing detailed balance agree closely which suggests that the underlying atomistic simulations are converged with respect to sampling transitions between neighboring sites. Protein and ligand dynamics are not independent from each other and ligand migration through globular proteins is not passive diffusion. Transition network analysis is a powerful tool to analyze and characterize the microscopic dynamics in complex systems. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
In-vivo confirmation of the use of the dart thrower's motion during activities of daily living.
Brigstocke, G H O; Hearnden, A; Holt, C; Whatling, G
2014-05-01
The dart thrower's motion is a wrist rotation along an oblique plane from radial extension to ulnar flexion. We report an in-vivo study to confirm the use of the dart thrower's motion during activities of daily living. Global wrist motion in ten volunteers was recorded using a three-dimensional optoelectronic motion capture system, in which digital infra-red cameras track the movement of retro-reflective marker clusters. Global wrist motion has been approximated to the dart thrower's motion when hammering a nail, throwing a ball, drinking from a glass, pouring from a jug and twisting the lid of a jar, but not when combing hair or manipulating buttons. The dart thrower's motion is the plane of global wrist motion used during most activities of daily living. Arthrodesis of the radiocarpal joint instead of the midcarpal joint will allow better wrist function during most activities of daily living by preserving the dart thrower's motion.
2001-10-01
core passage of the dark matter subcluster, was not violent enough to produce a shock wave in the dense main cluster core. The core was only...such as Chandra. At later merger stages, turbulent gas motion, which is stirred by violently relaxing dark matter cores, should have erased many of
Feasibility of Synergy-Based Exoskeleton Robot Control in Hemiplegia.
Hassan, Modar; Kadone, Hideki; Ueno, Tomoyuki; Hada, Yasushi; Sankai, Yoshiyuki; Suzuki, Kenji
2018-06-01
Here, we present a study on exoskeleton robot control based on inter-limb locomotor synergies using a robot control method developed to target hemiparesis. The robot control is based on inter-limb locomotor synergies and kinesiological information from the non-paretic leg and a walking aid cane to generate motion patterns for the assisted leg. The developed synergy-based system was tested against an autonomous robot control system in five patients with hemiparesis and varying locomotor abilities. Three of the participants were able to walk using the robot. Results from these participants showed an improved spatial symmetry ratio and more consistent step length with the synergy-based method compared with that for the autonomous method, while the increase in the range of motion for the assisted joints was larger with the autonomous system. The kinematic synergy distribution of the participants walking without the robot suggests a relationship between each participant's synergy distribution and his/her ability to control the robot: participants with two independent synergies accounting for approximately 80% of the data variability were able to walk with the robot. This observation was not consistently apparent with conventional clinical measures such as the Brunnstrom stages. This paper contributes to the field of robot-assisted locomotion therapy by introducing the concept of inter-limb synergies, demonstrating performance differences between synergy-based and autonomous robot control, and investigating the range of disability in which the system is usable.
A Non-Contact Measurement System for the Range of Motion of the Hand
Pham, Trieu; Pathirana, Pubudu N.; Trinh, Hieu; Fay, Pearse
2015-01-01
An accurate and standardised tool to measure the active range of motion (ROM) of the hand is essential to any progressive assessment scenario in hand therapy practice. Goniometers are widely used in clinical settings for measuring the ROM of the hand. However, such measurements have limitations with regard to inter-rater and intra-rater reliability and involve direct physical contact with the hand, possibly increasing the risk of transmitting infections. The system proposed in this paper is the first non-contact measurement system utilising Intel Perceptual Technology and a Senz3D Camera for measuring phalangeal joint angles. To enhance the accuracy of the system, we developed a new approach to achieve the total active movement without measuring three joint angles individually. An equation between the actual spacial position and measurement value of the proximal inter-phalangeal joint was established through the measurement values of the total active movement, so that its actual position can be inferred. Verified by computer simulations, experimental results demonstrated a significant improvement in the calculation of the total active movement and successfully recovered the actual position of the proximal inter-phalangeal joint angles. A trial that was conducted to examine the clinical applicability of the system involving 40 healthy subjects confirmed the practicability and consistency in the proposed system. The time efficiency conveyed a stronger argument for this system to replace the current practice of using goniometers. PMID:26225976
Motion patterns in acupuncture needle manipulation.
Seo, Yoonjeong; Lee, In-Seon; Jung, Won-Mo; Ryu, Ho-Sun; Lim, Jinwoong; Ryu, Yeon-Hee; Kang, Jung-Won; Chae, Younbyoung
2014-10-01
In clinical practice, acupuncture manipulation is highly individualised for each practitioner. Before we establish a standard for acupuncture manipulation, it is important to understand completely the manifestations of acupuncture manipulation in the actual clinic. To examine motion patterns during acupuncture manipulation, we generated a fitted model of practitioners' motion patterns and evaluated their consistencies in acupuncture manipulation. Using a motion sensor, we obtained real-time motion data from eight experienced practitioners while they conducted acupuncture manipulation using their own techniques. We calculated the average amplitude and duration of a sampled motion unit for each practitioner and, after normalisation, we generated a true regression curve of motion patterns for each practitioner using a generalised additive mixed modelling (GAMM). We observed significant differences in rotation amplitude and duration in motion samples among practitioners. GAMM showed marked variations in average regression curves of motion patterns among practitioners but there was strong consistency in motion parameters for individual practitioners. The fitted regression model showed that the true regression curve accounted for an average of 50.2% of variance in the motion pattern for each practitioner. Our findings suggest that there is great inter-individual variability between practitioners, but remarkable intra-individual consistency within each practitioner. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
2012-01-01
The increasing interest in combined positron emission tomography (PET) and computed tomography (CT) to guide lung cancer radiation therapy planning has been well documented. Motion management strategies during treatment simulation PET/CT imaging and treatment delivery have been proposed to improve the precision and accuracy of radiotherapy. In light of these research advances, why has translation of motion-managed PET/CT to clinical radiotherapy been slow and infrequent? Solutions to this problem are as complex as they are numerous, driven by large inter-patient variability in tumor motion trajectories across a highly heterogeneous population. Such variation dictates a comprehensive and patient-specific incorporation of motion management strategies into PET/CT-guided radiotherapy rather than a one-size-fits-all tactic. This review summarizes challenges and opportunities for clinical translation of advances in PET/CT-guided radiotherapy, as well as in respiratory motion-managed radiotherapy of lung cancer. These two concepts are then integrated into proposed patient-specific workflows that span classification schemes, PET/CT image formation, treatment planning, and adaptive image-guided radiotherapy delivery techniques. PMID:23369522
An algebraic cluster model based on the harmonic oscillator basis
NASA Technical Reports Server (NTRS)
Levai, Geza; Cseh, J.
1995-01-01
We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.
NASA Astrophysics Data System (ADS)
Wan, Yu; Jin, Kai; Ahmad, Talha J.; Black, Michael J.; Xu, Zhiping
2017-03-01
Fluidic environment is encountered for mechanical components in many circumstances, which not only damps the oscillation but also modulates their dynamical behaviors through hydrodynamic interactions. In this study, we examine energy transfer and motion synchronization between two mechanical micro-oscillators by performing thermal lattice-Boltzmann simulations. The coefficient of inter-oscillator energy transfer is measured to quantify the strength of microhydrodynamic coupling, which depends on their distance and fluid properties such as density and viscosity. Synchronized motion of the oscillators is observed in the simulations for typical parameter sets in relevant applications, with the formation and loss of stable anti-phase synchronization controlled by the oscillating frequency, amplitude, and hydrodynamic coupling strength. The critical ranges of key parameters to assure efficient energy transfer or highly synchronized motion are predicted. These findings could be used to advise mechanical design of passive and active devices that operate in fluid.
Dividing traffic cluster into parts by signal control
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2018-02-01
When a cluster of vehicles with various speeds moves through the series of signals, the cluster breaks down by stopping at signals and results in smaller groups of vehicles. We present the nonlinear-map model of the motion of vehicles controlled by the signals. We study the breakup of a cluster of vehicles through the series of signals. The cluster of vehicles is divided into various groups by controlling the cycle time of signals. The vehicles within each group move with the same mean velocity. The breakup of the traffic cluster depends highly on the signal control. The dependence of dividing on both cycle time and vehicular speed is clarified. Also, we investigate the effect of the irregular interval between signals on dividing.
The TiltMeter app is a novel and accurate measurement tool for the weight bearing lunge test.
Williams, Cylie M; Caserta, Antoni J; Haines, Terry P
2013-09-01
The weight bearing lunge test is increasing being used by health care clinicians who treat lower limb and foot pathology. This measure is commonly established accurately and reliably with the use of expensive equipment. This study aims to compare the digital inclinometer with a free app, TiltMeter on an Apple iPhone. This was an intra-rater and inter-rater reliability study. Two raters (novice and experienced) conducted the measurements in both a bent knee and straight leg position to determine the intra-rater and inter-rater reliability. Concurrent validity was also established. Allied health practitioners were recruited as participants from the workplace. A preconditioning stretch was conducted and the ankle range of motion was established with the weight bearing lunge test position with firstly the leg straight and secondly with the knee bent. The measurement device and each participant were randomised during measurement. The intra-rater reliability and inter-rater reliability for the devices and in both positions were all over ICC 0.8 except for one intra-rater measure (Digital inclinometer, novice, ICC 0.65). The inter-rater reliability between the digital inclinometer and the tilmeter was near perfect, ICC 0.96 (CI: 0.898-0.983); Concurrent validity ICC between the two devices was 0.83 (CI: -0.740 to 0.445). The use of the Tiltmeter app on the iPhone is a reliable and inexpensive tool to measure the available ankle range of motion. Health practitioners should use caution in applying these findings to other smart phone equipment if surface areas are not comparable. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation
ERIC Educational Resources Information Center
Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom
2014-01-01
Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…
VizieR Online Data Catalog: Proper motions in M 11 (Su+ 1998)
NASA Astrophysics Data System (ADS)
Su, C.-G.; Zhao, J.-L.; Tian, K.-P.
1997-07-01
Relative proper motions of 872 stars in the open cluster M 11 region are reduced using 10 plate pairs taken over time baselines of 16~70 years with the double astrograph telescope of Shanghai Observatory. The scale is 30"/mm. The plates were measured with the PDS machines in the Purple Mountain Observatory in Nanjing and the Institute of Technology and Communication in Luoyang, China. The average proper motion accuracy is about 1.1mas/yr with 85% of the data better than 1mas/yr. Membership probabilities of 785 stars within 25' centred on M 11 are determined based on their proper motions. The method used is suggested by Su et al. (1995AcApS..15..217S) with some improvements of Zhao & He (1990A&A...237...54Z), in which the space distribution and magnitude dependencies for cluster stars are taken into account. The results are significantly good. The total integrated membership probabilities for all these stars is 547 and the number of stars with probabilities higher than 0.7 is 541. It can be found after the membership determination that there exists mass segregation in M 11. Some comparisons and discussion are also given. (1 data file).
Hasnain, Zaki; Li, Ming; Dorff, Tanya; Quinn, David; Ueno, Naoto T; Yennu, Sriram; Kolatkar, Anand; Shahabi, Cyrus; Nocera, Luciano; Nieva, Jorge; Kuhn, Peter; Newton, Paul K
2018-05-18
Biomechanical characterization of human performance with respect to fatigue and fitness is relevant in many settings, however is usually limited to either fully qualitative assessments or invasive methods which require a significant experimental setup consisting of numerous sensors, force plates, and motion detectors. Qualitative assessments are difficult to standardize due to their intrinsic subjective nature, on the other hand, invasive methods provide reliable metrics but are not feasible for large scale applications. Presented here is a dynamical toolset for detecting performance groups using a non-invasive system based on the Microsoft Kinect motion capture sensor, and a case study of 37 cancer patients performing two clinically monitored tasks before and after therapy regimens. Dynamical features are extracted from the motion time series data and evaluated based on their ability to i) cluster patients into coherent fitness groups using unsupervised learning algorithms and to ii) predict Eastern Cooperative Oncology Group performance status via supervised learning. The unsupervised patient clustering is comparable to clustering based on physician assigned Eastern Cooperative Oncology Group status in that they both have similar concordance with change in weight before and after therapy as well as unexpected hospitalizations throughout the study. The extracted dynamical features can predict physician, coordinator, and patient Eastern Cooperative Oncology Group status with an accuracy of approximately 80%. The non-invasive Microsoft Kinect sensor and the proposed dynamical toolset comprised of data preprocessing, feature extraction, dimensionality reduction, and machine learning offers a low-cost and general method for performance segregation and can complement existing qualitative clinical assessments. Copyright © 2018 Elsevier Ltd. All rights reserved.
A novel unsupervised spike sorting algorithm for intracranial EEG.
Yadav, R; Shah, A K; Loeb, J A; Swamy, M N S; Agarwal, R
2011-01-01
This paper presents a novel, unsupervised spike classification algorithm for intracranial EEG. The method combines template matching and principal component analysis (PCA) for building a dynamic patient-specific codebook without a priori knowledge of the spike waveforms. The problem of misclassification due to overlapping classes is resolved by identifying similar classes in the codebook using hierarchical clustering. Cluster quality is visually assessed by projecting inter- and intra-clusters onto a 3D plot. Intracranial EEG from 5 patients was utilized to optimize the algorithm. The resulting codebook retains 82.1% of the detected spikes in non-overlapping and disjoint clusters. Initial results suggest a definite role of this method for both rapid review and quantitation of interictal spikes that could enhance both clinical treatment and research studies on epileptic patients.
Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Xiaogang; Hamid, Ilyar; Duan, Haiming, E-mail: dhm@xju.edu.cn
2016-06-15
The dynamic stabilities of the icosahedral-like clusters containing up to 2200 atoms are investigated for 15 metal elements. The clusters originate from five different initial structures (icosahedron, truncated decahedron, octahedron, closed-shell fragment of an HCP structure, and non-closed-shell fragment of an HCP structure). The obtained order of the dynamic stabilities of the icosahedral-like clusters can be assigned to three groups, from stronger to weaker, according to the size ranges involved: (Zr, Al, Ti) > (Cu, Fe, Co, Ni, Mg, Ag) > (Pb, Au, Pd, Pt, Rh, Ir), which correspond to the predicted formation ability of the quasicrystals. The differences ofmore » the sequences can be explained by analyzing the parameters of the Gupta-type many-body inter-atomic potentials.« less
Danaci, Hasan Fehmi; Cetin-Atalay, Rengul; Atalay, Volkan
2018-03-26
Visualizing large-scale data produced by the high throughput experiments as a biological graph leads to better understanding and analysis. This study describes a customized force-directed layout algorithm, EClerize, for biological graphs that represent pathways in which the nodes are associated with Enzyme Commission (EC) attributes. The nodes with the same EC class numbers are treated as members of the same cluster. Positions of nodes are then determined based on both the biological similarity and the connection structure. EClerize minimizes the intra-cluster distance, that is the distance between the nodes of the same EC cluster and maximizes the inter-cluster distance, that is the distance between two distinct EC clusters. EClerize is tested on a number of biological pathways and the improvement brought in is presented with respect to the original algorithm. EClerize is available as a plug-in to cytoscape ( http://apps.cytoscape.org/apps/eclerize ).
Concept design and cluster control of advanced space connectable intelligent microsatellite
NASA Astrophysics Data System (ADS)
Wang, Xiaohui; Li, Shuang; She, Yuchen
2017-12-01
In this note, a new type of advanced space connectable intelligent microsatellite is presented to extend the range of potential application of microsatellite and improve the efficiency of cooperation. First, the overall concept of the micro satellite cluster is described, which is characterized by autonomously connecting with each other and being able to realize relative rotation through the external interfaces. Second, the multi-satellite autonomous assembly algorithm and control algorithm of the cluster motion are developed to make the cluster system combine into a variety of configurations in order to achieve different types of functionality. Finally, the design of the satellite cluster system is proposed, and the possible applications are discussed.
VizieR Online Data Catalog: Nine new open clusters within 500pc from the Sun (Roser+, 2016)
NASA Astrophysics Data System (ADS)
Roser, S.; Schilbach, E.; Goldman, B.
2017-03-01
We used URAT1 (Zacharias et al., 2015, Cat. I/329) to improve the Tycho-2 proper motions and to test what proper motions, which are more precise than those of Tycho-2 (Hog et al., 2000, Cat. I/259), can do for open cluster studies. URAT1 contains 228 million objects down to about R=18.5 mag, north of about -20° declination. For the bulk of the Tycho-2 stars, URAT1 gives positions at a mean epoch around 2013.5 and an accuracy level of about 20mas per co-ordinate. We cross-matched URAT1 with Tycho-2 (the original data set tyc2.dat from CDS), and obtained new proper motions via a least-squares adjustment as described, for example in PPMXL (Roeser et al., 2010, Cat. I/317). To avoid formally ultra-precise astrometry for a small number of stars, we chose a 10mas floor for the precision of a URAT1 position. The newly detected clusterings are located in the solar neighbourhood at distances below 500pc from the Sun. The candidates RSG1 to RSG8 are very probably genuine physical groups. Membership and astrophysical parameters could be determined sufficiently well. Nevertheless, accurate parallaxes of at least several reliable cluster stars could improve the quality of parameter determination. A definite age cannot be derived for RSG9; this critically depends on the secure membership status of the two brightest stars. Table 1 summarises the astrophysical parameters of the newly found objects. (1 data file).
Cross, Russell; Olivieri, Laura; O'Brien, Kendall; Kellman, Peter; Xue, Hui; Hansen, Michael
2016-02-25
Traditional cine imaging for cardiac functional assessment requires breath-holding, which can be problematic in some situations. Free-breathing techniques have relied on multiple averages or real-time imaging, producing images that can be spatially and/or temporally blurred. To overcome this, methods have been developed to acquire real-time images over multiple cardiac cycles, which are subsequently motion corrected and reformatted to yield a single image series displaying one cardiac cycle with high temporal and spatial resolution. Application of these algorithms has required significant additional reconstruction time. The use of distributed computing was recently proposed as a way to improve clinical workflow with such algorithms. In this study, we have deployed a distributed computing version of motion corrected re-binning reconstruction for free-breathing evaluation of cardiac function. Twenty five patients and 25 volunteers underwent cardiovascular magnetic resonance (CMR) for evaluation of left ventricular end-systolic volume (ESV), end-diastolic volume (EDV), and end-diastolic mass. Measurements using motion corrected re-binning were compared to those using breath-held SSFP and to free-breathing SSFP with multiple averages, and were performed by two independent observers. Pearson correlation coefficients and Bland-Altman plots tested agreement across techniques. Concordance correlation coefficient and Bland-Altman analysis tested inter-observer variability. Total scan plus reconstruction times were tested for significant differences using paired t-test. Measured volumes and mass obtained by motion corrected re-binning and by averaged free-breathing SSFP compared favorably to those obtained by breath-held SSFP (r = 0.9863/0.9813 for EDV, 0.9550/0.9685 for ESV, 0.9952/0.9771 for mass). Inter-observer variability was good with concordance correlation coefficients between observers across all acquisition types suggesting substantial agreement. Both motion corrected re-binning and averaged free-breathing SSFP acquisition and reconstruction times were shorter than breath-held SSFP techniques (p < 0.0001). On average, motion corrected re-binning required 3 min less than breath-held SSFP imaging, a 37% reduction in acquisition and reconstruction time. The motion corrected re-binning image reconstruction technique provides robust cardiac imaging that can be used for quantification that compares favorably to breath-held SSFP as well as multiple average free-breathing SSFP, but can be obtained in a fraction of the time when using cloud-based distributed computing reconstruction.
Electric dipole moments of nanosolvated acid molecules in water clusters.
Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V
2015-01-30
The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.
NASA Astrophysics Data System (ADS)
Cheng, Lan; Wang, Fan; Stanton, John F.; Gauss, Jürgen
2018-01-01
A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects using the SFX2C-1e scheme extends the applicability of the perturbative treatment of SOC to molecules that contain heavy elements. The contributions from relaxation of the coupled-cluster amplitudes are shown to be relatively small; significant contributions from correlating the inner-core orbitals are observed in calculations involving third-row and heavier elements. The calculation of term energies for the low-lying electronic states of the PtH radical, which serves to exemplify heavy transition-metal containing systems, further demonstrates the quality that can be achieved with the pragmatic approach presented here.
Revealing the cluster of slow transients behind a large slow slip event.
Frank, William B; Rousset, Baptiste; Lasserre, Cécile; Campillo, Michel
2018-05-01
Capable of reaching similar magnitudes to large megathrust earthquakes [ M w (moment magnitude) > 7], slow slip events play a major role in accommodating tectonic motion on plate boundaries through predominantly aseismic rupture. We demonstrate here that large slow slip events are a cluster of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the M w 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement, as recorded by Global Positioning System, suggests a 6-month duration, the motion in the direction of tectonic release only sporadically occurs over 55 days, and its surface signature is attenuated by rapid relocking of the plate interface. Our proposed description of slow slip as a cluster of slow transients forces us to re-evaluate our understanding of the physics and scaling of slow earthquakes.
Membership determination of open clusters based on a spectral clustering method
NASA Astrophysics Data System (ADS)
Gao, Xin-Hua
2018-06-01
We present a spectral clustering (SC) method aimed at segregating reliable members of open clusters in multi-dimensional space. The SC method is a non-parametric clustering technique that performs cluster division using eigenvectors of the similarity matrix; no prior knowledge of the clusters is required. This method is more flexible in dealing with multi-dimensional data compared to other methods of membership determination. We use this method to segregate the cluster members of five open clusters (Hyades, Coma Ber, Pleiades, Praesepe, and NGC 188) in five-dimensional space; fairly clean cluster members are obtained. We find that the SC method can capture a small number of cluster members (weak signal) from a large number of field stars (heavy noise). Based on these cluster members, we compute the mean proper motions and distances for the Hyades, Coma Ber, Pleiades, and Praesepe clusters, and our results are in general quite consistent with the results derived by other authors. The test results indicate that the SC method is highly suitable for segregating cluster members of open clusters based on high-precision multi-dimensional astrometric data such as Gaia data.
NASA Astrophysics Data System (ADS)
Kuroda, Koji; Maskawa, Jun-ichi; Murai, Joshin
2013-08-01
Empirical studies of the high frequency data in stock markets show that the time series of trade signs or signed volumes has a long memory property. In this paper, we present a discrete time stochastic process for polymer model which describes trader's trading strategy, and show that a scale limit of the process converges to superposition of fractional Brownian motions with Hurst exponents and Brownian motion, provided that the index γ of the time scale about the trader's investment strategy coincides with the index δ of the interaction range in the discrete time process. The main tool for the investigation is the method of cluster expansion developed in the mathematical study of statistical mechanics.
New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55
NASA Astrophysics Data System (ADS)
Lohr, M. E.; Negueruela, I.; Tabernero, H. M.; Clark, J. S.; Lewis, F.; Roche, P.
2018-05-01
As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3^{+1.0}_{-0.8} kpc and an age of 44^{+9}_{-8} Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63^{+12}_{-11} Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales.
Spatiotemporal multistage consensus clustering in molecular dynamics studies of large proteins.
Kenn, Michael; Ribarics, Reiner; Ilieva, Nevena; Cibena, Michael; Karch, Rudolf; Schreiner, Wolfgang
2016-04-26
The aim of this work is to find semi-rigid domains within large proteins as reference structures for fitting molecular dynamics trajectories. We propose an algorithm, multistage consensus clustering, MCC, based on minimum variation of distances between pairs of Cα-atoms as target function. The whole dataset (trajectory) is split into sub-segments. For a given sub-segment, spatial clustering is repeatedly started from different random seeds, and we adopt the specific spatial clustering with minimum target function: the process described so far is stage 1 of MCC. Then, in stage 2, the results of spatial clustering are consolidated, to arrive at domains stable over the whole dataset. We found that MCC is robust regarding the choice of parameters and yields relevant information on functional domains of the major histocompatibility complex (MHC) studied in this paper: the α-helices and β-floor of the protein (MHC) proved to be most flexible and did not contribute to clusters of significant size. Three alleles of the MHC, each in complex with ABCD3 peptide and LC13 T-cell receptor (TCR), yielded different patterns of motion. Those alleles causing immunological allo-reactions showed distinct correlations of motion between parts of the peptide, the binding cleft and the complementary determining regions (CDR)-loops of the TCR. Multistage consensus clustering reflected functional differences between MHC alleles and yields a methodological basis to increase sensitivity of functional analyses of bio-molecules. Due to the generality of approach, MCC is prone to lend itself as a potent tool also for the analysis of other kinds of big data.
Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E
2014-08-01
Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.
Activity-induced clustering in model dumbbell swimmers: The role of hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E.
2014-08-01
Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.
Proper Motions and Structural Parameters of the Galactic Globular Cluster M71
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadelano, M.; Dalessandro, E.; Ferraro, F. R.
2017-02-20
By exploiting two ACS/ HST data sets separated by a temporal baseline of ∼7 years, we have determined the relative stellar proper motions (PMs; providing membership) and the absolute PM of the Galactic globular cluster M71. The absolute PM has been used to reconstruct the cluster orbit within a Galactic, three-component, axisymmetric potential. M71 turns out to be in a low-latitude disk-like orbit inside the Galactic disk, further supporting the scenario in which it lost a significant fraction of its initial mass. Since large differential reddening is known to affect this system, we took advantage of near-infrared, ground-based observations tomore » re-determine the cluster center and density profile from direct star counts. The new structural parameters turn out to be significantly different from the ones quoted in the literature. In particular, M71 has a core and a half-mass radii almost 50% larger than previously thought. Finally, we estimate that the initial mass of M71 was likely one order of magnitude larger than its current value, thus helping to solve the discrepancy with the observed number of X-ray sources.« less
Moberg, Viktor; Mottalib, M Abdul; Sauer, Désirée; Poplavskaya, Yulia; Craig, Donald C; Colbran, Stephen B; Deeming, Antony J; Nordlander, Ebbe
2008-05-14
Phosphine derivatives of alkylidyne tricobalt carbonyl clusters have been tested as catalysts/catalyst precursors in intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. A number of new phosphine derivatives of the tricobalt alkylidyne clusters [Co3(micro3-CR)(CO)9] (R = H, CO2Et) were prepared and characterised. The clusters [Co3(micro3-CR)(CO)9-x(PR'3)x] (PR'3 = achiral or chiral monodentate phosphine, x = 1-3) and [Co3(micro3-CR)(CO)7)(P-P)] (P-P = chiral diphosphine; 1,1'- and 1,2-structural isomers) were assayed as catalysts for intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. The phosphine-substituted tricobalt clusters proved to be viable catalysts/catalyst precursors that gave moderate to very good product yields (up to approximately 90%), but the enantiomeric excesses were too low for the clusters to be of practical use in the asymmetric reactions.
Constrained motion estimation-based error resilient coding for HEVC
NASA Astrophysics Data System (ADS)
Guo, Weihan; Zhang, Yongfei; Li, Bo
2018-04-01
Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.
Artificial intelligence: Collective behaviors of synthetic micromachines
NASA Astrophysics Data System (ADS)
Duan, Wentao
Synthetic nano- and micromotors function through the conversion of chemical free energy or forms of energy into mechanical motion. Ever since the first reports, such motors have been the subject of growing interest. In addition to motility in response to gradients, these motors interact with each other, resulting in emergent collective behavior like schooling, exclusion, and predator-prey. However, most of these systems only exhibit a single type of collective behavior in response to a certain stimuli. The research projects in the disseratation aim at designing synthetic micromotors that can exhibit transition between various collective behaviors in response to different stimuli, as well as quantitative understanding on the pairwise interaction and propulsion mechanism of such motors. Chapter 1 offers an overview on development of synthetic micromachines. Interactions and collective behaviors of micromotors are also summarized and included. Chapter 2 presents a silver orthophosphate microparticle system that exhibits collective behaviors. Transition between two collective patterns, clustering and dispersion, can be triggered by shift in chemical equilibrium upon the addition or removal of ammonia, in response to UV light, or under two orthogonal stimuli (UV and acoustic field) and powering mechanisms. The transitions can be explained by the self-diffusiophoresis mechanism resulting from either ionic or neutral solute gradients. Potential applications of the reported system in logic gates, microscale pumping, and hierarchical assembly have been demonstrated. Chapter 3 introduces a self-powered oscillatory micromotor system in which active colloids form clusters whose size changes periodically. The system consists of an aqueous suspension of silver orthophosphate particles under UV radiation, in the presence of a mixture of glucose and hydrogen peroxide. The colloid particles first attract with each other to form clusters. After a lag time of around 5min, chemical oscillation initiates, and triggers periodic change of the associated self-diffusiophoretic effects as well as interactions between particles. As a result, dispersion and clustering of particles take place alternatively, and sizes of colloidal clusters vary periodically together with local colloid concentration, formulating a namely "colloidal clock". In the system, oscillation can propagate from individual clusters to nearby clusters, and there can exist more than one oscillation frequencies in one system, possibly due to different local particle concentrations or cluster size. Chapter 4 quantitatively investigates the influence of pairwise interaction between motors on their diffusional behaviors by analyzing motion of light-powered silver chloride particles. Powered by UV light, nano/micrometer-sized silver chloride (AgCl) particles exhibit autonomous movement and form "schools" in aqueous solution. Motion of these AgCl particles are tracked and analyzed. AgCl particles exhibit ballistic motion at short time intervals that transition to enhanced diffusive motion as the time interval is increased. The onset of this transition was found to occur more quickly for particles with more neighbors. If the active particles became "trapped" in a formed "school", the diffusive behavior further changes to subdiffusion. The correlation between these transitions and the number of neighboring particles was verified by simulation, and confirms the influence of pairwise interaction between motors. Chapter 5 aims at quantitative understanding on the self-diffusiophoresis propulsion mechanism through numerical simulation with COMSOL Multiphysics. A self-powered micropump based on ion-exchange is chosen as the experimental model system. Weakly acidicform ion-exchange resin can function as self-powered micropumps in aqueous solution, manipulating fluid flow at vicinity and transporting inert tracer colloids. Pumping direction in the system can be dynamically altered in response to pH change: lower pH leads to outward pumping, and higer pH results in inward particle motion. A COMSOL Multiphysics model is built with different boundary conditions and parameters, in accordance with the experimental system. The reasonable agreement between experimental and simulation results confirms self-diffusiophoresis as the powering mechanism. By varing parameters, the model also suggests possible routes to tune the performance of the micropump. COMSOL simulations on micropumps that are based on density-driven mechanism are also included.
Nanoscale Materials and Architectures for Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grulke, Eric A.; Sunkara, Mahendra K.
2011-05-25
The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells,more » solar fuels, and thermionic energy conversion.« less
Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz
2010-11-01
Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.
The Globular Cluster NGC 6402 (M14). II. Variable Stars
NASA Astrophysics Data System (ADS)
Contreras Peña, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A.
2018-03-01
We present time-series BVI photometry for the Galactic globular cluster NGC 6402 (M14). The data consist of ∼137 images per filter, obtained using the 0.9 and 1.0 m SMARTS telescopes at the Cerro Tololo Inter-American Observatory. The images were obtained during two observing runs in 2006–2007. The image-subtraction package ISIS, along with DAOPHOT II/ALLFRAME, was used to perform crowded-field photometry and search for variable stars. We identified 130 variables, eight of which are new discoveries. The variable star population is comprised of 56 ab-type RR Lyrae stars, 54 c-type RR Lyrae, 6 type II Cepheids, 1 W UMa star, 1 detached eclipsing binary, and 12 long-period variables. We provide Fourier decomposition parameters for the RR Lyrae, and discuss the physical parameters and photometric metallicity derived therefrom. The M14 distance modulus is also discussed, based on different approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive < {P}ab > =0.589 {{d}}{{a}}{{y}}{{s}}. This, together with the position of the RR Lyrae stars of both Bailey types in the period–amplitude diagram, suggests an Oosterhoff-intermediate classification for the cluster. Such an intermediate Oosterhoff type is much more commonly found in nearby extragalactic systems, and we critically discuss several other possible indications that may point to an extragalactic origin for this cluster. Based on observations obtained with the 0.9 m and 1 m telescopes at the Cerro Tololo Inter-American Observatory, Chile, operated by the SMARTS consortium.
Berenguer, Roberto; Pastor-Juan, María Del Rosario; Canales-Vázquez, Jesús; Castro-García, Miguel; Villas, María Victoria; Legorburo, Francisco Mansilla; Sabater, Sebastià
2018-04-24
Purpose To identify the reproducible and nonredundant radiomics features (RFs) for computed tomography (CT). Materials and Methods Two phantoms were used to test RF reproducibility by using test-retest analysis, by changing the CT acquisition parameters (hereafter, intra-CT analysis), and by comparing five different scanners with the same CT parameters (hereafter, inter-CT analysis). Reproducible RFs were selected by using the concordance correlation coefficient (as a measure of the agreement between variables) and the coefficient of variation (defined as the ratio of the standard deviation to the mean). Redundant features were grouped by using hierarchical cluster analysis. Results A total of 177 RFs including intensity, shape, and texture features were evaluated. The test-retest analysis showed that 91% (161 of 177) of the RFs were reproducible according to concordance correlation coefficient. Reproducibility of intra-CT RFs, based on coefficient of variation, ranged from 89.3% (151 of 177) to 43.1% (76 of 177) where the pitch factor and the reconstruction kernel were modified, respectively. Reproducibility of inter-CT RFs, based on coefficient of variation, also showed large material differences, from 85.3% (151 of 177; wood) to only 15.8% (28 of 177; polyurethane). Ten clusters were identified after the hierarchical cluster analysis and one RF per cluster was chosen as representative. Conclusion Many RFs were redundant and nonreproducible. If all the CT parameters are fixed except field of view, tube voltage, and milliamperage, then the information provided by the analyzed RFs can be summarized in only 10 RFs (each representing a cluster) because of redundancy. © RSNA, 2018 Online supplemental material is available for this article.
66. Photographic copy of historic photo, April 18, 1929 (original ...
66. Photographic copy of historic photo, April 18, 1929 (original print filed in Record Group 115, National Archives, Washington, D.C.). OWYHEE DAM GASOLINE INTER-URBAN CAR USED FOR CARRYING MAIL AND PASSENGERS ON OWYHEE RAILROAD. RIGHT: COMMUNITY HALL AND MOTION PICTURE THEATRE. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Domain-wall motion at an ultrahigh speed driven by spin-orbit torque in synthetic antiferromagnets.
Yu, Ziyang; Zhang, Yue; Zhang, Zhenhua; Cheng, Ming; Lu, Zhihong; Yang, Xiaofei; Shi, Jing; Xiong, Rui
2018-04-27
In this article, we present our numerical investigation about the spin-orbit-torque induced domain-wall (DW) motion in a synthetic antiferromagnetic multilayer nanotrack. This nanotrack was composed by two ferromagnetic (FM) layers with a RKKY inter-layer antiferromagnetic (AFM) exchange coupling. The velocity of DW was well manipulated by varying parameters including inter-layer exchange constant, the Dzyaloshinskii-Moriya interaction (DMI) strength, the current density and the magnetic anisotropy. The DW velocity was found to be strictly related to the orientation of the moments in the two FM layers. When the interlayer exchange constant or the DMI constant were larger than a critical value, there was a large angle between the moments in one FM layer and that in the other one under the current, and the DW was driven to move at an ultrahigh speed (around 10 000 m s -1 ). However, when the DMI or the AFM exchange coupling was weaker than the critical value, the moments in one FM layer were parallel to that in the other one under the current, and the velocity was significantly reduced.
Cömertpay, G; Baloch, F S; Derya, M; Andeden, E E; Alsaleh, A; Sürek, H; Özkan, H
2016-02-19
Effective breeding programs based on genetic diversity are needed to broaden the genetic basis of rice (Oryza sativa L.) in Turkey. In this study, 81 commercial varieties from seven countries were studied in order to estimate the genomic relationships among them using nine inter-primer binding site (iPBS)-retrotransposon and 17 simple-sequence repeat (SSR) markers. A total of 59 alleles for the SSR markers and 96 bands for the iPBS-retrotransposon markers were detected, with an average of 3.47 and 10.6 per locus, respectively. Each of the varieties could be unequivocally identified by the SSR and iPBS-retrotransposon profiles. The iPBS-retrotransposon- and SSR-based clustering were identical and closely mirrored each other, with a significantly high correlation (r = 0.73). A neighbor-joining cluster based on the combined SSR and iPBS-retrotransposon data divided the rice varieties into three clusters. The population structure was determined using the STRUCTURE software, and three populations (K = 3) were identified among the varieties studied, showing that the diversity harbored by Turkish rice varieties is low. The results indicate that iPBS-retrotransposon markers are a very powerful technique to determine the genetic diversity of rice varieties.
Cui, G F; Wu, L F; Wang, X N; Jia, W J; Duan, Q; Ma, L L; Jiang, Y L; Wang, J H
2014-07-29
Inter-simple sequence repeat (ISSR) markers were used to discriminate 62 lily cultivars of 5 hybrid series. Eight ISSR primers generated 104 bands in total, which all showed 100% polymorphism, and an average of 13 bands were amplified by each primer. Two software packages, POPGENE 1.32 and NTSYSpc 2.1, were used to analyze the data matrix. Our results showed that the observed number of alleles (NA), effective number of alleles (NE), Nei's genetic diversity (H), and Shannon's information index (I) were 1.9630, 1.4179, 0.2606, and 0.4080, respectively. The highest genetic similarity (0.9601) was observed between the Oriental x Trumpet and Oriental lilies, which indicated that the two hybrids had a close genetic relationship. An unweighted pair-group method with arithmetic means dendrogram showed that the 62 lily cultivars clustered into two discrete groups. The first group included the Oriental and OT cultivars, while the Asiatic, LA, and Longiflorum lilies were placed in the second cluster. The distribution of individuals in the principal component analysis was consistent with the clustering of the dendrogram. Fingerprints of all lily cultivars built from 8 primers could be separated completely. This study confirmed the effect and efficiency of ISSR identification in lily cultivars.
Bugge, Anna; Tarp, Jakob; Østergaard, Lars; Domazet, Sidsel Louise; Andersen, Lars Bo; Froberg, Karsten
2014-09-18
The aim of the study; LCoMotion - Learning, Cognition and Motion was to develop, document, and evaluate a multi-component physical activity (PA) intervention in public schools in Denmark. The primary outcome was cognitive function. Secondary outcomes were academic skills, body composition, aerobic fitness and PA. The primary aim of the present paper was to describe the rationale, design and methods of the LCoMotion study. LCoMotion was designed as a cluster-randomized controlled study. Fourteen schools from all five regions in Denmark participated. All students from 6th and 7th grades were invited to participate (n = 869) and consent was obtained for 87% (n = 759). Baseline measurements were obtained in November/December 2013 and follow-up measurements in May/June 2014. The intervention lasted five months and consisted of a "package" of three main components: PA during academic lessons, PA during recess and PA homework. Furthermore a cycling campaign was conducted during the intervention period. Intervention schools should endeavor to ensure that students were physically active for at least 60 min every school day. Cognitive function was measured by a modified Eriksen flanker task and academic skills by a custom made mathematics test. PA was objectively measured by accelerometers (ActiGraph, GT3X and GT3X+) and aerobic fitness assessed by an intermittent shuttle-run test (the Andersen intermittent running test). Furthermore, compliance with the intervention was assessed by short message service (SMS)-tracking and questionnaires were delivered to students, parents and teachers. LCoMotion has ability to provide new insights on the effectiveness of a multicomponent intervention on cognitive function and academic skills in 6th and 7th grade students. Clinicaltrials.gov: NCT02012881 (10/10/2013).
InterProScan 5: genome-scale protein function classification
Jones, Philip; Binns, David; Chang, Hsin-Yu; Fraser, Matthew; Li, Weizhong; McAnulla, Craig; McWilliam, Hamish; Maslen, John; Mitchell, Alex; Nuka, Gift; Pesseat, Sebastien; Quinn, Antony F.; Sangrador-Vegas, Amaia; Scheremetjew, Maxim; Yong, Siew-Yit; Lopez, Rodrigo; Hunter, Sarah
2014-01-01
Motivation: Robust large-scale sequence analysis is a major challenge in modern genomic science, where biologists are frequently trying to characterize many millions of sequences. Here, we describe a new Java-based architecture for the widely used protein function prediction software package InterProScan. Developments include improvements and additions to the outputs of the software and the complete reimplementation of the software framework, resulting in a flexible and stable system that is able to use both multiprocessor machines and/or conventional clusters to achieve scalable distributed data analysis. InterProScan is freely available for download from the EMBl-EBI FTP site and the open source code is hosted at Google Code. Availability and implementation: InterProScan is distributed via FTP at ftp://ftp.ebi.ac.uk/pub/software/unix/iprscan/5/ and the source code is available from http://code.google.com/p/interproscan/. Contact: http://www.ebi.ac.uk/support or interhelp@ebi.ac.uk or mitchell@ebi.ac.uk PMID:24451626
A Lagrangian description of motion in Northern California coastal transition filaments
NASA Astrophysics Data System (ADS)
Paduan, Jeffrey D.; Niiler, Pearn P.
1990-10-01
Lagrangian drifters deployed during May 1987 as part of the Coastal Transition Zone experiment were used to examine the motion in cold-water features seen in satellite AVHRR imagery. The drifters were drogued at 15 m depth and had temperature sensors at 0 m, 12 m, and 18 m. Drogue positions were obtained via service ARGOS at an average of 8 times per day. A cluster of nine drifters was deployed on May 18 near the base of a cold-water feature off Pt. Reyes. Drifter trajectories confirm the presence of strong (> 50 cm s-1) currents along the axis of the feature. Six of the drifters moved northward following a cyclonic circulation pattern between the Pt. Reyes jet and another feature originating near Pt. Arena. The remaining three drifters, together with three more deployed on May 20, moved offshore in the positive vorticity portion of the Reyes jet. Cluster analysis of the northern tracks indicates large convergence (˜0.5f;), but because relative vorticity during the same few-day period is found to be constant (˜-0.2f), a simple vorticity balance does not emerge. This is attributed to insufficient resolution of divergence of the water parcel by the small number in the cluster. Drifters reside on the negative vorticity side of the jet while the flow is upwind but on the positive vorticity side while the flow is downwind. Such behavior is consistent with the convergence or divergence patterns expected when along-jet winds blow over such strong and narrow ocean currents producing significant advection of relative vorticity. Temperature-salinity data from CTD surveys during the experiment show how the jets that were revealed in both the imagery and the drifter trajectories were advecting different water masses. In the nearshore area where the drifters were deployed a column of cold and salty water had upwelled about 80 m since leaving the source region far offshore. Within the offshore extension of the jets as traced by the drifters, this same water is found about 20 m deeper than it is in the nearshore area. We thus observe that cold filaments seen in AVHRR transport upwelled water offshore through the coastal transition zone. That water subducts in the offshore extension of the filaments. Analysis of the high-frequency motion from a cluster of five drifters in the Reyes jet shows a multitude of mixing scales. For periods shorter than a day, the cluster shows coherent oscillations of tidal/inertial period whose motions lead to excursions on the order of 2 to 4 km. This suggests that motions on these scales are organized and not random or turbulent. Conversely, motions at scales of 1 km and less appear turbulent. Over longer time periods (several days), the particles exchange places over the cross-jet scale of the feature (10 to 20 km).
Johansson, Adam; Balter, James; Cao, Yue
2018-03-01
Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P < 0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.
Alarcón, Francisco; Valeriani, Chantal; Pagonabarraga, Ignacio
2017-01-25
In order to assess the effect of hydrodynamics in the assembly of active attractive spheres, we simulate a semi-dilute suspension of attractive self-propelled spherical particles in a quasi-two dimensional geometry comparing the case with and without hydrodynamics interactions. To start with, independent of the presence of hydrodynamics, we observe that depending on the ratio between attraction and propulsion, particles either coarsen or aggregate forming finite-size clusters. Focusing on the clustering regime, we characterize two different cluster parameters, i.e. their morphology and orientational order, and compare the case when active particles behave either as pushers or pullers (always in the regime where inter-particle attractions compete with self-propulsion). Studying cluster phases for squirmers with respect to those obtained for active Brownian disks (indicated as ABPs), we have shown that hydrodynamics alone can sustain a cluster phase of active swimmers (pullers), while ABPs form cluster phases due to the competition between attraction and self-propulsion. The structural properties of the cluster phases of squirmers and ABPs are similar, although squirmers show sensitivity to active stresses. Active Brownian disks resemble weakly pusher squirmer suspensions in terms of cluster size distribution, structure of the radius of gyration on the cluster size and degree of cluster polarity.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks.
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-13
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs' demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks †
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-01
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs’ demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays. PMID:28098750
Structures of 38-atom gold-platinum nanoalloy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng
2015-04-24
Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atomsmore » are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.« less
Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime
NASA Astrophysics Data System (ADS)
Caré, Bertrand R.; Soula, Hédi A.
2013-01-01
Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.
Khadilkar, Leenesh; MacDermid, Joy C; Sinden, Kathryn E; Jenkyn, Thomas R; Birmingham, Trevor B; Athwal, George S
2014-01-01
Video-based movement analysis software (Dartfish) has potential for clinical applications for understanding shoulder motion if functional measures can be reliably obtained. The primary purpose of this study was to describe the functional range of motion (ROM) of the shoulder used to perform a subset of functional tasks. A second purpose was to assess the reliability of functional ROM measurements obtained by different raters using Dartfish software. Ten healthy participants, mean age 29 ± 5 years, were videotaped while performing five tasks selected from the Disabilities of the Arm, Shoulder and Hand (DASH). Video cameras and markers were used to obtain video images suitable for analysis in Dartfish software. Three repetitions of each task were performed. Shoulder movements from all three repetitions were analyzed using Dartfish software. The tracking tool of the Dartfish software was used to obtain shoulder joint angles and arcs of motion. Test-retest and inter-rater reliability of the measurements were evaluated using intraclass correlation coefficients (ICC). Maximum (coronal plane) abduction (118° ± 16°) and (sagittal plane) flexion (111° ± 15°) was observed during 'washing one's hair;' maximum extension (-68° ± 9°) was identified during 'washing one's own back.' Minimum shoulder ROM was observed during 'opening a tight jar' (33° ± 13° abduction and 13° ± 19° flexion). Test-retest reliability (ICC = 0.45 to 0.94) suggests high inter-individual task variability, and inter-rater reliability (ICC = 0.68 to 1.00) showed moderate to excellent agreement. KEY FINDINGS INCLUDE: 1) functional shoulder ROM identified in this study compared to similar studies; 2) healthy individuals require less than full ROM when performing five common ADL tasks 3) high participant variability was observed during performance of the five ADL tasks; and 4) Dartfish software provides a clinically relevant tool to analyze shoulder function.
Tryggestad, Erik; Christian, Matthew; Ford, Eric; Kut, Carmen; Le, Yi; Sanguineti, Giuseppe; Song, Danny Y; Kleinberg, Lawrence
2011-05-01
To determine whether frameless thermoplastic mask-based immobilization is adequate for image-guided cranial radiosurgery. Cone-beam CT localization data from patients with intracranial tumors were studied using daily pre- and posttreatment scans. The systems studied were (1) Type-S IMRT (head only) mask (Civco) with head cushion; (2) Uni-Frame mask (Civco) with head cushion, coupled with a BlueBag body immobilizer (Medical Intelligence); (3) Type-S head and shoulder mask with head and shoulder cushion (Civco); (4) same as previous, coupled with a mouthpiece. The comparative metrics were translational shift magnitude and average rotation angle; systematic inter-, random inter-, and random intrafraction positioning error was computed. For strategies 1-4, respectively, the analysis for interfraction variability included data from 20, 9, 81, and 11 patients, whereas that for intrafraction variability included a subset of 7, 9, 16, and 8 patients. The results were compared for statistical significance using an analysis of variance test. Immobilization system 4 provided the best overall accuracy and stability. The mean interfraction translational shifts (± SD) were 2.3 (± 1.4), 2.2 (± 1.1), 2.7 (± 1.5), and 2.1 (± 1.0) mm whereas intrafraction motion was 1.1 (± 1.2), 1.1 (± 1.1), 0.7 (± 0.9), and 0.7 (± 0.8) mm for devices 1-4, respectively. No significant correlation between intrafraction motion and treatment time was evident, although intrafraction motion was not purely random. We find that all frameless thermoplastic mask systems studied are viable solutions for image-guided intracranial radiosurgery. With daily pretreatment corrections, symmetric PTV margins of 1 mm would likely be adequate if ideal radiation planning and targeting systems were available. Copyright © 2011 Elsevier Inc. All rights reserved.
Search and characterization of T-type planetary mass candidates in the σ Orionis cluster
NASA Astrophysics Data System (ADS)
Peña Ramírez, K.; Zapatero Osorio, M. R.; Béjar, V. J. S.; Rebolo, R.; Bihain, G.
2011-08-01
Context. The proper characterization of the least massive population of the young σ Orionis star cluster is required to understand the form of the cluster mass function and its impact on our comprehension of the substellar formation processes. S Ori 70 (T5.5 ± 1) and 73, two T-type cluster member candidates, are likely to have masses between 3 and 7 MJup if their age is 3 Myr. It awaits confirmation whether S Ori 73 has a methane atmosphere. Aims: We aim to: i) confirm the presence of methane absorption in S Ori 73 by performing methane imaging; ii) study S Ori 70 and 73 cluster membership via photometric colors and accurate proper motion analysis; and iii) perform a new search to identify additional T-type σ Orionis member candidates. Methods: We obtained HAWK-I (VLT) J, H, and CH4off photometry of an area of 119.15 arcmin2 in σ Orionis down to Jcomp = 21.7 and Hcomp = 21 mag. S Ori 70 and 73 are contained in the explored area. Near-infrared data were complemented with optical photometry using images acquired with OSIRIS (GTC) and VISTA as part of the VISTA Orion survey. Color-magnitude and color-color diagrams were constructed to characterize S Ori 70 and 73 photometrically, and to identify new objects with methane absorption and masses below 7 MJup. We derived proper motions by comparing of the new HAWK-I and VISTA images with published near-infrared data taken 3.4 - 7.9 yr ago. Results.S Ori 73 has a red H - CH4off color indicating methane absorption in the H-band and a spectral type of T4 ± 1. S Ori 70 displays a redder methane color than S Ori 73 in agreement with its latter spectral classification. Our proper motion measurements (μα cos δ = 26.7 ± 6.1, μδ = 21.3 ± 6.1 mas yr-1 for S Ori 70, and μα cos δ = 46.7 ± 4.9, μδ = -6.3 ± 4.7 mas yr-1 for S Ori 73) are larger than the motion of σ Orionis, rendering S Ori 70 and 73 cluster membership uncertain. From our survey, we identified one new photometric candidate with J = 21.69 ± 0.12 mag and methane color consistent with spectral type ≥ T8. Conclusions.S Ori 73 has colors similar to those of T3-T5 field dwarfs, which in addition to its high proper motion suggests that it is probably a field dwarf located at 170-200 pc. The origin of S Ori 70 remains unclear: it can be a field, foreground mid- to late-T free-floating dwarf with peculiar colors, or an orphan planet ejected through strong dynamical interactions from σ Orionis or from a nearby star-forming region in Orion.
Interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser
NASA Astrophysics Data System (ADS)
Wang, Da-Shuai; Wu, Ge; Gao, Bo; Tian, Xiao-Jian
2013-01-01
We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the inter-cavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.
Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI
NASA Astrophysics Data System (ADS)
Rougon, Nicolas F.; Petitjean, Caroline; Preteux, Francoise J.
2004-05-01
We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.
Atmospheric gas dynamics in the Perseus cluster observed with Hitomi
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Canning, Rebecca E. A.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashi, Tasuku; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Shota; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Keigo; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Wang, Qian H. S.; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen
2018-03-01
Extending the earlier measurements reported in Hitomi collaboration (2016, Nature, 535, 117), we examine the atmospheric gas motions within the central 100 kpc of the Perseus cluster using observations obtained with the Hitomi satellite. After correcting for the point spread function of the telescope and using optically thin emission lines, we find that the line-of-sight velocity dispersion of the hot gas is remarkably low and mostly uniform. The velocity dispersion reaches a maxima of approximately 200 km s-1 toward the central active galactic nucleus (AGN) and toward the AGN inflated northwestern "ghost" bubble. Elsewhere within the observed region, the velocity dispersion appears constant around 100 km s-1. We also detect a velocity gradient with a 100 km s-1 amplitude across the cluster core, consistent with large-scale sloshing of the core gas. If the observed gas motions are isotropic, the kinetic pressure support is less than 10% of the thermal pressure support in the cluster core. The well-resolved, optically thin emission lines have Gaussian shapes, indicating that the turbulent driving scale is likely below 100 kpc, which is consistent with the size of the AGN jet inflated bubbles. We also report the first measurement of the ion temperature in the intracluster medium, which we find to be consistent with the electron temperature. In addition, we present a new measurement of the redshift of the brightest cluster galaxy NGC 1275.
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...
2017-01-17
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sándor, Csand; Libál, Andras; Reichhardt, Charles
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Kontaxis, C; Bol, G H; Stemkens, B; Glitzner, M; Prins, F M; Kerkmeijer, L G W; Lagendijk, J J W; Raaymakers, B W
2017-08-21
The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system's capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.
Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?
Merad, Manelle; de Montalivet, Étienne; Touillet, Amélie; Martinet, Noël; Roby-Brami, Agnès; Jarrassé, Nathanaël
2018-01-01
Most transhumeral amputees report that their prosthetic device lacks functionality, citing the control strategy as a major limitation. Indeed, they are required to control several degrees of freedom with muscle groups primarily used for elbow actuation. As a result, most of them choose to have a one-degree-of-freedom myoelectric hand for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered elbow. Unlike healthy upper limb movements, the prosthetic elbow joint angle, adjusted prior to the motion, is not involved in the overall upper limb movements, causing the rest of the body to compensate for the lack of mobility of the prosthesis. A promising solution to improve upper limb prosthesis control exploits the residual limb mobility: like in healthy movements, shoulder and prosthetic elbow motions are coupled using inter-joint coordination models. The present study aims to test this approach. A transhumeral amputated individual used a prosthesis with a residual limb motion-driven elbow to point at targets. The prosthetic elbow motion was derived from IMU-based shoulder measurements and a generic model of inter-joint coordinations built from healthy individuals data. For comparison, the participant also performed the task while the prosthetic elbow was implemented with his own myoelectric control strategy. The results show that although the transhumeral amputated participant achieved the pointing task with a better precision when the elbow was myoelectrically-controlled, he had to develop large compensatory trunk movements. Automatic elbow control reduced trunk displacements, and enabled a more natural body behavior with synchronous shoulder and elbow motions. However, due to socket impairments, the residual limb amplitudes were not as large as those of healthy shoulder movements. Therefore, this work also investigates if a control strategy whereby prosthetic joints are automatized according to healthy individuals' coordination models can lead to an intuitive and natural prosthetic control. PMID:29456499
NASA Astrophysics Data System (ADS)
Kontaxis, C.; Bol, G. H.; Stemkens, B.; Glitzner, M.; Prins, F. M.; Kerkmeijer, L. G. W.; Lagendijk, J. J. W.; Raaymakers, B. W.
2017-09-01
The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system’s capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.
Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C
2016-10-01
To test the performance of HDA in characterizing left ventricular (LV) function and regional myocardial motion patterns in the context of cardiomyopathy based on cine cardiovascular magnetic resonance (CMR). Following the approval of the institutional review board (IRB), standard cine images of 45 subjects, including 15 healthy volunteers, 15 patients with hypertrophic cardiomyopathy (HCM) and 15 patients with dilated cardiomyopathy (DCM) were retrospectively analyzed using HDA. The variations of LV ejection fraction (LVEF), LV mass (LVM), and regional myocardial motion indices, including radial (Drr), circumferential (Dcc) displacement, radial (Vrr) and circumferential (Vcc) velocity, radial (Err), circumferential (Ecc) and shear (Ess) strain and radial (SRr) and circumferential (SRc) strain rate, were calculated and compared among subject groups. Inter-study reproducibility of HDA-derived myocardial motion indices were tested on 15 volunteers by using intra-class correlation coefficient (ICC) and coefficient of variation (CoV). HDA identified significant differences in cardiac function and motion indices between subject groups. DCM patients had significantly lower LVEF (33.5±9.65%), LVM (105.88±21.93g), peak Drr (0.29±0.11cm), Vrr-sys (2.14±0.72cm/s), Err (0.17±0.08), Ecc (-0.08±0.03), SRr-sys (0.91±0.44s(-1)) and SRc-sys (-0.64±0.27s(-1)) compared to the other two groups. HCM patients demonstrated increased LVM (171.69±34.19) and lower peak Vcc-dia (0.78±0.30cm/s) than other subjects. Good inter-study reproducibility was found for all HDA-derived myocardial indices in healthy volunteers (ICC=0.664-0.942, CoV=15.1%-37.1%). Without the need for operator interaction, HDA is a reproducible method for the automated characterization of global and regional LV function in the context of cardiomyopathy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Energy efficient strategy for throughput improvement in wireless sensor networks.
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-23
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature.
Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-01
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature. PMID:25625902
Calculating the Motion and Direction of Flux Transfer Events with Cluster
NASA Technical Reports Server (NTRS)
Collado-Vega, Y. M.; Sibeck, D. G.
2012-01-01
For many years now, the interactions of the solar wind plasma with the Earth's magnetosphere has been one of the most important problems for Space Physics. It is very important that we understand these processes because the high-energy particles and also the solar wind energy that cross the magneto sphere could be responsible for serious damage to our technological systems. The solar wind is inherently a dynamic medium, and the particles interaction with the Earth's magnetosphere can be steady or unsteady. Unsteady interaction include transient processes like bursty magnetic reconnection. Flux Transfer Events (FTEs) are magnetopause signatures that usually occur during transient times of reconnection. They exhibit bipolar signatures in the normal component of the magnetic field. We use multi-point timing analysis to determine the orientation and motion of ux transfer events (FTEs) detected by the four Cluster spacecraft on the high-latitude dayside and flank magnetopause during 2002 and 2003. During these years, the distances between the Cluster spacecraft were greater than 1000 km, providing the tetrahedral configuration needed to select events and determine velocities. Each velocity and location will be examined in detail and compared to the velocities and locations determined by the predictions of the component and antiparallel reconnection models for event formation, orientation, motion, and acceleration for a wide range of spacecraft locations and solar wind conditions.
Skorpil, M; Brynolfsson, P; Engström, M
2017-06-01
Multiparametric magnetic resonance imaging (MRI) and PI-RADS (Prostate Imaging - Reporting and Data System) has become the standard to determine a probability score for a lesion being a clinically significant prostate cancer. T2-weighted and diffusion-weighted imaging (DWI) are essential in PI-RADS, depending partly on visual assessment of signal intensity, while dynamic-contrast enhanced imaging is less important. To decrease inter-rater variability and further standardize image evaluation, complementary objective measures are in need. We here demonstrate a sequence enabling simultaneous quantification of apparent diffusion coefficient (ADC) and T2-relaxation, as well as calculation of the perfusion fraction f from low b-value intravoxel incoherent motion data. Expandable wait pulses were added to a FOCUS DW SE-EPI sequence, allowing the effective echo time to change at run time. To calculate both ADC and f, b-values 200s/mm 2 and 600s/mm 2 were chosen, and for T2-estimation 6 echo times between 64.9ms and 114.9ms were used. Three patients with prostate cancer were examined and all had significantly decreased ADC and T2-values, while f was significantly increased in 2 of 3 tumors. T2 maps obtained in phantom measurements and in a healthy volunteer were compared to T2 maps from a SE sequence with consecutive scans, showing good agreement. In addition, a motion correction procedure was implemented to reduce the effects of prostate motion, which improved T2-estimation. This sequence could potentially enable more objective tumor grading, and decrease the inter-rater variability in the PI-RADS classification. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Qingcui; Bao, Ming; Chen, Lihan
2014-01-01
Previous studies using auditory sequences with rapid repetition of tones revealed that spatiotemporal cues and spectral cues are important cues used to fuse or segregate sound streams. However, the perceptual grouping was partially driven by the cognitive processing of the periodicity cues of the long sequence. Here, we investigate whether perceptual groupings (spatiotemporal grouping vs. frequency grouping) could also be applicable to short auditory sequences, where auditory perceptual organization is mainly subserved by lower levels of perceptual processing. To find the answer to that question, we conducted two experiments using an auditory Ternus display. The display was composed of three speakers (A, B and C), with each speaker consecutively emitting one sound consisting of two frames (AB and BC). Experiment 1 manipulated both spatial and temporal factors. We implemented three 'within-frame intervals' (WFIs, or intervals between A and B, and between B and C), seven 'inter-frame intervals' (IFIs, or intervals between AB and BC) and two different speaker layouts (inter-distance of speakers: near or far). Experiment 2 manipulated the differentiations of frequencies between two auditory frames, in addition to the spatiotemporal cues as in Experiment 1. Listeners were required to make two alternative forced choices (2AFC) to report the perception of a given Ternus display: element motion (auditory apparent motion from sound A to B to C) or group motion (auditory apparent motion from sound 'AB' to 'BC'). The results indicate that the perceptual grouping of short auditory sequences (materialized by the perceptual decisions of the auditory Ternus display) was modulated by temporal and spectral cues, with the latter contributing more to segregating auditory events. Spatial layout plays a less role in perceptual organization. These results could be accounted for by the 'peripheral channeling' theory.
Pulley, Simon; Foster, Ian; Collins, Adrian L
2017-06-01
The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis based classification methods have the potential to reduce composite uncertainty significantly in future source tracing studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prather, H; Harris-Hayes, M; Hunt, D; Steger-May, K; Mathew, V; Clohisy, JC
2012-01-01
Objective The objectives of this study are the following: 1) report passive hip ROM in asymptomatic young adults, 2) report the intra-tester and inter-tester reliability of hip ROM measurements among testers of multiple disciplines, 3) report the results of provocative hip tests and tester agreement. Design descriptive epidemiology study Setting tertiary university Participants Twenty-eight young adult volunteers without musculoskeletal symptoms, history of disorder or surgery involving the lumbar spine or lower extremities were enrolled and completed the study. Methods Asymptomatic young adult volunteers completed questionnaires and were examined by two blinded examiners during a single session. The testers were physical therapists and physicians. Hip range of motion and provocative tests were completed by both examiners on each hip. Main Outcome Measurements Inter and intra-rater reliability for ROM and agreement for provocative tests was determined. Results Twenty-eight asymptomatic adults with mean age 31 years old (range 18–51 years) and mean modified Harris Hip Score of 99.5 ± 1.5 and UCLA Activity score of 8.8 ± 1.2 completed the study. Intra-rater agreement was excellent for all hip range of motion measurements, with intraclass correlation coefficients (ICCs) ranging from 0.76 to 0.97 with similar agreement if the examiner was a physical therapist or a physician. Excellent inter-rater reliability was found for hip flexion ICC 0.87 (95% CI 0.78 to 0.92), supine internal rotation ICC 0.75 (95% CI 0.60 to 0.84) and prone internal rotation ICC 0.79 (95% CI 0.66 to 0.87). The least reliable measurements were supine hip abduction (ICC 0.34) and supine external rotation (ICC 0.18). Agreement between examiners ranged from 96–100% for provocative hip tests which included the hip impingement, resisted straight leg raise, FABER/Patrick’s and log roll tests. Conclusions Specific hip ROM measures show excellent inter-rater reliability and provocative hip tests show good agreement among multiple examiners and medical disciplines. Further studies are needed to assess the utilization of these measurements and tests as a part of a hip screening examination to assess for young adults at risk intra-articular hip disorders prior to the onset of degenerative changes. PMID:20970757
Sharing is Caring: The Role of Actin/Myosin-V in Synaptic Vesicle Transport between Synapses in vivo
NASA Astrophysics Data System (ADS)
Gramlich, Michael
Inter-synaptic vesicle sharing is an important but not well understood process of pre-synaptic function. Further, the molecular mechanisms that underlie this inter-synaptic exchange are not well known, and whether this inter-synaptic vesicle sharing is regulated by neural activity remains largely unexplored. I address these questions by studying CA1/CA3 Hippocampal neurons at the single synaptic vesicle level. Using high-resolution tracking of individual vesicles that have recently undergone endocytosis, I observe long-distance axonal transport of synaptic vesicles is partly mediated by the actin network. Further, the actin-dependent transport is predominantly carried out by Myosin-V. I develop a correlated-motion analysis to characterize the mechanics of how actin and Myosin-V affect vesicle transport. Lastly, I also observe that vesicle exit rates from the synapse to the axon and long-distance vesicle transport are both regulated by activity, but Myosin-V does not appear to mediate the activity dependence. These observations highlight the roles of the axonal actin network, and Myosin-V in particular, in regulating inter-synaptic vesicle exchange.
Ketterhagen, William R
2011-05-16
Film coating uniformity is an important quality attribute of pharmaceutical tablets. Large variability in coating thickness can limit process efficiency or cause significant variation in the amount or delivery rate of the active pharmaceutical ingredient to the patient. In this work, the discrete element method (DEM) is used to computationally model the motion and orientation of several novel pharmaceutical tablet shapes in a film coating pan in order to predict coating uniformity. The model predictions are first confirmed with experimental data obtained from an equivalent film coating pan using a machine vision system. The model is then applied to predict coating uniformity for various tablet shapes, pan speeds, and pan loadings. The relative effects of these parameters on both inter- and intra-tablet film coating uniformity are assessed. The DEM results show intra-tablet coating uniformity is strongly influenced by tablet shape, and the extent of this can be predicted by a measure of the tablet shape. The tablet shape is shown to have little effect on the mixing of tablets, and thus, the inter-tablet coating uniformity. The pan rotation speed and pan loading are shown to have a small effect on intra-tablet coating uniformity but a more significant impact on inter-tablet uniformity. These results demonstrate the usefulness of modeling in guiding drug product development decisions such as selection of tablet shape and process operating conditions. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woelfelschneider, J; Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE; Seregni, M
2015-06-15
Purpose: Tumor tracking is an advanced technique to treat intra-fractionally moving tumors. The aim of this study is to validate a surrogate-driven model based on four-dimensional computed tomography (4DCT) that is able to predict CT volumes corresponding to arbitrary respiratory states. Further, the comparison of three different driving surrogates is evaluated. Methods: This study is based on multiple 4DCTs of two patients treated for bronchial carcinoma and metastasis. Analyses for 18 additional patients are currently ongoing. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the modelmore » considers for inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. In this evaluation, three different approaches were used to extract the motion surrogate: for each 4DCT phase, the 3D thoraco-abdominal surface motion, the body volume and the anterior-posterior motion of a virtual single external marker defined on the sternum were investigated. The estimated volumes resulting from the model were compared to the ground-truth clinical 4DCTs using absolute HU differences in the lung volume and landmarks localized using the Scale Invariant Feature Transform (SIFT). Results: The results show absolute HU differences between estimated and ground-truth images with median values limited to 55 HU and inter-quartile ranges (IQR) lower than 100 HU. Median 3D distances between about 1500 matching landmarks are below 2 mm for 3D surface motion and body volume methods. The single marker surrogates Result in increased median distances up to 0.6 mm. Analyses for the extended database incl. 20 patients are currently in progress. Conclusion: The results depend mainly on the image quality of the initial 4DCTs and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT phases, however uncertainties decrease for three-dimensional approaches. This work was funded in parts by the German Research Council (DFG) - KFO 214/2.« less
NASA Astrophysics Data System (ADS)
Figueroa-Soto, A.; Zuñiga, R.; Marquez-Ramirez, V.; Monterrubio-Velasco, M.
2017-12-01
. The inter-event time characteristics of seismic aftershock sequences can provide important information to discern stages in the aftershock generation process. In order to investigate whether separate dynamic stages can be identified, (1) aftershock series after selected earthquake mainshocks, which took place at similar tectonic regimes were analyzed. To this end we selected two well-defined aftershock sequences from New Zealand and one aftershock sequence for Mexico, we (2) analyzed the fractal behavior of the logarithm of inter-event times (also called waiting times) of aftershocks by means of Holdeŕs exponent, and (3) their magnitude and spatial location based on a methodology proposed by Zaliapin and Ben Zion [2011] which accounts for the clustering properties of the sequence. In general, more than two coherent process stages can be identified following the main rupture, evidencing a type of "cascade" process which precludes implying a single generalized power law even though the temporal rate and average fractal character appear to be unique (as in a single Omorís p value). We found that aftershock processes indeed show multi-fractal characteristics, which may be related to different stages in the process of diffusion, as seen in the temporary-spatial distribution of aftershocks. Our method provides a way of defining the onset of the return to seismic background activity and the end of the main aftershock sequence.
Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders
2013-01-01
Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree competition studies, in which tree spatial patterning is typically not taken into account. Our findings highlight the importance of forest structure – particularly the spatial arrangement of trees – in regulating inter-tree competition and growth in structurally diverse forests, and they provide insight into the causes and consequences of heterogeneity in this old-growth system.
Haworth, Joshua L.; Kyvelidou, Anastasia; Fisher, Wayne; Stergiou, Nicholas
2015-01-01
Recognition of biological motion is pervasive in early child development. Further, viewing the movement behavior of others is a primary component of a child’s acquisition of complex, robust movement repertoires, through imitation and real-time coordinated action. We theorize that inherent to biological movements are particular qualities of mathematical chaos and complexity. We further posit that this character affords the rich and complex inter-dynamics throughout early motor development. Specifically, we explored whether children’s preference for biological motion may be related to an affinity for mathematical chaos. Cross recurrence quantification analysis (cRQA) was used to investigate the coordination of gaze and posture with various temporal structures (periodic, chaotic, and aperiodic) of the motion of an oscillating visual stimulus. Children appear to competently perceive and respond to chaotic motion, both in rate (cRQA-percent determinism) and duration (cRQA-maxline) of coordination. We interpret this to indicate that children not only recognize chaotic motion structures, but also have a preference for coordination with them. Further, stratification of our sample (by age) uncovers the suggestion that this preference may become refined with age. PMID:25852600
Mandibular open-close motion in children with anterior crossbite occlusion.
Tokutomi, Junko; Hayasaki, Haruaki; Saitoh, Issei; Iwase, Yoko; Fukami, Atsushi; Yamada, Chaiki; Takemoto, Yoshihiko; Inada, Emi; Yamasaki, Youichi
2010-01-01
Anterior crossbite (ACB) malocclusions are frequent; however, its characteristic functional features have not been fully described. The purpose of this study was to determine the characteristics of habitual mandibular open-close motion in children with ACB of their primary dentition. Two groups of children were selected for study; 17 with ACB (eight boys and nine girls; four years one month to seven years one month) and 19 with normal occlusion (eight boys and 11 girls; four years six months to six years seven months). The motion was recorded using an optoelectronic analysis system with six degrees-of-freedom. Mandibular incisor and condylar motion were analyzed by measuring their three-dimensional ranges and trajectories. Also estimated incisor and condylar pathways of the two groups were compared. Patients with ACB opened wider with more anterior-posterior condylar translation and more mandibular rotation. Although between-subject (inter-individual) variance of all variables in children with ACB was larger, they had less within-subject variance at the condyles. These results indicate that open-close mandibular motion in children with ACB is completely different from that of children with normal occlusion. The different motions might be related to morphological differences between the two groups.
Using the structure of social networks to map inter-agency relationships in public health services.
West, Robert M; House, Allan O; Keen, Justin; Ward, Vicky L
2015-11-01
This article investigates network governance in the context of health and wellbeing services in England, focussing on relationships between managers in a range of services. There are three aims, namely to investigate, (i) the configurations of networks, (ii) the stability of network relationships over time and, (iii) the balance between formal and informal ties that underpin inter-agency relationships. Latent position cluster network models were used to characterise relationships. Managers were asked two questions, both designed to characterise informal relationships. The resulting networks differed substantially from one another in membership. Managers described networks of relationships that spanned organisational boundaries, and that changed substantially over time. The findings suggest that inter-agency co-ordination depends more on informal than on formal relationships. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bio-inspired motion detection in an FPGA-based smart camera module.
Köhler, T; Röchter, F; Lindemann, J P; Möller, R
2009-03-01
Flying insects, despite their relatively coarse vision and tiny nervous system, are capable of carrying out elegant and fast aerial manoeuvres. Studies of the fly visual system have shown that this is accomplished by the integration of signals from a large number of elementary motion detectors (EMDs) in just a few global flow detector cells. We developed an FPGA-based smart camera module with more than 10,000 single EMDs, which is closely modelled after insect motion-detection circuits with respect to overall architecture, resolution and inter-receptor spacing. Input to the EMD array is provided by a CMOS camera with a high frame rate. Designed as an adaptable solution for different engineering applications and as a testbed for biological models, the EMD detector type and parameters such as the EMD time constants, the motion-detection directions and the angle between correlated receptors are reconfigurable online. This allows a flexible and simultaneous detection of complex motion fields such as translation, rotation and looming, such that various tasks, e.g., obstacle avoidance, height/distance control or speed regulation can be performed by the same compact device.
Molecular View of CO2 Capture by Polyethylenimine: Role of Structural and Dynamical Heterogeneity.
Sharma, Pragati; Chakrabarty, Suman; Roy, Sudip; Kumar, Rajnish
2018-05-01
The molecular thermodynamics and kinetics of CO 2 sorption in Polyethylenimine (PEI) melt have been investigated systematically using GCMC and MD simulations. We elucidate presence of significant structural and dynamic heterogeneity associated with the overall absorption process. CO 2 adsorption in a PEI membrane shows a distinct two-stage process of a rapid CO 2 adsorption at the interfaces (hundreds of picoseconds) followed by a significantly slower diffusion limited release toward the interior bulk regions of PEI melt (hundreds of nanoseconds to microseconds). The spatial heterogeneity of local structural features of the PEI chains lead to significantly heterogeneous absorption characterized by clustering and trapping of CO 2 molecules that then lead to subdiffusive motion of CO 2 . In the complex interplay of interaction and entropy, the latter emerges out to be the major determining factor with significantly higher solubility of CO 2 near the interfaces despite having lower density of binding amine groups. Regions having higher free-volume (entropically favorable) viz. interfaces, pores and loops demonstrate higher CO 2 capture ability. Various local structural features of PEI conformations, for example, inter- and intrachain loops, pores of different radii, and di- or tricoordinated pores are explored for their effects on the varying CO 2 adsorption abilities.
Active Brownian particles escaping a channel in single file.
Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo
2015-02-01
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
Active Brownian particles escaping a channel in single file
NASA Astrophysics Data System (ADS)
Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo
2015-02-01
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
Noelting, J; Bharucha, A E; Lake, D S; Manduca, A; Fletcher, J G; Riederer, S J; Joseph Melton, L; Zinsmeister, A R
2012-10-01
Inter-observer variability limits the reproducibility of pelvic floor motion measured by magnetic resonance imaging (MRI). Our aim was to develop a semi-automated program measuring pelvic floor motion in a reproducible and refined manner. Pelvic floor anatomy and motion during voluntary contraction (squeeze) and rectal evacuation were assessed by MRI in 64 women with fecal incontinence (FI) and 64 age-matched controls. A radiologist measured anorectal angles and anorectal junction motion. A semi-automated program did the same and also dissected anorectal motion into perpendicular vectors representing the puborectalis and other pelvic floor muscles, assessed the pubococcygeal angle, and evaluated pelvic rotation. Manual and semi-automated measurements of anorectal junction motion (r = 0.70; P < 0.0001) during squeeze and evacuation were correlated, as were anorectal angles at rest, squeeze, and evacuation; angle change during squeeze or evacuation was less so. Semi-automated measurements of anorectal and pelvic bony motion were also reproducible within subjects. During squeeze, puborectalis injury was associated (P ≤ 0.01) with smaller puborectalis but not pelvic floor motion vectors, reflecting impaired puborectalis function. The pubococcygeal angle, reflecting posterior pelvic floor motion, was smaller during squeeze and larger during evacuation. However, pubococcygeal angles and pelvic rotation during squeeze and evacuation did not differ significantly between FI and controls. This semi-automated program provides a reproducible, efficient, and refined analysis of pelvic floor motion by MRI. Puborectalis injury is independently associated with impaired motion of puborectalis, not other pelvic floor muscles in controls and women with FI. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Li, J. Z.; Laubach, S. E.; Gale, J. F. W.; Marrett, R. A.
2018-03-01
The Upper Cretaceous Frontier Formation is a naturally fractured gas-producing sandstone in Wyoming. Regionally, random and statistically more clustered than random patterns exist in the same upper to lower shoreface depositional facies. East-west- and north-south-striking regional fractures sampled using image logs and cores from three horizontal wells exhibit clustered patterns, whereas data collected from east-west-striking fractures in outcrop have patterns that are indistinguishable from random. Image log data analyzed with the correlation count method shows clusters ∼35 m wide and spaced ∼50 to 90 m apart as well as clusters up to 12 m wide with periodic inter-cluster spacings. A hierarchy of cluster sizes exists; organization within clusters is likely fractal. These rocks have markedly different structural and burial histories, so regional differences in degree of clustering are unsurprising. Clustered patterns correspond to fractures having core quartz deposition contemporaneous with fracture opening, circumstances that some models suggest might affect spacing patterns by interfering with fracture growth. Our results show that quantifying and identifying patterns as statistically more or less clustered than random delineates differences in fracture patterns that are not otherwise apparent but that may influence gas and water production, and therefore may be economically important.
Inter-individual variability in response to non-invasive brain stimulation paradigms.
López-Alonso, Virginia; Cheeran, Binith; Río-Rodríguez, Dan; Fernández-Del-Olmo, Miguel
2014-01-01
Non-invasive Brain Stimulation (NIBS) paradigms are unique in their ability to safely modulate cortical plasticity for experimental or therapeutic applications. However, increasingly, there is concern regarding inter-individual variability in the efficacy and reliability of these paradigms. Inter-individual variability in response to NIBS paradigms would be better explained if a multimodal distribution was assumed. In three different sessions for each subject (n = 56), we studied the Paired Associative Stimulation (PAS25), Anodal transcranial DC stimulation (AtDCS) and intermittent theta burst stimulation (iTBS) protocols. We applied cluster analysis to detect distinct patterns of response between individuals. Furthermore, we tested whether baseline TMS measures (such as short intracortical inhibition (SICI), resting motor threshold (RMT)) or factors such as time of day could predict each individual's response pattern. All three paradigms show similar efficacy over the first hour post stimulation--there is no significant effect on excitatory or inhibitory circuits for the whole sample, and AtDCS fares no better than iTBS or PAS25. Cluster analysis reveals a bimodal response pattern--but only 39%, 45% and 43% of subjects responded as expected to PAS25, AtDCS, and iTBS respectively. Pre-stimulation SICI accounted for 10% of the variability in response to PAS25, but no other baseline measures were predictive of response. Finally, we report implications for sample size calculation and the remarkable effect of sample enrichment. The implications of the high rate of 'dose-failure' for experimental and therapeutic applications of NIBS lead us to conclude that addressing inter-individual variability is a key area of concern for the field. Copyright © 2014 Elsevier Inc. All rights reserved.
The Effects of Sleep on the Performance of Marines Following Exposure to Waterborne Motion
2013-03-01
based on each participants’ grouping or cluster. As participants obtain less sleep, their marksmanship scores are expected to decrease. Obstacle... ON THE PERFORMANCE OF MARINES FOLLOWING EXPOSURE TO WATERBORNE MOTION by Cynthia Gelpi March 2013 Thesis Advisor: Nita Lewis...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE The Effects of Sleep on the Performance of Marines Following Exposure to
Euler-Vector Clustering of GPS Velocities Defines Microplate Geometry in Southwest Japan
NASA Astrophysics Data System (ADS)
Savage, J. C.
2018-02-01
I have used Euler-vector clustering to assign 469 GEONET stations in southwest Japan to k clusters (k = 2, 3,..., 9) so that, for any k, the velocities of stations within each cluster are most consistent with rigid-block motion on a sphere. That is, I attempt to explain the raw (i.e., uncorrected for strain accumulation), 1996-2006 velocities of those 469 Global Positioning System stations by rigid motion of k clusters on the surface of a spherical Earth. Because block geometry is maintained as strain accumulates, Euler-vector clustering may better approximate the block geometry than the values of the associated Euler vectors. The microplate solution for each k is constructed by merging contiguous clusters that have closely similar Euler vectors. The best solution consists of three microplates arranged along the Nankaido Trough-Ryukyu Trench between the Amurian and Philippine Sea Plates. One of these microplates, the South Kyushu Microplate (an extension of the Ryukyu forearc into the southeast corner of Kyushu), had previously been identified from paleomagnetic rotations. Relative to ITRF2000 the three microplates rotate at different rates about neighboring poles located close to the northwest corner of Shikoku. The microplate model is identical to that proposed in the block model of Wallace et al. (2009, https://doi.org/10.1130/G2522A.1) except in southernmost Kyushu. On Shikoku and Honshu, but not Kyushu, the microplate model is consistent with that proposed in the block models of Nishimura and Hashimoto (2006, https://doi.org/10.1016/j.tecto.2006.04.017) and Loveless and Meade (2010, https://doi.org/10.1029/2008JB006248) without the low-slip-rate boundaries proposed in the latter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazade, Pierre-André; Berezovska, Ganna; Meuwly, Markus, E-mail: m.meuwly@unibas.ch
2015-01-14
The ligand migration network for O{sub 2}–diffusion in truncated Hemoglobin N is analyzed based on three different clustering schemes. For coordinate-based clustering, the conventional k–means and the kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion map (LSDMap) method is a collective-variable-based approach. It is found that all three methods agree well in their geometrical definition of the most important docking site, and all experimentally known docking sites are recovered by all three methods. Also, for most of the states, their population coincides quite favourably, whereas the kinetics of and between the states differs. One of themore » major differences between k–means and MCL clustering on the one hand and LSDMap on the other is that the latter finds one large primary cluster containing the Xe1a, IS1, and ENT states. This is related to the fact that the motion within the state occurs on similar time scales, whereas structurally the state is found to be quite diverse. In agreement with previous explicit atomistic simulations, the Xe3 pocket is found to be a highly dynamical site which points to its potential role as a hub in the network. This is also highlighted in the fact that LSDMap cannot identify this state. First passage time distributions from MCL clusterings using a one- (ligand-position) and two-dimensional (ligand-position and protein-structure) descriptor suggest that ligand- and protein-motions are coupled. The benefits and drawbacks of the three methods are discussed in a comparative fashion and highlight that depending on the questions at hand the best-performing method for a particular data set may differ.« less
Cazade, Pierre-André; Zheng, Wenwei; Prada-Gracia, Diego; Berezovska, Ganna; Rao, Francesco; Clementi, Cecilia; Meuwly, Markus
2015-01-14
The ligand migration network for O2-diffusion in truncated Hemoglobin N is analyzed based on three different clustering schemes. For coordinate-based clustering, the conventional k-means and the kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion map (LSDMap) method is a collective-variable-based approach. It is found that all three methods agree well in their geometrical definition of the most important docking site, and all experimentally known docking sites are recovered by all three methods. Also, for most of the states, their population coincides quite favourably, whereas the kinetics of and between the states differs. One of the major differences between k-means and MCL clustering on the one hand and LSDMap on the other is that the latter finds one large primary cluster containing the Xe1a, IS1, and ENT states. This is related to the fact that the motion within the state occurs on similar time scales, whereas structurally the state is found to be quite diverse. In agreement with previous explicit atomistic simulations, the Xe3 pocket is found to be a highly dynamical site which points to its potential role as a hub in the network. This is also highlighted in the fact that LSDMap cannot identify this state. First passage time distributions from MCL clusterings using a one- (ligand-position) and two-dimensional (ligand-position and protein-structure) descriptor suggest that ligand- and protein-motions are coupled. The benefits and drawbacks of the three methods are discussed in a comparative fashion and highlight that depending on the questions at hand the best-performing method for a particular data set may differ.
A research on motion design for APP's loading pages based on time perception
NASA Astrophysics Data System (ADS)
Cao, Huai; Hu, Xiaoyun
2018-04-01
Due to restrictions caused by objective reasons like network bandwidth, hardware performance and etc., waiting is still an inevitable phenomenon that appears in our using mobile-terminal products. Relevant researches show that users' feelings in a waiting scenario can affect their evaluations on the whole product and services the product provides. With the development of user experience and inter-facial design subjects, the role of motion effect in the interface design has attracted more and more scholars' attention. In the current studies, the research theory of motion design in a waiting scenario is imperfect. This article will use the basic theory and experimental research methods of cognitive psychology to explore the motion design's impact on user's time perception when users are waiting for loading APP pages. Firstly, the article analyzes the factors that affect waiting experience of loading APP pages based on the theory of time perception, and then discusses motion design's impact on the level of time-perception when loading pages and its design strategy. Moreover, by the operation analysis of existing loading motion designs, the article classifies the existing loading motions and designs an experiment to verify the impact of different types of motions on the user's time perception. The result shows that the waiting time perception of mobile's terminals' APPs is related to the loading motion types, the combination type of loading motions can effectively shorten the waiting time perception as it scores a higher mean value in the length of time perception.
Quantitative evaluation of toothbrush and arm-joint motion during tooth brushing.
Inada, Emi; Saitoh, Issei; Yu, Yong; Tomiyama, Daisuke; Murakami, Daisuke; Takemoto, Yoshihiko; Morizono, Ken; Iwasaki, Tomonori; Iwase, Yoko; Yamasaki, Youichi
2015-07-01
It is very difficult for dental professionals to objectively assess tooth brushing skill of patients, because an obvious index to assess the brushing motion of patients has not been established. The purpose of this study was to quantitatively evaluate toothbrush and arm-joint motion during tooth brushing. Tooth brushing motion, performed by dental hygienists for 15 s, was captured using a motion-capture system that continuously calculates the three-dimensional coordinates of object's motion relative to the floor. The dental hygienists performed the tooth brushing on the buccal and palatal sides of their right and left upper molars. The frequencies and power spectra of toothbrush motion and joint angles of the shoulder, elbow, and wrist were calculated and analyzed statistically. The frequency of toothbrush motion was higher on the left side (both buccal and palatal areas) than on the right side. There were no significant differences among joint angle frequencies within each brushing area. The inter- and intra-individual variations of the power spectrum of the elbow flexion angle when brushing were smaller than for any of the other angles. This study quantitatively confirmed that dental hygienists have individual distinctive rhythms during tooth brushing. All arm joints moved synchronously during brushing, and tooth brushing motion was controlled by coordinated movement of the joints. The elbow generated an individual's frequency through a stabilizing movement. The shoulder and wrist control the hand motion, and the elbow generates the cyclic rhythm during tooth brushing.
Stability analysis of motion patterns in biathlon shooting.
Baca, Arnold; Kornfeind, Philipp
2012-04-01
The aim of this study was to analyze the stability of the aiming process of elite biathlon athletes. Nine elite athletes performed four series of five shots onto the same target and onto targets next to each other in a shooting hall. A video-based system reconstructed the horizontal and vertical motion of the muzzle. The time period starting after repeating the rifle and ending with the shot was divided in 10 intervals of equal duration. Eight kinematic parameters describing the motion in these intervals were calculated. Based on the parameter values obtained a special variant of an artificial network of type SOM (self-organizing map) was trained. Similar neurons were combined to clusters. For each shot the 10 data sets describing the aiming process were then mapped to the corresponding neurons. The sequence of the related clusters in the respective succession was used as representation of the complex aiming motion. In a second processing step types of shots were identified applying a second net. A more stable pattern could be inferred for the members of the national squad compared to the biathletes classified in the next best performance level. Only small differences between the two shooting conditions could be observed. Copyright © 2010 Elsevier B.V. All rights reserved.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-09-18
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-01-01
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols. PMID:26393608
Liu, Chien-Hsiou; Chiang, Hsin-Yu; Chen, Kun-Hung
2015-01-01
Based on the high prevalence of people with problems in the wrist and hand simultaneously, it is of its importance to clarify whether hand joints exert extra motion to compensate for wrist motion while immobilized. This study aimed to measure the compensatory movement of the thumb and index finger when people perform daily activities with an immobilized wrist. Thirty healthy volunteers were recruited in this study. A wrist splint, the Jebsen-Taylor Hand Function Test, and the OptoTrak Certus motion tracking system were used. Seven inter-digit mean joint angles of the index finger and thumb were calculated. Paired sample t-test was used. (1) The compensatory motions were noted in the Metacarpophalangeal and Carpometacarpal joints of the thumb, and the proximal interphalangeal joints of the index finger; (2) The manifestation of compensatory motion was related to type of activity performed except when picking up light and heavy cans. The compensatory motions appeared while the wrist was immobilized and were found to be disadvantageous to the progression of disease. In the future, studies need to be done to understand how to select products with correct ergonomic design to enable people to reap greater benefits from wearing wrist splints.
ERIC Educational Resources Information Center
Callaway, Andrew J.; Cobb, Jon E.
2012-01-01
Where as video cameras are a reliable and established technology for the measurement of kinematic parameters, accelerometers are increasingly being employed for this type of measurement due to their ease of use, performance, and comparatively low cost. However, the majority of accelerometer-based studies involve a single channel due to the…
Automated detection of videotaped neonatal seizures based on motion segmentation methods.
Karayiannis, Nicolaos B; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M
2006-07-01
This study was aimed at the development of a seizure detection system by training neural networks using quantitative motion information extracted by motion segmentation methods from short video recordings of infants monitored for seizures. The motion of the infants' body parts was quantified by temporal motion strength signals extracted from video recordings by motion segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by direct thresholding, by clustering of the pixel velocities, and by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The computational tools and procedures developed for automated seizure detection were tested and evaluated on 240 short video segments selected and labeled by physicians from a set of video recordings of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). The experimental study described in this paper provided the basis for selecting the most effective strategy for training neural networks to detect neonatal seizures as well as the decision scheme used for interpreting the responses of the trained neural networks. Depending on the decision scheme used for interpreting the responses of the trained neural networks, the best neural networks exhibited sensitivity above 90% or specificity above 90%. The best among the motion segmentation methods developed in this study produced quantitative features that constitute a reliable basis for detecting myoclonic and focal clonic neonatal seizures. The performance targets of this phase of the project may be achieved by combining the quantitative features described in this paper with those obtained by analyzing motion trajectory signals produced by motion tracking methods. A video system based upon automated analysis potentially offers a number of advantages. Infants who are at risk for seizures could be monitored continuously using relatively inexpensive and non-invasive video techniques that supplement direct observation by nursery personnel. This would represent a major advance in seizure surveillance and offers the possibility for earlier identification of potential neurological problems and subsequent intervention.
10B+α states with chain-like structures in 14N
NASA Astrophysics Data System (ADS)
Kanada-En'yo, Yoshiko
2015-12-01
I investigate 10B+α -cluster states of 14N with a 10B+α -cluster model. Near the α -decay threshold energy, I obtain Kπ=3+ and Kπ=1+ rotational bands having 10B(3+) +α and 10B(1+) +α components, respectively. I assign the bandhead state of the Kπ=3+ band to the experimental 3+ at Ex=13.19 MeV of 14N observed in α scattering reactions by 10B and show that the calculated α -decay width is consistent with the experimental data. I discuss an α -cluster motion around the 10B cluster and show that the Kπ=3+ and Kπ=1+ rotational bands contain an enhanced component of a linear-chain 3 α configuration, in which an α cluster is localized in the longitudinal direction around the deformed 10B cluster.
NASA Astrophysics Data System (ADS)
Portegies Zwart, S. F.; Chen, H.-C.
2008-06-01
We reconstruct the initial two-body relaxation time at the half mass radius for a sample of young ⪉ 300 Myr star clusters in the Large Magellanic cloud. We achieve this by simulating star clusters with 12288 to 131072 stars using direct N-body integration. The equations of motion of all stars are calculated with high precision direct N-body simulations which include the effects of the evolution of single stars and binaries. We find that the initial relaxation times of the sample of observed clusters in the Large Magellanic Cloud ranges from about 200 Myr to about 2 Gyr. The reconstructed initial half-mass relaxation times for these clusters have a much narrower distribution than the currently observed distribution, which ranges over more than two orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenzie, E; Yang, W; Burnison, M
2014-06-15
Purpose: Patients undergoing radiotherapy (RT) for left-sided breast cancer have increased risk of coronary artery disease. Deep Inhalation Breath Hold assisted RT (DIBH-RT) is shown to increase the geometric separation of the target area and heart, reducing cardiac radiation dose. The purposes of this study are to use Cine MV portal images to determine the stability of spirometer-guided DIBH-RT and examine the dosimetric cardiopulmonary impact of this technique. Methods: Twenty consecutive patients with left-sided breast cancer were recruited to the IRB-approved study. Free-breathing (FB) and DIBH-CT's were acquired at simulation. Rigid registration of the FB-CT and DIBH-CT was performed usingmore » primarily breast tissue. Treatment plans were created for each FB-CT and DIBH-CT using identical paired tangent fields with field-in-field or electronic compensation techniques. Dosimetric evaluation included mean and maximum (Dmax) doses for the left anterior descending artery (LAD), mean heart dose, and left lung V20. Cine MV portal images were acquired for medial and lateral fields during treatment. Analysis of Cine images involved chest wall segmentation using an algorithm developed in-house. Intra- and inter-fractional chest wall motion were determined through affine registration to the first frame of each Cine. Results: Dose to each cardiac structure evaluated was significantly (p<0.001) reduced with the DIBH plans. Mean heart dose decreased from 2.9(0.9–6.6) to 1.6(0.6–5.3) Gy; mean LAD dose from 16.6(3–43.6) to 7.4(1.7–32.7) Gy; and LAD Dmax from 35.4 (6.1–53) to 18.4(2.5–51.2) Gy. No statistically significant reduction was found for the left lung V20. Average AP and SI median chest wall motion (intrafractional) was 0.1 (SD=0.9) and 0.5 (SD=1.1) mm, respectively. Average AP inter-fractional chest wall motion was 2.0 (SD=1.4) mm. Conclusion: Spirometer-based DIBH treatments of the left breast are reproducible both inter- and intra-fractionally, and provide a statistically and potentially clinically useful dosimetric advantage to cardiac structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Q; Hanna, G; Kubicek, G
2014-06-01
Purpose: To quantitatively evaluate rigid and nonrigid motion of liver tumors based on fiducial tracking in 3D by stereo imaging during CyberKnife SBRT. Methods: Twenty-five liver patients previously treated with three-fractions of SBRT were retrospectively recruited in this study. During treatment, the 3D locations of fiducials were reported by the CyberKnife system after two orthogonal kV X-ray images were taken and further validated by geometry derivations. A total of 5004 pairs of X-ray images acquired during the course of treatment for all the patients, were analyzed. For rigid motion, the rotational angles and translational shifts by aligning 3D fiducial groupsmore » in different image pairs after least-square fitting were reported. For nonrigid motion, the relative interfractional tumor shape variations were reported and correlated to the sum of inter-fiducial distances. The individual fiducial displacements were also reported after rigid corrections and without angle corrections. Results: The relative tumor volume variation indicated by the inter-fiducial distances demonstrated an increasing trend in the second (101.6±3.4%) and third fraction (101.2±5.6%) among most patients. The cause could be possibly due to radiation-induced edema. For all the patients, the translational shift was 8.1±5.7 mm, with shifts in LR, AP and SI were 2.1±2.4 mm, 2.8±2.9 mm and 6.7±5.1 mm, respectively. The greatest translation shift occurred in SI, mainly due the breathing motion of diaphragm The rotational angles were 1.1±1.7°, 1.9±2.6° and 1.6±2.2°, in roll, pitch, and yaw, respectively. The 3D fiducial displacement with rigid corrections were 0.2±0.2 mm and increased to 0.6±0.3 mm without rotational corrections. Conclusion: The fiducial locations in 3D can be precisely reconstructed from CyberKnife stereo imaging system during treatment. The fiducials provide close estimation of both rigid and nonrigid motion of .liver tumors. The reported data could be further utilized for tumor margin design and motion management in in conventional linac-based treatments.« less
Finger Interdependence: Linking the Kinetic and Kinematic Variables
Kim, Sun Wook; Shim, Jae Kun; Zatsiorsky, Vladimir M.; Latash, Mark L.
2008-01-01
We studied the dependence between voluntary motion of a finger and pressing forces produced by the tips of other fingers of the hand. Subjects moved one of the fingers (task finger) of the right hand trying to follow a cyclic, ramp-like flexion-extension template at different frequencies. The other fingers (slave fingers) were restricted from moving; their flexion forces were recorded and analyzed. Index finger motion caused the smallest force production by the slave fingers. Larger forces were produced by the neighbors of the task finger; these forces showed strong modulation over the range of motion of the task finger. The enslaved forces were higher during the flexion phase of the movement cycle as compared to the extension phase. The index of enslaving expressed in N/rad was higher when the task finger moved through the more flexed postures. The dependence of enslaving on both range and direction of task finger motion poses problems for methods of analysis of finger coordination based on an assumption of universal matrices of finger inter-dependence. PMID:18255182
Turbulence and vorticity in Galaxy clusters generated by structure formation
NASA Astrophysics Data System (ADS)
Vazza, F.; Jones, T. W.; Brüggen, M.; Brunetti, G.; Gheller, C.; Porter, D.; Ryu, D.
2017-01-01
Turbulence is a key ingredient for the evolution of the intracluster medium, whose properties can be predicted with high-resolution numerical simulations. We present initial results on the generation of solenoidal and compressive turbulence in the intracluster medium during the formation of a small-size cluster using highly resolved, non-radiative cosmological simulations, with a refined monitoring in time. In this first of a series of papers, we closely look at one simulated cluster whose formation was distinguished by a merger around z ˜ 0.3. We separate laminar gas motions, turbulence and shocks with dedicated filtering strategies and distinguish the solenoidal and compressive components of the gas flows using Hodge-Helmholtz decomposition. Solenoidal turbulence dominates the dissipation of turbulent motions (˜95 per cent) in the central cluster volume at all epochs. The dissipation via compressive modes is found to be more important (˜30 per cent of the total) only at large radii (≥0.5rvir) and close to merger events. We show that enstrophy (vorticity squared) is good proxy of solenoidal turbulence. All terms ruling the evolution of enstrophy (I.e. baroclinic, compressive, stretching and advective terms) are found to be significant, but in amounts that vary with time and location. Two important trends for the growth of enstrophy in our simulation are identified: first, enstrophy is continuously accreted into the cluster from the outside, and most of that accreted enstrophy is generated near the outer accretion shocks by baroclinic and compressive processes. Secondly, in the cluster interior vortex, stretching is dominant, although the other terms also contribute substantially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, Himadri, E-mail: hmdrpthk@gmail.com; Sasmal, Sudip, E-mail: sudipsasmal.chem@gmail.com; Vaval, Nayana
2016-08-21
The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximationsmore » in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.« less
The Absolute Proper Motion of NGC 6397 Revisited
NASA Astrophysics Data System (ADS)
Rees, Richard; Cudworth, Kyle
2018-01-01
We compare several determinations of the absolute proper motion of the Galactic globular cluster NGC 6397: (1) our own determination relative to field stars derived from scans of 38 photographic plates spanning 97 years in epoch; (2) using our proper motion membership to identify cluster stars in various catalogs in the literature (UCAC4, UCAC5, PPMXL, HSOY, Tycho-2, Hipparcos, TGAS); (3) published results from the Yale SPM Program (both tied to Hipparcos and relative to galaxies) and two from HST observations relative to galaxies. The various determinations are not in good agreement. Curiously, the Yale SPM relative to galaxies does not agree with the HST determinations, and the individual HST error ellipses are close to each other but do not overlap. The Yale SPM relative to galaxies does agree with our determination, Tycho-2, and the Yale SPM tied to Hipparcos. It is not clear which of the current determinations is most reliable; we have found evidence of systematic errors in some of them (including one of the HST determinations). This research has been partially supported by the NSF.
Spectroscopy of the Perseus Cluster
NASA Technical Reports Server (NTRS)
Jones, Christine; Mushotzky, Richard F. (Technical Monitor)
2004-01-01
We present preliminary results of a XMM-Newton 50 ks observation of the Perseus Cluster that provides an unprecedented view of the central 0.5 Mpc region. The projected gas temperature declines smoothly by a factor of 2 from a maximum value of approx. 7 keV in the outer regions to just above 3 keV at the cluster center. Over this same range, the heavy-element abundance rises slowly from 0.4 to 0.5 solar as the radius decreases from 14 ft. to 5 ft., and then it rises to a peak of almost 0.7 solar at 1&farcm;25 before declining to 0.4 at the center. Th global east-west asymmetry of the gas temperature and surface brightness distributions, approximately aligned with the chain of bright galaxies, suggests an ongoing merger, although the modest degree of the observed asymmetry certainly excludes a major merger interpretation. The chain of galaxies probably traces the filament along which accretion started some time ago and is continuing at the present time. A cold and dense (low-entropy) cluster core like Perseus is probably well "protected" against the penetration of the gas of infalling groups and poor clusters, whereas in non-cooling core clusters such as Coma and A1367, infalling subclusters can penetrate deeply into the core region. In Perseus, gas associated with infalling groups may be stripped completely at the outskirts of the main cluster and only compression waves (shocks) may reach the central regions. We argue, and show supporting simulations, that the passage of such a wave(s) can qualitatively explain the overall horseshoe shaped appearance of the gas temperature map (the hot horseshoe surrounds the colder, low-entropy core) as well as other features of the Perseus Cluster core. These simulations also show that as compression waves traverse the cluster core, they can induce oscillatory motion of the cluster gas that can generate multiple sharp "edges" on opposite sides of the central galaxy. Gas motions induced by mergers may be a natural way to explain the high frequency of "edges" seen in clusters with cooling cores.
NASA Astrophysics Data System (ADS)
Gordon, J. J.; Weiss, E.; Abayomi, O. K.; Siebers, J. V.; Dogan, N.
2011-05-01
In intensity modulated radiation therapy (IMRT) of cervical cancer, uterine motion can be larger than cervix motion, requiring a larger clinical target volume to planning target volume (CTV-to-PTV) margin around the uterine fundus. This work simulates different motion models and margins to estimate the dosimetric consequences. A virtual study used image sets from ten patients. Plans were created with uniform margins of 1 cm (PTVA) and 2.4 cm (PTVC), and a margin tapering from 2.4 cm at the fundus to 1 cm at the cervix (PTVB). Three inter-fraction motion models (MM) were simulated. In MM1, all structures moved with normally distributed rigid body translations. In MM2, CTV motion was progressively magnified as one moved superiorly from the cervix to the fundus. In MM3, both CTV and normal tissue motion were magnified as in MM2, modeling the scenario where normal tissues move into the void left by the mobile uterus. Plans were evaluated using static and percentile DVHs. For a conventional margin (PTVA), quasi-realistic uterine motion (MM3) reduces fundus dose by about 5 Gy and increases normal tissue volumes receiving 30-50 Gy by ~5%. A tapered CTV-to-PTV margin can restore fundus and CTV doses, but will increase normal tissue volumes receiving 30-50 Gy by a further ~5%.
Influence of inter-item symmetry in visual search.
Roggeveen, Alexa B; Kingstone, Alan; Enns, James T
2004-01-01
Does visual search involve a serial inspection of individual items (Feature Integration Theory) or are items grouped and segregated prior to their consideration as a possible target (Attentional Engagement Theory)? For search items defined by motion and shape there is strong support for prior grouping (Kingstone and Bischof, 1999). The present study tested for grouping based on inter-item shape symmetry. Results showed that target-distractor symmetry strongly influenced search whereas distractor-distractor symmetry influenced search more weakly. This indicates that static shapes are evaluated for similarity to one another prior to their explicit identification as 'target' or 'distractor'. Possible reasons for the unequal contributions of target-distractor and distractor-distractor relations are discussed.
Improved Robustness and Efficiency for Automatic Visual Site Monitoring
2009-09-01
the space of expected poses. To avoid having to compare each test window with the whole training corpus, he builds a template hierarchy by...directions of motion. In a second layer of clustering, it also learns how the low-level clusters co-occur with each other. An infinite mix- ture model is used...implementation. We demonstrate the utility of this detector by modeling scene-level activities with a Hierarchical
Capturing the 3D Motion of an Infalling Galaxy via Fluid Dynamics
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul E. J.; Roediger, Elke; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-01-01
The Fornax Cluster is the nearest (≤slant 20 Mpc) galaxy cluster in the southern sky. NGC 1404 is a bright elliptical galaxy falling through the intracluster medium (ICM) of the Fornax Cluster. The sharp leading edge of NGC 1404 forms a classical “cold front” that separates 0.6 keV dense interstellar medium and 1.5 keV diffuse ICM. We measure the angular pressure variation along the cold front using a very deep (670 ks) Chandra X-ray observation. We are taking the classical approach—using stagnation pressure to determine a substructure’s speed—to the next level by not only deriving a general speed but also directionality, which yields the complete velocity field as well as the distance of the substructure directly from the pressure distribution. We find a hydrodynamic model consistent with the pressure jump along NGC 1404's atmosphere measured in multiple directions. The best-fit model gives an inclination of 33° and a Mach number of 1.3 for the infall of NGC 1404, in agreement with complementary measurements of the motion of NGC 1404. Our study demonstrates the successful treatment of a highly ionized ICM as ideal fluid flow, in support of the hypothesis that magnetic pressure is not dynamically important over most of the virial region of galaxy clusters.
Hanaoka, Shouhei; Masutani, Yoshitaka; Nemoto, Mitsutaka; Nomura, Yukihiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni
2012-01-01
A method for categorizing landmark-local appearances extracted from computed tomography (CT) datasets is presented. Anatomical landmarks in the human body inevitably have inter-individual variations that cause difficulty in automatic landmark detection processes. The goal of this study is to categorize subjects (i.e., training datasets) according to local shape variations of such a landmark so that each subgroup has less shape variation and thus the machine learning of each landmark detector is much easier. The similarity between each subject pair is measured based on the non-rigid registration result between them. These similarities are used by the spectral clustering process. After the clustering, all training datasets in each cluster, as well as synthesized intermediate images calculated from all subject-pairs in the cluster, are used to train the corresponding subgroup detector. All of these trained detectors compose a detector ensemble to detect the target landmark. Evaluation with clinical CT datasets showed great improvement in the detection performance.
Generalising Ward's Method for Use with Manhattan Distances.
Strauss, Trudie; von Maltitz, Michael Johan
2017-01-01
The claim that Ward's linkage algorithm in hierarchical clustering is limited to use with Euclidean distances is investigated. In this paper, Ward's clustering algorithm is generalised to use with l1 norm or Manhattan distances. We argue that the generalisation of Ward's linkage method to incorporate Manhattan distances is theoretically sound and provide an example of where this method outperforms the method using Euclidean distances. As an application, we perform statistical analyses on languages using methods normally applied to biology and genetic classification. We aim to quantify differences in character traits between languages and use a statistical language signature based on relative bi-gram (sequence of two letters) frequencies to calculate a distance matrix between 32 Indo-European languages. We then use Ward's method of hierarchical clustering to classify the languages, using the Euclidean distance and the Manhattan distance. Results obtained from using the different distance metrics are compared to show that the Ward's algorithm characteristic of minimising intra-cluster variation and maximising inter-cluster variation is not violated when using the Manhattan metric.
Dynamical mass estimates in M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, P.J.T.; Richer, H.B.; Fahlman, G.G.
We have used the proper motion data of Cudworth Monet to make mass estimates in the globular cluster M13 by solving the spherical Jeans equation. We find a mass inside a spherical shell centered on the cluster with a radius corresponding to 390 arcsec on the sky of 5.5 or 7.6 {times} 10{sup 5} M{circle dot}, depending on the adopted cluster distance. This large dynamical mass estimate together with the observed fact that the mass function of M13 is rising steeply at the low-mass end suggest that much of the cluster mass may be in the form of low-mass starsmore » and brown dwarfs.« less
Dynamical mass estimates in M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, P.J.T.; Richer, H.B.; Fahlman, G.G.
We have used the proper motion data of Cudworth Monet to make mass estimates in the globular cluster M13 by solving the spherical Jeans equation. We find a mass inside a spherical shell centered on the cluster with a radius corresponding to 390 arcsec on the sky of 5.5 or 7.6 {times} 10{sup 5} M{circle_dot}, depending on the adopted cluster distance. This large dynamical mass estimate together with the observed fact that the mass function of M13 is rising steeply at the low-mass end suggest that much of the cluster mass may be in the form of low-mass stars andmore » brown dwarfs.« less
Naito, Kozo; Takagi, Hiroyasu; Yamada, Norimasa; Hashimoto, Shinichi; Maruyama, Takeo
2014-12-01
The shoulder internal rotation (IR) and forearm pronation (PR) are important elements for baseball pitching, however, how rapid rotations of IR and PR are produced by muscular torques and inter-segmental forces is not clear. The aim of this study is to clarify how IR and PR angular velocities are maximized, depending on muscular torque and interactive torque effects, and gain a detailed knowledge about inter-segmental interaction within a multi-joint linked chain. The throwing movements of eight collegiate baseball pitchers were recorded by a motion capture system, and induced-acceleration analysis was used to assess the respective contributions of the muscular (MUS) and interactive torques associated with gyroscopic moment (GYR), and Coriolis (COR) and centrifugal forces (CEN) to maximum angular velocities of IR (MIRV) and PR (MPRV). The results showed that the contribution of MUS account for 98.0% of MIRV, while that contribution to MPRV was indicated as negative (-48.1%). It was shown that MPRV depends primarily on the interactive torques associated with GYR and CEN, but the effects of GYR, COR and CEN on MIRV are negligible. In conclusion, rapid PR motion during pitching is created by passive-effect, and is likely a natural movement which arises from 3D throwing movement. Applying the current analysis to IR and PR motions is helpful in providing the implications for improving performance and considering conditioning methods for pitchers. Copyright © 2014 Elsevier B.V. All rights reserved.
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
Sample size determination for GEE analyses of stepped wedge cluster randomized trials.
Li, Fan; Turner, Elizabeth L; Preisser, John S
2018-06-19
In stepped wedge cluster randomized trials, intact clusters of individuals switch from control to intervention from a randomly assigned period onwards. Such trials are becoming increasingly popular in health services research. When a closed cohort is recruited from each cluster for longitudinal follow-up, proper sample size calculation should account for three distinct types of intraclass correlations: the within-period, the inter-period, and the within-individual correlations. Setting the latter two correlation parameters to be equal accommodates cross-sectional designs. We propose sample size procedures for continuous and binary responses within the framework of generalized estimating equations that employ a block exchangeable within-cluster correlation structure defined from the distinct correlation types. For continuous responses, we show that the intraclass correlations affect power only through two eigenvalues of the correlation matrix. We demonstrate that analytical power agrees well with simulated power for as few as eight clusters, when data are analyzed using bias-corrected estimating equations for the correlation parameters concurrently with a bias-corrected sandwich variance estimator. © 2018, The International Biometric Society.
Yellow supergiants in open clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, J.R.
1986-01-01
Superluminous giant stars (SLGs) have been reported in young globular clusters in the Large Magellanic Cloud (LMC). These stars appear to be in the post-asymptotic-giant-branch phase of evolution. This program was an investigation of galactic SLG candidates in open clusters, which are more like the LMC young globular clusters. These were chosen because luminosity, mass, and age determinations can be made for members since cluster distances and interstellar reddenings are known. Color magnitude diagrams were searched for candidates, using the same selection criteria as for SLGs in the LMC. Classification spectra were obtained of 115 program stars from McGraw-Hill Observatorymore » and of 68 stars from Cerro Tololo Inter-American Observatory Chile. These stars were visually classified on the MK system using spectral scans of standard stars taken at the respective observations. Published information was combined with this program's data for 83 stars in 30 clusters. Membership probabilities were assigned to these stars, and the clusters were analyzed according to age. It was seen that the intrinsically brightest supergiants are found in the youngest clusters. With increasing cluster age, the absolute luminosities attained by the supergiants decline. Also, it appears that the evolutionary tracks of luminosity class II stars are more similar to those of class I than of class III.« less
Autonomous Navigation of a Satellite Cluster
1990-12-01
satellite’s velocity are determined by the Clohessy - Wiltshire equations I (these equations will be introduced in the next section) and take the form: (8:80...transition matrix, is based upon the Clohessy - Wiltshire equations of motion. These equations describe "the relative motion of two satellites when one is in a...discovery warranted a re-examination of the solutions to the Clohessy - Wiltshire equations. If the solutions for satellite #1 and #2 are subtracted
An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.
Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei
2013-05-01
Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.
Hydrological excitation of polar motion by different variables of the GLDAS models
NASA Astrophysics Data System (ADS)
Wińska, Małgorzata; Nastula, Jolanta
Continental hydrological loading, by land water, snow, and ice, is an element that is strongly needed for a full understanding of the excitation of polar motion. In this study we compute different estimations of hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of land hydrosphere. The main aim of this study is to show the influence of different variables for example: total evapotranspiration, runoff, snowmelt, soil moisture to polar motion excitations in annual and short term scale. In our consideration we employ several realizations of the GLDAS model as: GLDAS Common Land Model (CLM), GLDAS Mosaic Model, GLDAS National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab Model (Noah), GLDAS Variable Infiltration Capacity (VIC) Model. Hydrological excitation functions of polar motion, both global and regional, are determined by using selected variables of these GLDAS realizations. First we compare a timing, spectra and phase diagrams of different regional and global HAMs with each other. Next, we estimate, the hydrological signal in geodetically observed polar motion excitation by subtracting the atmospheric -- AAM (pressure + wind) and oceanic -- OAM (bottom pressure + currents) contributions. Finally, the hydrological excitations are compared to these hydrological signal in observed polar motion excitation series. The results help us understand which variables of considered hydrological models are the most important for the polar motion excitation and how well we can close polar motion excitation budget in the seasonal and inter-annual spectral ranges.
The UKIDSS-2MASS proper motion survey - I. Ultracool dwarfs from UKIDSS DR4
NASA Astrophysics Data System (ADS)
Deacon, N. R.; Hambly, N. C.; King, R. R.; McCaughrean, M. J.
2009-04-01
The UK Infrared Telescope Infrared Deep Sky Survey (UKIDSS) is the first of a new generation of infrared surveys. Here, we combine the data from two UKIDSS components, the Large Area Survey (LAS) and the Galactic Cluster Survey (GCS), with Two-Micron All-Sky Survey (2MASS) data to produce an infrared proper motion survey for low-mass stars and brown dwarfs. In total, we detect 267 low-mass stars and brown dwarfs with significant proper motions. We recover all 10 known single L dwarfs and the one known T dwarf above the 2MASS detection limit in our LAS survey area and identify eight additional new candidate L dwarfs. We also find one new candidate L dwarf in our GCS sample. Our sample also contains objects from 11 potential common proper motion binaries. Finally, we test our proper motions and find that while the LAS objects have proper motions consistent with absolute proper motions, the GCS stars may have proper motions which are significantly underestimated. This is possibly due to the bulk motion of some of the local astrometric reference stars used in the proper motion determination.
On characterizing population commonalities and subject variations in brain networks.
Ghanbari, Yasser; Bloy, Luke; Tunc, Birkan; Shankar, Varsha; Roberts, Timothy P L; Edgar, J Christopher; Schultz, Robert T; Verma, Ragini
2017-05-01
Brain networks based on resting state connectivity as well as inter-regional anatomical pathways obtained using diffusion imaging have provided insight into pathology and development. Such work has underscored the need for methods that can extract sub-networks that can accurately capture the connectivity patterns of the underlying population while simultaneously describing the variation of sub-networks at the subject level. We have designed a multi-layer graph clustering method that extracts clusters of nodes, called 'network hubs', which display higher levels of connectivity within the cluster than to the rest of the brain. The method determines an atlas of network hubs that describes the population, as well as weights that characterize subject-wise variation in terms of within- and between-hub connectivity. This lowers the dimensionality of brain networks, thereby providing a representation amenable to statistical analyses. The applicability of the proposed technique is demonstrated by extracting an atlas of network hubs for a population of typically developing controls (TDCs) as well as children with autism spectrum disorder (ASD), and using the structural and functional networks of a population to determine the subject-level variation of these hubs and their inter-connectivity. These hubs are then used to compare ASD and TDCs. Our method is generalizable to any population whose connectivity (structural or functional) can be captured via non-negative network graphs. Copyright © 2015 Elsevier B.V. All rights reserved.
Identification and classification of hubs in brain networks.
Sporns, Olaf; Honey, Christopher J; Kötter, Rolf
2007-10-17
Brain regions in the mammalian cerebral cortex are linked by a complex network of fiber bundles. These inter-regional networks have previously been analyzed in terms of their node degree, structural motif, path length and clustering coefficient distributions. In this paper we focus on the identification and classification of hub regions, which are thought to play pivotal roles in the coordination of information flow. We identify hubs and characterize their network contributions by examining motif fingerprints and centrality indices for all regions within the cerebral cortices of both the cat and the macaque. Motif fingerprints capture the statistics of local connection patterns, while measures of centrality identify regions that lie on many of the shortest paths between parts of the network. Within both cat and macaque networks, we find that a combination of degree, motif participation, betweenness centrality and closeness centrality allows for reliable identification of hub regions, many of which have previously been functionally classified as polysensory or multimodal. We then classify hubs as either provincial (intra-cluster) hubs or connector (inter-cluster) hubs, and proceed to show that lesioning hubs of each type from the network produces opposite effects on the small-world index. Our study presents an approach to the identification and classification of putative hub regions in brain networks on the basis of multiple network attributes and charts potential links between the structural embedding of such regions and their functional roles.
Silva, A V C; Nascimento, A L S; Vitória, M F; Rabbani, A R C; Soares, A N R; Lédo, A S
2017-02-23
Banana (Musa spp) is a fruit species frequently cultivated and consumed worldwide. Molecular markers are important for estimating genetic diversity in germplasm and between genotypes in breeding programs. The objective of this study was to analyze the genetic diversity of 21 banana genotypes (FHIA 23, PA42-44, Maçã, Pacovan Ken, Bucaneiro, YB42-47, Grand Naine, Tropical, FHIA 18, PA94-01, YB42-17, Enxerto, Japira, Pacovã, Prata-Anã, Maravilha, PV79-34, Caipira, Princesa, Garantida, and Thap Maeo), by using inter-simple sequence repeat (ISSR) markers. Material was generated from the banana breeding program of Embrapa Cassava & Fruits and evaluated at Embrapa Coastal Tablelands. The 12 primers used in this study generated 97.5% polymorphism. Four clusters were identified among the different genotypes studied, and the sum of the first two principal components was 48.91%. From the Unweighted Pair Group Method using Arithmetic averages (UPGMA) dendrogram, it was possible to identify two main clusters and subclusters. Two genotypes (Garantida and Thap Maeo) remained isolated from the others, both in the UPGMA clustering and in the principal cordinate analysis (PCoA). Using ISSR markers, we could analyze the genetic diversity of the studied material and state that these markers were efficient at detecting sufficient polymorphism to estimate the genetic variability in banana genotypes.
A path-based measurement for human miRNA functional similarities using miRNA-disease associations
NASA Astrophysics Data System (ADS)
Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao
2016-09-01
Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.
NASA Astrophysics Data System (ADS)
Maitra, Rahul; Akinaga, Yoshinobu; Nakajima, Takahito
2017-08-01
A single reference coupled cluster theory that is capable of including the effect of connected triple excitations has been developed and implemented. This is achieved by regrouping the terms appearing in perturbation theory and parametrizing through two different sets of exponential operators: while one of the exponentials, involving general substitution operators, annihilates the ground state but has a non-vanishing effect when it acts on the excited determinant, the other is the regular single and double excitation operator in the sense of conventional coupled cluster theory, which acts on the Hartree-Fock ground state. The two sets of operators are solved as coupled non-linear equations in an iterative manner without significant increase in computational cost than the conventional coupled cluster theory with singles and doubles excitations. A number of physically motivated and computationally advantageous sufficiency conditions are invoked to arrive at the working equations and have been applied to determine the ground state energies of a number of small prototypical systems having weak multi-reference character. With the knowledge of the correlated ground state, we have reconstructed the triple excitation operator and have performed equation of motion with coupled cluster singles, doubles, and triples to obtain the ionization potential and excitation energies of these molecules as well. Our results suggest that this is quite a reasonable scheme to capture the effect of connected triple excitations as long as the ground state remains weakly multi-reference.
Cluster observations of two separated cusp populations: double cusp or motion of the cusp?
NASA Astrophysics Data System (ADS)
Escoubet, C.-Philippe; Berchem, Jean; Trattner, Karlheinz; Pitout, Frederic; Richard, Robert; Taylor, Matt; Soucek, Jan; Grison, Benjamin; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew; Daly, Patrick
2013-04-01
Modelling plasma entry in the polar cusp has been successful in reproducing ion dispersions observed in the cusp at low and mid-altitudes. The use of a realistic convection pattern allowed Wing et al. (2001) to predict double cusp signatures that were subsequently observed by the DMSP spacecraft. In this paper, we present a cusp crossing where two cusp populations are observed, separated by a gap around 1° ILAT wide. Cluster 1 (C1) and Cluster 2 (C2) observed these two cusp populations with a time delay of three minutes and about 15 and 42 minutes later, Cluster 4 (C4) and Cluster 3 (C3) observed, respectively, a single cusp population. A peculiarity of this event is the fact that the second cusp population seen on C1 and C2 was observed at the same time as the first cusp population on C4. This would tend to suggest that the two cusp populations were spatial features similar to the double cusp. Due to the nested crossing of C1 and C2 through the gap between the two cusp encounters, C2 being first to leave the cusp and last to re-enter it, these observations cannot be explained by two stable cusps with a gap of precipitation in between. On the other hand these observations are in agreement with a motion of the cusp first dawnward and then back duskward due to the effect of the IMF-By component.
Kassam, Daud; Seki, Shingo; Horic, Michio; Yamaoka, Kosaku
2006-08-01
The apparent inter-lake morphological similarity among East African Great Lakes' cichlid species/genera has left evolutionary biologists asking whether such similarity is due to sharing of common ancestor or mere convergent evolution. In order to answer such question, we first used Geometric Morphometrics, GM, to quantify morphological similarity and then subsequently used Amplified Fragment Length Polymorphism, AFLP, to determine if similar morphologies imply shared ancestry or convergent evolution. GM revealed that not all presumed morphological similar pairs were indeed similar, and the dendrogram generated from AFLP data indicated distinct clusters corresponding to each lake and not inter-lake morphological similar pairs. Such results imply that the morphological similarity is due to convergent evolution and not shared ancestry. The congruency of GM and AFLP generated dendrograms imply that GM is capable of picking up phylogenetic signal, and thus GM can be potential tool in phylogenetic systematics.
UNDERSTANDING VARIABILITY IN TIME SPENT IN SELECTED LOCATIONS FOR 7-12 YEAR OLD CHILDREN
This paper summarizes a series of analyses of clustered, sequential activity/location data collected by Harvard University for 160 children aged 7-12 in Southern California (Geyh et al., 2000). The main purpose of the paper is to understand intra- and inter-variability in the ti...
Enacs Survey of Southern Galaxies Indicates Open Universe
NASA Astrophysics Data System (ADS)
1996-02-01
New Light on Rich Clusters of Galaxies and their Formation History In the context of a comprehensive Key-Programme , carried out with telescopes at the ESO La Silla Observatory, a team of European astronomers [1]. has recently obtained radial velocities for more than 5600 galaxies in about 100 rich clusters of galaxies. With this programme the amount of information about the motions of galaxies (the kinematical data) in such clusters has almost been doubled. This has allowed the team to study the distribution of the cluster masses, and also the dynamical state of clusters in new and interesting ways. An important result of this programme is that the derived masses of the investigated clusters of galaxies indicate that the mean density of the Universe is insufficient to halt the current expansion; we may therefore be living in an open Universe that will expand forever. Clusters of galaxies as tracers of large-scale structure About 40 years ago, American astronomer George Abell, working at the Palomar Observatory in California, was the first to perform a systematic study of rich clusters of galaxies , that is clusters with particularly many member galaxies located within a relatively restricted region in the sky. He identified several thousands of such clusters, and he numbered and described them; they are now known to astronomers as `Abell clusters'. More than twenty years earlier, Swiss-American astronomer Fritz Zwicky, using the famous 100-inch Mount Wilson telescope above Los Angeles, concluded that the total mass of a rich cluster of galaxies is probably much larger than the combined mass of the individual galaxies we can observe in it. This phenomenon is now known as the `Missing Dark Matter' , and many attempts have since been made to understand its true nature. Although the existence of this Dark Matter is generally accepted, it has been very difficult to prove its existence in a direct way. Rich clusters have several components: in addition to several hundreds, in some cases even thousands of galaxies (each with many billions of stars and much interstellar matter), they also contain hot gas (with a temperature of several million degrees) which is best visible in X-rays, as well as the invisible dark matter just mentioned. In fact, these clusters are the largest and most massive objects that are known today, and a detailed study of their properties can therefore provide insight into the way in which large-scale structures in the Universe have formed. This unique information is encoded into the distribution of the clusters' total masses, of their physical shapes, and not the least in the way they are distributed in space. The need for a `complete' cluster sample Several of these fundamental questions can be studied by observing a few, or at the most several tens of well-chosen clusters. However, if the goal is to discriminate between the various proposed theories of formation of their spatial distribution and thus the Universe's large-scale structure, it is essential that uniform data is collected for a sample of clusters that is complete in a statistical sense. Only then will it be possible to determine reliably the distribution of cluster masses and shapes, etc. For such comprehensive investigations, `complete' samples of clusters (that is, brighter than a certain magnitude and located within a given area in the sky) can be compiled either by means of catalogues like the one published by Abell and his collaborators and based on the distribution of optically selected galaxies, or from large-scale surveys of X-ray sources. However, in both cases, it is of paramount importance to verify the physical reality of the presumed clusters. Sometimes several galaxies are seen in nearly the same direction and therefore appear to form a cluster, but it later turns out that they are at very different distances and do not form a physical entity. This control must be performed through spectroscopic observations of the galaxies in the candidate clusters. Such observations are crucial, as they not only prove the existence of a cluster, but also determine its distance and provide information about the motion of the individual galaxies within the cluster. The ESO Nearby Abell Cluster Survey (ENACS) Until recently, there existed no large cluster sample with extensive and uniform data on the motions of the individual galaxies. But now, in the context of an ESO Key-Programme known as the ESO Nearby Abell Cluster Survey or ENACS , the team of European astronomers has collected spectroscopic and photometric data for a substantial sample of more than one-hundred, rich and relatively nearby southern clusters from the Abell catalogue [2]. The extensive observations were carried out with the OPTOPUS multi-fibre spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory, during 35 nights in the period from September 1989 to October 1993. With this very efficient spectrograph, the spectra of about 50 galaxies could be recorded simultaneously, dramatically reducing the necessary observing time. In total, the programme has yielded reliable radial velocities for more than 5600 galaxies in the direction of about 100 rich clusters. The velocities were derived from a comparison of the observed wavelengths of absorption and emission lines with their rest wavelengths (the galaxy `redshifts'). Assuming a particular value of the `Hubble constant' (the proportionality factor between the velocity of a galaxy and its distance, due to the general expansion of the Universe), the distances of the galaxies can then be derived directly from the measured velocities. The new observations approximately double the amount of data available for rich clusters of galaxies. In combination with earlier data, the ENACS has produced a `complete' sample of 128 rich Abell clusters in a region centered near the south galactic pole (the direction which is perpendicular to the main plane of the Milky Way galaxy), and comprising about one-fifth of the entire sky. The sample extends out to a cluster distance of almost 1,000 million light-years (300 Mpc) The space density of the 128 clusters is constant within the investigated volume, so that this sample is well suited to study, among others, the distribution of cluster masses. For a representative subset of 80 clusters, accurate information on the internal motions of galaxies in the clusters is available. Most nearby and rich Abell clusters are real In their pioneering work, Abell and his collaborators identified the clusters from visual inspection of photographic plates obtained with the Palomar telescopes [3]. Some concern has frequently been expressed that an important fraction of the rich Abell clusters may not be real, but rather the result of chance superpositions in the sky of several smaller groups of galaxies. However, the data of the ENACS now prove conclusively that 90 percent of the rich, nearby Abell clusters are real: i.e. many of the galaxies observed in each of these clusters are indeed at the same distance and they form a physical entity. Nevertheless, about one-quarter of the galaxies in the ENACS do not belong to the main clusters and reside in much smaller galaxy groups or are located in the vast space in between. This can be clearly seen in the distribution of the radial velocities in the direction of each of the clusters, shown in the diagramme (click here to get the [GIF,35k] or [Postscript,544k] version and the caption ) attached to this Press Release. When studying this distribution, it must be kept in mind, that the velocities of the galaxies in the clusters contain two components. The first is due to the general expansion of the Universe and depends only on the distance of the cluster; it is therefore the same for all galaxies in the cluster. The other reflects the individual motions of the galaxies within the cluster. Cluster masses and the mean density of the Universe The motions of the galaxies within a cluster makes it possible to estimate the total mass of the cluster: the greater the mass, the faster the motions must be in order to prevent the cluster from collapsing [4]. Using the data for the full sample of 128 clusters, the distribution of cluster masses has been derived. This distribution has been compared with predictions based on several models for the formation of large-scale structures in the Universe. A very important result of the current work is that the observations do not support scenarios which are based on the assumption that the mean density of the Universe is equal to the `critical' value, i.e. the one which would correspond to a so-called `flat' Universe. The observed cluster masses are systematically smaller than those predicted in such models. Instead, the observed distribution of cluster masses seems to indicate that the mean density of the Universe is probably only a fairly small fraction of the critical value. This points to the Universe being `open' and ever-expanding. Cluster formation may still be going on The galaxies observed during the ENACS programme may be divided into two groups on the basis of their optical spectra, those that show clear emission lines and those that do not. The former are almost all late-type galaxies, that is spiral galaxies with ionized gas in their disks which gives rise to the emission lines. It appears that both the distribution within the cluster, as well as the velocities, of the galaxies with emission lines are significantly different from those of the galaxies without emission lines. It seems that the emission-line galaxies have a tendency to avoid the central regions of their clusters, and their average radial velocities are about 20 percent larger than those of the non-emission galaxies. A plausible interpretation of these results is that a large part of the emission-line galaxies have not yet `mixed' with the other galaxies, and that they are approaching the central regions of their respective clusters for the first time. This may imply that the formation of at least a good fraction of the nearby, rich clusters is still going on. If the mean density of the Universe is indeed much smaller than the critical density, as indicated by the cluster masses determined during this survey, then this is a quite unexpected result. One explanation may be that many clusters have only started to form fairly recently. Notes: [1] The team is headed by Peter Katgert (Leiden Observatory, The Netherlands) and Alain Mazure (Laboratoire d'Astronomie Spatiale, Marseille, France); other members are Andrea Biviano and Roland den Hartog (Leiden Observatory, The Netherlands), Pierre Dubath (Observatoire de Geneve, Switzerland), Eric Escalera (SISSA, Trieste, Italy), Paola Focardi (Bologna University, Italy), Daniel Gerbal (Institut d'Astrophysique, Paris, France), Guilano Giuricin (SISSA, Trieste, Italy), Bernard Jones (Theoretical Astrophysics Centre, Copenhagen, Denmark), Olivier Le Fevre (Meudon Observatory, Paris, France), Mariano Moles and Jaime Perea (Astrophysics Institute of Andalucia, Granada, Spain), and George Rhee (University of Nevada, Las Vegas, U.S.A.). [2] The detailed results will soon be published in two comprehensive articles to appear in the European journal Astronomy & Astrophysics. [3] This Press Release is accompanied by ESO Press Photo 07/96, (click here to get the image [GIF,45k] and caption ) showing one of the rich clusters, as observed with the ESO 1-metre Schmidt telescope. [4] The masses of the planets in the solar system are determined in a similar way from the motions of their moons. The faster the moon moves around the planet at a given distance, the heavier is the planet.
NASA Astrophysics Data System (ADS)
Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon
2014-08-01
The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.
The equation-of-motion coupled cluster method for triple electron attached states
NASA Astrophysics Data System (ADS)
Musiał, Monika; Olszówka, Marta; Lyakh, Dmitry I.; Bartlett, Rodney J.
2012-11-01
The initial implementation of the triple electron attachment (TEA) equation-of-motion (EOM) coupled cluster (CC) method is presented, aiming at the description of electronic states with three open shell electrons outside a suitably chosen closed shell vacuum. In particular, such an approach can be used for describing dissociation of chemical bonds predominantly formed by three valence electrons, for example, in LiC and NaC molecules. Both ground and excited states are considered while rigorously maintaining the correct spin value. The preliminary results show a correct asymptotic behavior of the dissociation curves. At the same time, we emphasize that a chemically accurate description will require an extension of the minimal TEA-EOM-CC model introduced here, analogous to those already used in the double ionization potential and double electron attachment methods.
Simulating the interaction of jets with the intracluster medium
NASA Astrophysics Data System (ADS)
Weinberger, Rainer; Ehlert, Kristian; Pfrommer, Christoph; Pakmor, Rüdiger; Springel, Volker
2017-10-01
Jets from supermassive black holes in the centres of galaxy clusters are a potential candidate for moderating gas cooling and subsequent star formation through depositing energy in the intracluster gas. In this work, we simulate the jet-intracluster medium interaction using the moving-mesh magnetohydrodynamics code arepo. Our model injects supersonic, low-density, collimated and magnetized outflows in cluster centres, which are then stopped by the surrounding gas, thermalize and inflate low-density cavities filled with cosmic rays. We perform high-resolution, non-radiative simulations of the lobe creation, expansion and disruption, and find that its dynamical evolution is in qualitative agreement with simulations of idealized low-density cavities that are dominated by a large-scale Rayleigh-Taylor instability. The buoyant rising of the lobe does not create energetically significant small-scale chaotic motion in a volume-filling fashion, but rather a systematic upward motion in the wake of the lobe and a corresponding back-flow antiparallel to it. We find that, overall, 50 per cent of the injected energy ends up in material that is not part of the lobe, and about 25 per cent remains in the inner 100 kpc. We conclude that jet-inflated, buoyantly rising cavities drive systematic gas motions that play an important role in heating the central regions, while mixing of lobe material is subdominant. Encouragingly, the main mechanisms responsible for this energy deposition can be modelled already at resolutions within reach in future, high-resolution cosmological simulations of galaxy clusters.
Automated Production of Movies on a Cluster of Computers
NASA Technical Reports Server (NTRS)
Nail, Jasper; Le, Duong; Nail, William L.; Nail, William
2008-01-01
A method of accelerating and facilitating production of video and film motion-picture products, and software and generic designs of computer hardware to implement the method, are undergoing development. The method provides for automation of most of the tedious and repetitive tasks involved in editing and otherwise processing raw digitized imagery into final motion-picture products. The method was conceived to satisfy requirements, in industrial and scientific testing, for rapid processing of multiple streams of simultaneously captured raw video imagery into documentation in the form of edited video imagery and video derived data products for technical review and analysis. In the production of such video technical documentation, unlike in production of motion-picture products for entertainment, (1) it is often necessary to produce multiple video derived data products, (2) there are usually no second chances to repeat acquisition of raw imagery, (3) it is often desired to produce final products within minutes rather than hours, days, or months, and (4) consistency and quality, rather than aesthetics, are the primary criteria for judging the products. In the present method, the workflow has both serial and parallel aspects: processing can begin before all the raw imagery has been acquired, each video stream can be subjected to different stages of processing simultaneously on different computers that may be grouped into one or more cluster(s), and the final product may consist of multiple video streams. Results of processing on different computers are shared, so that workers can collaborate effectively.
Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.
2012-01-01
We propose a new method to help ornithologists and ecologists discover shared segments on the migratory pathway of the bar-headed geese by time-based plane-sweeping trajectory clustering. We present a density-based time parameterized line segment clustering algorithm, which extends traditional comparable clustering algorithms from temporal and spatial dimensions. We present a time-based plane-sweeping trajectory clustering algorithm to reveal the dynamic evolution of spatial-temporal object clusters and discover common motion patterns of bar-headed geese in the process of migration. Experiments are performed on GPS-based satellite telemetry data from bar-headed geese and results demonstrate our algorithms can correctly discover shared segments of the bar-headed geese migratory pathway. We also present findings on the migratory behavior of bar-headed geese determined from this new analytical approach.
Hypervelocity stars from young stellar clusters in the Galactic Centre
NASA Astrophysics Data System (ADS)
Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.
2017-05-01
The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.
Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition
Cui, Zhiming; Zhao, Pengpeng
2014-01-01
A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045
Nanoscale thin film growth of Au on Si(111)-7 × 7 surface by pulsed laser deposition method
NASA Astrophysics Data System (ADS)
Yokotani, Atsushi; Kameyama, Akihiro; Nakayoshi, Kohei; Matsunaga, Yuta
2017-03-01
To obtain important information for fabricating atomic-scale Au thin films that are used for biosensors, we have observed the morphology of Au particles adsorbed on a Si(111)-7 × 7 surface, which is supposed to be the initial stage of Au atomistic thin film formation. Au particles were adsorbed on the clean Si surface using a PLD method, and the adsorbed particles were observed using a scanning tunneling microscope. As the number of laser shots was increased in the PLD method, the size of the adsorbed particle became larger. The larger particles seemed to form clusters, which are aggregations of particles in which each particle is distinguished, so we call this type of cluster a film-shaped cluster. In this work, we have mainly analyzed this type of cluster. As a result the film-shaped clusters were found to have a structure of nearly monoatomic layers. The particles in the clusters were gathered closely in roughly a 3-fold structure with an inter particle distance of 0.864 nm. We propose a model for the cluster structure by modifying Au(111) face so that each observed particle consists of three Au atoms.
Intra- and Inter-Fractional Variation Prediction of Lung Tumors Using Fuzzy Deep Learning
Park, Seonyeong; Lee, Suk Jin; Weiss, Elisabeth
2016-01-01
Tumor movements should be accurately predicted to improve delivery accuracy and reduce unnecessary radiation exposure to healthy tissue during radiotherapy. The tumor movements pertaining to respiration are divided into intra-fractional variation occurring in a single treatment session and inter-fractional variation arising between different sessions. Most studies of patients’ respiration movements deal with intra-fractional variation. Previous studies on inter-fractional variation are hardly mathematized and cannot predict movements well due to inconstant variation. Moreover, the computation time of the prediction should be reduced. To overcome these limitations, we propose a new predictor for intra- and inter-fractional data variation, called intra- and inter-fraction fuzzy deep learning (IIFDL), where FDL, equipped with breathing clustering, predicts the movement accurately and decreases the computation time. Through the experimental results, we validated that the IIFDL improved root-mean-square error (RMSE) by 29.98% and prediction overshoot by 70.93%, compared with existing methods. The results also showed that the IIFDL enhanced the average RMSE and overshoot by 59.73% and 83.27%, respectively. In addition, the average computation time of IIFDL was 1.54 ms for both intra- and inter-fractional variation, which was much smaller than the existing methods. Therefore, the proposed IIFDL might achieve real-time estimation as well as better tracking techniques in radiotherapy. PMID:27170914
On scalable lossless video coding based on sub-pixel accurate MCTF
NASA Astrophysics Data System (ADS)
Yea, Sehoon; Pearlman, William A.
2006-01-01
We propose two approaches to scalable lossless coding of motion video. They achieve SNR-scalable bitstream up to lossless reconstruction based upon the subpixel-accurate MCTF-based wavelet video coding. The first approach is based upon a two-stage encoding strategy where a lossy reconstruction layer is augmented by a following residual layer in order to obtain (nearly) lossless reconstruction. The key advantages of our approach include an 'on-the-fly' determination of bit budget distribution between the lossy and the residual layers, freedom to use almost any progressive lossy video coding scheme as the first layer and an added feature of near-lossless compression. The second approach capitalizes on the fact that we can maintain the invertibility of MCTF with an arbitrary sub-pixel accuracy even in the presence of an extra truncation step for lossless reconstruction thanks to the lifting implementation. Experimental results show that the proposed schemes achieve compression ratios not obtainable by intra-frame coders such as Motion JPEG-2000 thanks to their inter-frame coding nature. Also they are shown to outperform the state-of-the-art non-scalable inter-frame coder H.264 (JM) lossless mode, with the added benefit of bitstream embeddedness.
Harris, Michael D; MacWilliams, Bruce A; Bo Foreman, K; Peters, Christopher L; Weiss, Jeffrey A; Anderson, Andrew E
2017-03-21
Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Harris, Michael D.; MacWilliams, Bruce A.; Foreman, K. Bo; Peters, Christopher L.; Weiss, Jeffrey A.; Anderson, Andrew E.
2018-01-01
Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. PMID:28233552
Hydrodynamic clustering of droplets in turbulence
NASA Astrophysics Data System (ADS)
Kunnen, Rudie; Yavuz, Altug; van Heijst, Gertjan; Clercx, Herman
2017-11-01
Small, inertial particles are known to cluster in turbulent flows: particles are centrifuged out of eddies and gather in the strain-dominated regions. This so-called preferential concentration is reflected in the radial distribution function (RDF; a quantitative measure of clustering). We study clustering of water droplets in a loudspeaker-driven turbulence chamber. We track the motion of droplets in 3D and calculate the RDF. At moderate scales (a few Kolmogorov lengths) we find the typical power-law scaling of preferential concentration in the RDF. However, at even smaller scales (a few droplet diameters), we encounter a hitherto unobserved additional clustering. We postulate that the additional clustering is due to hydrodynamic interactions, an effect which is typically disregarded in modeling. Using a perturbative expansion of inertial effects in a Stokes-flow description of two interacting spheres, we obtain an expression for the RDF which indeed includes the additional clustering. The additional clustering enhances the collision probability of droplets, which enhances their growth rate due to coalescence. The additional clustering is thus an essential effect in precipitation modeling.
3D Tracking of Diatom Motion in Turbulent Flow
NASA Astrophysics Data System (ADS)
Variano, E. A.; Brandt, L.; Sardina, G.; Ardekani, M.; Pujara, N.; Ayers, S.; Du Clos, K.; Karp-Boss, L.; Jumars, P. A.
2016-02-01
We present laboratory measurements of single-celled and chain forming diatom motion in a stirred turbulence tank. The overarching goal is to explore whether diatoms track flow with fidelity (passive tracers) or whether interactions with cell density and shape result in biased trajectories that alter settling velocities. Diatom trajectories are recorded in 3D using a stereoscopic, calibrated tracking tool. Turbulence is created in a novel stirred tank, designed to create motions that match those found in the ocean surface mixed layer at scales less than 10 cm. The data are analyzed for evidence of enhanced particle clustering, an indicator of turbulently altered settling rates
High quality 4D cone-beam CT reconstruction using motion-compensated total variation regularization
NASA Astrophysics Data System (ADS)
Zhang, Hua; Ma, Jianhua; Bian, Zhaoying; Zeng, Dong; Feng, Qianjin; Chen, Wufan
2017-04-01
Four dimensional cone-beam computed tomography (4D-CBCT) has great potential clinical value because of its ability to describe tumor and organ motion. But the challenge in 4D-CBCT reconstruction is the limited number of projections at each phase, which result in a reconstruction full of noise and streak artifacts with the conventional analytical algorithms. To address this problem, in this paper, we propose a motion compensated total variation regularization approach which tries to fully explore the temporal coherence of the spatial structures among the 4D-CBCT phases. In this work, we additionally conduct motion estimation/motion compensation (ME/MC) on the 4D-CBCT volume by using inter-phase deformation vector fields (DVFs). The motion compensated 4D-CBCT volume is then viewed as a pseudo-static sequence, of which the regularization function was imposed on. The regularization used in this work is the 3D spatial total variation minimization combined with 1D temporal total variation minimization. We subsequently construct a cost function for a reconstruction pass, and minimize this cost function using a variable splitting algorithm. Simulation and real patient data were used to evaluate the proposed algorithm. Results show that the introduction of additional temporal correlation along the phase direction can improve the 4D-CBCT image quality.
Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S
2015-07-14
Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.
NASA Technical Reports Server (NTRS)
Homick, J. L.; Reschke, M. F.; Degioanni, J.; Cintron-Trevino, N. M.; Kohl, R. L.
1983-01-01
This study evaluated the time course of efficacy of transdermal scopolamine in the prevention of motion sickness induced by exposure to coriolis stimulation in a rotating chair. We measured levels of efficacy, quantified side effects and symptoms, and determined inter- and intra-subject variability following use of transdermal scopolamine. The response to transdermal scopolamine was highly variable, although overall we recorded a 40 percent improvement in test scores 16-72 h after application of the transdermal system. This variability could not be explained solely by the levels of scopolamine present in the blood. The improvement was not due to the artifactual repression by scopolamine of selected symptoms of motion sickness. An unexpectedly high incidence of side effects was reported. It was concluded that the therapeutic use of transdermal scopolamine be evaluated individually and that individuals be cautioned that subsequent usage may not always be effective.
Smartphone photography utilized to measure wrist range of motion.
Wagner, Eric R; Conti Mica, Megan; Shin, Alexander Y
2018-02-01
The purpose was to determine if smartphone photography is a reliable tool in measuring wrist movement. Smartphones were used to take digital photos of both wrists in 32 normal participants (64 wrists) at extremes of wrist motion. The smartphone measurements were compared with clinical goniometry measurements. There was a very high correlation between the clinical goniometry and smartphone measurements, as the concordance coefficients were high for radial deviation, ulnar deviation, wrist extension and wrist flexion. The Pearson coefficients also demonstrated the high precision of the smartphone measurements. The Bland-Altman plots demonstrated 29-31 of 32 smartphone measurements were within the 95% confidence interval of the clinical measurements for all positions of the wrists. There was high reliability between the photography taken by the volunteer and researcher, as well as high inter-observer reliability. Smartphone digital photography is a reliable and accurate tool for measuring wrist range of motion. II.
Fast cine-magnetic resonance imaging point tracking for prostate cancer radiation therapy planning
NASA Astrophysics Data System (ADS)
Dowling, J.; Dang, K.; Fox, Chris D.; Chandra, S.; Gill, Suki; Kron, T.; Pham, D.; Foroudi, F.
2014-03-01
The analysis of intra-fraction organ motion is important for improving the precision of radiation therapy treatment delivery. One method to quantify this motion is for one or more observers to manually identify anatomic points of interest (POIs) on each slice of a cine-MRI sequence. However this is labour intensive and inter- and intra- observer variation can introduce uncertainty. In this paper a fast method for non-rigid registration based point tracking in cine-MRI sagittal and coronal series is described which identifies POIs in 0.98 seconds per sagittal slice and 1.35 seconds per coronal slice. The manual and automatic points were highly correlated (r>0.99, p<0.001) for all organs and the difference generally less than 1mm. For prostate planning peristalsis and rectal gas can result in unpredictable out of plane motion, suggesting the results may require manual verification.
Barrier Effects in Non-retinotopic Feature Attribution
Aydin, Murat; Herzog, Michael H.; Öğmen, Haluk
2011-01-01
When objects move in the environment, their retinal images can undergo drastic changes and features of different objects can be inter-mixed in the retinal image. Notwithstanding these changes and ambiguities, the visual system is capable of establishing correctly feature-object relationships as well as maintaining individual identities of objects through space and time. Recently, by using a Ternus-Pikler display, we have shown that perceived motion correspondences serve as the medium for non-retinotopic attribution of features to objects. The purpose of the work reported in this manuscript was to assess whether perceived motion correspondences provide a sufficient condition for feature attribution. Our results show that the introduction of a static “barrier” stimulus can interfere with the feature attribution process. Our results also indicate that the barrier stops feature attribution based on interferences related to the feature attribution process itself rather than on mechanisms related to perceived motion. PMID:21767561
NASA Astrophysics Data System (ADS)
Hu, Xiaohu; Hong, Liang; Dean Smith, Micholas; Neusius, Thomas; Cheng, Xiaolin; Smith, Jeremy C.
2016-02-01
Internal motions of proteins are essential to their function. The time dependence of protein structural fluctuations is highly complex, manifesting subdiffusive, non-exponential behaviour with effective relaxation times existing over many decades in time, from ps up to ~102 s (refs ,,,). Here, using molecular dynamics simulations, we show that, on timescales from 10-12 to 10-5 s, motions in single proteins are self-similar, non-equilibrium and exhibit ageing. The characteristic relaxation time for a distance fluctuation, such as inter-domain motion, is observation-time-dependent, increasing in a simple, power-law fashion, arising from the fractal nature of the topology and geometry of the energy landscape explored. Diffusion over the energy landscape follows a non-ergodic continuous time random walk. Comparison with single-molecule experiments suggests that the non-equilibrium self-similar dynamical behaviour persists up to timescales approaching the in vivo lifespan of individual protein molecules.
Effect of pressure on β relaxation in La60Ni15Al25 metallic glass
NASA Astrophysics Data System (ADS)
Xu, H. Y.; Sheng, H. W.; Li, M. Z.
2018-03-01
The effect of pressure on β relaxation in La60Ni15Al25 metallic glass (MG) was investigated by activation-relaxation technique in combination with molecular dynamics simulation. It is found that the β relaxation behavior and the potential energy landscape are significantly modulated by pressure. With increasing pressure, the atomic motion in β relaxation in La60Ni15Al25 MG changes from hopping-dominated to the string-like-dominated motion with increased activation energy. Moreover, while the hopping motion is gradually suppressed as pressure is increased, the cooperative rearrangements with more atoms involved but very low activation energies are significantly enhanced by pressure. It is further found that the "subbasins" in the potential energy landscape in La60Ni15Al25 MG become deeper and steeper with increasing pressure, leading to the increase of activation energy. Meanwhile, some neighboring "subbasins" merge under pressure accompanied by the disappearance of energy barriers in-between, leading to events with very low activation energies in the β relaxation. The atomic structure analysis reveals that the transformation of atomic motions in β relaxation in La60Ni15Al25 MG under pressure is strongly correlated with the decrease of pentagon-rich atomic clusters and the increase of clusters with fewer pentagons. These findings provide a new understanding of the β relaxation mechanism and some clues for tuning β relaxation in MGs.
Kashani, Ali Tavakoli; Besharati, Mohammad Mehdi
2017-06-01
The aim of this study was to uncover patterns of pedestrian crashes. In the first stage, 34,178 pedestrian-involved crashes occurred in Iran during a four-year period were grouped into homogeneous clusters using a clustering analysis. Next, some in-cluster and inter-cluster crash patterns were analysed. The clustering analysis yielded six pedestrian crash groups. Car/van/pickup crashes on rural roads as well as heavy vehicle crashes were found to be less frequent but more likely to be fatal compared to other crash clusters. In addition, after controlling for crash frequency in each cluster, it was found that the fatality rate of each pedestrian age group as well as the fatal crash involvement rate of each driver age group varies across the six clusters. Results of present study has some policy implications including, promoting pedestrian safety training sessions for heavy vehicle drivers, imposing limitations over elderly heavy vehicle drivers, reinforcing penalties toward under 19 drivers and motorcyclists. In addition, road safety campaigns in rural areas may be promoted to inform people about the higher fatality rate of pedestrians on rural roads. The crash patterns uncovered in this study might also be useful for prioritizing future pedestrian safety research areas.
Cellular Contraction and Polarization Drive Collective Cellular Motion.
Notbohm, Jacob; Banerjee, Shiladitya; Utuje, Kazage J C; Gweon, Bomi; Jang, Hwanseok; Park, Yongdoo; Shin, Jennifer; Butler, James P; Fredberg, Jeffrey J; Marchetti, M Cristina
2016-06-21
Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clusters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial monolayer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously. Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that deviates systematically from local cellular velocity. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations and numerical simulations
NASA Technical Reports Server (NTRS)
Darouzet, Fabien; DeKeyser, Johan; Decreau, Pierrette; Gallagher, Dennis; Pierrard, Viviane; Lemaire, Joseph; Dandouras, Iannis; Matsui, Hiroshi; Dunlop, Malcolm; Andre, Mats
2005-01-01
Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles can be derived from the plasma frequency and/or from the spacecraft potential (note that the electron spectrometer is usually not operating inside the plasmasphere); ion velocity is also measured onboard these satellites (but ion density is not reliable because of instrumental limitations). The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 minutes; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations for 3 plume events and compare CLUSTER in-situ data (panel A) with global images of the plasmasphere obtained from IMAGE (panel B), and with numerical simulations for the formation of plumes based on a model that includes the interchange instability mechanism (panel C). In particular, we study the geometry and the orientation of plasmaspheric plumes by using a four-point analysis method, the spatial gradient. We also compare several aspects of their motion as determined by different methods: (i) inner and outer plume boundary velocity calculated from time delays of this boundary observed by the wave experiment WHISPER on the four spacecraft, (ii) ion velocity derived from the ion spectrometer CIS onboard CLUSTER, (iii) drift velocity measured by the electron drift instrument ED1 onboard CLUSTER and (iv) global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.
Calculation of the wetting parameter from a cluster model in the framework of nanothermodynamics.
García-Morales, V; Cervera, J; Pellicer, J
2003-06-01
The critical wetting parameter omega(c) determines the strength of interfacial fluctuations in critical wetting transitions. In this Brief Report, we calculate omega(c) from considerations on critical liquid clusters inside a vapor phase. The starting point is a cluster model developed by Hill and Chamberlin in the framework of nanothermodynamics [Proc. Natl. Acad. Sci. USA 95, 12779 (1998)]. Our calculations yield results for omega(c) between 0.52 and 1.00, depending on the degrees of freedom considered. The findings are in agreement with previous experimental results and give an idea of the universal dynamical behavior of the clusters when approaching criticality. We suggest that this behavior is a combination of translation and vortex rotational motion (omega(c)=0.84).
Granular Segregation Driven by Particle Interactions
NASA Astrophysics Data System (ADS)
Lozano, C.; Zuriguel, I.; Garcimartín, A.; Mullin, T.
2015-05-01
We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C . All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.
A perfect starburst cluster made in one go: The NGC 3603 young cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Sambaran; Kroupa, Pavel
2014-06-01
Understanding how distinct, near-spherical gas-free clusters of very young, massive stars shape out of vast, complex clouds of molecular hydrogen is one of the biggest challenges in astrophysics. A popular thought dictates that a single gas cloud fragments into many newborn stars which, in turn, energize and rapidly expel the residual gas to form a gas-free cluster. This study demonstrates that the above classical paradigm remarkably reproduces the well-observed central, young cluster (HD 97950) of the Galactic NGC 3603 star-forming region, in particular, its shape, internal motion, and mass distribution of stars naturally and consistently follow from a single modelmore » calculation. Remarkably, the same parameters (star formation efficiency, gas expulsion timescale, and delay) reproduce HD 97950, as were found to reproduce the Orion Nebula Cluster, Pleiades, and R136. The present results therefore provide intriguing evidence of formation of star clusters through single-starburst events followed by significant residual gas expulsion.« less
Rotation in young massive star clusters
NASA Astrophysics Data System (ADS)
Mapelli, Michela
2017-05-01
Hydrodynamical simulations of turbulent molecular clouds show that star clusters form from the hierarchical merger of several sub-clumps. We run smoothed-particle hydrodynamics simulations of turbulence-supported molecular clouds with mass ranging from 1700 to 43 000 M⊙. We study the kinematic evolution of the main cluster that forms in each cloud. We find that the parent gas acquires significant rotation, because of large-scale torques during the process of hierarchical assembly. The stellar component of the embedded star cluster inherits the rotation signature from the parent gas. Only star clusters with final mass < few × 100 M⊙ do not show any clear indication of rotation. Our simulated star clusters have high ellipticity (˜0.4-0.5 at t = 4 Myr) and are subvirial (Qvir ≲ 0.4). The signature of rotation is stronger than radial motions due to subvirial collapse. Our results suggest that rotation is common in embedded massive (≳1000 M⊙) star clusters. This might provide a key observational test for the hierarchical assembly scenario.
NASA Astrophysics Data System (ADS)
Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong
2016-08-01
We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.
Using ground based data as a precursor for Gaia in getting proper motions of satellites
NASA Astrophysics Data System (ADS)
Fritz, Tobias K.; Linden, Sean T.; Zivick, Paul; Kallivayalil, Nitya; Bovy, Jo
2018-04-01
We present our effort to measure the proper motions of satellites in the halo of the Milky Way with mainly ground based telescopes as a precursor on what is possible with Gaia. For our first study, we used wide field optical data from the LBT combined with a first epoch of SDSS observations, on the globular cluster Palomar 5 (Pal 5). Since Pal 5 is associated with a tidal stream it is very useful to constrain the shape of the potential of the Milky Way. The motion and other properties of the Pal 5 system constrain the inner halo of the Milky Way to be rather spherical. Further, we combined adaptive optics and HST to get an absolute proper motion of the globular cluster Pyxis. Using the proper motion and the line-of-sight velocity we find that the orbit of Pyxis is rather eccentric with its apocenter at more than 100 kpc and its pericenter at about 30 kpc. The dynamics excludes an association with the ATLAS stream, the Magellanic clouds, and all satellites of the Milky Way at least down to the mass of Leo II. However, the properties of Pyxis, like metallicity and age, point to an origin from a dwarf of at least the mass of Leo II. We therefore propose that Pyxis originated from an unknown relatively massive dwarf galaxy, which is likely today fully disrupted. Assuming that Pyxis is bound to the Milky Way we derive a 68% lower limit on the mass of the Milky Way of 9.5 × 1011 M⊙.
VizieR Online Data Catalog: OB association members in ACT+TRC Catalogs (Hoogerwerf, 2000)
NASA Astrophysics Data System (ADS)
Hoogerwerf, R.
2000-05-01
The Hipparcos Catalogue (Cat. I/239) contains members of nearby OB associations brighter than 12th magnitude in V. However, membership lists are complete only to magnitude V=7.3. In this paper we discuss whether proper motions listed in the `Astrographic Catalogue+Tycho' reference catalogue (ACT, Cat. I/246) and the Tycho Reference Catalogue (TRC, Cat. I/250), which are complete to V~10.5mag, can be used to find additional association members. Proper motions in the ACT/TRC have an average accuracy of ~3mas/yr. We search for ACT/TRC stars which have proper motions consistent with the spatial velocity of the Hipparcos members of the nearby OB associations already identified by de Zeeuw et al. (1999, Cat. J/AJ/117/354). These stars are first selected using a convergent-point method, and then subjected to further constraints on the proper-motion distribution, magnitude and colour to narrow down the final number of candidate members. Monte Carlo simulations show that the proper-motion distribution, magnitude, and colour constraints remove ~97% of the field stars, while at the same time retain more than 90% of the cluster stars. The procedure has been applied to five nearby associations: the three subgroups of Sco OB2, plus Per OB3 and Cep OB6. In all cases except Cep OB6, we find evidence for new association members fainter than the completeness limit of the Hipparcos Catalogue. However, narrow-band photometry and/or radial velocities are needed to pinpoint the cluster members, and to study their physical characteristics. (1 data file).
Optical control of inter-layer distance of hBN: a TDDFT study
NASA Astrophysics Data System (ADS)
Miyamoto, Yoshiyuki; Zhang, Hong; Miyazaki, Takehide; Rubio, Angel
In this presentation, we introduce an idea to modify inter-layer distance of hBN by shining IR laser in resonance with the frequency of the optical phonon (A2u mode). By performing the TDDFT-MD simulation under the IR laser, significant grow in an amplitude of the A2u phonon mode was observed and inter-layer contraction over 11 % of the original distance was achieved. The source of the stronger attraction of hBN sheets was attributed with increase of dipole moment of each layer coming from the motions of boron (B) and nitrogen (N) atoms in opposite directions. Since the dipole moments of these layers remain as parallel throughout the A2u phonon vibration, the increase of attractive force occurs between the two hBN sheets in analogy of the London force. In this talk, we will further discuss proper intensity of IR laser and potential applications of this phenomenon. This work was published in.
A triboelectric motion sensor in wearable body sensor network for human activity recognition.
Hui Huang; Xian Li; Ye Sun
2016-08-01
The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.
A method of depth image based human action recognition
NASA Astrophysics Data System (ADS)
Li, Pei; Cheng, Wanli
2017-05-01
In this paper, we propose an action recognition algorithm framework based on human skeleton joint information. In order to extract the feature of human motion, we use the information of body posture, speed and acceleration of movement to construct spatial motion feature that can describe and reflect the joint. On the other hand, we use the classical temporal pyramid matching algorithm to construct temporal feature and describe the motion sequence variation from different time scales. Then, we use bag of words to represent these actions, which is to present every action in the histogram by clustering these extracted feature. Finally, we employ Hidden Markov Model to train and test the extracted motion features. In the experimental part, the correctness and effectiveness of the proposed model are comprehensively verified on two well-known datasets.
Symptom clustering and quality of life in patients with ovarian cancer undergoing chemotherapy.
Nho, Ju-Hee; Reul Kim, Sung; Nam, Joo-Hyun
2017-10-01
The symptom clusters in patients with ovarian cancer undergoing chemotherapy have not been well evaluated. We investigated the symptom clusters and effects of symptom clusters on the quality of life of patients with ovarian cancer. We recruited 210 ovarian cancer patients being treated with chemotherapy and used a descriptive cross-sectional study design to collect information on their symptoms. To determine inter-relationships among symptoms, a principal component analysis with varimax rotation was performed based on the patient's symptoms (fatigue, pain, sleep disturbance, chemotherapy-induced peripheral neuropathy, anxiety, depression, and sexual dysfunction). All patients had experienced at least two domains of concurrent symptoms, and there were two types of symptom clusters. The first symptom cluster consisted of anxiety, depression, fatigue, and sleep disturbance symptoms, while the second symptom cluster consisted of pain and chemotherapy-induced peripheral neuropathy symptoms. Our subgroup cluster analysis showed that ovarian cancer patients with higher-scoring symptoms had significantly poorer quality of life in both symptom cluster 1 and 2 subgroups, with subgroup-specific patterns. The symptom clusters were different depending on age, age at disease onset, disease duration, recurrence, and performance status of patients with ovarian cancer. In addition, ovarian cancer patients experienced different symptom clusters according to cancer stage. The current study demonstrated that there is a specific pattern of symptom clusters, and symptom clusters negatively influence the quality of life in patients with ovarian cancer. Identifying symptom clusters of ovarian cancer patients may have clinical implications in improving symptom management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji
2016-12-01
Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor. Copyright © 2016 Elsevier B.V. All rights reserved.
Fast depth decision for HEVC inter prediction based on spatial and temporal correlation
NASA Astrophysics Data System (ADS)
Chen, Gaoxing; Liu, Zhenyu; Ikenaga, Takeshi
2016-07-01
High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the compression accuracy, the partition sizes ranging is from 4x4 to 64x64 in HEVC. However, the manifold partition sizes dramatically increase the encoding complexity. This paper proposes a fast depth decision based on spatial and temporal correlation. Spatial correlation utilize the code tree unit (CTU) Splitting information and temporal correlation utilize the motion vector predictor represented CTU in inter prediction to determine the maximum depth in each CTU. Experimental results show that the proposed method saves about 29.1% of the original processing time with 0.9% of BD-bitrate increase on average.
Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O
NASA Astrophysics Data System (ADS)
Wang, Xiao-Gang; Carrington, Tucker
2014-06-01
Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102 (2006) J. Rheinecker and J. M. Bowman, J. Chem. Phys. 125 133206 (2006)} S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli, and M. A. Johnson J. Phys. Chem. A 114 1556 (2010)
2011-01-01
present performance statistics to explain the scalability behavior. Keywords-atmospheric models, time intergrators , MPI, scal- ability, performance; I...across inter-element bound- aries. Basis functions are constructed as tensor products of Lagrange polynomials ψi (x) = hα(ξ) ⊗ hβ(η) ⊗ hγ(ζ)., where hα
Hierarchical Clustering on the Basis of Inter-Job Similarity as a Tool in Validity Generalization
ERIC Educational Resources Information Center
Mobley, William H.; Ramsay, Robert S.
1973-01-01
The present research was stimulated by three related problems frequently faced in validation research: viable procedures for combining similar jobs in order to assess the validity of various predictors, for assessing groups of jobs represented in previous validity studies, and for assessing the applicability of validity findings between units.…
Estimated Satellite Cluster Elements in Near Circular Orbit
1988-12-01
cluster is investigated. TheAon-board estimator is the U-D covariance factor’xzatiion’filter with dynamics based on the Clohessy - Wiltshire equations...Appropriate values for the velocity vector vi can be found irom the Clohessy - Wiltshire equations [9] (these equations will be explained in detail in the...explained in this text is the f matrix. The state transition matrix was developed from the Clohessy - Wiltshire equations of motion [9:page 3] as i - 2qý
Kinematic repeatability of a multi-segment foot model for dance.
Carter, Sarah L; Sato, Nahoko; Hopper, Luke S
2018-03-01
The purpose of this study was to determine the intra and inter-assessor repeatability of a modified Rizzoli Foot Model for analysing the foot kinematics of ballet dancers. Six university-level ballet dancers performed the movements; parallel stance, turnout plié, turnout stance, turnout rise and flex-point-flex. The three-dimensional (3D) position of individual reflective markers and marker triads was used to model the movement of the dancers' tibia, entire foot, hindfoot, midfoot, forefoot and hallux. Intra and inter-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability for the first metatarsophalangeal joint in the sagittal plane. Intra-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability during flex-point-flex across all inter-segmental angles except for the tibia-hindfoot and hindfoot-midfoot frontal planes. Inter-assessor repeatability ranged from poor to excellent (0.5 > ICC ≥ 0.75) for the 3D segment rotations. The most repeatable measure was the tibia-foot dorsiflexion/plantar flexion articulation whereas the least repeatable measure was the hindfoot-midfoot adduction/abduction articulation. The variation found in the inter-assessor results is likely due to inconsistencies in marker placement. This 3D dance specific multi-segment foot model provides insight into which kinematic measures can be reliably used to ascertain in vivo technical errors and/or biomechanical abnormalities in a dancer's foot motion.
Proper Motions and Structural Parameters of the Galactic Globular Cluster M71
NASA Astrophysics Data System (ADS)
Cadelano, M.; Dalessandro, E.; Ferraro, F. R.; Miocchi, P.; Lanzoni, B.; Pallanca, C.; Massari, D.
2017-02-01
By exploiting two ACS/HST data sets separated by a temporal baseline of ˜7 years, we have determined the relative stellar proper motions (PMs; providing membership) and the absolute PM of the Galactic globular cluster M71. The absolute PM has been used to reconstruct the cluster orbit within a Galactic, three-component, axisymmetric potential. M71 turns out to be in a low-latitude disk-like orbit inside the Galactic disk, further supporting the scenario in which it lost a significant fraction of its initial mass. Since large differential reddening is known to affect this system, we took advantage of near-infrared, ground-based observations to re-determine the cluster center and density profile from direct star counts. The new structural parameters turn out to be significantly different from the ones quoted in the literature. In particular, M71 has a core and a half-mass radii almost 50% larger than previously thought. Finally, we estimate that the initial mass of M71 was likely one order of magnitude larger than its current value, thus helping to solve the discrepancy with the observed number of X-ray sources. Based on observations collected with the NASA/ESA HST (GO10775, GO12932), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dueck, J; Department of Oncology, Rigshospitalet, Copenhagen; Niels Bohr Institute, University of Copenhagen, Copenhagen
Purpose: The breath-hold (BH) technique has been suggested to mitigate motion and reduce target coverage degradation due to motion effects. The aim of this study was to investigate the effect of inter-BH residual motion on the dose distribution for pencil beam scanned (PBS) proton therapy of locally-advanced lung cancer patients. Methods: A dataset of visually-guided BH CT scans was acquired (10 scans per patient) taken from five lung cancer patients: three intra-fractionally repeated CT scans on treatment days 2,16 and 31, in addition to the day 0 planning CT scan. Three field intensity-modulated proton therapy (IMPT) plans were constructed onmore » the planning CT scan. Dose delivery on fraction 2, 16 and 31 were simulated on the three consecutive CT scans, assuming BH duration of 20s and soft tissue match. The dose was accumulated in the planning CT using deformable image registration, and scaled to simulate the full treatment of 66Gy(RBE) in 33 fractions. Results: The mean dose to the lungs and heart, and maximum dose to the spinal cord and esophagus were within 1% of the planned dose. The CTV V95% decreased and the inhomogeneity (D5%–D95%) increased on average 4.1% (0.4–12.2%) and 5.8% (2.2–13.4%), respectively, over the five patient cases. Conclusion: The results showed that the BH technique seems to spare the OARs in spite of inter-BH residual motion. However, small degradation of target coverage occurred for all patients, with 3/5 patients having a decrease in V95% ≤1%. For the remaining two patients, where V95% decreased up to 12%, the cause could be related to treatment related anatomical changes and, as in photon therapy, plan adaptation may be necessary to ensure target coverage. This study showed that BH could be a potential treatment option to reliably mitigate motion for the treatment of locally-advanced lung cancer using PBS proton therapy.« less
Searching Remote Homology with Spectral Clustering with Symmetry in Neighborhood Cluster Kernels
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of “recent” paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. Contact: sarkar@labri.fr. PMID:23457439
Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. sarkar@labri.fr.
NASA Astrophysics Data System (ADS)
Baturin, A. P.
2010-12-01
The results of the experimental estimations on cluster "Skif Cyberia" of Everhart's numerical integration accuracy and rapidness are presented. The integration has been carried out for celestial bodies' equations of motion such as N-body problem equations and perturbed two-body problem equations. In the last case the perturbing bodies' coordinates are being taked during calculations from the ephemeris DE406. The accuracy and rapidness estimations have been made by means of forward and backward integrations with various values of Everhart method parameters of motion equations of the short-periodic comet Herschel-Rigollet. The optimal combinations of these parameters have been obtained. The research has been made both for 16-digit decimal accuracy and for 34-digit one.
Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring
NASA Astrophysics Data System (ADS)
Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.
2010-01-01
The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.
Equation-of-motion coupled cluster method for high spin double electron attachment calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A.
The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied tomore » the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.« less
Cluster flight control for fractionated spacecraft on an elliptic orbit
NASA Astrophysics Data System (ADS)
Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin
2016-08-01
This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.
Mihata, Teruhisa; Takeda, Atsushi; Kawakami, Takeshi; Itami, Yasuo; Watanabe, Chisato; Doi, Munekazu; Neo, Masashi
2016-06-01
Glenohumeral range of motion is correlated with shoulder capsular condition and is thus considered to be predictive of shoulder pathology. However, in throwing athletes, a side-to-side difference in humeral retroversion makes it difficult to evaluate capsular condition on the basis of glenohumeral range of motion measured by using the conventional technique. The purpose of this study was to measure isolated glenohumeral rotation, excluding side-to-side differences in humeral retroversion, in asymptomatic high-school baseball players. A total of 195 high-school baseball players (52 pitchers and 143 position players; median age, 16 years) and 20 high-school non-throwing athletes (median age, 16 years) without any shoulder symptoms were enroled in this study. Glenohumeral external and internal rotations were measured by using both a conventional technique and our ultrasound-assisted technique. This technique, neutral rotation, was standardized on the basis of the ultrasonographically visualized location of the bicipital groove to exclude side-to-side differences in humeral retroversion from the calculated rotation angle. Intra- and inter-observer agreements of rotational measurements were evaluated by using intra-class correlation coefficients (ICCs). Isolated glenohumeral rotation measurements, excluding side-to-side differences in humeral retroversion, demonstrated excellent intra-observer (ICC > 0.89) and inter-observer (ICC > 0.78) agreements. Isolated glenohumeral internal rotation was significantly less in the dominant shoulder than in the non-dominant shoulder in asymptomatic baseball players (P < 0.001). Isolated glenohumeral external rotation in baseball players was significantly greater than in non-throwing athletes (P < 0.05). In the baseball players, humeral torsion in the dominant shoulder was significantly greater than that in the non-dominant shoulder (P < 0.001), indicating that the retroversion angle was greater in dominant shoulders than in non-dominant shoulders. Isolated glenohumeral external and internal rotations can be measured with high intra- and inter-observer reliability with the exclusion of side-to-side differences in humeral retroversion. Capsular and muscular changes in the throwing shoulder may be better evaluated by using our ultrasound-assisted technique. Cross-sectional study, Level III.
TU-AB-BRB-01: Coverage Evaluation and Probabilistic Treatment Planning as a Margin Alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, J.
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
TU-AB-BRB-00: New Methods to Ensure Target Coverage
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
NASA Astrophysics Data System (ADS)
Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia
2017-10-01
Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.
Analysis of the structure and dynamics of human serum albumin.
Guizado, T R Cuya
2014-10-01
Human serum albumin (HSA) is a biologically relevant protein that binds a variety of drugs and other small molecules. No less than 50 structures are deposited in the RCSB Protein Data Bank (PDB). Based on these structures, we first performed a clustering analysis. Despite the diversity of ligands, only two well defined conformations are detected, with a deviation of 0.46 nm between the average structures of the two clusters, while deviations within each cluster are smaller than 0.08 nm. Those two conformations are representative of the apoprotein and the HSA-myristate complex already identified in previous literature. Considering the structures within each cluster as a representative sample of the dynamical states of the corresponding conformation, we scrutinize the structural and dynamical differences between both conformations. Analysis of the fluctuations within each cluster set reveals that domain II is the most rigid one and better matches both structures. Then, taking this domain as reference, we show that the structural difference between both conformations can be expressed in terms of twist and hinge motions of domains I and III, respectively. We also characterize the dynamical difference between conformations by computing correlations and principal components for each set of dynamical states. The two conformations display different collective motions. The results are compared with those obtained from the trajectories of short molecular dynamics simulations, giving consistent outcomes. Let us remark that, beyond the relevance of the results for the structural and dynamical characterization of HAS conformations, the present methodology could be extended to other proteins in the PDB archive.