Sample records for inter-galactic void probability

  1. Void probability as a function of the void's shape and scale-invariant models. [in studies of spacial galactic distribution

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1992-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  2. HI observations of dwarf galaxies out to a distance of 50 Mpc

    NASA Technical Reports Server (NTRS)

    Simpson, Caroline; Gottesman, S. T.

    1993-01-01

    Here we report our preliminary findings from an HI search for dwarf galaxies in three environmentally distinct regions of the sky: a galactic void, a galactic cluster, and an interaction field. This study is sensitive at the 5(sigma) level to hydrogen masses as low as 5 x 10(exp 5) solar mass. We have made three possible detections of previously uncatalogued objects: one in the void field, and two in the cluster field. Reduction of the interaction field is in progress.

  3. On the origin of the angular momentum of galaxies: cosmological tidal torques supplemented by the Coriolis force

    NASA Astrophysics Data System (ADS)

    Casuso, E.; Beckman, J. E.

    2015-05-01

    We present here a theoretical model which can at least contribute to the observed relation between the specific angular momenta of galaxies and their masses. This study offers prima facie evidence that the origin of an angular momentum of galaxies could be somewhat more complex than previously proposed. The most recent observations point to a scenario in which, after recombination, matter was organized around bubbles (commonly termed voids), which acquired rotation by tidal torque interaction. Subsequently, a combination of the effects of the gravitational collapse of gas in protogalaxies and the Coriolis force due to the rotation of the voids could produce the rotation of spiral galaxies. Thereafter, the tidal interaction between the objects populating the quasi-spherical voids, in which the galaxies far away from the rotation axes (populating the sheet forming the surface of a void) interact with higher probability with others similarly situated in a neighbouring void, offers a mechanism for transforming some of the galaxies into ellipticals, breaking their spin and yielding galaxies with low net angular momentum, as observed. This model gives an explanation for those observations which suggest a tendency of galactic spins to align along the radius vectors pointing towards the centres of the voids for ellipticals/SO and parallel to filaments and sheets for the spirals. Furthermore, while in simple tidal torque theory the angular momentum supplied to galaxies diminishes drastically with the cosmic expansion, in our approximation for which the Coriolis force acts in addition to tidal torques, the Coriolis force due to void rotation ensures almost continuous angular momentum supply.

  4. Milgromian dynamics and dwarf galaxies in galactic voids

    NASA Astrophysics Data System (ADS)

    Khadem, Mahdi; Haghi, Hosein

    2018-05-01

    We use kinematic data of 103 dwarf galaxies, obtained from the Sloan Digital Sky Survey catalog, to test the Milgromian dynamics (MOND) inside a galactic void. From this data, we compute the line-of-sight velocity dispersions of the dwarf galaxies in the frameworks of MOND and Newtonian dynamics without invoking any dark matter. The prediction for the line-of-sight velocity dispersions from MOND of 53 selected dwarf galaxies is compared with their measured values. For appropriate mass-to-light ratios in the range 1 to 5 for each individual dwarf galaxy, our results for the line-of-sight velocity dispersions predicted by MOND are more compatible with observations than those predicted by Newtonian dynamics.

  5. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2003-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory to study the X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in the existing experimental and theoretical data and are needed to explain all or part of the observed X-ray emission from the Galactic Ridge, solar and stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae.

  6. Analysis of two-phase flow inter-subchannel mass and momentum exchanges by the two-fluid model approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninokata, H.; Deguchi, A.; Kawahara, A.

    1995-09-01

    A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less

  7. Evidence of scaling of void probability in nucleus-nucleus interactions at few GeV energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Dipak; Biswas, Biswanath; Deb, Argha

    1997-11-01

    The rapidity gap probability in the {sup 24}Mg-AgBr interaction at 4.5GeV/c/nucleon has been studied in detail. The data reveal scaling behavior of the void probability in the central rapidity domain which confirms the validity of the linked-pair approximation for the N-particle cumulant correlation functions. This scaling behavior appears to be similar to the void probability in the Perseus-Pisces supercluster region of galaxies. {copyright} {ital 1997} {ital The American Physical Society}

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Daniel N; Peterson, Paul D; Kien - Yin, Lee

    Structural damage in energetic materials plays a significant role in the probability of nonshock initiation events. Damage may occur in the form of voids or cracks either within crystals or in binder-rich regions between crystals. These cracks affect whether hotspots generated by impact will quench or propagate under non-shock insult. For this study, we have separately engineered intracrystalline and inter-crystalline cracks in to the HMX-based PBX 9501. Intra-crystalline cracks were created by subjecting HMX to forward and reverse solid-to-solid phase transformations prior to formulation. Inter-crystalline cracks were induced by compressing formulated samples of PBX 9501 at an average strain ratemore » of 0.00285 S{sup -1}. Both sets of pre-damaged explosives were then impact tested using the LANL Type 12 Drop Weight-Impact Machine and their sensitivities compared to nondamaged PBX 9501. Results of these tests clearly show significant differences in sensitivity between damaged and non-damaged PBX 9501.« less

  9. Void space inside the developing seed of Brassica napus and the modelling of its function

    PubMed Central

    Verboven, Pieter; Herremans, Els; Borisjuk, Ljudmilla; Helfen, Lukas; Ho, Quang Tri; Tschiersch, Henning; Fuchs, Johannes; Nicolaï, Bart M; Rolletschek, Hardy

    2013-01-01

    The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed. PMID:23692271

  10. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1986-01-01

    The reliability of microfocous X-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 precent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  11. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1985-01-01

    The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  12. The Kirkendall and Frenkel effects during 2D diffusion process

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2014-11-01

    The two-dimensional approach for inter-diffusion and voids generation is presented. The voids evolution and growth is discussed. This approach is based on the bi-velocity (Darken) method which combines the Darken and Brenner concepts that the volume velocity is essential in defining the local material velocity in multi-component mixture at non-equilibrium. The model is formulated for arbitrary multi-component two-dimensional systems. It is shown that the voids growth is due to the drift velocity and vacancy migration. The radius of the void can be easily estimated. The distributions of (1) components, (2) vacancy and (3) voids radius over the distance is presented.

  13. Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation.

    PubMed

    Chang, Yuan-Wei; Cheng, Yin; Helfen, Lukas; Xu, Feng; Tian, Tian; Scheel, Mario; Di Michiel, Marco; Chen, Chih; Tu, King-Ning; Baumbach, Tilo

    2017-12-20

    In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value.

  14. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2002-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory (LLNL) to study X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae. Progress made during the first year of the grant is described, as is work planned for the second year.

  15. Reliability of scanning laser acoustic microscopy for detecting internal voids in structural ceramics

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Baaklini, G. Y.

    1986-01-01

    The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.

  16. A Model for the Breakup of Comet Linear (C/1999 S4)

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.

    2001-01-01

    We propose a mechanism based on the rubble-pile hypothesis of the cometary nucleus (Weissman 1986) to explain the catastrophic breakup of comet LINEAR (C/1999 S4) observed during July-August 2000. We suggest that a solid nucleus made up of 10-100 m "cometesimals" (Weidenschilling 1997) contains a network of inter-connected voids in the inter-cometesimal regions. The production of super-volatile (i.e., species more volatile than water) gases into these voids occurs due to the thermal wave propagating through the nucleus and associated phase transitions of water ice. The network of voids provides an efficient pathway for rapid propagation of these gases within the nucleus resulting in gas pressure caused stresses over a wide regime of the nucleus. This provides a mechanism for catastrophic breakups of small cometary nuclei such as comet LINEAR (C/1999 S4) as well as for some observed cometary outbursts including those that occur at large heliocentric distances (e.g., West et al. 1991). We emphasize the importance of techniques such as radar reflection tomography and radiowave transmission tomography (e.g., Kofman et al. 1998) aboard cometary missions to determine the three dimensional structure of the nucleus in particular the extent of large scale voids.

  17. IRR (Inter-Rater Reliability) of a COP (Classroom Observation Protocol)--A Critical Appraisal

    ERIC Educational Resources Information Center

    Rui, Ning; Feldman, Jill M.

    2012-01-01

    Notwithstanding broad utility of COPs (classroom observation protocols), there has been limited documentation of the psychometric properties of even the most popular COPs. This study attempted to fill this void by closely examining the item and domain-level IRR (inter-rater reliability) of a COP that was used in a federally funded striving readers…

  18. Void probability as a function of the void's shape and scale-invariant models

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1991-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  19. Statistics of voids in hierarchical universes

    NASA Technical Reports Server (NTRS)

    Fry, J. N.

    1986-01-01

    As one alternative to the N-point galaxy correlation function statistics, the distribution of holes or the probability that a volume of given size and shape be empty of galaxies can be considered. The probability of voids resulting from a variety of hierarchical patterns of clustering is considered, and these are compared with the results of numerical simulations and with observations. A scaling relation required by the hierarchical pattern of higher order correlation functions is seen to be obeyed in the simulations, and the numerical results show a clear difference between neutrino models and cold-particle models; voids are more likely in neutrino universes. Observational data do not yet distinguish but are close to being able to distinguish between models.

  20. Empirical evaluation of grouping of lower urinary tract symptoms: principal component analysis of Tampere Ageing Male Urological Study data.

    PubMed

    Pöyhönen, Antti; Häkkinen, Jukka T; Koskimäki, Juha; Hakama, Matti; Tammela, Teuvo L J; Auvinen, Anssi

    2013-03-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: The ICS has divided LUTS into three groups: storage, voiding and post-micturition symptoms. The classification is based on anatomical, physiological and urodynamic considerations of a theoretical nature. We used principal component analysis (PCA) to determine the inter-correlations of various LUTS, which is a novel approach to research and can strengthen existing knowledge of the phenomenology of LUTS. After we had completed our analyses, another study was published that used a similar approach and results were very similar to those of the present study. We evaluated the constellation of LUTS using PCA of the data from a population-based study that included >4000 men. In our analysis, three components emerged from the 12 LUTS: voiding, storage and incontinence components. Our results indicated that incontinence may be separate from the other storage symptoms and post-micturition symptoms should perhaps be regarded as voiding symptoms. To determine how lower urinary tract symptoms (LUTS) relate to each other and assess if the classification proposed by the International Continence Society (ICS) is consistent with empirical findings. The information on urinary symptoms for this population-based study was collected using a self-administered postal questionnaire in 2004. The questionnaire was sent to 7470 men, aged 30-80 years, from Pirkanmaa County (Finland), of whom 4384 (58.7%) returned the questionnaire. The Danish Prostatic Symptom Score-1 questionnaire was used to evaluate urinary symptoms. Principal component analysis (PCA) was used to evaluate the inter-correlations among various urinary symptoms. The PCA produced a grouping of 12 LUTS into three categories consisting of voiding, storage and incontinence symptoms. Post-micturition symptoms were related to voiding symptoms, but incontinence symptoms were separate from storage symptoms. In the analyses by age group, similar categorization was found at ages 40, 50, 60 and 80 years, but only two groups of symptoms emerged among men aged 70 years. The prevalence among men aged 30 was too low for meaningful analysis. This population-based study suggests that LUTS can be divided into three subgroups consisting of voiding, storage and incontinence symptoms based on their inter-correlations. Our empirical findings suggest an alternative grouping of LUTS. The potential utility of such an approach requires careful consideration. © 2012 BJU International.

  1. Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs

    PubMed Central

    Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor

    2017-01-01

    Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network. PMID:28763014

  2. Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.

    PubMed

    Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor

    2017-08-01

    Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.

  3. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Vachaspati, Tanmay

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  4. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  5. Study of GRBs Hosts Galaxies Vicinity Properties

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0

  6. IN VITRO QUANTIFICATION OF THE SIZE DISTRIBUTION OF INTRASACCULAR VOIDS LEFT AFTER ENDOVASCULAR COILING OF CEREBRAL ANEURYSMS.

    PubMed

    Sadasivan, Chander; Brownstein, Jeremy; Patel, Bhumika; Dholakia, Ronak; Santore, Joseph; Al-Mufti, Fawaz; Puig, Enrique; Rakian, Audrey; Fernandez-Prada, Kenneth D; Elhammady, Mohamed S; Farhat, Hamad; Fiorella, David J; Woo, Henry H; Aziz-Sultan, Mohammad A; Lieber, Baruch B

    2013-03-01

    Endovascular coiling of cerebral aneurysms remains limited by coil compaction and associated recanalization. Recent coil designs which effect higher packing densities may be far from optimal because hemodynamic forces causing compaction are not well understood since detailed data regarding the location and distribution of coil masses are unavailable. We present an in vitro methodology to characterize coil masses deployed within aneurysms by quantifying intra-aneurysmal void spaces. Eight identical aneurysms were packed with coils by both balloon- and stent-assist techniques. The samples were embedded, sequentially sectioned and imaged. Empty spaces between the coils were numerically filled with circles (2D) in the planar images and with spheres (3D) in the three-dimensional composite images. The 2D and 3D void size histograms were analyzed for local variations and by fitting theoretical probability distribution functions. Balloon-assist packing densities (31±2%) were lower ( p =0.04) than the stent-assist group (40±7%). The maximum and average 2D and 3D void sizes were higher ( p =0.03 to 0.05) in the balloon-assist group as compared to the stent-assist group. None of the void size histograms were normally distributed; theoretical probability distribution fits suggest that the histograms are most probably exponentially distributed with decay constants of 6-10 mm. Significant ( p <=0.001 to p =0.03) spatial trends were noted with the void sizes but correlation coefficients were generally low (absolute r <=0.35). The methodology we present can provide valuable input data for numerical calculations of hemodynamic forces impinging on intra-aneurysmal coil masses and be used to compare and optimize coil configurations as well as coiling techniques.

  7. Intergalactic Hydrogen Clouds at Low Redshift: Connections to Voids and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stocke, John T.; Penton, Steve

    1996-01-01

    We provide new post-COSTAR data on one sightline (Mrk 421) and updated data from another (I Zw 1) from our Hubble Space Telescope (HST) survey of intergalactic Ly(alpha) clouds located along sightlines to four bright quasars passing through well-mapped galaxy voids (16000 km/s pathlength) and superclusters (18000 km/s). We report two more definite detections of low-redshift Ly(alpha) clouds in voids: one at 3047 km/s (heliocentric) toward Mrk 421 and a second just beyond the Local Supercluster at 2861 km/s toward I Zw 1, confirming our earlier discovery of Ly(alpha) absorption clouds in voids (Stocke et al., ApJ, 451, 24). We have now identified ten definite and one probable low-redshift neutral hydrogen absorption clouds toward four targets, a frequency of approximately one absorber every 3400 km/s above 10(exp 12.7/sq cm column density. Of these ten absorption systems, three lie within voids; the probable absorber also lies in a void. Thus, the tendency of Ly(alpha) absorbers to 'avoid the voids' is not as clear as we found previously. If the Ly(alpha) clouds are approximated as homogeneous spheres of 100 kpc radius, their masses are approximately 10(exp 9)solar mass (about 0.01 times that of bright L* galaxies) and they are 40 times more numerous, comparable to the density of dwarf galaxies and of low-mass halos in numerical CDM simulations. The Ly(alpha) clouds contribute a fraction Omega(sub cl)approximately equals 0.003/h(sub 75) to the closure density of the universe, comparable to that of luminous matter. These clouds probably require a substantial amount of nonbaryonic dark matter for gravitational binding. They may represent extended haloes of low-mass protogalaxies which have not experienced significant star formation or low-mass dwarf galaxies whose star formation ceased long ago, but blew out significant gaseous material.

  8. 1-Hydroxypyrene concentrations in first morning voids and 24-h composite urine: intra- and inter-individual comparisons.

    PubMed

    Han, In-Kyu; Duan, Xiaoli; Zhang, Lin; Yang, Hongbiao; Rhoads, George G; Wei, Fusheng; Zhang, Junfeng

    2008-09-01

    Urinary 1-hydroxypyrene (1-OHP) has been suggested as an exposure biomarker for polycyclic aromatic hydrocarbons (PAHs). However, it remains unknown whether a first morning urine sample can be used to reflect average exposure. In this paper, we examine intra-individual differences and inter-individual associations between first morning voids and 24-h composite urine samples. The analysis was performed using data collected from 100 adults who had a wide range of PAH exposure due to differences in their occupation, e.g., coke oven workers vs. non-coke oven workers. For each subject, all the urine voids within each of two 24-h measurement periods were collected. Results showed a significant (40% to 62%) intra-individual difference between first morning voids and 24-h urinary 1-OHP concentrations (in ng/ml urine). Creatinine adjustments of 1-OHP concentrations (in micromol/mol urinary creatinine) reduced the intra-individual difference by approximately 10%. Across all the subjects, a high overall correlation (r=0.76) was observed between first morning and 24-h average 1-OHP concentrations. Work environment and sampling season were found to significantly affect the relationship between first morning and 24-h 1-OHP concentrations. An increase of 1 ng/ml of first morning urinary 1-OHP predicted an increase of 0.5 and 0.25 ng/ml of 24-h urinary 1-OHP for coke oven workers and non-coke oven workers, respectively. Data collected in a winter season showed a higher correlation between first morning and 24-h concentrations than data collected in a fall season. Creatinine adjustments did not significantly improve overall correlations between first morning void and 24-h measurements, but increased total variances for 24-h urines explained by first morning urines in coke workers.

  9. Ultraviolet studies of the intergalactic medium, active galactic nuclei, and the low-z Ly-alpha forest

    NASA Astrophysics Data System (ADS)

    Penton, Steven Victor

    1999-05-01

    A database of all active galactic nuclei (AGN) observed with the International Ultraviolet Explorer (IUE, 1976-1995) was created to determine the brightest UV (1250 Å) extragalactic sources. Combined spectra, and continuum lightcurves are available for ~700 AGN. Fifteen targets were selected from this database for observation of the low-z Lyα forest with the Hubble Space Telescope. These observations were taken with the Goddard High Resolution spectrograph and the G160M grating (1991-1997). 111 significance level >3σ Lyα absorbers were detected in the redshift range, 0.002 < z < 0.069. This Thesis evaluates the physical properties of these Lyα absorbers and compares them to their high-z counterparts. In addition, we use large galaxy catalogs (i.e. the CfA Redshift Survey) to compare the relationship between known galaxies and the low-z Lyα forest. We find that the low-z absorbers are similar in physical characteristic and density to those detected at high- z. Some of these clouds appear to be primordial matter, owing to the lack of detected metallicity. A comparison to the known galaxy distribution indicates that the low-z Lyα forest clusters less than galaxies, but more than random. This suggests that at least a fraction of the absorbers are associated with the gas in galaxy associations (i.e. filaments), while a second population is distributed more uniformly. Over equal pathlengths (cΔz ~60,000 km s -1 each) of galaxy-rich and galaxy-poor environments (voids), we determine that 80% of Lyα absorbers are near large-scale galactic structures (i.e. filaments), while 20% are in galaxy voids.

  10. Observing the Next Galactic Supernova

    NASA Astrophysics Data System (ADS)

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Vagins, Mark R.; Stanek, K. Z.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (sime 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (sime 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2^{+7.3}_{-2.6} per century and a Galactic SN Ia rate of 1.4^{+1.4}_{-0.8} per century for a total Galactic SN rate of 4.6^{+7.4}_{-2.7} per century is needed to account for the SNe observed over the last millennium, which implies a Galactic star formation rate of 3.6^{+8.3}_{-3.0} M ⊙ yr-1.

  11. On the linearity of tracer bias around voids

    NASA Astrophysics Data System (ADS)

    Pollina, Giorgia; Hamaus, Nico; Dolag, Klaus; Weller, Jochen; Baldi, Marco; Moscardini, Lauro

    2017-07-01

    The large-scale structure of the Universe can be observed only via luminous tracers of the dark matter. However, the clustering statistics of tracers are biased and depend on various properties, such as their host-halo mass and assembly history. On very large scales, this tracer bias results in a constant offset in the clustering amplitude, known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centred on cosmic voids, I.e. depressions of the density field that spatially dominate the Universe. We consider three types of tracers: galaxies, galaxy clusters and active galactic nuclei, extracted from the hydrodynamical simulation Magneticum Pathfinder. In contrast to common clustering statistics that focus on auto-correlations of tracers, we find that void-tracer cross-correlations are successfully described by a linear bias relation. The tracer-density profile of voids can thus be related to their matter-density profile by a single number. We show that it coincides with the linear tracer bias extracted from the large-scale auto-correlation function and expectations from theory, if sufficiently large voids are considered. For smaller voids we observe a shift towards higher values. This has important consequences on cosmological parameter inference, as the problem of unknown tracer bias is alleviated up to a constant number. The smallest scales in existing data sets become accessible to simpler models, providing numerous modes of the density field that have been disregarded so far, but may help to further reduce statistical errors in constraining cosmology.

  12. Voids and constraints on nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.

    1994-01-01

    Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model (omega = 1, b = 1.5; see below for definitions) and nonzero cosmological constant CDM model (omega = 0.4, h = 0.6 lambda(sub 0) = 0.6, b = 1.3) produce voids that are too empty. All three simulations match the observed VPF and underdensity probability for samples of very bright (M less than M asterisk = -19.2) galaxies, but produce voids that are too empty when compared with samples that include fainter galaxies.

  13. The annihilation of galactic positrons

    NASA Technical Reports Server (NTRS)

    Bussard, R.; Rematy, R.

    1978-01-01

    The probabilities of various channels of galactic positron annihilation were evaluated and the spectrum of the resulting radiation was calculated. The narrow width (FWHM less than 3.2 keV) of the 0.511 MeV line observed from the galactic center implies that a large fraction of positrons should annihilate in a medium of temperature less than 100,000 K and ionization fraction greater than 0.05. HII regions at the galactic center could be possible sites of annihilation.

  14. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duplessis, Francis; Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify andmore » explain a new feature of the Q-statistics that can further enhance its power.« less

  15. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  16. The Other Intelligences (Oy Vey!).

    ERIC Educational Resources Information Center

    Chase, Kim

    1998-01-01

    A middle-school teacher humorously observes seven other intelligences of students: random thinking; virtual memory void (erasing entire sections of personal memory); antigravity (balancing on two chair legs); intravacancy (achieving perfect, effortless aplomb); inter-Origami (intricate note-folding); stealth-kinesthetic (peashooting spitballs…

  17. Fatigue and Impact Strength of Diffusion Bonded Titanium Alloy Joints

    DTIC Science & Technology

    1989-02-01

    likely to be due to the void level being such that the chance of a pore cluster being present at or near the test piece surface was less probable...in sub-surface crack initiation and reduced fatigue strength; it was concluded that small single voids were insignificant but clusters of voids...strength is reduced when clusters of pores are present, and is, in turn, a much more sensitive test than the tensile test. In the current work the

  18. Effect of voids on Arrhenius relationship between H-solubility and temperature in nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.Y.; Sun, X.K.; Hu, Z.Q.

    1997-01-15

    Many investigations about the states of hydrogen in voids within metals have been carried out over the past years. These probable states of hydrogen in the voids are directly relevant to hydrogen embrittlement mechanisms. Therefore, a knowledge of the states of hydrogen in the voids is important to an understanding of hydrogen-related degradation of material properties. Some results show that hydrogen exists as a molecule in the voids, while others suggest it is in the chemisorbed state on the internal surface of the voids. The results of Sung-Man lee et al. suggested that hydrogen in the voids in nickel existsmore » both in the gaseous and chemisorbed stats, and most of the hydrogen trapped in the voids seems to be present as a chemisorbed state in 1 atm. hydrogen pressure in the temperature range of 350--582 C. But there is no quantitative description concerning the effects of the voids on the solubility of hydrogen in materials. The purpose of this work is to describe quantitatively the effects of the voids on hydrogen solubility in nickel, considering hydrogen exists as gaseous and chemisorbed states in the voids, and the very weak physical adsorption above room temperature is neglected.« less

  19. QSO Lyalpha Absorption Lines in Galaxy Superclusters and Voids

    NASA Astrophysics Data System (ADS)

    Stocke, J. T.; Shull, J. M.; Penton, S.; Burks, G.; Donahue, M.

    1993-12-01

    We have used the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph (GHRS) to search for Lyalpha absorption clouds in nearby galaxy voids (cz <= 10,000 km s(-1) ). Thus far, we have obtained GHRS spectra (G160M, 1225 -- 1255 Angstroms, 0.25 Angstroms resolution) of three very bright Active Galactic Nuclei, Mrk 501, I Zw I, and Mrk 335, at V <= 14.5. We find 4 probable (4.0 sigma - 4.5 sigma ) and 4 definite (5 sigma - 16 sigma ) Lyalpha absorption lines, with equivalent widths W_λ = 50 - 200 m Angstroms, corresponding to column densities N(H I) = 10(13) -- 10(14) cm(-2) , assuming a typical Doppler parameter of b = 25 km s(-1) . Based on an updated version of the CfA redshift survey (Huchra and Clemens, private communication), most of these Lyalpha systems appear to be associated with supercluster - sized ``strings'' of galaxies similar to the ``Great Wall''. Toward Mrk 501, the nearest bright galaxy at the redshift of the strongest (200 m Angstroms) Lyalpha cloud lies 500 h75(-1) kpc off the line of sight. Models of H I disks exposed to the intergalactic ionizing radiation field (Dove & Shull 1994, ApJ, 423, in press) show that the N(H I) = 10(13) cm(-2) contour in a typical spiral galaxy is reached at 100 kpc radial extent. Thus, the Lyalpha absorbers associated with galaxy-string systems may be the result of H I in an extended halo, in dwarf satellite galaxies (M_B > -15), or in tidally-stripped gas. Most importantly for cosmological origins of baryons, one (4.3 sigma ) Lyalpha absorption line in the spectrum of Mrk 501 lies within the galaxy void in the foreground of the ``Great Wall''. The nearest bright galaxy, to a level M_B <= -18.5 for H_0 = 75 km s(-1) Mpc(-1) , is more than 5 Mpc away. A pencil-beam survey of faint galaxies to M_B = -16.0 finds no galaxy within 100 h75(-1) kpc of the line of sight, at or near the absorber redshift.

  20. OBSERVATION OF TeV GAMMA RAYS FROM THE FERMI BRIGHT GALACTIC SOURCES WITH THE TIBET AIR SHOWER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amenomori, M.; Bi, X. J.; Ding, L. K.

    2010-01-20

    Using the Tibet-III air shower array, we search for TeV {gamma}-rays from 27 potential Galactic sources in the early list of bright sources obtained by the Fermi Large Area Telescope at energies above 100 MeV. Among them, we observe seven sources instead of the expected 0.61 sources at a significance of 2{sigma} or more excess. The chance probability from Poisson statistics would be estimated to be 3.8 x 10{sup -6}. If the excess distribution observed by the Tibet-III array has a density gradient toward the Galactic plane, the expected number of sources may be enhanced in chance association. Then, themore » chance probability rises slightly, to 1.2 x 10{sup -5}, based on a simple Monte Carlo simulation. These low chance probabilities clearly show that the Fermi bright Galactic sources have statistically significant correlations with TeV {gamma}-ray excesses. We also find that all seven sources are associated with pulsars, and six of them are coincident with sources detected by the Milagro experiment at a significance of 3{sigma} or more at the representative energy of 35 TeV. The significance maps observed by the Tibet-III air shower array around the Fermi sources, which are coincident with the Milagro {>=}3{sigma} sources, are consistent with the Milagro observations. This is the first result of the northern sky survey of the Fermi bright Galactic sources in the TeV region.« less

  1. Hypervelocity star candidates in Gaia DR1/TGAS

    NASA Astrophysics Data System (ADS)

    Marchetti, T.; Rossi, E. M.; Kordopatis, G.; Brown, A. G. A.; Rimoldi, A.; Starkenburg, E.; Youakim, K.; Ashley, R.

    2018-04-01

    Hypervelocity stars (HVSs) are characterized by a total velocity in excess of the Galactic escape speed, and with trajectories consistent with coming from the Galactic Centre. We apply a novel data mining routine, an artificial neural network, to discover HVSs in the TGAS subset of the first data release of the Gaia satellite, using only the astrometry of the stars. We find 80 stars with a predicted probability >90% of being HVSs, and we retrieved radial velocities for 47 of those. We discover 14 objects with a total velocity in the Galactic rest frame >400 km s-1, and 5 of these have a probability >50% of being unbound from the Milky Way. Tracing back orbits in different Galactic potentials, we discover 1 HVS candidate, 5 bound HVS candidates, and 5 runaway star candidates with remarkably high velocities, between 400 and 780 km s-1. We wait for future Gaia releases to confirm the goodness of our sample and to increase the number of HVS candidates.

  2. High energy gamma ray results from the second small astronomy satellite

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. F.; Tuemer, T.

    1974-01-01

    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter.

  3. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herring, Stuart Davis; Germann, Timothy C; Jensen, Niels G

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in amore » micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.« less

  4. The galactic contribution to IceCube's astrophysical neutrino flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, Peter B.; Marfatia, Danny; Weiler, Thomas J., E-mail: peterbd1@gmail.com, E-mail: dmarf8@hawaii.edu, E-mail: tom.weiler@vanderbilt.edu

    2017-08-01

    High energy neutrinos have been detected by IceCube, but their origin remains a mystery. Determining the sources of this flux is a crucial first step towards multi-messenger studies. In this work we systematically compare two classes of sources with the data: galactic and extragalactic. We assume that the neutrino sources are distributed according to a class of Galactic models. We build a likelihood function on an event by event basis including energy, event topology, absorption, and direction information. We present the probability that each high energy event with deposited energy E {sub dep}>60 TeV in the HESE sample is Galactic,more » extragalactic, or background. For Galactic models considered the Galactic fraction of the astrophysical flux has a best fit value of 1.3% and is <9.5% at 90% CL. A zero Galactic flux is allowed at <1σ.« less

  5. MOSAIC: A Multi-Object Spectrograph for the E-ELT

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Hammer, F.; Jagourel, P.; MOSAIC Consortium

    2016-10-01

    The instrumentation plan for the European Extremely Large Telescope foresees a Multi-Object Spectrograph (E-ELT MOS). The MOSAIC project is proposed by a European-Brazilian consortium, to provide a unique MOS facility for astrophysics, studies of the inter-galactic medium and for cosmology. The science cases range from spectroscopy of the most distant galaxies, mass assembly and evolution of galaxies, via resolved stellar populations and galactic archaeology, to planet formation studies. A further strong driver is spectroscopic follow-up observations of targets that will be discovered with the James Webb Space Telescope.

  6. Galactic-scale civilization

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1980-01-01

    Evolutionary arguments are presented in favor of the existence of civilization on a galactic scale. Patterns of physical, chemical, biological, social and cultural evolution leading to increasing levels of complexity are pointed out and explained thermodynamically in terms of the maximization of free energy dissipation in the environment of the organized system. The possibility of the evolution of a global and then a galactic human civilization is considered, and probabilities that the galaxy is presently in its colonization state and that life could have evolved to its present state on earth are discussed. Fermi's paradox of the absence of extraterrestrials in light of the probability of their existence is noted, and a variety of possible explanations is indicated. Finally, it is argued that although mankind may be the first occurrence of intelligence in the galaxy, it is unjustified to presume that this is so.

  7. Immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-04-01

    We have studied short-line effects in fully-integrated Cu damascene interconnects through electromigration experiments on lines of various lengths and embedded in different dielectric materials. We compare these results with results from analogous experiments on subtractively-etched Al-based interconnects. It is known that Al-based interconnects exhibit three different behaviors, depending on the magnitude of the product of current density, j, and line length, L: For small values of (jL), no void nucleation occurs, and the line is immortal. For intermediate values, voids nucleate, but the line does not fail because the current can flow through the higher-resistivity refractory-metal-based shunt layers. Here, the resistance of the line increases but eventually saturates, and the relative resistance increase is proportional to (jL/B), where B is the effective elastic modulus of the metallization system. For large values of (jL/B), voiding leads to an unacceptably high resistance increase, and the line is considered failed. By contrast, we observed only two regimes for Cu-based interconnects: Either the resistance of the line stays constant during the duration of the experiment, and the line is considered immortal, or the line fails due to an abrupt open-circuit failure. The absence of an intermediate regime in which the resistance saturates is due to the absence of a shunt layer that is able to support a large amount of current once voiding occurs. Since voids nucleate much more easily in Cu- than in Al-based interconnects, a small fraction of short Cu lines fails even at low current densities. It is therefore more appropriate to consider the probability of immortality in the case of Cu rather than assuming a sharp boundary between mortality and immortality. The probability of immortality decreases with increasing amount of material depleted from the cathode, which is proportional to (jL2/B) at steady state. By contrast, the immortality of Al-based interconnects is described by (jL) if no voids nucleate, and (jL/B) if voids nucleate.

  8. The distribution of emission-line galaxies in selected areas of the sky

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward

    1988-11-01

    The author discusses the spatial distribution of emission-line galaxies (ELGs) relative to normal galaxies in several areas of the sky. Current evidence supports the notion that ELGs trace a low-density population in all the surveyed areas with the possible exception of the CfA "Slice of the Universe" survey. Based on this and other survey data in the north galactic cap, it is suggested that the ELGs inside the Bootes void may actually define the edge of a totally empty volume within an underdense distribution of normal galaxies.

  9. The distribution of emission-line galaxies in selected areas of the sky

    NASA Technical Reports Server (NTRS)

    Moody, J. Ward

    1988-01-01

    The spatial distribution of emission-line galaxies (ELGs) relative to normal galaxies in several areas of the sky is discussed. Current evidence supports the notion that ELGs trace a low-density population in all the surveyed areas with the possible exception of the CfA 'Slice of the Universe' survey. Based on this and other survey data in the north galactic cap, it is suggested that the ELGs inside the Bootes void may actually define the edge of a totally empty volume within an underdense distribution of normal galaxies.

  10. Search for EeV protons of galactic origin

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashi, M.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, T.; Shibata, F.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, M.; Tanaka, K.; Tanaka, H.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tirone, A. H.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    Cosmic rays in the energy range 1018.0-1018.5 eV are thought to have a light, probably protonic, composition. To study their origin one can search for anisotropy in their arrival directions. Extragalactic cosmic rays should be isotropic, but galactic cosmic rays of this type should be seen mostly along the galactic plane, and there should be a shortage of events coming from directions near the galactic anticenter. This is due to the fact that, under the influence of the galactic magnetic field, the transition from ballistic to diffusive behavior is well advanced, and this qualitative picture persists over the whole energy range. Guided by models of the galactic magnetic field that indicate that the enhancement along the galactic plane should have a standard deviation of about 20° in galactic latitude, and the deficit in the galactic anticenter direction should have a standard deviation of about 50° in galactic longitude, we use the data of the Telescope Array surface detector in 1018.0 to 1018.5 eV energy range to search for these effects. The data are isotropic. Neither an enhancement along the galactic plane nor a deficit in the galactic anticenter direction is found. Using these data we place an upper limit on the fraction of EeV cosmic rays of galactic origin at 1.3% at 95% confidence level.

  11. Advanced Signal Processing Techniques Applied to Terahertz Inspections on Aerospace Foams

    NASA Technical Reports Server (NTRS)

    Trinh, Long Buu

    2009-01-01

    The space shuttle's external fuel tank is thermally insulated by the closed cell foams. However, natural voids composed of air and trapped gas are found as by-products when the foams are cured. Detection of foam voids and foam de-bonding is a formidable task owing to the small index of refraction contrast between foam and air (1.04:1). In the presence of a denser binding matrix agent that bonds two different foam materials, time-differentiation of filtered terahertz signals can be employed to magnify information prior to the main substrate reflections. In the absence of a matrix binder, de-convolution of the filtered time differential terahertz signals is performed to reduce the masking effects of antenna ringing. The goal is simply to increase probability of void detection through image enhancement and to determine the depth of the void.

  12. Eclipsing Stellar Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham

    2017-12-01

    Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.

  13. Photon escape probabilities in a semi-infinite plane-parallel medium. [from electron plasma surrounding galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Elsner, R. F.; Weisskopf, M. C.; Darbro, W.

    1984-01-01

    It is shown in this work how to obtain the probabilities of photons escaping from a cold electron plasma environment after having undergone an arbitrary number of scatterings. This is done by retaining the exact differential cross section for Thomson scattering as opposed to using its polarization and angle averaged form. The results are given in the form of recursion relations. The geometry used is the semi-infinite plane-parallel geometry witlh a photon source located on a plane at an arbitrary optical depth below the surface. Analytical expressions are given for the probabilities which are accurate over a wide range of initial optical depth. These results can be used to model compact X-ray galactic sources which are surrounded by an electron-rich plasma.

  14. Towards the reanalysis of void coefficients measurements at proteus for high conversion light water reactor lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hursin, M.; Koeberl, O.; Perret, G.

    2012-07-01

    High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivitymore » Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)« less

  15. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara

    2013-06-10

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA)more » for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of molecular cloud clumps is generally applicable to other dust-continuum Galactic plane surveys.« less

  16. ASTE Surveys of Galactic Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2008-05-01

    We report some recent highlights on the observational studies of Galactic star formation based on surveys using the Atacama Submillimeter Telescope Experiment (ASTE), a new 10 m telescope in the Atacama desert in northern Chile (Kohno et al., 2008, ApSS, 313, 279). The highlights will include (1) a large scale CO(3-2) imaging survey of the Galactic Center, unveiling the presence of numerous compact high velocity clouds with high CO(3-2)/CO(1-0) ratios as a "fossil” of the recent burst of star formation in the Galactic Center region (Oka et al., 2007, PASJ, 59, 15; Nagai et al., 2007, PASJ, 59, 25; Tanaka et al., 2007, PASJ, 59, 323), (2) a large scale CO(3-2) imaging survey of the Sgr arm and inter-am regions, revealing the distinct difference on the morphology and physical property of molecular gas between the arm and inter-arm regions for the first time (Sawada, Koda, et al., in prep.), and (3) a wide area 1.1 mm imaging survey of Southern low mass star-forming regions such as Chamaeleon and Lupus molecular clouds using the bolometer camera AzTEC (Wilson et al., 2008, MNRAS, in press) mounted on ASTE, yielding detections of starless cores with a very low mass detection limist down to 0.1 solar masses (Hiramatsu, Tsukagoshi, Kawabe et al., in prep.). Related topics on the massive star-forming regions in very nearby galaxies such as LMC (Minamidani et al., 2008, ApJS, in press) and M 33 (Tosaki et al., 2007, ApJ, 664, L27; Onodera et al., in prep.; Komugi et al., in prep.) will also be reviewed.

  17. Observations of Galactic gamma-radiation with the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  18. KEGS Discovery of 28 Supernova Candidates in the K2 Campaign 17 Field with DECam

    NASA Astrophysics Data System (ADS)

    Narayan, G.; Rest, A.; Strampelli, G. M.; Zenteno, A.; James, D. J.; Smith, R. C.; Tucker, B. E.; Garnavich, P.; Margheim, S.; Kasen, D.; Olling, R.; Shaya, E.; Buron, F. Forster; Villar, V. A.

    2018-05-01

    The Kepler Extra-Galactic Survey (KEGS, see http://www.mso.anu.edu.au/kegs/ ) reports the discovery of 28 supernova candidates with the Dark Energy Camera (DECam, NOAO 2017B-0285) on the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory (CTIO).

  19. MEASUREMENT OF CHILDREN'S EXPOSURE TO PESTICIDES: ANALYSIS OF URINARY METABOLITE LEVELS IN A PROBABILITY-BASED SAMPLE

    EPA Science Inventory

    The Minnesota Children's Pesticide Exposure Study is a probability-based sample of 102 children 3-13 years old who were monitored for commonly used pesticides. During the summer of 1997, first-morning-void urine samples (1-3 per child) were obtained for 88% of study children a...

  20. Search for ultra high energy gamma-rays from various sources

    NASA Technical Reports Server (NTRS)

    Dzikowski, T.; Gawin, J.; Grochalska, B.; Korejwo, J.; Wdowczyk, J.

    1985-01-01

    The hypothesis that there exists an excess of showers from the Galactic plane on the level 1 to 2% at energies just above 10 to the 16th power eV is explored. The excess shower from the Galactic plane seems to be very similar in properties to excess showers from the point sources/flat spectrum, deficit of low energy muons. Those facts suggest that the excess from the Galactic plane are probably due to summing up of the contribution from individual point sources. That in turn suggest that those sources are rather numerous.

  1. Numerical study of photon migration in the presence of a void region using the radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Miyakawa, Erina; Fujii, Hiroyuki; Hattori, Kiyohito; Tatekura, Yuki; Kobayashi, Kazumichi; Watanabe, Masao

    2016-12-01

    Diffuse optical tomography (DOT), which is still under development, has a potential to enable non-invasive diagnoses of thyroid cancers in the human neck using the near-infrared light. This modality needs a photon migration model because scattered light is used. There are two types of photon migration models: the radiative transport equation (RTE) and diffusion equation (DE). The RTE can describe photon migration in the human neck with accuracy, while the DE enables an efficient calculation. For developing the accurate and efficient model of photon migration, it is crucial to investigate a condition where the DE holds in a scattering medium including a void region under the refractive-index mismatch at the void boundary because the human neck has a trachea (void region) and the refractive indices are different between the human neck and trachea. Hence, in this paper, we compare photon migration using the RTE with that using the DE in the medium. The numerical results show that the DE is valid under the refractive-index match at the void boundary even though the void region is near the source and detector positions. Under the refractive-index mismatch at the boundary, the numerical results using the DE disagree with those using the RTE when the void region is near the source and detector positions. This is probably because the anisotropy of the light scattering remains around the void boundary.

  2. Gravimetric measurement of momentary drying rate of spray freeze-dried powders in vials.

    PubMed

    Gieseler, Henning; Lee, Geoffrey

    2009-09-01

    The profile of drying rate versus primary drying time for a spray freeze-dried trehalose aqueous solution is much different from that determined for regular freeze-drying. Drying rate declines very rapidly, attributed to rate-limiting heat transfer through the packed bed of frozen microparticles contained in a vial. The inter-particulate spaces appear to be the cause of this rate limitation. Use of either liquid nitrogen or liquid propane as a cryogenic produced strong differences in both SFD particle morphology and drying rate using trehalose, sucrose, or mannitol. The lack of any evident correlation supports the argument that the inter-particulate voids determine drying behavior.

  3. Gamma-ray Monitoring of Active Galactic Nuclei with HAWC

    NASA Astrophysics Data System (ADS)

    Lauer, Robert; HAWC Collaboration

    2016-03-01

    Active Galactic Nuclei (AGN) are extra-galactic sources that can exhibit extreme flux variability over a wide range of wavelengths. TeV gamma rays have been observed from about 60 AGN and can help to diagnose emission models and to study cosmic features like extra-galactic background light or inter-galactic magnetic fields. The High Altitude Water Cherenkov (HAWC) observatory is a new extensive air shower array that can complement the pointed TeV observations of imaging air Cherenkov telescopes. HAWC is optimized for studying gamma rays with energies between 100 GeV and 100 TeV and has an instantaneous field of view of ~2 sr and a duty cycle >95% that allow us to scan 2/3 of the sky every day. By performing an unbiased monitoring of TeV emissions of AGN over most of the northern and part of the southern sky, HAWC can provide crucial information and trigger follow-up observations in collaborations with pointed TeV instruments. Furthermore, HAWC coverage of AGN is complementary to that provided by the Fermi satellite at lower energies. In this contribution, we will present HAWC flux light curves of TeV gamma rays from various sources, notably the bright AGN Markarian 421 and Markarian 501, and highlight recent results from multi-wavelengths and multi-instrument studies.

  4. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; hide

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  5. The Galactic Club or Galactic Cliques? Exploring the limits of interstellar hegemony and the Zoo Hypothesis

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.

    2017-10-01

    The Zoo solution to Fermi's Paradox proposes that extraterrestrial intelligences (ETIs) have agreed to not contact the Earth. The strength of this solution depends on the ability for ETIs to come to agreement, and establish/police treaties as part of a so-called `Galactic Club'. These activities are principally limited by the causal connectivity of a civilization to its neighbours at its inception, i.e. whether it comes to prominence being aware of other ETIs and any treaties or agreements in place. If even one civilization is not causally connected to the other members of a treaty, then they are free to operate beyond it and contact the Earth if wished, which makes the Zoo solution `soft'. We should therefore consider how likely this scenario is, as this will give us a sense of the Zoo solution's softness, or general validity. We implement a simple toy model of ETIs arising in a Galactic Habitable Zone, and calculate the properties of the groups of culturally connected civilizations established therein. We show that for most choices of civilization parameters, the number of culturally connected groups is >1, meaning that the Galaxy is composed of multiple Galactic Cliques rather than a single Galactic Club. We find in our models for a single Galactic Club to establish interstellar hegemony, the number of civilizations must be relatively large, the mean civilization lifetime must be several millions of years, and the inter-arrival time between civilizations must be a few million years or less.

  6. Lower urinary tract symptoms that predict microscopic pyuria.

    PubMed

    Khasriya, Rajvinder; Barcella, William; De Iorio, Maria; Swamy, Sheela; Gill, Kiren; Kupelian, Anthony; Malone-Lee, James

    2017-10-02

    Urinary dipsticks and culture analyses of a mid-stream urine specimen (MSU) at 10 5  cfu ml -1 of a known urinary pathogen are considered the gold standard investigations for diagnosing urinary tract infection (UTI). However, the reliability of these tests has been much criticised and they may mislead. It is now widely accepted that pyuria (≥1 WBC μl -1 ) detected by microscopy of a fresh unspun, unstained specimen of urine is the best biological indicator of UTI available. We aimed to scrutinise the greater potential of symptoms analysis in detecting pyuria and UTI. Lower urinary tract symptom (LUTS) descriptions were collected from patients with chronic lower urinary tract symptoms referred to a tertiary referral unit. The symptoms informed a 39-question inventory, grouped into storage, voiding, stress incontinence and pain symptoms. All questions sought a binary yes or no response. A bespoke software package was developed to collect the data. The study was powered to a sample of at least 1,990 patients, with sufficient power to analyse 39 symptoms in a linear model with an effect size of Cohen's f 2  = 0.02, type 1 error probability = 0.05; and power (1-β); 95% where β is the probability of type 2 error). The inventory was administered to 2,050 female patients between August 2004 and November 2011. The data were collated and the following properties assessed: internal consistency, test-retest reliability, inter-observer reliability, internal responsiveness, external responsiveness, construct validity analysis and a comparison with the International Consultation on Incontinence Modular Questionnaire for female lower urinary tract symptoms (ICIQ-FLUTS). The dependent variable used as a surrogate marker of UTI was microscopic pyuria. An MSU sample was sent for routine culture. The symptoms proved reliable predictors of microscopic pyuria. In particular, voiding symptoms correlated well with microscopic pyuria (χ 2  = 88, df = 1, p < 0.001). The symptom inventory has significant psychometric characteristics as below: test-retest reliability: Cronbach's alpha was 0.981; inter-observer reliability, Cronbach's alpha was 0.995, internal responsiveness F = 221, p < 0.001, external responsiveness F = 359, df = 5, p < 0.001. The correlation coefficients for the domains of the ICIQ-FLUTS were around R = 0.5, p < 0.001. This symptoms score performed well on the standard, psychometric validation. The score changed in response to treatment and in a direction appropriate to the changes in microscopic pyuria. It correlated with measures of quality of life. It would seem to make a good candidate for monitoring treatment progress in ordinary clinical practice.

  7. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    PubMed

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  8. Monitoring the Galactic - Search for Hard X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  9. Void swelling and irradiation creep in austenitic and martensitic stainless steels under cyclic irradiation

    NASA Astrophysics Data System (ADS)

    Zhiyong, Zhu; Jung, Peter; Klein, Horst

    1993-07-01

    A high purity austenitic FeCrNiMo alloy and DIN 1.4914 martensitic stainless steel were irradiated with 6.2 MeV protons. The pulsed operation of a tokamak fusion reactor was simulated by simultaneous cycling of beam, temperature and stress similar to that anticipated in the NET (Next European Torus) design. Void swelling and irradiation creep of the FeCrNiMo alloy under cyclic and stationary conditions were identical within the experimental error. The martensitic steel showed no swelling at the present low doses (~0.2 dpa). The plastic deformation under continuous and cyclic irradiation was essentially determined by thermal creep. During irradiation the electrical resistivity of FeCrNiMo slightly increased, probably due to swelling, while that of DIN 1.4914 linearly decreased, probably due to segregation effects.

  10. Dimensionality Alteration and Intra- versus Inter-SBU Void Encapsulation in Zinc Phosphate Frameworks.

    PubMed

    Dar, Aijaz A; Bhat, Gulzar A; Murugavel, Ramaswamy

    2016-06-06

    4,4'-Bipyridine-N-oxide (BIPYMO, 1), a less commonly employed coordination polymer linker, has been used as a ditopic spacer to bridge double-four-ring (D4R) zinc phosphate clusters to form novel framework coordination polymers. Zinc phosphate framework compounds [Zn4(X-dipp)4(BIPYMO)2]n·2MeOH [X = H (2), Cl (3), Br (4), I (5); dipp = 2,6-diisopropylphenyl phosphate] have been obtained by treating a methanol solution of zinc acetate with X-dippH2 and BIPYMO (in a 1:1:1 molar ratio) at ambient conditions. Framework phosphates 2-5 can also be obtained by treating the preformed D4R cubanes [Zn(X-dipp)(DMSO)]4 with required quantities of BIPYMO in methanol. Single-crystal X-ray diffraction studies reveal that these framework solids are two-dimensional (2D) networks as opposed to the diamondoid networks obtained when the parent unoxidized 4,4'-bipyridine is used as the linker (Inorg. Chem. 2014, 53, 8959). The two types of voids (viz., smaller intra-D4R and larger inter-D4R) present in these framework solids can be utilized for different types of encapsulation processes. For example, the in situ generated 2D framework 2 encapsulates fluoride ions accompanied by a change in the dimensionality of the framework to yield {[(nC4H9)4N][F@(Zn4(dipp)4(BIPYMO)2)]}n (6). The three-dimensional framework 6 represents the first structurally characterized example of a fluoride-ion-encapsulated polymeric coordination compound or a metal-organic framework. The possibility of utilizing inter-D4R voids as hosts for small organic molecules has been explored by treating in situ generated 2 with a series of organic molecules of appropriate size. Framework 2 has been found to be a selective host for benzil and not for other structurally similar molecules such as benzoquinone, benzidine, anthracene, naphthalene, α-pyridoin, etc. The benzil-occluded isolated framework [benzil@{Zn4(dipp)4(BIPYMO)2}]n (7) has been isolated as single crystals, and its crystal structure determination revealed the binding of benzil molecules to the framework through strong π-π interactions.

  11. Effect of interface voids on electroluminescence colors for ZnO microdisk/p-GaN heterojunction light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Choi, Ji Eun; Kim, Hyeong Jin; Jeong, Junseok; Kim, Jong Chan; Kim, Yong-Jin; Jeong, Hu Young; Hong, Young Joon

    2017-10-01

    This study investigates the influence of voids on the electroluminescence (EL) emission color of ZnO microdisk/p-GaN heterojunction light-emitting diodes (LEDs). For this study, position-controlled microdisk arrays were fabricated on patterned p-GaN via wet chemical epitaxy of ZnO, and specifically, the use of trisodium citrate dihydrate (TCD) yielded high-density voids at the bottom of the microdisk. Greenish yellow or whitish blue EL was emitted from the microdisk LEDs formed with or without TCD, respectively, at reverse-bias voltages. Such different EL colors were found to be responsible for the relative EL intensity ratio between indigo and yellow emission peaks, which were originated from radiative recombination at p-GaN and ZnO, respectively. The relative EL intensity between dichromatic emissions is discussed in terms of (i) junction edge effect provoked by interfacial voids and (ii) electron tunneling probability depending on the depletion layer geometry.

  12. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 1): Development of theoretical models for design considerations.

    PubMed

    Sahoo, B K; Sudeep Kumara, K; Karunakara, N; Gaware, J J; Sapra, B K; Mayya, Y S

    2017-06-01

    Regulating the environmental discharge of 220 Rn (historically known as thoron) and its decay products from thorium processing facilities is important for protection of environment and general public living in the vicinities. Activated charcoal provides an effective solution to this problem because of its high adsorption capacity to gaseous element like radon. In order to design and develop a charcoal based Thoron Mitigation System, a mathematical model has been developed in the present work for studying the 220 Rn transport and adsorption in a flow through charcoal bed and estimating the 220 Rn mitigation factor (MF) as a function of system and operating parameters. The model accounts for inter- and intra-grain diffusion, advection, radioactive decay and adsorption processes. Also, the effects of large void fluctuation and wall channeling on the mitigation factor have been included through a statistical model. Closed form solution has been provided for the MF in terms of adsorption coefficient, system dimensions, grain size, flow rate and void fluctuation exponent. It is shown that the delay effects due to intra grain diffusion plays a significant role thereby rendering external equilibrium assumptions unsuitable. Also, the application of the statistical model clearly demonstrates the transition from the exponential MF to a power-law form and shows how the occurrence of channels with low probability can lower mitigation factor by several orders of magnitude. As a part of aiding design, the model is further extended to optimise the bed dimensions in respect of pressure drop and MF. The application of the results for the design and development of a practically useful charcoal bed is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Simulation of defects in fusion plasma first wall materials

    NASA Astrophysics Data System (ADS)

    T, Troev; N, Nankov; T, Yoshiie

    2014-06-01

    Numerical calculations of radiation damages in beryllium, alpha-iron and tungsten irradiated by fusion neutrons were performed using molecular dynamics (MD) simulations. The displacement cascades efficiency has been calculated using the Norgett-Robinson-Torrens (NRT) formula, the universal pair-potential of Ziegler-Biersack-Littmark (ZBL) and the EAM inter-atomic potential. The pair potential overestimates the defects production by a factor of 2. The ZBL pair potential results and the EAM are comparable at higher primary knock-on atom (PKA) energies (E > 100 keV). We found that the most common types of defects are single vacancies, di-vacancies, interstitials and small number of interstitial clusters. On the bases of calculated results, the behavior of vacancies, empty nano-voids and nano-voids with hydrogen and helium were discussed.

  14. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  15. Local random configuration-tree theory for string repetition and facilitated dynamics of glass

    NASA Astrophysics Data System (ADS)

    Lam, Chi-Hang

    2018-02-01

    We derive a microscopic theory of glassy dynamics based on the transport of voids by micro-string motions, each of which involves particles arranged in a line hopping simultaneously displacing one another. Disorder is modeled by a random energy landscape quenched in the configuration space of distinguishable particles, but transient in the physical space as expected for glassy fluids. We study the evolution of local regions with m coupled voids. At a low temperature, energetically accessible local particle configurations can be organized into a random tree with nodes and edges denoting configurations and micro-string propagations respectively. Such trees defined in the configuration space naturally describe systems defined in two- or three-dimensional physical space. A micro-string propagation initiated by a void can facilitate similar motions by other voids via perturbing the random energy landscape, realizing path interactions between voids or equivalently string interactions. We obtain explicit expressions of the particle diffusion coefficient and a particle return probability. Under our approximation, as temperature decreases, random trees of energetically accessible configurations exhibit a sequence of percolation transitions in the configuration space, with local regions containing fewer coupled voids entering the non-percolating immobile phase first. Dynamics is dominated by coupled voids of an optimal group size, which increases as temperature decreases. Comparison with a distinguishable-particle lattice model (DPLM) of glass shows very good quantitative agreements using only two adjustable parameters related to typical energy fluctuations and the interaction range of the micro-strings.

  16. Experimental study on interfacial area transport in downward two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Guanyi

    In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter-group void transfer.

  17. Can Sgr A* flares reveal the molecular gas density PDF?

    NASA Astrophysics Data System (ADS)

    Churazov, E.; Khabibullin, I.; Sunyaev, R.; Ponti, G.

    2017-11-01

    Illumination of dense gas in the Central Molecular Zone by powerful X-ray flares from Sgr A* leads to prominent structures in the reflected emission that can be observed long after the end of the flare. By studying this emission, we learn about past activity of the supermassive black hole in our Galactic Center and, at the same time, we obtain unique information on the structure of molecular clouds that is essentially impossible to get by other means. Here we discuss how X-ray data can improve our knowledge of both sides of the problem. Existing data already provide (I) an estimate of the flare age, (II) a model-independent lower limit on the luminosity of Sgr A* during the flare and (III) an estimate of the total emitted energy during Sgr A* flare. On the molecular clouds side, the data clearly show a voids-and-walls structure of the clouds and can provide an almost unbiased probe of the mass/density distribution of the molecular gas with the hydrogen column densities lower than few 1023 cm-2. For instance, the probability distribution function of the gas density PDF(ρ) can be measured this way. Future high energy resolution X-ray missions will provide the information on the gas velocities, allowing, for example, a reconstruction of the velocity field structure functions and cross-matching the X-ray and molecular data based on positions and velocities.

  18. The Relationship Between Galaxies and the Large-Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.

    2018-06-01

    I will describe our current understanding of the relationship between galaxies and the large-scale structure of the Universe, often called the galaxy-halo connection. Galaxies are thought to form and evolve in the centers of dark matter halos, which grow along with the galaxies they host. Large galaxy redshift surveys have revealed clear observational signatures of connections between galaxy properties and their clustering properties on large scales. For example, older, quiescent galaxies are known to cluster more strongly than younger, star-forming galaxies, which are more likely to be found in galactic voids and filaments rather than the centers of galaxy clusters. I will show how cosmological numerical simulations have aided our understanding of this galaxy-halo connection and what is known from a statistical point of view about how galaxies populate dark matter halos. This knowledge both helps us learn about galaxy evolution and is fundamental to our ability to use galaxy surveys to reveal cosmological information. I will talk briefly about some of the current open questions in the field, including galactic conformity and assembly bias.

  19. Probabilistic immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-02-01

    We have studied electromigration short-line effects in Cu damascene interconnects through experiments on lines of various lengths L, stressed at a variety of current densities j, and embedded in different dielectric materials. We observed two modes of resistance evolution: Either the resistance of the lines remains constant for the duration of the test, so that the lines are considered immortal, or the lines fail due to abrupt open-circuit failure. The resistance was not observed to gradually increase and then saturate, as commonly observed in Al-based interconnects, because the barrier is too thin and resistive to serve as a redundant current path should voiding occur. The critical stress for void nucleation was found to be smaller than 41 MPa, since voiding occurred even under the mildest test conditions of j=2 MA/cm2 and L=10.5 μm at 300 °C. A small fraction of short Cu lines failed even at low current densities, which deems necessary a concept of probabilistic immortality rather than deterministic immortality. Experiments and modeling suggest that the probability of immortality is described by (jL2/B), where B is the effective elastic modulus of the metallization scheme. By contrast, the immortality of Al-based interconnects with shunt layers is described by (jL) if no voids nucleate, and (jL/B) if voids do nucleate. Even though the phenomenology of short-line effects differs for Al- and Cu-based interconnects, the immortality of interconnects of either materials system can be explained by the phenomena of nucleation barriers for void formation and void-growth saturation. The differences are due solely to the absence of a shunt layer and the low critical stress for void nucleation in the case of Cu.

  20. Application of 3D Electrical Resistivity Tomography As A Tool for Mapping Subsurface Cavities in a Kaolin Mining Site at Kankara in North Central Nigeria.

    NASA Astrophysics Data System (ADS)

    Eshimiakhe, D.; Jimoh, R.

    2017-12-01

    A Kaolin mining site at Dajin Gwanma in north central Nigeria was investigated to determine the possibility of using 3D ERT to detect subsurface voids created due to mining of kaolin deposit and to perhaps suggest areas prone to subsidence. This study was undertaken on conceptual resistivity model that subsurface voids characterized by higher or lower resistivity than the host, depending on weather the void is in-filled water or not. The data collection was carried out with Terrameter SAS 4000 and ES 464 electrode selector equipment. Dipole-dipole configuration at electrode spacing of 5m was used to acquire the data along parallel profiles laid at equal interval in the study area. While the acquired data along each profile were inverted with 2D algorithm, a script file was created to collate the 2D data set into a 3D format and subsequently inverted using 3D algorithm. A volumetric resistivity model block of the study area was also created using the voxler 4 software. The results show that the voids are characterized by high resistivity (950Ωm-2500Ωm) at depth of between 0-4m and low resistivity (10Ωm-100Ωm) at a depth of 5-30m indicating both air-filled and water-filled voids respectively. The study shows that the voids increase in dimension with depth in NW-SE direction, suggesting that the voids are trending most probably along vertical bedrock joints. It also suggest that voids may overtime grow large enough that the overlying top soil can no longer bridge it, leading to its collapse.

  1. RMS roughness-independent tuning of surface wettability by tailoring silver nanoparticles with a fluorocarbon plasma polymer.

    PubMed

    Choukourov, A; Kylián, O; Petr, M; Vaidulych, M; Nikitin, D; Hanuš, J; Artemenko, A; Shelemin, A; Gordeev, I; Kolská, Z; Solař, P; Khalakhan, I; Ryabov, A; Májek, J; Slavínská, D; Biederman, H

    2017-02-16

    A layer of 14 nm-sized Ag nanoparticles undergoes complex transformation when overcoated by thin films of a fluorocarbon plasma polymer. Two regimes of surface evolution are identified, both with invariable RMS roughness. In the early regime, the plasma polymer penetrates between and beneath the nanoparticles, raising them above the substrate and maintaining the multivalued character of the surface roughness. The growth (β) and the dynamic (1/z) exponents are close to zero and the interface bears the features of self-affinity. The presence of inter-particle voids leads to heterogeneous wetting with an apparent water contact angle θ a = 135°. The multivalued nanotopography results in two possible positions for the water droplet meniscus, yet strong water adhesion indicates that the meniscus is located at the lower part of the spherical nanofeatures. In the late regime, the inter-particle voids become filled and the interface acquires a single valued character. The plasma polymer proceeds to grow on the thus-roughened surface whereas the nanoparticles keep emerging away from the substrate. The RMS roughness remains invariable and lateral correlations propagate with 1/z = 0.27. The surface features multiaffinity which is given by different evolution of length scales associated with the nanoparticles and with the plasma polymer. The wettability turns to the homogeneous wetting state.

  2. The Local Ly(alpha) Forest: Association of Clouds with Superclusters and Voids

    NASA Technical Reports Server (NTRS)

    Stocke, John T.; Shull, J. Michael; Penton, Steve; Donahue, Megan; Carilli, Chris

    1995-01-01

    The Goddard High Resolution Spectrograph aboard the Hubble Space Telescope was used with the G160M grating to obtain high-resolution (6.2 A) spectra of three very bright active galactic nuclei located behind voids in the nearby distribution of bright galaxies (i.e., CfA and Arecibo redshift survey regions). A total of eight definite (greater than or equal to 4 sigma) Ly(alpha) absorption lines were discovered ranging in equivalent width from 26 to 240 mA at Galactocentric velocities 1740-7740 km/s. Of these eight systems, we locate seven in supercluster structures and one, in the sight line of Mrk 501 at 7740 km/s, in a void. In addition, one of two tentative (3-4 sigma) Ly(alpha) absorption lines are found in voids. Thus, the voids are not entirely devoid of matter, and not all Ly(alpha) clouds are associated with galaxies. Also, since the path lengths through voids and superclusters probed by our observations thus far are nearly equal, there is some statistical evidence that the Ly(alpha) clouds avoid the voids. The nearest galaxy neighbors to these absorbing clouds are 0.45-5.9 Mpc away, too far to be physically associated by most models. The lower equivalent width absorption lines (W(sub lambda) less than or equal to 100 mA) are consistent with random locations with respect to galaxies and may be truly intergalactic, similar to the bulk of the Ly(alpha) forest seen at high z. These results on local Ly(alpha) clouds are in full agreement with those found by Morris et al. (1993) for the 3C 273 sight line but are different from the results for higher equivalent width systems where closer cloud-galaxy associations were found by Lanzetta et al. (1994). Pencil-beam optical and 21 cm radio line observations of the area of sky surrounding Mrk 501 fail to find faint galaxies near the velocities of the Ly(alpha) clouds in that sight line. Specifically, for the 'void absorption' system at 7740 km/s, we find no galaxy at comparable redshift to the absorber within 100 h(sub 75)(sup -1) kpc (H(sub 0) = 75 h(sub 75) km/s Mpc(sup -1)) with an absolute magnitude of B less than or equal to - 16 and no object with H I mass greater than or equal to 7 x 10(exp 8) h(sub 75)(sup -2) M(solar) within 500 h(sub 75)(sup -1) kpc. Thus, neither a faint optical galaxy nor a gas-rich, optically dim or low surface brightness galaxy is present close to this absorber.

  3. Luminosity distance in ``Swiss cheese'' cosmology with randomized voids. II. Magnification probability distributions

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Kumar, Naresh; Wasserman, Ira; Vanderveld, R. Ali

    2012-01-01

    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (≳35Mpc) structures, specifically voids and sheets. We use a simplified “Swiss cheese” model consisting of a ΛCDM Friedman-Robertson-Walker background in which a number of randomly distributed nonoverlapping spherical regions are replaced by mass-compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz and Wald , which includes the effect of lensing shear. The standard deviation of this distribution is ˜0.027 magnitudes and the mean is ˜0.003 magnitudes for voids of radius 35 Mpc, sources at redshift zs=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ˜1Mpc, the standard deviation is reduced to ˜0.013 magnitudes. This standard deviation due to voids is a factor ˜3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ˜20%, and also build a simplified analytic model that reproduces our results to within ˜30%. Our model also allows us to explore the domain of validity of weak-lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ˜4%, and corrections due to shear are ˜3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible.

  4. Far-infrared line emission from the galaxy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.

    1985-01-01

    The diffuse 157.74 micron (CII) emission from the Galaxy was sampled at several galactic longitudes near the galactic plane including complete scan across the plane at (II) = 2.16 deg and (II) = 7.28 deg. The observed (CII) emission profiles follow closely the nearby (12)CO (J=1to0) emission profiles. The (CII) emission probably arises in neutral photodissociation regions near the edges of giant moleclar clouds (GMC's). These regions have densities of approximately 350 cm(-3) and temperatures of approximately 300 K, and amount to 4x10(8) solar mass of hydrogen in the inner Galaxy. The total 157.74 micron luminosity of the Galaxy is estimated to be 6x10(7) solar luminosity. Estimates were also made of the galactic emission in other far-infrared (FIR) cooling lines. The (CII) line was found to be the dominant FIR emission line from the galaxy and the primary coolant for the warm neutral gas near the galactic plane. Other cooling lines predicted to be prominent in the galactic spectrum are discussed. The 145.53 micron (OI) emission line from the Orion nebula was also measured.

  5. Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network

    PubMed Central

    Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil

    2018-01-01

    The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs). The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio. PMID:29614794

  6. Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network.

    PubMed

    Ahmed, Farwa; Wadud, Zahid; Javaid, Nadeem; Alrajeh, Nabil; Alabed, Mohamad Souheil; Qasim, Umar

    2018-04-02

    The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs). The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio.

  7. On the radial oxygen distribution in the Galactic disc - II. Effects of local streams

    NASA Astrophysics Data System (ADS)

    Mishurov, Yu N.; Tkachenko, R. V.

    2018-06-01

    We analyse the idea that the local dips (˜1 kpc along the Galactic radius) observed in oxygen abundance are associated with the infall of intergalactic low-abundant gas (˜0.2 Z⊙) on to the Galactic disc during the last ˜100 Myr. We term such infall events local streams. The derived masses of the falling gas (of the order of several times 108 M⊙) are close to the observed ones (e.g. in the Magellanic Stream). Such local streams do not change the mean mass of oxygen ejected per core-collapse supernova (CC SN) event, so that our previous inference on probable upper initial masses for progenitors of CC SNe remains valid.

  8. Local Stellar Kinematics from RAVE data - V. Kinematic Investigation of the Galaxy with Red Clump Stars

    NASA Astrophysics Data System (ADS)

    Karaali, S.; Bilir, S.; Ak, S.; Gökçe, E. Yaz; Önal, Ö.; Ak, T.

    2014-02-01

    We investigated the space velocity components of 6 610 red clump (RC) stars in terms of vertical distance, Galactocentric radial distance and Galactic longitude. Stellar velocity vectors are corrected for differential rotation of the Galaxy which is taken into account using photometric distances of RC stars. The space velocity components estimated for the sample stars above and below the Galactic plane are compatible only for the space velocity component in the direction to the Galactic rotation of the thin disc stars. The space velocity component in the direction to the Galactic rotation (V lsr) shows a smooth variation relative to the mean Galactocentric radial distance (Rm ), while it attains its maximum at the Galactic plane. The space velocity components in the direction to the Galactic centre (U lsr) and in the vertical direction (W lsr) show almost flat distributions relative to Rm , with small changes in their trends at Rm ~ 7.5 kpc. U lsr values estimated for the RC stars in quadrant 180° < l ⩽ 270° are larger than the ones in quadrants 0° < l ⩽ 90° and 270° < l ⩽ 360°. The smooth distribution of the space velocity dispersions reveals that the thin and thick discs are kinematically continuous components of the Galaxy. Based on the W lsr space velocity components estimated in the quadrants 0° < l ⩽ 90° and 270° < l ⩽ 360°, in the inward direction relative to the Sun, we showed that RC stars above the Galactic plane move towards the North Galactic Pole, whereas those below the Galactic plane move in the opposite direction. In the case of quadrant 180° < l ⩽ 270°, their behaviour is different, i.e. the RC stars above and below the Galactic plane move towards the Galactic plane. We stated that the Galactic long bar is the probable origin of many, but not all, of the detected features.

  9. Sacral Herpes Zoster Associated with Voiding Dysfunction in a Young Patient with Scrub Typhus.

    PubMed

    Hur, Jian

    2015-06-01

    When a patient presents with acute voiding dysfunction without a typical skin rash, it may be difficult to make a diagnosis of herpes zoster. Here, we present a case of scrub typhus in a 25-year-old man with the complication of urinary dysfunction. The patient complained of loss of urinary voiding sensation and constipation. After eight days, he had typical herpes zoster eruptions on the sacral dermatomes and hypalgesia of the S1-S5 dermatomes. No cases of dual infection with varicella zoster virus and Orientia tsutsugamushi were found in the literature. In the described case, scrub typhus probably induced sufficient stress to reactivate the varicella zoster virus. Early recognition of this problem is imperative for prompt and appropriate management, as misdiagnosis can lead to long-term urinary dysfunction. It is important that a diagnosis of herpes zoster be considered, especially in patients with sudden onset urinary retention.

  10. Sacral Herpes Zoster Associated with Voiding Dysfunction in a Young Patient with Scrub Typhus

    PubMed Central

    2015-01-01

    When a patient presents with acute voiding dysfunction without a typical skin rash, it may be difficult to make a diagnosis of herpes zoster. Here, we present a case of scrub typhus in a 25-year-old man with the complication of urinary dysfunction. The patient complained of loss of urinary voiding sensation and constipation. After eight days, he had typical herpes zoster eruptions on the sacral dermatomes and hypalgesia of the S1-S5 dermatomes. No cases of dual infection with varicella zoster virus and Orientia tsutsugamushi were found in the literature. In the described case, scrub typhus probably induced sufficient stress to reactivate the varicella zoster virus. Early recognition of this problem is imperative for prompt and appropriate management, as misdiagnosis can lead to long-term urinary dysfunction. It is important that a diagnosis of herpes zoster be considered, especially in patients with sudden onset urinary retention. PMID:26157595

  11. Giant molecular filaments in the Milky Way. II. The fourth Galactic quadrant

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Ragan, S.; Kainulainen, J.; Henning, Th.; Beuther, H.; Johnston, K.

    2016-05-01

    Context. Filamentary structures are common morphological features of the cold, molecular interstellar medium (ISM). Recent studies have discovered massive, hundred-parsec-scale filaments that may be connected to the large-scale, Galactic spiral arm structure. Addressing the nature of these giant molecular filaments (GMFs) requires a census of their occurrence and properties. Aims: We perform a systematic search of GMFs in the fourth Galactic quadrant and determine their basic physical properties. Methods: We identify GMFs based on their dust extinction signatures in the near- and mid-infrared and the velocity structure probed by 13CO line emission. We use the 13CO line emission and ATLASGAL dust emission data to estimate the total and dense gas masses of the GMFs. We combine our sample with an earlier sample from literature and study the Galactic environment of the GMFs. Results: We identify nine GMFs in the fourth Galactic quadrant: six in the Centaurus spiral arm and three in inter-arm regions. Combining this sample with an earlier study using the same identification criteria in the first Galactic quadrant results in 16 GMFs, nine of which are located within spiral arms. The GMFs have sizes of 80-160 pc and 13CO-derived masses between 5-90 × 104M⊙. Their dense gas mass fractions are between 1.5-37%, which is higher in the GMFs connected to spiral arms. We also compare the different GMF-identification methods and find that emission and extinction-based techniques overlap only partially, thereby highlighting the need to use both to achieve a complete census. Table A.2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A131

  12. Applications of Bayesian Statistics to Problems in Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1997-01-01

    This presentation will describe two applications of Bayesian statistics to Gamma Ray Bursts (GRBS). The first attempts to quantify the evidence for a cosmological versus galactic origin of GRBs using only the observations of the dipole and quadrupole moments of the angular distribution of bursts. The cosmological hypothesis predicts isotropy, while the galactic hypothesis is assumed to produce a uniform probability distribution over positive values for these moments. The observed isotropic distribution indicates that the Bayes factor for the cosmological hypothesis over the galactic hypothesis is about 300. Another application of Bayesian statistics is in the estimation of chance associations of optical counterparts with galaxies. The Bayesian approach is preferred to frequentist techniques here because the Bayesian approach easily accounts for galaxy mass distributions and because one can incorporate three disjoint hypotheses: (1) bursts come from galactic centers, (2) bursts come from galaxies in proportion to luminosity, and (3) bursts do not come from external galaxies. This technique was used in the analysis of the optical counterpart to GRB970228.

  13. HEAO 1 measurements of the galactic ridge

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Marshall, F. E.; Boldt, E. A.; Swank, J. H.

    1981-01-01

    The HEAO A2 experiment data was systematically searched for unresolved galactic disc emission. Although there were suggestions of non-uniformities in the emission, the data were consistent with a disc of half-thickness 241 + 22 pc and surface emissivity (2-10 keV) at galactic radius R(kpc) of 2.2 10 to the minus 7th power exp(-R/3.5) erg/sq cm to the (-2)power/s (R 7.8 kpc). giving a luminosity of approximately 4.4 10 to the 37th power erg S to the (-1) power. If the model is extrapolated to radii less than 7.8 kpc, the unresolved disc emission is approximately 1.4 10 to the 38th power erg S to the (-1) power (2-10 keV) i.e., a few percent of the luminosity of the galaxy in resolved sources. the disc emission has a spectrum which is significantly softer than that of the high galactic latitude diffuse X-ray background and it is most probably of discrete source origin.

  14. Inhomogeneous chemical evolution of r-process elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehmeyer, B., E-mail: benjamin.wehmeyer@unibas.ch; Thielemann, F.-K.; Pignatari, M.

    2016-06-21

    We report the results of a galactic chemical evolution (GCE) study for r-process- and alpha elements. For this work, we used the inhomogeneous GCE model ”ICE”, which allows to keep track of the galactic abundances of elements produced by different astrophysical sites. The main input parameters for this study were: a) The Neutron Star Merger (NSM) coalescence time scale, the probability of NSMs, and for the sub-class of ”magneto-rotationally driven Supernovae” (”Jet-SNe”), their occurence rate in comparison to ”standard” Supernovae (SNe).

  15. Probability distribution and statistical properties of spherically compensated cosmic regions in ΛCDM cosmology

    NASA Astrophysics Data System (ADS)

    Alimi, Jean-Michel; de Fromont, Paul

    2018-04-01

    The statistical properties of cosmic structures are well known to be strong probes for cosmology. In particular, several studies tried to use the cosmic void counting number to obtain tight constrains on dark energy. In this paper, we model the statistical properties of these regions using the CoSphere formalism (de Fromont & Alimi) in both primordial and non-linearly evolved Universe in the standard Λ cold dark matter model. This formalism applies similarly for minima (voids) and maxima (such as DM haloes), which are here considered symmetrically. We first derive the full joint Gaussian distribution of CoSphere's parameters in the Gaussian random field. We recover the results of Bardeen et al. only in the limit where the compensation radius becomes very large, i.e. when the central extremum decouples from its cosmic environment. We compute the probability distribution of the compensation size in this primordial field. We show that this distribution is redshift independent and can be used to model cosmic voids size distribution. We also derive the statistical distribution of the peak parameters introduced by Bardeen et al. and discuss their correlation with the cosmic environment. We show that small central extrema with low density are associated with narrow compensation regions with deep compensation density, while higher central extrema are preferentially located in larger but smoother over/under massive regions.

  16. Predicting space climate change

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    Galactic cosmic rays and solar energetic particles can be hazardous to humans in space, damage spacecraft and satellites, pose threats to aircraft electronics, and expose aircrew and passengers to radiation. A new study shows that these threats are likely to increase in coming years as the Sun approaches the end of the period of high solar activity known as “grand solar maximum,” which has persisted through the past several decades. High solar activity can help protect the Earth by repelling incoming galactic cosmic rays. Understanding the past record can help scientists predict future conditions. Barnard et al. analyzed a 9300-year record of galactic cosmic ray and solar activity based on cosmogenic isotopes in ice cores as well as on neutron monitor data. They used this to predict future variations in galactic cosmic ray flux, near-Earth interplanetary magnetic field, sunspot number, and probability of large solar energetic particle events. The researchers found that the risk of space weather radiation events will likely increase noticeably over the next century compared with recent decades and that lower solar activity will lead to increased galactic cosmic ray levels. (Geophysical Research Letters, doi:10.1029/2011GL048489, 2011)

  17. Enhanced phonon scattering by nanovoids in high thermoelectric power factor polysilicon thin films

    NASA Astrophysics Data System (ADS)

    Dunham, Marc T.; Lorenzi, Bruno; Andrews, Sean C.; Sood, Aditya; Asheghi, Mehdi; Narducci, Dario; Goodson, Kenneth E.

    2016-12-01

    The ability to tune the thermal conductivity of semiconductor materials is of interest for thermoelectric applications, in particular, for doped silicon, which can be readily integrated in electronic microstructures and have a high thermoelectric power factor. Here, we examine the impact of nanovoids on the thermal conductivity of highly doped, high-power factor polysilicon thin films using time-domain thermoreflectance. Voids are formed through ion implantation and annealing, evolving from many small (˜4 nm mean diameter) voids after 500 °C anneal to fewer, larger (˜29 nm mean diameter) voids with a constant total volume fraction after staged thermal annealing to 1000 °C. The thermal conductivity is reduced to 65% of the non-implanted reference film conductivity after implantation and 500 °C anneal, increasing with anneal temperature until fully restored after 800 °C anneal. The void size distributions are determined experimentally using small-angle and wide-angle X-ray scattering. While we believe multiple physical mechanisms are at play, we are able to corroborate the positive correlation between measurements of thermal conductivity and void size with Monte Carlo calculations and a scattering probability based on Matthiessen's rule. The data suggest an opportunity for thermal conductivity suppression combined with the high power factor for increased material zT and efficiency of nanostructured polysilicon as a thermoelectric material.

  18. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.

    PubMed

    Wang, Ji-Peng

    2017-08-31

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.

  19. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State

    PubMed Central

    2017-01-01

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples. PMID:28858238

  20. Average luminosity distance in inhomogeneous universes

    NASA Astrophysics Data System (ADS)

    Kostov, Valentin Angelov

    Using numerical ray tracing, the paper studies how the average distance modulus in an inhomogeneous universe differs from its homogeneous counterpart. The averaging is over all directions from a fixed observer not over all possible observers (cosmic), thus it is more directly applicable to our observations. Unlike previous studies, the averaging is exact, non-perturbative, an includes all possible non-linear effects. The inhomogeneous universes are represented by Sweese-cheese models containing random and simple cubic lattices of mass- compensated voids. The Earth observer is in the homogeneous cheese which has an Einstein - de Sitter metric. For the first time, the averaging is widened to include the supernovas inside the voids by assuming the probability for supernova emission from any comoving volume is proportional to the rest mass in it. For voids aligned in a certain direction, there is a cumulative gravitational lensing correction to the distance modulus that increases with redshift. That correction is present even for small voids and depends on the density contrast of the voids, not on their radius. Averaging over all directions destroys the cumulative correction even in a non-randomized simple cubic lattice of voids. Despite the well known argument for photon flux conservation, the average distance modulus correction at low redshifts is not zero due to the peculiar velocities. A formula for the maximum possible average correction as a function of redshift is derived and shown to be in excellent agreement with the numerical results. The formula applies to voids of any size that: (1) have approximately constant densities in their interior and walls, (2) are not in a deep nonlinear regime. The actual average correction calculated in random and simple cubic void lattices is severely damped below the predicted maximum. That is traced to cancelations between the corrections coming from the fronts and backs of different voids at the same redshift from the observer. The calculated correction at low redshifts allows one to readily predict the redshift at which the averaged fluctuation in the Hubble diagram is below a required precision and suggests a method to extract the background Hubble constant from low redshift data without the need to correct for peculiar velocities.

  1. Inter-individual Differences in the Effects of Aircraft Noise on Sleep Fragmentation.

    PubMed

    McGuire, Sarah; Müller, Uwe; Elmenhorst, Eva-Maria; Basner, Mathias

    2016-05-01

    Environmental noise exposure disturbs sleep and impairs recuperation, and may contribute to the increased risk for (cardiovascular) disease. Noise policy and regulation are usually based on average responses despite potentially large inter-individual differences in the effects of traffic noise on sleep. In this analysis, we investigated what percentage of the total variance in noise-induced awakening reactions can be explained by stable inter-individual differences. We investigated 69 healthy subjects polysomnographically (mean ± standard deviation 40 ± 13 years, range 18-68 years, 32 male) in this randomized, balanced, double-blind, repeated measures laboratory study. This study included one adaptation night, 9 nights with exposure to 40, 80, or 120 road, rail, and/or air traffic noise events (including one noise-free control night), and one recovery night. Mixed-effects models of variance controlling for reaction probability in noise-free control nights, age, sex, number of noise events, and study night showed that 40.5% of the total variance in awakening probability and 52.0% of the total variance in EEG arousal probability were explained by inter-individual differences. If the data set was restricted to nights (4 exposure nights with 80 noise events per night), 46.7% of the total variance in awakening probability and 57.9% of the total variance in EEG arousal probability were explained by inter-individual differences. The results thus demonstrate that, even in this relatively homogeneous, healthy, adult study population, a considerable amount of the variance observed in noise-induced sleep disturbance can be explained by inter-individual differences that cannot be explained by age, gender, or specific study design aspects. It will be important to identify those at higher risk for noise induced sleep disturbance. Furthermore, the custom to base noise policy and legislation on average responses should be re-assessed based on these findings. © 2016 Associated Professional Sleep Societies, LLC.

  2. Inter-individual Differences in the Effects of Aircraft Noise on Sleep Fragmentation

    PubMed Central

    McGuire, Sarah; Müller, Uwe; Elmenhorst, Eva-Maria; Basner, Mathias

    2016-01-01

    Study Objectives: Environmental noise exposure disturbs sleep and impairs recuperation, and may contribute to the increased risk for (cardiovascular) disease. Noise policy and regulation are usually based on average responses despite potentially large inter-individual differences in the effects of traffic noise on sleep. In this analysis, we investigated what percentage of the total variance in noise-induced awakening reactions can be explained by stable inter-individual differences. Methods: We investigated 69 healthy subjects polysomnographically (mean ± standard deviation 40 ± 13 years, range 18–68 years, 32 male) in this randomized, balanced, double-blind, repeated measures laboratory study. This study included one adaptation night, 9 nights with exposure to 40, 80, or 120 road, rail, and/or air traffic noise events (including one noise-free control night), and one recovery night. Results: Mixed-effects models of variance controlling for reaction probability in noise-free control nights, age, sex, number of noise events, and study night showed that 40.5% of the total variance in awakening probability and 52.0% of the total variance in EEG arousal probability were explained by inter-individual differences. If the data set was restricted to nights (4 exposure nights with 80 noise events per night), 46.7% of the total variance in awakening probability and 57.9% of the total variance in EEG arousal probability were explained by inter-individual differences. The results thus demonstrate that, even in this relatively homogeneous, healthy, adult study population, a considerable amount of the variance observed in noise-induced sleep disturbance can be explained by inter-individual differences that cannot be explained by age, gender, or specific study design aspects. Conclusions: It will be important to identify those at higher risk for noise induced sleep disturbance. Furthermore, the custom to base noise policy and legislation on average responses should be re-assessed based on these findings. Citation: McGuire S, Müller U, Elmenhorst EM, Basner M. Inter-individual differences in the effects of aircraft noise on sleep fragmentation. SLEEP 2016;39(5):1107–1110. PMID:26856901

  3. A quarter of a century of job transitions in Germany☆

    PubMed Central

    Kattenbach, Ralph; Schneidhofer, Thomas M.; Lücke, Janine; Latzke, Markus; Loacker, Bernadette; Schramm, Florian; Mayrhofer, Wolfgang

    2014-01-01

    By examining trends in intra-organizational and inter-organizational job transition probabilities among professional and managerial employees in Germany, we test the applicability of mainstream career theory to a specific context and challenge its implied change assumption. Drawing on data from the German Socio-Economic Panel (GSOEP), we apply linear probability models to show the influence of time, economic cycle and age on the probability of job transitions between 1984 and 2010. Results indicate a slight negative trend in the frequency of job transitions during the analyzed time span, owing to a pronounced decrease in intra-organizational transitions, which is only partly offset by a comparatively weaker positive trend towards increased inter-organizational transitions. The latter is strongly influenced by fluctuations in the economic cycle. Finally, the probability of job transitions keeps declining steadily through the course of one's working life. In contrast to inter-organizational transitions, however, this age effect for intra-organizational transitions has decreased over time. PMID:24493876

  4. A quarter of a century of job transitions in Germany.

    PubMed

    Kattenbach, Ralph; Schneidhofer, Thomas M; Lücke, Janine; Latzke, Markus; Loacker, Bernadette; Schramm, Florian; Mayrhofer, Wolfgang

    2014-02-01

    By examining trends in intra-organizational and inter-organizational job transition probabilities among professional and managerial employees in Germany, we test the applicability of mainstream career theory to a specific context and challenge its implied change assumption. Drawing on data from the German Socio-Economic Panel (GSOEP), we apply linear probability models to show the influence of time, economic cycle and age on the probability of job transitions between 1984 and 2010. Results indicate a slight negative trend in the frequency of job transitions during the analyzed time span, owing to a pronounced decrease in intra-organizational transitions, which is only partly offset by a comparatively weaker positive trend towards increased inter-organizational transitions. The latter is strongly influenced by fluctuations in the economic cycle. Finally, the probability of job transitions keeps declining steadily through the course of one's working life. In contrast to inter-organizational transitions, however, this age effect for intra-organizational transitions has decreased over time.

  5. VizieR Online Data Catalog: NIR spectroscopy of Galactic WR stars. III (Kanarek+, 2015)

    NASA Astrophysics Data System (ADS)

    Kanarek, G.; Shara, M.; Faherty, J.; Zurek, D.; Moffat, A.

    2016-02-01

    This survey was previously described in Paper I (Shara et al., 2009AJ....138..402S). More than 88000 exposures were taken of the Galactic plane on the Cerro Tololo Inter-American Observatory (CTIO) 1.5-m telescope over approximately 200 nights during 2005-2006. IRTF: at the 3m NASA Infrared Telescope Facility (IRTF), we obtained NIR spectra of 150 candidate WR stars, selected using the criteria above, with the SpeX spectrograph. MDM 2011: during a run of excellent weather over the seven nights in 2011 June, we obtained 113 NIR spectra of candidate stars using TIFKAM in spectroscopic mode on the 2.4m Hiltner telescope at MDM Observatory. MDM 2012: during early 2012, the original survey data were reduced again, using different methods to produce better images. (10 data files).

  6. Sacral neuromodulation for the treatment of neurogenic lower urinary tract dysfunction caused by multiple sclerosis: a single-centre prospective series.

    PubMed

    Engeler, Daniel S; Meyer, Daniel; Abt, Dominik; Müller, Stefanie; Schmid, Hans-Peter

    2015-10-23

    Sacral neuromodulation is well established in the treatment of refractory, non-neurogenic lower urinary tract dysfunction, but its efficacy and safety in patients with lower urinary tract dysfunction of neurological origin is unclear. Only few case series have been reported for multiple sclerosis. We prospectively evaluated the efficacy and safety of sacral neuromodulation in patients with multiple sclerosis. Seventeen patients (13 women, 4 men) treated with sacral neuromodulation for refractory neurogenic lower urinary tract dysfunction caused by multiple sclerosis were prospectively enrolled (2007-2011). Patients had to have stable disease and confirmed neurogenic lower urinary tract dysfunction. Voiding variables, adverse events, and subjective satisfaction were assessed. Sixteen (94 %) patients had a positive test phase with a >70 % improvement. After implantation of the pulse generator (InterStim II), the improvement in voiding variables persisted. At 3 years, the median voided volume had improved significantly from 125 (range 0 to 350) to 265 ml (range 200 to 350) (p < 0.001), the post void residual from 170 (range 0 to 730) to 25 ml (range 0 to 300) (p = 0.01), micturition frequency from 12 (range 6 to 20) to 7 (range 4 to 12) (p = 0.003), and number of incontinence episodes from 3 (range 0 to 10) to 0 (range 0 to 1) (p = 0.006). The median subjective degree of satisfaction was 80 %. Only two patients developed lack of benefit. No major complications occurred. Chronic sacral neuromodulation promises to be an effective and safe treatment of refractory neurogenic lower urinary tract dysfunction in selected patients with multiple sclerosis.

  7. The Local Bubble: a magnetic veil to our Galaxy

    NASA Astrophysics Data System (ADS)

    Alves, M. I. R.; Boulanger, F.; Ferrière, K.; Montier, L.

    2018-04-01

    The magnetic field in the local interstellar medium does not follow the large-scale Galactic magnetic field. The local magnetic field has probably been distorted by the Local Bubble, a cavity of hot ionized gas extending all around the Sun and surrounded by a shell of cold neutral gas and dust. However, so far no conclusive association between the local magnetic field and the Local Bubble has been established. Here we develop an analytical model for the magnetic field in the shell of the Local Bubble, which we represent as an inclined spheroid, off-centred from the Sun. We fit the model to Planck dust polarized emission observations within 30° of the Galactic poles. We find a solution that is consistent with a highly deformed magnetic field, with significantly different directions towards the north and south Galactic poles. This work sets a methodological framework for modelling the three-dimensional (3D) structure of the magnetic field in the local interstellar medium, which is a most awaited input for large-scale Galactic magnetic field models.

  8. Absolute proper motions to B approximately 22.5: Evidence for kimematical substructure in halo field stars

    NASA Technical Reports Server (NTRS)

    Majewski, Steven R.; Munn, Jeffrey A.; Hawley, Suzanne L.

    1994-01-01

    Radial velocities have been obtained for six of nine stars identified on the basis of similar distances and common, extreme transverse velocities in the proper motion survey of Majewski (1992) as a candidate halo moving group at the north Galactic pole. These radial velocities correspond to velocities perpendicular to the Galactic plane which span the range -48 +/- 21 to -128 +/- 9 km/sec (but a smaller range, -48 +/- 21 to -86 +/- 19 km/sec, when only our own measurements are considered), significantly different than the expected distribution, with mean 0 km/sec, for a random sample of either halo or thick disk stars. The probability of picking such a set of radial velocities at random is less than 1%. Thus the radial velocity data support the hypothesis that these stars constitute part of a halo moving group or star stream at a distance of approximately 4-5 kpc above the Galactic plane. If real, this moving group is evidence for halo phase space substructure which may be the fossil remains of a destroyed globular cluster, Galactic satellite, or Searle & Zinn (1978) 'fragment.'

  9. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    NASA Astrophysics Data System (ADS)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    We report detailed evidence for multiple merger, extended massive star formation, galactic wind, and circular/noncircular motions in the luminous infrared galaxy NGC 3256, based on observations of high-resolution imaging (Hubble Space Telescope, ESO NTT), and extensive spectroscopic data (more than 1000 spectra, collected at Estación Astrofísica de Bosque Alegre, Complejo Astronómico el Leoncito, Cerro Tololo InterAmerican Observatory, and IUE observatories). We find in a detailed morphological study (resolution ~15 pc) that the extended massive star formation process detected previously in NGC 3256 shows extended triple asymmetrical spiral arms (r~5 kpc), emanating from three different nuclei. The main optical nucleus shows a small spiral disk (r~500 pc), which is a continuation of the external one and reaches the very nucleus. The core shows blue elongated structure (50 pc×25 pc) and harbors a blue stellar cluster candidate (r~8 pc). We discuss this complex morphology in the framework of an extended massive star formation driven by a multiple merger process (models of Hernquist et al. and Taniguchi et al.). We study the kinematics of this system and present a detailed Hα velocity field for the central region (40''×40'' rmax~30''~5 kpc), with a spatial resolution of 1" and errors of +/-15 km s-1. The color and isovelocity maps show mainly (1) a kinematic center of circular motion with ``spider'' shape, located between the main optical nucleus and the close (5") mid-IR nucleus and (2) noncircular motions in the external parts. We obtained three ``sinusoidal rotation curves'' (from the Hα velocity field) around position angle (P.A.) ~55°, ~90°, and ~130°. In the main optical nucleus we found a clear ``outflow component'' associated with galactic winds plus an ``inflow radial motion.'' The outflow component was also detected in the central and external regions (r<=5-6 kpc). The main axis of the inflow region (P.A.~80deg) is practically perpendicular to the ouflow axis (at P.A.~160deg). We analyze in detail the physical conditions in the giant H II regions located in the asymmetric spiral arms, the two main optical nuclei, and the outflow component (using long-slit spectroscopy, plus standard models of photoionization, shocks, and starbursts). We present four detailed emission-line ratios (N II/Hα, S II/Hα, S II/S II), and FWHM (Hα) maps for the central region (30''×30'' rmax~22''~4 kpc), with a spatial resolution of 1". In the central region (r~5-6 kpc) we detected that the nuclear starburst and the extended giant H II regions (in the spiral arms) have very similar properties, i.e., high metallicity and low-ionization spectra, with Teff=35,000 K, solar abundance, a range of Te~6000-7000 K, and Ne~100-1000 cm-3. The nuclear and extended outflow shows properties typical of galactic wind/shocks, associated with the nuclear starburst. We suggest that the interaction between dynamical effects, the galactic wind (outflow), low-energy cosmic rays, and the molecular+ionized gas (probably in the inflow phase) could be the possible mechanism that generate the ``similar extended properties in the massive star formation, at a scale of 5-6 kpc!'' We have also studied the presence of the close merger/interacting systems NGC 3256C (at ~150 kpc, ΔV=-100 km s-1) and the possible association between the NGC 3256 and 3263 groups of galaxies. In conclusion, these results suggest that NGC 3256 is the product of a multiple merger, which generated an extended massive star formation process with an associated galactic wind plus a nuclear inflow. Therefore, NGC 3256 is another example in which the relation between mergers and extreme starburst (and the powerful galactic wind, ``multiple'' Type II supernova explosions) play an important role in the evolution of galaxies (the hypothesis of Rieke et al., Joseph et al., Terlevich et al., Heckman et al., and Lípari et al.). Based on observations obtained at the Hubble Space Telescope (HST; Wide Field Planetary Camera 2 [WFPC2] and NICMOS) satellite; International Ultraviolet Explorer (IUE) satellite; European Southern Observatory (ESO, NTT); Chile, Cerro Tololo Inter-American Observatory (CTIO), Chile; Complejo Astronómico el Leoncito (CASLEO), Argentina; Estación Astrofísica de Bosque Alegre (BALEGRE), Argentina.

  10. Extragalactic Sources and Propagation of UHECRs

    NASA Astrophysics Data System (ADS)

    van Vliet, Arjen; Alves Batista, Rafael; Sigl, Günter

    With the publicly available astrophysical simulation framework for propagating extraterrestrial UHE particles, CRPropa 3, it is now possible to study realistic UHECR source scenarios including deflections in Galactic and extragalactic magnetic fields in an efficient way. Here we discuss three recent studies that have already been done in that direction. The first one investigates what can be expected in the case of maximum allowed intergalactic magnetic fields. Here is shown that, even if voids contain strong magnetic fields, deflections of protons with energies ≳ 60 EeV from nearby sources might be small enough to allow for UHECR astronomy. The second study looks into several scenarios with a smaller magnetization focusing on large-scale anisotropies. Here is shown that the local source distribution can have a more significant effect on the large-scale anisotropy than the EGMF model. A significant dipole component could, for instance, be explained by a dominant source within 5 Mpc distance. The third study looks into whether UHECRs can come from local radio galaxies. If this is the case it is difficult to reproduce the observed low level of anisotropy. Therefore is concluded that the magnetic field strength in voids in the EGMF model used here is too low and/or there are additional sources of UHECRs that were not taken into account in these simulations.

  11. Galactic Forces Rule the Dynamics of Milky Way Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hammer, Francois; Yang, Yanbin; Arenou, Frederic; Babusiaux, Carine; Wang, Jianling; Puech, Mathieu; Flores, Hector

    2018-06-01

    Dwarf galaxies populating the Galactic halo are assumed to host the largest fractions of dark matter, as calculated from their velocity dispersions. Their major axes are preferentially aligned with the Vast Polar Structure (VPOS) that is perpendicular to the Galactic disk, and we find their velocity gradients aligned as well. This finding results in a probability of random occurrence for the VPOS as low as ∼10‑5. It suggests that tidal forces exerted by the Milky Way are distorting dwarf galaxies. Here we demonstrate on the basis of the impulse approximation that the Galactic gravitational acceleration induces the dwarf line-of-sight velocity dispersion, which is also evidenced by strong dependences between both quantities. Since this result is valid for any dwarf mass value, it implies that dark matter estimates in Milky Way dwarfs cannot be deduced from the product of their radius to the square of their line-of-sight velocity dispersion. This questions the high dark matter fractions reported for these evanescent systems, and the universally adopted total-to-stellar mass relationship in the dwarf regime. It suggests that many dwarfs are at their first passage and are dissolving into the Galactic halo. This gives rise to a promising method to estimate the Milky Way total mass profile at large distances.

  12. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-age Open Cluster Tombaugh 1

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Sales Silva, Joao Victor; Moni Bidin, Christian; Vazquez, Ruben A.

    2017-03-01

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color-magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations. Based on observations carried out at Las Campanas Observatory, Chile (program ID CN009B-042), and Cerro Tololo Inter-American Observatory.

  13. Inter-Agency Consultative Group for Space Science (IACG): Handbook of Missions and Payloads

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ACE spacecraft design is based on the Charge Composition Explorer (CCE) built by Johns Hopkins University (JHU) and the Applied Physics Lab (APL) for the AMPTE program. ACE is designed as a spinning spacecraft with its spin axis aligned to the Earth-Sun axis. The ACE launch weight will be approx. 633 kg, including 105 kg of scientific instruments and 184 kg of propellant. Using a Delta-class expendable launch vehicle, ACE will be launched into an L1 libration point (240 R(sub e)) orbit. Telemetry will be 6.7 kbps average, using tape recorder storage with daily readout to DSN. The experiment power requirement is approximately 76 W nominal and 96 W peak. The prime objective of the ACE mission is: (1) to determine accurate elemental and isotropic abundances including solar matter, local interstellar matter and local galactic matter; (2) to study the origin of elements and evolutionary processing in galactic nucleosynthesis, galactic evolution, origin and evolution of the solar system; (3) to study coronal formation and solar-wind acceleration processes; and (4) to study particle acceleration and transport, including coronal shock acceleration, stochastic flare acceleration, interplanetary shock acceleration, and interstellar acceleration and propagation. To accomplish this objective, ACE will perform comprehensive and coordinated determinations of the elemental and isotopic composition of energetic nuclei accelerated on the Sun, in interplanetary space, and from galactic sources. These observations will span five decades in energy, from solar wind to galactic cosmic ray energies, and will cover the element range from H-1 to Zr-40. Comparison of these samples of matter will be used to study the origin and subsequent evolution of both solar system and galactic material by isolating the effects of fundamental processes that include nucleosynthesis, charged and neutral particle separation, bulk plasma acceleration, and the acceleration of suprathermal and high-energy particles.

  14. Habitability in the Local Universe

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.

    2017-01-01

    Long term habitability on the surface of planets has as a prerequisite a minimum availability of elements to build rocky planets, their atmospheres, and for life sustaining water. They must be within the habitable zone and avoid circumstances that cause them to lose their atmospheres and water. However, many astrophysical sources are hazardous to life on the surfaces of planets. Planets in harsh environments may require strong magnetic fields to protect their biospheres from high energy particles from the host star(s). Planets in harsh environments may additionally require a strong astrosphere to be sufficiently able to deflect galactic cosmic-rays. Supernovae (SNe) play a central role in the habitability of planets in the disks of star forming galaxies. Currently, the SNe rate maintains a relativistic galactic wind shielding planets in the disk from extragalactic cosmic rays. However, if the density of SNe in the disk of the galaxy were significantly higher, as it was 6-8 GYA, the frequency of nearby catastrophic events and often prolonged harsh environment may have strongly constrained life in the early history of the Milky Way. Active galactic nuclei (AGN) may remain quiescent for hundreds of millions of years only to activate for some time due extraordinary accretion episode due to for instance a galactic merger. The starburst galaxy M82 is currently undergoing a merger, probably strongly compromising habitability within that galaxy. The giant elliptical M87 resides in the center of the Virgo supercluster and has probably consumed many such spiral galaxies. We show that super-Eddington accretion onto the supermassive black hole in M87, even for a short while, could compromise the habitability for a large portion of the central supercluster. We discuss environments where these effects may be mitigated.

  15. Use of Structural Equation Modeling to Demonstrate the Differential Impact of Storage and Voiding Lower Urinary Tract Symptoms on Symptom Bother and Quality of Life during Treatment for Lower Urinary Tract Symptoms Associated with Benign Prostatic Hyperplasia.

    PubMed

    McVary, Kevin T; Peterson, Andrew; Donatucci, Craig F; Baygani, Simin; Henneges, Carsten; Clouth, Johannes; Wong, David; Oelke, Matthias

    2016-09-01

    Lower urinary tract symptoms associated with benign prostatic hyperplasia typically respond well to medical therapy. While changes in total I-PSS (International Prostate Symptom Score) are generally accepted as measurement for treatment response, I-PSS storage and voiding subscores may not accurately reflect the influence of symptom improvement on patient bother and quality of life. Structural equation modeling was done to evaluate physiological interrelationships measured by I-PSS storage vs voiding subscore questions and measure the magnitude of effects on bother using BII (Benign Prostatic Hyperplasia Impact Index) and quality of life on I-PSS quality of life questions. Pooled data from 4 randomized, controlled trials of tadalafil and placebo in 1,462 men with lower urinary tract symptoms/benign prostatic hyperplasia were used to investigate the relationship of storage vs voiding lower urinary tract symptoms on BII and quality of life. The final structural equation model demonstrated a sufficient fit to model interdependence of storage, voiding, bother and quality of life (probability for test of close fit <0.0001). Storage aspects had a twofold greater effect on voiding vs voiding aspects on storage (0.61 vs 0.28, each p <0.0001). The direct effect of storage on bother was twofold greater than voiding on bother (0.64 vs 0.29, each p <0.0001). Bother directly impacted quality of life by the largest magnitude of (-0.83), largely driven by storage lower urinary tract symptoms (p <0.0001). Total I-PSS is a reliable instrument to assess the therapeutic response in lower urinary tract symptoms/benign prostatic hyperplasia cases. However, an improvement in storage lower urinary tract symptoms is mainly responsible for improved bother and quality of life during treatment. Care should be taken when evaluating the accuracy of I-PSS subscores as indicators of the response to medical therapy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. The nuclear window to the extragalactic universe

    NASA Astrophysics Data System (ADS)

    Erdmann, M.; Müller, G.; Urban, M.; Wirtz, M.

    2016-12-01

    We investigate two recent parameterizations of the galactic magnetic field with respect to their impact on cosmic nuclei traversing the field. We present a comprehensive study of the size of angular deflections, dispersion in the arrival probability distributions, multiplicity in the images of arrival on Earth, variance in field transparency, and influence of the turbulent field components. To remain restricted to ballistic deflections, a cosmic nucleus with energy E and charge Z should have a rigidity above E / Z = 6 EV. In view of the differences resulting from the two field parameterizations as a measure of current knowledge in the galactic field, this rigidity threshold may have to be increased. For a point source search with E/Z ≥ 60 EV, field uncertainties increase the required signal events for discovery moderately for sources in the northern and southern regions, but substantially for sources near the galactic disk.

  17. Flux-limited sample of Galactic carbon stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claussen, M.J.; Kleinmann, S.G.; Joyce, R.R.

    Published observational data (including IRAS observations) for a flux-limited sample of 215 Galactic carbon stars (CSs) selected from the 2-micron sky survey of Neugebauer and Leighton (1969) are compiled in extensive tables and graphs and analyzed statistically. The sample is found to penetrate a volume of radius 1.5 kpc, and the local CS space density and surface density are calculated as log rho0 (per cu kpc) = 2.0 + or - 0.4 and log N (per sq kpc) = 1.6 + or - 0.2, respectively. The total Galactic mass-return rate from these CSs is estimated as 0.013 solar mass/yr, implyingmore » a time scale of 0.1-1 Myr for the CS evolutionary phase and a mass of 1.2-1.6 solar mass for the (probably F-type) main-seqence progenitors of CSs. 81 references.« less

  18. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    NASA Astrophysics Data System (ADS)

    Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Stach, Eric A.; Zhou, Guangwen

    2015-03-01

    The Cu-Sn metallurgical soldering reaction in two-segmented Cu-Sn nanowires is studied by in situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction results in a Cu-Sn solid solution for small Sn/Cu length ratio while Cu-Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires to ~500 °C, two phase transformation pathways occur, η-Cu6Sn5 --> ε-Cu3Sn --> δ-Cu41Sn11 for nanowires with a long Cu segment and η-Cu6Sn5 --> ε-Cu3Sn --> γ-Cu3Sn with a short Cu segment. The evolution of Kirkendall voids in the nanowires demonstrates that Cu diffuses faster than Sn in IMCs. Void growth results in the nanowire breakage that shuts off the inter-diffusion of Cu and Sn and thus leads to changes in the phase transformation pathway in the IMCs.

  19. A QUANTITATIVE ANALYSIS OF DISTANT OPEN CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janes, Kenneth A.; Hoq, Sadia

    2011-03-15

    The oldest open star clusters are important for tracing the history of the Galactic disk, but many of the more distant clusters are heavily reddened and projected against the rich stellar background of the Galaxy. We have undertaken an investigation of several distant clusters (Berkeley 19, Berkeley 44, King 25, NGC 6802, NGC 6827, Berkeley 52, Berkeley 56, NGC 7142, NGC 7245, and King 9) to develop procedures for separating probable cluster members from the background field. We next created a simple quantitative approach for finding approximate cluster distances, reddenings, and ages. We first conclude that with the possible exceptionmore » of King 25 they are probably all physical clusters. We also find that for these distant clusters our typical errors are about {+-}0.07 in E(B - V), {+-}0.15 in log(age), and {+-}0.25 in (m - M){sub o}. The clusters range in age from 470 Myr to 7 Gyr and range from 7.1 to 16.4 kpc from the Galactic center.« less

  20. A Search for New Galactic Magnetars in Archival Chandra and XMM-Newton Observations

    NASA Astrophysics Data System (ADS)

    Muno, M. P.; Gaensler, B. M.; Nechita, A.; Miller, J. M.; Slane, P. O.

    2008-06-01

    We present constraints on the number of Galactic magnetars, which we have established by searching for sources with periodic variability in 506 archival Chandra observations and 441 archival XMM-Newton observations of the Galactic plane (| b| < 5°). Our search revealed four sources with periodic variability on timescales of 200-5000 s, all of which are probably accreting white dwarfs. We identify 7 of 12 known Galactic magnetars, but find no new examples with periods between 5 and 20 s. We convert this nondetection into limits on the total number of Galactic magnetars by computing the fraction of the young Galactic stellar population that our survey covered. We find that easily detectable magnetars, modeled after persistent anomalous X-ray pulsars (e.g., with LX = 1035 ergs s-1 [0.5-10.0 keV] and Arms = 12% ), could have been identified in ≈5% of the Galactic spiral arms by mass. If we assume that three previously known examples randomly fall within our survey, then there are 59+ 92-32 in the Galaxy. Barely detectable magnetars (LX = 3 × 1033 ergs s-1 and Arms = 15% ) could have been identified throughout ≈0.4% of the spiral arms. The lack of new examples implies that <540 exist in the Galaxy (90% confidence). Similar constraints are found by considering the detectability of transient magnetars in outburst. For assumed lifetimes of 104 yr, the birth rate of magnetars is between 0.003 and 0.06 yr-1. Therefore, the birth rate of magnetars is at least 10% of that for normal radio pulsars, and could exceed that value, unless transient magnetars are active for gtrsim105 yr.

  1. NDE of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Vary, A.

    1986-01-01

    Radiographic, ultrasonic, scanning laser acoustic microscopy (SLAM), and thermo-acoustic microscopy techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was also capable of detecting voids, inclusions and cracks in finished test bars. Consideration is given to the potential for applying thermo-acoustic microscopy techniques to green and densified ceramics. The detection probability statistics and some limitations of radiography and SLAM also are discussed.

  2. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    NASA Technical Reports Server (NTRS)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  3. A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region

    NASA Technical Reports Server (NTRS)

    Matthews, T. A.; Simonson, S. C., III

    1971-01-01

    From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.

  4. Detection of Neutrinos from Galactic and Cosmic Supernovae

    NASA Astrophysics Data System (ADS)

    Beacom, John

    2010-11-01

    Detecting neutrinos is the key to understanding core-collapse supernovae, but this is notoriously difficult due to the small interaction cross section of neutrinos and the low frequency of supernovae. The prospects for detecting Galactic supernovae depend almost completely on the probability of a fluctuation from the low supernova rate; the detection aspects are largely under control. The prospects for detecting Cosmic supernovae instead depend almost completely on the detection aspects, especially regarding reducing detector backgrounds; the supernova rate and neutrino flux of the universe are now rather well measured or predicted. After decades of effort and patience, we have good reasons to anticipate that detecting supernova neutrinos is within reach.

  5. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less

  6. The Planar Satellite Distributions around Andromeda, the Milky Way and Other Galaxies, and Their Implications for Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Kroupa, P.

    2014-05-01

    The existence of dark matter particles is a key hypothesis in present-day cosmology and galactic dynamics. The validity of this hypothesis is challenged significantly by two independent arguments. 1) The dual dwarf galaxy theorem must be true in any realistic cosmological model. But it is found to be falsified when the dark-matter-based model is applied to the observational data. A consistency check of this conclusion comes from the observed significantly disk-like distributions of satellite populations which orbit in the same direction around their hosting galaxy and which cannot be derived from dark-matter models. 2) The action of dynamical friction due to expansive and massive dark matter halos must be evident in the galaxy population. The evidence however for dynamical friction is void or meagre at best. The M81 group fo galaxies already appears to rule out the existence of dynamical friction through dark matter halos, and the Milky Way satellite galaxies have been shown to challenge dark-matter-induced dynamical friction. The implication of this deduction for fundamental physics would be that exotic dark matter particles do not exist and that consequently gravitational physics on the scales of galaxies and beyond ought to be non-Newtonian/Einsteinian. An analysis of the kinematical data in galaxies shows them to be described excellently by scale-invariant dynamics, as discovered by Milgrom. This leads to a natural emergence of laws that galaxies are observed to obey. Such success has not been forthcoming in the dark-matter-based models. A consequence of this novel understanding of galactic astrophysics is that most dwarf satellite galaxies are formed as tidal dwarf galaxies in galaxy-galaxy encounters and that galactic mergers are rare.

  7. One-Dimensional Simulations for Spall in Metals with Intra- and Inter-grain failure models

    NASA Astrophysics Data System (ADS)

    Ferri, Brian; Dwivedi, Sunil; McDowell, David

    2017-06-01

    The objective of the present work is to model spall failure in metals with coupled effect of intra-grain and inter-grain failure mechanisms. The two mechanisms are modeled by a void nucleation, growth, and coalescence (VNGC) model and contact-cohesive model respectively. Both models were implemented in a 1-D code to simulate spall in 6061-T6 aluminum at two impact velocities. The parameters of the VNGC model without inter-grain failure and parameters of the cohesive model without intra-grain failure were first determined to obtain pull-back velocity profiles in agreement with experimental data. With the same impact velocities, the same sets of parameters did not predict the velocity profiles when both mechanisms were simultaneously activated. A sensitivity study was performed to predict spall under combined mechanisms by varying critical stress in the VNGC model and maximum traction in the cohesive model. The study provided possible sets of the two parameters leading to spall. Results will be presented comparing the predicted velocity profile with experimental data using one such set of parameters for the combined intra-grain and inter-grain failures during spall. Work supported by HDTRA1-12-1-0004 gran and by the School of Mechanical Engineering GTA.

  8. Variation in urinary spot sample, 24 h samples, and longer-term average urinary concentrations of short-lived environmental chemicals: implications for exposure assessment and reverse dosimetry

    PubMed Central

    Aylward, Lesa L; Hays, Sean M; Zidek, Angelika

    2017-01-01

    Population biomonitoring data sets such as the Canadian Health Measures Survey (CHMS) and the United States National Health and Nutrition Examination Survey (NHANES) collect and analyze spot urine samples for analysis for biomarkers of exposure to non-persistent chemicals. Estimation of population intakes using such data sets in a risk-assessment context requires consideration of intra- and inter-individual variability to understand the relationship between variation in the biomarker concentrations and variation in the underlying daily and longer-term intakes. Two intensive data sets with a total of 16 individuals with collection and measurement of serial urine voids over multiple days were used to examine these relationships using methyl paraben, triclosan, bisphenol A (BPA), monoethyl phthalate (MEP), and mono-2-ethylhexyl hydroxyl phthalate (MEHHP) as example compounds. Composited 24 h voids were constructed mathematically from the individual collected voids, and concentrations for each 24 h period and average multiday concentrations were calculated for each individual in the data sets. Geometric mean and 95th percentiles were compared to assess the relationship between distributions in spot sample concentrations and the 24 h and multiday collection averages. In these data sets, spot sample concentrations at the 95th percentile were similar to or slightly higher than the 95th percentile of the distribution of all 24 h composite void concentrations, but tended to overestimate the maximum of the multiday concentration averages for most analytes (usually by less than a factor of 2). These observations can assist in the interpretation of population distributions of spot samples for frequently detected analytes with relatively short elimination half-lives. PMID:27703149

  9. Detrusor after-contraction: a new insight.

    PubMed

    Valentini, Francoise A; Marti, Brigitte G; Robain, Gilberte; Nelson, Pierre P

    2015-01-01

    Detrusor after-contractions (DAC) are non-common in adults. Both definition (nothing in ICS reports) and significance (artefact, link with detrusor overactivity (DO) or bladder outlet obstruction (BOO)) remain discussed. Our purpose was to carry out an analysis of the urodynamic parameters during voidings with DAC and, using the VBN model, to simulate pathophysiological conditions able to explain both voiding phase and DAC. From large urodynamic database of patients referred for evaluation of lower urinary tract dysfunction, DAC were observed in 60 patients (5.7%). Criteria for DAC were post-void residual <30mL and increase of detrusor pressure >10cmH(2)O. VBN model was used for analysis of both pressure and flow curves, and simulations of pathophysiological conditions. Onset of DAC (ODAC) occurred when Q=7.3±5.7mL/s and bladder volume=17.9±15.4mL. Urgency-frequency syndrome and urodynamic diagnosis of DO were the more frequent scenarios associated with DAC. ODAC was associated to an inversion of the slope of detrusor pressure curve without any perturbation in flow curve. Among tested pathophysiological hypothesis (great, abnormal, detrusor force, sphincter contraction), none allowed restoring all recorded curves (flow rate, voiding pressure and DAC). No urodynamic characteristic of the first part of voiding is an index of occurrence of DAC. ODAC is a significant phenomenon linked with the bladder collapse. DAC is not associated with BOO but more probably with DO and appears as the result of local conditions in an almost empty bladder (concentration of stresses around a transducer); thus DAC seems of weak clinical significance.

  10. One normal void and residual following MUS surgery is all that is necessary in most patients.

    PubMed

    Ballard, Paul; Shawer, Sami; Anderson, Colette; Khunda, Aethele

    2018-04-01

    There is considerable variation worldwide on how the assessment of voiding function is performed following midurethral sling (MUS) surgery. There is potentially a financial cost, and reduction in efficiency when patient discharge is delayed. Using our current practice of two normal void and residual (V&R) readings before discharge, the aim of this retrospective study was to evaluate the likelihood of an abnormal second V&R test if the first V&R test was normal in order to determine if a policy of discharge after only one satisfactory V&R test is reasonable. Data from 400 patients who had had MUS surgery with or without other procedures were collected. Our unit protocol included two consecutive voids of greater than 200 ml with residuals less than 150 ml before discharge. The patients were divided into the following groups: MUS only, MUS plus anterior colporrhaphy (AR) plus any other procedures (MUS/AR), and MUS with any non-AR procedures (MUS+). Complete datasets were available for 335 patients. Once inadequate tests (low volume voids <200 ml) had been excluded (28% overall), the likelihood of an abnormal second V&R test if the first test was normal was 7.1% overall, but 3.6% for MUS, 11.5% for MUS/AR and 8.6% for MUS+. The findings in the MUS-only group indicate that it is probably safe to discharge patients after one satisfactory V&R test, as long as safety measures such as 'open access' are available so that patients have unhindered readmission if problems arise.

  11. Yellow supergiants in open clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, J.R.

    1986-01-01

    Superluminous giant stars (SLGs) have been reported in young globular clusters in the Large Magellanic Cloud (LMC). These stars appear to be in the post-asymptotic-giant-branch phase of evolution. This program was an investigation of galactic SLG candidates in open clusters, which are more like the LMC young globular clusters. These were chosen because luminosity, mass, and age determinations can be made for members since cluster distances and interstellar reddenings are known. Color magnitude diagrams were searched for candidates, using the same selection criteria as for SLGs in the LMC. Classification spectra were obtained of 115 program stars from McGraw-Hill Observatorymore » and of 68 stars from Cerro Tololo Inter-American Observatory Chile. These stars were visually classified on the MK system using spectral scans of standard stars taken at the respective observations. Published information was combined with this program's data for 83 stars in 30 clusters. Membership probabilities were assigned to these stars, and the clusters were analyzed according to age. It was seen that the intrinsically brightest supergiants are found in the youngest clusters. With increasing cluster age, the absolute luminosities attained by the supergiants decline. Also, it appears that the evolutionary tracks of luminosity class II stars are more similar to those of class I than of class III.« less

  12. The habitability of the Milky Way during the active phase of its central supermassive black hole.

    PubMed

    Balbi, Amedeo; Tombesi, Francesco

    2017-11-30

    During the peak of their accretion phase, supermassive black holes in galactic cores are known to emit very high levels of ionizing radiation, becoming visible over intergalactic distances as quasars or active galactic nuclei (AGN). Here, we quantify the extent to which the activity of the supermassive black hole at the center of the Milky Way, known as Sagittarius A* (Sgr A*), may have affected the habitability of Earth-like planets in our Galaxy. We focus on the amount of atmospheric loss and on the possible biological damage suffered by planets exposed to X-ray and extreme ultraviolet (XUV) radiation produced during the peak of the active phase of Sgr A*. We find that terrestrial planets could lose a total atmospheric mass comparable to that of present day Earth even at large distances (~1 kiloparsec) from the galactic center. Furthermore, we find that the direct biological damage caused by Sgr A* to surface life on planets not properly screened by an atmosphere was probably significant during the AGN phase, possibly hindering the development of complex life within a few kiloparsecs from the galactic center.

  13. Moving Groups in the Milky Way Halo and Disk Induced by the Bar and Spiral Arms

    NASA Astrophysics Data System (ADS)

    Schuster, William John

    2015-08-01

    In a previous study (Moreno et al. 2015), the use of a detailed Milky Way potential (observationally and dynamically constrained) has shown that the Galactic bar is able to efficiently concentrate stars of the stellar halo and disk into several main resonances. With the tools introduced here, the Galactic bar is shown to produce significant phase-space structure attracting stars to several main resonances. This new study is dedicated to the study of known groups of the Galactic halo and disk, and their relation to these resonances. Stars belonging to some known halo and disk moving groups have settled down along these bar resonant families, showing, in some cases, a likely Galactic secular origin. In general, the 2D resonant orbits of the disk produced by the bar, seem to dominate at large scale-heights (several kiloparsecs) into the Galactic halo. In particular, provisionally six of the members of the Kapteyn halo moving group seem to be associated with one of these resonances, and also the Groombridge 1830 (Eggen 1996a; Eggen & Sandage 1959) and especially the newer halo moving groups G21-22 and G18-39 (Silva et al. 2012) show some correlation with these resonances suggesting possible secular origins, while the halo moving group Ross 451 (Eggen 1996b) does not show any such correlation, indicating a more probable cosmological (non-secular) ancestry. All Galactic disk moving groups (such as Arcturus, Hercules, Castor, IC 2391, Hyades, Pleiades, and Ursa Major) show considerable association with these resonances.

  14. Introducing CUBES: the Cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Bristow, Paul; Barbuy, Beatriz; Macanhan, Vanessa B.; Castilho, Bruno; Dekker, Hans; Delabre, Bernard; Diaz, Marcos; Gneiding, Clemens; Kerber, Florian; Kuntschner, Harald; La Mura, Giovanni; Reiss, Roland; Vernet, J.

    2014-07-01

    CUBES is a high-efficiency, medium-resolution (R ≃ 20, 000) spectrograph dedicated to the "ground based UV" (approximately the wavelength range from 300 to 400nm) destined for the Cassegrain focus of one of ESO's VLT unit telescopes in 2018/19. The CUBES project is a joint venture between ESO and Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) at the Universidade de São Paulo and the Brazilian Laboratório Nacional de Astrofísica (LNA). CUBES will provide access to a wealth of new and relevant information for stellar as well as extra-galactic sources. Principle science cases include the study of heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range and the determination of the Beryllium abundance as well as the study of active galactic nuclei and the inter-galactic medium. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will enable a significant gain in sensitivity over existing ground based medium-high resolution spectrographs enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project, introducing the science cases that drive the design and discussing the design options and technological challenges.

  15. Inception horizon concept as a basis for sinkhole hazard mapping

    NASA Astrophysics Data System (ADS)

    Vouillamoz, J.; Jeannin, P.-Y.; Kopp, L.; Chantry, R.

    2012-04-01

    The office for natural hazards of the Vaud canton (Switzerland) is interested for a pragmatic approach to map sinkhole hazard in karst areas. A team was created by merging resources from a geoengineering company (CSD) and a karst specialist (SISKA). Large areas in Vaud territory are limestone karst in which the collapse hazard is essentially related to the collapse of soft-rocks covering underground cavities, rather than the collapse of limestone roofs or underground chambers. This statement is probably not valid for cases in gypsum and salt. Thus, for limestone areas, zones of highest danger are voids covered by a thin layer of soft-sediments. The spatial distributions of void and cover-thickness should therefore be used for the hazard assessment. VOID ASSESSMENT Inception features (IF) are millimetre to decimetre thick planes (mainly bedding but also fractures) showing a mineralogical, a granulometrical or a physical contrast with the surrounding formation that make them especially susceptible to karst development (FILIPPONI ET AL., 2009). The analysis of more than 1500 km of cave passage showed that karst conduits are mainly developed along such discrete layers within a limestone series. The so-called Karst-ALEA method (FILIPPONI ET AL., 2011) is based on this concept and aims at assessing the probability of karst conduit occurrences in the drilling of a tunnel. This approach requires as entries the identification of inception features (IF), the recognition of paleo-water-table (PWT), and their respective spatial distribution in a 3D geological model. We suggest the Karst-ALEA method to be adjusted in order to assess the void distribution in subsurface as a basis for sinkhole hazard mapping. Inception features (horizons or fractures) and paleo-water-tables (PWT) have to be first identified using visible caves and dolines. These features should then be introduced into a 3D geological model. Intersections of HI and PWT located close to landsurface are areas with a high probability of karst occurrence. ASSESSMENT OF THE SOFT-SEDIMENT COVER Classical geological investigations (mapping, DEM analysis, drilling, etc.) are used to establish a map of the thickness of soft-sediment on top of the limestone. This can also be included in the 3D model. The combination of the void and soft-sediment information in the 3D model makes it possible to derive the sinkhole hazard map. This is currently being developed and applied in the Vaud canton and first results will be presented. BIBLIOGRAPHY FILIPPONI, M., JEANNIN, P. & TACHER, L. (2009): Evidence of inception horizons in karst conduit networks. Geomorphology, 106, 86-99. FILIPPONI, M., SCHMASSMANN, S., JEANNIN, P. Y. & PARRIAUX, A. (2011): Karst - ALEA - Method a risk assessment method of karst for tunnel projects: Application to the Tunnel of Flims (GR, Switzerland). Proc. 9th conference on limestone hydrogeology. Besançon, France. p. 181-184.

  16. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  17. EMISSION-LINE OBJECTS PROJECTED UPON THE GALACTIC BULGE*

    PubMed Central

    Herbig, G. H.

    1969-01-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Hα line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean Mv ≈ -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae. Images PMID:16578699

  18. Emission-line objects projected upon the galactic bulge.

    PubMed

    Herbig, G H

    1969-08-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Halpha line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean M(v) approximately -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae.

  19. Bursts of star formation in computer simulations of dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing burstsmore » rather than continuous, nonbursting low-level star formation activity.« less

  20. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  1. A high-frequency survey of the southern Galactic plane for pulsars

    NASA Technical Reports Server (NTRS)

    Johnston, Simon; Lyne, A. G.; Manchester, R. N.; Kniffen, D. A.; D'Amico, N.; Lim, J.; Ashworth, M.

    1992-01-01

    Results of an HF survey designed to detect young, distant, and short-period pulsars are presented. The survey detected a total of 100 pulsars, 46 of which were previously unknown. The periods of the newly discovered pulsars range between 47 ms and 2.5 ms. One of the new discoveries, PSR 1259-63, is a member of a long-period binary system. At least three of the pulsars have ages less than 30,000 yr, bringing the total number of such pulsars to 12. The majority of the new discoveries are distant objects with high dispersion measures, which are difficult to detect at low frequencies. This demonstrates that the survey has reduced the severe selection effects of pulse scattering, high Galactic background temperature, and dispersion broadening, which hamper the detection of such pulsars at low radio frequencies. The pulsar distribution in the southern Galaxy is found to extend much further from the Galactic center than that in the north, probably due to two prominent spiral arms in the southern Galaxy.

  2. Gravity and count probabilities in an expanding universe

    NASA Technical Reports Server (NTRS)

    Bouchet, Francois R.; Hernquist, Lars

    1992-01-01

    The time evolution of nonlinear clustering on large scales in cold dark matter, hot dark matter, and white noise models of the universe is investigated using N-body simulations performed with a tree code. Count probabilities in cubic cells are determined as functions of the cell size and the clustering state (redshift), and comparisons are made with various theoretical models. We isolate the features that appear to be the result of gravitational instability, those that depend on the initial conditions, and those that are likely a consequence of numerical limitations. More specifically, we study the development of skewness, kurtosis, and the fifth moment in relation to variance, the dependence of the void probability on time as well as on sparseness of sampling, and the overall shape of the count probability distribution. Implications of our results for theoretical and observational studies are discussed.

  3. Guide star probabilities

    NASA Technical Reports Server (NTRS)

    Soneira, R. M.; Bahcall, J. N.

    1981-01-01

    Probabilities are calculated for acquiring suitable guide stars (GS) with the fine guidance system (FGS) of the space telescope. A number of the considerations and techniques described are also relevant for other space astronomy missions. The constraints of the FGS are reviewed. The available data on bright star densities are summarized and a previous error in the literature is corrected. Separate analytic and Monte Carlo calculations of the probabilities are described. A simulation of space telescope pointing is carried out using the Weistrop north galactic pole catalog of bright stars. Sufficient information is presented so that the probabilities of acquisition can be estimated as a function of position in the sky. The probability of acquiring suitable guide stars is greatly increased if the FGS can allow an appreciable difference between the (bright) primary GS limiting magnitude and the (fainter) secondary GS limiting magnitude.

  4. Cast Reinforced Metal Composites: Proceedings of the International Symposium on Advances in Cast Reinforced Metal Composites Held in Conjunction with the 1988 World Materials Congress, Chicago, Illinois, USA, 24-30 September 1988

    DTIC Science & Technology

    1988-01-01

    to l0- mm of Hg and the boundaries, and the absorption of vibrational deflection was of the order of 10-6. energy during the microplastic deformation...matrix inter- 377 face due to void formation or microplastic de- This plot confirms that for all composite sys- formation than within the mica itself...dispersed Al alloys correlates with of energy in microplastic deformation of mica wt.% graphite by the following linear equation itself (Fig. 4

  5. Nordic Sea Level - Analysis of PSMSL RLR Tide Gauge data

    NASA Astrophysics Data System (ADS)

    Knudsen, Per; Andersen, Ole

    2015-04-01

    Tide gauge data from the Nordic region covering a period of time from 1920 to 2000 are evaluated. 63 stations having RLR data for at least 40 years have been used. Each tide gauge data record was averaged to annual averages after the monthly average seasonal anomalies were removed. Some stations lack data, especially before around 1950. Hence, to compute representative sea level trends for the 1920-2000 period a procedure for filling in estimated sea level values in the voids, is needed. To fill in voids in the tide gauge data records a reconstruction method was applied that utilizes EOF.s in an iterative manner. Subsequently the trends were computed. The estimated trends range from about -8 mm/year to 2 mm/year reflecting both post-glacial uplift and sea level rise. An evaluation of the first EOFs show that the first EOF clearly describes the trends in the time series. EOF #2 and #3 describe differences in the inter-annual sea level variability with-in the Baltic Sea and differences between the Baltic and the North Atlantic / Norwegian seas, respectively.

  6. Habitability in Different Milky Way Stellar Environments: A Stellar Interaction Dynamical Approach

    PubMed Central

    Pichardo, Bárbara; Lake, George; Segura, Antígona

    2013-01-01

    Abstract Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 108 yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments. Key Words: Stellar interactions—Galactic habitable zone—Oort cloud. Astrobiology 13, 491–509. PMID:23659647

  7. A Near-infrared RR Lyrae Census along the Southern Galactic Plane: The Milky Way’s Stellar Fossil Brought to Light

    NASA Astrophysics Data System (ADS)

    Dékány, István; Hajdu, Gergely; Grebel, Eva K.; Catelan, Márcio; Elorrieta, Felipe; Eyheramendy, Susana; Majaess, Daniel; Jordán, Andrés

    2018-04-01

    RR Lyrae stars (RRLs) are tracers of the Milky Way’s fossil record, holding valuable information on its formation and early evolution. Owing to the high interstellar extinction endemic to the Galactic plane, distant RRLs lying at low Galactic latitudes have been elusive. We attained a census of 1892 high-confidence RRLs by exploiting the near-infrared photometric database of the VVV survey’s disk footprint spanning ∼70° of Galactic longitude, using a machine-learned classifier. Novel data-driven methods were employed to accurately characterize their spatial distribution using sparsely sampled multi-band photometry. The RRL metallicity distribution function (MDF) was derived from their K s -band light-curve parameters using machine-learning methods. The MDF shows remarkable structural similarities to both the spectroscopic MDF of red clump giants and the MDF of bulge RRLs. We model the MDF with a multi-component density distribution and find that the number density of stars associated with the different model components systematically changes with both the Galactocentric radius and vertical distance from the Galactic plane, equivalent to weak metallicity gradients. Based on the consistency with results from the ARGOS survey, three MDF modes are attributed to the old disk populations, while the most metal-poor RRLs are probably halo interlopers. We propose that the dominant [Fe/H] component with a mean of ‑1 dex might correspond to the outskirts of an ancient Galactic spheroid or classical bulge component residing in the central Milky Way. The physical origins of the RRLs in this study need to be verified by kinematical information.

  8. VizieR Online Data Catalog: South Galactic cap MCT blue objects (Lamontagne+, 2000)

    NASA Astrophysics Data System (ADS)

    Lamontagne, R.; Demers, S.; Wesemael, F.; Fontaine, G.; Irwin, M. J.

    2016-07-01

    A detailed description of the first part of our survey, namely, the photographic observations (including plate scanning, photometric calibrations, and candidate selection), has been presented by Demers et al. (1986AJ.....92..878D). Briefly summarized, the MCT survey consists of 430 doubly exposed U and B plates, taken with the Curtis Schmidt telescope at the Cerro Tololo Inter-American Observatory (CTIO) and covering 6750 deg2 (~15% of the whole sky) in a region defined by 19h<~RA<~7h and -90°<=DE<=0°. Our survey blankets most of the south Galactic cap of our Galaxy accessible from CTIO, up to b=-30°. The bulk of our spectroscopic material was gathered at CTIO with the 1.5m and 4m telescopes in the course of several observing runs since 1985. We have identified all 228 selected blue candidates [(U-B)pg<=-0.6] brighter than Bpg=16.5 in this region of the sky. (1 data file).

  9. An artificial neural network to discover hypervelocity stars: candidates in Gaia DR1/TGAS

    NASA Astrophysics Data System (ADS)

    Marchetti, T.; Rossi, E. M.; Kordopatis, G.; Brown, A. G. A.; Rimoldi, A.; Starkenburg, E.; Youakim, K.; Ashley, R.

    2017-09-01

    The paucity of hypervelocity stars (HVSs) known to date has severely hampered their potential to investigate the stellar population of the Galactic Centre and the Galactic potential. The first Gaia data release (DR1, 2016 September 14) gives an opportunity to increase the current sample. The challenge is the disparity between the expected number of HVSs and that of bound background stars. We have applied a novel data mining algorithm based on machine learning techniques, an artificial neural network, to the Tycho-Gaia astrometric solution catalogue. With no pre-selection of data, we could exclude immediately ˜99 per cent of the stars in the catalogue and find 80 candidates with more than 90 per cent predicted probability to be HVSs, based only on their position, proper motions and parallax. We have cross-checked our findings with other spectroscopic surveys, determining radial velocities for 30 and spectroscopic distances for five candidates. In addition, follow-up observations have been carried out at the Isaac Newton Telescope for 22 stars, for which we obtained radial velocities and distance estimates. We discover 14 stars with a total velocity in the Galactic rest frame >400 km s-1, and five of these have a probability of >50 per cent of being unbound from the Milky Way. Tracing back their orbits in different Galactic potential models, we find one possible unbound HVS with v ˜ 520 km s-1, five bound HVSs and, notably, five runaway stars with median velocity between 400 and 780 km s-1. At the moment, uncertainties in the distance estimates and ages are too large to confirm the nature of our candidates by narrowing down their ejection location, and we wait for future Gaia releases to validate the quality of our sample. This test successfully demonstrates the feasibility of our new data-mining routine.

  10. Probabilities of Dilating Vesicoureteral Reflux in Children with First Time Simple Febrile Urinary Tract Infection, and Normal Renal and Bladder Ultrasound.

    PubMed

    Rianthavorn, Pornpimol; Tangngamsakul, Onjira

    2016-11-01

    We evaluated risk factors and assessed predicted probabilities for grade III or higher vesicoureteral reflux (dilating reflux) in children with a first simple febrile urinary tract infection and normal renal and bladder ultrasound. Data for 167 children 2 to 72 months old with a first febrile urinary tract infection and normal ultrasound were compared between those who had dilating vesicoureteral reflux (12 patients, 7.2%) and those who did not. Exclusion criteria consisted of history of prenatal hydronephrosis or familial reflux and complicated urinary tract infection. The logistic regression model was used to identify independent variables associated with dilating reflux. Predicted probabilities for dilating reflux were assessed. Patient age and prevalence of nonEscherichia coli bacteria were greater in children who had dilating reflux compared to those who did not (p = 0.02 and p = 0.004, respectively). Gender distribution was similar between the 2 groups (p = 0.08). In multivariate analysis older age and nonE. coli bacteria independently predicted dilating reflux, with odds ratios of 1.04 (95% CI 1.01-1.07, p = 0.02) and 3.76 (95% CI 1.05-13.39, p = 0.04), respectively. The impact of nonE. coli bacteria on predicted probabilities of dilating reflux increased with patient age. We support the concept of selective voiding cystourethrogram in children with a first simple febrile urinary tract infection and normal ultrasound. Voiding cystourethrogram should be considered in children with late onset urinary tract infection due to nonE. coli bacteria since they are at risk for dilating reflux even if the ultrasound is normal. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Possible role of gamma ray bursts on life extinction in the universe.

    PubMed

    Piran, Tsvi; Jimenez, Raul

    2014-12-05

    As a copious source of gamma rays, a nearby galactic gamma ray burst (GRB) can be a threat to life. Using recent determinations of the rate of GRBs, their luminosity function, and properties of their host galaxies, we estimate the probability that a life-threatening (lethal) GRB would take place. Amongst the different kinds of GRBs, long ones are most dangerous. There is a very good chance (but no certainty) that at least one lethal GRB took place during the past 5 gigayears close enough to Earth as to significantly damage life. There is a 50% chance that such a lethal GRB took place during the last 500×10^{6}  years, causing one of the major mass extinction events. Assuming that a similar level of radiation would be lethal to life on other exoplanets hosting life, we explore the potential effects of GRBs to life elsewhere in the Galaxy and the Universe. We find that the probability of a lethal GRB is much larger in the inner Milky Way (95% within a radius of 4 kpc from the galactic center), making it inhospitable to life. Only at the outskirts of the Milky Way, at more than 10 kpc from the galactic center, does this probability drop below 50%. When considering the Universe as a whole, the safest environments for life (similar to the one on Earth) are the lowest density regions in the outskirts of large galaxies, and life can exist in only ≈10% of galaxies. Remarkably, a cosmological constant is essential for such systems to exist. Furthermore, because of both the higher GRB rate and galaxies being smaller, life as it exists on Earth could not take place at z>0.5. Early life forms must have been much more resilient to radiation.

  12. Exploring the Dust Content of Galactic Winds with MIPS

    NASA Astrophysics Data System (ADS)

    Martin, Crystal; Engelbracht, Charles; Gordon, Karl

    2005-06-01

    This program explores the dust content of galactic winds. Nearly half of all stars in the universe probably form in a starburst event, where high concentrations of supernova explosions drive galactic-scale gaseous outflows. In nearby starburst galaxies, winds have been mapped at radio, optical, and X-ray frequencies revealing bipolar lobes of hot gas laced with cooler filaments bubbling out of the host galaxy. Most of the outflowing material is entrained interstellar gas, so it will remain quite dusty unless the grains are destroyed. Dusty winds have significant implications for the circulation of heavy elements in galaxies, the dust content of the intergalactic medium, and the acceleration of gaseous outflows. GALEX images of scattered ultraviolet light from galactic winds now provide compelling evidence for the survival of some grains. MIPS photometry of starburst winds at 24, 70, and 160 microns can, in principle, measure the dust temperature providing accurate estimates of the amount of dust (e.g. Engelbracht et al. 2004). To date, however, most MIPS observations of starburst galaxies are far too shallow to detect thermal emission from halo dust. The requested observations would provide the most sensitive observations currently possible for a sample of starburst galaxies, selected to span the full range of starburst luminosity and spatial geometry in the local universe.

  13. Behavioural treatment of urinary incontinence in geriatric patients.

    PubMed Central

    Sogbein, S. K.; Awad, S. A.

    1982-01-01

    Urinary incontinence and a program to treat it were studied in a geriatric hospital. Of 161 men, 58 (36%) were incontinent. The most common probable causes were cerebrovascular accident and organic brain syndrome. Evaluation by cystometry (after treatment of infections) in 30 patients showed 24 (80%) to have detrusor hyperreflexia. Twenty patients with hyperreflexia completed a timed-voiding routine, which benefited 17 of them (85%). PMID:7139506

  14. Seeing the Forest Through the Trees: The Distribution and Properties of Dense Molecular Gas in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Ellsworth-Bowers, Timothy P.

    The Milky Way Galaxy serves as a vast laboratory for studying the dynamics and evolution of the dense interstellar medium and the processes of and surrounding massive star formation. From our vantage point within the Galactic plane, however, it has been extremely difficult to construct a coherent picture of Galactic structure; we cannot see the forest for the trees. The principal difficulties in studying the structure of the Galactic disk have been obscuration by the ubiquitous dust and molecular gas and confusion between objects along a line of sight. Recent technological advances have led to large-scale blind surveys of the Galactic plane at (sub-)millimeter wavelengths, where Galactic dust is generally optically thin, and have opened a new avenue for studying the forest. The Bolocam Galactic Plane Survey (BGPS) observed over 190 deg 2 of the Galactic plane in dust continuum emission near lambda = 1.1 mm, producing a catalog of over 8,000 dense molecular cloud structures across a wide swath of the Galactic disk. Deriving the spatial distribution and physical properties of these objects requires knowledge of distance, a component lacking in the data themselves. This thesis presents a generalized Bayesian probabilistic distance estimation method for dense molecular cloud structures, and demonstrates it with the BGPS data set. Distance probability density functions (DPDFs) are computed from kinematic distance likelihoods (which may be double- peaked for objects in the inner Galaxy) and an expandable suite of prior information to produce a comprehensive tally of our knowledge (and ignorance) of the distances to dense molecular cloud structures. As part of the DPDF formalism, this thesis derives several prior DPDFs for resolving the kinematic distance ambiguity in the inner Galaxy. From the collection of posterior DPDFs, a set of objects with well-constrained distance estimates is produced for deriving Galactic structure and the physical properties of dense molecular cloud structures. This distance catalog of 1,802 objects across the Galactic plane represents the first large-scale analysis of clump-scale objects in a variety of Galactic environments. The Galactocentric positions of these objects begin to trace out the spiral structure of the Milky Way, and suggest that dense molecular gas settles nearer the Galactic midplane than tracers of less-dense gas such as CO. Physical properties computed from the DPDFs reveal that BGPS objects trace a continuum of scales within giant molecular clouds, and extend the scaling relationships known as Larson's Laws to lower-mass substructures. The results presented here represent the first step on the road to seeing the molecular content of the Milky Way as a forest rather than individual nearby trees.

  15. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  16. Precipitates and voids in cubic silicon carbide implanted with 25Mg+ ions

    NASA Astrophysics Data System (ADS)

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Schreiber, Daniel K.; Jung, Hee Joon; Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2018-01-01

    Single crystal cubic phase silicon carbide (3C-SiC) films on Si were implanted to 9.6 × 101625Mg+/cm2 at 673 K and annealed at 1073 and 1573 K for 2, 6, and 12 h in an Ar environment. The data from scanning transmission election microscopy (STEM) and electron energy loss spectroscopy (EELS) mapping suggest a possible formation of unidirectionally aligned tetrahedral precipitates of core (MgC2)-shell (Mg2Si) in the implanted sample annealed at 1573 K for 12 h. There are also small spherical voids near the surface and larger faceted voids around the region of maximum vacancy concentration. Atom probe tomography confirms 25Mg segregation dominated by small atomic clusters with local 25Mg concentrations up to 85 at.%. The resulting precipitate size and number density are found to decrease and increase, respectively, probably as a result of the thermal annealing that decomposes the 25Mg-bearing precipitates at the elevated temperatures and subsequent nucleation and growth below 1073 K during the cooling stage. The results from this study provide data needed to fully understand the property degradation of SiC in a high-flux fast neutron environment.

  17. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    NASA Astrophysics Data System (ADS)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  18. Avoidance of voiding cystourethrography in infants younger than 3 months with Escherichia coli urinary tract infection and normal renal ultrasound.

    PubMed

    Pauchard, Jean-Yves; Chehade, Hassib; Kies, Chafika Zohra; Girardin, Eric; Cachat, Francois; Gehri, Mario

    2017-09-01

    Urinary tract infection (UTI) represents the most common bacterial infection in infants, and its prevalence increases with the presence of high-grade vesicoureteral reflux (VUR). However, voiding cystourethrography (VCUG) is invasive, and its indication in infants <3 months is not yet defined. This study aims to investigate, in infants aged 0-3 months, if the presence of Escherichia coli versus non- E. coli bacteria and/or normal or abnormal renal ultrasound (US) could avoid the use of VCUG. One hundred and twenty-two infants with a first febrile UTI were enrolled. High-grade VUR was defined by the presence of VUR grade ≥III. The presence of high-grade VUR was recorded using VCUG, and correlated with the presence of E. coli /non- E. coli UTI and with the presence of normal/abnormal renal US. The Bayes theorem was used to calculate pretest and post-test probability. The probability of high-grade VUR was 3% in the presence of urinary E. coli infection. Adding a normal renal US finding decreased this probability to 1%. However, in the presence of non- E. coli bacteria, the probability of high-grade VUR was 26%, and adding an abnormal US finding increased further this probability to 55%. In infants aged 0-3 months with a first febrile UTI, the presence of E. coli and normal renal US findings allow to safely avoid VCUG. Performing VCUG only in infants with UTI secondary to non- E. coli bacteria and/or abnormal US would save many unnecessary invasive procedures, limit radiation exposure, with a very low risk (<1%) of missing a high-grade VUR. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Luminosity Classes of M-Stars in the SAO Catalogue

    NASA Astrophysics Data System (ADS)

    Robertson, T. H.

    1986-08-01

    A list of potential M dwarf stars was compiled from a magnetic-tape version of the Smithsonian Astrophysical Observatory star catalogue (SAO) (Smithsonian Astrophysical Observatory 1966) using an assumed thickness of 600 pc for the galactic plane as suggested by Nunez and Figueras (1983). Calculations of the number of M stars brighter than various limiting magnitudes based on known luminosity functions of dwarf and giant M stars show that the vast majority of sample stars are probably M giant stars rather than M dwarf stars having low transverse velocities. Analyses of the distribution in galactic longitude and latitude as well as the kinematic properties of this sample and of data from other published sources supporting this conclusion are also presented.

  20. Classifying RRATs and FRBs

    NASA Astrophysics Data System (ADS)

    Keane, E. F.

    2016-06-01

    In this paper, we consider the fact that the simple criterion used to label fast radio transient events as either fast radio bursts (FRBs, thought to be extragalactic with as yet unknown progenitors) or rotating radio transients (RRATs, thought to be Galactic neutron stars) is uncertain. We identify single pulse events reported in the literature which have never been seen to repeat, and which have been labelled as RRATs, but are potentially mislabelled FRBs. We examine the probability that such `grey area' events are within the Milky Way. The uncertainty in the RRAT/FRB labelling criterion, as well as Galactic-latitude dependent reporting bias may be contributing to the observed latitude dependence of the FRB rate, in addition to effects such as Eddington bias due to scintillation.

  1. Galactic hydrostatic equilibrium with magnetic tension and cosmic-ray diffusion

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1990-01-01

    Three gravitational potentials differing in the content of dark matter in the Galactic plane are used to study the structure of the z-distribution of mass and pressure in the solar neighborhood. A P(0) of roughly (3.9 + or - 0.6) x 10 to the -12th dyn/sq cm is obtained, with roughly equal contributions from magnetic field, cosmic ray, and kinetic terms. This boundary condition restricts both the magnitude of gravity and the high z-pressure. It favors lower gravity and higher values for the cosmic ray, magnetic field, and probably the kinetic pressures than have been popular in the past. Inclusion of the warm H(+) distribution carries a significant mass component into the z about 1 kpc regime.

  2. Measuring the success of combined intravesical dimethyl sulfoxide and triamcinolone for treatment of bladder pain syndrome/interstitial cystitis.

    PubMed

    Gafni-Kane, Adam; Botros, Sylvia M; Du, Hongyan; Sand, Robert I; Sand, Peter K

    2013-02-01

    The purpose of this study was to investigate change in bladder capacity as a measure of response to combined intravesical dimethyl sulfoxide (DMSO) and triamcinolone instillations for the treatment of newly diagnosed bladder pain syndrome/interstitial cystitis (BPS/IC). 141 newly diagnosed women were identified retrospectively. 79 were treated with weekly DMSO/triamcinolone instillations. Change in bladder capacity with bladder retrofill, daytime urinary frequency, nocturia episodes per night, and Likert scale symptom scores were reviewed. Wilcoxon signed-rank tests, Wilcoxon rank-sum tests, Spearman's rank correlations, COX regression analysis, and a Kaplan-Meier survival curve were performed. Significant changes (median (25(th)-percentile to 75(th)-percentile) were noted for bladder capacity (75 mL (25 to 130 mL), p < 0.0001), inter-void interval (0 hrs (0 to 1 hour), p < 0.0001), nocturia episodes per night (-1 (-2 to 0), p < 0.0001), and aggregate Likert symptom scores (-2 points (-5 to 0), p < 0.0001). Percent change in bladder capacity correlated positively with percent change in inter-void interval (p = 0.03) and negatively with percent changes in nocturia (p = 0.17) and symptom scores (p = 0.01). Women without detrusor overactivity (DO) had greater percent changes in capacity than women with DO (62.5 % vs. 16.5 %, p = 0.02). 61.3 % of patients were retreated with a 36 weeks median time to retreatment and no difference in time to retreatment based upon DO. Greater capacity was protective against retreatment (hazard ratio = 0.997 [95 % CI 0.994,0.999], p = 0.02). Percent change in bladder capacity is a useful objective measure of response to intravesical DMSO/triamcinolone for newly diagnosed BPS/IC. Clinical outcomes do not differ based upon presence of DO.

  3. Habitability in different Milky Way stellar environments: a stellar interaction dynamical approach.

    PubMed

    Jiménez-Torres, Juan J; Pichardo, Bárbara; Lake, George; Segura, Antígona

    2013-05-01

    Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 10(8) yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments.

  4. Increasing Compliance of Children with Autism: Effects of Programmed Reinforcement for High-Probability Requests and Varied Inter-Instruction Intervals

    ERIC Educational Resources Information Center

    Pitts, Laura; Dymond, Simon

    2012-01-01

    Research on the high-probability (high-p) request sequence shows that compliance with low-probability (low-p) requests generally increases when preceded by a series of high-p requests. Few studies have conducted formal preference assessments to identify the consequences used for compliance, which may partly explain treatment failures, and still…

  5. VizieR Online Data Catalog: Shape parameters for 154 Galactic open clusters (Zhai+, 2017)

    NASA Astrophysics Data System (ADS)

    Zhai, M.; Abt, H.; Zhao, G.; Li, C.

    2017-06-01

    The data used are from database WEBDA (http://www.univie.ac.at/webda/). We have found 946 open clusters with equatorial coordinates for each cluster member. Since cluster members are easily contaminated by field stars, we have only adopted stars with membership probabilities higher than 70% as cluster members. It is rarely possible to determine a cluster's shape with a small number of members, so we have only considered relatively richer clusters, which host more than 20 of the most probable member stars. After these selections, there are 154 clusters left. (1 data file).

  6. RXTE PCA Detection of a New Outburst of XTE J1728-295 (probably IGR J17285-2922)

    NASA Astrophysics Data System (ADS)

    Markwardt, Craig B.; Swank, Jean H.

    2010-08-01

    We report the detection of a new outburst of a source designated XTE J1728-295 in the RXTE PCA scans, which is probably the same as IGR J17285-2922. This source was first detected in August-October 2003 with PCA scans of the galactic center region, and is speculated to be a black hole candidate (Barlow et al. 2005, A&A, 437, L27). In PCA scans on 2010-08-28 near 09:35 UTC, the source rose to a flux of 6.5 mCrab (2-10 keV).

  7. Dynamical jumping real-time fault-tolerant routing protocol for wireless sensor networks.

    PubMed

    Wu, Guowei; Lin, Chi; Xia, Feng; Yao, Lin; Zhang, He; Liu, Bing

    2010-01-01

    In time-critical wireless sensor network (WSN) applications, a high degree of reliability is commonly required. A dynamical jumping real-time fault-tolerant routing protocol (DMRF) is proposed in this paper. Each node utilizes the remaining transmission time of the data packets and the state of the forwarding candidate node set to dynamically choose the next hop. Once node failure, network congestion or void region occurs, the transmission mode will switch to jumping transmission mode, which can reduce the transmission time delay, guaranteeing the data packets to be sent to the destination node within the specified time limit. By using feedback mechanism, each node dynamically adjusts the jumping probabilities to increase the ratio of successful transmission. Simulation results show that DMRF can not only efficiently reduce the effects of failure nodes, congestion and void region, but also yield higher ratio of successful transmission, smaller transmission delay and reduced number of control packets.

  8. Detecting voids in a 0.6 m coal seam, 7 m deep, using seismic reflection

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.

    1991-01-01

    Surface collapse over abandoned subsurface coal mines is a problem in many parts of the world. High-resolution P-wave reflection seismology was successfully used to evaluate the risk of an active sinkhole to a main north-south railroad line in an undermined area of southeastern Kansas, USA. Water-filled cavities responsible for sinkholes in this area are in a 0.6 m thick coal seam, 7 m deep. Dominant reflection frequencies in excess of 200 Hz enabled reflections from the coal seam to be discerned from the direct wave, refractions, air wave, and ground roll on unprocessed field files. Repetitive void sequences within competent coal on three seismic profiles are consistent with the "room and pillar" mining technique practiced in this area near the turn of the century. The seismic survey showed that the apparent active sinkhole was not the result of reactivated subsidence but probably erosion. ?? 1991.

  9. REVIEWS OF TOPICAL PROBLEMS: The modern view of the nature of the spiral structure of galaxies

    NASA Astrophysics Data System (ADS)

    Efremov, Yurii N.; Korchagin, V. I.; Marochnik, L. S.; Suchkov, A. A.

    1989-04-01

    The current state of the Lin-Shu density wave theory is discussed in the light of modern observational data. Much attention is paid to the problem of wave excitation and to the response of the interstellar gas to the wave gravitational potential. It is noted that the major predictions of the density wave theory—the galactic shock waves, the spiral velocity field of stars, and the age gradient across the spiral arms—have become fundamental observational facts at present, so that the density wave theory now has no competition from alternative theories. The nature of flocculent spirals is also discussed since, unlike regular spirals, they are probably not connected with density waves but with the effects of induced star formation in differentially rotating galactic disks.

  10. Advances in the simulation and automated measurement of well-sorted granular material: 2. Direct measures of particle properties

    USGS Publications Warehouse

    Buscombe, Daniel D.; Rubin, David M.

    2012-01-01

    1. In this, the second of a pair of papers on the structure of well-sorted natural granular material (sediment), new methods are described for automated measurements from images of sediment, of: 1) particle-size standard deviation (arithmetic sorting) with and without apparent void fraction; and 2) mean particle size in material with void fraction. A variety of simulations of granular material are used for testing purposes, in addition to images of natural sediment. Simulations are also used to establish that the effects on automated particle sizing of grains visible through the interstices of the grains at the very surface of a granular material continue to a depth of approximately 4 grain diameters and that this is independent of mean particle size. Ensemble root-mean squared error between observed and estimated arithmetic sorting coefficients for 262 images of natural silts, sands and gravels (drawn from 8 populations) is 31%, which reduces to 27% if adjusted for bias (slope correction between observed and estimated values). These methods allow non-intrusive and fully automated measurements of surfaces of unconsolidated granular material. With no tunable parameters or empirically derived coefficients, they should be broadly universal in appropriate applications. However, empirical corrections may need to be applied for the most accurate results. Finally, analytical formulas are derived for the one-step pore-particle transition probability matrix, estimated from the image's autocorrelogram, from which void fraction of a section of granular material can be estimated directly. This model gives excellent predictions of bulk void fraction yet imperfect predictions of pore-particle transitions.

  11. Advances in the simulation and automated measurement of well-sorted granular material: 2. Direct measures of particle properties

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Rubin, D. M.

    2012-06-01

    In this, the second of a pair of papers on the structure of well-sorted natural granular material (sediment), new methods are described for automated measurements from images of sediment, of: 1) particle-size standard deviation (arithmetic sorting) with and without apparent void fraction; and 2) mean particle size in material with void fraction. A variety of simulations of granular material are used for testing purposes, in addition to images of natural sediment. Simulations are also used to establish that the effects on automated particle sizing of grains visible through the interstices of the grains at the very surface of a granular material continue to a depth of approximately 4 grain diameters and that this is independent of mean particle size. Ensemble root-mean squared error between observed and estimated arithmetic sorting coefficients for 262 images of natural silts, sands and gravels (drawn from 8 populations) is 31%, which reduces to 27% if adjusted for bias (slope correction between observed and estimated values). These methods allow non-intrusive and fully automated measurements of surfaces of unconsolidated granular material. With no tunable parameters or empirically derived coefficients, they should be broadly universal in appropriate applications. However, empirical corrections may need to be applied for the most accurate results. Finally, analytical formulas are derived for the one-step pore-particle transition probability matrix, estimated from the image's autocorrelogram, from which void fraction of a section of granular material can be estimated directly. This model gives excellent predictions of bulk void fraction yet imperfect predictions of pore-particle transitions.

  12. Toward Measuring Galactic Dense Molecular Gas Properties and 3D Distribution with Hi-GAL

    NASA Astrophysics Data System (ADS)

    Zetterlund, Erika; Glenn, Jason; Maloney, Phil

    2016-01-01

    The Herschel Space Observatory's submillimeter dust continuum survey Hi-GAL provides a powerful new dataset for characterizing the structure of the dense interstellar medium of the Milky Way. Hi-GAL observed a 2° wide strip covering the entire 360° of the Galactic plane in broad bands centered at 70, 160, 250, 350, and 500 μm, with angular resolution ranging from 10 to 40 arcseconds. We are adapting a molecular cloud clump-finding algorithm and a distance probability density function distance-determination method developed for the Bolocam Galactic Plane Survey (BGPS) to the Hi-GAL data. Using these methods we expect to generate a database of 105 cloud clumps, derive distance information for roughly half the clumps, and derive precise distances for approximately 20% of them. With five-color photometry and distances, we will measure the cloud clump properties, such as luminosities, physical sizes, and masses, and construct a three-dimensional map of the Milky Way's dense molecular gas distribution.The cloud clump properties and the dense gas distribution will provide critical ground truths for comparison to theoretical models of molecular cloud structure formation and galaxy evolution models that seek to emulate spiral galaxies. For example, such models cannot resolve star formation and use prescriptive recipes, such as converting a fixed fraction of interstellar gas to stars at a specified interstellar medium density threshold. The models should be compared to observed dense molecular gas properties and galactic distributions.As a pilot survey to refine the clump-finding and distance measurement algorithms developed for BGPS, we have identified molecular cloud clumps in six 2° × 2° patches of the Galactic plane, including one in the inner Galaxy along the line of sight through the Molecular Ring and the termination of the Galactic bar and one toward the outer Galaxy. Distances have been derived for the inner Galaxy clumps and compared to Bolocam Galactic Plane Survey results. We present the pilot survey clump catalog, distances, clump properties, and a comparison to BGPS.

  13. Inter-Observer, Intra-Observer and Intra-Individual Reliability of Uroflowmetry Tests in Aged Men: A Generalizability Theory Approach.

    PubMed

    Liu, Ying-Buh; Yang, Stephen S; Hsieh, Cheng-Hsing; Lin, Chia-Da; Chang, Shang-Jen

    2014-05-01

    To evaluate the inter-observer, intra-observer and intra-individual reliability of uroflowmetry and post-void residual urine (PVR) tests in adult men. Healthy volunteers aged over 40 years were enrolled. Every participant underwent two sets of uroflowmetry and PVR tests with a 2-week interval between the tests. The uroflowmetry tests were interpreted by four urologists independently. Uroflowmetry curves were classified as bell-shaped, bell-shaped with tail, obstructive, restrictive, staccato, interrupted and tower-shaped and scored from 1 (highly abnormal) to 5 (absolutely normal). The agreements between the observers, interpretations and tests within individuals were analyzed using kappa statistics and intraclass correlation coefficients. Generalizability theory with decision analysis was used to determine how many observers, tests, and interpretations were needed to obtain an acceptable reliability (> 0.80). Of 108 volunteers, we randomly selected the uroflowmetry results from 25 participants for the evaluation of reliability. The mean age of the studied adults was 55.3 years. The intra-individual and intra-observer reliability on uroflowmetry tests ranged from good to very good. However, the inter-observer reliability on normalcy and specific type of flow pattern were relatively lower. In generalizability theory, three observers were needed to obtain an acceptable reliability on normalcy of uroflow pattern if the patient underwent uroflowmetry tests twice with one observation. The intra-individual and intra-observer reliability on uroflowmetry tests were good while the inter-observer reliability was relatively lower. To improve inter-observer reliability, the definition of uroflowmetry should be clarified by the International Continence Society. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jinn-Liang, E-mail: jinnliu@mail.nhcue.edu.tw; Eisenberg, Bob, E-mail: beisenbe@rush.edu

    2014-12-14

    A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part ofmore » the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10{sup 8}-fold range of Ca{sup 2+} concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to study a variety of physical mechanisms ranging from binding, to permeation, blocking, flexibility, and charge/space competition of the channel.« less

  15. The magnetic field in the disk of our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Qiao, G. J.

    1994-08-01

    The magnetic field in the disk of our Galaxy is investigated by using the Rotation Measures (RMs) of pulsars and Extragalactic Radio Sources (ERSes). Through analyses of the RMs of carefully selected pulsar samples, it is found that the Galaxy has a global field of BiSymmetric Spiral (BSS) configuration, rather than a concentric ring or an AxiSymmetric Spiral (ASS) configuration. The Galactic magnetic field of BSS structure is supposed to be of primordial origin. The pitch angle of the BSS structure is -8.2deg+/-0.5deg. The field geometry shows that the field goes along the Carina-Sagittarius arm, which is delineated by Giant Molecular Clouds (GMCs). The amplitude of the BSS field is 1.8+/-0.3μG. The first field strength maximum is at r_0_=11.9+/-0.15 kpc in the direction of l=180deg. The field is strong in the interarm regions and it reverses in the arm regions. In the vicinity of the Sun, it has a strength of ~1.4μG and reverses at 0.2-0.3kpc in the direction of l=0deg. Because of the unknown electron distribution of the Galaxy and other difficulties, it is impossible to derive the galactic field from the RMs of ERSes very quantitatively. Nevertheless, the RMs of ERSes located in the region of the two galactic poles are used to estimate the vertical component of the local galactic field, which is found to have a strength of 0.2-0.3μG and is directed from the south galactic pole to the north galactic pole. The scale height of the magnetic disk of the Galaxy is estimated from the RMs of all-sky distributed ERSes, being about 1.2+/-0.4pc. The regular magnetic field of our Galaxy, which is probably similar to that of M81, extends far from the optical disk.

  16. Open star clusters in the Milky Way. Comparison of photometric and trigonometric distance scales based on Gaia TGAS data

    NASA Astrophysics Data System (ADS)

    Kovaleva, Dana A.; Piskunov, Anatoly E.; Kharchenko, Nina V.; Röser, Siegfried; Schilbach, Elena; Scholz, Ralf-Dieter; Reffert, Sabine; Yen, Steffi X.

    2017-10-01

    Context. The global survey of star clusters in the Milky Way (MWSC) is a comprehensive list of 3061 objects that provides, among other parameters, distances to clusters based on isochrone fitting. The Tycho-Gaia Astrometric Solution (TGAS) catalogue, which is a part of Gaia data release 1 (Gaia DR1), delivers accurate trigonometric parallax measurements for more than 2 million stars, including those in star clusters. Aims: We compare the open cluster photometric distance scale with the measurements given by the trigonometric parallaxes from TGAS to evaluate the consistency between these values. Methods: The average parallaxes of probable cluster members available in TGAS provide the trigonometric distance scale of open clusters, while the photometric scale is given by the distances published in the MWSC. Sixty-four clusters are suited for comparison as they have more than 16 probable members with parallax measurements in TGAS. We computed the average parallaxes of the probable members and compared these to the photometric parallaxes derived within the MWSC. Results: We find a good agreement between the trigonometric TGAS-based and the photometric MWSC-based distance scales of open clusters, which for distances less than 2.3 kpc coincide at a level of about 0.1 mas with no dependence on the distance. If at all, there is a slight systematic offset along the Galactic equator between 30° and 160° galactic longitude.

  17. Failure analysis of glass-ceramic insulators of shock tested vacuum (neutron) tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, R.K.

    1980-08-25

    Eight investigative techniques were used to examine the glass-ceramic insulators in vacuum (neutron) tubes. The insulators were extracted from units that had been subjected to low temperature mechanical shock tests. Two of the three units showed reduced neutron output after these tests and an insulator on one of these two was cracked completely through which probably occurred during shock testing. The objective of this study was to determine if any major differences existed between the insulators of these tubes. After eight analyses, it was concluded that no appreciable differences existed. It appeared that cracking of the one glass-ceramic sample wasmore » initiated at inner-sleeve interface voids. For this sample, the interface void density was much higher than is presently acceptable. All insulators were made with glass-ceramic having a Na/sub 2/O content of 4.6 wt%. An increased Na/sub 2/O content will cause an increase in the coefficient of expansion and will reduce the residual stress level since the molybdenum has a higher coefficient of thermal expansion than the insulator. Thus, it is believed that a decrease in interface voids and an increase in Na/sub 2/O should aid in reduced cracking of the insulator during these tests.« less

  18. Mapping the Asymmetric Thick Disk. III. The Kinematics and Interaction with the Galactic Bar

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Beers, Timothy C.; Cabanela, Juan E.; Grammer, Skyler; Davidson, Kris; Lee, Young Sun; Larsen, Jeffrey A.

    2011-04-01

    In the first two papers of this series, Larsen et al. describe our faint CCD survey in the inner Galaxy and map the overdensity of thick disk stars in Quadrant 1 (Q1) to 5 kpc or more along the line of sight. The regions showing the strongest excess are above the density contours of the bar in the Galactic disk. In this third paper on the asymmetric thick disk, we report on radial velocities and derived metallicity parameters for over 4000 stars in Q1, above and below the plane, and in Quadrant 4 (Q4) above the plane. We confirm the corresponding kinematic asymmetry first reported by Parker et al., extended to greater distances and with more spatial coverage. The thick disk stars in Q1 have a rotational lag of 60-70 km s-1 relative to circular rotation, and the metal-weak thick disk stars have an even greater lag of 100 km s-1. Both lag their corresponding populations in Q4 by ≈30 km s-1. Interestingly, the disk stars in Q1 also appear to participate in the rotational lag by about 30 km s-1. The enhanced rotational lag for the thick disk in Q1 extends to 4 kpc or more from the Sun. At 3-4 kpc, our sight lines extend above the density contours on the near side of the bar, and as our lines of sight pass directly over the bar the rotational lag appears to decrease. This is consistent with a "gravitational wake" induced by the rotating bar in the disk which would trap and pile up stars behind it. We conclude that a dynamical interaction with the stellar bar is the most probable explanation for the observed kinematic and spatial asymmetries. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and at the Cerro Tololo Inter-American Observatory (NOAO) operated by the Association of Universities for Research in Astronomy (AURA).

  19. Spatial Probability Cuing and Right Hemisphere Damage

    ERIC Educational Resources Information Center

    Shaqiri, Albulena; Anderson, Britt

    2012-01-01

    In this experiment we studied statistical learning, inter-trial priming, and visual attention. We assessed healthy controls and right brain damaged (RBD) patients with and without neglect, on a simple visual discrimination task designed to measure priming effects and probability learning. All participants showed a preserved priming effect for item…

  20. Is the Milky Way's hot halo convectively unstable?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henley, David B.; Shelton, Robin L., E-mail: dbh@physast.uga.edu

    2014-03-20

    We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Usingmore » published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.« less

  1. On the origin of stars with and without planets. Tc trends and clues to Galactic evolution

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; González Hernández, J. I.; Delgado Mena, E.; Sousa, S. G.; Santos, N. C.; Israelian, G.; Figueira, P.; Bertran de Lis, S.

    2014-04-01

    We explore a sample of 148 solar-like stars to search for a possible correlation between the slopes of the abundance trends versus condensation temperature (known as the Tc slope) with stellar parameters and Galactic orbital parameters in order to understand the nature of the peculiar chemical signatures of these stars and the possible connection with planet formation. We find that the Tc slope significantly correlates (at more than 4σ) with the stellar age and the stellar surface gravity. We also find tentative evidence that the Tc slope correlates with the mean galactocentric distance of the stars (Rmean), suggesting that those stars that originated in the inner Galaxy have fewer refractory elements relative to the volatiles. While the average Tc slope for planet-hosting solar analogs is steeper than that of their counterparts without planets, this difference probably reflects the difference in their age and Rmean. We conclude that the age and probably the Galactic birth place are determinant to establish the star's chemical properties. Old stars (and stars with inner disk origin) have a lower refractory-to-volatile ratio. Based on observations collected with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)), installed at the La Silla Observatory, ESO (Chile), with the UVES spectrograph at the 8-m Very Large Telescope program IDs: 67.C-0206(A), 074.C-0134(A), 075.D-0453(A), installed at the Cerro Paranal Observatory, ESO (Chile), and with the UES spectrograph at the 4.2-m William Herschel Telescope, installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma.Appendix A is available in electronic form at http://www.aanda.org

  2. Gravitational wave hotspots: Ranking potential locations of single-source gravitational wave emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Joseph; Polin, Abigail; Lommen, Andrea

    2014-03-20

    The steadily improving sensitivity of pulsar timing arrays (PTAs) suggests that gravitational waves (GWs) from supermassive black hole binary (SMBHB) systems in the nearby universe will be detectable sometime during the next decade. Currently, PTAs assume an equal probability of detection from every sky position, but as evidence grows for a non-isotropic distribution of sources, is there a most likely sky position for a detectable single source of GWs? In this paper, a collection of Galactic catalogs is used to calculate various metrics related to the detectability of a single GW source resolvable above a GW background, assuming that everymore » galaxy has the same probability of containing an SMBHB. Our analyses of these data reveal small probabilities that one of these sources is currently in the PTA band, but as sensitivity is improved regions of consistent probability density are found in predictable locations, specifically around local galaxy clusters.« less

  3. Uncertainties in Galactic Chemical Evolution Models

    DOE PAGES

    Cote, Benoit; Ritter, Christian; Oshea, Brian W.; ...

    2016-06-15

    Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less

  4. Uncorrelated Far Active Galactic Nuclei Flaring with Their Delayed Ultra High Energy Cosmic Rays Events

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; Oliva, Pietro; De Sanctis Lucentini, Pier Giorgio

    The most distant Active Galactic Nuclei (AGN), within the allowed Greisen-Zatsepin-Kuzmin (GZK) cut-off radius ( ≲ 100 Mpc), have been recently candidate by many authors as the best location for the observed Ultra High Energy Cosmic Rays (UHECR) origination. Indeed, the apparent homogeneity and isotropy of recent UHECR signals seems to require a far cosmic isotropic and homogeneous scenario, involving a proton UHECR courier: our galaxy or nearest local group or super galactic plane (ruled by the Virgo cluster) are too near and apparently too anisotropic to be in agreement with the (Pierre Auger Observatory (PAO) and Telescope Array (TA) almost-homogeneous data sample. However, the few and mild UHECR observed clustering, the so called North and South Hot Spots, are smeared in wide (±18°) solid angles. Their consequent random walk flight from most far GZK UHECR sources, nearly at 100 Mpc, must be delayed — withrespect to a straight AGN photon gamma flaring arrival trajectory — at least by a million years. During this time, the AGN jet blazing signal, its probable axis deflection (such as the helical jet in Mrk 501), its miss alignment or even its almost certain exhaust activity, may lead to a complete misleading correlation between present UHECR events and a much earlier active AGN ejection. UHECR maps may be anyway related to galactic or nearest (Cen A, M82) AGN extragalactic UHECR sources shining in twin Hot Spot. Therefore we defend our (quite different) scenario where UHECR are mostly made by lightest UHECR nuclei originated by nearby AGN sources, or few galactic sources, whose delayed signals are reaching us within few thousand years in the observed smeared sky areas.

  5. Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Dayal, Pratika; Cockell, Charles; Libeskind, Noam

    2017-01-01

    We present the first model that couples high-resolution simulations of the formation of local group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which has sufficient metallicity to form terrestrial planets without being subject to hazardous radiation. These simulations allow us to make substantial progress in mapping out the asymmetric three-dimensional GHZ and its time evolution for the Milky Way (MW) and Triangulum (M33) galaxies, as opposed to works that generally assume an azimuthally symmetric GHZ. Applying typical habitability metrics to MW and M33, we find that while a large number of habitable planets exist as close as a few kiloparsecs from the galactic centre, the probability of individual planetary systems being habitable rises as one approaches the edge of the stellar disc. Tidal streams and satellite galaxies also appear to be fertile grounds for habitable planet formation. In short, we find that both galaxies arrive at similar GHZs by different evolutionary paths, as measured by the first and third quartiles of surviving biospheres. For the MW, this interquartile range begins as a narrow band at large radii, expanding to encompass much of the Galaxy at intermediate times before settling at a range of 2-13 kpc. In the case of M33, the opposite behaviour occurs - the initial and final interquartile ranges are quite similar, showing gradual evolution. This suggests that Galaxy assembly history strongly influences the time evolution of the GHZ, which will affect the relative time lag between biospheres in different galactic locations. We end by noting the caveats involved in such studies and demonstrate that high-resolution cosmological simulations will play a vital role in understanding habitability on galactic scales, provided that these simulations accurately resolve chemical evolution.

  6. Disruption of the Globular Cluster Pal 5

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Orbit calculations suggest that the sparse globular cluster, Pal 5, will pass within 7 kpc of the Galactic center the next time it crosses the plane, where it might be destroyed by tidal stresses. We study this problem, treating Pal 5 as a self-consistent dynamical system orbiting through an external potential that represents the Galaxy. The first part of the problem is to find suitable analytic approximations to the Galactic potential. They must be valid in all regions the cluster is likely to explore. Observed velocity and positional data for Pal 5 are used as initial conditions to determine the orbit. Methods we used for a different problem some 12 years ago have been adapted to this problem. Three experiments have been run, with M/L= 1, 3, and 10, for the cluster model. The cluster blew up shortly after passing through the Galactic plane (about 130 Myrs after the beginning of the run) with M/L=1. At M/L = 3 and 10 the cluster survived, although it got quite a kick in the fundamental mode on passing through the plane. But the fundamental mode oscillation died out in a couple of oscillation cycles at M/L=10. Pal 5 will probably be destroyed on its next crossing of the Galactic plane if M/L=1, but it can survive (albeit with fairly heavy damage) if NI/L=3. We haven't tried to trap the mass limits more closely than that. Pal 5 comes through pretty well unscathed at M/L=10. An interesting follow-up experiment would be to back the cluster up along its orbit to look at its previous passage through the Galactic plane, to see what kind of object it might have been at earlier times.

  7. OT2_tvelusam_4: Probing Galactic Spiral Arm Tangencies with [CII

    NASA Astrophysics Data System (ADS)

    Velusamy, T.

    2011-09-01

    We propose to use the unique viewing geometry of the Galactic spiral arm tangents , which provide an ideal environment for studying the effects of density waves on spiral structure. We propose a well-sampled map of the[C II] 1.9 THz line emission along a 15-degree longitude region across the Norma-3kpc arm tangential, which includes the edge of the Perseus Arm. The COBE-FIRAS instrument observed the strongest [C II] and [N II] emission along these spiral arm tangencies.. The Herschel Open Time Key Project Galactic Observations of Terahertz C+ (GOT C+), also detects the strongest [CII] emission near these spiral arm tangential directions in its sparsely sampled HIFI survey of [CII] in the Galactic plane survey. The [C II] 158-micron line is the strongest infrared line emitted by the ISM and is an excellent tracer and probe of both the diffuse gases in the cold neutral medium (CNM) and the warm ionized medium (WIM). Furthermore, as demonstrated in the GOTC+ results, [C II] is an efficient tracer of the dark H2 gas in the ISM that is not traced by CO or HI observations. Thus, taking advantage of the long path lengths through the spiral arm across the tangencies, we can use the [C II] emission to trace and characterize the diffuse atomic and ionized gas as well as the diffuse H2 molecular gas in cloud transitions from HI to H2 and C+ to C and CO, throughout the ISM. The main goal of our proposal is to use the well sampled (at arcmin scale) [C II] to study these gas components of the ISM in the spiral-arm, and inter-arm regions, to constrain models of the spiral structure and to understand the influence of spiral density waves on the Galactic gas and the dynamical interaction between the different components. The proposed HIFI observations will consist of OTF 15 degree longitude scans and one 2-degree latitude scan sampled every 40arcsec across the Norma- 3kpc Perseus Spiral tangency.

  8. Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2018-05-01

    We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.

  9. A three-phase amplification of the cosmic magnetic field in galaxies

    NASA Astrophysics Data System (ADS)

    Martin-Alvarez, Sergio; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2018-06-01

    Arguably the main challenge of galactic magnetism studies is to explain how the interstellar medium of galaxies reaches energetic equipartition despite the extremely weak cosmic primordial magnetic fields that are originally predicted to thread the inter-galactic medium. Previous numerical studies of isolated galaxies suggest that a fast dynamo amplification might suffice to bridge the gap spanning many orders of magnitude in strength between the weak early Universe magnetic fields and the ones observed in high redshift galaxies. To better understand their evolution in the cosmological context of hierarchical galaxy growth, we probe the amplification process undergone by the cosmic magnetic field within a spiral galaxy to unprecedented accuracy by means of a suite of constrained transport magnetohydrodynamical adaptive mesh refinement cosmological zoom simulations with different stellar feedback prescriptions. A galactic turbulent dynamo is found to be naturally excited in this cosmological environment, being responsible for most of the amplification of the magnetic energy. Indeed, we find that the magnetic energy spectra of simulated galaxies display telltale inverse cascades. Overall, the amplification process can be divided in three main phases, which are related to different physical mechanisms driving galaxy evolution: an initial collapse phase, an accretion-driven phase, and a feedback-driven phase. While different feedback models affect the magnetic field amplification differently, all tested models prove to be subdominant at early epochs, before the feedback-driven phase is reached. Thus the three-phase evolution paradigm is found to be quite robust vis-a-vis feedback prescriptions.

  10. The Impact Of Galactic Environment On Star Formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn

    2016-09-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well@corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=35pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic@scale dynamical processes dominate GMC disruption.

  11. The impact of galactic environment on star formation

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; Blanc, Guillermo A.; Schinnerer, Eva; Groves, Brent; Adamo, Angela; Hughes, Annie; Meidt, Sharon; SFNG Collaboration

    2017-01-01

    While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well-corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=50pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic-scale dynamical processes dominate GMC disruption.

  12. Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2018-06-01

    We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.

  13. Delayed upper tract drainage on voiding cystourethrogram may not be associated with increased risk of urinary tract infection in children with vesicoureteral reflux.

    PubMed

    Garcia-Roig, Michael; Arlen, Angela M; Huang, Jonathan H; Filimon, Eleonora; Leong, Traci; Kirsch, Andrew J

    2016-10-01

    Urinary stasis in the setting of obstruction provides an opportunistic environment for bacterial multiplication and is a well-established risk factor for UTI. Vesicoureteral reflux (VUR) with delayed upper tract drainage (UTD) on VCUG has been reported to correlate with increased UTI risk. We sought to determine whether delayed UTD can be reliably classified, and whether it correlates with UTI incidence, VCUG, or endoscopic findings. Children undergoing endoscopic surgery for primary VUR (2009-2012) were identified. VUR grade, timing, and laterality were abstracted. Demographics, hydrodistention (HD) grade, reported febrile and culture-proven UTI were assessed. UTD on VCUG was graded on post-void images as 1 = partial/complete UTD or 2 = no/increased UTD. Inter-observer agreement was calculated. Patients were excluded for incomplete imaging or inability to void during VCUG. The cohort included 128 patients (10M, 118F), mean age 4.1 ± 2.1 years. Mean age at diagnosis was 2.8 ± 2.8 years. Mean maximum VUR grade was 3 ± 0.9: 1 (7.8%), 2 (20.3%), 3 (43%), 4 (25.8%), 5 (3.1%). UTD occurred in 45 (35%), and no drainage in 83 (65%) patients. Agreement coefficient between graders was 0.596 (p < 0.0001). Cultures were available in 100 patients (70 positive). Patients experienced a mean of 2 ± 1.2 parent-reported fUTIs and 1.2 ± 1.2 culture-proven UTIs from birth to surgery. UTI rate did not differ by UTD status for parent or culture-proven UTI (Table). On multivariate analysis, no patient characteristic was a significant predictor of UTI based on drainage status. Children diagnosed with VUR before 1 year of age had a higher verified UTI rate (p < 0.001). However, drainage was not a significant predictor of UTI rate and when testing the interaction of drainage and age. We sought to determine whether UTD was an accurate predictor of UTI risk to maximize available prognostic information from a single VCUG. Delayed UTD was not a predictor of infection in our patients, nor was it associated with previously described UTI risk factors, such as VUR timing or grade, and voiding dysfunction. Limitations included the retrospective nature of the study in patients undergoing endoscopic VUR treatment, and possible inaccurate UTI reports from parents and pediatricians. UTD can be reliably scored using a binary system with high inter-observer correlation. Our data call into question the previous finding that children with poor UTD are at increased risk of recurrent UTI. Delayed UTD is also not associated with higher HD, or VUR grade compared with those with more prompt UTD. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  14. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  15. A fuzzy Bayesian network approach to quantify the human behaviour during an evacuation

    NASA Astrophysics Data System (ADS)

    Ramli, Nurulhuda; Ghani, Noraida Abdul; Ahmad, Nazihah

    2016-06-01

    Bayesian Network (BN) has been regarded as a successful representation of inter-relationship of factors affecting human behavior during an emergency. This paper is an extension of earlier work of quantifying the variables involved in the BN model of human behavior during an evacuation using a well-known direct probability elicitation technique. To overcome judgment bias and reduce the expert's burden in providing precise probability values, a new approach for the elicitation technique is required. This study proposes a new fuzzy BN approach for quantifying human behavior during an evacuation. Three major phases of methodology are involved, namely 1) development of qualitative model representing human factors during an evacuation, 2) quantification of BN model using fuzzy probability and 3) inferencing and interpreting the BN result. A case study of three inter-dependencies of human evacuation factors such as danger assessment ability, information about the threat and stressful conditions are used to illustrate the application of the proposed method. This approach will serve as an alternative to the conventional probability elicitation technique in understanding the human behavior during an evacuation.

  16. A Spitzer/glimpse Search For Galaxies: What Zone Of Avoidance?

    NASA Astrophysics Data System (ADS)

    Parsons, Lamarr; Benjamin, R. A.; GLIMPSE Team

    2007-12-01

    We report the results of a visual search for galaxy candidates in an area of twelve square degrees covered by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire-3D (GLIMPSE-3D) Spitzer Legacy programs. The areas searched consisted of three 2x2 degree blocks, with galactic coordinates centered at (330, -02), (330, +02) and (331, -02). All three regions were imaged for 2.4 seconds in the 3.6, 4.5, 5.8 and 8.0 µm bands using IRAC on the Spitzer Space Telescope. We report a total of 114 galaxy candidates, yielding an average of 9.5 candidates per square degree. We also show that the galaxy detection rate is dependent on galactic latitude, probably due to the lower diffuse 8 micron background at high latitudes. We have found that the detection rate increases from 4 per square degree (at b=1º) to 12 per square degree (at b=3º). We present the physical parameters of these galaxies, discuss their clustering, and note which have been previously detected in other wavebands/surveys. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442.

  17. The sparkling Universe: clustering of voids and void clumps

    NASA Astrophysics Data System (ADS)

    Lares, Marcelo; Ruiz, Andrés N.; Luparello, Heliana E.; Ceccarelli, Laura; Garcia Lambas, Diego; Paz, Dante J.

    2017-07-01

    We analyse the clustering of cosmic voids using a numerical simulation and the main galaxy sample from the Sloan Digital Sky Survey. We take into account the classification of voids into two types that resemble different evolutionary modes: those with a rising integrated density profile (void-in-void mode or R-type) and voids with shells (void-in-cloud mode or S-type). The results show that voids of the same type have stronger clustering than the full sample. We use the correlation analysis to define void clumps, associations with at least two voids separated by a distance of at most the mean void separation. In order to study the spatial configuration of void clumps, we compute the minimal spanning tree and analyse their multiplicity, maximum length and elongation parameter. We further study the dynamics of the smaller sphere that enclose all the voids in each clump. Although the global densities of void clumps are different according to their member-void types, the bulk motions of these spheres are remarkably lower than those of randomly placed spheres with the same radius distribution. In addition, the coherence of pairwise void motions does not strongly depend on whether voids belong to the same clump. Void clumps are useful to analyse the large-scale flows around voids, since voids embedded in large underdense regions are mostly in the void-in-void regime, where the expansion of the larger region produces the separation of voids. Similarly, voids around overdense regions form clumps that are in collapse, as reflected in the relative velocities of voids that are mostly approaching.

  18. The young star cluster population of M51 with LEGUS - II. Testing environmental dependences

    NASA Astrophysics Data System (ADS)

    Messa, Matteo; Adamo, A.; Calzetti, D.; Reina-Campos, M.; Colombo, D.; Schinnerer, E.; Chandar, R.; Dale, D. A.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Elmegreen, B. G.; Fumagalli, M.; Johnson, K. E.; Kruijssen, J. M. D.; Östlin, G.; Shabani, F.; Smith, L. J.; Whitmore, B. C.

    2018-06-01

    It has recently been established that the properties of young star clusters (YSCs) can vary as a function of the galactic environment in which they are found. We use the cluster catalogue produced by the Legacy Extragalactic UV Survey (LEGUS) collaboration to investigate cluster properties in the spiral galaxy M51. We analyse the cluster population as a function of galactocentric distance and in arm and inter-arm regions. The cluster mass function exhibits a similar shape at all radial bins, described by a power law with a slope close to -2 and an exponential truncation around 105 M⊙. While the mass functions of the YSCs in the spiral arm and inter-arm regions have similar truncation masses, the inter-arm region mass function has a significantly steeper slope than the one in the arm region, a trend that is also observed in the giant molecular cloud mass function and predicted by simulations. The age distribution of clusters is dependent on the region considered, and is consistent with rapid disruption only in dense regions, while little disruption is observed at large galactocentric distances and in the inter-arm region. The fraction of stars forming in clusters does not show radial variations, despite the drop in the H2 surface density measured as a function of galactocentric distance. We suggest that the higher disruption rate observed in the inner part of the galaxy is likely at the origin of the observed flat cluster formation efficiency radial profile.

  19. Improving mechanical properties of carbon nanotube fibers through simultaneous solid-state cycloaddition and crosslinking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xinyi; Hiremath, Nitilaksha; Hong, Kunlun

    Individual carbon nanotubes (CNTs) exhibit exceptional mechanical properties. However, difficulties remain in fully realizing these properties in CNT macro-assemblies, because the weak inter-tube forces result in the CNTs sliding past one another. Here in this study, a simple solid-state reaction is presented that enhances the mechanical properties of carbon nanotube fibers (CNTFs) through simultaneous covalent functionalization and crosslinking. This is the first chemical crosslinking proposed without the involvement of a catalyst or byproducts. The specific tensile strength of CNTFs obtained from the treatment employing a benzocyclobutene-based polymer is improved by 40%. Such improvement can be attributed to a reduced numbermore » of voids, impregnation of the polymer, and the formation of covalent crosslinks. This methodology is confirmed using both multiwalled nanotube (MWNT) powders and CNTFs. Thermogravimetric analysis, differential scanning calorimetry, x-ray photoelectron spectroscopy, and transmission electron microscopy of the treated MWNT powders confirm the covalent functionalization and formation of inter-tube crosslinks. This simple one-step reaction can be applied to industrial-scale production of high-strength CNTFs.« less

  20. Collaboration is key: The actual experience of disciplines working together in child care.

    PubMed

    Garvis, Susanne; Kirkby, Jane; McMahon, Keryn; Meyer, Colleen

    2016-03-01

    Promoting young children's academic and developmental outcomes can no longer be achieved by the single efforts of one profession, but requires professionals to work together in inter-professional teams to understand the complexity of young children's lives. Collaboration in early childhood programs involves health professionals, educators, and other professionals sharing information, validating each other's roles, and providing input around which strategies promote positive outcomes for all children. There are, however, limited studies available within early childhood education on inter-disciplinary relationships between nurses and teachers. This paper helps to fill this void by exploring the relationship of an early childhood teacher and maternal and child health nurse working alongside one another in an Australian kindergarten. Through a narrative approach, a number of characteristics of the relationship were identified as key elements to a productive relationship. Findings are important for health professionals working with early childhood educators. By understanding the complexity within and between disciplines, professionals can work effectively to support young children and their families. © 2015 Wiley Publishing Asia Pty Ltd.

  1. Improving mechanical properties of carbon nanotube fibers through simultaneous solid-state cycloaddition and crosslinking

    DOE PAGES

    Lu, Xinyi; Hiremath, Nitilaksha; Hong, Kunlun; ...

    2017-03-13

    Individual carbon nanotubes (CNTs) exhibit exceptional mechanical properties. However, difficulties remain in fully realizing these properties in CNT macro-assemblies, because the weak inter-tube forces result in the CNTs sliding past one another. Here in this study, a simple solid-state reaction is presented that enhances the mechanical properties of carbon nanotube fibers (CNTFs) through simultaneous covalent functionalization and crosslinking. This is the first chemical crosslinking proposed without the involvement of a catalyst or byproducts. The specific tensile strength of CNTFs obtained from the treatment employing a benzocyclobutene-based polymer is improved by 40%. Such improvement can be attributed to a reduced numbermore » of voids, impregnation of the polymer, and the formation of covalent crosslinks. This methodology is confirmed using both multiwalled nanotube (MWNT) powders and CNTFs. Thermogravimetric analysis, differential scanning calorimetry, x-ray photoelectron spectroscopy, and transmission electron microscopy of the treated MWNT powders confirm the covalent functionalization and formation of inter-tube crosslinks. This simple one-step reaction can be applied to industrial-scale production of high-strength CNTFs.« less

  2. Runoff initiation from falling raindrops - comparison of smooth impervious surface and asphalt pavements. Effects of surface inclination and texture.

    NASA Astrophysics Data System (ADS)

    Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal; Levenberg, Eyal

    2017-04-01

    The processes of runoff initiation on smooth impervious surfaces and various asphalt pavements are investigated in laboratory rain simulator experiments and outdoor sprinkling tests. Visual and FLIR observations indicate that runoff initiation is associated with coalescence of drop clusters on the surface and complex changes in micro-connectivity. Depending on surface inclination, several morphological regimes of flow initiation have been observed. In the case of very small inclination the runoff initiation is governed by critical merging of drop clusters on the surface and develops in broad flows (very abrupt, but delayed). For larger inclinations, the runoff occurs in rivulets or strongly directed flow threads. On asphalt pavements the runoff initiation is also strongly affected by pavement SVF (Surface Void Fraction), texture and even by the asphalt hydrophobicity. A simplified bi-level model of the pavement surface may explain principal differences in the runoff initiation on asphalts with small, intermediate and large SVF values. For small SVF (standard fresh asphalts) the runoff develops on the upper surface level, and filling of the surface voids is not always required (especially for the large inclinations). For intermediate SVF (considerably deteriorated asphalts) the runoff develops as well on the upper surface level, but only after considerable filling of the surface voids. Finally, on severely deteriorated asphalts (very large SVFs) the runoff develops on the "bottom" level of asphalt surface, after only partial filling of the surface voids. Other factors, such as drops splash and splitting, also affect the process of runoff initiation and explain rather considerable differences (sometimes of 2-3 mm rain depth) in the runoff thresholds on various non-porous asphalt pavements. Similar phenomena can be probably observed on certain types of rock outcrops.

  3. Where are Sedna's Sisters?

    NASA Astrophysics Data System (ADS)

    Bartlett, D. F.

    2005-05-01

    Simulations of the formation of the Oort cloud from the Kuiper Belt typically are presented as an animated scatter diagram. Here the orbit of each object appears as a point of perihelion distance q and semi-major axis a. (eg. Levison, Morbidelli, & Dones 2004). These plots show a conspicuous void, bounded by the inequalities: q < a, q > 50 AU, and a < 5000-10000 AU. Brown (2005) calls this void the ``Bermuda Triangle". The only present occupant is Sedna (q=76 AU, a=501 AU). Brown, Trujillo, & Rabinowitz , the discovers of Sedna, have challenged others to explain how Sedna got inside the triangle and to predict where similar objects might be found. Sedna could not have simply formed in its current orbit by the accumulation of smaller objects (Stern 2005). Several authors have suggested that a passing star scattered Sedna into the triangle shortly after the birth of the solar system. Here I offer an alternative which uses the very strong galactic tidal forces of the Sinusoidal potential (Bartlett 2001, 2004). In this potential, the numerator of Newton's law is replaced by GM cos(ko r) where ko = 2 π / lambdao and the 'wavelength' λ o is 425 pc. The 20 radial oscillations between the sun and the center of the Galaxy give tidal forces that are 120 times as big as generally expected. I will show how this tidal force, acting over the lifetime of the solar system, could move the perihelion of Sedna from about 40 to 76 AU. Sedna's sisters are likely to have still larger q & a and to have perihelia in two specific quadrants of the ecliptic plane.

  4. Imprints of the large-scale structure on AGN formation and evolution

    NASA Astrophysics Data System (ADS)

    Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem

    2018-04-01

    Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.

  5. An experimental and computational investigation of dynamic ductile fracture in stainless steel welds

    NASA Astrophysics Data System (ADS)

    Kothnur, Vasanth Srinivasa

    The high strain rate viscoplastic flow and fracture behavior of NITRONIC-50 and AL6XN stainless steel weldments are studied under dynamic loading conditions. The study is primarily motivated by interest in modeling the micromechanics of dynamic ductile failure in heterogeneous weldments. The high strain rate response of specimens machined from the parent, weld and heat-affected zones of NITRONIC-50 and AL6XN weldments is reported here on the basis of experiments conducted in a compression Kolsky bar configuration. The failure response of specimens prepared from the various material zones is investigated under high rate loading conditions in a tension Kolsky bar set-up. The microstructure of voided fracture process zones in these weldments is studied using X-ray Computed Microtomography. To model the preferential evolution of damage near the heat-affected zone, a finite deformation elastic-viscoplastic constitutive model for porous materials is developed. The evolution of the macroscopic flow response and the porous microstructure have been analysed in two distinctive regimes: pre-coalescence and post-coalescence. The onset of void coalescence is analyzed on the basis of upper-bound models to obtain the limit-loads needed to sustain a localized mode of plastic flow in the inter-void ligament. A finite element framework for the integration of the porous material response under high rate loading conditions is implemented as a user-subroutine in ABAQUS/Explicit. To address the effect of mesh sensitivity of numerical simulations of ductile fracture, a microstructural length scale is used to discretize finite element models of test specimens. Results from a detailed finite element study of the deformation and damage evolution in AL6XN weldments are compared with experimental observations.

  6. Tris(N-{bis­[meth­yl(phen­yl)amino]­phosphor­yl}benzene­sulfonamidato-κ2 O,O′)(1,10-phenanthroline-κ2 N,N′)lanthanum(III)

    PubMed Central

    Prytula-Kurkunova, Angelina Yu.; Trush, Victor A.; Dyakonenko, Viktoriya V.; Sliva, Tetyana Yu.; Amirkhanov, Vladimir M.

    2017-01-01

    The asymmetric unit of [La(C20H21N3O3PS)3(C12H8N2)] is created by one LaIII ion, three deprotonated N-{bis­[meth­yl(phen­yl)amino]­phosphor­yl}benzene­sulfonamidate (L −) ligands and one 1,10-phenanthroline (Phen) mol­ecule. Each LaIII ion is eight-coordinated (6O+2N) by three phosphoryl O atoms, three sulfonyl O atoms of three L − ligands and two N atoms of the chelating Phen ligand, leading to the formation of six- and five-membered metallacycles, respectively. The lanthanum coordination polyhedron has a bicapped trigonal–prismatic geometry. ‘Sandwich-like’ intra­molecular π–π stacking inter­actions are observed between the 1,10-phenanthroline ligand and two benzene rings of two different L − ligands. The phenyl rings of L − that are not involved in the stacking inter­actions show minor positional disorder. Mol­ecules form layers parallel to the (010) plane due to weak C—H⋯O inter­molecular hydrogen bonds. Unidentified highly disordered solvate mol­ecules that occupy ca 400 Å3 large voids have been omitted from the refinement model. PMID:28775887

  7. Void statistics, scaling, and the origins of large-scale structure

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Giovanelli, Riccardo; Haynes, Martha P.; Melott, Adrian L.; Scherrer, Robert J.

    1989-01-01

    The probability that a volume of the universe of given size and shape spaced at random will be void of galaxies is used here to study various models of the origin of cosmological structures. Numerical simulations are conducted on hot-particle and cold-particle-modulated inflationary models with and without biasing, on isothermal or initially Poisson models, and on models where structure is seeded by loops of cosmic string. For the Pisces-Perseus redshift compilation of Giovanelli and Haynes (1985), it is found that hierarchical scaling is obeyed for subsamples constructed with different limiting magnitudes and subsamples taken at random. This result confirms that the hierarchical ansatz holds valid to high order and supports the idea that structure in the observed universe evolves by a regular process from an almost Gaussian primordial state. Neutrino models without biasing show the effect of a strong feature in the initial power spectrum. Cosmic string models do not agree well with the galaxy data.

  8. Void statistics of the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  9. Void statistics of the CfA redshift survey

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-11-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  10. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-16

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.

  11. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures

    NASA Astrophysics Data System (ADS)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-01

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.

  12. Seal Integrity of Selected Fuzes as Measured by Three Leak Test Methods

    DTIC Science & Technology

    1976-09-01

    the worst fuze from the seal standpoint. The M503A-2 fuze body is made from a cast aluminum alloy . The casting process leaves voids which, after...leak resistance of the joint. WDU4A/A The design of this fuze depends upon ultrasonic welding to seal lid to case. The specified leak test merely...test is probably one of the better leakage tests from an effectiveness standpoint. However, from lot quantities of 690 and 480, reject rates of 20% were

  13. Photoionization of High-altitude Gas in a Supernova-driven Turbulent Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Wood, Kenneth; Hill, Alex S.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.

    2010-10-01

    We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Xu, Ye; Yang, Ji

    Combining H I data from the Canadian Galactic Plane Survey and CO data from the Milky Way Imaging Scroll Painting project, we have identified a new segment of a spiral arm between Galactocentric radii of 15 and 19 kpc that apparently lies beyond the Outer Arm in the second Galactic quadrant. Over most of its length, the arm is 400-600 pc thick in z. The new arm appears to be the extension of the distant arm recently discovered by Dame and Thaddeus as well as the Scutum-Centaurus Arm into the outer second quadrant. Our current survey identified a total of 72more » molecular clouds with masses on the order of 10{sup 2}-10{sup 4} M {sub ☉} that probably lie in the new arm. When all of the available data from the CO molecular clouds are fit, the best-fitting spiral model gives a pitch angle of 9.°3 ± 0.°7.« less

  15. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  16. The link between IRAS spectra and near-infrared emission features in external galaxies

    NASA Technical Reports Server (NTRS)

    Desert, F. X.; Dennefeld, M.

    1988-01-01

    The relationship in external galaxies between the presence of the near-infrared (NIR) emission features attributed to polycyclic aromatic hydrocarbon (PAH) molecules, and the far-infrared (FIR) properties as observed by IRAS, is investigated. It is found that whenever the NIR features are absent in a galaxy, the FIR spectrum displays an enhancement at shorter wavelengths relative to normal galaxies. This enhancement is always associated with a strong activity in the galactic nucleus. Some Seyfert galaxies do not exhibit such an infrared signature and therefore they are probably energetically dominated by star-formation processes. Finally, the importance of hard UV photons and of the hot medium in the narrow line region of active nuclei is emphasized in relation to the survival of the PAH molecules. In this frame, the absence of PAHs in the galactic center could be taken as evidence for the presence of an active nucleus.

  17. Star Formation Driven Galactic Winds at z~1.4

    NASA Astrophysics Data System (ADS)

    Weiner, Benjamin J.

    2009-12-01

    Galactic winds are a prime suspect for driving metals out of galaxies, creating the mass-metallicity relation, probably enriching the IGM, and explaining the low baryon fraction in galaxies. They may also be related to the quenching of star formation in red galaxies. However, it is unclear how efficiently winds couple to the ISM, and which types and masses of galaxies drove winds in the past. Spectroscopy of blueshifted Mg II absorption in galaxies at z~1.4 in the DEEP2 survey shows that winds are ubiquitous at that redshift (where the SFR in the bulk of galaxies is higher than today), and that they are driven by star formation. Many of these galaxies will become spirals rather than ellipticals, showing that SF-driven winds are part of the past history of many galaxies, but that such winds do not directly lead to quenching or deterrence of subsequent star formation.

  18. Energetic particle influences in Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Harrison, R. Giles; Nicoll, Keri; Rycroft, Michael; Briggs, Aaron

    2016-04-01

    Energetic particles from outer space, known as galactic cosmic rays, constantly ionise the entire atmosphere. During strong solar storms, solar energetic particles can also reach the troposphere and enhance ionisation. Atmospheric ionisation generates cluster ions. These facilitate current flow in the global electric circuit, which arises from charge separation in thunderstorms driven by meteorological processes. Energetic particles, whether solar or galactic in origin, may influence the troposphere and stratosphere through a range of different mechanisms, each probably contributing a small amount. Some of the suggested processes potentially acting over a wide spatial area in the troposphere include enhanced scavenging of charged aerosol particles, modification of droplet or droplet-droplet behavior by charging, and the direct absorption of infra-red radiation by the bending and stretching of hydrogen bonds inside atmospheric cluster-ions. As well as reviewing the proposed mechanisms by which energetic particles modulate atmospheric properties, we will also discuss new instrumentation for measurement of energetic particles in the atmosphere.

  19. Oscillation effects and time variation of the supernova neutrino signal

    NASA Astrophysics Data System (ADS)

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-01

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  20. Probability Distributome: A Web Computational Infrastructure for Exploring the Properties, Interrelations, and Applications of Probability Distributions.

    PubMed

    Dinov, Ivo D; Siegrist, Kyle; Pearl, Dennis K; Kalinin, Alexandr; Christou, Nicolas

    2016-06-01

    Probability distributions are useful for modeling, simulation, analysis, and inference on varieties of natural processes and physical phenomena. There are uncountably many probability distributions. However, a few dozen families of distributions are commonly defined and are frequently used in practice for problem solving, experimental applications, and theoretical studies. In this paper, we present a new computational and graphical infrastructure, the Distributome , which facilitates the discovery, exploration and application of diverse spectra of probability distributions. The extensible Distributome infrastructure provides interfaces for (human and machine) traversal, search, and navigation of all common probability distributions. It also enables distribution modeling, applications, investigation of inter-distribution relations, as well as their analytical representations and computational utilization. The entire Distributome framework is designed and implemented as an open-source, community-built, and Internet-accessible infrastructure. It is portable, extensible and compatible with HTML5 and Web2.0 standards (http://Distributome.org). We demonstrate two types of applications of the probability Distributome resources: computational research and science education. The Distributome tools may be employed to address five complementary computational modeling applications (simulation, data-analysis and inference, model-fitting, examination of the analytical, mathematical and computational properties of specific probability distributions, and exploration of the inter-distributional relations). Many high school and college science, technology, engineering and mathematics (STEM) courses may be enriched by the use of modern pedagogical approaches and technology-enhanced methods. The Distributome resources provide enhancements for blended STEM education by improving student motivation, augmenting the classical curriculum with interactive webapps, and overhauling the learning assessment protocols.

  1. Probability Distributome: A Web Computational Infrastructure for Exploring the Properties, Interrelations, and Applications of Probability Distributions

    PubMed Central

    Dinov, Ivo D.; Siegrist, Kyle; Pearl, Dennis K.; Kalinin, Alexandr; Christou, Nicolas

    2015-01-01

    Probability distributions are useful for modeling, simulation, analysis, and inference on varieties of natural processes and physical phenomena. There are uncountably many probability distributions. However, a few dozen families of distributions are commonly defined and are frequently used in practice for problem solving, experimental applications, and theoretical studies. In this paper, we present a new computational and graphical infrastructure, the Distributome, which facilitates the discovery, exploration and application of diverse spectra of probability distributions. The extensible Distributome infrastructure provides interfaces for (human and machine) traversal, search, and navigation of all common probability distributions. It also enables distribution modeling, applications, investigation of inter-distribution relations, as well as their analytical representations and computational utilization. The entire Distributome framework is designed and implemented as an open-source, community-built, and Internet-accessible infrastructure. It is portable, extensible and compatible with HTML5 and Web2.0 standards (http://Distributome.org). We demonstrate two types of applications of the probability Distributome resources: computational research and science education. The Distributome tools may be employed to address five complementary computational modeling applications (simulation, data-analysis and inference, model-fitting, examination of the analytical, mathematical and computational properties of specific probability distributions, and exploration of the inter-distributional relations). Many high school and college science, technology, engineering and mathematics (STEM) courses may be enriched by the use of modern pedagogical approaches and technology-enhanced methods. The Distributome resources provide enhancements for blended STEM education by improving student motivation, augmenting the classical curriculum with interactive webapps, and overhauling the learning assessment protocols. PMID:27158191

  2. Statistical Characteristics of the Gaussian-Noise Spikes Exceeding the Specified Threshold as Applied to Discharges in a Thundercloud

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.

    2017-12-01

    We obtain expressions for the probabilities of the normal-noise spikes with the Gaussian correlation function and for the probability density of the inter-spike intervals. As distinct from the delta-correlated noise, in which the intervals are distributed by the exponential law, the probability of the subsequent spike depends on the previous spike and the interval-distribution law deviates from the exponential one for a finite noise-correlation time (frequency-bandwidth restriction). This deviation is the most pronounced for a low detection threshold. Similarity of the behaviors of the distributions of the inter-discharge intervals in a thundercloud and the noise spikes for the varying repetition rate of the discharges/spikes, which is determined by the ratio of the detection threshold to the root-mean-square value of noise, is observed. The results of this work can be useful for the quantitative description of the statistical characteristics of the noise spikes and studying the role of fluctuations for the discharge emergence in a thundercloud.

  3. Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-02-01

    Recent radio observations show that giant molecular cloud (GMC) mass functions noticeably vary across galactic disks. High-resolution magnetohydrodynamics simulations show that multiple episodes of compression are required for creating a molecular cloud in the magnetized interstellar medium. In this article, we formulate the evolution equation for the GMC mass function to reproduce the observed profiles, for which multiple compressions are driven by a network of expanding shells due to H II regions and supernova remnants. We introduce the cloud-cloud collision (CCC) terms in the evolution equation in contrast to previous work (Inutsuka et al.). The computed time evolution suggests that the GMC mass function slope is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC effect is limited only in the massive end of the mass function. In addition, we identify a gas resurrection channel that allows the gas dispersed by massive stars to regenerate GMC populations or to accrete onto pre-existing GMCs. Our results show that almost all of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60% contributes in inter-arm regions. Our results also predict that GMC mass functions have a single power-law exponent in the mass range <105.5 {M}⊙ (where {M}⊙ represents the solar mass), which is well characterized by GMC self-growth and dispersal timescales. Measurement of the GMC mass function slope provides a powerful method to constrain those GMC timescales and the gas resurrecting factor in various environments across galactic disks.

  4. Physical properties of high-mass star-forming clumps in different evolutionary stages from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian; Shirley, Yancy; Rosolowsky, Erik; Dunham, Miranda; Ellsworth-Bowers, Timothy; Ginsburg, Adam

    2013-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolutionary sequence for high mass star forming regions is poorly understood. Recent Galactic plane surveys are providing the first systematic view of high-mass star-forming regions in all evolutionary phases across the Milky Way. We present observations of the 22.23 GHz H2O maser transition J(Ka,Kc) = 6(1,6)→5(2,3) transition toward 1398 clumps identified in the Bolocam Galactic Plane Survey using the 100m Green Bank Telescope (GBT). We detect 392 H2O masers, 279 (71%) newly discovered. We show that H2O masers can identify the presence of protostars which were not previously identified by Spitzer/MSX Galactic plane IR surveys: 25% of IR-dark clumps have an H2O maser. We compare the physical properties of the clumps in the Bolocam Galactic Plane Survey (BGPS) with observations of diagnostics of star formation activity: 8 and 24 um YSO candidates, H2O and CH3OH masers, shocked H2, EGOs, and UCHII regions. We identify a sub-sample of 400 clumps with no star formation indicators representing the largest and most robust sample of pre-protocluster candidates from an unbiased survey to date. The different evolutionary stages show strong separations in HCO+ linewidth and integrated intensity, surface mass density, and kinetic temperature. Monte Carlo techniques are applied to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate the distribution of derived quantities for clumps in different evolutionary stages. Surface area and dust mass show weak separations above > 2 pc^2 and > 3x10^3 solar masses. An observed breakdown occurs in the size-linewidth relationship with no differentiation by evolutionary stage. Future work includes adding evolutionary indicators (MIPSGAL, HiGal, MMB) and expanding DPDF priors (HI self-absorption, Galactic structure) for more well-resolved KDAs.

  5. Mysterious Blob Galaxies Revealed

    NASA Image and Video Library

    2005-01-11

    This image composite shows a giant galactic blob (red) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together. Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile. http://photojournal.jpl.nasa.gov/catalog/PIA07220

  6. SPENDING TOO MUCH TIME AT THE GALACTIC BAR: CHAOTIC FANNING OF THE OPHIUCHUS STREAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.; Sesar, Branimir

    2016-06-20

    The Ophiuchus stellar stream is peculiar: (1) its length is short given the age of its constituent stars, and (2) several probable member stars have dispersions in sky position and velocity that far exceed those seen within the stream. The stream’s proximity to the Galactic center suggests that its dynamical history is significantly influenced by the Galactic bar. We explore this hypothesis with models of stream formation along orbits consistent with Ophiuchus’ properties in a Milky Way potential model that includes a rotating bar. In all choices for the rotation parameters of the bar, orbits fit to the stream aremore » strongly chaotic. Mock streams generated along these orbits qualitatively match the observed properties of the stream: because of chaos, stars stripped early generally form low-density, high-dispersion “fans” leaving only the most recently disrupted material detectable as a strong over-density. Our models predict that there should be a significant amount of low-surface-brightness tidal debris around the stream with a complex phase-space morphology. The existence of or lack of these features could provide interesting constraints on the Milky Way bar and would rule out formation scenarios for the stream. This is the first time that chaos has been used to explain the properties of a stellar stream and is the first demonstration of the dynamical importance of chaos in the Galactic halo. The existence of long, thin streams around the Milky Way, presumably formed along non- or weakly chaotic orbits, may represent only a subset of the total population of disrupted satellites.« less

  7. Probabilities of radiation-induced inter- and intrachromosomal exchanges and their dependence on the DNA content of the chromosome

    NASA Technical Reports Server (NTRS)

    Wu, H.; Yang, T. C. (Principal Investigator)

    2001-01-01

    A biophysical model has been developed that is based on the assumptions that an interphase chromosome occupies a spherical territory and that chromosome exchanges are formed by the misrejoining of two DNA double-strand breaks induced within a defined interaction distance. The model is used to explain the relative frequencies of inter- and intrachromosomal exchanges and the relationship between radiation-induced aberrations in individual chromosomes and the DNA content of the chromosome. Although this simple model predicts a higher ratio of inter- to intrachromosomal exchanges for low-LET radiation than for high-LET radiation, as has been suggested by others, we argue that the comparison of the prediction of the model with experimental results is not straightforward. With the model, we also show that the probability of the formation of interchromosomal exchanges is proportional to the "surface area" of the chromosome domain plus a correction term. The correction term is small if the interaction distance is less than 1 microm for both low- and high-LET radiations.

  8. Quantification of Stereochemical Communication in Metal-Organic Assemblies.

    PubMed

    Castilla, Ana M; Miller, Mark A; Nitschke, Jonathan R; Smulders, Maarten M J

    2016-08-26

    The derivation and application of a statistical mechanical model to quantify stereochemical communication in metal-organic assemblies is reported. The factors affecting the stereochemical communication within and between the metal stereocenters of the assemblies were experimentally studied by optical spectroscopy and analyzed in terms of a free energy penalty per "incorrect" amine enantiomer incorporated, and a free energy of coupling between stereocenters. These intra- and inter-vertex coupling constants are used to track the degree of stereochemical communication across a range of metal-organic assemblies (employing different ligands, peripheral amines, and metals); temperature-dependent equilibria between diastereomeric cages are also quantified. The model thus provides a unified understanding of the factors that shape the chirotopic void spaces enclosed by metal-organic container molecules.

  9. Sharpless-76E: astrometry and outflows in a protostellar cluster

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Hamabata, Hideo; Nagayama, Takumi; Omodaka, Toshihiro; Handa, Toshihiro; Sunada, Kazuyoshi; Nakano, Makoto; Ueno, Yuji

    2017-04-01

    Using VLBI Exploration of Radio Astrometry, we have conducted multi-epoch observations of the H2O masers associated with Sharpless 76E. The measured annual parallax is 0.521 ± 0.024 mas corresponding to the distance of 1.92^{+0.09}_{-0.08} kpc. From the parallax measurement, we obtained the peculiar motion of Sh2-76EMM1 (UMM1, VMM1, WMM1) to be (-9 ± 3, 10 ± 4, 6 ± 4) km s-1and Sh2-76EMM2 (UMM2, VMM2, WMM2) to be (-5 ± 12, 3 ± 14, -21 ± 22) km s-1, where U, V and W are directed towards the Galactic Centre, in the direction of Galactic rotation and towards the Galactic north pole, respectively. The internal motion of the H2O masers trace two separate bipolar outflows, one associated with Sh2-76EMM1 and the other with Sh2-76EMM2. The spectral energy distribution (SED) of Sh2-76EMM1 suggests it to be a class I YSO. We have only limited data points for the SED fit of Sh2-76EMM2, therefore can only speculate it to be probably a class II based on its comparative K-band and H-band magnitudes.

  10. Investigating ChaMPlane X-Ray Sources in the Galactic Bulge with Magellan LDSS2 Spectra

    NASA Astrophysics Data System (ADS)

    Koenig, Xavier; Grindlay, Jonathan E.; van den Berg, Maureen; Laycock, Silas; Zhao, Ping; Hong, JaeSub; Schlegel, Eric M.

    2008-09-01

    We have carried out optical and X-ray spectral analyses on a sample of 136 candidate optical counterparts of X-ray sources found in five Galactic bulge fields included in our Chandra Multiwavelength Plane Survey. We use a combination of optical spectral fitting and quantile X-ray analysis to obtain the hydrogen column density toward each object, and a three-dimensional dust model of the Galaxy to estimate the most probable distance in each case. We present the discovery of a population of stellar coronal emission sources, likely consisting of pre-main-sequence, young main-sequence, and main-sequence stars, as well as a component of active binaries of RS CVn or BY Dra type. We identify one candidate quiescent low-mass X-ray binary with a subgiant companion; we note that this object may also be an RS CVn system. We report the discovery of three new X-ray-detected cataclysmic variables (CVs) in the direction of the Galactic center (at distances lesssim2 kpc). This number is in excess of predictions made with a simple CV model based on a local CV space density of lesssim10-5 pc-3, and a scale height ~200 pc. We discuss several possible reasons for this observed excess.

  11. The Initial Mass Function of the Arches Cluster

    NASA Astrophysics Data System (ADS)

    Hosek, Matthew; Lu, Jessica; Anderson, Jay; Ghez, Andrea; Morris, Mark; Do, Tuan; Clarkson, William; Albers, Saundra; Weisz, Daniel

    2018-01-01

    The Arches star cluster is only 26 pc (in projection) from Sgr A*, the supermassive black hole at the Galactic Center. This young massive cluster allows us to examine the impact of the extreme Galactic Center environment on the stellar Initial Mass Function (IMF). However, measuring the IMF of the Arches is challenging due to the highly variable extinction along the line of sight, which makes it difficult to separate cluster members from the field stars. We use high-precision proper motion and photometric measurements obtained with the Hubble Space Telescope to calculate cluster membership probabilities for stars down to ~2 M_sun out to the outskirts of the cluster (3 pc). In addition, we measure the effective temperatures of a small sample of cluster members in order to calibrate the mass-luminosity relationship using using Keck OSIRS K-band spectroscopy. We forward model these observations to simultaneously constrain the cluster IMF, age, distance, and extinction. We obtain an IMF that is shallower than what is observed locally, with a higher fraction of high-mass stars to low mass stars (i.e., “top-heavy”). We will compare the IMF of the Arches to similar clusters in the Galactic disk and quantify the effect of the GC environment on the star formation process.

  12. A composite large-scale CO survey at high galactic latitudes in the second quadrant

    NASA Technical Reports Server (NTRS)

    Heithausen, A.; Stacy, J. G.; De Vries, H. W.; Mebold, U.; Thaddeus, P.

    1993-01-01

    Surveys undertaken in the 2nd quadrant of the Galaxy with the CfA 1.2 m telescope have been combined to produce a map covering about 620 sq deg in the 2.6 mm CO(J = 1 - 0) line at high galactic latitudes. There is CO emission from molecular 'cirrus' clouds in about 13 percent of the region surveyed. The CO clouds are grouped together into three major cloud complexes with 29 individual members. All clouds are associated with infrared emission at 100 micron, although there is no one-to-one correlation between the corresponding intensities. CO emission is detected in all bright and dark Lynds' nebulae cataloged in that region; however not all CO clouds are visible on optical photographs as reflection or absorption features. The clouds are probably local. At an adopted distance of 240 pc cloud sizes range from O.1 to 30 pc and cloud masses from 1 to 1600 solar masses. The molecular cirrus clouds contribute between 0.4 and 0.8 M solar mass/sq pc to the surface density of molecular gas in the galactic plane. Only 26 percent of the 'infrared-excess clouds' in the area surveyed actually show CO and about 2/3 of the clouds detected in CO do not show an infrared excess.

  13. Evidence for dwarf stars at D of about 100 kiloparsecs near the Sextans dwarf spheroidal galaxy

    NASA Technical Reports Server (NTRS)

    Gould, Andrew; Guhathakurta, Puragra; Richstone, Douglas; Flynn, Chris

    1992-01-01

    A method is presented for detecting individual, metal-poor, dwarf stars at distances less than about 150 kpc - a method specifically designed to filter out stars from among the much more numerous faint background field galaxies on the basis of broad-band colors. This technique is applied to two fields at high Galactic latitude, for which there are deep CCD data in four bands ranging from 3600 to 9000 A. The field in Sextans probably contains more than about five dwarf stars with BJ not greater than 25.5. These are consistent with being at a common distance about 100 kpc and lie about 1.7 deg from the newly discovered dwarf galaxy in Sextans whose distance is about 85 +/- 10 kpc. The stars lie near the major axis of the galaxy and are near or beyond the tidal radius. The second field, toward the south Galactic pole, may contain up to about five extra-Galactic stars, but these show no evidence for being at a common distance. Possible applications of this type technique are discussed, and it is shown that even very low surface brightness star clusters or dwarf galaxies may be detected at distances less than about 1 Mpc.

  14. Quasar target selection fiber efficiency

    NASA Astrophysics Data System (ADS)

    Newberg, Heidi; Yanny, Brian

    1996-05-01

    We present estimates of the efficiency for finding QSOs as a function of limiting magnitude and galactic latitude. From these estimates, we have formulated a target selection strategy that should net 80,000 QSOs in the north galactic cap with an average of 70 fibers per plate, not including fibers reserved for high-redshift quasars. With this plan, we expect 54% of the targets to be QSOs. The North Galactic Cap is divided into two zones of high and low stellar density. We use about five times as many fibers for QSO candidates in the half of the survey with the lower stellar density as we use in the half with higher stellar density. The current plan assigns 15% of the fibers to FIRST radio sources; if these are not available, those fibers would be allocated to lower probability QSO sources, dropping the total number of QSOs by a small factor (5%). We will find about 17,000 additional quasars in the southern strips, and maybe a few more at very high redshift. Use was made of two data sets: the star and quasar simulated test data generated by Don Schneider, and the data from UJFN plate surveys by Koo (1986) and Kron (1980). This data was compared to results from the Palomar-Green Survey and a recent survey by Pat Osmer and collaborators.

  15. Search for gamma-ray spectral modulations in Galactic pulsars

    NASA Astrophysics Data System (ADS)

    Majumdar, Jhilik; Calore, Francesca; Horns, Dieter

    2018-04-01

    Well-motivated extensions of the standard model predict ultra-light and fundamental pseudo-scalar particles (e.g., axions or axion-like particles: ALPs). Similarly to the Primakoff-effect for axions, ALPs can mix with photons and consequently be searched for in laboratory experiments and with astrophysical observations. Here, we search for energy-dependent modulations of high-energy gamma-ray spectra that are tell-tale signatures of photon-ALPs mixing. To this end, we analyze the data recorded with the Fermi-LAT from Galactic pulsars selected to have a line of sight crossing spiral arms at a large pitch angle. The large-scale Galactic magnetic field traces the shape of spiral arms, such that a sizable photon-ALP conversion probability is expected for the sources considered. For the nearby Vela pulsar, the energy spectrum is well described by a smooth model spectrum (a power-law with a sub-exponential cut-off) while for the six selected Galactic pulsars, a common fit of the ALPs parameters improves the goodness of fit in comparison to a smooth model spectrum with a significance of 4.6 σ. We determine the most-likely values for mass ma and coupling gaγγ to be ma=(3.6‑0.2 stat.+0.5 stat.± 0.2syst. ) neV and gaγγ=(2.3‑0.4stat.+0.3 stat.± 0.4syst.)× 10‑10 GeV‑1. In the error budget, we consider instrumental effects, scaling of the adopted Galactic magnetic field model (± 20 %), and uncertainties on the distance of individual sources. The best-fit parameters are by a factor of ≈ 3 larger than the current best limit on solar ALPs generation obtained with the CAST helioscope, although known modifications of the photon-ALP mixing in the high density solar environment could provide a plausible explanation for the apparent tension between the helioscope bound and the indication for photon-ALPs mixing reported here.

  16. The evolution of voids in the adhesion approximation

    NASA Astrophysics Data System (ADS)

    Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.

    1994-08-01

    We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 1283 particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H50 = 1 scals approximately as bar D(z) = bar Dzero/(1+2)1/2, where bar Dzero approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent, with void topologies generally simplifying with time. This means that as voids grow older they become progressively more empty and have less structure within them. We evaluate the genus measure both for individual voids as well as for the entire ensemble of voids predicted by CDM model. As a result we find that the topology of voids when taken together with the void spectrum is a very useful statistical indicator of the evolution of the structure of the universe on large scales.

  17. The evolution of voids in the adhesion approximation

    NASA Technical Reports Server (NTRS)

    Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.

    1994-01-01

    We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 128(exp 3) particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H(sub 50) = 1 scals approximately as bar D(z) = bar D(sub zero)/(1+2)(exp 1/2), where bar D(sub zero) approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordialpotential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent, with void topologies generally simplifying with time. This means that as voids grow older they become progressively more empty and have less structure within them. We evaluate the genus measure both for individual voids as well as for the entire ensemble of voids predicted by CDM model. As a result we find that the topology of voids when taken together with the void spectrum is a very useful statistical indicator of the evolution of the structure of the universe on large scales.

  18. Void effect on mechanical properties of copper nanosheets under biaxial tension by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Yang, Qinyou; Zhang, Guowei; Yang, Yong

    2018-03-01

    The relationship between void size/location and mechanical behavior under biaxial loading of copper nanosheets containing voids are investigated by molecular dynamics method. The void location and the void radius on the model are discussed in the paper. The main reason of break is discovered by the congruent relationship between the shear stress and its dislocations. Dislocations are nucleated at the corner of system and approached to the center of void with increased deformation. Here, a higher stress is required to fail the voided sheets when smaller voids are utilized. The void radius influences the time of destruction. The larger the void radius is, the lower the shear stress and the earlier the model breaks. The void location impacts the dislocation distribution.

  19. On the UV/Optical Variation in NGC 5548: New Evidence Against the Reprocessing Diagram

    NASA Astrophysics Data System (ADS)

    Zhu, Fei-Fan; Wang, Jun-Xian; Cai, Zhen-Yi; Sun, Yu-Han; Sun, Mou-Yuan; Zhang, Ji-Xian

    2018-06-01

    The reprocessing scenario is widely adopted in literature to explain the observed tight inter-band correlation and short lags in the UV/optical variations of active galactic nuclei (AGNs). In this work we look into the color variability of the famous Seyfert galaxy NGC 5548 with high-quality Swift multi-band UV/optical light curves. We find the color variation of NGC 5548 is clearly timescale-dependent, in a way that it is more prominent on shorter timescales. This is similar to that previously detected in quasar samples, but for the first time in an individual AGN. We show that while a reprocessing model with strict assumptions on the driving source and the disk size can apparently match the observed light curves and inter-band lags, it fails to reproduce the observed timescale dependency in the color variation. Such discrepancy raises a severe challenge to, and can hardly be reconciled under the widely accepted reprocessing diagram. It also demonstrates that the timescale dependency of the color variation is uniquely powerful in probing the physics behind AGN UV/optical variations.

  20. Subjective Probabilities in Household Surveys

    PubMed Central

    Hurd, Michael D.

    2011-01-01

    Subjective probabilities are now collected on a number of large household surveys with the objective of providing data to better understand inter-temporal decision making. Comparison of subjective probabilities with actual outcomes shows that the probabilities have considerable predictive power in situations where individuals have considerable private information such as survival and retirement. In contrast the subjective probability of a stock market gain varies greatly across individuals even though no one has private information and the outcome is the same for everyone. An explanation is that there is considerable variation in accessing and processing information. Further, the subjective probability of a stock market gain is considerably lower than historical averages, providing an explanation for the relatively low frequency of stock holding. An important research objective will be to understand how individuals form their subjective probabilities. PMID:21643535

  1. Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Blair D.; Kim, Tae-Sun; Wakker, Bart P.

    Comparison of interstellar medium (ISM) absorption in the UV spectrum of LS 4825, a B1 Ib−II star d  = 21 ± 5 kpc from the Sun toward l  = 1.°67 and b  = −6.°63, with ISM absorption toward an aligned foreground star at d  < 7.0 ± 1.7 kpc, allows us to isolate and study gas associated with the Milky Way nuclear wind. Spectra from the Space Telescope Imaging Spectrograph show low-ionization absorption out to d  < 7 kpc (e.g., O i, C ii, Mg ii, Si ii, Fe ii, S ii) only between 0 and 40 km s{sup −1}, while absorption at d  > 7 kpc, ∼1 kpc below themore » Galactic plane, is complex and spans −290 to +94 km s{sup −1}. The intermediate and high ions Si iii, C iv, Si iv, and N v show extremely strong absorption with multiple components from −283 to 107 km s{sup −1}, implying that the ISM ∼1 kpc below the Galactic center has a substantial reservoir of plasma and more gas containing C iv and N v than in the Carina OB1 association at z  = 0 kpc. Abundances and physical conditions are presented for many absorption components. The high ion absorption traces cooling transition temperature plasma probably driven by the outflowing hot gas, while the extraordinarily large thermal pressure, p / k  ∼ 10{sup 5} cm{sup −3} K{sup −1}, in an absorption component at −114 km s{sup −1} probably arises from the ram pressure of the outflowing hot gas. The observations are consistent with a flow whose ionization structure in the high ions can be understood through a combination of nonequilibrium radiative cooling and turbulent mixing.« less

  2. PPPC 4 DM secondary: a Poor Particle Physicist Cookbook for secondary radiation from Dark Matter

    NASA Astrophysics Data System (ADS)

    Buch, Jatan; Cirelli, Marco; Giesen, Gaëlle; Taoso, Marco

    2015-09-01

    We enlarge the set of recipes and ingredients at disposal of any poor particle physicist eager to cook up signatures from weak-scale Dark Matter models by computing two secondary emissions due to DM particles annihilating or decaying in the galactic halo, namely the radio signals from synchrotron emission and the gamma rays from bremsstrahlung. We consider several magnetic field configurations and propagation scenarios for electrons and positrons. We also provide an improved energy loss function for electrons and positrons in the Galaxy, including synchrotron losses in the different configurations, bremsstrahlung losses, ionization losses and Inverse Compton losses with an updated InterStellar Radiation Field.

  3. Segmentation and automated measurement of chronic wound images: probability map approach

    NASA Astrophysics Data System (ADS)

    Ahmad Fauzi, Mohammad Faizal; Khansa, Ibrahim; Catignani, Karen; Gordillo, Gayle; Sen, Chandan K.; Gurcan, Metin N.

    2014-03-01

    estimated 6.5 million patients in the United States are affected by chronic wounds, with more than 25 billion US dollars and countless hours spent annually for all aspects of chronic wound care. There is need to develop software tools to analyze wound images that characterize wound tissue composition, measure their size, and monitor changes over time. This process, when done manually, is time-consuming and subject to intra- and inter-reader variability. In this paper, we propose a method that can characterize chronic wounds containing granulation, slough and eschar tissues. First, we generate a Red-Yellow-Black-White (RYKW) probability map, which then guides the region growing segmentation process. The red, yellow and black probability maps are designed to handle the granulation, slough and eschar tissues, respectively found in wound tissues, while the white probability map is designed to detect the white label card for measurement calibration purpose. The innovative aspects of this work include: 1) Definition of a wound characteristics specific probability map for segmentation, 2) Computationally efficient regions growing on 4D map; 3) Auto-calibration of measurements with the content of the image. The method was applied on 30 wound images provided by the Ohio State University Wexner Medical Center, with the ground truth independently generated by the consensus of two clinicians. While the inter-reader agreement between the readers is 85.5%, the computer achieves an accuracy of 80%.

  4. The mean intensity of radiation at 2 microns in the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1979-01-01

    Consideration is given to the value of the mean intensity at 2 microns in the solar neighborhood, and it is found that it is likely to be a factor of four greater than previously estimated on theoretical grounds. It is noted however, that the estimate does agree with a reasonable extrapolation of the results of the survey of the Galactic plane by the Japanese group. It is concluded that the mean intensity in the solar neighborhood therefore probably peaks somewhat longward of 1 micron, and that this result is important for understanding the temperature of interstellar dust and the intensity of the far infrared background. This means specifically that dark clouds probably emit significantly more far infrared radiation than previously predicted.

  5. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    PubMed

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.

  6. Voids and superstructures: correlations and induced large-scale velocity flows

    NASA Astrophysics Data System (ADS)

    Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego

    2017-09-01

    The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ˜40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.

  7. Evaluation of a mobile voiding diary for pediatric patients with voiding dysfunction: a prospective comparative study.

    PubMed

    Johnson, Emilie K; Estrada, Carlos R; Johnson, Kathryn L; Nguyen, Hiep T; Rosoklija, Ilina; Nelson, Caleb P

    2014-09-01

    One potential strategy for improving voiding diary completion rates and data quality is use of a mobile electronic format. We evaluated the acceptability and feasibility of mobile voiding diaries for patients with nonneurogenic lower urinary tract dysfunction, and compared mobile and paper voiding diaries. We prospectively enrolled children presenting with daytime symptoms of lower urinary tract dysfunction between July 2012 and April 2013. We enrolled an initial cohort of patients who were provided a paper voiding diary and a subsequent cohort who were provided a mobile voiding diary. We conducted in person interviews and assessed completion rates and quality, comparing paper and mobile voiding diary groups. We enrolled 45 patients who received a paper voiding diary and 38 who received a mobile voiding diary. Completion rates were 78% for paper voiding diaries and 61% for mobile voiding diaries (p = 0.10). Data quality measures for patients completing paper vs mobile voiding diaries revealed a larger proportion (63% vs 52%) providing a full 5 days of data and a smaller proportion (20% vs 65%) with data gaps. However, the paper voiding diary also demonstrated a lower proportion (80% vs 100%) that was completely legible and a lower proportion (40% vs 65%) with completely prospective data entry. The use of a mobile voiding diary was acceptable and feasible for our patients with lower urinary tract dysfunction, although completion rates were somewhat lower compared to paper voiding diaries. Data quality was not clearly better for either version. The mobile voiding diary format may offer data quality advantages for select groups but it did not display significant superiority when provided universally. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Phase-field study on geometry-dependent migration behavior of voids under temperature gradient in UO2 crystal matrix

    NASA Astrophysics Data System (ADS)

    Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue

    2017-10-01

    In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.

  9. Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets

    NASA Astrophysics Data System (ADS)

    Gontis, V.; Kononovicius, A.

    2017-10-01

    We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.

  10. Sources of CMB Spots in Closed Hyperbolic Universes

    NASA Astrophysics Data System (ADS)

    Fagundes, Helio V.

    2002-12-01

    Some years ago Cayón and Smoot1; hereafter CS, identified a number of 'cold' and 'hot' spots in the COBE maps of the cosmic microwave background (CMB), as patches of physical density fluctuations (rather than noise) on the surface of last scattering (SLS). A cold (hot) spot, interpreted as gravitational Sachs-Wolfe effect plus fluctuation of radiation temperature on the SLS, corresponds to an increase (decrease) of matter density2. These results were used by the author3; henceforth Paper I, in connection with the possibility of the universe's spatial section being a closed hyperbolic 3-manifold (CHM). In the electronic version of this paper Tables 1a-b list the galactic coordinates for the six overerdense and the eight underdense CS spots. Given the comoving nature of cosmic geometry, it was argued that those spots, for example the overdense ones, might have evolved into galaxy superclusters which are - or may become - observable in our epoch. The underdense spots would have evolved into the relative voids in the observed structure of the large-scale matter distribution. The purpose of Paper I was to fit a number of CHM's to the CS spots. Since these are interpreted as density inhomogeneities in the fundamental polyhedron (FP) for the manifold, we hoped the positions of the latter, when compared with those of observed structures and voids, might favor some of those CHM's as the real cosmic space. In Paper I a lopsided method was adopted to choose a possible source for a given CS spot. The sources obtained in Paper I are usually concentrated in narrow bands of galactic latitude. Another problem with Paper I was that we looked for sources inside the maximum injectivity FP, with basepoint at the center (which is the standard in SnapPea4) and the observer displaced from the center; this produces an asymmetry in the distances of the found candidate sources. Here I make two improvements on this research, both with the help of our geometer guru, Jeff Weeks. One of them is that now FP is chosen with basepoint on the observer's position, which makes the source distribution centered on the the observer. The other one is in the search procedure. The new computer search for P and γ is shown in the electronic paper as a flow chart. It is based on the very definition of a fundamental region. There the results for manifold m007(+3, 1) in the notation of SnapPea are shown. The observer was supposed to be at position (0.3, 0.0, 0.0) in Klein coordinates relative to the standard FP in SnapPea, and axes rotated by (4.5669, 0.1078, 5.3451) in Euler angles in radians, with respect to the axes obtained for the displaced basepoint. The values Ω0 = 0.3 and ZSLS = 1300 were adopted. The idea to pursue, which is illustrated in Paper I, is to vary these positions and orientations randomly, until we get sources that match data in catalogs of galaxy superclusters and voids - which, for this to become possible, should reach much deeper space than the present limit of about Z = 0.12 in Einasto et al.'s5 list of superclusters.

  11. Redshift-space distortions around voids

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson

    2016-11-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.

  12. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less

  13. An investigation of the photometric variability of confirmed and candidate Galactic Be stars using ASAS-3 data

    NASA Astrophysics Data System (ADS)

    Bernhard, Klaus; Otero, Sebastián; Hümmerich, Stefan; Kaltcheva, Nadejda; Paunzen, Ernst; Bohlsen, Terry

    2018-05-01

    We present an investigation of a large sample of confirmed (N=233) and candidate (N=54) Galactic classical Be stars (mean V magnitude range of 6.4 to 12.6 mag), with the main aim of characterizing their photometric variability. Our sample stars were preselected among early-type variables using light curve morphology criteria. Spectroscopic information was gleaned from the literature, and archival and newly-acquired spectra. Photometric variability was analyzed using archival ASAS-3 time series data. To enable a comparison of results, we have largely adopted the methodology of Labadie-Bartz et al. (2017), who carried out a similar investigation based on KELT data. Complex photometric variations were established in most stars: outbursts on different time-scales (in 73±5 % of stars), long-term variations (36±6 %), periodic variations on intermediate time-scales (1±1 %) and short-term periodic variations (6±3 %). 24±6 % of the outbursting stars exhibit (semi)periodic outbursts. We close the apparent void of rare outbursters reported by Labadie-Bartz et al. (2017), and show that Be stars with infrequent outbursts are not rare. While we do not find a significant difference in the percentage of stars showing outbursts among early-type, mid-type and late-type Be stars, we show that early-type Be stars exhibit much more frequent outbursts. We have measured rising and falling times for well-covered and well-defined outbursts. Nearly all outburst events are characterized by falling times that exceed the rising times. No differences were found between early-, mid- and late-type stars; a single non-linear function adequately describes the ratio of falling time to rising time across all spectral subtypes, with the ratio being larger for short events.

  14. Cause Analysis on the Void under Slabs of Cement Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Wen, Li; Zhu, Guo Xin; Baozhu

    2017-06-01

    This paper made a systematic analysis on the influence of the construction, environment, water and loads on the void beneath road slabs, and also introduced the formation process of structural void and pumping void, and summarizes the deep reasons for the bottom of the cement concrete pavement. Based on the analysis above, this paper has found out the evolution law of the void under slabs which claimed that the void usually appeared in the slab corners and then the cross joint, resulting void in the four sides with the void area under the front slab larger than the rear one.

  15. The gamma ray continuum spectrum from the galactic center disk and point sources

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Tueller, Jack

    1992-01-01

    A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state.

  16. The Second Galactic Center Black Hole? A Possible Detection of Ionized Gas Orbiting around an IMBH Embedded in the Galactic Center IRS13E Complex

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Uehara, Kenta; Miyoshi, Makoto; Miyawaki, Ryosuke; Miyazaki, Atsushi

    2017-11-01

    The Galactic Center is the nuclear region of the nearest spiral galaxy, the Milky Way, and contains the supermassive black hole with M˜ 4× {10}6 {M}⊙ , Sagittarius A* (Sgr A*). One of the basic questions about the Galactic Center is whether or not Sgr A* is the only “massive” black hole in the region. The IRS13E complex is a very intriguing infrared (IR) object that contains a large dark mass comparable to the mass of an intermediate mass black hole (IMBH) from the proper motions of the main member stars. However, the existence of the IMBH remains controversial. There are some objections to accepting the existence of the IMBH. In this study, we detected ionized gas with a very large velocity width ({{Δ }}{v}{FWZI}˜ 650 km s-1) and a very compact size (r˜ 400 au) in the complex using the Atacama Large Millimeter/submillimeter Array (ALMA). We also found an extended component connecting with the compact ionized gas. The properties suggest that this is an ionized gas flow on the Keplerian orbit with high eccentricity. The enclosed mass is estimated to be {10}4 {M}⊙ by the analysis of the orbit. The mass does not conflict with the upper limit mass of the IMBH around Sgr A*, which is derived by the long-term astrometry with the Very Long Baseline Array (VLBA). In addition, the object probably has an X-ray counterpart. Consequently, a very fascinating possibility is that the detected ionized gas is rotating around an IMBH embedded in the IRS13E complex.

  17. The Galactic Center S-stars and the Hypervelocity Stars in the Galactic Halo: Two Faces of the Tidal Breakup of Stellar Binaries by the Central Massive Black Hole?

    NASA Astrophysics Data System (ADS)

    Zhang, Fupeng; Lu, Youjun; Yu, Qingjuan

    2013-05-01

    In this paper, we investigate the link between the hypervelocity stars (HVSs) discovered in the Galactic halo and the Galactic center (GC) S-stars, under the hypothesis that they are both the products of the tidal breakup of the same population of stellar binaries by the central massive black hole (MBH). By adopting several hypothetical models for binaries to be injected into the vicinity of the MBH and doing numerical simulations, we realize the tidal breakup processes of the binaries and their follow-up dynamical evolution. We find that many statistical properties of the detected HVSs and GC S-stars could be reproduced under some binary injecting models, and their number ratio can be reproduced if the stellar initial mass function is top-heavy (e.g., with slope ~ - 1.6). The total number of the captured companions is ~50 that have masses in the range ~3-7 M ⊙ and semimajor axes <~ 4000 AU and survive to the present within their main-sequence lifetime. The innermost one is expected to have a semimajor axis ~300-1500 AU and a pericenter distance ~10-200 AU, with a significant probability of being closer to the MBH than S2. Future detection of such a close star would offer an important test to general relativity. The majority of the surviving ejected companions of the GC S-stars are expected to be located at Galactocentric distances <~ 20 kpc, and have heliocentric radial velocities ~ - 500-1500 km s-1 and proper motions up to ~5-20 mas yr-1. Future detection of these HVSs may provide evidence for the tidal breakup formation mechanism of the GC S-stars.

  18. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al.more » for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.« less

  19. Stochastic Nonlinear Response of Woven CMCs

    NASA Technical Reports Server (NTRS)

    Kuang, C. Liu; Arnold, Steven M.

    2013-01-01

    It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs). The recently developed MultiScale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions and associated probability distribution functions. Prior results showed that the most critical architectural parameter to account for is weave void shape and content with other parameters being less in severity. Current results show that statistically only the post-elastic limit region (secondary hardening modulus and ultimate tensile strength) is impacted by local uncertainties both at the macro and structural level.

  20. Mass extinctions and missing matter

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1984-01-01

    The possible influence of 'invisible matter' on the solar system's comet halo, and therefore on quasi-periodic cometary bombardment of the earth and consequent mass extinctions, is briefly addressed. Invisible matter consisting of small or cold interstellar molecular clouds could significantly modulate the comet background flux, while invisible matter consisting of a large population of old, dead stars with a relatively small galactic concentration probably could not. It is also shown that the downward force exerted by the Galaxy will perturb the halo, but will not produce any periodicity.

  1. Laboratory Measurements Of Charge-exchange Produced X-ray Emission From K-shell Transitions In Hydrogenic And Helium-like Fe

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, P.; Boyce, K. R.; Chen, H.; Gu, M. F.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Thorn, D.; Wargelin, B.

    2006-09-01

    We have used a microcalorimeter and solid state detectors to measure x-ray emission produced by charge exchange reactions between bare and hydrogenic Fe colliding with neutral helium, hydrogen, and nitrogen gas. We show the measured spectral signature produced by different neutral donors and compare our results to theory where available. We also compare our results to measurements of the Fe K line emission from the Galactic Center measured by the XIS on the Suzaku x-ray observatory. This comparison shows that charge exchange recombination between highly charged ions (either cosmic rays or thermal ions) and neutral gas is probably not the dominant source of diffuse line emission in the Galactic Center. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and is also supported by NASA APRA grants to LLNL, GSFC, Harvard-Smithsonian CfA, and Stanford University.

  2. Evaporation of planetary atmospheres due to XUV illumination by quasars

    NASA Astrophysics Data System (ADS)

    Forbes, John C.; Loeb, Abraham

    2018-06-01

    Planetary atmospheres are subject to mass loss through a variety of mechanisms including irradiation by XUV photons from their host star. Here we explore the consequences of XUV irradiation by supermassive black holes as they grow by the accretion of gas in galactic nuclei. Based on the mass distribution of stars in galactic bulges and disks and the luminosity history of individual black holes, we estimate the probability distribution function of XUV fluences as a function of galaxy halo mass, redshift, and stellar component. We find that about 50% of all planets in the universe may lose a mass of hydrogen of ˜2.5 × 1019 g (the total mass of the Martian atmosphere), 10% may lose ˜5.1 × 1021 g (the total mass of Earth's atmosphere), and 0.2% may lose ˜1.4 × 1024 g (the total mass of Earth's oceans). The fractions are appreciably higher in the spheroidal components of galaxies, and depend strongly on galaxy mass, but only weakly on redshift.

  3. Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Lawler, James E.; Sneden, Christopher; DenHartog, E. A.; Collier, Jason; Dodge, Homer L.

    2006-01-01

    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy the progenitors of the halo stars responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingly consistent with a (relative) Solar System r-process pattern, and are also consistent with abundance predictions expected from such neutron-capture nucleosynthesis.

  4. Closure behavior of spherical void in slab during hot rolling process

    NASA Astrophysics Data System (ADS)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  5. Observation of galactic cosmic ray spallation events from the SoHO mission 20-yr operation of LASCO

    NASA Astrophysics Data System (ADS)

    Koutchmy, S.; Tavabi, E.; Urtado, O.

    2018-07-01

    A shower of secondary cosmic ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial galactic cosmic rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on 2015 November 29 using a unique Large Angle and Spectrometric Coronagraphs C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the first time. The resulting image includes different diverging linear `tracks' of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor coronal mass ejection and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 yr of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.

  6. Observation of galactic cosmic ray spallation events from the SoHO mission 20-Year operation of LASCO

    NASA Astrophysics Data System (ADS)

    Koutchmy, S.; Tavabi, E.; Urtado, O.

    2018-05-01

    A shower of secondary Cosmic Ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial Galactic Cosmic Rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on Nov. 29, 2015 using a unique LASCO C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the 1st time. The resulting image includes different diverging linear "tracks" of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor Coronal Mass Ejection (CME) and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 years of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.

  7. Deformation of the Galactic Centre stellar cusp due to the gravity of a growing gas disc

    NASA Astrophysics Data System (ADS)

    Kaur, Karamveer; Sridhar, S.

    2018-06-01

    The nuclear star cluster surrounding the massive black hole at the Galactic Centre consists of young and old stars, with most of the stellar mass in an extended, cuspy distribution of old stars. The compact cluster of young stars was probably born in situ in a massive accretion disc around the black hole. We investigate the effect of the growing gravity of the disc on the orbits of the old stars, using an integrable model of the deformation of a spherical star cluster with anisotropic velocity dispersions. A formula for the perturbed phase-space distribution function is derived using linear theory, and new density and surface density profiles are computed. The cusp undergoes a spheroidal deformation with the flattening increasing strongly at smaller distances from the black hole; the intrinsic axis ratio ˜0.8 at ˜0.15 pc. Stellar orbits are deformed such that they spend more time near the disc plane and sample the dense inner parts of the disc; this could result in enhanced stripping of the envelopes of red giant stars. Linear theory accounts only for orbits whose apsides circulate. The non-linear theory of adiabatic capture into resonance is needed to understand orbits whose apsides librate. The mechanism is a generic dynamical process, and it may be common in galactic nuclei.

  8. The MACHO Project Sample of Galactic Bulge High-Amplitude δ Scuti Stars: Pulsation Behavior and Stellar Properties

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Geha, M.; Griest, K.; Lehner, M. J.; Marshall, S. L.; McNamara, B. J.; Minniti, D.; Nelson, C.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Sutherland, W.; Templeton, M. R.; Vandehei, T.; Welch, D. L.

    2000-06-01

    We have detected 90 objects with periods and light-curve structures similar to those of field δ Scuti stars using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude δ Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground δ Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population δ Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field δ Scuti stars and the δ Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude δ Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles day-1) and the observed period ratios of ~0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes.

  9. A Dual-Channel Acquisition Method Based on Extended Replica Folding Algorithm for Long Pseudo-Noise Code in Inter-Satellite Links.

    PubMed

    Zhao, Hongbo; Chen, Yuying; Feng, Wenquan; Zhuang, Chen

    2018-05-25

    Inter-satellite links are an important component of the new generation of satellite navigation systems, characterized by low signal-to-noise ratio (SNR), complex electromagnetic interference and the short time slot of each satellite, which brings difficulties to the acquisition stage. The inter-satellite link in both Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) adopt the long code spread spectrum system. However, long code acquisition is a difficult and time-consuming task due to the long code period. Traditional folding methods such as extended replica folding acquisition search technique (XFAST) and direct average are largely restricted because of code Doppler and additional SNR loss caused by replica folding. The dual folding method (DF-XFAST) and dual-channel method have been proposed to achieve long code acquisition in low SNR and high dynamic situations, respectively, but the former is easily affected by code Doppler and the latter is not fast enough. Considering the environment of inter-satellite links and the problems of existing algorithms, this paper proposes a new long code acquisition algorithm named dual-channel acquisition method based on the extended replica folding algorithm (DC-XFAST). This method employs dual channels for verification. Each channel contains an incoming signal block. Local code samples are folded and zero-padded to the length of the incoming signal block. After a circular FFT operation, the correlation results contain two peaks of the same magnitude and specified relative position. The detection process is eased through finding the two largest values. The verification takes all the full and partial peaks into account. Numerical results reveal that the DC-XFAST method can improve acquisition performance while acquisition speed is guaranteed. The method has a significantly higher acquisition probability than folding methods XFAST and DF-XFAST. Moreover, with the advantage of higher detection probability and lower false alarm probability, it has a lower mean acquisition time than traditional XFAST, DF-XFAST and zero-padding.

  10. A new window on galactic suburbia with CSI, CANDELS, and GOODS-S

    NASA Astrophysics Data System (ADS)

    Williams, Rik

    2013-10-01

    While environmental effects on galaxies are seen clearly in dramatic environments like clusters and voids, most galaxies live in far more prosaic group environments of varying richness. Since typical groups consist of a relatively small handful of galaxies spread over a relatively large area, they have proven particularly difficult to detect and characterize up to high redshifts. With the Carnegie-Spitzer-IMACS {CSI} survey, we have developed the first large-scale, stellar mass-selected group catalog extending to z=1.2, and directly measured the hierarchical growth of groups therefrom. We are now embarking on a program to study in detail the influence of these groups on their galaxy populations through a combination of Magellan follow-up spectroscopy and deep public near-IR datasets. With the HST archival study proposed here, we will fold in the spectacular CANDELS and GOODS WFC3/ACS imaging in two of the CSI fields, tracking for the first time the morphological and structural transformations in 30 stellar mass-selected groups {containing 300-400 group galaxies} to z=1.2.

  11. Voiding diary might serve as a useful tool to understand differences between bladder pain syndrome/interstitial cystitis and overactive bladder.

    PubMed

    Kim, Sung Han; Oh, Shin Ah; Oh, Seung-June

    2014-02-01

    To identify the voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder. Between September 2005 and June 2010, 3-day voiding diaries of 49 consecutive bladder pain syndrome/interstitial cystitis patients and 301 overactive bladder patients were prospectively collected at an outpatient clinic and retrospectively analyzed. The characteristics of the two groups were not significantly different. However, all voiding variables including volume and frequency were significantly different except for the total voided volume: patients with bladder pain syndrome/interstitial cystitis showed significantly higher voiding frequencies, smaller maximal and mean voided volume, and more constant and narrower ranges of voided volume compared with overactive bladder patients (P < 0.005). Furthermore, mean intervals between voiding in bladder pain syndrome/interstitial cystitis were shorter and more consistent during the day and night (P < 0.001), although mean night-time variances were greater than daytime variances. Logistic regression analysis showed that total night-time frequency, maximal night-time voided volume and mean variance of daytime voiding intervals most significantly differentiated the two groups. Some voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder patients differ significantly according to 3-day voiding diary records. These findings provide additional information regarding the differences between these two diseases in the outpatient clinical setting. © 2013 The Japanese Urological Association.

  12. 3D Simulations of Void collapse in Energetic Materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2017-06-01

    Voids present in the microstructure of heterogeneous energetic materials effect the sensitivity towards ignition. It is established that the morphology of voids can play a significant role in sensitivity enhancement of energetic materials. Depending on the void shape, sensitivity can be either increased or decreased under given loading conditions. In the past, effects of different void shapes i.e. triangular, ellipse, cylindrical etc. on the sensitivity of energetic materials have been analyzed. However, most of these studies are performed in 2D and are limited under the plain strain assumption. Axisymmetric studies have also been performed in the past to incorporate the 3D effects, however axisymmetric modeling is limited to only certain geometries i.e. sphere. This work analyzes the effects of various void shapes in three dimensions on the ignition behavior of HMX. Various void shapes are analyzed including spherical, prolate and oblate speheroid oriented at different orientations, etc. Three dimensional void collapse simulations are performed on a single void to quantify the effects void morphology on initiation. A Cartesian grid based Eulerian solver SCIMITAR3D is used to perform the void collapse simulations. Various aspects of void morphology i.e. size, thickness of voids, elongation, orientation etc. are considered to obtain a comprehensive analysis. Also, 2D plane strain calculations are compared with the three dimensional analysis to evaluate the salient differences between 2D and 3D modeling.

  13. Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    The sensitivity of porous energetic materials depends on mesostructural heterogeneities such as voids, defects, cracks, and grain boundaries. The mesostructure of pressed explosives contains voids of arbitrary shapes including elongated voids of various orientations and aspect ratios. Mesoscale simulations to date have analyzed the effect of void morphology on the sensitivity of energetic materials for idealized shapes such as cylindrical, conical, and elliptical. This work analyzes the sensitivity behavior of elongated voids in an HMX matrix subject to shock loading. Simulations show that sensitivity of elongated voids depends strongly on orientation as well as aspect ratio. Ranges of orientations and aspects ratios are identified that enhance or inhibit initiation. Insights obtained from single elongated void analyses are used to identify sensitive locations in an imaged mesostructure of a pressed explosive sample.

  14. Preliminary experiments on dynamic biology of micro-organisms to avoid any specific full-blown syndrome on humans

    NASA Astrophysics Data System (ADS)

    Meer, Sneer

    2002-06-01

    The aim of this paper is to apply an efficient system to detect, identify and quicken suppression of any dangerous micro-organism which threatens the health of the human body in any form. It is well known that some specimens of this kind of possess a specific energy related to their speed of division, toxin emissions and high-powered interaction with human and animal cells which have the capacity to provide certain deadly full-blown syndromes. Many problems relating to the above-mentioned properties have not been clarified to date, and it is vital to find a rapid and valid reply as soon as possible. Inter-disciplinary sciences directed us to start some experiments to solve such problems, considering that the human body is dotted with a multiple interactive system of energy release, a fact which can explain the source of the micro-organism's energy also, for their necessity to manifest their deadly pathology. From practical preliminary experiments with some micro-mechanical systems using light-microscopy, connected to video TV Recorder System, one obtains optical enlarged TV images of certain processes which indicated the right way towards our crucial target; ie: the preparation of safe vaccines and safe medicines. This will constitute a basic system to a void deadly manifestations of dangerous micro-organisms and/or even regular infections on earth and in space, a system which will probably be applied at the ISS Space Station and other future actions in space in long and very long flights. We look forward to applying this system of dynamic biology towards preparation of a real and valid vaccine(s) against HIV virus on AIDS diseases.

  15. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  16. Disordered configurations of the Glauber model in two-dimensional networks

    NASA Astrophysics Data System (ADS)

    Bačić, Iva; Franović, Igor; Perc, Matjaž

    2017-12-01

    We analyze the ordering efficiency and the structure of disordered configurations for the zero-temperature Glauber model on Watts-Strogatz networks obtained by rewiring 2D regular square lattices. In the small-world regime, the dynamics fails to reach the ordered state in the thermodynamic limit. Due to the interplay of the perturbed regular topology and the energy neutral stochastic state transitions, the stationary state consists of two intertwined domains, manifested as multiclustered states on the original lattice. Moreover, for intermediate rewiring probabilities, one finds an additional source of disorder due to the low connectivity degree, which gives rise to small isolated droplets of spins. We also examine the ordering process in paradigmatic two-layer networks with heterogeneous rewiring probabilities. Comparing the cases of a multiplex network and the corresponding network with random inter-layer connectivity, we demonstrate that the character of the final state qualitatively depends on the type of inter-layer connections.

  17. Morphological Segregation in the Surroundings of Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Ricciardelli, Elena; Cava, Antonio; Varela, Jesus; Tamone, Amelie

    2017-09-01

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R void, which we define as the region of influence of voids. The significance of this difference is greater than 3σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.

  18. Cosmic voids and void lensing in the Dark Energy Survey science verification data

    DOE PAGES

    Sánchez, C.; Clampitt, J.; Kovacs, A.; ...

    2016-10-26

    Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of ~50 Mpc/h or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-zmore » redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo- z scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius ~70 Mpc/h and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2 < z < 0.8 , we identify 87 voids with comoving radii spanning the range 18-120 Mpc/h, and carry out a stacked weak lensing measurement. With a significance of 4.4σ, the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. In conclusion, it also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.« less

  19. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    NASA Astrophysics Data System (ADS)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (I.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and W49A, which contribute to a considerable fraction of their overall cloud masses, may be special OB cluster-forming environments as a direct consequence of global cloud collapse. These centralized massive molecular gas clumps also uniquely occupy much higher column densities than what is determined by the overall fit of power-law N-PDF. We have made efforts to archive the derived statistical quantities of individual target sources, to permit comparisons with theoretical frameworks, numerical simulations, and other observations in the future.

  20. SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Franco, G. A. P.; Sanmartim, D.

    2016-06-01

    In this work, we present the results of a spectroscopic study of very massive stars (VMSs) found outside the center of the massive stellar cluster NGC 3603. From the analysis of the associated Southern Astrophysical Research (SOAR) Telescope spectroscopic data and related optical-near-IR (NIR) photometry, we confirm the existence of several VMSs in the periphery of NGC 3603. The first group of objects (MTT58, WR42e, and RF7) is composed of three new Galactic exemplars of the OIf*/WN type, all of them with probable initial masses well above 100 {M}⊙ and estimated ages of about 1 Myr. Based on our Goodman blue-optical spectrum of another source in our sample (MTT68), we can confirm the previous finding in the NIR of the only other Galactic exemplar (besides HD 93129A) of the O2If* type known to date. Based on its position relative to a set of theoretical isochrones in a Hertzprung-Russel (H-R) diagram, we concluded that the new O2If* star could be one of the most massive (150 {M}⊙ ) and luminous (M V = -7.3) O-stars in the Galaxy. Also, another remarkable result is the discovery of a new O2v star (MTT31), which is the first exemplar of that class so far identified in the Milk Way. From its position in the H-R diagram it is found that this new star probably had an initial mass of 80 {M}⊙ , as well as an absolute magnitude of M V = -6.0, corresponding to a luminosity similar to other known O2v stars in the Large Magellanic Cloud. Finally, we also communicate the discovery of a new Galactic O3.5If* star (RFS8) that is quite an intriguing case. Indeed, it is located far to the south of the NGC 3603 center, in apparent isolation at a large radial projected linear distance of ˜62 pc. Its derived luminosity is similar to that of the other O3.5If* (Sh18) found in NGC 3603's innermost region, and the fact that a such high mass star is observed so isolated in the field led us to speculate that perhaps it could have been expelled from the innermost parts of the complex by a close fly-by dynamical encounter with a very massive hard binary system.

  1. On the abundance of extreme voids II: a survey of void mass functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chongchitnan, Siri; Hunt, Matthew, E-mail: s.chongchitnan@hull.ac.uk, E-mail: m.d.hunt@2012.hull.ac.uk

    2017-03-01

    The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.

  2. Atomistic modeling of shock-induced void collapse in copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davila, L P; Erhart, P; Bringa, E M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  3. Nanovoid growth in BCC α-Fe: influences of initial void geometry

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing

    2016-12-01

    The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.

  4. Comparison of sensation-related voiding patterns between continent and incontinent women: a study with a 3-day sensation-related bladder diary (SR-BD).

    PubMed

    Naoemova, Irina; De Wachter, Stefan; Wyndaele, Jean-Jacques

    2008-01-01

    To describe and compare voiding patterns on a 3-day sensation-related bladder diary (SR-BD) in women with urinary incontinence (UI) and healthy volunteers. A total of 251 women (224 incontinent patients and 27 healthy volunteers) who recorded a 3-day SR-BD and underwent standard cystometry participated in the study. Parameters from the 3-day SR-BD were compared between incontinent patients and healthy volunteers. Compared to continent women, all groups of incontinent women noted a significantly higher 24 hr voiding frequency, a greater voiding frequency per liter diuresis, a smaller mean voided volume for different degrees of bladder sensation with more voids made with higher intensity of desire to void. The smallest mean voided volumes for different degrees of desire to void and the highest voiding frequency per liter diuresis were observed in the urge incontinence group. There were different sensation-related voiding patterns on the 3-day SR-BD from incontinent women and healthy volunteers. All incontinence groups had increased bladder sensation compared to healthy volunteers. The most severe increase of bladder sensation was observed in the patients with urgency incontinence. (c) 2007 Wiley-Liss, Inc.

  5. The dark matter of galaxy voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  6. Prevalence and characteristics of voiding difficulties in women: are subjective symptoms substantiated by objective urodynamic data?

    PubMed

    Groutz, A; Gordon, D; Lessing, J B; Wolman, I; Jaffa, A; David, M P

    1999-08-01

    To examine the prevalence and characteristics of voiding difficulties in women. Two hundred six consecutive female patients who attended a urogynecology clinic were recruited. Patients were interviewed regarding the presence and severity of symptoms that would suggest voiding difficulties (ie, hesitancy, straining to void, weak or prolonged stream, intermittent stream, double voiding, incomplete emptying, reduction, and positional changes to start or complete voiding). Urodynamic evidence of voiding difficulty was considered as a peak flow rate less than 12 mL/s (voided volume greater than 100 mL), or residual urine volume greater than 150 mL, on two or more readings. Residual urinary volume, flow patterns, and pressure-flow parameters were analyzed and compared between symptomatic and asymptomatic patients who had urodynamic parameters of voiding difficulties. One hundred twenty-seven (61.7%) women reported having voiding difficulty symptoms; 79 others (38.3%) were free of such symptoms. Urodynamic diagnosis of voiding difficulty was made in 40 women (19.4% of the study population): 27 in the symptomatic group and 13 in the asymptomatic group (21.2% and 16.5%, respectively). Only 1 patient had voiding difficulty due to bladder outlet obstruction. All other cases of low flow rate were due to impaired detrusor contractility. Objective evidence of voiding difficulty may be found in both symptomatic and asymptomatic patients and is usually due to impaired detrusor contractility. The clinical significance of the abnormal flow parameters in asymptomatic patients is unclear.

  7. Environmental quenching and galactic conformity in the galaxy cross-correlation signal

    NASA Astrophysics Data System (ADS)

    Hatfield, P. W.; Jarvis, M. J.

    2017-12-01

    It has long been known that environment has a large effect on star formation in galaxies. There are several known plausible mechanisms to remove the cool gas needed for star formation, such as strangulation, harassment and ram-pressure stripping. It is unclear which process is dominant, and over what range of stellar mass. In this paper, we find evidence for suppression of the cross-correlation function between massive galaxies and less massive star-forming galaxies, giving a measure of how less likely a galaxy is to be star forming in the vicinity of a more massive galaxy. We develop a formalism for modelling environmental quenching mechanisms within the halo occupation distribution scheme. We find that at z ∼ 2 environment is not a significant factor in determining quenching of star-forming galaxies, and that galaxies are quenched with similar probabilities when they are satellites in sub-group environments, as they are globally. However, by z ∼ 0.5 galaxies are much less likely to be star forming when in a high-density (group or low-mass cluster) environment than when not. This increased probability of being quenched does not appear to have significant radial dependence within the halo at lower redshifts, supportive of the quenching being caused by the halting of fresh inflows of pristine gas, as opposed to by tidal stripping. Furthermore, by separating the massive sample into passive and star forming, we see that this effect is further enhanced when the central galaxy is passive, a manifestation of galactic conformity.

  8. Short Term Exogenic Climate Change Forcing

    NASA Astrophysics Data System (ADS)

    Krahenbuhl, Daniel

    Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic strengthening and the intensification of baroclinic disturbances. Galactic Cosmic ray induced tropospheric ionization modifies cloud microphysics, and modulates the global electric circuit. This dissertation is constructed around three research questions: (1): What are the biweekly declination effects of lunar gravitation upon the troposphere? (2): How do United States severe weather reports correlate with heliospheric current sheet crossings? and (3): How does cloud cover spatially and temporally vary with galactic cosmic rays? Study 1 findings show spatial consistency concerning lunar declination extremes upon Rossby longwaves. Due to the influence of Rossby longwaves on synoptic scale circulation, our results could theoretically extend numerical meteorological forecasting. Study 2 results indicate a preference for violent tornadoes to occur prior to a HCS crossing. Violent tornadoes (EF3+) are 10% more probable to occur near, and 4% less probable immediately after a HCS crossing. The distribution of hail and damaging wind reports do not mirror this pattern. Polarity is critical for the effect. Study 3 results confirm anticorrelation between solar flux and low-level marine-layer cloud cover, but indicate substantial regional variability between cloud cover altitude and GCRs. Ultimately, this dissertation serves to extend short term meteorological forecasting, enhance climatological modeling and through analysis of severe violent weather and heliospheric events, protect property and save lives.

  9. Uncertainty in estimates of the number of extraterrestrial civilizations

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1980-01-01

    An estimation of the number N of communicative civilizations is made by means of Drake's formula which involves the combination of several quantities, each of which is to some extent uncertain. It is shown that the uncertainty in any quantity may be represented by a probability distribution function, even if that quantity is itself a probability. The uncertainty of current estimates of N is derived principally from uncertainty in estimates of the lifetime of advanced civilizations. It is argued that this is due primarily to uncertainty concerning the existence of a Galactic Federation which is in turn contingent upon uncertainty about whether the limitations of present-day physics are absolute or (in the event that there exists a yet undiscovered hyperphysics) transient. It is further argued that it is advantageous to consider explicitly these underlying assumptions in order to compare the probable numbers of civilizations operating radio beacons, permitting radio leakage, dispatching probes for radio surveillance for dispatching vehicles for manned surveillance.

  10. TU-AB-BRB-01: Coverage Evaluation and Probabilistic Treatment Planning as a Margin Alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, J.

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  11. TU-AB-BRB-03: Coverage-Based Treatment Planning to Accommodate Organ Deformable Motions and Contouring Uncertainties for Prostate Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H.

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  12. TU-AB-BRB-02: Stochastic Programming Methods for Handling Uncertainty and Motion in IMRT Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkelbach, J.

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  13. TU-AB-BRB-00: New Methods to Ensure Target Coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  14. A starburst region at the tip of the Galactic bar around l=347-350

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio; González-Fernández, Carlos; Maíz-Apellániz, Jesús; Dorda, Ricardo; Clark, J. Simon

    2015-08-01

    In the past few years, several clusters of red supergiants have been discovered in a small region of the Milky Way, close to the base of the Scutum-Crux Arm and the tip of the Long Bar, between l=24º and l=29º. According to the number of observed red supergiants and using population synthesis models, they must contain very large stellar populations to harbour so many RSGs, some of them being candidates to the most massive young clusters in the Galaxy. These massive open clusters are part of a huge structure most likely containing hundreds of red supergiants. These results suggest that the Scutum complex represents a giant star formation region triggered by dynamical excitation by the Galactic bar, whose tip is believed to intersect the Scutum-Crux Arm close to this region. If this scenario is correct, a similar structure would be expected close to the opposite end of the Galactic long bar. We must find in an area between l=347º-350º (these sight lines include the expected location of the far tip of the Galactic bar in the model of González-Fernández et al. (2012)) likely candidates to very massive open clusters.We are carrying out a comprehensive optical and infrared photometric and spectroscopic study of this region containing the open clusters VdBH 222, Teutsch 85 and their surroundings. We have analyzed the population of VdBH 222 and we have found a large population of luminous supergiants and OB stars. The cluster lies behind ~7.5 mag of extinction and has a probable distance of ~ 10 kpc and an age of ~12 Ma. VdBH 222 is a young massive cluster with a likely mass > 20000 Msolar. Now, we are analyzing the population of the open cluster Teutsch 85 and surroundings, finding a numerous population of supergiants.In this work, we will discuss the possible role of the Galactic bar in triggering the formation of starburst clusters.

  15. Far-IR spectroscopy of the galactic center: Neutral and ionized gas in the central 10 pc of the galaxy

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Watson, D. M.; Townes, C. H.; Dinerstein, H. L.; Hollenbach, D.; Lester, D. F.; Werner, M.; Storey, J. W. V.

    1983-01-01

    The 3P1 - 3P2 fine structure line emission from neutral atomic oxygen at 63 microns in the vicinity of the galactic center was mapped. The emission is extended over more than 4' (12 pc) along the galactic plane, centered on the position of Sgr A West. The line center velocities show that the O I gas is rotating around the galactic center with an axis close to that of the general galactic rotation, but there appear also to be noncircular motions. The rotational velocity at R is approximately 1 pc corresponds to a mass within the central pc of about 3 x 10(6) solar mass. Between 1 and 6 pc from the center the mass is approximately proportional to radius. The (O I) line probability arises in a predominantly neutral, atomic region immediately outside of the ionized central parsec of out galaxy. Hydrogen densities in the (O I) emitting region are 10(3) to 10(6) cm(-3) and gas temperatures are or = 100 K. The total integrated luminosity radiated in the line is about 10(5) solar luminosity, and is a substantial contribution to the cooling of the gas. Photoelectric heating or heating by ultraviolet excitation of H2 at high densities (10(5) cm(-3)) are promising mechanisms for heating of the gas, but heating due to dissipation of noncircular motions of the gas may be an alternative possibility. The 3P1 - 3P0 fine structure line of (O III) at 88 microns toward Sgr A West was also detected. The (O III) emission comes from high density ionized gas (n 10(4) cm(-3)), and there is no evidence for a medium density region (n 10(3) cm(-3)), such as the ionized halo in Sgr A West deduced from radio observations. This radio halo may be nonthermal, or may consist of many compact, dense clumps of filaments on the inner edges of neutral condensations at R or = 2 pc.

  16. Molecular dynamics simulations of void defects in the energetic material HMX.

    PubMed

    Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing

    2013-09-01

    A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.

  17. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  18. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  19. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  20. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  1. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  2. 21 CFR 1305.28 - Canceling and voiding electronic orders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the voiding...

  3. 21 CFR 1305.28 - Canceling and voiding electronic orders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the voiding...

  4. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled. A...

  5. Molecular dynamics modeling and simulation of void growth in two dimensions

    NASA Astrophysics Data System (ADS)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  6. Influence of granulating method on physical and mechanical properties, compression behavior, and compactibility of lactose and microcrystalline cellulose granules.

    PubMed

    Horisawa, E; Danjo, K; Sunada, H

    2000-06-01

    The physical and mechanical properties of lactose (LC) and microcrystalline cellulose (MCC) granules prepared by various granulating methods were determined, and their effects on the compression and strength of the tablets were examined. From the force-displacement curve obtained in a crushing test on a single granule, all LC granules appeared brittle, and MCC granules were somewhat plastically deformable. Inter-granular porosity epsilon inter clearly decreased with greater spherical granule shape for both materials. Decrease in intragranular porosity epsilon intra enhanced the crushing force of a single granule Fg. Agitating granulation brought about the most compactness and hardness of granules. In granule compression tests, the initial slope of Heckel plots K1 appeared closely related to ease of filling voids in a granule bed by the slippage or rolling of granules. The reciprocal of the slope in the succeeding step 1/K2 in compression of MCC granules indicated positive correlation to Fg, while in LC granules, no such obvious relation was evident. 1/K2 differed only slightly among granulating methods. Tensile strength of tablets Tt obtained by compression of various LC granules was low as a whole and was little influenced by granulating method. For MCC granules, which are plastically deformable, tablet strength greatly depended on granulation. Granules prepared by extruding or dry granulation gave strong tablets. Tablets prepared from granules made by the agitating method showed particularly low Tt. From stereomicroscopic observation, the contact area between granule particles in a tablet appeared smaller; this would explain the decrease in inter-granular bond formation.

  7. Shallow magma accumulation at Kīlauea Volcano, Hawai‘i, revealed by microgravity surveys

    USGS Publications Warehouse

    Johnson, Daniel J.; Eggers, Albert A.; Bagnardi, Marco; Battaglia, Maurizio; Poland, Michael P.; Miklius, Asta

    2010-01-01

    Using microgravity data collected at Kīlauea Volcano, Hawai‘i (United States), between November 1975 and January 2008, we document significant mass increase beneath the east margin of Halema‘uma‘u Crater, within Kīlauea's summit caldera. Surprisingly, there was no sustained uplift accompanying the mass accumulation. We propose that the positive gravity residual in the absence of significant uplift is indicative of magma accumulation in void space (probably a network of interconnected cracks), which may have been created when magma withdrew from the summit in response to the 29 November 1975 M = 7.2 south flank earthquake. Subsequent refilling documented by gravity represents a gradual recovery from that earthquake. A new eruptive vent opened at the summit of Kīlauea in 2008 within a few hundred meters of the positive gravity residual maximum, probably tapping the reservoir that had been accumulating magma since the 1975 earthquake.

  8. Shallow magma accumulation at Kilauea Volcano, Hawai'i, revealed by microgravity surveys

    USGS Publications Warehouse

    Johnson, David J.; Eggers, Albert A.; Bagnardi, Marco; Battaglia, Maurizio; Poland, Michael P.; Miklius, Asta

    2010-01-01

    Using microgravity data collected at Kilauea Volcano, Hawai'i (United States), between November 1975 and January 2008, we document significant mass increase beneath the east margin of Halema'uma'u Crater, within Kilauea's summit caldera. Surprisingly, there was no sustained uplift accompanying the mass accumulation. We propose that the positive gravity residual in the absence of significant uplift is indicative of magma accumulation in void space (probably a network of interconnected cracks), which may have been created when magma withdrew from the summit in response to the 29 November 1975 M = 7.2 south flank earthquake. Subsequent refilling documented by gravity represents a gradual recovery from that earthquake. A new eruptive vent opened at the summit of Kilauea in 2008 within a few hundred meters of the positive gravity residual maximum, probably tapping the reservoir that had been accumulating magma since the 1975 earthquake.

  9. Fracture toughness of Kevlar 29/poly(methyl methacrylate) composite materials for surgical implantations.

    PubMed

    Pourdeyhimi, B; Robinson, H H; Schwartz, P; Wagner, H D

    1986-01-01

    A study of the fracture behaviour of Kevlar 29 reinforced dental cement is undertaken using both linear elastic and nonlinear elastic fracture mechanics techniques. Results from both approaches--of which the nonlinear elastic is believed to be more appropriate--indicate that a reinforcing effect is obtained for the fracture toughness even at very low fibre content. The flexural strength and modulus are apparently not improved, however, by the incorporation of Kevlar 29 fibres in the PMMA cement, probably because of the presence of voids, the poor fibre/matrix interfacial bonding and unsatisfying cement mixing practice. When compared to other PMMA composite cements, the present system appears to be probably more effective than carbon/PMMA, for example, in terms of fracture toughness. More experimental and analytical work is needed so as to optimize the mechanical properties with respect to structural parameters and cement preparation technique.

  10. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricciardelli, Elena; Tamone, Amelie; Cava, Antonio

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found atmore » smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.« less

  12. Voids in cosmological simulations over cosmic time

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Powell, Devon; Abel, Tom

    2016-06-01

    We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.

  13. A Spectroscopic and Photometric Study of Gravitational Microlensing Events

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.

    2000-08-01

    Gravitational microlensing has generated a great deal of scientific interest over recent years. This has been largely due to the realization of its wide-reaching applications, such as the search for dark matter, the detection of planets, and the study of Galactic structure. A significant observational advance has been that most microlensing events can be identified in real-time while the source is still being lensed. More than 400 microlensing events have now been detected towards the Galactic bulge and Magellanic Clouds by the microlensing survey teams EROS, MACHO, OGLE, DUO, and MOA. The real-time detection of these events allows detailed follow-up observations with much denser sampling, both photometrically and spectroscopically. The research undertaken in this project on photometric studies of gravitational microlensing events has been performed as a member of the PLANET (Probing Lensing Anomalies NETwork) collaboration. This is a worldwide collaboration formed in the early part of 1995 to study microlensing anomalies - departures from an achromatic point source, point lens light curve - through rapidly-sampled, multi-band, photometry. PLANET has demonstrated that it can achieve 1% photometry under ideal circumstances, making PLANET observations sensitive to detection of Earth-mass planets which require characterization of 1%--2% deviations from a standard microlensing light curve. The photometric work in this project involved over 5 months using the 1.0 m telescope at Canopus Observatory in Australia, and 3 separate observing runs using the 0.9 m telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. Methods were developed to reduce the vast amount of photometric data using the image analysis software MIDAS and the photometry package DoPHOT. Modelling routines were then written to analyse a selection of the resulting light curves in order to detect any deviation from an achromatic point source - point lens light curve. The photometric results presented in this thesis are from observations of 34 microlensing events over three consecutive bulge seasons. These results are presented along with a discussion of the observations and the data reduction procedures. The colour-magnitude diagrams indicate that the microlensed sources are main sequence and red clump giant stars. Most of the events appear to exhibit standard Paczynski point source - point lens curves whilst a few deviate significantly from the standard model. Various microlensing models that include anomalous structure are fitted to a selection of the observed events resulting in the discovery of a possible binary source event. These fitted events are used to estimate the sensitivity to extra-solar planets and it is found that the sampling rate for these events was insufficient by about a factor of 7.5 for detecting a Jupiter-mass planet. This result assumes that deviations of 5% can be reliably detected. If microlensing is caused predominantly by bulge stars, as has been suggested by Kiraga and Paczynski, the lensed stars should have larger extinction than other observed stars since they would preferentially be located at the far side of the Galactic bulge. Hence, spectroscopy of Galactic microlensing events may be used as a tool for studying the kinematics and extinction effects in the Galactic bulge. The spectroscopic work in this project involved using Kurucz model spectra to create theoretical extinction effects for various spectral classes towards the Galactic centre. These extinction effects are then used to interpret spectroscopic data taken with the 3.6 m ESO telescope. These data consist of a sample of microlensed stars towards the Galactic bulge and are used to derive the extinction offsets of the lensed source with respect to the average population and a measurement of the fraction of bulge-bulge lensing is made. Hence, it is shown statistically that the microlensed sources are generally located on the far side of the Galactic bulge. Measurements of the radial velocities of these sources are used to determine the kinematic properties of the far side of the Galactic bulge.

  14. Quantification of EEG reactivity in comatose patients

    PubMed Central

    Hermans, Mathilde C.; Westover, M. Brandon; van Putten, Michel J.A.M.; Hirsch, Lawrence J.; Gaspard, Nicolas

    2016-01-01

    Objective EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. Methods In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. Results The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts’ agreement regarding reactivity for each individual case. Conclusion Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Significance Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. PMID:26183757

  15. Crosstalk-aware virtual network embedding over inter-datacenter optical networks with few-mode fibers

    NASA Astrophysics Data System (ADS)

    Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo

    2017-12-01

    Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.

  16. Effects of preparation time and trial type probability on performance of anti- and pro-saccades.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control optimizes responses to relevant task conditions by balancing bottom-up stimulus processing with top-down goal pursuit. It can be investigated using the ocular motor system by contrasting basic prosaccades (look toward a stimulus) with complex antisaccades (look away from a stimulus). Furthermore, the amount of time allotted between trials, the need to switch task sets, and the time allowed to prepare for an upcoming saccade all impact performance. In this study the relative probabilities of anti- and pro-saccades were manipulated across five blocks of interleaved trials, while the inter-trial interval and trial type cue duration were varied across subjects. Results indicated that inter-trial interval had no significant effect on error rates or reaction times (RTs), while a shorter trial type cue led to more antisaccade errors and faster overall RTs. Responses following a shorter cue duration also showed a stronger effect of trial type probability, with more antisaccade errors in blocks with a low antisaccade probability and slower RTs for each saccade task when its trial type was unlikely. A longer cue duration yielded fewer errors and slower RTs, with a larger switch cost for errors compared to a short cue duration. Findings demonstrated that when the trial type cue duration was shorter, visual motor responsiveness was faster and subjects relied upon the implicit trial probability context to improve performance. When the cue duration was longer, increased fixation-related activity may have delayed saccade motor preparation and slowed responses, guiding subjects to respond in a controlled manner regardless of trial type probability. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Astrophysical targets of the Fresnel diffractive imager

    NASA Astrophysics Data System (ADS)

    Koechlin, L.; Deba, P.; Raksasataya, T.

    2017-11-01

    The Fresnel Diffractive imager is an innovative concept of distributed space telescope, for high resolution (milli arc-seconds) spectro-imaging in the IR, visible and UV domains. This paper presents its optical principle and the science that can be done on potential astrophysical targets. The novelty lies in the primary optics: a binary Fresnel array, akin to a binary Fresnel zone plate. The main interest of this approach is the relaxed manufacturing and positioning constraints. While having the resolution and imaging capabilities of lens or mirrors of equivalent size, no optical material is involved in the focusing process: just vacuum. A Fresnel array consists of millions void subapertures punched into a large and thin opaque membrane, that focus light by diffraction into a compact and highly contrasted image. The positioning law of the aperture edges drives the image quality and contrast. This optical concept allows larger and lighter apertures than solid state optics, aiming to high angular resolution and high dynamic range imaging, in particular for UV applications. Diffraction focusing implies very long focal distances, up to dozens of kilometers, which requires at least a two-vessel formation flying in space. The first spacecraft, "the Fresnel Array spacecraft", holds the large punched foil: the Fresnel Array. The second, the "Receiver spacecraft" holds the field optics and focal instrumentation. A chromatism correction feature enables moderately large (20%) relative wavebands, and fields of a few to a dozen arc seconds. This Fresnel imager is adapted to high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Specific to the particular grid-like pattern of the primary focusing zone plate, is the very high dynamic range achieved in the images, in the case of compact objects. Large stellar photospheres may also be mapped with Fresnel arrays of a few meters opertaing in the UV. Larger and more complex fields can be imaged with a lesser dynamic range: galactic or extragalactic, or at the opposite distance scale: small solar system bodies. This paper will briefly address the optical principle, and in more detail the astrophysical missions and targets proposed for a 4-meter class demonstrator: - Exoplanet imaging, Exoplanet spectroscopic analysis in the visible and UV, - Stellar environments, young stellar systems, disks, - Galactic clouds, astrochemistry, - IR observation of the galactic center, - Small objects of our solar system.

  18. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-08-01

    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  19. Three-dimensional simulations of void collapse in energetic materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  20. Methods of predicting aggregate voids.

    DOT National Transportation Integrated Search

    2013-03-01

    Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate : voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Predictio...

  1. Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se)more » ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.« less

  2. Log-Normal Distribution of Cosmic Voids in Simulations and Mocks

    NASA Astrophysics Data System (ADS)

    Russell, E.; Pycke, J.-R.

    2017-01-01

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.

  3. Theory of Dust Voids in Plasmas

    NASA Technical Reports Server (NTRS)

    Goree, J.; Morfill, G. E.; Tsytovich, V. N.; Vladimirov, S. V.

    1999-01-01

    Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M = 1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.

  4. VizieR Online Data Catalog: A cosmic void catalog of SDSS DR12 BOSS galaxies (Mao+, 2017)

    NASA Astrophysics Data System (ADS)

    Mao, Q.; Berlind, A. A.; Scherrer, R. J.; Neyrinck, M. C.; Scoccimarro, R.; Tinker, J. L.; McBride, C. K.; Schneider, D. P.; Pan, K.; Bizyaev, D.; Malanushenko, E.; Malanushenko, V.

    2017-08-01

    We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV (Neyrinck 2008MNRAS.386.2101N) void finding algorithm to the Galaxy catalog. We identify a total of 10643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1228 voids with effective radii spanning the range 20-100h-1Mpc and with central densities that are, on average, 30% of the mean sample density. We release versions of the catalogs both with and without quality cuts. We discuss the basic statistics of voids, such as their size and redshift distributions, and measure the radial density profile of the voids via a stacking technique. In addition, we construct mock void catalogs from 1000 mock galaxy catalogs, and find that the properties of BOSS voids are in good agreement with those in the mock catalogs. We compare the stellar mass distribution of galaxies living inside and outside of the voids, and find no large difference. These BOSS and mock void catalogs are useful for a number of cosmological and galaxy environment studies. (1 data file).

  5. Cosmic voids detection without density measurements

    NASA Astrophysics Data System (ADS)

    Elyiv, Andrii; Marulli, Federico; Pollina, Giorgia; Baldi, Marco; Branchini, Enzo; Cimatti, Andrea; Moscardini, Lauro

    2015-03-01

    Cosmic voids are effective cosmological probes to discriminate among competing world models. Their identification is generally based on density or geometry criteria that, because of their very nature, are prone to shot noise. We propose two void finders that are based on dynamical criterion to select voids in Lagrangian coordinates and minimize the impact of sparse sampling. The first approach exploits the Zel'dovich approximation to trace back in time the orbits of galaxies located in voids and their surroundings; the second uses the observed galaxy-galaxy correlation function to relax the objects' spatial distribution to homogeneity and isotropy. In both cases voids are defined as regions of the negative velocity divergence, which can be regarded as sinks of the back-in-time streamlines of the mass tracers. To assess the performance of our methods we used a dark matter halo mock catalogue CODECS, and compared the results with those obtained with the ZOBOV void finder. We find that the void divergence profiles are less scattered than the density ones and, therefore, their stacking constitutes a more accurate cosmological probe. The significance of the divergence signal in the central part of voids obtained from both our finders is 60 per cent higher than for overdensity profiles in the ZOBOV case. The ellipticity of the stacked void measured in the divergence field is closer to unity, as expected, than what is found when using halo positions. Therefore, our void finders are complementary to the existing methods, which should contribute to improve the accuracy of void-based cosmological tests.

  6. Intra-annual patterns in adult band-tailed pigeon survival estimates

    USGS Publications Warehouse

    Casazza, Michael L.; Coates, Peter S.; Overton, Cory T.; Howe, Kristy H.

    2015-01-01

    Implications: We present the first inter-seasonal analysis of survival probability of the Pacific coast race of band-tailed pigeons and illustrate important temporal patterns that may influence future species management including harvest strategies and disease monitoring.

  7. Crystal structures of 2,3,8,9,14,15-hexa-methyl-5,6,11,12,17,18-hexa-aza-tri-naphthyl-ene and 2,3,8,9,14,15-hexa-phenyl-5,6,11,12,17,18-hexa-za-tri-naphthyl-ene di-chloro-methane disolvate.

    PubMed

    Fangmann, Pia; Schmidtmann, Marc; Beckhaus, Rüdiger

    2018-02-01

    The crystal structures of two substituted HATN (hexa-aza-tri-naphthyl-ene) derivatives, namely 2,3,8,9,14,15-hexa-methyl- and 2,3,8,9,14,15-hexa-phenyl-5,6,11,12,17,18- hexa-zatri-naphthyl-ene (HATNMe 6 and HATNPh 6 ), are reported. Whereas the structure of the methyl-substituted derivative (HATNMe 6 ) contains no solvent mol-ecules (C 30 H 24 N 6 ), the hexa-phenyl-substituted structure (HATNPh 6 ) contains two mol-ecules of di-chloro-methane (C 60 H 36 N 6 ·2CH 2 Cl 2 ). This class of planar bridging ligands is known for its electron-deficient systems and its ability to form π-π stacking inter-actions. Indeed, in both crystal structures strong π-π stacking inter-actions are observed, but with different packing features. The di-chloro-methane mol-ecules in the crystal structure of HATNPh 6 are situated in the voids and are involved in C-H⋯N contacts to the nitro-gen atoms of the pyrazine units.

  8. Probing Dynamic Processes in Explosives and Propellants - Science Issues

    NASA Astrophysics Data System (ADS)

    Moore, David

    2017-06-01

    Recent experiments on advanced light sources have started to unravel some of the micromechanical behavior of single crystal energetic materials, including void collapse under shock loading and inter-granular failure. These examples just scratch the surface of many extant explosives science issues, which could be elucidated with advanced XFEL-type resources. These include such diverse questions as: How do powders actually compact and what are the spatially and temporally resolved temperature and flow fields generated (especially two-phase flows)? Are there polymorphic effects (if so, how are they spatially distributed)? What are the strain fields during compaction? What happens near surfaces, especially for composite explosives? How is mechanics coupled to chemistry? What are hot spots really? I will provide some history behind these and other questions and point towards how future experiments might be designed to provide some answers.

  9. Quantification of Stereochemical Communication in Metal-Organic Assemblies.

    PubMed

    Castilla, Ana M; Miller, Mark A; Nitschke, Jonathan R; Smulders, Maarten M J

    2016-08-26

    The derivation and application of a statistical mechanical model to quantify stereochemical communication in metal-organic assemblies is reported. The factors affecting the stereochemical communication within and between the metal stereocenters of the assemblies were experimentally studied by optical spectroscopy and analyzed in terms of a free energy penalty per "incorrect" amine enantiomer incorporated, and a free energy of coupling between stereocenters. These intra- and inter-vertex coupling constants are used to track the degree of stereochemical communication across a range of metal-organic assemblies (employing different ligands, peripheral amines, and metals); temperature-dependent equilibria between diastereomeric cages are also quantified. The model thus provides a unified understanding of the factors that shape the chirotopic void spaces enclosed by metal-organic container molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, Benoit; Ritter, Christian; Oshea, Brian W.

    Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less

  11. Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks

    PubMed Central

    Zachariou, Nicky; Expert, Paul; Takayasu, Misako; Christensen, Kim

    2015-01-01

    The main finding of this paper is a novel avalanche-size exponent τ ≈ 1.87 when the generalised sandpile dynamics evolves on the real-world Japanese inter-firm network. The topology of this network is non-layered and directed, displaying the typical bow tie structure found in real-world directed networks, with cycles and triangles. We show that one can move from a strictly layered regular lattice to a more fluid structure of the inter-firm network in a few simple steps. Relaxing the regular lattice structure by introducing an interlayer distribution for the interactions, forces the scaling exponent of the avalanche-size probability density function τ out of the two-dimensional directed sandpile universality class τ = 4/3, into the mean field universality class τ = 3/2. Numerical investigation shows that these two classes are the only that exist on the directed sandpile, regardless of the underlying topology, as long as it is strictly layered. Randomly adding a small proportion of links connecting non adjacent layers in an otherwise layered network takes the system out of the mean field regime to produce non-trivial avalanche-size probability density function. Although these do not display proper scaling, they closely reproduce the behaviour observed on the Japanese inter-firm network. PMID:26606143

  12. Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks.

    PubMed

    Zachariou, Nicky; Expert, Paul; Takayasu, Misako; Christensen, Kim

    2015-01-01

    The main finding of this paper is a novel avalanche-size exponent τ ≈ 1.87 when the generalised sandpile dynamics evolves on the real-world Japanese inter-firm network. The topology of this network is non-layered and directed, displaying the typical bow tie structure found in real-world directed networks, with cycles and triangles. We show that one can move from a strictly layered regular lattice to a more fluid structure of the inter-firm network in a few simple steps. Relaxing the regular lattice structure by introducing an interlayer distribution for the interactions, forces the scaling exponent of the avalanche-size probability density function τ out of the two-dimensional directed sandpile universality class τ = 4/3, into the mean field universality class τ = 3/2. Numerical investigation shows that these two classes are the only that exist on the directed sandpile, regardless of the underlying topology, as long as it is strictly layered. Randomly adding a small proportion of links connecting non adjacent layers in an otherwise layered network takes the system out of the mean field regime to produce non-trivial avalanche-size probability density function. Although these do not display proper scaling, they closely reproduce the behaviour observed on the Japanese inter-firm network.

  13. Morphology of the supercluster-void network in ΛCDM cosmology

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei F.; Sheth, Jatush V.; Sahni, Varun

    2004-09-01

    We report here the first systematic study of the supercluster-void network in the ΛCDM concordance cosmology in which voids and superclusters are treated on an equal footing. We study the dark matter density field in real space smoothed on a scale of 5 h-1 Mpc. Superclusters are defined as individual members of an overdense excursion set, and voids are defined as individual members of a complementary underdense excursion set at the same density threshold. We determine the geometric, topological and morphological properties of the cosmic web at a large set of density levels by computing Minkowski functionals for every supercluster and void using SURFGEN (described recently by Sheth et al.). The properties of the largest (percolating) supercluster and the complementary void are found to be very different from those of the individual superclusters and voids. In total, the individual superclusters occupy no more than about 5 per cent of the volume and contain no more than 20 per cent of the mass if the largest supercluster is excluded. Likewise, in total, individual voids occupy no more than 14 per cent of the volume and contain no more than 4 per cent of the mass if the largest void is excluded. Although superclusters are more massive and voids are more voluminous, the difference in maximum volumes is no greater than an order of magnitude. The genus value of individual superclusters can be ~5, while the genus of individual voids can reach ~50, implying a significant amount of substructure in superclusters and especially in voids. One of our main results is that large voids, as defined through the dark matter density field in real space, are distinctly non-spherical.

  14. Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Seppälä, Eira

    2004-03-01

    In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  15. Methods of predicting aggregate voids : [technical summary].

    DOT National Transportation Integrated Search

    2013-03-01

    Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Prediction ...

  16. Impact of posterior urethral diameter/external urethral sphincter diameter as a new tool to predict detrusor pressure in the voiding phase.

    PubMed

    Kon, Masafumi; Mitsui, Takahiko; Kitta, Takeya; Moriya, Kimihiko; Shinohara, Nobuo; Takeda, Masayuki; Nonomura, Katsuya

    2018-02-01

    We measured posterior urethra diameter (PUD) and external urethral sphincter diameter (EUSD), which can also be measured by voiding cystourethrography (VCUG) and investigated the relationship between PUD/EUSD and detrusor pressure (Pdet) during voiding by videourodynamics (VUDS). Sixty-three children, who were 3 years old or less and underwent VUDS, were enrolled in the present study. We measured PUD and EUSD in addition to detrusor pressure at the time of the widest EUS during voiding (Pdet-voiding) by VUDS, and PUD/EUSD was investigated compared to Pdet-voiding. Seventy-eight VUDS were performed in 63 patients, and the median age at VUDS was 10.2 months. These studies revealed a significant correlation between PUD/EUSD and Pdet-voiding (r = 0.641, p < 0.001). However, a significant correlation was not observed between PUD/EUSD and age (r = 0.180). We defined Pdet-voiding of more than 80 cmH 2 O as a high voiding pressure, and a PUD/EUSD of 2.4 was a good predictor for the cutoff value for high voiding pressure. Pdet-voiding was significantly higher in children with a PUD/EUSD of ≥ 2.4 (p < 0.001). In 19 children who had neurological diseases, a significant correlation was found between PUD/EUSD and Pdet-voiding (r = 0.842, p < 0.001), and a PUD/EUSD of 2.4 was a useful cutoff value for high voiding pressure. PUD/EUSD is a valuable tool to predict high voiding pressure in pediatric patients. A PUD/EUSD of ≥ 2.4 in VCUG indicates the need to perform more invasive tests, such as VUDS, in pediatric patients aged 3 and under with neuropathic diseases.

  17. Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting?

    PubMed

    Krauss, J K; Regel, J P; Vach, W; Jüngling, F D; Droste, D W; Wakhloo, A K

    1997-01-01

    We investigate the predictive value of cerebrospinal fluid (CSF) flow void on outcome after shunting in a prospective series of patients with idiopathic normal pressure hydrocephalus (NPH). The degree and extension of CSF flow void were examined on T2-weighted magnetic resonance imaging scans of 37 elderly patients with idiopathic NPH who underwent subsequent shunting. The degree of flow void was assessed in comparison with the signal of large cerebral arteries. The extension was evaluated via the calculation of sum scores for the occurrence of flow void in different locations of the ventricular system. Those parameters were not considered in the decision to perform shunting. CSF flow void in the aqueduct and the adjacent third and fourth ventricles of the 37 patients with idiopathic NPH was compared with that of 37 age-matched control patients. CSF flow void scores in patients with idiopathic NPH were investigated for correlations between postoperative outcome scores and ventricular width indices. No difference was found between the occurrence of aqueductal CSF flow void in patients with idiopathic NPH and the control group. A significant difference, however, was noted for the extension of the CSF flow void, which was greater in the NPH group. Postoperative improvement was found in 33 of 37 patients with idiopathic NPH at a mean follow-up of 15.6 months. Only small, statistically not significant correlations were found between CSF flow void and postoperative outcome. Flow void sum scores, however, correlated significantly with ventricular width indices. The degree and extension of CSF flow void on T2-weighted magnetic resonance imaging scans have little predictive value for outcome after shunting in patients with idiopathic NPH. The greater extension of the CSF flow void in patients with NPH is most likely related to increased ventricular width. It is not useful to consider CSF flow void findings on conventional magnetic resonance imaging scans in making the decision to offer shunting in patients with idiopathic NPH.

  18. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders

    PubMed Central

    Koppel, Barbara S.; Brust, John C.M.; Fife, Terry; Bronstein, Jeff; Youssof, Sarah; Gronseth, Gary; Gloss, David

    2014-01-01

    Objective: To determine the efficacy of medical marijuana in several neurologic conditions. Methods: We performed a systematic review of medical marijuana (1948–November 2013) to address treatment of symptoms of multiple sclerosis (MS), epilepsy, and movement disorders. We graded the studies according to the American Academy of Neurology classification scheme for therapeutic articles. Results: Thirty-four studies met inclusion criteria; 8 were rated as Class I. Conclusions: The following were studied in patients with MS: (1) Spasticity: oral cannabis extract (OCE) is effective, and nabiximols and tetrahydrocannabinol (THC) are probably effective, for reducing patient-centered measures; it is possible both OCE and THC are effective for reducing both patient-centered and objective measures at 1 year. (2) Central pain or painful spasms (including spasticity-related pain, excluding neuropathic pain): OCE is effective; THC and nabiximols are probably effective. (3) Urinary dysfunction: nabiximols is probably effective for reducing bladder voids/day; THC and OCE are probably ineffective for reducing bladder complaints. (4) Tremor: THC and OCE are probably ineffective; nabiximols is possibly ineffective. (5) Other neurologic conditions: OCE is probably ineffective for treating levodopa-induced dyskinesias in patients with Parkinson disease. Oral cannabinoids are of unknown efficacy in non–chorea-related symptoms of Huntington disease, Tourette syndrome, cervical dystonia, and epilepsy. The risks and benefits of medical marijuana should be weighed carefully. Risk of serious adverse psychopathologic effects was nearly 1%. Comparative effectiveness of medical marijuana vs other therapies is unknown for these indications. PMID:24778283

  19. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology.

    PubMed

    Koppel, Barbara S; Brust, John C M; Fife, Terry; Bronstein, Jeff; Youssof, Sarah; Gronseth, Gary; Gloss, David

    2014-04-29

    To determine the efficacy of medical marijuana in several neurologic conditions. We performed a systematic review of medical marijuana (1948-November 2013) to address treatment of symptoms of multiple sclerosis (MS), epilepsy, and movement disorders. We graded the studies according to the American Academy of Neurology classification scheme for therapeutic articles. Thirty-four studies met inclusion criteria; 8 were rated as Class I. The following were studied in patients with MS: (1) Spasticity: oral cannabis extract (OCE) is effective, and nabiximols and tetrahydrocannabinol (THC) are probably effective, for reducing patient-centered measures; it is possible both OCE and THC are effective for reducing both patient-centered and objective measures at 1 year. (2) Central pain or painful spasms (including spasticity-related pain, excluding neuropathic pain): OCE is effective; THC and nabiximols are probably effective. (3) Urinary dysfunction: nabiximols is probably effective for reducing bladder voids/day; THC and OCE are probably ineffective for reducing bladder complaints. (4) Tremor: THC and OCE are probably ineffective; nabiximols is possibly ineffective. (5) Other neurologic conditions: OCE is probably ineffective for treating levodopa-induced dyskinesias in patients with Parkinson disease. Oral cannabinoids are of unknown efficacy in non-chorea-related symptoms of Huntington disease, Tourette syndrome, cervical dystonia, and epilepsy. The risks and benefits of medical marijuana should be weighed carefully. Risk of serious adverse psychopathologic effects was nearly 1%. Comparative effectiveness of medical marijuana vs other therapies is unknown for these indications.

  20. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  1. Interstellar Travel and Galactic Colonization: Insights from Percolation Theory and the Yule Process

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi

    2016-06-01

    In this paper, percolation theory is employed to place tentative bounds on the probability p of interstellar travel and the emergence of a civilization (or panspermia) that colonizes the entire Galaxy. The ensuing ramifications with regard to the Fermi paradox are also explored. In particular, it is suggested that the correlation function of inhabited exoplanets can be used to observationally constrain p in the near future. It is shown, by using a mathematical evolution model known as the Yule process, that the probability distribution for civilizations with a given number of colonized worlds is likely to exhibit a power-law tail. Some of the dynamical aspects of this issue, including the question of timescales and generalizing percolation theory, were also studied. The limitations of these models, and other avenues for future inquiry, are also outlined.

  2. Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.

    PubMed

    Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan

    2017-12-01

    To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p < 0.05). All three sealers presented less void volume in the apical third; however, higher void volumes were observed in the apical and coronal thirds in AH Plus using micro-CT (p < 0.05), while nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p < 0.05). Bioactive sealers showed higher root filling rate, lower incidence rate of voids, void fraction and void volume than AH Plus under nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.

  3. Rayleigh-wave diffractions due to a void in the layered half space

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.

    2006-01-01

    Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.

  4. LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu

    2017-01-20

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less

  5. Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc

    NASA Astrophysics Data System (ADS)

    Mitschang, A. W.; De Silva, G.; Zucker, D. B.; Anguiano, B.; Bensby, T.; Feltzing, S.

    2014-03-01

    The early science results from the new generation of high-resolution stellar spectroscopic surveys, such as Galactic Archaeology with HERMES (GALAH) and the Gaia European Southern Observatory survey (Gaia-ESO), will represent major milestones in the quest to chemically tag the Galaxy. Yet this technique to reconstruct dispersed coeval stellar groups has remained largely untested until recently. We build on previous work that developed an empirical chemical tagging probability function, which describes the likelihood that two field stars are conatal, that is, they were formed in the same cluster environment. In this work, we perform the first ever blind chemical tagging experiment, i.e. tagging stars with no known or otherwise discernible associations, on a sample of 714 disc field stars with a number of high-quality high-resolution homogeneous metal abundance measurements. We present evidence that chemical tagging of field stars does identify coeval groups of stars, yet these groups may not represent distinct formation sites, e.g. as in dissolved open clusters, as previously thought. Our results point to several important conclusions, among them that group finding will be limited strictly to chemical abundance space, e.g. stellar ages, kinematics, colours, temperature and surface gravity do not enhance the detectability of groups. We also demonstrate that in addition to its role in probing the chemical enrichment and kinematic history of the Galactic disc, chemical tagging represents a powerful new stellar age determination technique.

  6. Spatially resolved galactic wind in lensed galaxy RCSGA 032727-132609

    NASA Astrophysics Data System (ADS)

    Bordoloi, Rongmon; Rigby, Jane R.; Tumlinson, Jason; Bayliss, Matthew B.; Sharon, Keren; Gladders, Michael G.; Wuyts, Eva

    2016-05-01

    We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally lensed star-forming galaxy at z = 1.70. Using Mg II and Fe II emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of -170 to -250 km s-1. The velocities of Mg II emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being back-scattered. By contrast, the Fe II fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the Mg II and Fe II emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the outflowing gas, the estimated masses carried out by these outflows are large (≳30-50 M⊙ yr- 1), with mass loading factors several times the star formation rate. Almost 20 per cent to 50 per cent of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is `locally sourced', that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star-forming knots of this object are comparable to that of starburst galaxies in the local Universe.

  7. The impact of feedback from galaxy formation on the Lyman α transmitted flux

    NASA Astrophysics Data System (ADS)

    Viel, Matteo; Schaye, Joop; Booth, C. M.

    2013-02-01

    The forest of Lyman α absorption lines seen in the spectra of distant quasars has become an important probe of the distribution of matter in the Universe. We use large, hydrodynamical simulations from the OverWhelmingly Large Simulations project project to investigate the effect of feedback from galaxy formation on the probability distribution function and the power spectrum of the Lyman α transmitted flux. While metal-line cooling is unimportant, both galactic outflows from massive galaxies driven by active galactic nuclei and winds from low-mass galaxies driven by supernovae have a substantial impact on the flux statistics. At redshift z = 2.25, the effects on the flux statistics are of a similar magnitude as the statistical uncertainties of published data sets. The changes in the flux statistics are not due to differences in the temperature-density relation of the photoionized gas. Instead, they are caused by changes in the density distribution and in the fraction of hot, collisionally ionized gas. It may be possible to disentangle astrophysical and cosmological effects by taking advantage of the fact that they induce different redshift dependencies. In particular, the magnitude of the feedback effects appears to decrease rapidly with increasing redshift. Analyses of Lyman α forest data from surveys that are currently in process, such as Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey-III (BOSS/SDSS-III) and X-Shooter/Very Large Telescope (VLT), must take galactic winds into account.

  8. Spatially Resolved Galactic Wind in Lensed Galaxy RCSGA 032727-132609

    NASA Technical Reports Server (NTRS)

    Bordoloi, Rongmon; Rigby, Jane R.; Tumlinson, Janson; Bayliss, Matthew B.; Sharon, Keren; Gladders, Michael G.; Wuyts, Eva

    2016-01-01

    We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally lensed star-forming galaxy at z = 1.70. Using Mg II and Fe II emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of - 170 to - 250 km/s. The velocities of Mg II emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being backscattered. By contrast, the Fe II fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the Mg II and Fe II emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the outflowing gas, the estimated masses carried out by these outflows are large (approx 30-50 M/yr), with mass loading factors several times the star formation rate. Almost 20 per cent to 50 per cent of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is 'locally sourced', that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star-forming knots of this object are comparable to that of starburst galaxies in the local Universe.

  9. Morphological statistics of the cosmic web

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei F.

    2004-07-01

    We report the first systematic study of the supercluster-void network in the ΛCDM concordance cosmology treating voids and superclusters on an equal footing. We study the dark matter density field in real space smoothed with the Ls = 5 h[minus sign]1Mpc Gaussian window. Superclusters and voids are defined as individual members of over-dense and under-dense excursion sets respectively. We determine the morphological properties of the cosmic web at a large number of dark matter density levels by computing Minkowski functionals for every supercluster and void. At the adopted smoothing scale individual superclusters totally occupy no more than about 5% of the total volume and contain no more than 20% of mass if the largest supercluster is excluded. Likewise, individual voids totally occupy no more than 14% of volume and contain no more than 4% of mass if the largest void is excluded. The genus of individual superclusters can be ˜ 5 while the genus of individual voids reaches ˜ 55, implying significant amount of substructure in superclusters and especially in voids. Large voids are typically distinctly non-spherical.

  10. Fluid intake and voiding; habits and health knowledge in a young, healthy population

    PubMed Central

    Das, Rebekah N; Grimmer-Somers, Karen A

    2012-01-01

    Objectives Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. Methods A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. Results The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. Conclusion More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence. PMID:24199175

  11. Fluid intake and voiding; habits and health knowledge in a young, healthy population.

    PubMed

    Das, Rebekah N; Grimmer-Somers, Karen A

    2012-01-01

    Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence.

  12. Porous, one-dimensional and high aspect ratio nanofibric network of cobalt manganese oxide as a high performance material for aqueous and solid-state supercapacitor (2 V)

    NASA Astrophysics Data System (ADS)

    Bhagwan, Jai; Sivasankaran, V.; Yadav, K. L.; Sharma, Yogesh

    2016-09-01

    Porous nanofibric network of spinel CoMn2O4 (CMO) are fabricated by facile electrospinning process and characterized by XRD, BET, TGA, FTIR, FESEM, TEM, XPS techniques. CMO nanofibers are employed as supercapacitor electrode for first time which exhibits high specific capacitance (Cs) of 320(±5) F g-1 and 270(±5) F g-1 at 1 A g-1 and 5 A g-1, respectively in 1 M H2SO4. CMO nanofibers exhibit excellent cyclability (till 10,000 cycles @ 5 A g-1). To examine practical performance, solid-state symmetric supercapacitor (SSSC) is also fabricated using PVA-H2SO4 as gel electrolyte. The SSSC evinces high energy density of 75 W h kg-1 (comparable to Pb-acid and Ni-MH battery) along with high power density of 2 kW kg-1. Furthermore, a red colored LED (1.8 V @ current 20 mA) was lit for 5 min using single SSSC device supporting its output voltage of 2 V. This high performance of CMO in both aqueous and SSSC is attributed to one dimensional nanofibers consisting of voids/gaps with minimum inter-particle resistance that facilitates smoother transportation of electrons/ions. These voids/gaps in CMO (structural as well as morphological) act as intercalation/de-intercalation sites for extra storage performance, and also works as buffering space to accommodate stress/strain produced while long term cyclings.

  13. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  14. Cold Dark Matter Cosmogony with Hydrodynamics and Galaxy Formation: Galaxy Properties at Redshift Zero

    NASA Astrophysics Data System (ADS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-11-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe, to include not only the dynamics of dark matter (with a standard PM code) and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell, the gas is Jeans-unstable, collapsing and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. We study two representative boxes with sizes L = (80, 8) h-1 Mpc, in both cases utilizing a mesh of 2003 cells containing 2003 dark matter particles and having nominal resolutions of (400, 40) h-1 kpc, respectively, with true resolution approximately 2.5 times worse. We adopt the standard cold dark matter (CDM) perturbation spectrum with an amplitude of σ8 ≡ = (δM/M)rms,8 = 0.77, a compromise between the COBE normalization σ8 = 1.05 and that indicated by the small-scale velocity dispersion (perhaps σ8 = 0.45). We find a mass function which is similar to that observed. There is a strong correlation between galactic age and environment. Identifying the oldest fraction with elliptical and 50 galaxies, we find a density morphology relation of the same type as is observed as well as a correlation between gas mass/total mass ratio and morphology that is similar to observations. In addition, we find that low-mass galaxies contain relatively more dark matter than giants. We present analytic fits to our derived results for "bias," the dependence of ρgal/ <ρgal> on ρtot/<ρtot>. Spatial structures resemble quantitatively those seen in redshift surveys, with galaxies concentrated in clusters and on filaments (or sheets) which surround quite empty voids. The void probability statistics indicate that this model is consistent with magnitude-limited real data. The small-scale velocity field is too large compared with the observed velocity correlation function. The distribution of proper velocities fits an exponential (not a Maxwellian) P(υ) 2 ∝ υ2e-υ/σexp with σexp = 225 km s-1. For galaxies separated by 1 h-1 Mpc we find a one-dimensional velocity dispersion of 670 km s-1 (490 km s-1 for the most massive subset) compared with 340±40 km s-1 as measured by Davis & Peebles (1983). Adoption of the COBE normalization causes the problem to become worse; the CDM prediction is then approximately (920±160) km s-1. If we look at the genus curves of all our galaxies, they fit the random-phase expectation, but a magnitude-limited sample emphasizes the older, more massive galaxies which have collected at a vertices. This explains the observed "meatball shift" of the genus curves found in observed samples.

  15. Mechanisms for Ductile Rupture - FY16 ESC Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, Brad L.; Carroll, Jay D.; Noell, Phillip

    2017-01-01

    Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimentalmore » evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.« less

  16. Quantifying Effects of Voids in Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.

  17. Mass loss from inhomogeneous hot star winds. I. Resonance line formation in 2D models

    NASA Astrophysics Data System (ADS)

    Sundqvist, J. O.; Puls, J.; Feldmeier, A.

    2010-01-01

    Context. The mass-loss rate is a key parameter of hot, massive stars. Small-scale inhomogeneities (clumping) in the winds of these stars are conventionally included in spectral analyses by assuming optically thin clumps, a void inter-clump medium, and a smooth velocity field. To reconcile investigations of different diagnostics (in particular, unsaturated UV resonance lines vs. Hα/radio emission) within such models, a highly clumped wind with very low mass-loss rates needs to be invoked, where the resonance lines seem to indicate rates an order of magnitude (or even more) lower than previously accepted values. If found to be realistic, this would challenge the radiative line-driven wind theory and have dramatic consequences for the evolution of massive stars. Aims: We investigate basic properties of the formation of resonance lines in small-scale inhomogeneous hot star winds with non-monotonic velocity fields. Methods: We study inhomogeneous wind structures by means of 2D stochastic and pseudo-2D radiation-hydrodynamic wind models, constructed by assembling 1D snapshots in radially independent slices. A Monte-Carlo radiative transfer code, which treats the resonance line formation in an axially symmetric spherical wind (without resorting to the Sobolev approximation), is presented and used to produce synthetic line spectra. Results: The optically thin clumping limit is only valid for very weak lines. The detailed density structure, the inter-clump medium, and the non-monotonic velocity field are all important for the line formation. We confirm previous findings that radiation-hydrodynamic wind models reproduce observed characteristics of strong lines (e.g., the black troughs) without applying the highly supersonic “microturbulence” needed in smooth models. For intermediate strong lines, the velocity spans of the clumps are of central importance. Current radiation-hydrodynamic models predict spans that are too large to reproduce observed profiles unless a very low mass-loss rate is invoked. By simulating lower spans in 2D stochastic models, the profile strengths become drastically reduced, and are consistent with higher mass-loss rates. To simultaneously meet the constraints from strong lines, the inter-clump medium must be non-void. A first comparison to the observed Phosphorus V doublet in the O6 supergiant λ Cep confirms that line profiles calculated from a stochastic 2D model reproduce observations with a mass-loss rate approximately ten times higher than that derived from the same lines but assuming optically thin clumping. Tentatively this may resolve discrepancies between theoretical predictions, evolutionary constraints, and recent derived mass-loss rates, and suggests a re-investigation of the clump structure predicted by current radiation-hydrodynamic models.

  18. Method of simulating spherical voids for use as a radiographic standard

    DOEpatents

    Foster, Billy E.

    1977-01-01

    A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard.

  19. Radiation exposure of aviation crewmembers and cancer.

    PubMed

    Bramlitt, Edward T; Shonka, Joseph J

    2015-01-01

    Crewmembers are exposed to galactic cosmic radiation on every flight and occasionally to solar protons on polar flights. Data are presented showing that the proton occasions are seven times more frequent than generally believed. Crewmembers are also exposed to neutrons and gamma rays from the sun and to gamma rays from terrestrial thunderstorms. Solar neutrons and gamma rays (1) expose the daylight side of Earth, (2) are most intense at lower latitudes, (3) may be as or more frequent than solar protons, and (4) have relativistic energies. The U.S. agency responsible for crewmember safety only considers the galactic component with respect to its recommended 20 mSv y(-1) limit, but it has an estimate for a thunderstorm dose of 30 mSv. In view of overlooked sources, possible over-limit doses, and lack of dosimetry, dose reconstructions are needed. However, using the agency dose estimates and the compensation procedure for U.S. nuclear weapon workers, the probability of crewmember cancers can be at least as likely as not. Ways to improve the quality of dose estimates are suggested, and a worker's compensation program specific to aviation crewmembers is recommended.

  20. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  1. On 7Li Enrichment by Low-Mass Metal-Poor Red Giant Branch Stars.

    PubMed

    de La Reza R; da Silva L; Drake; Terra

    2000-06-01

    First-ascent red giants with strong and very strong Li lines have just been discovered in globular clusters. Using the stellar internal prompt (7)Li enrichment-mass-loss scenario, we explore the possibility of (7)Li enrichment in the interstellar matter of the globular cluster M3 produced by these Li-rich giants. We found that enrichment as large as 70% or more compared to the initial (7)Li content of M3 can be obtained during the entire life of this cluster. However, because M3 will cross into the Galactic plane several times, the new (7)Li will be very probably removed by ram pressure into the disk. Globular clusters appear then as possible new sources of (7)Li in the Galactic disk. It is also suggested that the known Na/Al variations in stars of globular clusters could be somehow related to the (7)Li variations and that the cool bottom process mixing mechanism acting in the case of (7)Li could also play a role in the case of Na and Al surface enrichments.

  2. Images in the rocket ultraviolet - Young clusters in H II regions of M83

    NASA Technical Reports Server (NTRS)

    Bohlin, Ralph C.; Cornett, Robert H.; Hill, Jesse K.; Stecher, Theodore P.

    1990-01-01

    UV images of M83 at 1540 and 2360 A reveal 18 compact sources that are associated with H II regions. E(B - V) values were estimated individually from the observed UV and optical colors and the Galactic UV extinction curve, using theoretical flux distributions. The dereddened colors are consistent with ages up to 3 x 10 to the 6th yr. A maximum possible age of 6.5 x 10 to the 6th yr is obtained assuming foreground reddening only. The distribution of observed colors is consistent with the Galactic reddening curve but not with enhanced far-UV extinction, as in the LMC 30 Dor curve. The H-alpha fluxes suggest either that dust within the H II regions absorbs up to 70 percent of the Lyman continuum radiation or that a similar fraction of the H-alpha flux is below the surface brightness detection limit. Cluster mass estimates depend on the range of stellar masses present but are probably in the range 10,000-100,000 solar masses.

  3. X-ray spectra and time variability of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.

    1984-01-01

    The X-ray spectra of broad line active galactic nuclei (AGN) of all types (Seyfert I's, NELG's, broadline radio galaxies) are well fit by a power law in the .5 to 100 keV band of man energy slope alpha = .68 + or - .15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability. On time scales longer than 12 hours most radio quiet AGN do not show strong, delta I/I .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristics timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable than radio quiet AGN on long, tau approx 6 month, timescales.

  4. Near-infrared counterparts to the Galactic Bulge Survey X-ray source population

    NASA Astrophysics Data System (ADS)

    Greiss, S.; Steeghs, D.; Jonker, P. G.; Torres, M. A. P.; Maccarone, T. J.; Hynes, R. I.; Britt, C. T.; Nelemans, G.; Gänsicke, B. T.

    2014-03-01

    We report on the near-infrared matches, drawn from three surveys, to the 1640 unique X-ray sources detected by Chandra in the Galactic Bulge Survey (GBS). This survey targets faint X-ray sources in the bulge, with a particular focus on accreting compact objects. We present all viable counterpart candidates and associate a false alarm probability (FAP) to each near-infrared match in order to identify the most likely counterparts. The FAP takes into account a statistical study involving a chance alignment test, as well as considering the positional accuracy of the individual X-ray sources. We find that although the star density in the bulge is very high, ˜90 per cent of our sources have an FAP <10 per cent, indicating that for most X-ray sources, viable near-infrared counterparts candidates can be identified. In addition to the FAP, we provide positional and photometric information for candidate counterparts to ˜95 per cent of the GBS X-ray sources. This information in combination with optical photometry, spectroscopy and variability constraints will be crucial to characterize and classify secure counterparts.

  5. A serendipitous all sky survey for bright objects in the outer solar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M. E.; Drake, A. J.; Djorgovski, S. G.

    2015-02-01

    We use seven year's worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20° to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover eight known bright objects in the outer solar system, the faintestmore » having V=19.8±0.1, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for V≲19.1 (V≲18.6 in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%.« less

  6. Gas Removal in the Ursa Minor Galaxy: Linking Hydrodynamics and Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caproni, Anderson; Lanfranchi, Gustavo Amaral; Baio, Gabriel Henrique Campos

    2017-04-01

    We present results from a non-cosmological, three-dimensional hydrodynamical simulation of the gas in the dwarf spheroidal galaxy Ursa Minor. Assuming an initial baryonic-to-dark-matter ratio derived from the cosmic microwave background radiation, we evolved the galactic gas distribution over 3 Gyr, taking into account the effects of the types Ia and II supernovae. For the first time, we used in our simulation the instantaneous supernovae rates derived from a chemical evolution model applied to spectroscopic observational data of Ursa Minor. We show that the amount of gas that is lost in this process is variable with time and radius, being themore » highest rates observed during the initial 600 Myr in our simulation. Our results indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies), but it is ultimately the combination of galactic winds powered by these supernovae and environmental effects (e.g., ram-pressure stripping) that results in the complete removal of the gas content.« less

  7. Voids characteristics of asphaltic concrete containing coconut shell

    NASA Astrophysics Data System (ADS)

    Ezree Abdullah, Mohd; Hannani Madzaili, Amirah; Putra Jaya, Ramadhansyah; Yaacob, Haryati; Hassan, Norhidayah Abdul; Nazri, Fadzli Mohamed

    2017-07-01

    Asphalt durability is often linked to the thickness of the asphalt coating on the aggregate particles. In order to have adequate film thickness in asphaltic concrete, there must be sufficient space between the aggregate particles in the compacted pavement. This void space is referred to as voids in total mix (VTM), voids with filled bitumen (VFB), and voids in mineral aggregate (VMA). Hence, this study investigates the performance of coconut shell (CS) as coarse aggregate replacement on voids characteristics of asphaltic concrete. Four CS were used as coarse aggregates replacement in asphalt mixture namely 0%, 10%, 20%, 30%, and 40% (by weight volume). The voids properties of asphalt mixture were determined based on Marshall Mix design test. Test results show that VTM and VMA values were decrease with the increasing bitumen content where VFB was increase with increasing bitumen content. Furthermore, increasing the percentage of coconut shell in asphalt mixture was found to increases the voids value up to a peak level and then decreases with further additions of CS.

  8. THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH {sup 13}CO(1-0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Rosolowsky, Erik

    2015-01-20

    We present an expanded distance catalog for 1710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO{sup +}(3-2), NH{sub 3}(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey (GRS) {sup 13}CO(1-0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region ofmore » the GRS {sup 13}CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of {sup 13}CO matched to the BGPS source. For objects with a HCO{sup +}(3-2) velocity, ≈95% of the new {sup 13}CO(1-0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated formalism for associating molecular cloud structures with known objects from the literature, is presented. We demonstrate this prior using catalogs of masers with trigonometric parallaxes and H II regions with robust KDA resolutions. The distance catalog presented here contains well-constrained distance estimates for 20% of BGPS V2 sources, with typical distance uncertainties ≲ 0.5 kpc. Approximately 75% of the well-constrained sources lie within 6 kpc of the Sun, concentrated in the Scutum-Centaurus arm. Galactocentric positions of objects additionally trace out portions of the Sagittarius, Perseus, and Outer arms in the first and second Galactic quadrants, and we also find evidence for significant regions of interarm dense gas.« less

  9. Photoionization of the diffuse interstellar medium and galactic halo by OB associtations

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.

  10. Hitomi observation of radio galaxy NGC 1275: The first X-ray microcalorimeter spectroscopy of Fe-Kα line emission from an active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Kawamuro, Taiki

    2018-03-01

    The origin of the narrow Fe-Kα fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In 2016 February-March, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) on board the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high-energy resolution of ˜5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-Kα line with ˜5.4 σ significance. The velocity width is constrained to be 500-1600 km s-1 (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ˜20 keV, giving an equivalent width of ˜20 eV for the 6.4 keV line. Because the velocity width is narrower than that of the broad Hα line of ˜2750 km s-1, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-Kα line comes from a region within ˜1.6 kpc of the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-Kα line from NGC 1275 is likely a low-covering-fraction molecular torus or a rotating molecular disk which probably extends from a parsec to hundreds of parsecs scale in the active galactic nucleus system.

  11. Performance Analysis of an Inter-Relay Co-operation in FSO Communication System

    NASA Astrophysics Data System (ADS)

    Khanna, Himanshu; Aggarwal, Mona; Ahuja, Swaran

    2018-04-01

    In this work, we analyze the outage and error performance of a one-way inter-relay assisted free space optical link. The assumption of the absence of direct link between the source and destination node is being made for the analysis, and the feasibility of such system configuration is studied. We consider the influence of path loss, atmospheric turbulence and pointing error impairments, and investigate the effect of these parameters on the system performance. The turbulence-induced fading is modeled by independent but not necessarily identically distributed gamma-gamma fading statistics. The closed-form expressions for outage probability and probability of error are derived and illustrated by numerical plots. It is concluded that the absence of line of sight path between source and destination nodes does not lead to significant performance degradation. Moreover, for the system model under consideration, interconnected relaying provides better error performance than the non-interconnected relaying and dual-hop serial relaying techniques.

  12. Evaluating susceptibility of karst dolines (sinkholes) for collapse in Sango, Tennessee, USA.

    PubMed

    Siska, Peter P; Goovaerts, Pierre; Hung, I-K

    2016-08-01

    Dolines or sinkholes are earth depressions that develop in soluble rocks complexes such as limestone, dolomite, gypsum, anhydrite, and halite; dolines appear in a variety of shapes from nearly circular to complex structures with highly curved perimeters. The occurrence of dolines in the studied karst area is not random; they are the results of geomorphic, hydrologic, and chemical processes that have caused partial subsidence, even the total collapse of the land surface when voids and caves are present in the bedrock and the regolith arch overbridging these voids is unstable. In the study area, the majority of collapses occur in the regolith (bedrock cover) that bridges voids in the bedrock. Because these collapsing dolines may result in property damage and even cause the loss of lives, there is a need to develop methods for evaluating karst hazards. These methods can then be used by planners and practitioners for urban and economic development, especially in regions with a growing population. The purpose of this project is threefold: 1) to develop a karst feature database, 2) to investigate critical indicators associated with doline collapse, and 3) to develop a doline susceptibility model for potential doline collapse based on external morphometric data. The study has revealed the presence of short range spatial dependence in the distribution of the dolines' morphometric parameters such as circularity, the geographic orientation of the main doline axes, and the length-to-width doline ratios; therefore, geostatistics can be used to spatially evaluate the susceptibility of the karst area for doline collapse. The partial susceptibility estimates were combined into a final probability map enabling the identification of areas where, until now, undetected dolines may cause significant hazards.

  13. Bladder outlet obstruction in women: definition and characteristics.

    PubMed

    Groutz, A; Blaivas, J G; Chaikin, D C

    2000-01-01

    The prevalence of bladder outlet obstruction in women is unknown and most probably has been underestimated. Moreover, there are no standard definitions for the diagnosis of bladder outlet obstruction in women. Our study was conducted to define as well as to examine the clinical and urodynamic characteristics of bladder outlet obstruction among women referred for evaluation of voiding symptoms. Bladder outlet obstruction was defined as a persistent, low, maximum "free" flow rate of <12 mL/s in repeated non-invasive uroflow studies, combined with high detrusor pressure at a maximum flow (p(det.Q)(max) >20 cm H(2)O) during detrusor pressure-uroflow studies. A urodynamic database of 587 consecutive women identified 38 (6.5%) women with bladder outlet obstruction. The mean age of the patients was 63.9 +/- 17.5 years. The mean maximum "free" flow, voided volume, and residual urinary volume were 9.4 +/-3.9 mL/s, 144. 9 +/- 72.7 mL, and 86.1 +/- 98.8 mL, respectively. The mean p(det. Q)(max) was 37.2 +/- 19.2 cm H(2)O. Previous anti-incontinence surgery and severe genital prolapse were the most common etiologies, accounting for half of the cases. Other, less common, etiologies included urethral stricture (13%), primary bladder neck obstruction (8%), learned voiding dysfunction (5%), and detrusor external sphincter dyssynergia (5%). Symptomatology was defined as mixed obstructive and irritative in 63% of the patients, isolated irritative in 29%, and isolated obstructive in other 8%. In conclusion, bladder outlet obstruction in women appears to be more common than was previously recognized, occurring in 6.5% of our patients. Micturition symptoms relevant to bladder outlet obstruction are non-specific, and a full urodynamic evaluation is essential in making the correct diagnosis and formulating a treatment plan.

  14. Evaluating susceptibility of karst dolines (sinkholes) for collapse in Sango, Tennessee, USA

    PubMed Central

    Siska, Peter P.; Goovaerts, Pierre; Hung, I-K

    2016-01-01

    Dolines or sinkholes are earth depressions that develop in soluble rocks complexes such as limestone, dolomite, gypsum, anhydrite, and halite; dolines appear in a variety of shapes from nearly circular to complex structures with highly curved perimeters. The occurrence of dolines in the studied karst area is not random; they are the results of geomorphic, hydrologic, and chemical processes that have caused partial subsidence, even the total collapse of the land surface when voids and caves are present in the bedrock and the regolith arch overbridging these voids is unstable. In the study area, the majority of collapses occur in the regolith (bedrock cover) that bridges voids in the bedrock. Because these collapsing dolines may result in property damage and even cause the loss of lives, there is a need to develop methods for evaluating karst hazards. These methods can then be used by planners and practitioners for urban and economic development, especially in regions with a growing population. The purpose of this project is threefold: 1) to develop a karst feature database, 2) to investigate critical indicators associated with doline collapse, and 3) to develop a doline susceptibility model for potential doline collapse based on external morphometric data. The study has revealed the presence of short range spatial dependence in the distribution of the dolines’ morphometric parameters such as circularity, the geographic orientation of the main doline axes, and the length-to-width doline ratios; therefore, geostatistics can be used to spatially evaluate the susceptibility of the karst area for doline collapse. The partial susceptibility estimates were combined into a final probability map enabling the identification of areas where, until now, undetected dolines may cause significant hazards. PMID:27616807

  15. Systematic void fraction studies with RELAP5, FRANCESCA and HECHAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stosic, Z.; Preusche, G.

    1996-08-01

    In enhancing the scope of standard thermal-hydraulic codes applications beyond its capabilities, i.e. coupling with a one and/or three-dimensional kinetics core model, the void fraction, transferred from thermal-hydraulics to the core model, plays a determining role in normal operating range and high core flow, as the generated heat and axial power profiles are direct functions of void distribution in the core. Hence, it is very important to know if the void quality models in the programs which have to be coupled are compatible to allow the interactive exchange of data which are based on these constitutive void-quality relations. The presentedmore » void fraction study is performed in order to give the basis for the conclusion whether a transient core simulation using the RELAP5 void fractions can calculate the axial power shapes adequately. Because of that, the void fractions calculated with RELAP5 are compared with those calculated by BWR safety code for licensing--FRANCESCA and the best estimate model for pre- and post-dryout calculation in BWR heated channel--HECHAN. In addition, a comparison with standard experimental void-quality benchmark tube data is performed for the HECHAN code.« less

  16. Fluid outlet at the bottom of an in situ oil shale retort

    DOEpatents

    Hutchins, Ned M.

    1984-01-01

    Formation is excavated from within the boundaries of a retort site in formation containing oil shale for forming at least one retort level void extending horizontally across the retort site, leaving at least one remaining zone of unfragmented formation within the retort site. A production level drift is excavated below the retort level void, leaving a lower zone of unfragmented formation between the retort level void and the production level drift. A plurality of raises are formed between the production level drift and the retort level void for providing product withdrawal passages distributed generally uniformly across the horizontal cross section of the retort level void. The product withdrawal passages are backfilled with a permeable mass of particles. Explosive placed within the remaining zone of unfragmented formation above the retort level void is detonated for explosively expanding formation within the retort site toward at least the retort level void for forming a fragmented permeable mass of formation particles containing oil shale within the boundaries of the retort site. During retorting operations products of retorting are conducted from the fragmented mass in the retort through the product withdrawal passages to the production level void. The products are withdrawn from the production level void.

  17. Void formation in INCONEL MA-754 by high temperature oxidation

    NASA Astrophysics Data System (ADS)

    Rosenstein, Alan H.; Tien, John K.; Nix, William D.

    1986-01-01

    Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.

  18. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    DOEpatents

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  19. Autonomous selection of PDE inpainting techniques vs. exemplar inpainting techniques for void fill of high resolution digital surface models

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick

    2007-04-01

    High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.

  20. An improved catalog of halo wide binary candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christine; Monroy-Rodríguez, Miguel A., E-mail: chris@astro.unam.mx

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150more » of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).« less

  1. IDENTIFICATION OF 1.4 MILLION ACTIVE GALACTIC NUCLEI IN THE MID-INFRARED USING WISE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secrest, N. J.; Dudik, R. P.; Dorland, B. N.

    2015-11-15

    We present an all-sky sample of ≈1.4 million active galactic nuclei (AGNs) meeting a two-color infrared photometric selection criteria for AGNs as applied to sources from the Wide-field Infrared Survey Explorer final catalog release (AllWISE). We assess the spatial distribution and optical properties of our sample and find that the results are consistent with expectations for AGNs. These sources have a mean density of ≈38 AGNs per square degree on the sky, and their apparent magnitude distribution peaks at g ≈ 20, extending to objects as faint as g ≈ 26. We test the AGN selection criteria against a largemore » sample of optically identified stars and determine the “leakage” (that is, the probability that a star detected in an optical survey will be misidentified as a quasi-stellar object (QSO) in our sample) rate to be ≤4.0 × 10{sup −5}. We conclude that our sample contains almost no optically identified stars (≤0.041%), making this sample highly promising for future celestial reference frame work as it significantly increases the number of all-sky, compact extragalactic objects. We further compare our sample to catalogs of known AGNs/QSOs and find a completeness value of ≳84% (that is, the probability of correctly identifying a known AGN/QSO is at least 84%) for AGNs brighter than a limiting magnitude of R ≲ 19. Our sample includes approximately 1.1 million previously uncataloged AGNs.« less

  2. Star Classification for the Kepler Input Catalog: From Images to Stellar Parameters

    NASA Astrophysics Data System (ADS)

    Brown, T. M.; Everett, M.; Latham, D. W.; Monet, D. G.

    2005-12-01

    The Stellar Classification Project is a ground-based effort to screen stars within the Kepler field of view, to allow removal of stars with large radii (and small potential transit signals) from the target list. Important components of this process are: (1) An automated photometry pipeline estimates observed magnitudes both for target stars and for stars in several calibration fields. (2) Data from calibration fields yield extinction-corrected AB magnitudes (with g, r, i, z magnitudes transformed to the SDSS system). We merge these with 2MASS J, H, K magnitudes. (3) The Basel grid of stellar atmosphere models yields synthetic colors, which are transformed to our photometric system by calibration against observations of stars in M67. (4) We combine the r magnitude and stellar galactic latitude with a simple model of interstellar extinction to derive a relation connecting {Teff, luminosity} to distance and reddening. For models satisfying this relation, we compute a chi-squared statistic describing the match between each model and the observed colors. (5) We create a merit function based on the chi-squared statistic, and on a Bayesian prior probability distribution which gives probability as a function of Teff, luminosity, log(Z), and height above the galactic plane. The stellar parameters ascribed to a star are those of the model that maximizes this merit function. (6) Parameter estimates are merged with positional and other information from extant catalogs to yield the Kepler Input Catalog, from which targets will be chosen. Testing and validation of this procedure are underway, with encouraging initial results.

  3. A possible origin of the Galactic Center magnetar SGR 1745-2900

    NASA Astrophysics Data System (ADS)

    Cheng, Quan; Zhang, Shuang-Nan; Zheng, Xiao-Ping

    2017-05-01

    Since there is a large population of massive O/B stars and putative neutron stars (NSs) located in the vicinity of the Galactic Center (GC), intermediate-mass X-ray binaries (IMXBs) constituted by an NS and a B-type star probably exist there. We investigate the evolutions of accreting NSs in IMXBs (similar to M82 X-2) with a ˜ 5.2 {M}⊙ companion and orbital period ≃ 2.53 d. By adopting a mildly super-Eddington rate \\dot{M}=6× {10}-8 {M}⊙ {{yr}}-1 for the early Case B Roche-lobe overflow (RLOF) accretion, we find that only in accreting NSs with quite elastic crusts (slippage factor s = 0.05) can the toroidal magnetic fields be amplified within 1 Myr, which is assumed to be the longest duration of the RLOF. These IMXBs will evolve into NS+white dwarf (WD) binaries if they are dynamically stable. However, before the formation of NS+WD binaries, the high stellar density in the GC will probably lead to frequent encounters between the NS+evolved star binaries (in post-early Case B mass transfer phase) and NSs or exchange encounters with other stars, which may produce single NSs. These NSs will evolve into magnetars when the amplified poloidal magnetic fields diffuse out to the NS surfaces. Consequently, our results provide a possible explanation for the origin of the GC magnetar SGR 1745-2900. Moreover, the accreting NSs with s> 0.05 will evolve into millisecond pulsars (MSPs). Therefore, our model reveals that the GC magnetars and MSPs could both originate from a special kind of IMXB.

  4. Correlation of air void parameters obtained by linear traverse with freeze-thaw durability.

    DOT National Transportation Integrated Search

    1983-01-01

    The correlations obtainable from comparisons of the various air void parameters with the freeze-thaw durability of concretes are listed. It is shown that correlations are no better when only small voids are used than when the total void content is us...

  5. Cosmic void clumps

    NASA Astrophysics Data System (ADS)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  6. Properties of the Open Cluster Tombaugh 1 from High-resolution Spectroscopy and uvbyCaHβ Photometry

    NASA Astrophysics Data System (ADS)

    Sales Silva, João V.; Carraro, Giovanni; Anthony-Twarog, Barbara J.; Moni Bidin, Christian; Costa, Edgardo; Twarog, Bruce A.

    2016-01-01

    Open clusters can be the key to deepening our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster’s properties are applicable to all its members. However, the number of open clusters with detailed analysis from high-resolution spectroscopy or precision photometry imposes severe limitations on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaHβ photometry and high-resolution spectroscopy, we derive the cluster’s reddening, obtain photometric metallicity estimates, and, for the first time, present a detailed abundance analysis of 10 potential cluster stars (nine clump stars and one Cepheid). Using the radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved, probable single-star members of Tombaugh 1. From 51 stars, the cluster reddening is found to be E(b-y) = 0.221 ± 0.006 or E(B-V) = 0.303 ± 0.008, where the errors refer to the internal standard errors of the mean. The weighted photometric metallicity from m1 and hk is [Fe/H] = -0.10 ± 0.02, while a match to the Victoria-Regina Strömgren isochrones leads to an age of 0.95 ± 0.10 Gyr and an apparent modulus of (m-M) = 13.10 ± 0.10. Radial velocities identify six giants as probable cluster members, and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y, Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region between 9.5 and 12 kpc. Our study also shows that Cepheid XZ CMa is not a member of Tombaugh 1 and reveals that this Cepheid presents signs of barium enrichment, making it a probable binary star. Based on observations carried out at Las Campanas Observatory (program ID: CN2009B-042) and Cerro Tololo Inter-American Observatory.

  7. Gravitational Effects on Closed-Cellular-Foam Microstructure

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.; Wessling, Francis C.; McMannus, Samuel P.; Mathews, John; Patel, Darayas

    1996-01-01

    Polyurethane foam has been produced in low gravity for the first time. The cause and distribution of different void or pore sizes are elucidated from direct comparison of unit-gravity and low-gravity samples. Low gravity is found to increase the pore roundness by 17% and reduce the void size by 50%. The standard deviation for pores becomes narrower (a more homogeneous foam is produced) in low gravity. Both a Gaussian and a Weibull model fail to describe the statistical distribution of void areas, and hence the governing dynamics do not combine small voids in either a uniform or a dependent fashion to make larger voids. Instead, the void areas follow an exponential law, which effectively randomizes the production of void sizes in a nondependent fashion consistent more with single nucleation than with multiple or combining events.

  8. The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu; Padilla, Nelson

    2018-05-01

    We present a systematic comparison of several existing and new void-finding algorithms, focusing on their potential power to test a particular class of modified gravity models - chameleon f(R) gravity. These models deviate from standard general relativity (GR) more strongly in low-density regions and thus voids are a promising venue to test them. We use halo occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the HOD parameters such that the galaxy two-point correlation functions are the same in both f(R) and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D) underdensities in the plane of the sky to find the same void abundance and void galaxy number density profiles across all models, which suggests that they do not contain much information beyond galaxy clustering. However, the underlying void dark matter density profiles are significantly different, with f(R) voids being more underdense than GR ones, which leads to f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80 and 11σ (statistical error) f(R) models with parameters, |fR0| = 10-5 and 10-6, from GR.

  9. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.

  10. VizieR Online Data Catalog: VIKING catalogue data release 2 (Edge+, 2016)

    NASA Astrophysics Data System (ADS)

    Edge, A.; Sutherland, W.; Viking Team

    2016-10-01

    The VIKING survey with VISTA (ESO programme ID 179.A-2004) is a wide area (eventually 1500 sq.degrees), intermediate-depth (5-sigma detection limit J=21 on Vega system) near-infrared imaging survey, in the five broadband filters Z, Y, J, H, Ks. The planned sky coverage is at high galactic latitudes, and includes two main stripes 70x10°2 each: one in the South Galactic cap near Dec~-30°, and one near Dec~0° in the North galactic cap; in addition, there are two smaller outrigger patches called GAMA09 and CFHLS-W1. Science goals include z>6.5 quasars, extreme brown dwarfs, and multiwavelength coverage and identifications for a range of other imaging surveys, notably VST-KIDS and Herschel-ATLAS. This second public data release of VIKING data covers all of the highest quality data taken between the start of the survey (12th of November 2009) and the end of Period 92 (30th September 2013). This release supersedes the first release (VIKING and VIKING CAT published 28.06.2013 and 16.12.2013 respectively) as it includes improved CASU processing (V1.3) that gives better tile grouting and zero point corrections This release contains 396 tiles with coverage in all five VIKING filters, 379 of which have a deep co-add in J, and an additional 81 with at least two filters where the second OB has not been executed yet or one filter in an OB was poor quality. These 477 fields cover a total of ~690 square degrees and the resulting catalogues include a total of 46,270,162 sources (including low-reliability single-band detections). The imaging and catalogues (both single-band and band-merged) total 839.3GB. The coverage in each of the five sub-areas is not completely contiguous but any inter-tile gaps are relatively small. More details can be found in the accompanying documentation: vikingcatdr2.pdf (2 data files).

  11. Isothermal aging effects on PMR-15 resin

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.

    1992-01-01

    Specimens of PMR-15 polyimide neat resin were aged in air at temperatures of 288, 316, and 343 C. Weight losses and dimensional changes were monitored during the course of the exposure time. Physical changes were also observed by optical and electron microscopy. It was found that polyimide polymer degradation occurred within a thin surface layer that developed and grew during thermal aging. The cores of the polymer specimens were protected from oxidative degradation, and they were relatively unchanged by the thermal treatment. Surface cracking was observed at 343 C and was probably due to an interaction between voids and stresses that developed in the surface layer.

  12. Membership, binarity, and rotation of F-G-K stars in the open cluster Blanco 1

    NASA Astrophysics Data System (ADS)

    Mermilliod, J.-C.; Platais, I.; James, D. J.; Grenon, M.; Cargile, P. A.

    2008-07-01

    Context: The nearby open cluster Blanco 1 is of considerable astrophysical interest for formation and evolution studies of open clusters because it is the third highest Galactic latitude cluster known. It has been observed often, but so far no definitive and comprehensive membership determination is readily available. Aims: An observing programme was carried out to study the stellar population of Blanco 1, and especially the membership and binary frequency of the F5-K0 dwarfs. Methods: We obtained radial-velocities with the CORAVEL spectrograph in the field of Blanco 1 for a sample of 148 F-G-K candidate stars in the magnitude range 10 < V < 14. New proper motions and UBVI CCD photometric data from two extensive surveys were obtained independently and are used to establish reliable cluster membership assignments in concert with radial-velocity data. Results: The membership of 68 stars is confirmed on the basis of proper motion, radial velocity, and photometric criteria. Fourteen spectroscopic- and suspected binaries (2 SB2s, 9 SB1s, 3 SB?) have been discovered among the confirmed members. Thirteen additional stars are located above the main sequence or close to the binary ridge, with radial velocities and proper motions supporting their membership. These are probable binaries with wide separations. Nine binaries (7 SB1 and 2 SB2) were detected among the field stars. The spectroscopic binary frequency among members is 20% (14/68); however, the overall binary rate reaches 40% (27/68) if one includes the photometric binaries. The cluster mean heliocentric radial velocity is +5.53 ± 0.11 km s-1 based on the most reliable 49 members. The V sin i distribution is similar to that of the Pleiades, confirming the age similarities between the two clusters. Conclusions: This study clearly demonstrates that, in spite of the cluster's high Galactic latitude, three membership criteria - radial velocity, proper motion, and photometry - are necessary for performing a reliable membership selection. Furthermore, even with accurate and extensive data, ambiguous cases still remain. Based on observations collected with the Danish 1.54-m and the Swiss telescopes at the European Southern Observatory, La Silla, Chile, and with the old YALO 1-m telescope at the Cerro Tololo InterAmerican Observatory, Chile. Table [see full textsee full textsee full textsee full textsee full textsee full text] is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/95

  13. A semi-automated algorithm for hypothalamus volumetry in 3 Tesla magnetic resonance images.

    PubMed

    Wolff, Julia; Schindler, Stephanie; Lucas, Christian; Binninger, Anne-Sophie; Weinrich, Luise; Schreiber, Jan; Hegerl, Ulrich; Möller, Harald E; Leitzke, Marco; Geyer, Stefan; Schönknecht, Peter

    2018-07-30

    The hypothalamus, a small diencephalic gray matter structure, is part of the limbic system. Volumetric changes of this structure occur in psychiatric diseases, therefore there is increasing interest in precise volumetry. Based on our detailed volumetry algorithm for 7 Tesla magnetic resonance imaging (MRI), we developed a method for 3 Tesla MRI, adopting anatomical landmarks and work in triplanar view. We overlaid T1-weighted MR images with gray matter-tissue probability maps to combine anatomical information with tissue class segmentation. Then, we outlined regions of interest (ROIs) that covered potential hypothalamus voxels. Within these ROIs, seed growing technique helped define the hypothalamic volume using gray matter probabilities from the tissue probability maps. This yielded a semi-automated method with short processing times of 20-40 min per hypothalamus. In the MRIs of ten subjects, reliabilities were determined as intraclass correlations (ICC) and volume overlaps in percent. Three raters achieved very good intra-rater reliabilities (ICC 0.82-0.97) and good inter-rater reliabilities (ICC 0.78 and 0.82). Overlaps of intra- and inter-rater runs were very good (≥ 89.7%). We present a fast, semi-automated method for in vivo hypothalamus volumetry in 3 Tesla MRI. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Quantification of EEG reactivity in comatose patients.

    PubMed

    Hermans, Mathilde C; Westover, M Brandon; van Putten, Michel J A M; Hirsch, Lawrence J; Gaspard, Nicolas

    2016-01-01

    EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet's AC1: 65-70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts' agreement regarding reactivity for each individual case. Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    NASA Astrophysics Data System (ADS)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  16. Hollow-Wall Heat Shield for Fuel Injector Component

    NASA Technical Reports Server (NTRS)

    Hanson, Russell B. (Inventor)

    2018-01-01

    A fuel injector component includes a body, an elongate void and a plurality of bores. The body has a first surface and a second surface. The elongate void is enclosed by the body and is integrally formed between portions of the body defining the first surface and the second surface. The plurality of bores extends into the second surface to intersect the elongate void. A process for making a fuel injector component includes building an injector component body having a void and a plurality of ports connected to the void using an additive manufacturing process that utilizes a powdered building material, and removing residual powdered building material from void through the plurality of ports.

  17. Note: Void effects on eddy current distortion in two-phase liquid metal.

    PubMed

    Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M

    2015-10-01

    A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf.

  18. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  19. Stress-induced activation of decomposition of organic explosives: a simple way to understand.

    PubMed

    Zhang, Chaoyang

    2013-01-01

    We provide a very simply way to understand the stress-induced activation of decomposition of organic explosives by taking the simplest explosive molecule nitromethane (NM) as a prototype and constraining one or two NM molecules in a shell to represent the condensed phrase of NM against the stress caused by tension and compression, sliding and rotational shear, and imperfection. The results show that the stress loaded on NM molecule can always reduce the barriers of its decomposition. We think the origin of this stress-induced activation is due to the increased repulsive intra- and/or inter- molecular interaction potentials in explosives resulted from the stress, whose release is positive to accelerate the decomposition. Besides, by these models, we can understand that the explosives in gaseous state are easier to analyze than those in condensed state and the voids in condensed explosives make them more sensitive to external stimuli relative to the perfect crystals.

  20. General view of the middeck looking aft and port. In ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid-deck looking aft and port. In this view you can clearly see the crew access hatch and the airlock hatch. The hose and ladder in the image are pieces of ground support equipment. The hose is part of the climate control apparatus used while orbiters are being processed. The ladder is used to access the inter-deck passage, leading to the flight deck, while the orbiter is in 1g (earth's gravity). A careful observer will notice a void in the wall near the base of the access ladder, this is the Waste Management Compartment with the Waste Management System, i.e. Space Potty, removed. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Selection of airgap layers for circuit timing optimization

    NASA Astrophysics Data System (ADS)

    Hyun, Daijoon; Shin, Youngsoo

    2017-03-01

    Airgap refers to a void formed in place of some inter metal dielectric (IMD). It brings about the reduction in coupling capacitance, which may contribute to improvement in circuit performance. We introduce two problems in this context. First is to choose the layers, where airgap should be applied, in such a way that total negative slack (TNS) is minimized for a given circuit. This has been motivated by the fact that best choice of airgap layers is different for different circuits. An algorithm is proposed to solve the problem, and is assessed against a naive approach in which airgap layers are simply fixed; additional 8% TNS reduction, on average of a few test circuits, is demonstrated. In the second problem, some wires of critical paths that are on non-airgap layers are reassigned to airgap layers such that TNS is further reduced; additional 3 to 14% of TNS reduction is observed.

  2. Zone of Avoidance Tully-Fisher Survey

    NASA Astrophysics Data System (ADS)

    Williams, Wendy; Woudt, Patrick; Kraan-Korteweg, Renee

    2009-10-01

    We propose to use the Parkes telescope to obtain narrowband HI spectra of a sample of galaxies in the Galactic Zone of Avoidance (ZOA). These observations, combined with high-quality near infrared photometry, will provide both the uniform coverage and accurate distance determinations (via the Tully-Fisher relation) required to map the peculiar velocity flow fields in the ZOA. The mass distribution in this region has a significant effect on the motion of the Local Group. Dynamically important structures, including the Great Attractor and the Local Void, are partially hidden behind our Galaxy. Even the most recent systematic all-sky surveys, such as the 2MASS Redshift Survey (2MRS; Huchra et al. 2005), undersample the ZOA due to stellar crowding and high dust extinction. While statistical reconstruction methods have been used to extrapolate the density field in the ZOA, they are unlikely to truely re?ect the velocity field (Loeb & Narayan 2008). Our project aims for the ?rst time to directly determine the velocity flow fields in this part of the sky. Our sample is taken from the Parkes HIZOA survey (Henning et al. 2005) and is unbiased with respect to extinction and star density.

  3. The case for electron re-acceleration at galaxy cluster shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin

    2017-01-01

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

  4. The case for electron re-acceleration at galaxy cluster shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  5. The case for electron re-acceleration at galaxy cluster shocks

    DOE PAGES

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; ...

    2017-01-04

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  6. The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology

    NASA Astrophysics Data System (ADS)

    Kroupa, P.

    2012-06-01

    The current standard model of cosmology (SMoC) requires The Dual Dwarf Galaxy Theorem to be true according to which two types of dwarf galaxies must exist: primordial dark-matter (DM) dominated (type A) dwarf galaxies, and tidal-dwarf and ram-pressure-dwarf (type B) galaxies void of DM. Type A dwarfs surround the host approximately spherically, while type B dwarfs are typically correlated in phase-space. Type B dwarfs must exist in any cosmological theory in which galaxies interact. Only one type of dwarf galaxy is observed to exist on the baryonic Tully-Fisher plot and in the radius-mass plane. The Milky Way satellite system forms a vast phase-space-correlated structure that includes globular clusters and stellar and gaseous streams. Other galaxies also have phase-space correlated satellite systems. Therefore, The Dual Dwarf Galaxy Theorem is falsified by observation and dynamically relevant cold or warm DM cannot exist. It is shown that the SMoC is incompatible with a large set of other extragalactic observations. Other theoretical solutions to cosmological observations exist. In particular, alone the empirical mass-discrepancy-acceleration correlation constitutes convincing evidence that galactic-scale dynamics must be Milgromian. Major problems with inflationary big bang cosmologies remain unresolved.

  7. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  8. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  9. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  10. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  11. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...

  12. Deformation of periodic nanovoid structures in Mg single crystals

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing; Zare Chavoshi, Saeed

    2018-01-01

    Large scale molecular dynamics (MD) simulations in Mg single crystal containing periodic cylindrical voids subject to uniaxial tension along the z direction are carried out. Models with different initial void sizes and crystallographic orientations are explored using two interatomic potentials. It is found that (i) a larger initial void always leads to a lower yield stress, in agreement with an analytic prediction; (ii) in the model with x[\\bar{1}100]-y[0001]-z[11\\bar{2}0] orientations, the two potentials predict different types of tension twins and phase transformation; (iii) in the model with x[0001]-y[11\\bar{2}0]-z[\\bar{1}100] orientations, the two potentials identically predict the nucleation of edge dislocations on the prismatic plane, which then glide away from the void, resulting in extrusions at the void surface; in the case of the smallest initial void, these surface extrusions pinch the void into two voids. Besides bringing new physical understanding of the nanovoid structures, our work highlights the variability and uncertainty in MD simulations arising from the interatomic potential, an issue relatively lightly addressed in the literature to date.

  13. Experimental Detection and Characterization of Void using Time-Domain Reflection Wave

    NASA Astrophysics Data System (ADS)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Zainal Abidin, M. H.; Mohammad, A. H.; Omar, A. H.

    2018-04-01

    Recent technologies in engineering views have brought the significant improvement in terms of performance and precision. One of those improvements is in geophysics studies for underground detection. Reflection method has been demonstrated to able to detect and locate subsurface anomalies in previous studies, including voids. Conventional method merely involves field testing only for limited areas. This may lead to undiscovered of the void position. Problems arose when the voids were not recognised in early stage and thus, causing hazards, costs increment, and can lead to serious accidents and structural damages. Therefore, to achieve better certainty of the site investigation, a dynamic approach is needed to be implemented. To estimate and characterize the anomalies signal in a better way, an attempt has been made to model air-filled void as experimental testing at site. Robust detection and characterization of voids through inexpensive cost using reflection method are proposed to improve the detectability and characterization of the void. The result shows 2-Dimensional and 3-Dimensional analyses of void based on reflection data with P-waves velocity at 454.54 m/s.

  14. Impact of cholesterol on voids in phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo

    2004-12-01

    Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.

  15. Interstellar Travel and Galactic Colonization: Insights from Percolation Theory and the Yule Process.

    PubMed

    Lingam, Manasvi

    2016-06-01

    In this paper, percolation theory is employed to place tentative bounds on the probability p of interstellar travel and the emergence of a civilization (or panspermia) that colonizes the entire Galaxy. The ensuing ramifications with regard to the Fermi paradox are also explored. In particular, it is suggested that the correlation function of inhabited exoplanets can be used to observationally constrain p in the near future. It is shown, by using a mathematical evolution model known as the Yule process, that the probability distribution for civilizations with a given number of colonized worlds is likely to exhibit a power-law tail. Some of the dynamical aspects of this issue, including the question of timescales and generalizing percolation theory, were also studied. The limitations of these models, and other avenues for future inquiry, are also outlined. Complex life-Extraterrestrial life-Panspermia-Life detection-SETI. Astrobiology 16, 418-426.

  16. X-Ray Spectra of Quasars from the ROSAT Public Archive

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.; West, Donald (Technical Monitor)

    2000-01-01

    This has been a most productive proposal. We have: (1) Found many new X-ray absorbed quasars at z>2; (2) Determined that all of these are radio-loud, favoring an intrinsic origin for the absorption; (3) Found that the one radio-quiet exception lay close to a nearby galaxy, so initiating the X-ray study of the ISM of normal galaxies via X-ray spectroscopy; (4) Discovered a class of 'red quasars', probably the tip of a large obscured population; and (5) Discovered a class of 'blank field X-ray sources'. These are a heterogeneous collection but probably include several peculiar types of active galactic nuclei (AGN). Follow-up of the 'blanks' is being undertaken under a separate ADP program. Chandra and XMM-Newton observing time for these objects has been approved. This program has produced six refereed papers and six published conference proceedings.

  17. Inter-satellite links for satellite autonomous integrity monitoring

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pérez, Irma; García-Serrano, Cristina; Catalán Catalán, Carlos; García, Alvaro Mozo; Tavella, Patrizia; Galleani, Lorenzo; Amarillo, Francisco

    2011-01-01

    A new integrity monitoring mechanisms to be implemented on-board on a GNSS taking advantage of inter-satellite links has been introduced. This is based on accurate range and Doppler measurements not affected neither by atmospheric delays nor ground local degradation (multipath and interference). By a linear combination of the Inter-Satellite Links Observables, appropriate observables for both satellite orbits and clock monitoring are obtained and by the proposed algorithms it is possible to reduce the time-to-alarm and the probability of undetected satellite anomalies.Several test cases have been run to assess the performances of the new orbit and clock monitoring algorithms in front of a complete scenario (satellite-to-satellite and satellite-to-ground links) and in a satellite-only scenario. The results of this experimentation campaign demonstrate that the Orbit Monitoring Algorithm is able to detect orbital feared events when the position error at the worst user location is still under acceptable limits. For instance, an unplanned manoeuvre in the along-track direction is detected (with a probability of false alarm equals to 5 × 10-9) when the position error at the worst user location is 18 cm. The experimentation also reveals that the clock monitoring algorithm is able to detect phase jumps, frequency jumps and instability degradation on the clocks but the latency of detection as well as the detection performances strongly depends on the noise added by the clock measurement system.

  18. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    PubMed

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  19. Effect of Preoperative Low Maximal Flow Rate on Postoperative Voiding Trials after the Midurethral Sling Procedure in Women with Stress Urinary Incontinence.

    PubMed

    Chae, Ji Y; Bae, Jae H; Lee, Jeong G; Park, Hong S; Moon, Du G; Oh, Mi M

    2017-06-02

    To evaluate the effects of preoperative low maximal flow rate (Qmax) on voiding trials after the midurethral sling (MUS) procedure in women with stress urinary incontinence (SUI). One hundred and sixty-eight women who underwent MUS procedure were enrolled. Preoperative free uroflowmetry was performed and patients were divided by Qmax. Low Qmax was defined as a Qmax under 15 mL/sec with voided volume at least 150 mL. Surgical results, failure of voiding trial, and postoperative uroflowmetry parameters were compared between the groups. Failure of voiding trial was defined by a PVR more than 100 mL on postoperative uroflowmetry. At the discharge day, there were 42 cases showing failure of voiding trial and 33 cases requiring CIC, but only one patient showed failure of voiding trial at 12 months postoperatively. Overall, 48 patients had preoperative low Qmax. Low Qmax group showed lower Qmax in all of postoperative uroflowmetry, but there were no significant differences in the rate of postoperative voiding trial failure or CIC. The low Qmax group was then divided into two groups according to the preoperative detrusor pressure at Qmax over and under 20 cmH 2 O in pressure flow study. Comparing the two groups, no significant differences were observed in the cure rate, voiding trial failure or CIC. Our results suggest that women with preoperative low Qmax experienced no definite unfavorable voiding problem from the MUS procedure compared to those with normal voiding function. MUS procedure may be regarded as a safe and successful procedure in SUI women with low Qmax. © 2017 John Wiley & Sons Australia, Ltd.

  20. Small-Scale Spatial Fluctuations in the Soft X-Ray Background. Degree awarded by Maryland Univ., 2000

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; White, Nicolas E. (Technical Monitor)

    2001-01-01

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 micron data to separate the soft X-ray background into five components. We find a Local Hot Bubble similar to that described by Snowden et al (1998). We make a first calculation of the contribution by unresolved Galactic stars to the diffuse background. We constrain the normalization of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO'S, and normal galaxies) to 9.5 +/- 0.9 keV/(sq cm s sr keV), assuming a power-law index of 1.46. We show that the remaining emission, which is some combination of Galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has log T - 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T - 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, approx. 7.4 +/- 1.0 keV/(sq cm s sr keV) in the 3/4 keV band. We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the 3/4 keV band. Physical arguments suggest that small angular scale (approx. 10') fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (about 10(exp 5) years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of approx. 0.0025 for 10' < theta < 20', and a value consistent with zero on larger scales. Measurement of the fluctuations with a delta I/I method produces consistent results.

  1. Systematic reviews of bladder training and voiding programmes in adults: a synopsis of findings from data analysis and outcomes using metastudy techniques.

    PubMed

    Roe, Brenda; Ostaszkiewicz, Joan; Milne, Jill; Wallace, Sheila

    2007-01-01

    This paper reports a comparison of the data analysis and outcomes from four Cochrane systematic reviews on bladder training and voiding programmes for the management of urinary incontinence using metastudy descriptive techniques to inform clinical practice, generate new ideas and identify future research directions. Bladder training is used for cognitively and physically able adults to regain continence by increasing the time interval between voids. Prompted voiding, habit retraining and timed voiding, collectively known as voiding programmes, are generally used for people with cognitive and physical impairments in institutional settings. Bladder training and voiding programmes feature as common clinical practice for the management of urinary incontinence. A synopsis of four Cochrane systematic reviews that included randomized controlled trials on bladder training, prompted voiding, habit retraining and timed voiding was undertaken using metastudy techniques for the synthesis of qualitative research, and has provided a discursive comparison and contrast of the meta-data analysis and outcomes of these reviews. Frequency of incontinence was the most common and constant outcome measure of effectiveness in the reviews. Limited data were available on other health outcomes, change in dependency status, quality of life and cost-effectiveness. The systematic review on bladder training included different types of urinary incontinence, whereas those on voiding programmes did not differentiate the type of incontinence. There is evidence on the effectiveness of bladder training but long-term follow up studies are needed. Evidence on the effectiveness of voiding programmes is limited and not available for many outcomes. Future research needs to consider the theory underpinning interventions for bladder training and voiding programmes for urinary incontinence and should incorporate recognized 'quality' research designs, established outcomes and long-term follow up. It is unclear whether health outcomes for people with comorbidities, cognitive and physical impairments will improve if extensive diagnostic and assessment investigations are undertaken.

  2. Voids in Gravitational Instability Scenarios - Part One - Global Density and Velocity Fields in an Einstein - De-Sitter Universe

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; van Kampen, E.

    1993-07-01

    The first results of an extensive study of the structure and dynamics of underdense regions in gravitational instability scenarios are presented. Instead of adopting spherically symmetric voids with some idealized initial density and velocity profile, underdense regions of a given size and depth, embedded in an initial density fluctuation field, are generated. In order to accomplish this in a consistent way, these initial conditions are set up by means of Bertschinger's constrained random field code. The generated particle samples of 64^3^ particles in a box of side 100 Mpc are followed into the non-linear regime by Bertschinger's PM N- body code. In this way we address the dependence of the structure and kinematics of the void both on the initial depth of the void and on the fluctuation field in which it is embedded. In particular, this study provides some understanding of how far fluctuations on small scales modify the dynamics of the large-scale void, and especially of how far the properties of small structures inside the void are affected by the global properties of the void. One of the conspicuous features of the initial density fields inside protovoids appears to be the existence of a `void hierarchy', with small voids embedded in larger voids. The survival of this hierarchy during the riot evolution of the void depends critically on the initial depth as well as on the clustering scenario involved. As well as presenting a qualitative discussion of the structure of underdense regions in initial density fields in different scenarios, and the results of simulations of the ensuing non-linear evolution, we concentrate in particular on a comparison of the global density and velocity fields in voids with predictions from linear theory as well as from the spherical outflow model. The relation between the initial linear depth, the resulting non-linear depth and the excess expansion velocities in voids is addressed. In addition, we find that, while near its centre a void becomes more and more spherical, the shape of its boundary is influenced to a large extent by the structures surrounding the void and therefore is generally more irregular. In this first study we concentrate on single voids in Einstein-de Sitter universes. The underdense regions considered are linear 1 σ_0_, 2 σ_0_ and 3 σ_0_ dips in fields that are Gaussian-smoothed on a scale of R_G_ = 10 h^-1^ Mpc, approximately half the size of the Bootes void. These regions are studied in terms of the Cold Dark Matter and Hot Dark Matter scenarios as well as in terms of the scale-free scenarios P(k) is proportional to k^0^, k^-1^ and k^-2^. The Hubble constant is taken to be H_0_ = 100 h km s^-1^ Mpc^-1^.

  3. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...

  4. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...

  5. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...

  6. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...

  7. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...

  8. Dynamics of voids and their shapes in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Kei-ichi; Sakai, Nobuyuki; Triay, Roland, E-mail: maeda@waseda.jp, E-mail: nsakai@e.yamagata-u.ac.jp, E-mail: triay@cpt.univ-mrs.fr

    2011-08-01

    We investigate the dynamics of a single spherical void embedded in a Friedmann-Lemaitre universe, and analyze the void shape in the redshift space. We find that the void in the redshift space appears as an ellipse shape elongated along the line of sight (i.e., an opposite deformation to the Kaiser effect). Applying this result to observed void candidates at the redshift z ∼ 1-2, it may provide us with a new method to evaluate the cosmological parameters, in particular the value of a cosmological constant.

  9. Pores and Void in Asclepiades’ Physical Theory

    PubMed Central

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  10. The magnetized universe: its origin and dissipation through acceleration and leakage to the voids

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling A.; Li, Hui; Kronberg, Philipp P.

    2011-06-01

    The consistency is awesome between over a dozen observations and the paradigm of radio lobes being immense sources of magnetic energy, flux, and relativistic electrons, - a magnetized universe. The greater the total energy of an astrophysical phenomenon, the more restricted are the possible explanations. Magnetic energy is the most challenging because its origin is still considered problematic. We suggest that it is evident that the universe is magnetized because of radio lobes, ultra relativistic electrons, Faraday rotation measures, the polarized emission of extra galactic radio structures, the x-rays from relativistic electrons Comptonized on the CMB, and possibly extra galactic cosmic rays. The implied energies are so large that only the formation of supermassive black hole, (SMBH) at the center of every galaxy is remotely energetic enough to supply this immense energy, ~(1/10) 108 Msolarc2 per galaxy. Only a galaxy cluster of 1000 galaxies has comparable energy, but it is inversely, (to the number of galaxies), rare per galaxy. Yet this energy appears to be shared between magnetic fields and accelerated relativistic particles, both electrons and ions. Only a large-scale coherent dynamo generating poloidal flux within the accretion disk forming the massive black hole makes a reasonable starting point. The subsequent winding of this dynamo-derived magnetic flux by conducting, angular momentum-dominated accreting matter, (~1011 turns near the event horizon in 108 years) produces the immense, coherent magnetic jets or total flux of radio lobes and similarly in star formation. By extending this same physics to supernova-neutron star formation, we predict that similar differential winding of the flux that couples explosion ejecta and a newly formed, rapidly rotating neutron star will produce similar phenomena of a magnetic jet and lobes in the forming supernova nebula. In all cases the conversion of force-free magnetic energy into accelerated ions and electrons is a major challenge.

  11. Communications/Electronics Receiver Performance Degradation Handbook (Second Edition)

    DTIC Science & Technology

    1975-08-01

    receiver to another in the Rf and IF filter characteristics modify the transfer of inter- forence power through the receiver to the IF output, and so the...modulation system the transmitted and received messages arce in general different bemaus* of small inte, forence or noise perturbations. The probability of

  12. Properties of Starless Clumps through Protoclusters from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian E.; Shirley, Yancy

    2014-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolution of physical properties for high-mass star-forming regions remains unclear. We sort a sample of ~4668 molecular cloud clumps from the Bolocam Galactic Plane Survey (BGPS) into different evolutionary stages by combining the BGPS 1.1 mm continuum and observational diagnostics of star-formation activity from a variety of Galactic plane surveys: 70 um compact sources, mid-IR color-selected YSOs, H2O and CH3OH masers, EGOs, and UCHII regions. We apply Monte Carlo techniques to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate distributions for derived quantities of clumps in different evolutionary stages. We also present a combined NH3 and H2O maser catalog for ~1590 clumps from the literature and our own GBT 100m observations. We identify a sub-sample of 440 dense clumps with no star-formation indicators, representing the largest and most robust sample of pre-protocluster candidates from a blind survey to date. Distributions of I(HCO+), I(N2H+), dv(HCO+), dv(N2H+), mass surface density, and kinetic temperature show strong progressions when separated by evolutionary stage. No progressions are found in size or dust mass; however, weak progressions are observed in area > 2 pc^2 and dust mass > 3 10^3 Msun. An observed breakdown occurs in the size-linewidth relationship and we find no improvement when sampling by evolutionary stage.

  13. Near-infrared variability study of the central 2.3 arcmin × 2.3 arcmin of the Galactic Centre - I. Catalogue of variable sources

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-09-01

    We used 4-yr baseline Hubble Space Telescope/Wide Field Camera 3 IR observations of the Galactic Centre in the F153M band (1.53 μm) to identify variable stars in the central ∼2.3 arcmin × 2.3 arcmin field. We classified 3845 long-term (periods from months to years) and 76 short-term (periods of a few days or less) variables among a total sample of 33 070 stars. For 36 of the latter ones, we also derived their periods (<3 d). Our catalogue not only confirms bright long period variables and massive eclipsing binaries identified in previous works but also contains many newly recognized dim variable stars. For example, we found δ Scuti and RR Lyrae stars towards the Galactic Centre for the first time, as well as one BL Her star (period < 1.3 d). We cross-correlated our catalogue with previous spectroscopic studies and found that 319 variables have well-defined stellar types, such as Wolf-Rayet, OB main sequence, supergiants and asymptotic giant branch stars. We used colours and magnitudes to infer the probable variable types for those stars without accurately measured periods or spectroscopic information. We conclude that the majority of unclassified variables could potentially be eclipsing/ellipsoidal binaries and Type II Cepheids. Our source catalogue will be valuable for future studies aimed at constraining the distance, star formation history and massive binary fraction of the Milky Way nuclear star cluster.

  14. Accretion States of the Galactic Micro Quasar GRS 1758-258

    NASA Technical Reports Server (NTRS)

    Soria, Roberto; Mehdipour, Missagh; Broderick, Jess W.; Hao, JingFang; Hannikainen, Diana C.; Pottschmidt, Katja; Zhang, Shuang-Nan

    2011-01-01

    We present the results of a radio and X-ray study of the Galactic micro quasar GRS 1758-258, using unpublished archival data and new observations. We focus in particular on the 2000-2002 state transitions, and on its more quiet behaviour in 2008-2009. Our spectral and timing analysis of the XMM-Newton data shows that the source was in the canonical intermediate, soft and hard states in 2000 September 19,2001 March 22 and 2002 September 28, respectively. We estimate the disk size, luminosity and temperature, which are consistent with a black hole mass approx.10 Solar Mass, There is much overlap between the range of total X-ray luminosities (on average approx. 0.02L(sub Edd)) in the hard and soft states, and probably between the corresponding mass accretion rates; in fact, the hard state is often more luminous. The extended radio lobes seen in 1992 and 1997 are still present in 2008-2009. The 5-GHz radio core flux density has shown variability between approx. 0.1-0.5 mJy over the last two decades. This firmly places GRS 1758-258 in the radio-quiet sequence of Galactic black holes, in the radio/X-ray plane. We note that this dichotomy is similar to the dichotomy between the radio/X-ray sequences of Seyfert and radio galaxies. We propose that the different radio efficiency of the two sequences is due to relativistic electron/positron jets in radio-loud black holes, and sub-relativistic, thermally dominated outflows in radio-quiet sources.

  15. The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Tescari, E.; Cortese, L.; Power, C.; Wyithe, J. S. B.; Ho, I.-T.; Crain, R. A.; Bland-Hawthorn, J.; Croom, S. M.; Kewley, L. J.; Schaye, J.; Bower, R. G.; Theuns, T.; Schaller, M.; Barnes, L.; Brough, S.; Bryant, J. J.; Goodwin, M.; Gunawardhana, M. L. P.; Lawrence, J. S.; Leslie, S. K.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Richards, S. N.; Sweet, S. M.; Tonini, C.

    2018-01-01

    This work presents a study of galactic outflows driven by stellar feedback. We extract main-sequence disc galaxies with stellar mass 109 ≤ M⋆/ M⊙ ≤ 5.7 × 1010 at redshift z = 0 from the highest resolution cosmological simulation of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) set. Synthetic gas rotation velocity and velocity dispersion (σ) maps are created and compared to observations of disc galaxies obtained with the Sydney-AAO (Australian Astronomical Observatory) Multi-object Integral field spectrograph (SAMI), where σ-values greater than 150 km s-1 are most naturally explained by bipolar outflows powered by starburst activity. We find that the extension of the simulated edge-on (pixelated) velocity dispersion probability distribution depends on stellar mass and star formation rate surface density (ΣSFR), with low-M⋆/low-ΣSFR galaxies showing a narrow peak at low σ (∼30 km s-1) and more active, high-M⋆/high-ΣSFR galaxies reaching σ > 150 km s-1. Although supernova-driven galactic winds in the EAGLE simulations may not entrain enough gas with T <105 K compared to observed galaxies, we find that gas temperature is a good proxy for the presence of outflows. There is a direct correlation between the thermal state of the gas and its state of motion as described by the σ-distribution. The following equivalence relations hold in EAGLE: (i) low-σ peak ⇔ disc of the galaxy ⇔ gas with T <105 K; (ii) high-σ tail ⇔ galactic winds ⇔ gas with T ≥105 K.

  16. Tidal breakup of triple stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Gualandris, Alessia

    2018-04-01

    The last decade has seen the detection of fast moving stars in the Galactic halo, the so-called hypervelocity stars (HVSs). While the bulk of this population is likely the result of a close encounter between a stellar binary and the supermassive black hole (MBH) in the Galactic Centre (GC), other mechanims may contribute fast stars to the sample. Few observed HVSs show apparent ages, which are shorter than the flight time from the GC, thereby making the binary disruption scenario unlikely. These stars may be the result of the breakup of a stellar triple in the GC, which led to the ejection of a hypervelocity binary (HVB). If such binary evolves into a blue straggler star due to internal processes after ejection, a rejuvenation is possible that make the star appear younger once detected in the halo. A triple disruption may also be responsible for the presence of HVBs, of which one candidate has now been observed. We present a numerical study of triple disruptions by the MBH in the GC and find that the most likely outcomes are the production of single HVSs and single/binary stars bound to the MBH, while the production of HVBs has a probability ≲ 1 per cent regardless of the initial parameters. Assuming a triple fraction of ≈ 10 per cent results in an ejection rate of ≲ 1 Gyr - 1, insufficient to explain the sample of HVSs with lifetimes shorter than their flight time. We conclude that alternative mechanisms are responsible for the origin of such objects and HVBs in general.

  17. Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron x-ray computed tomography.

    PubMed

    Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M

    2008-06-01

    Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-microm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 microm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.

  18. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  19. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  20. Determination of void volume in normal phase liquid chromatography.

    PubMed

    Jiang, Ping; Wu, Di; Lucy, Charles A

    2014-01-10

    Void volume is an important fundamental parameter in chromatography. Little prior discussion has focused on the determination of void volume in normal phase liquid chromatography (NPLC). Various methods to estimate the total void volume are compared: pycnometry; minor disturbance method based on injection of weak solvent; tracer pulse method; hold-up volume based on unretained compounds; and accessible volume based on Martin's rule and its descendants. These are applied to NPLC on silica, RingSep and DNAP columns. Pycnometry provides a theoretically maximum value for the total void volume and should be performed at least once for each new column. However, pycnometry does not reflect the volume of adsorbed strong solvent on the stationary phase, and so only yields an accurate void volume for weaker mobile phase conditions. 1,3,5-Tri-t-butyl benzene (TTBB) results in hold-up volumes that are convenient measures of the void volume for all eluent conditions on charge-transfer columns (RingSep and DNAP), but is weakly retained under weak eluent conditions on silica. Injection of the weak mobile phase component (hexane) may be used to determine void volume, but care must be exercised to select the appropriate disturbance feature. Accessible volumes, that are determined using a homologous series, are always biased low, and are not recommended as a measure of the void volume. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. 40 CFR 1065.525 - Engine starting, restarting, shutdown, and optional repeating of void discrete modes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and optional repeating of void discrete modes. 1065.525 Section 1065.525 Protection of Environment... repeating of void discrete modes. (a) Start the engine using one of the following methods: (1) Start the... during one of the modes of a discrete-mode test, you may void the results only for that individual mode...

  2. A sharp interface model for void growth in irradiated materials

    NASA Astrophysics Data System (ADS)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  3. Force measurement-based discontinuity detection during friction stir welding

    DOE PAGES

    Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...

    2017-02-23

    Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less

  4. Force measurement-based discontinuity detection during friction stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.

    Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less

  5. Small-angle x-ray scattering in amorphous silicon: A computational study

    NASA Astrophysics Data System (ADS)

    Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim

    2018-05-01

    We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.

  6. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  7. The void in the Sculptor group spiral galaxy NGC 247

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, R.; De Maio, T.; Sarajedini, A.; Chakrabarti, S.

    2014-10-01

    The dwarf galaxy NGC 247, located in the Sculptor Filament, displays an apparent void on the north side of its spiral disc. The existence of the void in the disc of this dwarf galaxy has been known for some time, but the exact nature and cause of this strange feature has remained unclear. We investigate the properties of the void in the disc of NGC 247 using photometry of archival Hubble Space Telescope data to analyse the stars in and around this region. Based on a grid of isochrones from log(t) = 6.8 to 10.0, we assign ages using nearest-neighbour interpolation. Examination of the spatial variation of these ages across the galaxy reveals an age difference between stars located inside the void region and stars located outside this region. We speculate that the void in NGC 247 's stellar disc may be due to a recent interaction with a nearly dark subhalo that collided with the disc and could account for the long-lived nature of the void.

  8. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Shi, Yaoyao

    2017-11-01

    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  9. Predictors of early postoperative voiding dysfunction and other complications following a midurethral sling.

    PubMed

    Ripperda, Christopher M; Kowalski, Joseph T; Chaudhry, Zaid Q; Mahal, Aman S; Lanzer, Jennifer; Noor, Nabila; Good, Meadow M; Hynan, Linda S; Jeppson, Peter C; Rahn, David D

    2016-11-01

    The rates reported for postoperative urinary retention following midurethral sling procedures are highly variable. Determining which patients have a higher likelihood of failing a voiding trial will help with preoperative counseling prior to a midurethral sling. The objective of the study was to identify preoperative predictors for failed voiding trial following an isolated midurethral sling. A retrospective, multicenter, case-control study was performed by including all isolated midurethral sling procedures performed between Jan. 1, 2010 to June 30, 2015, at 6 academic centers. We collected demographics, medical and surgical histories, voiding symptoms, urodynamic evaluation, and intraoperative data from the medical record. We excluded patients not eligible for attempted voiding trial after surgery (eg, bladder perforation requiring catheterization). Cases failed a postoperative voiding trial and were discharged with an indwelling catheter or taught intermittent self-catheterization; controls passed a voiding trial. We also recorded any adverse events such as urinary tract infection or voiding dysfunction up to 6 weeks after surgery. Bivariate analyses were completed using Mann-Whitney and Pearson χ 2 tests as appropriate. Multivariable stepwise logistic regression was used to determine predictors of failing a voiding trial. A total of 464 patients had an isolated sling (70.9% retropubic, 28.4% transobturator, 0.6% single incision); 101 (21.8%) failed the initial voiding trial. At follow-up visits, 90.4% passed a second voiding trial, and 38.5% of the remainder passed on the third attempt. For the bivariate analyses, prior prolapse or incontinence surgery was similar in cases vs controls (31% vs 28%, P = .610) as were age, race, body mass index, and operative time. Significantly more of the cases (32%) than controls (22%) had a Charlson comorbidity index score of 1 or greater (P = .039). Overactive bladder symptoms of urgency, frequency, and urgency incontinence were similar in both groups as was detrusor overactivity in those with a urodynamic evaluation (29% vs 22%, P = .136), but nocturia was reported more in the cases (50% vs 38%, P = .046). Mean (SD) bladder capacity was similar in both groups (406 [148] mL vs 388 [122] mL, P = .542) as was maximum flow rate with uroflowmetry and pressure flow studies. Cases were significantly more likely to have a voiding type other than detrusor contraction: 37% vs 25%, P = .027, odds ratio, 1.79 (95% confidence interval, 1.07-3.00). There was no difference in voiding trial failures between retropubic and transobturator routes (23.1% vs 18.9%, P = .329). Within 6 weeks of surgery, the frequency of urinary tract infection in cases was greater than controls (20% vs 6%, P < .001; odds ratio, 3.51 [95% confidence interval, 1.82-6.75]). After passing a repeat voiding trial, cases were more likely to present with acute urinary retention (10% vs 3%, P = .003; odds ratio, 4.00 [95% confidence interval, 1.61-9.92]). For multivariable analyses, increasing Charlson comorbidity index increased the risk of a voiding trial failure; apart from this, we did not identify other demographic information among the patients who did not undergo urodynamic evaluation that reliably forecasted a voiding trial failure. The majority of women will pass a voiding trial on the first attempt after an isolated midurethral sling. Current medical comorbidities are predictive of a voiding trial failure, whereas other demographic/examination findings are not. Patients failing the initial voiding trial are at an increased risk of postoperative urinary tract infection or developing acute retention after passing a subsequent voiding trial. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Inter-occurrence times and universal laws in finance, earthquakes and genomes

    NASA Astrophysics Data System (ADS)

    Tsallis, Constantino

    2016-07-01

    A plethora of natural, artificial and social systems exist which do not belong to the Boltzmann-Gibbs (BG) statistical-mechanical world, based on the standard additive entropy $S_{BG}$ and its associated exponential BG factor. Frequent behaviors in such complex systems have been shown to be closely related to $q$-statistics instead, based on the nonadditive entropy $S_q$ (with $S_1=S_{BG}$), and its associated $q$-exponential factor which generalizes the usual BG one. In fact, a wide range of phenomena of quite different nature exist which can be described and, in the simplest cases, understood through analytic (and explicit) functions and probability distributions which exhibit some universal features. Universality classes are concomitantly observed which can be characterized through indices such as $q$. We will exhibit here some such cases, namely concerning the distribution of inter-occurrence (or inter-event) times in the areas of finance, earthquakes and genomes.

  11. An investigation of the plastic fracture of AISI 4340 and 18 nickel - 200 grade maraging steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1974-01-01

    The mechanisms of plastic fracture (dimpled rupture) in high-purity and commercial 18 Ni, 200 grade maraging steels and quenched and tempered AISI 4340 steels have been studied. Plastic fracture takes place in the maraging alloys through void initiation by fracture of titanium carbo-nitride inclusions and the growth of these voids until impingement results in coalescence and final fracture. The fracture of AISI 4340 steel at a yield strength of 200 ksi occurs by nucleation and subsequent growth of voids formed by fracture of the interface between manganese sulfide inclusions and the matrix. The growth of these inclusion-nucleated voids is interrupted long before coalescence by impingement, by the formation of void sheets which connect neighboring sulfide-nucleated voids.

  12. Delaunay based algorithm for finding polygonal voids in planar point sets

    NASA Astrophysics Data System (ADS)

    Alonso, R.; Ojeda, J.; Hitschfeld, N.; Hervías, C.; Campusano, L. E.

    2018-01-01

    This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low density terminal-edge regions around them. A terminal-edge region can represent either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated. Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D cosmological voids the evaluation of the joining criteria considers this context. However, the design of the algorithm permits its adaption to the requirements of any similar application.

  13. Direct observation of void evolution during cement hydration

    DOE PAGES

    Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed; ...

    2017-09-28

    This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less

  14. Direct observation of void evolution during cement hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed

    This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less

  15. Influence of voids distribution on the deformation behavior of nanocrystalline palladium

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.

    2018-07-01

    Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.

  16. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE PAGES

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    2018-04-02

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  17. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NASA Astrophysics Data System (ADS)

    van de Weygaert, Rien

    2016-10-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.

  18. The cosmic web in CosmoGrid void regions

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2016-10-01

    We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void. The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.

  19. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  20. Catalytically enhanced thermal decomposition of chemically grown silicon oxide layers on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, F., E-mail: leroy@cinam.univ-mrs.fr; Passanante, T.; Cheynis, F.

    2016-03-14

    The thermal decomposition of Si dioxide layers formed by wet chemical treatment on Si(001) has been studied by low-energy electron microscopy. Independent nucleations of voids occur into the Si oxide layers that open by reaction at the void periphery. Depending on the voids, the reaction rates exhibit large differences via the occurrence of a nonlinear growth of the void radius. This non-steady state regime is attributed to the accumulation of defects and silicon hydroxyl species at the SiO{sub 2}/Si interface that enhances the silicon oxide decomposition at the void periphery.

  1. Theory of void formation in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Zuquan; Chen, Yinhua; Zheng, Xiang; Huang, Feng; Shi, Gei-fen; Yu, M. Y.

    2009-06-01

    A fluid theory of void formation in dusty plasmas taking into account ionization is proposed. It is shown that if the ionization rate is larger than a threshold, an initial steady-state dust-density distribution can evolve into a stable distribution containing a void. As the ionization rate is further increased, the time required for void formation decreases. The void size first increases, but then decreases. However, for still larger ionization rates, the dusty region of the plasma becomes ringlike, including the convection term in dust momentum equation. The results are in agreement with existing experiments and theories.

  2. Hierarchical and chemical space partitioning in new intermetallic borides MNi21B20 (M = In, Sn).

    PubMed

    Wagner, Frank R; Zheng, Qiang; Gumeniuk, Roman; Bende, David; Prots, Yurii; Bobnar, Matej; Hu, Dong-Li; Burkhardt, Ulrich; Grin, Yuri; Leithe-Jasper, Andreas

    2017-10-10

    The compounds MNi 21 B 20 (M = In, Sn) have been synthesized and their cubic crystal structure determined (space group Pm3[combining macron]m, lattice parameters a = 7.1730(1) Å and a = 7.1834(1) Å, respectively). The structure can be described as a hierarchical partitioning of space based on a reo-e net formed by Ni3 species with large cubical, cuboctahedral and rhombicuboctahedral voids being filled according to [Ni1@Ni3 8 ], [M@Ni3 12 ], and [Ni2 6 @B 20 @Ni3 24 ], respectively. The [Ni 6 @B 20 ] motif inside the rhombicuboctahedral voids features an empty [Ni 6 ] octahedron surrounded by a [B 20 ] cage recently described in E 2 Ni 21 B 20 (E = Zn, Ga). Position-space bonding analysis using ELI-D and QTAIM space partitioning as well as 2- and 3-center delocalization indices gives strong support to an alternative chemical description of space partitioning based on face-condensed [B@Ni 6 ] trigonal prisms as basic building blocks. The shortest B-B contacts display locally nested 3-center B-B-Ni bonding inside each trigonal prism. This clearly rules out the notion of [Ni 6 @B 20 ] clusters and leads to the arrangement of 20 face-condensed [B@Ni2 3 Ni3 3 ] trigonal prisms resulting in a triple-shell like situation Ni2 6 @B 20 @Ni3 24 (reo-e), where the shells display comparable intra- and inter-shell bonding. Both compounds are Pauli paramagnets displaying metallic conductivity.

  3. PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian

    2012-07-01

    We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle University of Thessaloniki in Greece for giving the dinner talk on the most astounding ancient Antikythera mechanism. We would also like to thank Victor Gomer and the staff of the Physikzentrum of the Deutsche Physikalische Gesellschaft in Bad Honnef where the conference took place. Last but not least we would like to thank all unnamed helpers, without whom the organisation of this conference would not have been possible. Financial support for this conference was granted by the Deutsche Forschungsgemeinschaft (DFG) Sonderforschungsbereich project number SFB 956. We also acknowledge support from the European Community Framework Programme 7, Advanced Radio Astronomy in Europe, grant agreement no. 227290. Christof Iserlohe, Vladimir Karas, Melanie Krips, Andreas Eckart, Silke Britzen and Sebastian Fischer The Editors Conference photograph Conference Group Photo, 1 September 2011 The PDF also contains additional photographs from the conference and the Contents of the Proceedings.

  4. Analysis, design, and experimental results for lightweight space heat receiver canisters, phase 1

    NASA Technical Reports Server (NTRS)

    Schneider, Michael G.; Brege, Mark A.; Heidenreich, Gary R.

    1991-01-01

    Critical technology experiments have been performed on thermal energy storage modules in support of the Brayton Advanced Heat Receiver program. The modules are wedge-shaped canisters designed to minimize the mechanical stresses that occur during the phase change of the lithium fluoride phase change material. Nickel foam inserts were used in some of the canisters to provide thermal conductivity enhancement and to distribute the void volume. Two canisters, one with a nickel foam insert, and one without, were thermally cycled in various orientations in a fluidized bed furnace. The only measurable impact of the nickel foam was seen when the back and short sides of the canister were insulated to simulate operation in the advanced receiver design. In tests with insulation, the furnace to back side delta T was larger in the canister with the nickel foam insert, probably due to the radiant absorptivity of the nickel. However, the differences in the temperature profiles of the two canisters were small, and in many cases the profiles matched fairly well. Computed Tomography (CT) was successfully used to nondestructively demarcate void locations in the canisters. Finally, canister dimensional stability, which was measured throughout the thermal cycling test program with an inspection fixture was satisfactory with a maximum change of 0.635 mm (0.025 in.).

  5. Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics

    PubMed Central

    Yaghoobi, Amin; Chorzepa, Mi G.; Kim, S. Sonny; Durham, Stephan A.

    2017-01-01

    Concrete is a complex heterogeneous material, and thus, it is important to develop numerical modeling methods to enhance the prediction accuracy of the fracture mechanism. In this study, a two-dimensional mesoscale model is developed using a non-ordinary state-based peridynamic (NOSBPD) method. Fracture in a concrete cube specimen subjected to pure tension is studied. The presence of heterogeneous materials consisting of coarse aggregates, interfacial transition zones, air voids and cementitious matrix is characterized as particle points in a two-dimensional mesoscale model. Coarse aggregates and voids are generated using uniform probability distributions, while a statistical study is provided to comprise the effect of random distributions of constituent materials. In obtaining the steady-state response, an incremental and iterative solver is adopted for the dynamic relaxation method. Load-displacement curves and damage patterns are compared with available experimental and finite element analysis (FEA) results. Although the proposed model uses much simpler material damage models and discretization schemes, the load-displacement curves show no difference from the FEA results. Furthermore, no mesh refinement is necessary, as fracture is inherently characterized by bond breakages. Finally, a sensitivity study is conducted to understand the effect of aggregate volume fraction and porosity on the load capacity of the proposed mesoscale model. PMID:28772518

  6. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Treesearch

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  7. High-resolution electron microscope observation of voids in amorphous Ge.

    NASA Technical Reports Server (NTRS)

    Donovan, T. M.; Heinemann, K.

    1971-01-01

    Electron micrographs have been obtained which clearly show the existence of a void network in amorphous Ge films formed at substrate temperatures of 25 and 150 C, and the absence of a void network in films formed at higher substrate temperatures of 200 and 250 C. These results correlate quite well with density measurements and predictions of void densities by indirect methods.

  8. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.

    2017-10-01

    Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical simulation, and the physical mechanisms of the inter-blade vortex development is, furthermore, discussed.

  9. Three-Dimensional Analysis of Voids in AM60B Magnesium Tensile Bars Using Computed Tomography Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A M

    2001-05-01

    In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less

  10. The effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in cadaveric spines with simulated metastases.

    PubMed

    Li, Ka; Yan, Jun; Yang, Qiang; Li, Zhenfeng; Li, Jianmin

    2015-01-28

    For osteoporosis or spinal metastases, percutaneous vertebroplasty is effective in pain relief and improvement of mobility. However, the complication rate (cement extravasation and fat embolisms) is relatively higher in the treatment of spinal metastases. The presence of tumor tissue plays a significant role in intravertebral pressure and cement distribution and thereby affects the occurrence of complications. We investigated the effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in spinal metastases. Eighteen vertebrae (T8-L4) from five cadaveric spines were randomly allocated for two groups (group with and without void) of nine vertebrae each. Defect was created by removing a central core of cancellous bone in the vertebral body and then filling it with 30% or 100% fresh muscle paste by volume to simulate void creation or no void creation, respectively. Then, 20% bone cement by volume of the vertebral body was injected into each specimen through a unipedicular approach at a rate of 3 mL/min. The gender of the donor, vertebral body size, bone density, cement volume, and intravertebral pressure were recorded. Then, computed tomography scans and cross sections were taken to evaluate the cement distribution in vertebral bodies. No significant difference was found between the two groups in terms of the gender of the donor, vertebral body size, bone density, or bone cement volume. The average maximum intravertebral pressure in the group with void creation was significantly lower than that in the group without void creation (1.20 versus 5.09 kPa, P = 0.001). Especially during the filling of void, the difference was more pronounced. Void creation prior to vertebroplasty allowed the bone cement to infiltrate into the lytic defect. In vertebroplasty for spinal metastases, void creation produced lower intravertebral pressure and facilitated cement filling. To reduce the occurrence of complication, it may be an alternative to eliminate the tumor tissue to create a void prior to cement injection.

  11. Palomar 13: An Unusual Stellar System in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Côté, Patrick; Djorgovski, S. G.; Meylan, G.; Castro, Sandra; McCarthy, J. K.

    2002-08-01

    We report the first results of a program to study the internal kinematics of globular clusters in the outer halo of the Milky Way. Using the Keck telescope and High Resolution Echelle Spectrometer, we have measured precise radial velocities for 30 candidate red giants in the direction of Palomar 13, an object traditionally cataloged as a compact, low-luminosity globular cluster. We have combined these radial velocities with published proper motion membership probabilities and new CCD photometry from the Keck and Canada-France-Hawaii telescopes to isolate a sample of 21 probable members. We find a systemic velocity of s=24.1+/-0.5 km s-1 and a projected, intrinsic velocity dispersion of σp=2.2+/-0.4 km s-1. Although modest, this dispersion is nevertheless several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, it implies a mass-to-light ratio of ΥV=40+24-17 based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears unusual compared to most Galactic globular clusters; depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of ``extratidal'' stars, or is considerably more spatially extended than previously suspected. The full surface density profile is equally well fitted by a King-Michie model having a high concentration and large tidal radius, or by a Navarro-Frenk-White model. We examine-and tentatively reject-a number of possible origins for the observed characteristics of Palomar 13 (e.g., velocity ``jitter'' among the red giant branch stars, spectroscopic binary stars, nonstandard mass functions, modified Newtonian dynamics) and conclude that the two leading explanations are either catastrophic heating during a recent perigalacticon passage or the presence of a dark matter halo. The available evidence therefore suggests that Palomar 13 is either a globular cluster that is now in the process of dissolving into the Galactic halo or a faint, dark matter-dominated stellar system. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  12. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption

    PubMed Central

    Lukovic, Mladena; Ye, Guang

    2015-01-01

    In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c). This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d), the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning). From reconstructed images, different phases in the repair system (repair material, substrate, voids) can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice. PMID:28787801

  13. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-08-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. Wemore » establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.« less

  14. Serotonin (5-HT)2A/2C receptor agonist (2,5-dimethoxy-4-idophenyl)-2-aminopropane hydrochloride (DOI) improves voiding efficiency in the diabetic rat.

    PubMed

    Tu, Hongjian; Cao, Nailong; Gu, Baojun; Si, Jiemin; Chen, Zhong; Andersson, Karl-Erik

    2015-07-01

    To examine the effects of the serotonin (5-HT)2A/2C receptor agonist (2,5-dimethoxy-4-idophenyl)-2-aminopropane hydrochloride (DOI) on micturition in rats with diabetes mellitus (DM). Female Sprague-Dawley rats (n = 16) were divided into two groups: rats with Type 1 DM and age-matched control rats. DM was induced by i.p. injection of streptozotocin (65 mg/kg) and detailed cystometrogram (CMG) studies were performed 8 weeks post-injection in all rats under urethane anaesthesia. The selective 5-HT2A antagonist ketanserin was administered after each DOI dose-response curve was plotted. All drugs were administered i.v. Compared with controls, comprehensive urodynamic studies showed that DM rats had a higher bladder capacity and post-void residual urine volume (PVR), and a markedly lower voiding efficiency. In DM rats, DOI (0.01-0.3 mg/kg) induced significant dose-dependent increases in micturition volume and reductions in PVR, resulting in greater voiding efficiency. CMG measurements showed a dose-dependent increase in high-frequency oscillation (HFO) activity, evidenced by an increased duration of HFOs per voiding. This correlated with the improved voiding efficiency. Ketanserin (0.1 mg/kg) partially or completely reversed the DOI-induced changes. The HFOs observed in the present study seem to correlate with external urethral sphincter bursting activity during voiding. Bladder voiding efficiency was reduced in DM rats. The 5-HT2A receptor agonist can enhance HFO activity and improves voiding efficiency, and so may represent a new strategy to improve voiding efficiency after DM in experimental studies. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  15. Three-Dimensional Gas Exchange Pathways in Pome Fruit Characterized by Synchrotron X-Ray Computed Tomography1[C][W][OA

    PubMed Central

    Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M.

    2008-01-01

    Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-μm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 μm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit. PMID:18417636

  16. Observed Faraday Effects in Damped Lyα Absorbers and Lyman Limit Systems: The Magnetized Environment of Galactic Building Blocks at Redshift = 2

    NASA Astrophysics Data System (ADS)

    Farnes, J. S.; Rudnick, L.; Gaensler, B. M.; Haverkorn, M.; O'Sullivan, S. P.; Curran, S. J.

    2017-06-01

    Protogalactic environments are typically identified using quasar absorption lines and can manifest as Damped Lyman-alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). We use radio observations of Faraday effects to test whether these galactic building blocks host a magnetized medium, by combining DLA and LLS detections with 1.4 GHz polarization data from the NRAO VLA Sky Survey (NVSS). We obtain a control, a DLA, and an LLS sample consisting of 114, 19, and 27 lines of sight, respectively. Using a Bayesian framework and weakly informative priors, we are unable to detect either coherent or random magnetic fields in DLAs: the regular coherent fields must be ≤slant 2.8 μG, and the lack of depolarization suggests the weakly magnetized gas in DLAs is non-turbulent and quiescent. However, we find a mild suggestive indication that LLSs have coherent magnetic fields, with a 71.5% probability that LLSs have higher | {RM}| than a control, although this is sensitive to the redshift distribution. We also find a strong indication that LLSs host random magnetic fields, with a 95.5% probability that LLS lines of sight have lower polarized fractions than a control. The regular coherent fields within the LLSs must be ≤slant 2.4 μG, and the magnetized gas must be highly turbulent with a typical turbulent length scale on the order of ≈5-20 pc. Our results are consistent with the standard dynamo paradigm, whereby magnetism in protogalaxies increases in coherence over cosmic time, and with a hierarchical galaxy formation scenario, with the DLAs and LLSs exploring different stages of magnetic field evolution in galaxies.

  17. J-GEM follow-up observations of the gravitational wave source GW151226*

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Utsumi, Yousuke; Tominaga, Nozomu; Morokuma, Tomoki; Tanaka, Masaomi; Asakura, Yuichiro; Matsubayashi, Kazuya; Ohta, Kouji; Abe, Fumio; Chimasu, Sho; Furusawa, Hisanori; Itoh, Ryosuke; Itoh, Yoichi; Kanda, Yuka; Kawabata, Koji S.; Kawabata, Miho; Koshida, Shintaro; Koshimoto, Naoki; Kuroda, Daisuke; Moritani, Yuki; Motohara, Kentaro; Murata, Katsuhiro L.; Nagayama, Takahiro; Nakaoka, Tatsuya; Nakata, Fumiaki; Nishioka, Tsubasa; Saito, Yoshihiko; Terai, Tsuyoshi; Tristram, Paul J.; Yanagisawa, Kenshi; Yasuda, Naoki; Doi, Mamoru; Fujisawa, Kenta; Kawachi, Akiko; Kawai, Nobuyuki; Tamura, Yoichi; Uemura, Makoto; Yatsu, Yoichi

    2017-02-01

    We report the results of optical-infrared follow-up observations of the gravitational wave (GW) event GW151226 detected by the Advanced LIGO in the framework of J-GEM (Japanese collaboration for Gravitational wave ElectroMagnetic follow-up). We performed wide-field optical imaging surveys with the Kiso Wide Field Camera (KWFC), Hyper Suprime-Cam (HSC), and MOA-cam3. The KWFC survey started at 2.26 d after the GW event and covered 778 deg2 centered at the high Galactic region of the skymap of GW151226. We started the HSC follow-up observations from ˜12 d after the event and covered an area of 63.5 deg2 of the highest probability region of the northern sky with limiting magnitudes of 24.6 and 23.8 for the i and z bands, respectively. MOA-cam3 covered 145 deg2 of the skymap with the MOA-red filter ˜2.5 mon after the GW alert. The total area covered by the wide-field surveys was 986.5 deg2. The integrated detection probability for the observed area was ˜29%. We also performed galaxy-targeted observations with six optical and near-infrared telescopes from 1.61 d after the event. A total of 238 nearby (≤100 Mpc) galaxies were observed with a typical I band limiting magnitude of ˜19.5. We detected 13 supernova candidates with the KWFC survey, and 60 extragalactic transients with the HSC survey. Two thirds of the HSC transients were likely supernovae and the remaining one third were possible active galactic nuclei. With our observational campaign, we found no transients that are likely to be associated with GW151226.

  18. X-Ray Spectral Study of AGN Sources Content in Some Deep Extragalactic XMM-Newton Fields

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Korany, B. A.; Misra, R.; Issa, I. A. M.; Ahmed, M. K.; Abdel-Salam, F. A.

    2012-06-01

    We undertake a spectral study of a sample of bright X-ray sources taken from six XMM-Newton fields at high galactic latitudes, where AGN are the most populous class. These six fields were chosen such that the observation had an exposure time more than 60 ksec, had data from the EPIC-pn detector in the full-Frame mode and lying at high galactic latitude | b|>25°. The analysis started by fitting the spectra of all sources with an absorbed power-law model, and then we fitted all the spectra with an absorbed power-law with a low energy black-body component model.The sources for which we added a black body gave an F-test probability of 0.01 or less (i.e. at 99% confidence level), were recognized as sources that display soft excess. We perform a comparative analysis of soft excess spectral parameters with respect to the underlying power-law one for sources that satisfy this criterion. Those sources, that do not show evidence for a soft excess, based on the F-test probability at a 99% confidence level, were also fitted with the absorbed power-law with a low energy black-body component model with the black-body temperature fixed at 0.1 and 0.2 keV. We establish upper limits on the soft excess flux for those sources at these two temperatures. Finally we have made use of Aladdin interactive sky atlas and matching with NASA/IPAC Extragalactic Database (NED) to identify the X-ray sources in our sample. For those sources which are identified in the NED catalogue, we make a comparative study of the soft excess phenomenon for different types of systems.

  19. THE RADIO/GAMMA-RAY CONNECTION IN ACTIVE GALACTIC NUCLEI IN THE ERA OF THE FERMI LARGE AREA TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using amore » surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of <10{sup -7} for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 x 10{sup -6} to 9.0 x 10{sup -8}. Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability < 10{sup -7}) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.« less

  20. The radio/gamma-ray connection in active galactic nuclei in the era of the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2011-10-12

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using amore » surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of <10 –7 for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 × 10 –6 to 9.0 × 10 –8. Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. As a result, we find that the correlation is very significant (chance probability < 10 –7) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.« less

  1. The Radio/Gamma-Ray Connection in Active Galactic Nuclei in the Era of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Angelakis, E.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; hide

    2011-01-01

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose.We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the OwensValley RadioObservatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of <10(exp -7) for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 10(exp -6) to 9.0 10(exp -8). Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability < 10(exp -7)) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.

  2. Overview of the Epidemiology of Lower Urinary Tract Dysfunction in South Korea

    PubMed Central

    2016-01-01

    This review assessed the epidemiology of voiding dysfunctions in South Korea. Comprehensive understanding of this epidemiology is crucial because the senior population and the social burden are increasing because of voiding dysfunctions is growing. We searched the medical records using several terms related to voiding dysfunction: benign prostatic hyperplasia, urinary incontinence, lower urinary tract symptoms, overactive bladder, and nocturia. We then estimated the prevalence of voiding dysfunctions in South Korea; our data were comparable with those from other countries, with slight differences. The ranges of incidences varied widely between studies, mostly because investigators defined disorders differently. Voiding dysfunction greatly affects healthcare costs and individual quality of life; therefore, more proper and valuable epidemiologic data are needed. In addition, efforts to unify the definitions of various voiding dysfunctions and progress in investigational methodologies using multimedia are warranted. PMID:27377940

  3. Thermal analysis of void cavity for heat pipe receiver under microgravity

    NASA Astrophysics Data System (ADS)

    Gui, Xiaohong; Song, Xiange; Nie, Baisheng

    2017-04-01

    Based on theoretical analysis of PCM (Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA (National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.

  4. Force field inside the void in complex plasmas under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kretschmer, M.; Khrapak, S. A.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.

    2005-05-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the “trampoline effect”). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

  5. Murine social stress results in long lasting voiding dysfunction.

    PubMed

    Butler, Stephan; Luz, Sandra; McFadden, Kile; Fesi, Joanna; Long, Christopher; Spruce, Lynn; Seeholzer, Steven; Canning, Douglas; Valentino, Rita; Zderic, Stephen

    2018-01-01

    Repeated exposure to social stress shifts the voiding phenotype in male mice leading to bladder wall remodeling and is associated with increased expression of the stress neuropeptide, corticotropin-releasing factor (CRF) in Barrington's nucleus neurons. In these studies, we set out to determine if the voiding phenotype could recover upon removal from the stressor. Male mice were exposed for 1h daily to an aggressor and the voiding phenotype was assessed at one month followed by randomization to three groups. One group underwent immediate sacrifice. Two groups were allowed a one month recovery from the social stress exposure with or without the addition of fluoxetine (1.2mg/ml) in their drinking water and repeat voiding patterns were measured prior to sacrifice. Social stress significantly increased bladder mass, bladder mass corrected for body weight, voided volumes, and decreased urinary frequency. The abnormal voiding phenotype persisted after a 1month recovery with no effect from the addition of fluoxetine. CRF mRNA in Barrington's nucleus was increased by social stress and remained elevated following recovery with no effect from the addition of fluoxetine. The mRNA and protein expression for the alpha 1 chains of type 1 and type III collagen was unchanged across all groups suggesting that changes in the extracellular matrix of the bladder are not responsible for the voiding phenotype. This persisting voiding dysfunction correlates with the persistent elevation of CRF mRNA expression in Barrington's nucleus. Copyright © 2017. Published by Elsevier Inc.

  6. Emission from small dust particles in diffuse and molecular cloud medium

    NASA Technical Reports Server (NTRS)

    Bernard, J. P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances.

  7. HotGAS: A Public Archive of Ready-to-Go Chandra High Energy Grating Spectral Products for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yaqoob, T.

    2005-12-01

    We describe a public WWW archive (HotGAS) containing data products from Chandra observations using the High Energy Grating Spectrometer (HETGS). Spectral products are available from the archive in various formats and are suitable for use by non-experts and experts alike. Lightcurves and cross-dispersion profiles are also available. Easy and user-friendly access for non X-ray astronomers to reprocessed, publishable quality grating data products should help to promote inter-disciplinary and multi-wavelength research on active galactic nuclei (AGN). The archive will also be useful to X-ray astronomers who have not yet had experience with high resolution X-ray spectroscopy, as well as experienced X-ray astronomers who need quick access to clean and ready-to-go data products. Theoreticians may find the archive useful for testing their models without having to deal with the fine details of data processing and reduction. We also anticipate that the archive will be useful for training graduate students in high-resolution X-ray spectroscopy and for providing a resource for projects for high-school and graduate students. We plan to eventually expand the archive to include AGN data from the Chandra Low Energy Grating Spectrometer (LETGS), and the XMM-Newton Reflection-Grating Spectrometer (RGS). Further in the future we plan to extend the archive to include data from other astrophysical sources aside from AGN. The project thus far is funded by an archival Chandra grant.

  8. Thirty-Five Years of Studying Work and Family

    ERIC Educational Resources Information Center

    Brett, Jeanne M.

    2011-01-01

    The author and Karen Gyllstrom began working on the study that resulted in the highly cited article entitled, "Working Men and Women: Inter-and Intra-role Conflict" (Herman & Gyllstrom, "Psychology of Women Quarterly" 1977) probably more for personal than professional reasons. The study was based on Gyllstrom's master's thesis. The focus of…

  9. Effects of Internet Connectedness and Information Literacy on Quality of Life

    ERIC Educational Resources Information Center

    Leung, Louis

    2010-01-01

    The goal of this exploratory research is to examine the inter-linkage among Internet connectedness, information literacy, and quality of life. Results from a telephone survey, based on a probability sample of 756 Internet users, found that Internet connectedness is not related to quality of life. However, there is a significant relationship…

  10. Voids at the tunnel-soil interface for calculation of ground vibration from underground railways

    NASA Astrophysics Data System (ADS)

    Jones, Simon; Hunt, Hugh

    2011-01-01

    Voids at the tunnel-soil interface are not normally considered when predicting ground vibration from underground railways. The soil is generally assumed to be continuously bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of voids around underground railways motivated the study presented herein to quantify the level of uncertainty in ground vibration predictions associated with neglecting to include such voids at the tunnel-soil interface. A semi-analytical method is developed which derives discrete transfers for the coupled tunnel-soil model based on the continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate nodes at the interface to prevent force transfer between the systems. The results from this investigation show that relatively small voids ( 4 m×90∘) can significantly affect the rms velocity predictions in the near-field and moderately affect predictions in the far-field. Sensitivity of the predictions to void length and void sector angle are both deemed to be significant. The findings from this study suggest that the uncertainty associated with assuming a perfect bond at the tunnel-soil interface in an area with known voidage can reasonably reach ±5 dB and thus should be considered in the design process.

  11. Comparison of different obturation techniques for primary molars by digital radiography.

    PubMed

    Memarpour, Mahtab; Shahidi, Shoaleh; Meshki, Razieh

    2013-01-01

    The purpose of this study was to compare six methods of root canal filling in primary mandibular second molars via digital radiography. A total of 239 canals were prepared and obturated with zinc-oxide eugenol paste. Obturation methods compared were: anesthetic syringe; NaviTip syringe; pressure syringe; tuberculin syringe; lentulo spiral; and packing with a plugger. The canals were evaluated in photostimulated phosphor radiographs for length of obturation, presence of voids, and number and sum of void sizes. The data were analyzed using chi-square, Kruskal-Wallis and Mann-Whitney tests. There were significant differences between all groups in the length of obturation (P>.01) and presence of voids (P<.001). The lentulo and tuberculin syringe groups, respectively, showed the best and worst results for length of obturation. Significant differences were also found in the number of voids (P<.001) and mean sum of void sizes in the coronal (P<.001) and middle third (P=.003). For the number and size of the voids, the NaviTip group showed the best results. Lentulo produced the best results in terms of length of obturation, while NaviTip syringe produced the best results in controlling paste extrusion from the apical foramen and having the smallest void size and lowest number of voids.

  12. On localization and void coalescence as a precursor to ductile fracture.

    PubMed

    Tekoğlu, C; Hutchinson, J W; Pardoen, T

    2015-03-28

    Two modes of plastic flow localization commonly occur in the ductile fracture of structural metals undergoing damage and failure by the mechanism involving void nucleation, growth and coalescence. The first mode consists of a macroscopic localization, usually linked to the softening effect of void nucleation and growth, in either a normal band or a shear band where the thickness of the band is comparable to void spacing. The second mode is coalescence with plastic strain localizing to the ligaments between voids by an internal necking process. The ductility of a material is tied to the strain at macroscopic localization, as this marks the limit of uniform straining at the macroscopic scale. The question addressed is whether macroscopic localization occurs prior to void coalescence or whether the two occur simultaneously. The relation between these two modes of localization is studied quantitatively in this paper using a three-dimensional elastic-plastic computational model representing a doubly periodic array of voids within a band confined between two semi-infinite outer blocks of the same material but without voids. At sufficiently high stress triaxiality, a clear separation exists between the two modes of localization. At lower stress triaxialities, the model predicts that the onset of macroscopic localization and coalescence occur simultaneously. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Void collapse under distributed dynamic loading near material interfaces

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2012-11-01

    Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.

  14. Can recording only the day-time voided volumes predict bladder capacity?

    PubMed

    Cho, Won Yeol; Kim, Seong Cheol; Kim, Sun-Ouck; Park, Sungchan; Lee, Sang Don; Chung, Jae Min; Kim, Kyung Do; Moon, Du Geon; Kim, Young Sig; Kim, Jun Mo

    2018-05-01

    This study aimed to demonstrate a method to easily assess bladder capacity using knowledge of day-time voided volumes, which can be obtained even from patients with nocturnal enuresis where the first morning void cannot accurately predict the bladder capacity due to bladder emptying overnight. We evaluated 177 healthy children from 7 Korean medical centres entered the study between January 2008 and January 2009. Voided volumes measured for more than 48 hours were recorded in the frequency volume chart (FVC). Most voided volumes during day-time were showed between 30% and 80% of the maximal voided volume (MVV). The maximal voided volume during day-time (MVVDT) was significantly less than the MVV (179.5±71.1 mL vs. 227.0±79.2 mL, p<0.001). The correlation coefficients with the MVV were 0.801 for the estimated MVV using the MVVDT (MVVDT×1.25), which suggested a fairly strong relationship between the MVVDT×1.25 and the MVV. The MVV derived from the FVC excluding the FMV was less than if the FMV had been included. When an accurate first morning voided volume cannot be obtained, as in patients with nocturnal enuresis, calculating MVVDT×1.25 allows estimation of the bladder capacity in place of the MVV.

  15. Experimental study on the void fraction of air-water two-phase flow in a horizontal circular minichannel

    NASA Astrophysics Data System (ADS)

    Sudarja, Indarto, Deendarlianto, Haq, Aqli

    2016-06-01

    Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.

  16. A methodology for probabilistic assessment of solar thermal power plants yield

    NASA Astrophysics Data System (ADS)

    Fernández-Peruchena, Carlos M.; Lara-Faneho, Vicente; Ramírez, Lourdes; Zarzalejo, Luis F.; Silva, Manuel; Bermejo, Diego; Gastón, Martín; Moreno, Sara; Pulgar, Jesús; Pavon, Manuel; Macías, Sergio; Valenzuela, Rita X.

    2017-06-01

    A detailed knowledge of the solar resource is a critical point to perform an economic feasibility analysis of Concentrating Solar Power (CSP) plants. This knowledge must include its magnitude (how much solar energy is available at an area of interest over a long time period), and its variability over time. In particular, DNI inter-annual variations may be large, increasing the return of investment risk in CSP plant projects. This risk is typically evaluated by means of the simulation of the energy delivered by the CSP plant during years with low solar irradiation, which are typically characterized by annual solar radiation datasets with high probability of exceedance of their annual DNI values. In this context, this paper proposes the use meteorological years representative of a given probability of exceedance of annual DNI in order to realistically assess the inter-annual variability of energy yields. The performance of this approach is evaluated in the location of Burns station (University of Oregon Solar Radiation Monitoring Laboratory), where a 34-year (from 1980 to 2013) measured data set of solar irradiance and temperature is available.

  17. Thermal and ultrasonic evaluation of porosity in composite laminates

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.

    1992-01-01

    The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.

  18. Thermal inertia mapping of below ground objects and voids

    NASA Astrophysics Data System (ADS)

    Del Grande, Nancy K.; Ascough, Brian M.; Rumpf, Richard L.

    2013-05-01

    Thermal inertia (effusivity) contrast marks the borders of naturally heated below ground object and void sites. The Dual Infrared Effusivity Computed Tomography (DIRECT) method, patent pending, detects and locates the presence of enhanced heat flows from below ground object and void sites at a given area. DIRECT maps view contrasting surface temperature differences between sites with normal soil and sites with soil disturbed by subsurface, hollow or semi-empty object voids (or air gaps) at varying depths. DIRECT utilizes an empirical database created to optimize the scheduling of daily airborne thermal surveys to view and characterize unseen object and void types, depths and volumes in "blind" areas.

  19. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    NASA Astrophysics Data System (ADS)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  20. [Effects of prefrontal ablations on the reaction of the active choice of feeder under different probability and value of the reinforcement on dog].

    PubMed

    Preobrazhenskaia, L A; Ioffe, M E; Mats, V N

    2004-01-01

    The role of the prefrontal cortex was investigated on the reaction of the active choice of the two feeders under changes value and probability reinforcement. The experiments were performed on 2 dogs with prefrontal ablation (g. proreus). Before the lesions the dogs were taught to receive food in two different feeders to conditioned stimuli with equally probable alimentary reinforcement. After ablation in the inter-trial intervals the dogs were running from the one feeder to another. In the answer to conditioned stimuli for many times the dogs choose the same feeder. The disturbance of the behavior after some times completely restored. In the experiments with competition of probability events and values of reinforcement the dogs chose the feeder with low-probability but better quality of reinforcement. In the experiments with equal value but different probability the intact dogs chose the feeder with higher probability. In our experiments the dogs with prefrontal lesions chose the each feeder equiprobably. Thus in condition of free behavior one of different functions of the prefrontal cortex is the reactions choose with more probability of reinforcement.

Top