Science.gov

Sample records for interacting ant societies

  1. Chemically armed mercenary ants protect fungus-farming societies

    PubMed Central

    Adams, Rachelle M. M.; Liberti, Joanito; Illum, Anders A.; Jones, Tappey H.; Nash, David R.; Boomsma, Jacobus J.

    2013-01-01

    The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies. PMID:24019482

  2. Chemically armed mercenary ants protect fungus-farming societies.

    PubMed

    Adams, Rachelle M M; Liberti, Joanito; Illum, Anders A; Jones, Tappey H; Nash, David R; Boomsma, Jacobus J

    2013-09-24

    The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies.

  3. Fitness costs of worker specialization for ant societies.

    PubMed

    Jongepier, Evelien; Foitzik, Susanne

    2016-01-13

    Division of labour is of fundamental importance for the success of societies, yet little is known about how individual specialization affects the fitness of the group as a whole. While specialized workers may be more efficient in the tasks they perform than generalists, they may also lack the flexibility to respond to rapid shifts in task needs. Such rigidity could impose fitness costs when societies face dynamic and unpredictable events, such as an attack by socially parasitic slavemakers. Here, we experimentally assess the colony-level fitness consequences of behavioural specialization in Temnothorax longispinosus ants that are attacked by the slavemaker ant T. americanus. We manipulated the social organization of 102 T. longispinosus colonies, based on the behavioural responses of all 3842 workers. We find that strict specialization is disadvantageous for a colony's annual reproduction and growth during slave raids. These fitness costs may favour generalist strategies in dynamic environments, as we also demonstrate that societies exposed to slavemakers in the field show a lower degree of specialization than those originating from slavemaker-free populations. Our findings provide an explanation for the ubiquity of generalists and highlight their importance for the flexibility and functional robustness of entire societies.

  4. Fitness costs of worker specialization for ant societies

    PubMed Central

    Jongepier, Evelien; Foitzik, Susanne

    2016-01-01

    Division of labour is of fundamental importance for the success of societies, yet little is known about how individual specialization affects the fitness of the group as a whole. While specialized workers may be more efficient in the tasks they perform than generalists, they may also lack the flexibility to respond to rapid shifts in task needs. Such rigidity could impose fitness costs when societies face dynamic and unpredictable events, such as an attack by socially parasitic slavemakers. Here, we experimentally assess the colony-level fitness consequences of behavioural specialization in Temnothorax longispinosus ants that are attacked by the slavemaker ant T. americanus. We manipulated the social organization of 102 T. longispinosus colonies, based on the behavioural responses of all 3842 workers. We find that strict specialization is disadvantageous for a colony's annual reproduction and growth during slave raids. These fitness costs may favour generalist strategies in dynamic environments, as we also demonstrate that societies exposed to slavemakers in the field show a lower degree of specialization than those originating from slavemaker-free populations. Our findings provide an explanation for the ubiquity of generalists and highlight their importance for the flexibility and functional robustness of entire societies. PMID:26763706

  5. Long-Term Disease Dynamics for a Specialized Parasite of Ant Societies: A Field Study

    PubMed Central

    Loreto, Raquel G.; Elliot, Simon L.; Freitas, Mayara L. R.; Pereira, Thairine M.; Hughes, David P.

    2014-01-01

    Many studies have investigated how social insects behave when a parasite is introduced into their colonies. These studies have been conducted in the laboratory, and we still have a limited understanding of the dynamics of ant-parasite interactions under natural conditions. Here we consider a specialized parasite of ant societies (Ophiocordyceps camponoti-rufipedis infecting Camponotus rufipes) within a rainforest. We first established that the parasite is unable to develop to transmission stage when introduced within the host nest. Secondly, we surveyed all colonies in the studied area and recorded 100% prevalence at the colony level (all colonies were infected). Finally, we conducted a long-term detailed census of parasite pressure, by mapping the position of infected dead ants and foraging trails (future hosts) in the immediate vicinity of the colonies over 20 months. We report new dead infected ants for all the months we conducted the census – at an average of 14.5 cadavers/month/colony. Based on the low infection rate, the absence of colony collapse or complete recovery of the colonies, we suggest that this parasite represents a chronic infection in the ant societies. We also proposed a “terminal host model of transmission” that links the age-related polyethism to the persistence of a parasitic infection. PMID:25133749

  6. Opposing effects of allogrooming on disease transmission in ant societies.

    PubMed

    Theis, Fabian J; Ugelvig, Line V; Marr, Carsten; Cremer, Sylvia

    2015-05-26

    To prevent epidemics, insect societies have evolved collective disease defences that are highly effective at curing exposed individuals and limiting disease transmission to healthy group members. Grooming is an important sanitary behaviour--either performed towards oneself (self-grooming) or towards others (allogrooming)--to remove infectious agents from the body surface of exposed individuals, but at the risk of disease contraction by the groomer. We use garden ants (Lasius neglectus) and the fungal pathogen Metarhizium as a model system to study how pathogen presence affects self-grooming and allogrooming between exposed and healthy individuals. We develop an epidemiological SIS model to explore how experimentally observed grooming patterns affect disease spread within the colony, thereby providing a direct link between the expression and direction of sanitary behaviours, and their effects on colony-level epidemiology. We find that fungus-exposed ants increase self-grooming, while simultaneously decreasing allogrooming. This behavioural modulation seems universally adaptive and is predicted to contain disease spread in a great variety of host-pathogen systems. In contrast, allogrooming directed towards pathogen-exposed individuals might both increase and decrease disease risk. Our model reveals that the effect of allogrooming depends on the balance between pathogen infectiousness and efficiency of social host defences, which are likely to vary across host-pathogen systems.

  7. Acquisition of chemical recognition cues facilitates integration into ant societies

    PubMed Central

    2011-01-01

    Background Social insects maintain the integrity of their societies by discriminating between colony members and foreigners through cuticular hydrocarbon (CHC) signatures. Nevertheless, parasites frequently get access to social resources, for example through mimicry of host CHCs among other mechanisms. The origin of mimetic compounds, however, remains unknown in the majority of studies (biosynthesis vs. acquisition). Additionally, direct evidence is scarce that chemical mimicry is indeed beneficial to the parasites (e.g., by improving social acceptance). Results In the present study we demonstrated that the kleptoparasitic silverfish Malayatelura ponerophila most likely acquires CHCs directly from its host ant Leptogenys distinguenda by evaluating the transfer of a stable-isotope label from the cuticle of workers to the silverfish. In a second experiment, we prevented CHC pilfering by separating silverfish from their host for six or nine days. Chemical host resemblance as well as aggressive rejection behaviour by host ants was then quantified for unmanipulated and previously separated individuals. Separated individuals showed reduced chemical host resemblance and they received significantly more aggressive rejection behaviour than unmanipulated individuals. Conclusion Our study clarifies the mechanism of chemical mimicry in a social insect parasite in great detail. It shows empirically for the first time that social insect parasites are able to acquire CHCs from their host. Furthermore, it demonstrates that the accuracy of chemical mimicry can be crucial for social insect parasites by enhancing social acceptance and, thus, allowing successful exploitation. We discuss the results in the light of coevolutionary arms races between parasites and hosts. PMID:22133503

  8. Diverse societies are more productive: a lesson from ants

    PubMed Central

    Modlmeier, Andreas P.; Liebmann, Julia E.; Foitzik, Susanne

    2012-01-01

    The fitness consequences of animal personalities (also known as behavioural syndromes) have recently been studied in several solitary species. However, the adaptive significance of collective personalities in social insects and especially of behavioural variation among group members remains largely unexplored. Although intracolonial behavioural variation is an important component of division of labour, and as such a key feature for the success of societies, empirical links between behavioural variation and fitness are scarce. We investigated aggression, exploration and brood care behaviour in Temnothorax longispinosus ant colonies. We focused on two distinct aspects: intercolonial variability and its consistency across time and contexts, and intracolonial variability and its influence on productivity. Aggressiveness was consistent over four to five months with a new generation of workers emerging in between trial series. Other behaviours were not consistent over time. Exploration of novel environments responded to the sequence of assays: colonies were faster in discovering when workers previously encountered opponents in aggression experiments. Suites of correlated behaviours (e.g. aggression–exploration syndrome) present in the first series did not persist over time. Finally, colonies with more intracolonial behavioural variation in brood care and exploration of novel objects were more productive under standardized conditions than colonies with less variation. PMID:22279166

  9. Warring arthropod societies: Social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size.

    PubMed

    Keiser, Carl N; Wright, Colin M; Pruitt, Jonathan N

    2015-10-01

    Sociality provides individuals with benefits via collective foraging and anti-predator defense. One of the costs of living in large groups, however, is increased apparency to natural enemies. Here, we test how the individual-level and collective traits of spider societies can increase the risk of discovery and death by predatory ants. We transplanted colonies of the social spider Stegodyphus dumicola into a habitat dense with one of their top predators, the pugnacious ant Anoplolepis custodiens. With three different experiments, we test how colony-wide survivorship in a predator-dense habitat can be altered by colony apparency (i.e., the presence of a capture web), group size, and group composition (i.e., the proportion of bold and shy personality types present). We also test how spiders' social context (i.e., living solitarily vs. among conspecifics) modifies their behaviour toward ants in their capture web. Colonies with capture webs intact were discovered by predatory ants on average 25% faster than colonies with the capture web removed, and all discovered colonies eventually collapsed and succumbed to predation. However, the lag time from discovery by ants to colony collapse was greater for colonies containing more individuals. The composition of individual personality types in the group had no influence on survivorship. Spiders in a social group were more likely to approach ants caught in their web than were isolated spiders. Isolated spiders were more likely to attack a safe prey item (a moth) than they were to attack ants and were more likely to retreat from ants after contact than they were after contact with moths. Together, our data suggest that the physical structures produced by large animal societies can increase their apparency to natural enemies, though larger groups can facilitate a longer lag time between discovery and demise. Lastly, the interaction between spiders and predatory ants seems to depend on the social context in which spiders reside.

  10. The interactions of ants with their biotic environment

    PubMed Central

    Renner, Susanne S.

    2017-01-01

    This special feature results from the symposium ‘Ants 2016: ant interactions with their biotic environments’ held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this special feature. After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication. PMID:28298352

  11. Cascading trait-mediated interactions induced by ant pheromones

    PubMed Central

    Hsieh, Hsun-Yi; Liere, Heidi; Soto, Estelí J; Perfecto, Ivette

    2012-01-01

    Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles – the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% – the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade. PMID:23139877

  12. Cascading trait-mediated interactions induced by ant pheromones.

    PubMed

    Hsieh, Hsun-Yi; Liere, Heidi; Soto, Estelí J; Perfecto, Ivette

    2012-09-01

    Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles - the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% - the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade.

  13. Desert ants achieve reliable recruitment across noisy interactions.

    PubMed

    Razin, Nitzan; Eckmann, Jean-Pierre; Feinerman, Ofer

    2013-05-06

    We study how desert ants, Cataglyphis niger, a species that lacks pheromone-based recruitment mechanisms, inform each other about the presence of food. Our results are based on automated tracking that allows us to collect a large database of ant trajectories and interactions. We find that interactions affect an ant's speed within the nest. Fast ants tend to slow down, whereas slow ones increase their speed when encountering a faster ant. Faster ants tend to exit the nest more frequently than slower ones. So, if an ant gains enough speed through encounters with others, then she tends to leave the nest and look for food. On the other hand, we find that the probability for her to leave the nest depends only on her speed, but not on whether she had recently interacted with a recruiter that has found the food. This suggests a recruitment system in which ants communicate their state by very simple interactions. Based on this assumption, we estimate the information-theoretical channel capacity of the ants' pairwise interactions. We find that the response to the speed of an interacting nest-mate is very noisy. The question is then how random interactions with ants within the nest can be distinguished from those interactions with a recruiter who has found food. Our measurements and model suggest that this distinction does not depend on reliable communication but on behavioural differences between ants that have found the food and those that have not. Recruiters retain high speeds throughout the experiment, regardless of the ants they interact with; non-recruiters communicate with a limited number of nest-mates and adjust their speed following these interactions. These simple rules lead to the formation of a bistable switch on the level of the group that allows the distinction between recruitment and random noise in the nest. A consequence of the mechanism we propose is a negative effect of ant density on exit rates and recruitment success. This is, indeed, confirmed by our

  14. Interactions Increase Forager Availability and Activity in Harvester Ants.

    PubMed

    Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  15. Disease in the Society: Infectious Cadavers Result in Collapse of Ant Sub-Colonies

    PubMed Central

    Loreto, Raquel G.; Hughes, David P.

    2016-01-01

    Despite the growing number of experimental studies on mechanisms of social immunity in ant societies, little is known about how social behavior relates to disease progression within the nests of ants. In fact, when empirically studying disease in ant societies, it is common to remove dead ants from experiments to confirm infection by the studied parasite. This unfortunately does not allow disease to progress within the nest as it may be assumed would happen under natural conditions. Therefore, the approach taken so far has resulted in a limited knowledge of diseases dynamics within the nest environment. Here we introduced a single infectious cadaver killed by the fungus Beauveria bassiana into small nests of the ant Camponotus castaneus. We then observed the natural progression of the disease by not removing the corpses of the ants that died following the first entry of the disease. Because some behaviors such as social isolation of sick individuals or the removal of cadavers by nestmates are considered social immune functions and thus adaptations at the colony level that reduce disease spread, we also experimentally confined some sub-colonies to one or two chamber nests to prevent the expression of such behaviors. Based on 51 small nests and survival studies in 1,003 ants we found that a single introduced infectious cadaver was able to transmit within the nest, and social immunity did not prevent the collapse of the small sub-colonies here tested. This was true whether ants did or did not have the option to remove the infectious cadaver. Therefore, we found no evidence that the typically studied social immunity behaviors can reduce disease spread in the conditions here tested. PMID:27529548

  16. Disease in the Society: Infectious Cadavers Result in Collapse of Ant Sub-Colonies.

    PubMed

    Loreto, Raquel G; Hughes, David P

    2016-01-01

    Despite the growing number of experimental studies on mechanisms of social immunity in ant societies, little is known about how social behavior relates to disease progression within the nests of ants. In fact, when empirically studying disease in ant societies, it is common to remove dead ants from experiments to confirm infection by the studied parasite. This unfortunately does not allow disease to progress within the nest as it may be assumed would happen under natural conditions. Therefore, the approach taken so far has resulted in a limited knowledge of diseases dynamics within the nest environment. Here we introduced a single infectious cadaver killed by the fungus Beauveria bassiana into small nests of the ant Camponotus castaneus. We then observed the natural progression of the disease by not removing the corpses of the ants that died following the first entry of the disease. Because some behaviors such as social isolation of sick individuals or the removal of cadavers by nestmates are considered social immune functions and thus adaptations at the colony level that reduce disease spread, we also experimentally confined some sub-colonies to one or two chamber nests to prevent the expression of such behaviors. Based on 51 small nests and survival studies in 1,003 ants we found that a single introduced infectious cadaver was able to transmit within the nest, and social immunity did not prevent the collapse of the small sub-colonies here tested. This was true whether ants did or did not have the option to remove the infectious cadaver. Therefore, we found no evidence that the typically studied social immunity behaviors can reduce disease spread in the conditions here tested.

  17. Ant plant herbivore interactions in the neotropical cerrado savanna

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo S.; Freitas, André V. L.

    2004-12-01

    The Brazilian cerrado savanna covers nearly 2 million km2 and has a high incidence on foliage of various liquid food sources such as extrafloral nectar and insect exudates. These liquid rewards generate intense ant activity on cerrado foliage, making ant plant herbivore interactions especially prevalent in this biome. We present data on the distribution and abundance of extrafloral nectaries in the woody flora of cerrado communities and in the flora of other habitats worldwide, and stress the relevance of liquid food sources (including hemipteran honeydew) for the ant fauna. Consumption by ants of plant and insect exudates significantly affects the activity of the associated herbivores of cerrado plant species, with varying impacts on the reproductive output of the plants. Experiments with an ant plant butterfly system unequivocally demonstrate that the behavior of both immature and adult lepidopterans is closely related to the use of a risky host plant, where intensive visitation by ants can have a severe impact on caterpillar survival. We discuss recent evidence suggesting that the occurrence of liquid rewards on leaves plays a key role in mediating the foraging ecology of foliage-dwelling ants, and that facultative ant plant mutualisms are important in structuring the community of canopy arthropods. Ant-mediated effects on cerrado herbivore communities can be revealed by experiments performed on wide spatial scales, including many environmental factors such as soil fertility and vegetation structure. We also present some research questions that could be rewarding to investigate in this major neotropical savanna.

  18. Arboreal Ant Colonies as ‘Hot-Points’ of Cryptic Diversity for Myrmecophiles: The Weaver Ant Camponotus sp. aff. textor and Its Interaction Network with Its Associates

    PubMed Central

    Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul

    2014-01-01

    Introduction Systematic surveys of macrofaunal diversity within ant colonies are lacking, particularly for ants nesting in microhabitats that are difficult to sample. Species associated with ants are generally small and rarely collected organisms, which makes them more likely to be unnoticed. We assumed that this tendency is greater for arthropod communities in microhabitats with low accessibility, such as those found in the nests of arboreal ants that may constitute a source of cryptic biodiversity. Materials and Methods We investigated the invertebrate diversity associated with an undescribed, but already threatened, Neotropical Camponotus weaver ant. As most of the common sampling methods used in studies of ant diversity are not suited for evaluating myrmecophile diversity within ant nests, we evaluated the macrofauna within ant nests through exhaustive colony sampling of three nests and examination of more than 80,000 individuals. Results We identified invertebrates from three classes belonging to 18 taxa, some of which were new to science, and recorded the first instance of the co-occurrence of two brood parasitoid wasp families attacking the same ant host colony. This diversity of ant associates corresponded to a highly complex interaction network. Agonistic interactions prevailed, but the prevalence of myrmecophiles was remarkably low. Conclusions Our data support the hypothesis of the evolution of low virulence in a variety of symbionts associated with large insect societies. Because most myrmecophiles found in this work are rare, strictly specific, and exhibit highly specialized biology, the risk of extinction for these hitherto unknown invertebrates and their natural enemies is high. The cryptic, far unappreciated diversity within arboreal ant nests in areas at high risk of habitat loss qualifies these nests as ‘hot-points’ of biodiversity that urgently require special attention as a component of conservation and management programs. PMID:24941047

  19. The effect of diet and opponent size on aggressive interactions involving caribbean crazy ants (Nylanderia fulva).

    PubMed

    Horn, Katherine C; Eubanks, Micky D; Siemann, Evan

    2013-01-01

    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants.

  20. The Effect of Diet and Opponent Size on Aggressive Interactions Involving Caribbean Crazy Ants (Nylanderia fulva)

    PubMed Central

    Horn, Katherine C.; Eubanks, Micky D.; Siemann, Evan

    2013-01-01

    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants. PMID:23776702

  1. Interaction between Mutualisms: Ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations.

    PubMed

    Kaminski, Lucas A; Freitas, André V L; Oliveira, Paulo S

    2010-09-01

    Although mutualisms have been intensively investigated, demonstration of indirect effects between co-occurring mutualistic systems is rare. For instance, the ecological consequences of co-occurrence of ant-tended insects on a plant have never been examined for survival effects on either trophobiont species. Here, we assess the selective pressures mediating co-occurrence of a facultative ant-tended butterfly (Parrhasius polibetes) with ant-tended treehoppers (Guayaquila xiphias) on Schefflera vinosa shrubs. We evaluated host plant selection and caterpillar survival in P. polibetes in the presence and absence of ant-treehopper associations. Paired trials revealed that butterflies preferably oviposit on branches hosting ant-tended treehoppers when they had a choice between those and branches without this interaction. Presence of ant-tended treehoppers on a branch reduced the abundance of P. polibetes' natural enemies and improved caterpillar survival in both premyrmecophylic and ant-tended phases. Thus ant-tended treehoppers create an enemy-free space on foliage that butterflies exploit to protect larval offspring. These findings connect two widely documented ant-trophobiont mutualisms and highlight the importance of considering multiple interactions for a proper understanding of ant-plant-herbivore systems. Detection of other ant-based mutualisms on oviposition to improve offspring survival may have represented an important evolutionary step in the process of host plant selection in facultative myrmecophilous butterflies.

  2. Political Society and You: An Interactive Tutorial.

    ERIC Educational Resources Information Center

    Schick, James B. M.

    1991-01-01

    Describes the creation and use of an interactive tutorial for college students on the Declaration of Independence, called "Political Society and You." Activities that emphasize critical reading and historical interpretation are discussed, the computer software is explained, and the response form used for student feedback is described.…

  3. Density-mediated, context-dependent consumer-resource interactions between ants and extrafloral nectar plants.

    PubMed

    Chamberlain, Scott A; Holland, J Nathaniel

    2008-05-01

    Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant

  4. Characterizing the Collective Personality of Ant Societies: Aggressive Colonies Do Not Abandon Their Home

    PubMed Central

    Fries, Stephan; Tirard, Claire; Foitzik, Susanne

    2012-01-01

    Animal groups can show consistent behaviors or personalities just like solitary animals. We studied the collective behavior of Temnothorax nylanderi ant colonies, including consistency in behavior and correlations between different behavioral traits. We focused on four collective behaviors (aggression against intruders, nest relocation, removal of infected corpses and nest reconstruction) and also tested for links to the immune defense level of a colony and a fitness component (per-capita productivity). Behaviors leading to an increased exposure of ants to micro-parasites were expected to be positively associated with immune defense measures and indeed colonies that often relocated to other nest sites showed increased immune defense levels. Besides, colonies that responded with low aggression to intruders or failed to remove infected corpses, showed a higher likelihood to move to a new nest site. This resembles the trade-off between aggression and relocation often observed in solitary animals. Finally, one of the behaviors, nest reconstruction, was positively linked to per-capita productivity, whereas other colony-level behaviors, such as aggression against intruders, showed no association, albeit all behaviors were expected to be important for fitness under field conditions. In summary, our study shows that ant societies exhibit complex personalities that can be associated to the physiology and fitness of the colony. Some of these behaviors are linked in suites of correlated behaviors, similar to personalities of solitary animals. PMID:22457751

  5. Interactions between astronomical ephemerides and society

    NASA Astrophysics Data System (ADS)

    Arlot, Jean-Eudes

    2011-06-01

    Ephemerides are regularly made by astronomers for their own uses. However, the general public is also interested, as well as official organisms, because of the interactions of ephemerides with society. Astronomers in charge of the making of calendars and keeping the time are of great importance every day. Their calculations are also required for the positioning of ships and airplanes. Some ephemerides are also requested by the general public.

  6. Plant genotype shapes ant-aphid interactions: implications for community structure and indirect plant defense.

    PubMed

    Mooney, Kailen A; Agrawal, Anurag A

    2008-06-01

    Little is known about the mechanisms by which plant genotype shapes arthropod community structure. In a field experiment, we measured the effects of milkweed (Asclepias syriaca) genotype and ants on milkweed arthropods. Populations of the ant-tended aphid Aphis asclepiadis and the untended aphid Myzocallis asclepiadis varied eight- to 18-fold among milkweed genotypes, depending on aphid species and whether ants were present. There was no milkweed effect on predatory arthropods. Ants increased Aphis abundance 59%, decreased Myzocallis abundance 52%, and decreased predator abundance 56%. Milkweed genotype indirectly influenced ants via direct effects on Aphis and Myzocallis abundance. Milkweed genotype also modified ant-aphid interactions, influencing the number of ants attracted per Aphis and Myzocallis. While ant effects on Myzocallis were consistently negative, effects on Aphis ranged from antagonistic to mutualistic among milkweed genotypes. As a consequence of milkweed effects on ant-aphid interactions, ant abundance varied 13-fold among milkweed genotypes, and monarch caterpillar survival was negatively correlated with genetic variation in ant abundance. We speculate that heritable variation in milkweed phloem sap drives these effects on aphids, ants, and caterpillars. In summary, milkweed exerts genetic control over the interactions between aphids and an ant that provides defense against foliage-feeding caterpillars.

  7. Trait-mediated indirect interactions of ant shape on the attack of caterpillars and fruits.

    PubMed

    Dáttilo, Wesley; Aguirre, Armando; De la Torre, Pedro Luna; Kaminski, Lucas A; García-Chávez, Juan; Rico-Gray, Víctor

    2016-08-01

    Mainly owing to their high diversity and abundance, ants are formidable as predators and defenders of foliage. Consequently, ants can exclude both invertebrate and vertebrate activity on plants via direct and indirect interactions as already shown in many previous studies. Here we present empirical evidence that objects resembling ant shape on dummy caterpillars were able to repel visually oriented predators. Moreover, we also show that rubber ants on dummy fruits can repel potential fruit dispersers. Our results have direct implications on the ecological and evolutionary dynamics of interactions in ant-based systems, as ant presence could affect the fitness of its partners. In short, our study highlights the importance of visual cues in interspecific interactions and opens a new way to study the effects of ant presence to test ecological and evolutionary hypotheses.

  8. Rapid anti-pathogen response in ant societies relies on high genetic diversity

    PubMed Central

    Ugelvig, Line V.; Kronauer, Daniel J. C.; Schrempf, Alexandra; Heinze, Jürgen; Cremer, Sylvia

    2010-01-01

    Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior. We compared the antiseptic behaviours (grooming and hygienic behaviour) of workers from genetically homogeneous and diverse colonies after exposure of their brood to the entomopathogenic fungus Metarhizium anisopliae. While workers from diverse colonies performed intensive allogrooming and quickly removed larvae covered with live fungal spores from the nest, workers from homogeneous colonies only removed sick larvae late after infection. This difference was not caused by a reduced repertoire of antiseptic behaviours or a generally decreased brood care activity in ants from homogeneous colonies. Our data instead suggest that reduced genetic diversity compromises the ability of Cardiocondyla colonies to quickly detect or react to the presence of pathogenic fungal spores before an infection is established, thereby affecting the dynamics of social immunity in the colony. PMID:20444720

  9. Multitasking in a plant-ant interaction: how does Acacia myrtifolia manage both ants and pollinators?

    PubMed

    Martínez-Bauer, Angélica E; Martínez, Gerardo Cerón; Murphy, Daniel J; Burd, Martin

    2015-06-01

    Plant associations with protective ants are widespread among angiosperms, but carry the risk that ants will deter pollinators as well as herbivores. Such conflict, and adaptations to ameliorate or prevent the conflict, have been documented in African and neotropical acacias. Ant-acacia associations occur in Australia, but little is known of their ecology. Moreover, recent phylogenetic evidence indicates that Australian acacias are only distantly related to African and American acacias, providing an intercontinental natural experiment in the management of ant-pollinator conflict. We examined four populations of Acacia myrtifolia over a 400-km environmental gradient in southeastern Australia using ant and pollinator exclusion as well as direct observation of ants and pollinators to assess the potential for ant-pollinator conflict to affect seed set. Native bees were the only group of floral visitors whose visitation rates were a significant predictor of fruiting success, although beetles and wasps may play an important role as "insurance" pollinators. We found no increase in pollinator visitation or fruiting success following ant exclusion, even with large sample sizes and effective exclusion. Because ants are facultative visitors to A. myrtifolia plants, their presence may be insufficient to interfere greatly with floral visitors. It is also likely that the morphological location of extrafloral nectaries tends to draw ants away from reproductive parts, although we commonly observed ants on inflorescences, so the spatial separation is not strict. A. myrtifolia appears to maintain a generalized mutualism over a wide geographic range without the need for elaborate adaptations to resolve ant-pollinator conflict.

  10. Nestmate recognition in ants is possible without tactile interaction.

    PubMed

    Brandstaetter, Andreas Simon; Endler, Annett; Kleineidam, Christoph Johannes

    2008-07-01

    Ants of the genus Camponotus are able to discriminate recognition cues of colony members (nestmates) from recognition cues of workers of a different colony (non-nestmates) from a distance of 1 cm. Free moving, individual Camponotus floridanus workers encountered differently treated dummies on a T-bar and their behavior was recorded. Aggressive behavior was scored as mandibular threat towards dummies. Dummies were treated with hexane extracts of postpharyngeal glands (PPGs) from nestmates or non-nestmates which contain long-chain hydrocarbons in ratios comparable to what is found on the cuticle. The cuticular hydrocarbon profile bears cues which are essential for nestmate recognition. Although workers were prevented from antennating the dummies, they showed significantly less aggressive behavior towards dummies treated with nestmate PPG extracts than towards dummies treated with non-nestmate PPG extracts. In an additional experiment, we show that cis-9-tricosene, an alkene naturally not found in C. floridanus' cuticular profile, is behaviorally active and can interfere with nestmate recognition when presented together with a nestmate PPG extract. Our study demonstrates for the first time that the complex multi-component recognition cues can be perceived and discriminated by ants at close range. We conclude that contact chemosensilla are not crucial for nestmate recognition since tactile interaction is not necessary.

  11. Are ant-aphid associations a tritrophic interaction? Oleander aphids and Argentine ants.

    PubMed

    Bristow, C M

    1991-09-01

    Oleander aphids, (Aphis nerii), which are sporadically tended by ants, were used as a moded system to examine whether host plant factors associated with feeding site influenced the formation of ant-aphid associations. Seasonal patterns of host plant utilization and association with attendant ants were examined through bi-weekly censuses of the aphid population feeding on thirty ornamental oleander plands (Nerium oleander) in northern California in 1985 and 1986. Colonies occurred on both developing and senescing plant terminals, including leaf tips, floral structures, and pods. Aphids preferentially colonized leaf terminals early in the season, but showed no preference for feeding site during later periods. Argentine ants (Iridomyrmex humilis) occasionally tended aphid colonies. Colonies on floral tips were three to four times more likely to attract ants than colonies on leaf tips, even though the latter frequently contained more aphids. Ants showed a positive recruitment response to colonies on floral tips, with a significant correlation between colony size and number of ants. There was no recruitment response to colonies on leaf tips. These patterns were reproducible over two years despite large fluctuations in both aphid population density and ant activity. In a laboratory bioassay of aphid palatability, the generalist predator,Hippodamia convergens, took significantly more aphids reared on floral tips compared to those reared on leaf tips. The patterns reported here support the hypothesis that tritrophic factors may be important in modifying higher level arthropod mutualisms.

  12. Plant chemical defense indirectly mediates aphid performance via interactions with tending ants.

    PubMed

    Züst, Tobias; Agrawal, Anurag A

    2017-03-01

    The benefits of mutualistic interactions are often highly context dependent. We studied the interaction between the milkweed aphid Aphis asclepiadis and a tending ant, Formica podzolica. Although this interaction is generally considered beneficial, variation in plant genotype may alter it from mutualistic to antagonistic. Here we link the shift in strength and relative benefit of the ant-aphid interaction to plant genotypic variation in the production of cardenolides, a class of toxic defensive chemicals. In a field experiment with highly variable genotypes of the common milkweed (Asclepias syriaca), we show that plant cardenolides, especially polar forms, are ingested by aphids and excreted in honeydew proportionally to plant concentrations without directly affecting aphid performance. Ants consume honeydew, and aphids that excreted high amounts of cardenolides received fewer ant visits, which in turn reduced aphid survival. On at least some plant genotypes, aphid numbers per plant were reduced in the presence of ants to levels lower than in corresponding ant-exclusion treatments, suggesting antagonistic ant behavior. Although cardenolides appear ineffective as direct plant defenses against aphids, the multi-trophic context reveals an ant-mediated negative indirect effect on aphid performance and population dynamics.

  13. Ecological consequences of interactions between ants and honeydew-producing insects

    PubMed Central

    Styrsky, John D; Eubanks, Micky D

    2006-01-01

    Interactions between ants and honeydew-producing hemipteran insects are abundant and widespread in arthropod food webs, yet their ecological consequences are very poorly known. Ant–hemipteran interactions have potentially broad ecological effects, because the presence of honeydew-producing hemipterans dramatically alters the abundance and predatory behaviour of ants on plants. We review several studies that investigate the consequences of ant–hemipteran interactions as ‘keystone interactions’ on arthropod communities and their host plants. Ant–hemipteran interactions have mostly negative effects on the local abundance and species richness of several guilds of herbivores and predators. In contrast, out of the 30 studies that document the effects of ant–hemipteran interactions on plants, the majority (73%) shows that plants actually benefit indirectly from these interactions. In these studies, increased predation or harassment of other, more damaging, herbivores by hemipteran-tending ants resulted in decreased plant damage and/or increased plant growth and reproduction. The ecological consequences of mutualistic interactions between honeydew-producing hemipterans and invasive ants relative to native ants have rarely been studied, but they may be of particular importance owing to the greater abundance, aggressiveness and extreme omnivory of invasive ants. We argue that ant–hemipteran interactions are largely overlooked and underappreciated interspecific interactions that have strong and pervasive effects on the communities in which they are embedded. PMID:17148245

  14. The interaction between Cistaceae and a highly specific seed-harvester ant in a Mediterranean scrubland.

    PubMed

    Bastida, F; Talavera, S; Ortiz, P L; Arista, M

    2009-01-01

    We studied the interaction between the ant Goniomma kugleri and Cistaceae in a Cistus ladanifer-dominated scrubland, in southwestern Spain. We monitored seed harvesting, and studied ant preferences among Cistaceae seeds and their capture efficiencies for preferred seeds. For the stand of C. ladanifer, we estimated seed losses due to the ants. Harvesting was restricted to two seasons: mid-autumn to late winter, and late spring. Ant diet relied on Cistaceae seeds: during autumn and winter 90% of seeds returned to nests were of C. ladanifer, and the remaining fraction also comprised Cistaceae seeds. At this time, the ants harvested seeds directly from the plants. In late spring, the ant diet consisted of Tuberaria guttata s.l. seeds. Goniomma kugleri selectively collected Cistaceae seeds. For preferred species, seed removal rates at the colony level and seed capture times invested by individual workers were correlated with seed size. Because of shorter capture time and higher success frequency, capture efficiency in terms of number of seeds captured per unit time was higher for small-seeded species. Although each ant colony collected large numbers (up to 10(5)) of C. ladanifer seeds over the autumn-winter season, the impact of ant removal on the annual seed output was moderate, at around 20%. It is likely that, in C. ladanifer, the staggered seed release period, and the pulsed exposure of seed clumps in capsules through progressive locule dehiscence, effectively minimise seed losses to the ants.

  15. Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems.

    PubMed

    Wielgoss, Arno; Tscharntke, Teja; Rumede, Alfianus; Fiala, Brigitte; Seidel, Hannes; Shahabuddin, Saleh; Clough, Yann

    2014-01-22

    Owing to complex direct and indirect effects, impacts of higher trophic levels on plants is poorly understood. In tropical agroecosystems, ants interact with crop mutualists and antagonists, but little is known about how this integrates into the final ecosystem service, crop yield. We combined ant exclusion and introduction of invasive and native-dominant species in cacao agroecosystems to test whether (i) ant exclusion reduces yield, (ii) dominant species maximize certain intermediate ecosystem services (e.g. control of specific pests) rather than yield, which depends on several, cascading intermediate services and (iii) even, species-rich ant communities result in highest yields. Ants provided services, including reduced leaf herbivory and fruit pest damage and indirect pollination facilitation, but also disservices, such as increased mealybug density, phytopathogen dissemination and indirect pest damage enhancement. Yields were highest with unmanipulated, species-rich, even communities, whereas ant exclusion decreased yield by 27%. Introduction of an invasive-dominant ant decreased species density and evenness and resulted in 34% lower yields, whereas introduction of a non-invasive-dominant species resulted in similar species density and yields as in the unmanipulated control. Species traits and ant community structure affect services and disservices for agriculture in surprisingly complex ways, with species-rich and even communities promoting highest yield.

  16. Identifying robustness in the regulation of collective foraging of ant colonies using an interaction-based model with backward bifurcation.

    PubMed

    Udiani, Oyita; Pinter-Wollman, Noa; Kang, Yun

    2015-02-21

    Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response to their environment. We propose a set of differential equations describing the dynamics of: (1) available foragers inside the nest, (2) active foragers outside the nest, and (3) successful returning foragers, to understand how colony-specific parameters, such as baseline number of foragers, interactions among foragers, food discovery rates, successful forager return rates, and foraging duration might influence collective foraging dynamics, while maintaining functional robustness to perturbations. Our analysis indicates that the model can undergo a forward (transcritical) bifurcation or a backward bifurcation depending on colony-specific parameters. In the former case, foraging activity persists when the average number of recruits per successful returning forager is larger than one. In the latter case, the backward bifurcation creates a region of bistability in which the size and fate of foraging activity depends on the distribution of the foraging workforce among the model's compartments. We validate the model with experimental data from harvester ants (Pogonomyrmex barbatus) and perform sensitivity analysis. Our model provides insights on how simple, local interactions can achieve an emergent and robust regulatory system of collective foraging activity in ant colonies.

  17. Composition of extrafloral nectar influences interactions between the myrmecophyte Humboldtia brunonis and its ant associates.

    PubMed

    Shenoy, Megha; Radhika, Venkatesan; Satish, Suma; Borges, Renee M

    2012-01-01

    Ant-plant interactions often are mediated by extrafloral nectar (EFN) composition that may influence plant visitation by ants. Over a 300 km range in the Indian Western Ghats, we investigated the correlation between the EFN composition of the myrmecophytic ant-plant Humboldtia brunonis (Fabaceae) and the number and species of ants visiting EFN. EFN composition varied among H. brunonis populations and between plant organs (floral bud vs. young leaf EFN). In general, EFN was rich in sugars with small quantities of amino acids, especially essential amino acids, and had moderate invertase activity. In experiments at the study sites with sugar and amino acid solutions and with leaf or floral bud EFN mimics, dominant EFN-feeding ants differentiated between solutions as well as between mimics. The castration parasite Crematogaster dohrni (northern study site) was the least selective and did not exhibit any clear feeding preferences, while the largely trophobiont-tending non-protective Myrmicaria brunnea (middle study site) preferred higher sucrose concentrations and certain essential/non-essential amino acid mixtures. The mutualistic Technomyrmex albipes (southern study site) preferred sucrose over glucose or fructose solutions and consumed the leaf EFN mimic to a greater extent than the floral bud EFN mimic. This young leaf EFN mimic had low sugar concentrations, the lowest viscosity and sugar:amino acid ratio, was rich in essential amino acids, and appeared ideally suited to the digestive physiology of T. albipes. This preference for young leaf EFN may explain the greater protection afforded to young leaves than to floral buds by T. albipes, and may also help to resolve ant-pollinator conflicts. The differential response of dominant ants to sugar, amino acids, or solution viscosity suggests that plants can fine-tune their interactions with local ants via EFN composition. Thus, EFN can mediate local partner-choice mechanisms in ant-plant interactions.

  18. Intraguild interactions between spiders and ants and top-down control in a grassland food web.

    PubMed

    Sanders, Dirk; Platner, Christian

    2007-01-01

    In most terrestrial ecosystems ants (Formicidae) as eusocial insects and spiders (Araneida) as solitary trappers and hunters are key predators. To study the role of predation by these generalist predators in a dry grassland, we manipulated densities of ants and spiders (natural and low density) in a two-factorial field experiment using fenced plots. The experiment revealed strong intraguild interactions between ants and spiders. Higher densities of ants negatively affected the abundance and biomass of web-building spiders. The density of Linyphiidae was threefold higher in plots without ant colonies. The abundance of Formica cunicularia workers was significantly higher in spider-removal plots. Also, population size of springtails (Collembola) was negatively affected by the presence of wandering spiders. Ants reduced the density of Lepidoptera larvae. In contrast, the abundance of coccids (Ortheziidae) was positively correlated with densities of ants. To gain a better understanding of the position of spiders, ants and other dominant invertebrate groups in the studied food web and important trophic links, we used a stable isotope analysis ((15)N and (13)C). Adult wandering spiders were more enriched in (15)N relative to (14)N than juveniles, indicating a shift to predatory prey groups. Juvenile wandering and web-building spiders showed delta(15)N ratios just one trophic level above those of Collembola, and they had similar delta(13)C values, indicating that Collembola are an important prey group for ground living spiders. The effects of spiders demonstrated in the field experiment support this result. We conclude that the food resource of spiders in our study system is largely based on the detrital food web and that their effects on herbivores are weak. The effects of ants are not clear-cut and include predation as well as mutualism with herbivores. Within this diverse predator guild, intraguild interactions are important structuring forces.

  19. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination

    PubMed Central

    Greenwald, Efrat; Segre, Enrico; Feinerman, Ofer

    2015-01-01

    Eusocial societies and ants, in particular, maintain tight nutritional regulation at both individual and collective levels. The mechanisms that underlie this control are far from trivial since, in these distributed systems, information about the global supply and demand is not available to any single individual. Here we present a novel technique for non-intervening frequent measurement of the food load of all individuals in an ant colony, including during trophallactic events in which food is transferred by mouth-to-mouth feeding. Ants are imaged using a dual camera setup that produces both barcode-based identification and fluorescence measurement of labeled food. This system provides detailed measurements that enable one to quantitatively study the adaptive food distribution network. To demonstrate the capabilities of our method, we present sample observations that were unattainable using previous techniques, and could provide insight into the mechanisms underlying food exchange. PMID:26224025

  20. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination

    NASA Astrophysics Data System (ADS)

    Greenwald, Efrat; Segre, Enrico; Feinerman, Ofer

    2015-07-01

    Eusocial societies and ants, in particular, maintain tight nutritional regulation at both individual and collective levels. The mechanisms that underlie this control are far from trivial since, in these distributed systems, information about the global supply and demand is not available to any single individual. Here we present a novel technique for non-intervening frequent measurement of the food load of all individuals in an ant colony, including during trophallactic events in which food is transferred by mouth-to-mouth feeding. Ants are imaged using a dual camera setup that produces both barcode-based identification and fluorescence measurement of labeled food. This system provides detailed measurements that enable one to quantitatively study the adaptive food distribution network. To demonstrate the capabilities of our method, we present sample observations that were unattainable using previous techniques, and could provide insight into the mechanisms underlying food exchange.

  1. A novel type of nutritional ant-plant interaction: ant partners of carnivorous pitcher plants prevent nutrient export by dipteran pitcher infauna.

    PubMed

    Scharmann, Mathias; Thornham, Daniel G; Grafe, T Ulmar; Federle, Walter

    2013-01-01

    Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated (15)N/(14)N stable isotope abundance ratio (δ(15)N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a (15)N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ(15)N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.

  2. Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil.

    PubMed

    Zwiener, Victor P; Bihn, Jochen H; Marques, Márcia C M

    2012-06-01

    Animal-plant interactions are important for the recovery of diversity and processes in secondary forests, which increasingly dominate the tropical landscape. We used a combination of observational and experimental approaches to study the interactions of ants with diaspores across a successional gradient of forests in Southern Brazil, from August 2007 to April 2008. In addition to diaspore removal rates, we assessed the species richness, diversity and behaviour of ants interacting with diaspores, in three replicated sites of four successional stages of forests. We recorded 22 ant species interacting with diaspores (an estimated 15% of the total species pool in the region). Species richness and diversity did not differ among successional stages but the behaviour of ants towards diaspores changed with the age of secondary forests. In old successional stages the removal of entire diaspores was more common than in young successional stages of forests. Concordantly, diaspore removal rates were lowest in the youngest successional stage of secondary forests and increased with the age of forests. These results indicate that ant-diaspore interactions in secondary forests are disturbed and lower removal rates in secondary forests are likely to constrain the recruitment of plant populations during secondary succession.

  3. Ant-caterpillar antagonism at the community level: interhabitat variation of tritrophic interactions in a neotropical savanna.

    PubMed

    Sendoya, Sebastián F; Oliveira, Paulo S

    2015-03-01

    Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and

  4. "Holding High the Standard": The Influence of the American Education Society in Ante-Bellum Education.

    ERIC Educational Resources Information Center

    Naylor, Natalie A.

    1984-01-01

    The primary concerns of the American Education Society (AES), formed in Boston in 1815 as part of a Protestant crusade to save the nation, were the education of ministers and the revitalization of religion. The educational influence of the AES in antebellum higher education is discussed. (RM)

  5. The Effect of Temperature Increases on an Ant-Hemiptera-Plant Interaction

    PubMed Central

    Gibb, Heloise

    2016-01-01

    Global temperature increases are significantly altering species distributions and the structure of ecological communities. However, the impact of temperature increases on multi- species interactions is poorly understood. We used an ant-Hemiptera-plant interaction to examine the potential outcomes of predicted temperature increases for each partner and for the availability of honeydew, a keystone resource in many forest ecosystems. We re-created this interaction in growth cabinets using predicted mean summer temperatures for Melbourne, Australia, for the years 2011 (23°C), 2050 (25°C) and 2100 (29°C), respectively, under an unmitigated greenhouse gas emission scenario. Plant growth and ant foraging activities increased, while scale insect growth, abundance and size, honeydew standing crop per tree and harvesting by ants decreased at 29°C, relative to lower temperatures (23 and 25°C). This led to decreased scale insect infestations of plants and reduced honeydew standing crop per tree at the highest temperature. At all temperatures, honeydew standing crop was lower when ants harvested the honeydew from scale insects, but the impact of ant harvesting was particularly significant at 29°C, where combined effects of temperature and ants reduced honeydew standing crop to below detectable levels. Although temperature increases in the next 35 years will have limited effects on this system, by the end of this century, warmer temperatures may cause the availability of honeydew to decline. Decline of honeydew may have far-reaching trophic effects on honeydew and ant-mediated interactions. However, field-based studies that consider the full complexity of ecosystems may be required to elucidate these impacts. PMID:27434232

  6. Multiple interaction types determine the impact of ant predation of caterpillars in a forest community.

    PubMed

    Clark, Robert E; Farkas, Timothy E; Lichter-Marck, Isaac; Johnson, Emily R; Singer, Michael S

    2016-12-01

    Direct and indirect effects of predators are highly variable in complex communities, and understanding the sources of this variation is a research priority in community ecology. Recent evidence indicates that herbivore community structure is a primary determinant of predation strength and its cascading impacts on plants. In this study, we use variation in herbivore community structure among plant species to experimentally test two hypotheses in a temperate forest food web. First, variation in the strength of predator effects, such as ant predation of caterpillars, is predicted to be density dependent, exhibiting stronger effects when prey abundance is high (density-dependent predation hypothesis). Second, mutualistic interactions between ants and sap-feeding herbivores are expected to increase the abundance of predatory ants, strengthening predation effects on herbivores with cascading effects on host plants (keystone mutualism hypothesis). Using a large-scale predator exclusion experiment across eight dominant tree species, we tracked changes in insect density on 862 plants across two years, recording 2,322 ants, 1,062 sap-feeders, 5,322 caterpillars, and quantifying herbivory on 199, 338 leaves. In this experiment, density-dependent predation did not explain variation in the direct or indirect effects of ants on caterpillars and herbivory. In partial support of the keystone mutualism hypothesis, sap-feeders strengthened top-down effects of ants on caterpillars under some conditions. However, stronger ant predation of caterpillars did not lead to measurable trophic cascades on trees occupied by sap-feeders. Instead, the presence of sap-feeders was associated with increased per capita feeding damage by caterpillars, and this bottom-up effect attenuated the indirect effects of ants on host plants. These findings demonstrate that examining the multi-trophic impacts of mutualisms and predation in the context of the broader community can reveal patterns otherwise

  7. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions.

    PubMed

    Blatrix, Rumsaïs; Djiéto-Lordon, Champlain; Mondolot, Laurence; La Fisca, Philippe; Voglmayr, Hermann; McKey, Doyle

    2012-10-07

    Usually studied as pairwise interactions, mutualisms often involve networks of interacting species. Numerous tropical arboreal ants are specialist inhabitants of myrmecophytes (plants bearing domatia, i.e. hollow structures specialized to host ants) and are thought to rely almost exclusively on resources derived from the host plant. Recent studies, following up on century-old reports, have shown that fungi of the ascomycete order Chaetothyriales live in symbiosis with plant-ants within domatia. We tested the hypothesis that ants use domatia-inhabiting fungi as food in three ant-plant symbioses: Petalomyrmex phylax/Leonardoxa africana, Tetraponera aethiops/Barteria fistulosa and Pseudomyrmex penetrator/Tachigali sp. Labelling domatia fungal patches in the field with either a fluorescent dye or (15)N showed that larvae ingested domatia fungi. Furthermore, when the natural fungal patch was replaced with a piece of a (15)N-labelled pure culture of either of two Chaetothyriales strains isolated from T. aethiops colonies, these fungi were also consumed. These two fungi often co-occur in the same ant colony. Interestingly, T. aethiops workers and larvae ingested preferentially one of the two strains. Our results add a new piece in the puzzle of the nutritional ecology of plant-ants.

  8. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    PubMed

    Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-04-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  9. Nutrition and interference competition have interactive effects on the behavior and performance of Argentine ants.

    PubMed

    Kay, Adam D; Zumbusch, Taylor; Heinen, Justa L; Marsh, Tom C; Holway, David A

    2010-01-01

    Food availability often influences competitive outcomes through effects on consumer growth. Although it has received less attention, food availability may also affect competition through nutritional effects on behavior. One hypothesis linking nutrition and competition in ants posits that increased access to carbohydrates favors greater investment in worker traits that underlie behavioral dominance. We tested this hypothesis by varying dietary protein:carbohydrate (P:C) ratios and levels of interspecific interference for Argentine ants (Linepithema humile), a widespread invasive species. As predicted, colonies facing interference increased patrolling more when reared on low P:C diets; this result is the first demonstration of an interactive effect of nutrition and interference on ant colonies. Several results suggest that this dietary effect on patrolling was due primarily to changes in colony size rather than worker behavior. Colonies on lower P:C diets had lower worker mortality and larger final colony sizes. Diet had little effect on per capita patrolling, and worker behavior in performance assays depended more on previous exposure to interference than on diet. Our findings indicate that dietary P:C ratios can influence Argentine ant performance in a competitive environment and suggest a mechanism by which monopolization of carbohydrate-rich resources can help invasive ants displace native ant competitors.

  10. Mathematical modeling on obligate mutualism: Interactions between leaf-cutter ants and their fungus garden.

    PubMed

    Kang, Yun; Clark, Rebecca; Makiyama, Michael; Fewell, Jennifer

    2011-11-21

    We propose a simple mathematical model by applying Michaelis-Menton equations of enzyme kinetics to study the mutualistic interaction between the leaf cutter ant and its fungus garden at the early stage of colony expansion. We derive sufficient conditions on the extinction and coexistence of these two species. In addition, we give a region of initial condition that leads to the extinction of two species when the model has an interior attractor. Our global analysis indicates that the division of labor by worker ants and initial conditions are two important factors that determine whether leaf cutter ants' colonies and their fungus garden can survive and grow or not. We validate the model by comparing model simulations and data on fungal and ant colony growth rates under laboratory conditions. We perform sensitive analysis of the model based on the experimental data to gain more biological insights on ecological interactions between leaf-cutter ants and their fungus garden. Finally, we give conclusions and discuss potential future work.

  11. Positive interactions between desert granivores: localized facilitation of harvester ants by kangaroo rats.

    PubMed

    Edelman, Andrew J

    2012-01-01

    Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis) mounds and rough harvester ant (Pogonomyrmex rugosus) colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (<10 m). Mortality risk of vulnerable, recently founded harvester ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species.

  12. VisANT: an online visualization and analysis tool for biological interaction data

    PubMed Central

    Hu, Zhenjun; Mellor, Joseph; Wu, Jie; DeLisi, Charles

    2004-01-01

    Background New techniques for determining relationships between biomolecules of all types – genes, proteins, noncoding DNA, metabolites and small molecules – are now making a substantial contribution to the widely discussed explosion of facts about the cell. The data generated by these techniques promote a picture of the cell as an interconnected information network, with molecular components linked with one another in topologies that can encode and represent many features of cellular function. This networked view of biology brings the potential for systematic understanding of living molecular systems. Results We present VisANT, an application for integrating biomolecular interaction data into a cohesive, graphical interface. This software features a multi-tiered architecture for data flexibility, separating back-end modules for data retrieval from a front-end visualization and analysis package. VisANT is a freely available, open-source tool for researchers, and offers an online interface for a large range of published data sets on biomolecular interactions, including those entered by users. This system is integrated with standard databases for organized annotation, including GenBank, KEGG and SwissProt. VisANT is a Java-based, platform-independent tool suitable for a wide range of biological applications, including studies of pathways, gene regulation and systems biology. Conclusion VisANT has been developed to provide interactive visual mining of biological interaction data sets. The new software provides a general tool for mining and visualizing such data in the context of sequence, pathway, structure, and associated annotations. Interaction and predicted association data can be combined, overlaid, manipulated and analyzed using a variety of built-in functions. VisANT is available at . PMID:15028117

  13. Ants use odour cues to exploit fig-fig wasp interactions

    NASA Astrophysics Data System (ADS)

    Schatz, Bertrand; Hossaert-McKey, Martine

    2010-01-01

    Fig wasps may constitute a relatively abundant food source for ants associated with the fig-fig wasp nursery pollination mutualism. We found previously that a Mediterranean ant species detects fig wasps by chemical signals. In this paper we want to test the generality of this finding by studying two tropical ants, Oecophylla smaragdina and Crematogaster sp., preying on fig wasps on the dioecious Ficus fistulosa in Brunei (Borneo). Behavioural tests in a Y-tube olfactometer showed that these two ants were attracted both to odours emitted by receptive figs and to those emitted by fig wasps (male and female of the pollinator, and a non-pollinating fig wasp) used here as a kairomone. Naïve workers were not attracted to fig wasps, suggesting that olfactory learning may play a role in prey detection. We also found that O. smaragdina was much more likely to be present on figs of male trees (where fig wasps are more abundant), and that the abundance of this ant species varied strongly with developmental phase of figs on individual trees. Moreover, its aggressiveness was also strongly influenced by the nature of the object presented in our behavioural tests, the site of the test and the developmental phase of the fig tested. Investigation on the chemical and behavioural ecology of the different interacting species provides important insights into the intricate relationships supported by the fig-fig wasp mutualism.

  14. Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    SciTech Connect

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; DeLisi, Charles; Segre, Daniel; Hu, Zhenjun

    2016-04-15

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.

  15. Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    DOE PAGES

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...

    2016-04-15

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  16. Disease Dynamics in Ants: A Critical Review of the Ecological Relevance of Using Generalist Fungi to Study Infections in Insect Societies.

    PubMed

    Loreto, R G; Hughes, D P

    2016-01-01

    It is assumed that social life can lead to the rapid spread of infectious diseases and outbreaks. In ants, disease outbreaks are rare and the expression of collective behaviors is invoked to explain the absence of epidemics in natural populations. Here, we address the ecological approach employed by many studies that have notably focused (89% of the studies) on two genera of generalist fungal parasites (Beauveria and Metarhizium). We ask whether these are the most representative models to study the evolutionary ecology of ant-fungal parasite interactions. To assess this, we critically examine the literature on ants and their interactions with fungal parasites from the past 114years (1900-2014). We discuss how current evolutionary ecology approaches emerged from studies focused on the biological control of pest ants. We also analyzed the ecological relevance of the laboratory protocols used in evolutionary ecology studies employing generalist parasites, as well as the rare natural occurrence of these parasites on ants. After a detailed consideration of all the publications, we suggest that using generalist pathogens such as Beauveria and Metarhizium is not an optimal approach if the goal is to study the evolutionary ecology of disease in ants. We conclude by advocating for approaches that incorporate greater realism.

  17. Assessing the impact of deforestation of the Atlantic rainforest on ant-fruit interactions: a field experiment using synthetic fruits.

    PubMed

    Bieber, Ana Gabriela D; Silva, Paulo S D; Sendoya, Sebastián F; Oliveira, Paulo S

    2014-01-01

    Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic 'seed' covered by a lipid-rich 'pulp'), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits

  18. Assessing the Impact of Deforestation of the Atlantic Rainforest on Ant-Fruit Interactions: A Field Experiment Using Synthetic Fruits

    PubMed Central

    Bieber, Ana Gabriela D.; Silva, Paulo S. D.; Sendoya, Sebastián F.; Oliveira, Paulo S.

    2014-01-01

    Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic ‘seed’ covered by a lipid-rich ‘pulp’), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic

  19. Nature of the interactions between hypocrealean fungi and the mutualistic fungus of leaf-cutter ants.

    PubMed

    Varanda-Haifig, Sadala Schmidt; Albarici, Tatiane Regina; Nunes, Pablo Henrique; Haifig, Ives; Vieira, Paulo Cezar; Rodrigues, Andre

    2017-04-01

    Leaf-cutter ants cultivate and feed on the mutualistic fungus, Leucoagaricus gongylophorus, which is threatened by parasitic fungi of the genus Escovopsis. The mechanism of Escovopsis parasitism is poorly understood. Here, we assessed the nature of the antagonism of different Escovopsis species against its host. We also evaluated the potential antagonism of Escovopsioides, a recently described fungal genus from the attine ant environment whose role in the colonies of these insects is unknown. We performed dual-culture assays to assess the interactions between L. gongylophorus and both fungi. We also evaluated the antifungal activity of compounds secreted by the latter on L. gongylophorus growth using crude extracts of Escovopsis spp. and Escovopsioides nivea obtained either in (1) absence or (2) presence of the mutualistic fungus. The physical interaction between these fungi and the mutualistic fungus was examined under scanning electron microscopy (SEM). Escovopsis spp. and E. nivea negatively affected the growth of L. gongylophorus, which was also significantly inhibited by both types of crude extract. These results indicate that Escovopsis spp. and E. nivea produce antifungal metabolites against the mutualistic fungus. SEM showed that Escovopsis spp. and E. nivea maintained physical contact with the mutualistic fungus, though no specialised structures related to mycoparasitism were observed. These results showed that Escovopsis is a destructive mycoparasite that needs physical contact for the death of the mutualistic fungus to occur. Also, our findings suggest that E. nivea is an antagonist of the ant fungal cultivar.

  20. Geographic and taxonomic distribution of a positive interaction: ant-tended homopterans indirectly benefit figs across southern Africa.

    PubMed

    Cushman, J Hall; Compton, Stephen G; Zachariades, Costas; Ware, Anthony B; Nefdt, Rory J C; Rashbrook, Vanessa K

    1998-09-01

    Although species pairs and assemblages often occur across geographic regions, ecologists know very little about the outcome of their interactions on such large spatial scales. Here, we assess the geographic distribution and taxonomic diversity of a positive interaction involving ant-tended homopterans and fig trees in the genus Ficus. Previous experimental studies at a few locations in South Africa indicated that Ficus sur indirectly benefited from the presence of a homopteran (Hilda patruelis) because it attracted ants (primarily Pheidole megacephala) that reduced the effects of both pre-dispersal ovule gallers and parasitoids of pollinating wasps. Based on this work, we evaluated three conditions that must be met in order to support the hypothesis that this indirect interaction involves many fig species and occurs throughout much of southern Africa and Madagascar. Data on 429 trees distributed among five countries indicated that 20 of 38 Ficus species, and 46% of all trees sampled, had ants on their figs. Members of the Sycomorus subgenus were significantly more likely to attract ants than those in the Urostigma subgenus, and ant-colonization levels on these species were significantly greater than for Urostigma species. On average, each ant-occupied F.sur tree had 37% of its fig crop colonized by ants, whereas the value was 24% for other Ficus species. H. patruelis was the most common source for attracting ants, although figs were also attacked by a range of other ant-tended homopterans. P. megacephala was significantly more common on figs than other ant species, being present on 58% of sampled trees. Ant densities commonly exceeded 4.5 per fig, which a field experiment indicated was sufficient to provide protection from ovule gallers and parasitoids of pollinators. Forty-nine percent of all colonized F. sur trees sampled had ant densities equal to or greater than 4.5 per fig, whereas this value was 23% for other Ficus species. We conclude that there is

  1. The indirect consequences of a mutualism: comparing positive and negative components of the net interaction between honeydew-tending ants and host plants.

    PubMed

    Grinath, Joshua B; Inouye, Brian D; Underwood, Nora; Billick, Ian

    2012-03-01

    1. In ecological webs, net indirect interactions between species are composed of interactions that vary in sign and magnitude. Most studies have focused on negative component interactions (e.g. predation, herbivory) without considering the relative importance of positive interactions (e.g. mutualism, facilitation) for determining net indirect effects. 2. In plant/arthropod communities, ants have multiple top-down effects via mutualisms with honeydew-producing herbivores and harassment of and predation on other herbivores; these ant effects provide opportunities for testing the relative importance of positive and negative interspecific interactions. We manipulated the presence of ants, honeydew-producing membracids and leaf-chewing beetles on perennial host plants in field experiments in Colorado to quantify the relative strength of these different types of interactions and their impact on the ant's net indirect effect on plants. 3. In 2007, we demonstrated that ants simultaneously had a positive effect on membracids and a negative effect on beetles, resulting in less beetle damage on plants hosting the mutualism. 4. In 2008, we used structural equation modelling to describe interaction strengths through the entire insect herbivore community on plants with and without ants. The ant's mutualism with membracids was the sole strong interaction contributing to the net indirect effect of ants on plants. Predation, herbivory and facilitation were weak, and the net effect of ants reduced plant reproduction. This net indirect effect was also partially because of behavioural changes of herbivores in the presence of ants. An additional membracid manipulation showed that the membracid's effect on ant activity was largely responsible for the ant's net effect on plants; ant workers were nearly ten times as abundant on plants with mutualists, and effects on other herbivores were similar to those in the ant manipulation experiment. 5. These results demonstrate that mutualisms can

  2. Antagonistic Bacterial Interactions Help Shape Host-Symbiont Dynamics within the Fungus-Growing Ant-Microbe Mutualism

    PubMed Central

    Poulsen, Michael; Erhardt, Daniel P.; Molinaro, Daniel J.; Lin, Ting-Li; Currie, Cameron R.

    2007-01-01

    Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the

  3. Antagonistic bacterial interactions help shape host-symbiont dynamics within the fungus-growing ant-microbe mutualism.

    PubMed

    Poulsen, Michael; Erhardt, Daniel P; Molinaro, Daniel J; Lin, Ting-Li; Currie, Cameron R

    2007-09-26

    Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the

  4. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

  5. At Lunch with a Killer: The Effect of Weaver Ants on Host-Parasitoid Interactions on Mango

    PubMed Central

    Migani, Valentina; Ekesi, Sunday; Merkel, Katharina; Hoffmeister, Thomas

    2017-01-01

    Predator-prey interactions can affect the behaviour of the species involved, with consequences for population distribution and competitive interactions. Under predation pressure, potential prey may adopt evasive strategies. These responses can be costly and could impact population growth. As some prey species may be more affected than others, predation pressure could also alter the dynamics among species within communities. In field cages and small observation cages, we studied the interactions between a generalist predator, the African weaver ant, Oecophylla longinoda, two species of fruit flies that are primary pests of mango fruits, Ceratitis cosyra and Bactrocera dorsalis, and their two exotic parasitoids, Fopius arisanus and Diachasmimorpha longicaudata. In all experiments, either a single individual (observation cage experiments) or groups of individuals (field cage experiments) of a single species were exposed to foraging in the presence or absence of weaver ants. Weaver ant presence reduced the number of eggs laid by 75 and 50 percent in B. dorsalis and C. cosyra respectively. Similarly, parasitoid reproductive success was negatively affected by ant presence, with success of parasitism reduced by around 50 percent for both F. arisanus and D. longicaudata. The negative effect of weaver ants on both flies and parasitoids was mainly due to indirect predation effects. Encounters with weaver ant workers increased the leaving tendency in flies and parasitoids, thus reduced the time spent foraging on mango fruits. Parasitoids were impacted more strongly than fruit flies. We discuss how weaver ant predation pressure may affect the population dynamics of the fruit flies, and, in turn, how the alteration of host dynamics could impact parasitoid foraging behaviour and success. PMID:28146561

  6. Feeding behavior and social interactions of the Argentine ant Linepithema humile change with sucrose concentration.

    PubMed

    Sola, F J; Josens, R

    2016-08-01

    Liquid sugar baits are well accepted by the Argentine ant Linepithema humile and are suitable for the chemical control of this invasive species. We evaluated how sugar concentrations affect the foraging behavior of L. humile individuals. We quantified feeding variables for individual foragers (ingested load, feeding time and solution intake rate) when feeding on sucrose solutions of different concentrations, as well as post-feeding interactions with nestmates. Solutions of intermediate sucrose concentrations (10-30%) were the most consumed and had the highest intake rates, whereas solutions of high sucrose concentrations (60 and 70%) resulted in extended feeding times, low intake rates and ants having smaller crop loads. In terms of post-feeding interactions, individuals fed solutions of intermediate sucrose concentrations (20%) had the highest probability of conducting trophallaxis and the smallest latency to drop exposure (i.e. lowest time delay). Trophallaxis duration increased with increasing sucrose concentrations. Behavioral motor displays, including contacts with head jerking and walking with a gaster waggle, were lowest for individuals that ingested the more dilute sucrose solution (5%). These behaviors have been previously suggested to act as a communication channel for the activation and/or recruitment of nestmates. We show here that sucrose concentration affects feeding dynamics and modulates decision making related to individual behavior and social interactions of foragers. Our results indicate that intermediate sucrose concentrations (ca. 20%), appear to be most appropriate for toxic baits because they promote rapid foraging cycles, a high crop load per individual, and a high degree of stimulation for recruitment.

  7. Behavioural effects of juvenile hormone and their influence on division of labour in leaf-cutting ant societies.

    PubMed

    Norman, Victoria C; Hughes, William O H

    2016-01-01

    Division of labour in social insects represents a major evolutionary transition, but the physiological mechanisms that regulate this are still little understood. Experimental work with honey bees, and correlational analyses in other social insects, have implicated juvenile hormone (JH) as a regulatory factor, but direct experimental evidence of behavioural effects of JH in social insects is generally lacking. Here, we used experimental manipulation of JH to show that raised JH levels in leaf-cutting ants results in workers becoming more active, phototactic and threat responsive, and engaging in more extranidal activity - behavioural changes that we show are all characteristic of the transition from intranidal work to foraging. These behavioural effects on division of labour suggest that the JH mediation of behaviour occurs across multiple independent evolutions of eusociality, and may be a key endocrine regulator of the division of labour which has produced the remarkable ecological and evolutionary success of social insects.

  8. Interaction between workers during a short time window is required for bacterial symbiont transmission in Acromyrmex leaf-cutting ants.

    PubMed

    Marsh, Sarah E; Poulsen, Michael; Pinto-Tomás, Adrián; Currie, Cameron R

    2014-01-01

    Stable associations between partners over time are critical for the evolution of mutualism. Hosts employ a variety of mechanisms to maintain specificity with bacterial associates. Acromyrmex leaf-cutting ants farm a fungal cultivar as their primary nutrient source. These ants also carry a Pseudonocardia Actinobacteria exosymbiont on their bodies that produces antifungal compounds that help inhibit specialized parasites of the ants' fungal garden. Major workers emerge from their pupal cases (eclose) symbiont-free, but exhibit visible Actinobacterial coverage within 14 days post-eclosion. Using subcolony experiments, we investigate exosymbiont transmission within Acromyrmex colonies. We found successful transmission to newly eclosed major workers fostered by major workers with visible Actinobacteria in all cases (100% acquiring, n = 19). In contrast, newly eclosed major workers reared without exosymbiont-carrying major workers did not acquire visible Actinobacteria (0% acquiring, n = 73). We further show that the majority of ants exposed to major workers with exosymbionts within 2 hours of eclosion acquired bacteria (60.7% acquiring, n = 28), while normal acquisition did not occur when exposure occurred later than 2 hours post-eclosion (0% acquiring, n = 18). Our findings show that transmission of exosymbionts to newly eclosed major workers occurs through interactions with exosymbiont-covered workers within a narrow time window after eclosion. This mode of transmission likely helps ensure the defensive function within colonies, as well as specificity and partner fidelity in the ant-bacterium association.

  9. Interaction between Workers during a Short Time Window Is Required for Bacterial Symbiont Transmission in Acromyrmex Leaf-Cutting Ants

    PubMed Central

    Marsh, Sarah E.; Poulsen, Michael; Pinto-Tomás, Adrián; Currie, Cameron R.

    2014-01-01

    Stable associations between partners over time are critical for the evolution of mutualism. Hosts employ a variety of mechanisms to maintain specificity with bacterial associates. Acromyrmex leaf-cutting ants farm a fungal cultivar as their primary nutrient source. These ants also carry a Pseudonocardia Actinobacteria exosymbiont on their bodies that produces antifungal compounds that help inhibit specialized parasites of the ants' fungal garden. Major workers emerge from their pupal cases (eclose) symbiont-free, but exhibit visible Actinobacterial coverage within 14 days post-eclosion. Using subcolony experiments, we investigate exosymbiont transmission within Acromyrmex colonies. We found successful transmission to newly eclosed major workers fostered by major workers with visible Actinobacteria in all cases (100% acquiring, n = 19). In contrast, newly eclosed major workers reared without exosymbiont-carrying major workers did not acquire visible Actinobacteria (0% acquiring, n = 73). We further show that the majority of ants exposed to major workers with exosymbionts within 2 hours of eclosion acquired bacteria (60.7% acquiring, n = 28), while normal acquisition did not occur when exposure occurred later than 2 hours post-eclosion (0% acquiring, n = 18). Our findings show that transmission of exosymbionts to newly eclosed major workers occurs through interactions with exosymbiont-covered workers within a narrow time window after eclosion. This mode of transmission likely helps ensure the defensive function within colonies, as well as specificity and partner fidelity in the ant-bacterium association. PMID:25058579

  10. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability.

    PubMed

    Canedo-Júnior, Ernesto Oliveira; Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management.

  11. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability

    PubMed Central

    Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management. PMID:28141849

  12. Test of local adaptation to biotic interactions and soil abiotic conditions in the ant-tended Chamaecrista fasciculata (Fabaceae).

    PubMed

    Abdala-Roberts, Luis; Marquis, Robert J

    2007-11-01

    Few previous studies have assessed the role of herbivores and the third trophic level in the evolution of local adaptation in plants. The overall objectives of this study were to determine (1) whether local adaptation is present in the ant-defended plant, Chamaecrista fasciculata, and (2) the contribution of ant-plant-herbivore interactions and soil source to such adaptation. We used three C. fasciculata populations and performed both a field and a greenhouse experiment. The first involved reciprocally transplanting C. fasciculata seedlings from each population-source to each site, and subsequently applying one of three treatments to one-third of the seedlings of each population-source at each site: control, reduced ant density and reduced folivory. The greenhouse experiment involved reciprocal transplants of population-sources with soil sources to test for a soil-source effect on flower production and local adaptation to soil conditions. Field results showed that ant and herbivore treatments reduced ant density (increasing folivory) and herbivore damage relative to controls, respectively; however, these manipulations did not impact C. fasciculata reproduction or the likelihood of survival. In contrast, greenhouse results showed that soil source significantly affected flower production. Overall, plants in both experiments, regardless of population-source, always had higher reproductive output at one specific site. Native populations did not outperform nonnative ones, causing us to reject the hypothesis of local adaptation. The absence of treatment effects on plant reproduction and the likelihood of survival suggest a limited effect of ants and folivores on C. fasciculata fitness and local adaptation during the study year. Temporally inconsistent effects of biotic forces across years, coupled with the young age of populations, relative proximity of populations and possible counter effects of seed predators may reduce the likelihood of local adaptation in the

  13. Unusual animal-plant interaction: Feeding of Schomburgkia tibicinis (Orchidaceae) by ants

    SciTech Connect

    Rico-Gray, V. ); Barber, J.T.; Thien, L.B.; Ellgaard, E.G.; Toney, J.J. )

    1989-04-01

    The hollow pseudobulbs of Schomburgkia tibicinis (Orchidaceae; Central America) serve as domatia for many species of ants. The ants pack many of the pseudobulbs with debris including dead insects, plant material, and sand. Ants were fed {sup 14}C-labelled D-glucose in honey, killed, and placed in the pseudobulbs for up to eight weeks. Samples of plant tissue were harvested and tested for radioactivity after 1, 2, 3, 4, 6, and 8 weeks. The labelled material had moved into various parts of the plant and demonstrated direct nutrient uptake.

  14. Climate, fishery and society interactions: Observations from the North Atlantic

    NASA Astrophysics Data System (ADS)

    Hamilton, Lawrence C.

    2007-11-01

    Interdisciplinary studies comparing fisheries-dependent regions across the North Atlantic find a number of broad patterns. Large ecological shifts, disastrous to historical fisheries, have resulted when unfavorable climatic events occur atop overfishing. The "teleconnections" linking fisheries crises across long distances include human technology and markets, as well as climate or migratory fish species. Overfishing and climate-driven changes have led to a shift downwards in trophic levels of fisheries takes in some ecosystems, from dominance by bony fish to crustaceans. Fishing societies adapt to new ecological conditions through social reorganization that have benefited some people and places, while leaving others behind. Characteristic patterns of demographic change are among the symptoms of such reorganization. These general observations emerge from a review of recent case studies of individual fishing communities, such as those conducted for the North Atlantic Arc research project.

  15. Population responses to environmental change in a tropical ant: the interaction of spatial and temporal dynamics.

    PubMed

    Jackson, Doug; Vandermeer, John; Perfecto, Ivette; Philpott, Stacy M

    2014-01-01

    Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants' dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution - a signal of spatial self organization - but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations.

  16. Modeling the Interactions between Hydrological Extremes, Water Management and Society.

    NASA Astrophysics Data System (ADS)

    Martinez, Fabian; Di Baldassarre, Giuliano; Kalantari, Zahra

    2016-04-01

    Over the past years, several studies have focused on exploring human impacts on the hydrological regime. Even though the dominant hydrological processes are mostly well understood, there are still several challenges related to modeling the coevolution of human impacts on (and responses to) hydrological extremes, such as floods and droughts. Some initial modeling attempts have proved to capture the essential dynamics emerging from two-way feedbacks between hydrological and social processes. However, they have predominantly focused on flooding. This research aims to develop a new conceptual model unraveling the interplay between hydrological extremes (floods and droughts) and human societies in a changing climate. In particular, this socio-hydrological model aims at understanding, and predicting the dynamics of coupled human-water systems to explain and capture how the occurrence of hydrological extremes changes water management approach, and how such a change (in turn) mitigates the impacts of hydrological extremes. The conceptual model is then applied to a case study to test its ability in simulating the dynamics emerging from the interplay between hydrological and social processes.

  17. Lack of interactions between fire ant control products and white grubs (Coleoptera: Scarabaeidae) in turfgrass.

    PubMed

    Barden, S Addison; Held, David W; Graham, L C Fudd

    2011-12-01

    Insecticides are widely used to manage turfgrass pest such as white grubs (Coleoptera: Scarabaeidae). Red imported fire ants, Solenopsis invicta (Buren) are important predators and pests in managed turfgrass. We tested the susceptibility of white grub life stages (adults, egg, and larvae) to predation by S. invicta and determined if insecticides applied for control of S. invicta would result in locally greater white grub populations. Field trials over 2 yr evaluated bifenthrin, fipronil, and hydramethylnon applied to large and small scale turfgrass plots for impacts on fire ant foraging and white grub populations. Coincident with these trials, adults, larvae, and eggs of common scarab species were evaluated for susceptibility to predation by S. invicta under field conditions. Field trials with insecticides failed to show a significant increase in white grub populations resulting from treatment of turfgrass for fire ants. This, in part, may be because of a lack of predation of S. invicta on adult and larval scarabs. Egg predation was greatest at 70% but < 20% of adults and larvae were attacked in a 24 h test. Contrary to other studies, results presented here suggest that fire ants and fire ant control products applied to turfgrass have a minimal impact on white grub populations.

  18. Population Responses to Environmental Change in a Tropical Ant: The Interaction of Spatial and Temporal Dynamics

    PubMed Central

    Jackson, Doug; Vandermeer, John; Perfecto, Ivette; Philpott, Stacy M.

    2014-01-01

    Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants’ dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution – a signal of spatial self organization – but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations. PMID:24842117

  19. Common-garden experiments reveal geographical variation in the interaction among Crotalaria pallida (Leguminosae: Papilionideae), Utetheisa ornatrix L. (Lepidoptera: Arctiidae), and extrafloral nectary visiting ants.

    PubMed

    Franco, M S; Cogni, R

    2013-06-01

    The study of geographical variation is a key approach to understand evolution of ecological interactions. We investigated geographical variation in the interaction among Crotalaria pallida (Leguminosae: Papilionideae), its specialized herbivore, Utetheisa ornatrix L. (Lepidoptera: Arctiidae), and ants attracted to extrafloral nectaries (EFNs). First, we used common-garden experiments with plants collected in different sites at different geographical scales to test for differences among populations in C. pallida attractiveness to ants. When we compared three populations from Southeast Brazil (150 km apart), the number of visiting ants per plant, and the percent of termite baits attacked by ants, were significantly different among plant populations. In a comparison of populations from SE Brazil and Florida (USA), there was no significant difference between the populations in the number of ants per plant or the frequency of baits attacked. Second, we tested in a common garden if U. ornatrix larvae present any behavior to avoid ant predation, and if there were genetic differences among populations. We observed that most larvae moved away from the vicinity of the EFNs (flowers and fruits) to the plant leaves. Of the larvae that moved to leaves, only 10% were attacked by ants while 89% of larvae that stayed near the fruit/flower were attacked. There was a significant difference among populations in the frequency of larvae that moved to the leaves and the frequency of larvae attacked by ants. We discuss the possible causes of the geographical differences observed and propose future research directions in this system.

  20. Unwritten rules: virtual bargaining underpins social interaction, culture, and society.

    PubMed

    Misyak, Jennifer B; Melkonyan, Tigran; Zeitoun, Hossam; Chater, Nick

    2014-10-01

    Many social interactions require humans to coordinate their behavior across a range of scales. However, aspects of intentional coordination remain puzzling from within several approaches in cognitive science. Sketching a new perspective, we propose that the complex behavioral patterns - or 'unwritten rules' - governing such coordination emerge from an ongoing process of 'virtual bargaining'. Social participants behave on the basis of what they would agree to do if they were explicitly to bargain, provided the agreement that would arise from such discussion is commonly known. Although intuitively simple, this interpretation has implications for understanding a broad spectrum of social, economic, and cultural phenomena (including joint action, team reasoning, communication, and language) that, we argue, depend fundamentally on the virtual bargains themselves.

  1. Antagonistic Interactions between the African Weaver Ant Oecophylla longinoda and the Parasitoid Anagyrus pseudococci Potentially Limits Suppression of the Invasive Mealybug Rastrococcus iceryoides

    PubMed Central

    Tanga, Chrysantus M.; Ekesi, Sunday; Govender, Prem; Nderitu, Peterson W.; Mohamed, Samira A.

    2015-01-01

    The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter’s infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid Anagyrus pseudococci Girault were assessed under laboratory conditions. The percentage of parasitism of R. iceryoides by A. pseudococci was significantly higher on “ant-excluded” treatments (86.6% ± 1.27%) compared to “ant-tended” treatments (51.4% ± 4.13%). The low female-biased sex-ratio observed in the “ant-tended” treatment can be attributed to ants’ interference during the oviposition phase, which disrupted parasitoids’ ability to fertilize eggs. The mean foraging time, host handling time and number of successful oviposition in “ant-excluded” treatment were significantly higher compared to “ant-tended” treatments. When ant workers were allowed access to sterilized sand grains, mummified and unmummified R. iceryoides, they selectively removed the mummified mealybugs, indicating that they recognized the mummies as potential foods (1.2 ± 0.46 to 7.8 ± 1.17 mummies at 10 min intervals for 2 h). Percentage emergence from mummified R. iceryoides removed by the ants was significantly lower compared to emergence from mummies not exposed to ants. Although, host seeking parasitoids frequently evaded attacks, some were killed by the foraging ant workers (2.0 ± 0.38 to 6.0 ± 0.88 at 10 min intervals for 2 h). These results suggest for the first time that the presence of O. longinoda has a detrimental effect on the abundance, reproductive success and possibly oviposition strategy of female parasitoids, which might be a delimiting factor in field conditions if both natural enemies are to be recommended for use within the same agro-ecosystem. PMID:26703741

  2. Interactions of the polarization and the sun compass in path integration of desert ants.

    PubMed

    Lebhardt, Fleur; Ronacher, Bernhard

    2014-08-01

    Desert ants, Cataglyphis fortis, perform large-scale foraging trips in their featureless habitat using path integration as their main navigation tool. To determine their walking direction they use primarily celestial cues, the sky's polarization pattern and the sun position. To examine the relative importance of these two celestial cues, we performed cue conflict experiments. We manipulated the polarization pattern experienced by the ants during their outbound foraging excursions, reducing it to a single electric field (e-)vector direction with a linear polarization filter. The simultaneous view of the sun created situations in which the directional information of the sun and the polarization compass disagreed. The heading directions of the homebound runs recorded on a test field with full view of the natural sky demonstrate that none of both compasses completely dominated over the other. Rather the ants seemed to compute an intermediate homing direction to which both compass systems contributed roughly equally. Direct sunlight and polarized light are detected in different regions of the ant's compound eye, suggesting two separate pathways for obtaining directional information. In the experimental paradigm applied here, these two pathways seem to feed into the path integrator with similar weights.

  3. Honey Ants.

    ERIC Educational Resources Information Center

    Conway, John R.

    1984-01-01

    Provides background information on honey ants. These ants are found in dry or desert regions of North America, Africa, and Australia. Also provides a list of activities using local species of ants. (JN)

  4. A Novel Type of Nutritional Ant–Plant Interaction: Ant Partners of Carnivorous Pitcher Plants Prevent Nutrient Export by Dipteran Pitcher Infauna

    PubMed Central

    Scharmann, Mathias; Thornham, Daniel G.; Grafe, T. Ulmar; Federle, Walter

    2013-01-01

    Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect–plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant–plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated 15N/14N stable isotope abundance ratio (δ15N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants’ nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a 15N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ15N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers’ trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants’ prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant. PMID:23717446

  5. Bottom-up effects of host-plant species diversity and top-down effects of ants interactively increase plant performance.

    PubMed

    Moreira, Xoaquín; Mooney, Kailen A; Zas, Rafael; Sampedro, Luis

    2012-11-07

    While plant diversity is well known to increase primary productivity, whether these bottom-up effects are enhanced by reciprocal top-down effects from the third trophic level is unknown. We studied whether pine tree species diversity, aphid-tending ants and their interaction determined plant performance and arthropod community structure. Plant diversity had a positive effect on aphids, but only in the presence of mutualistic ants, leading to a threefold greater number of both groups in the tri-specific cultures than in monocultures. Plant diversity increased ant abundance not only by increasing aphid number, but also by increasing ant recruitment per aphid. The positive effect of diversity on ants in turn cascaded down to increase plant performance; diversity increased plant growth (but not biomass), and this effect was stronger in the presence of ants. Consequently, bottom-up effects of diversity within the same genus and guild of plants, and top-down effects from the third trophic level (predatory ants), interactively increased plant performance.

  6. Let your enemy do the work: within-host interactions between two fungal parasites of leaf-cutting ants.

    PubMed

    Hughes, W O H; Boomsma, J J

    2004-02-07

    Within-host competition is an important factor in host-parasite relationships, yet most studies consider interactions involving only single parasite species. We investigated the interaction between a virulent obligate entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and a normally avirulent, opportunistic fungal pathogen, Aspergillus flavus, in their leaf-cutting ant host, Acromyrmex echinatior. Surprisingly, the latter normally out-competed the former in mixed infections and had enhanced fitness relative to when infecting in isolation. The result is most probably due to Metarhizium inhibiting the host's immune defences, which would otherwise normally prevent infections by Aspergillus. With the host defences negated by the virulent parasite, the avirulent parasite was then able to out-compete its competitor. This result is strikingly similar to that seen in immunocompromised vertebrate hosts and indicates that avirulent parasites may play a more important role in host life histories than is generally realized.

  7. Ants: the supreme soil manipulators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review focuses on the semiochemical interactions between ants and their soil environment. Ants occupy virtually every ecological niche and have evolved mechanisms to not just cope with, but also manipulate soil organisms. The metapleural gland, specific to ants was thought to be the major sourc...

  8. Ant-Plant Interaction in a Tropical Savanna: May the Network Structure Vary over Time and Influence on the Outcomes of Associations?

    PubMed Central

    Lange, Denise; Del-Claro, Kleber

    2014-01-01

    Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system. PMID:25141007

  9. Ant-plant interaction in a tropical savanna: may the network structure vary over time and influence on the outcomes of associations?

    PubMed

    Lange, Denise; Del-Claro, Kleber

    2014-01-01

    Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system.

  10. Report on "Methodologies for Investigating Microbial-Mineral Interactions: A Clay Minerals Society Short Course"

    SciTech Connect

    Maurice, Patricia A.

    2010-02-08

    A workshop entitled, “Methods of Investigating Microbial-Mineral Interactions,” was held at the Clay Minerals Society meeting at the Pacific Northwest National Laboratory in Richland, WA on June 19, 2004. The workshop was organized by Patricia A. Maurice (University of Notre Dame) and Lesley A. Warren (McMaster University, CA). Speakers included: Dr. P. Bennett, Dr. J. Fredrickson (PNNL), Dr. S. Lower (Ohio State University), Dr. P. Maurice, Dr. S. Myneni (Princeton University), Dr. E. Shock (Arizona State), Dr. M. Tien (Penn State), Dr. L. Warren, and Dr. J. Zachara (PNNL). There were approximately 75 attendees at the workshop, including more than 20 students. A workshop volume was published by the Clay Minerals Society [Methods for Study of Microbe-Mineral Interactions (2006), CMS Workshop Lectures, vol 14(Patricia A. Maurice and Leslie A. Warren, eds.) ISBN 978-1-881208-15-0, 166 pp.

  11. Fire ants

    MedlinePlus

    ... please enable JavaScript. Fire ants are red-colored insects. A sting from a fire ant delivers a ... poison control. Those who have an allergy to insect bites or stings should carry a bee sting ...

  12. Dynamic changes in host-virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta).

    PubMed

    Manfredini, Fabio; Shoemaker, DeWayne; Grozinger, Christina M

    2016-01-01

    The dynamics of host-parasite interactions can change dramatically over the course of a chronic infection as the internal (physiological) and external (environmental) conditions of the host change. When queens of social insects found a colony, they experience changes in both their physiological state (they develop their ovaries and begin laying eggs) and the social environment (they suddenly stop interacting with the other members of the mother colony), making this an excellent model system for examining how these factors interact with chronic infections. We investigated the dynamics of host-viral interactions in queens of Solenopsis invicta (fire ant) as they transition from mating to colony founding/brood rearing to the emergence of the first workers. We examined these dynamics in naturally infected queens in two different social environments, where queens either founded colonies as individuals or as pairs. We hypothesized that stress associated with colony founding plays an important role in the dynamics of host-parasite interactions. We also hypothesized that different viruses have different modalities of interaction with the host that can be quantified by physiological measures and genomic analysis of gene expression in the host. We found that the two most prevalent viruses, SINV-1 and SINV-2, are associated with different fitness costs that are mirrored by different patterns of gene expression in the host. In fact SINV-2, the virus that imposes the significant reduction of a queen's reproductive output is also associated with larger changes of global gene expression in the host. These results show the complexity of interactions between S. invicta and two viral parasites. Our findings also show that chronic infections by viral parasites in insects are dynamic processes that may pose different challenges in the host, laying the groundwork for interesting ecological and evolutionary considerations.

  13. The Pied Piper: A Parasitic Beetle’s Melodies Modulate Ant Behaviours

    PubMed Central

    Di Giulio, Andrea; Maurizi, Emanuela; Barbero, Francesca; Sala, Marco; Fattorini, Simone; Balletto, Emilio; Bonelli, Simona

    2015-01-01

    Ants use various communication channels to regulate their social organisation. The main channel that drives almost all the ants’ activities and behaviours is the chemical one, but it is long acknowledged that the acoustic channel also plays an important role. However, very little is known regarding exploitation of the acoustical channel by myrmecophile parasites to infiltrate the ant society. Among social parasites, the ant nest beetles (Paussus) are obligate myrmecophiles able to move throughout the colony at will and prey on the ants, surprisingly never eliciting aggression from the colonies. It has been recently postulated that stridulatory organs in Paussus might be evolved as an acoustic mechanism to interact with ants. Here, we survey the role of acoustic signals employed in the Paussus beetle-Pheidole ant system. Ants parasitised by Paussus beetles produce caste-specific stridulations. We found that Paussus can “speak” three different “languages”, each similar to sounds produced by different ant castes (workers, soldiers, queen). Playback experiments were used to test how host ants respond to the sounds emitted by Paussus. Our data suggest that, by mimicking the stridulations of the queen, Paussus is able to dupe the workers of its host and to be treated as royalty. This is the first report of acoustic mimicry in a beetle parasite of ants. PMID:26154266

  14. BEHAVIORAL INTERACTIONS OF THE BLACK IMPORTED FIRE ANT (SOLENOPSIS RICHTERI FOREL) AND ITS PARASITOID FLY (PSEUDACTEON CURVATUS BORGMEIER) AS REVEALED BY HIGH-SPEED VIDEO.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-speed video recordings were used to study the interactions between the phorid fly (Pseudacteon curvatus), and the black imported fire ant (Solenopsis richteri) in the field. Phorid flies are extremely fast agile fliers that can hover and fly in all directions. Wingbeat frequency recorded with...

  15. The Interacting Effects of Ungulate Hoofprints and Predatory Native Ants on Metamorph Cane Toads in Tropical Australia

    PubMed Central

    Cabrera-Guzmán, Elisa; Crossland, Michael R.; González-Bernal, Edna; Shine, Richard

    2013-01-01

    Many invasive species exploit the disturbed habitats created by human activities. Understanding the effects of habitat disturbance on invasion success, and how disturbance interacts with other factors (such as biotic resistance to the invaders from the native fauna) may suggest new ways to reduce invader viability. In tropical Australia, commercial livestock production can facilitate invasion by the cane toad (Rhinella marina), because hoofprints left by cattle and horses around waterbody margins provide distinctive (cool, moist) microhabitats; nevertheless the same microhabitat can inhibit the success of cane toads by increasing the risks of predation or drowning. Metamorph cane toads actively select hoofprints as retreat-sites to escape dangerous thermal and hydric conditions in the surrounding landscape. However, hoofprint geometry is important: in hoofprints with steep sides the young toads are more likely to be attacked by predatory ants (Iridomyrmex reburrus) and are more likely to drown following heavy rain. Thus, anthropogenic changes to the landscape interact with predation by native taxa to affect the ability of cane toads in this vulnerable life-history stage to thrive in the harsh abiotic conditions of tropical Australia. PMID:24255703

  16. Interaction and cooperative effort among scientific societies. Twelve years of COSCE.

    PubMed

    Martín, Nazario; Andradas, Carlos

    2015-12-01

    The evolution of knowledge and technology in recent decades has brought profound changes in science policy, not only in the countries but also in the supranational organizations. It has been necessary, therefore, to adapt the scientific institutions to new models in order to achieve a greater and better communication between them and the political counterparts responsible for defining the general framework of relations between science and society. The Federationon of Scientific Societies of Spain (COSCE, Confederación de Sociedades Científicas de España) was founded in October 2003 to respond to the urgent need to interact with the political institutions and foster a better orientation in the process of making decisions about the science policy. Currently COSCE consists of over 70 Spanish scientific societies and more than 40,000 scientists. During its twelve years of active life, COSCE has developed an intense work of awareness of the real situation of science in Spain by launching several initiatives (some of which have joined other organizations) or by joining initiatives proposed from other groups related to science both at the Spanish level and at the European and non-European scenarios. [Int Microbiol 18(4): 245-251 (2015)].

  17. Ant Tower

    NASA Astrophysics Data System (ADS)

    Mlot, Nathan; Shinotsuka, Sho; Hu, David

    2010-11-01

    Ants walk via adhesive drops of fluid extruded by their feet. They also use these drops as mortar to build structures such as rafts, bridges and towers, each composed of thousands of ants linked together. We investigate experimentally the construction of triangular ant towers braced by hydrophobic walls. Particular attention is paid to the relationship between tower height and contact angle hysteresis of the wall. We rationalize tower height according to ant adhesion, and tower shape according to the constraints on a column of constant strength.

  18. Temporal patterns of diversity: Assessing the biotic and abiotic controls on ant assemblages

    USGS Publications Warehouse

    Dunn, R.R.; Parker, C.R.; Sanders, N.J.

    2007-01-01

    In this study, we use 12 months of data from 11 ant assemblages to test whether seasonal variation in ant diversity is governed by either the structuring influences of interspecific competition or environmental conditions. Because the importance of competition might vary along environmental gradients, we also test whether the signature of competition depends on elevation. We find little evidence that competition structures the seasonal patterns of activity in the ant assemblages considered, but find support for the effects of temperature on seasonal patterns of diversity, especially at low-elevation sites. Although, in general, both competition and the environment interact to structure ant assemblages, our results suggest that environmental conditions are the primary force structuring the seasonal activity of the ant assemblages studied here. ?? 2007 The Linnean Society of London.

  19. 'Bio-nano interactions: new tools, insights and impacts': summary of the Royal Society discussion meeting.

    PubMed

    Lynch, Iseult; Feitshans, Ilise L; Kendall, Michaela

    2015-02-05

    Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting 'Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.

  20. Interaction between the Hawaiian dark-rumped petrel and the Argentine ant in Haleakala National Park, Maui, Hawaii

    USGS Publications Warehouse

    Krushelnycky, Paul D.; Hodges, Cathleen S.N.; Medeiros, Arthur C.; Loope, Lloyd L.

    2001-01-01

    The endemic biota of the Hawaiian islands is believed to have evolved in the absence of ant predation. However, it was suspected that this endemic biota is highly vulnerable to the effect of immigrant ants especially with regard to an aggressive predator known as the Argentine ant (Linepithema humile). First recorded in the Haleakala National Park on the island of Maui in 1967, this ant was believed to have reduced populations of native arthropods in high-elevation subalpine shrublands. In addition, concerns were raised that this immigrant ant may have also reduced the breeding success of the endangered Hawaiian Dark-rumped Petrel (Pterodroma phaeopygia sandwichensis), a native seabird. If so, then it was believe that this ant could become another major threat to the survival of this endangered seabird in addition to the threat that was caused by the introduction of introduced mammals, the advent of hunting by the Polynesians, and a loss of breeding habitat. As a result, the purpose of this study was to determine if the Argentine ant affects the nesting success of this native Hawaiian seabird.

  1. The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis.

    PubMed

    Forlani, Greta; Giarda, Elisa; Ala, Ugo; Di Cunto, Ferdinando; Salani, Monica; Tupler, Rossella; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2010-08-15

    Rett syndrome is a severe neurodevelopmental disorder mainly caused by mutations in the transcriptional regulator MeCP2. Although there is no effective therapy for Rett syndrome, the recently discovered disease reversibility in mice suggests that there are therapeutic possibilities. Identification of MeCP2 targets or modifiers of the phenotype can facilitate the design of curative strategies. To identify possible novel MeCP2 interactors, we exploited a bioinformatic approach and selected Ying Yang 1 (YY1) as an interesting candidate. We demonstrate that MeCP2 interacts in vitro and in vivo with YY1, a ubiquitous zinc-finger epigenetic factor regulating the expression of several genes. We show that MeCP2 cooperates with YY1 in repressing the ANT1 gene encoding a mitochondrial adenine nucleotide translocase. Importantly, ANT1 mRNA levels are increased in human and mouse cell lines devoid of MeCP2, in Rett patient fibroblasts and in the brain of Mecp2-null mice. We further demonstrate that ANT1 protein levels are upregulated in Mecp2-null mice. Finally, the identified MeCP2-YY1 interaction, together with the well-known involvement of YY1 in the regulation of D4Z4-associated genes at 4q35, led us to discover the anomalous depression of FRG2, a subtelomeric gene of unknown function, in Rett fibroblasts. Collectively, our data indicate that mutations in MeCP2 might cause the aberrant overexpression of genes located at a specific locus, thus providing new candidates for the pathogenesis of Rett syndrome. As both ANT1 mutations and overexpression have been associated with human diseases, we consider it highly relevant to address the consequences of ANT1 deregulation in Rett syndrome.

  2. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    USGS Publications Warehouse

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  3. Do aphids actively search for ant partners?

    PubMed

    Fischer, Christophe Y; Vanderplanck, Maryse; Lognay, Georges C; Detrain, Claire; Verheggen, François J

    2015-04-01

    The aphid-ant mutualistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e., aphids' most mobile form) are able to select ant-frequented areas had not been investigated so far. Ant-frequented sites would indeed offer several advantages for these aphids including a lower predation pressure through ant presence and enhanced chances of establishing mutuaslistic interactions with neighbor ant colonies. In the field, aphid colonies are often observed in higher densities around ant nests, which is probably linked to a better survival ensured by ants' services. Nevertheless, this could also result from a preferential establishment of winged aphids in ant-frequented areas. We tested this last hypothesis through different ethological assays and show that the facultative myrmecophilous black bean aphid, Aphis fabae L., does not orientate its search for a host plant preferentially toward ant-frequented plants. However, our results suggest that ants reduce the number of winged aphids leaving the newly colonized plant. Thus, ants involved in facultative myrmecophilous interactions with aphids appear to contribute to structure aphid populations in the field by ensuring a better establishment and survival of newly established colonies rather than by inducing a deliberate plant selection by aphid partners based on the proximity of ant colonies.

  4. Solenopsis invicta virus (sinv-1) infection and insecticide interactions in the red imported fire ant (Hymenoptera: Formicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlling invasive species is a growing concern; however, pesticides can be detrimental for non-target organisms. The red imported fire ant (Solenopsis invicta Buren; Hymenoptera: Formicidae) has aggressively invaded approximately 138 million ha in the USA and causes over $6 billion in damage and ...

  5. Seed Selection by the Harvester Ant Pogonomyrmex rugosus (Hymenoptera: Formicidae) in Coastal Sage Scrub: Interactions With Invasive Plant Species.

    PubMed

    Briggs, C M; Redak, R A

    2016-08-01

    Harvester ants can be the dominant seed predators on plants by collecting and eating seeds and are known to influence plant communities. Harvester ants are abundant in coastal sage scrub (CSS), and CSS is frequently invaded by several exotic plant species. This study used observations of foraging and cafeteria-style experiments to test for seed species selection by the harvester ant Pogonomyrmex rugosus Emery (Hymenoptera: Formicidae) in CSS. Analysis of foraging behavior showed that P. rugosus carried seeds of exotic Erodium cicutarium (L.) and exotic Brassica tournefortii (Gouan) on 85 and 15% of return trips to the nest (respectively), and only a very few ants carried the native seeds found within the study areas. When compared with the availability of seeds in the field, P. rugosus selected exotic E. cicutarium and avoided both native Encelia farinosa (Torrey & A. Gray) and exotic B. tournefortii. Foraging by P. rugosus had no major effect on the seed bank in the field. Cafeteria-style experiments confirmed that P. rugosus selected E. cicutarium over other available seeds. Native Eriogonum fasciculatum (Bentham) seeds were even less selected than E. farinosa and B. tournefortii.

  6. The Mutually Beneficial Interaction of Science and Religion in Contemporary Society

    NASA Astrophysics Data System (ADS)

    Stoeger, William

    2007-10-01

    The natural and human sciences are in creative tension with religion, but it is a mistake to consider them to be in essential conflict. In fact, their interaction within society and culture can be, and often is, mutually beneficial, as long as the limitations and strengths of each are acknowledged and respected. This is strongly supported by the history of their relationship, and by the issues and interests connecting the two today. Three examples of this are: 1. the way in which each can reveal the competencies and deficiencies of the other; 2. the deep complementarity between the understanding of the universe we have from Big Bang and quantum cosmology and that resulting from elaborating the best classical philosophical Jewish-Christian-Islamic understandings of creation;and 3. the validation of rational inquiry by physics and cosmology, which provides a platform for exploring beyond where the natural sciences can go -- to philosophical and even theological questions. Though the Vatican Observatory is primarily dedicated to scientific research, its history is testimony to this deep and dynamic complementarity.

  7. Combinatorial expression of a ftz-zen fusion promoter suggests the occurrence of cis interactions between genes of the ANT-C.

    PubMed Central

    Rushlow, C; Levine, M

    1988-01-01

    The nine homeobox genes contained within the Antennapedia gene complex (ANT-C) are precisely regulated during embryonic development. It is not known to what extent the physical linkage of these genes contributes to their normal patterns of expression. Here we show that cis regulatory elements associated with one homeobox gene can act over a long distance (approximately 20 kb) to influence the expression of another homeobox gene. Specifically, fushi tarazu (ftz) promoter elements can direct the periodic expression of the z2 gene, which normally shows a simple 'dorsal on/ventral off' pattern of expression. An 80 kb deletion within the ANT-C [Df(3R)LIN] juxtaposes the z2 and ftz promoters, resulting in a hybrid expression pattern whereby z2 transcripts are distributed within periodic stripes that are confined to dorsal and lateral tissues and not observed in the ventral mesoderm. This observation suggests that separate promoter elements of different genes can function in a combinatorial manner, and that the patterns of ANT-C gene expression might depend on cis regulatory interactions. Images PMID:2905262

  8. Context-dependent expression of the foraging gene in field colonies of ants: the interacting roles of age, environment and task

    PubMed Central

    Gordon, Deborah M.; Greene, Michael; Kahler, John; Peteru, Swetha

    2016-01-01

    Task allocation among social insect workers is an ideal framework for studying the molecular mechanisms underlying behavioural plasticity because workers of similar genotype adopt different behavioural phenotypes. Elegant laboratory studies have pioneered this effort, but field studies involving the genetic regulation of task allocation are rare. Here, we investigate the expression of the foraging gene in harvester ant workers from five age- and task-related groups in a natural population, and we experimentally test how exposure to light affects foraging expression in brood workers and foragers. Results from our field study show that the regulation of the foraging gene in harvester ants occurs at two time scales: levels of foraging mRNA are associated with ontogenetic changes over weeks in worker age, location and task, and there are significant daily oscillations in foraging expression in foragers. The temporal dissection of foraging expression reveals that gene expression changes in foragers occur across a scale of hours and the level of expression is predicted by activity rhythms: foragers have high levels of foraging mRNA during daylight hours when they are most active outside the nests. In the experimental study, we find complex interactions in foraging expression between task behaviour and light exposure. Oscillations occur in foragers following experimental exposure to 13 L : 11 D (LD) conditions, but not in brood workers under similar conditions. No significant differences were seen in foraging expression over time in either task in 24 h dark (DD) conditions. Interestingly, the expression of foraging in both undisturbed field and experimentally treated foragers is also significantly correlated with the expression of the circadian clock gene, cycle. Our results provide evidence that the regulation of this gene is context-dependent and associated with both ontogenetic and daily behavioural plasticity in field colonies of harvester ants. Our results underscore

  9. Context-dependent expression of the foraging gene in field colonies of ants: the interacting roles of age, environment and task.

    PubMed

    Ingram, Krista K; Gordon, Deborah M; Friedman, Daniel A; Greene, Michael; Kahler, John; Peteru, Swetha

    2016-08-31

    Task allocation among social insect workers is an ideal framework for studying the molecular mechanisms underlying behavioural plasticity because workers of similar genotype adopt different behavioural phenotypes. Elegant laboratory studies have pioneered this effort, but field studies involving the genetic regulation of task allocation are rare. Here, we investigate the expression of the foraging gene in harvester ant workers from five age- and task-related groups in a natural population, and we experimentally test how exposure to light affects foraging expression in brood workers and foragers. Results from our field study show that the regulation of the foraging gene in harvester ants occurs at two time scales: levels of foraging mRNA are associated with ontogenetic changes over weeks in worker age, location and task, and there are significant daily oscillations in foraging expression in foragers. The temporal dissection of foraging expression reveals that gene expression changes in foragers occur across a scale of hours and the level of expression is predicted by activity rhythms: foragers have high levels of foraging mRNA during daylight hours when they are most active outside the nests. In the experimental study, we find complex interactions in foraging expression between task behaviour and light exposure. Oscillations occur in foragers following experimental exposure to 13 L : 11 D (LD) conditions, but not in brood workers under similar conditions. No significant differences were seen in foraging expression over time in either task in 24 h dark (DD) conditions. Interestingly, the expression of foraging in both undisturbed field and experimentally treated foragers is also significantly correlated with the expression of the circadian clock gene, cycle Our results provide evidence that the regulation of this gene is context-dependent and associated with both ontogenetic and daily behavioural plasticity in field colonies of harvester ants. Our results underscore

  10. Is host plant choice by a clytrine leaf beetle mediated through interactions with the ant Crematogaster lineolata?

    PubMed

    Stiefel, Vernon L; Margolies, David C

    1998-07-01

    In the grasslands of northeastern Kansas, adult populations of Anomoea flavokansiensis, an oligophagous leaf beetle (subfamily Clytrinae), specialize on Illinois bundleflower (Desmanthus illinoensis) even though other reported host species commonly occur and are simultaneously available. We performed choice feeding tests to examine whether A. flavokansiensis adults have a fixed feeding preference for bundleflower. In choice tests, beetles ate similar amounts of bundleflower and honey locust (Gleditsia triacanthos). In addition, we measured fecundity and longevity of adults in no-choice tests to determine if adults were adapted solely to bundleflower. In no-choice tests, fecundity and longevity were no different for adults feeding on bundleflower and honey locust. We next examined the influence of host plant on the attractiveness of beetle eggs to ants. In northeastern Kansas, Crematogaster lineolata ants are attracted to A. flavokansiensis eggs and carry them into their nests where the larvae hatch and apparently reside as inquilines. C. lineolata exhibited a strong preference for eggs from female A. flavokansiensis that fed exclusively on bundleflower compared to eggs from females that fed exclusively on honey locust. Local populations of A. flavokansiensis in northeastern Kansas may specialize on bundleflower to increase the chances of their eggs being transported by C. lineolata ants into their nests. C. lineolata nests may serve as a predator-free and sheltered environment in which A. flavokansiensis eggs undergo embryogenesis.

  11. Persistence of pollination mutualisms in the presence of ants.

    PubMed

    Wang, Yuanshi; Wang, Shikun

    2015-01-01

    This paper considers plant-pollinator-ant systems in which the plant-pollinator interaction is mutualistic but ants have both positive and negative effects on plants. The ants also interfere with pollinators by preventing them from accessing plants. While a Beddington-DeAngelis (BD) formula can describe the plant-pollinator interaction, the formula is extended in this paper to characterize the pollination mutualism under the ant interference. Then, a plant-pollinator-ant system with the extended BD functional response is discussed, and global dynamics of the model demonstrate the mechanisms by which pollination mutualism can persist in the presence of ants. When the ant interference is strong, it can result in extinction of pollinators. Moreover, if the ants depend on pollination mutualism for survival, the strong interference could drive pollinators into extinction, which consequently lead to extinction of the ants themselves. When the ant interference is weak, a cooperation between plant-ant and plant-pollinator mutualisms could occur, which promotes survival of both ants and pollinators, especially in the case that ants (respectively, pollinators) cannot survive in the absence of pollinators (respectively, ants). Even when the level of ant interference remains invariant, varying ants' negative effect on plants can result in survival/extinction of both ants and pollinators. Therefore, our results provide an explanation for the persistence of pollination mutualism when there exist ants.

  12. Long-term dynamics emerging in floodplains and deltas from the interactions between hydrology and society in a changing climate

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, Giuliano; Viglione, Alberto; Yan, Kun; Brandimarte, Luigia; Blöschl, Günter

    2014-05-01

    Economic losses and fatalities associated to flood events have increased dramatically over the past decades. This situation might worsen in the near future because of rapid urbanization of many floodplains and deltas, along with enhancement of flood water levels as a result of human interventions, climate variability or sea level rise. To explore future dynamics, we developed a novel approach, which takes into account the dynamic nature of flood risk by an explicit treatment of the interactions and feedbacks between the hydrological and social components of flood risk (i.e. probability of flooding, and potential adverse consequences). In particular, we developed a socio-hydrological model that allows considering how the frequency and magnitude of flooding shapes the evolution of societies, while, at the same time, dynamic societies shape the frequency and magnitude of flooding. We then use this model to simulate long-term dynamics of different types of societies under hydrological change, e.g. increasing flood frequency. Based on the study of long-term dynamics of different floodplains and deltas around the world (e.g. Netherlands, Bangladesh), we identify two main typologies of flood-shaped societies: i) techno-societies, which "fight floods", and typically deal with risk by building and strengthening flood protection structures, such as levees or dikes; and ii) green-societies, which "lives with floods", and mainly cope with risk via adaptation measures, such as resettling out of flood prone areas. The outcomes of this study are relevant for the management of deltas and floodplains as they allow a comparison of long-term dynamics between diverse types of societies in terms of robustness to hydrological change.

  13. Reporting whole-body vibration intervention studies: recommendations of the International Society of Musculoskeletal and Neuronal Interactions.

    PubMed

    Rauch, F; Sievanen, H; Boonen, S; Cardinale, M; Degens, H; Felsenberg, D; Roth, J; Schoenau, E; Verschueren, S; Rittweger, J

    2010-09-01

    Whole-body vibration (WBV) is receiving increasing interest as a therapeutic modality to improve neuromuscular performance or to increase bone mass or density. In order to help improve the quality of reports about WBV treatment studies, the International Society of Musculoskeletal and Neuronal Interactions (ISMNI) invited experts in the field to provide suggestions on how the intervention should be described in such reports. The recommendations are presented here.

  14. Introduced fire ants can exclude native ants from critical mutualist-provided resources.

    PubMed

    Wilder, Shawn M; Barnum, Thomas R; Holway, David A; Suarez, Andrew V; Eubanks, Micky D

    2013-05-01

    Animals frequently experience resource imbalances in nature. For ants, one resource that may be particularly valuable for both introduced and native species is high-carbohydrate honeydew from hemipteran mutualists. We conducted field and laboratory experiments: (1) to test if red imported fire ants (Solenopsis invicta) competed with native ants for access to mutualisms with aphids, and (2) to quantify the effects of aphid honeydew presence or absence on colony growth of native ants. We focused on native dolichoderine ants (Formicidae, Dolichoderinae) because they are abundant ants that have omnivorous diets that frequently include mutualist-provided carbohydrates. At two sites in the southeastern US, native dolichoderine ants were far less frequent, and fire ants more frequent, at carbohydrate baits than would be expected based on their frequency in pitfall traps. A field experiment confirmed that a native ant species, Dorymyrmex bureni, was only found tending aphids when populations of S. invicta were suppressed. In the laboratory, colonies of native dolichoderine ants with access to both honeydew and insect prey had twice as many workers and over twice as much brood compared to colonies fed only ad libitum insect prey. Our results provide the first experimental evidence that introduced ants compete for access to mutualist-provided carbohydrates with native ants and that these carbohydrates represent critical resources for both introduced and native ants. These results challenge traditional paradigms of arthropod and ant nutrition and contribute to growing evidence of the importance of nutrition in mediating ecological interactions.

  15. Effect of Leader's Strategy on Opinion Formation in Networked Societies with Local Interactions

    NASA Astrophysics Data System (ADS)

    Sobkowicz, Pawel

    The work investigates the influence of leader on opinion formation in artificial networked societies. The strength of the social influence is assumed to be dictated by distance from one agent to another, as well as individual strengths of the agents. The leader is assumed to have much greater resources, which allows him to tune the way he influences the other agents. We study various strategies of using these resources to optimize the conditions needed to "convince" the whole society to leader's opinion. The flexibility of the model allows it to be used in studies of political, social and marketing activities and opinion formation.

  16. Ant nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .

    The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera.

    The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma.

    The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed.

    Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way

  17. The Ants Have It!

    ERIC Educational Resources Information Center

    Daugherty, Belinda

    2001-01-01

    Uses the GEMS guide, "Ants at Home Underground", to explore the life of ants and teach about them in a classroom setting. The activity applies students' knowledge of ants and students learn about ant colonies, what ants eat, and how they live. (SAH)

  18. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society

    USGS Publications Warehouse

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary

    2015-01-01

    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  19. ‘Bio-nano interactions: new tools, insights and impacts’: summary of the Royal Society discussion meeting

    PubMed Central

    Lynch, Iseult; Feitshans, Ilise L.; Kendall, Michaela

    2015-01-01

    Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting ‘Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged. PMID:25533104

  20. Performance of the Species-Typical Alarm Response in Young Workers of the Ant Myrmica sabuleti (Hymenoptera: Formicidae) Is Induced by Interactions with Mature Workers

    PubMed Central

    Cammaerts, Marie-Claire

    2014-01-01

    Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants’ ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. PMID:25525102

  1. How to be an ant on figs

    NASA Astrophysics Data System (ADS)

    Bain, Anthony; Harrison, Rhett D.; Schatz, Bertrand

    2014-05-01

    Mutualistic interactions are open to exploitation by one or other of the partners and a diversity of other organisms, and hence are best understood as being embedded in a complex network of biotic interactions. Figs participate in an obligate mutualism in that figs are dependent on agaonid fig wasps for pollination and the wasps are dependent on fig ovules for brood sites. Ants are common insect predators and abundant in tropical forests. Ants have been recorded on approximately 11% of fig species, including all six subgenera, and often affect the fig-fig pollinator interaction through their predation of either pollinating and parasitic wasps. On monoecious figs, ants are often associated with hemipterans, whereas in dioecious figs ants predominantly prey on fig wasps. A few fig species are true myrmecophytes, with domatia or food rewards for ants, and in at least one species this is linked to predation of parasitic fig wasps. Ants also play a role in dispersal of fig seeds and may be particularly important for hemi-epiphytic species, which require high quality establishment microsites in the canopy. The intersection between the fig-fig pollinator and ant-plant systems promises to provide fertile ground for understanding mutualistic interactions within the context of complex interaction networks.

  2. Extrafloral nectar fuels ant life in deserts

    PubMed Central

    Aranda-Rickert, Adriana; Diez, Patricia; Marazzi, Brigitte

    2014-01-01

    Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal desert of northwestern Argentina, we surveyed the richness and phenology of EFN plants and their associated ants and examined the patterns in ant–plant interaction networks. We found that 25 ant species and 11 EFN-bearing plant species were linked together through 96 pairs of associations. Plants bearing EFNs were abundant, representing ca. 19 % of the species encountered in transects and 24 % of the plant cover. Most ant species sampled (ca. 77 %) fed on EF nectar. Interactions showed a marked seasonal pattern: EFN secretion was directly related to plant phenology and correlated with the time of highest ant ground activity. Our results reveal that EFN-mediated interactions are ecologically relevant components of deserts, and that EFN-bearing plants are crucial for the survival of desert ant communities. PMID:25381258

  3. How Ants Drop Out: Ant Abundance on Tropical Mountains

    PubMed Central

    Longino, John T.; Branstetter, Michael G.; Colwell, Robert K.

    2014-01-01

    In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops. PMID:25098722

  4. Biogenic amine levels, reproduction and social dominance in the queenless ant Streblognathus peetersi

    NASA Astrophysics Data System (ADS)

    Cuvillier-Hot, Virginie; Lenoir, Alain

    2006-03-01

    Social harmony often relies on ritualised dominance interactions between society members, particularly in queenless ant societies, where colony members do not have developmentally predetermined castes but have to fight for their status in the reproductive and work hierarchy. In this behavioural plasticity, their social organisation resembles more that of vertebrates than that of the “classic” social insects. The present study investigates the neurochemistry of the queenless ant species, Streblognathus peetersi, to better understand the neural basis of the high behavioural plasticity observed in queenless ants. We report measurements of brain biogenic amines [octopamine, dopamine, serotonin] of S. peetersi ants; they reveal a new set of biogenic amine influences on social organisation with no common features with other “primitively organised societies” (bumble bees) and some common features with “highly eusocial” species (honey bees). This similarity to honey bees may either confirm the heritage of queenless species from their probably highly eusocial ancestors or highlight independent patterns of biogenic amine influences on the social organisation of these highly derived species.

  5. Differential Recruitment of Camponotus femoratus (Fabricius) Ants in Response to Ant Garden Herbivory.

    PubMed

    Vicente, R E; Dáttilo, W; Izzo, T J

    2014-12-01

    Although several studies have shown that ants can recognize chemical cues from their host plants in ant-plant systems, it is poorly demonstrated in ant gardens (AGs). In this interaction, ant species constantly interact with various epiphyte species. Therefore, it is possible to expect a convergence of chemical signals released by plants that could be acting to ensure that ants are able to recognize and defend epiphyte species frequently associated with AGs. In this study, it was hypothesized that ants recognize and differentiate among chemical stimuli released by AG epiphytes and non-AG epiphytes. We experimentally simulated leaf herbivore damage on three epiphyte species restricted to AGs and a locally abundant understory herb, Piper hispidum, in order to quantify the number of recruited Camponotus femoratus (Fabricius) defenders. When exposed to the AG epiphytes Peperomia macrostachya and Codonanthe uleana leaves, it was observed that the recruitment of C. femoratus workers was, on average, respectively 556% and 246% higher than control. However, the number of ants recruited by the AG epiphyte Markea longiflora or by the non-AG plant did not differ from paper pieces. This indicated that ants could discern between chemicals released by different plants, suggesting that ants can select better plants. These results can be explained by evolutionary process acting on both ants' capability in discerning plants' chemical compounds (innate attraction) or by ants' learning based on the epiphyte frequency in AGs (individual experience). To disentangle an innate behavior, a product of classical coevolutionary process, from an ant's learned behavior, is a complicated but important subject to understand in the evolution of ant-plant mutualisms.

  6. Moral foundations in an interacting neural networks society: A statistical mechanics analysis

    NASA Astrophysics Data System (ADS)

    Vicente, R.; Susemihl, A.; Jericó, J. P.; Caticha, N.

    2014-04-01

    The moral foundations theory supports that people, across cultures, tend to consider a small number of dimensions when classifying issues on a moral basis. The data also show that the statistics of weights attributed to each moral dimension is related to self-declared political affiliation, which in turn has been connected to cognitive learning styles by the recent literature in neuroscience and psychology. Inspired by these data, we propose a simple statistical mechanics model with interacting neural networks classifying vectors and learning from members of their social neighbourhood about their average opinion on a large set of issues. The purpose of learning is to reduce dissension among agents when disagreeing. We consider a family of learning algorithms parametrized by δ, that represents the importance given to corroborating (same sign) opinions. We define an order parameter that quantifies the diversity of opinions in a group with homogeneous learning style. Using Monte Carlo simulations and a mean field approximation we find the relation between the order parameter and the learning parameter δ at a temperature we associate with the importance of social influence in a given group. In concordance with data, groups that rely more strongly on corroborating evidence sustain less opinion diversity. We discuss predictions of the model and propose possible experimental tests.

  7. Dynamics of an ant-plant-pollinator model

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.

    2015-03-01

    In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.

  8. How citizen seismology is transforming rapid public earthquake information and interactions between seismologists and society

    NASA Astrophysics Data System (ADS)

    Bossu, Rémy; Steed, Robert; Mazet-Roux, Gilles; Roussel, Fréderic; Caroline, Etivant

    2015-04-01

    Historical earthquakes are only known to us through written recollections and so seismologists have a long experience of interpreting the reports of eyewitnesses, explaining probably why seismology has been a pioneer in crowdsourcing and citizen science. Today, Internet has been transforming this situation; It can be considered as the digital nervous system comprising of digital veins and intertwined sensors that capture the pulse of our planet in near real-time. How can both seismology and public could benefit from this new monitoring system? This paper will present the strategy implemented at Euro-Mediterranean Seismological Centre (EMSC) to leverage this new nervous system to detect and diagnose the impact of earthquakes within minutes rather than hours and how it transformed information systems and interactions with the public. We will show how social network monitoring and flashcrowds (massive website traffic increases on EMSC website) are used to automatically detect felt earthquakes before seismic detections, how damaged areas can me mapped through concomitant loss of Internet sessions (visitors being disconnected) and the benefit of collecting felt reports and geolocated pictures to further constrain rapid impact assessment of global earthquakes. We will also describe how public expectations within tens of seconds of ground shaking are at the basis of improved diversified information tools which integrate this user generated contents. A special attention will be given to LastQuake, the most complex and sophisticated Twitter QuakeBot, smartphone application and browser add-on, which deals with the only earthquakes that matter for the public: the felt and damaging earthquakes. In conclusion we will demonstrate that eyewitnesses are today real time earthquake sensors and active actors of rapid earthquake information.

  9. Rationality in collective decision-making by ant colonies.

    PubMed

    Edwards, Susan C; Pratt, Stephen C

    2009-10-22

    Economic models of animal behaviour assume that decision-makers are rational, meaning that they assess options according to intrinsic fitness value and not by comparison with available alternatives. This expectation is frequently violated, but the significance of irrational behaviour remains controversial. One possibility is that irrationality arises from cognitive constraints that necessitate short cuts like comparative evaluation. If so, the study of whether and when irrationality occurs can illuminate cognitive mechanisms. We applied this logic in a novel setting: the collective decisions of insect societies. We tested for irrationality in colonies of Temnothorax ants choosing between two nest sites that varied in multiple attributes, such that neither site was clearly superior. In similar situations, individual animals show irrational changes in preference when a third relatively unattractive option is introduced. In contrast, we found no such effect in colonies. We suggest that immunity to irrationality in this case may result from the ants' decentralized decision mechanism. A colony's choice does not depend on site comparison by individuals, but instead self-organizes from the interactions of multiple ants, most of which are aware of only a single site. This strategy may filter out comparative effects, preventing systematic errors that would otherwise arise from the cognitive limitations of individuals.

  10. Variation in Extrafloral Nectary Productivity Influences the Ant Foraging.

    PubMed

    Lange, Denise; Calixto, Eduardo Soares; Del-Claro, Kleber

    2017-01-01

    Extrafloral nectar is the main food source offered by plants to predatory ants in most land environments. Although many studies have demonstrated the importance of extrafloral nectaries (EFNs) to plant defense against herbivores, the influence of EFNs secretory activity pattern on predatory ants remains yet not fully understood. Here, we verified the relation between the extrafloral nectar production of a plant community in Cerrado in different times of the day, and its attractiveness to ants. The extrafloral nectaries (EFNs) of seven plant species showed higher productivity overnight. Ant abundance was higher in times of large extrafloral nectar production, however, there was no positive relation between ant richness on plants and EFNs productivity. There was temporal resource partitioning among ant species, and it indicates strong resource competition. The nectar productivity varied among plant species and time of the day, and it influenced the visitation patterns of ants. Therefore, EFNs are a key ant-plant interaction driver in the studied system.

  11. Variation in Extrafloral Nectary Productivity Influences the Ant Foraging

    PubMed Central

    2017-01-01

    Extrafloral nectar is the main food source offered by plants to predatory ants in most land environments. Although many studies have demonstrated the importance of extrafloral nectaries (EFNs) to plant defense against herbivores, the influence of EFNs secretory activity pattern on predatory ants remains yet not fully understood. Here, we verified the relation between the extrafloral nectar production of a plant community in Cerrado in different times of the day, and its attractiveness to ants. The extrafloral nectaries (EFNs) of seven plant species showed higher productivity overnight. Ant abundance was higher in times of large extrafloral nectar production, however, there was no positive relation between ant richness on plants and EFNs productivity. There was temporal resource partitioning among ant species, and it indicates strong resource competition. The nectar productivity varied among plant species and time of the day, and it influenced the visitation patterns of ants. Therefore, EFNs are a key ant-plant interaction driver in the studied system. PMID:28046069

  12. Self-organized criticality in ant brood tending.

    PubMed

    O'Toole, D V; Robinson, P A; Myerscough, M R

    2003-03-07

    A new stochastic lattice gas model of ant brood tending is formulated to examine the role played by repulsive ant-ant interactions in the even distribution of care among brood members. The deterministic limit of the model is known to be self-organized critical. Numerical simulations of the model show that the ant-ant repulsion facilitates an even distribution of brood care in the middle of the brood. This provides a possible explanation for the fact that ants sort their brood so that the youngest brood (which are most in need of care) are placed in the middle. Simulations show that the uniformity of brood care distribution is optimal when ants operate in a regime intermediate between completely random and completely deterministic. A certain degree of randomness helps ants to avoid becoming trapped in suboptimal configurations but does not destroy the long-range correlations that are inherent to self-organized critical systems.

  13. Ant-plants and fungi: a new threeway symbiosis.

    PubMed

    Defossez, Emmanuel; Selosse, Marc-André; Dubois, Marie-Pierre; Mondolot, Laurence; Faccio, Antonella; Djieto-Lordon, Champlain; McKey, Doyle; Blatrix, Rumsaïs

    2009-06-01

    Symbioses between plants and fungi, fungi and ants, and ants and plants all play important roles in ecosystems. Symbioses involving all three partners appear to be rare. Here, we describe a novel tripartite symbiosis in which ants and a fungus inhabit domatia of an ant-plant, and present evidence that such interactions are widespread. We investigated 139 individuals of the African ant-plant Leonardoxa africana for occurrence of fungus. Behaviour of mutualist ants toward the fungus within domatia was observed using a video camera fitted with an endoscope. Fungi were identified by sequencing a fragment of their ribosomal DNA. Fungi were always present in domatia occupied by mutualist ants but never in domatia occupied by opportunistic or parasitic ants. Ants appear to favour the propagation, removal and maintenance of the fungus. Similar fungi were associated with other ant-plants in Cameroon. All belong to the ascomycete order Chaetothyriales; those from L. africana formed a monophyletic clade. These new plant-ant-fungus associations seem to be specific, as demonstrated within Leonardoxa and as suggested by fungal phyletic identities. Such tripartite associations are widespread in African ant-plants but have long been overlooked. Taking fungal partners into account will greatly enhance our understanding of symbiotic ant-plant mutualisms.

  14. Fire Ant Bites

    MedlinePlus

    ... be wary of these systemic reactions. They are: serum sickness, seizures, mononeuritis, nephrotic syndrome, and worsening of preexisting cardiopulmonary disease. When you first identify the fire ant you ...

  15. Fire disturbance disrupts an acacia ant-plant mutualism in favor of a subordinate ant species.

    PubMed

    Sensenig, Ryan L; Kimuyu, Duncan K; Ruiz Guajardo, Juan Carlos; Veblen, Kari E; Riginos, Corinna; Young, Truman P

    2017-03-08

    Although disturbance theory has been recognized as a useful framework in examining the stability of ant-plant mutualisms, very few studies have examined the effects of fire disturbance on these mutualisms. In myrmecophyte-dominated savannas, fire and herbivory are key drivers that could influence ant-plant mutualisms by causing complete colony mortality and/or decreasing colony size, which potentially could alter dominance hierarchies if subordinate species are more fire resilient. We used a large-scale, replicated fire experiment to examine long-term effects of fire on acacia-ant community composition. To determine if fire shifted ant occupancy from a competitive dominant to a subordinate ant species we surveyed the acacia-ant community in 6-7-year-old burn sites and examined how the spatial scale of these burns influenced ant community responses. We then used two short-term fire experiments to explore possible mechanisms for the shifts in community patterns observed. Because survival of ant colonies is largely dependent on their ability to detect and escape an approaching fire, we first tested the evacuation response of all four ant species when exposed to smoke (fire signal). Then to better understand how fire and its interaction with large mammal herbivory affect the density of ants per tree, we quantified ant worker density in small prescribed burns within herbivore exclusion plots. We found clear evidence suggesting that fire disturbance favored the subordinate ant Crematogaster nigriceps more than the dominant and strong mutualist ant C. mimosae, whereby C. nigriceps: 1) was the only species to occupy a greater proportion of trees in 6-7 year old burn sites compared to unburned sites, 2) had higher burn/unburn tree ratios with increasing burn size; and 3) evacuated significantly faster than C. mimosae in the presence of smoke. Fire and herbivory had opposite effects on ant density per meter of branch for both C. nigriceps and C. mimosae, with fire decreasing

  16. Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.

    2003-01-01

    ANTS (Autonomous Nano-Technology Swarm), a large (1000 member) swarm of nano to picoclass (10 to 1 kg) totally autonomous spacecraft, are being developed as a NASA advanced mission concept. ANTS, based on a hierarchical insect social order, use an evolvable, self-similar, hierarchical neural system in which individual spacecraft represent the highest level nodes. ANTS uses swarm intelligence attained through collective, cooperative interactions of the nodes at all levels of the system. At the highest levels this can take the form of cooperative, collective behavior among the individual spacecraft in a very large constellation. The ANTS neural architecture is designed for totally autonomous operation of complex systems including spacecraft constellations. The ANTS (Autonomous Nano Technology Swarm) concept has a number of possible applications. A version of ANTS designed for surveying and determining the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.

  17. Friend or foe? A behavioral and stable isotopic investigation of an ant-plant symbiosis.

    PubMed

    Tillberg, Chadwick V

    2004-08-01

    In ant-plant symbioses, the behavior of ant inhabitants affects the nature of the interaction, ranging from mutualism to parasitism. Mutualistic species confer a benefit to the plant, while parasites reap the benefits of the interaction without reciprocating, potentially resulting in a negative impact on the host plant. Using the ant-plant symbiosis between Cordia alliodora and its ant inhabitants as a model system, I examine the costs and benefits of habitation by the four most common ant inhabitants at La Selva Biological Station, Costa Rica. Costs are measured by counting coccoids associated with each ant species. Benefits include patrolling behavior, effectiveness at locating resources, and recruitment response. I also compare the diets of the four ant species using stable isotope analysis of nitrogen (N) and carbon (C). Ants varied in their rates of association with coccoids, performance of beneficial behaviors, and diet. These differences in cost, benefit, and diet among the ant species suggest differences in the nature of the symbiotic relationship between C. alliodora and its ants. Two of the ant species behave in a mutualistic manner, while the other two ant species appear to be parasites of the mutualism. I determined that the mutualistic ants feed at a higher trophic level than the parasitic ants. Behavioral and dietary evidence indicate the protective role of the mutualists, and suggest that the parasitic ants do not protect the plant by consuming herbivores.

  18. Size matters: nest colonization patterns for twig-nesting ants

    PubMed Central

    Jiménez-Soto, Estelí; Philpott, Stacy M

    2015-01-01

    Understanding the drivers of ant diversity and co-occurrence in agroecosystems is fundamental because ants participate in interactions that influence agroecosystem processes. Multiple local and regional factors influence ant community assembly. We examined local factors that influence the structure of a twig-nesting ant community in a coffee system in Mexico using an experimental approach. We investigated whether twig characteristics (nest entrance size and diversity of nest entrance sizes) and nest strata (canopy shade tree or coffee shrub) affected occupation, species richness, and community composition of twig-nesting ants and whether frequency of occupation of ant species varied with particular nest entrance sizes or strata. We conducted our study in a shaded coffee farm in Chiapas, Mexico, between March and June 2012. We studied ant nest colonization by placing artificial nests (bamboo twigs) on coffee shrubs and shade trees either in diverse or uniform treatments. We also examined whether differences in vegetation (no. of trees, canopy cover and coffee density) influenced nest colonization. We found 33 ant species occupying 73% of nests placed. Nest colonization did not differ with nest strata or size. Mean species richness of colonizing ants was significantly higher in the diverse nest size entrance treatment, but did not differ with nest strata. Community composition differed between strata and also between the diverse and uniform size treatments on coffee shrubs, but not on shade trees. Some individual ant species were more frequently found in certain nest strata and in nests with certain entrance sizes. Our results indicate that twig-nesting ants are nest-site limited, quickly occupy artificial nests of many sizes, and that trees or shrubs with twigs of a diversity of entrance sizes likely support higher ant species richness. Further, individual ant species more frequently occupy nests with different sized entrances promoting ant richness on individual

  19. Bioturbation by Fire Ants in the Coastal Prairie of Texas

    NASA Astrophysics Data System (ADS)

    Cameron, G.; Williams, L.

    2001-12-01

    Fire ants (Solenopsis invicta) were introduced to the US in the early part of the last century. They have spread throughout the southeastern US in the absence of native competitors and predators with a range limited by abiotic factors. Each fire ant mound contains thousands of individuals, can be large, and can be numerous enough to comprise a dominant feature of the landscape. Studies of this species have focused upon its spread, formation of single- and multiple-queen colonies, genetic structure, and impact on native fauna and human health. Some studies have analyzed native fire ant-soil interactions, but few studies have examined the process of bioturbation by introduced fire ants in native ecosystems. Fire ants on the coastal prairie of Texas primarily are of the multiple-queen type that exhibit a much higher density of mounds than the single-queen type. Consequently, mound-building activities by fire ants can have a marked effect upon soil structure and nutrient content and may affect soil organisms and plants. Fire ant activity, mound density, mound dispersion, soil texture, soil permeability, soil moisture content, and soil nutrients were measured. Fire ants mounds are visible aboveground from April-November. Density of mounds was 117-738/ha, and average mound lifespan was 3.6 months with only 9% of the mounds remaining active throughout the entire season. Mounds were dispersed randomly. Foraging activity by fire ants was from June through October with a peak in July. Annual soil turnover was estimated by collecting and weighing mounds. There was no effect of ant mounds on soil texture, but water infiltration was higher in areas with ant mounds. Early-season samples showed no nutrient differences, but late-season samples showed that ant mounds contained higher amounts of micronutrients than random samples of soil. These data are compared to similar data on effects of mounds from native ants and from native and introduced ants in different habitats.

  20. Cultural Development through the Interaction between Education, the Community, and Society at Large. Contributions of Education to Cultural Development.

    ERIC Educational Resources Information Center

    Engstrom, K.

    Museums play an important role in the transmission of culture and traditions and provide a collective memory of a community. A number of museum related institutions, known as the Science Centra, have arisen to offer self-directed learning activities in problem solving and understanding the processes related to everyday life. In a modern society,…

  1. Ecology of a fig ant-plant

    NASA Astrophysics Data System (ADS)

    Harrison, Rhett D.

    2014-05-01

    Mutualistic interactions are embedded in networks of interactions that affect the benefits accruing to the mutualistic partners. Figs and their pollinating wasps are engaged in an obligate mutualism in which the fig is dependent on the fig pollinator for pollination services and the pollinator is dependent on fig ovules for brood sites. This mutualism is exploited by non-pollinating fig wasps that utilise the same ovules, but do not provide a pollination service. Most non-pollinating wasps oviposit from outside the inflorescence (syconium), where they are vulnerable to ant predation. Ficus schwarzii is exposed to high densities of non-pollinating wasps, but Philidris sp. ants patrolling the syconia prevent them from ovipositing. Philidris rarely catch wasps, but the fig encourages the patrolling by providing a reward through extra-floral nectaries on the surface of syconia. Moreover, the reward is apparently only produced during the phase when parasitoids are ovipositing. An ant-exclusion experiment demonstrated that, in the absence of ants, syconia were heavily attacked and many aborted as a consequence. Philidris was normally rare on the figs during the receptive phase or at the time of day when wasp offspring are emerging, so predation on pollinators was limited. However, Myrmicaria sp. ants, which only occurred on three trees, preyed substantially on pollinating as well as non-pollinating wasps. F. schwarzii occurs in small clusters of trees and has an exceptionally rapid crop turnover. These factors appear to promote high densities of non-pollinating wasps and, as a consequence, may have led to both a high incidence of ants on trees and increased selective pressure on fig traits that increase the payoffs of the fig-ant interaction for the fig. The fig receives no direct benefit from the reward it provides, but protects pollinating wasps that will disperse its pollen.

  2. Mexican Society of Bioelectromagnetism

    SciTech Connect

    Canedo, Luis

    2008-08-11

    In July 2007 physicians, biologists and physicists that have collaborated in previous meetings of the medical branch of the Mexican Physical Society constituted the Mexican Society of Bioelectromagnetism with the purpose of promote scientific study of the interaction of electromagnetic energy (at frequencies ranging from zero Hertz through those of visible light) and acoustic energy with biological systems. A second goal was to increase the contribution of medical and biological professionals in the meetings of the medical branch of the Mexican Physical Society. The following paragraphs summarize some objectives of the Mexican Society of Bioelectromagnetism for the next two years.

  3. Transgenerational effects and the cost of ant tending in aphids.

    PubMed

    Tegelaar, Karolina; Glinwood, Robert; Pettersson, Jan; Leimar, Olof

    2013-11-01

    In mutualistic interactions, partners obtain a net benefit, but there may also be costs associated with the provision of benefits for a partner. The question of whether aphids suffer such costs when attended by ants has been raised in previous work. Transgenerational effects, where offspring phenotypes are adjusted based on maternal influences, could be important in the mutualistic interaction between aphids and ants, in particular because aphids have telescoping generations where two offspring generations can be present in a mature aphid. We investigated the immediate and transgenerational influence of ant tending on aphid life history and reproduction by observing the interaction between the facultative myrmecophile Aphis fabae and the ant Lasius niger over 13 aphid generations in the laboratory. We found that the effect of ant tending changes dynamically over successive aphid generations after the start of tending. Initially, total aphid colony weight, aphid adult weight and aphid embryo size decreased compared with untended aphids, consistent with a cost of ant association, but these differences disappeared within four generations of interaction. We conclude that transgenerational effects are important in the aphid-ant interactions and that the costs for aphids of being tended by ants can vary over generations.

  4. Autism Society

    MedlinePlus

    ... and fun! Register Today Improving the lives of all affected by autism. The Autism Society is the ... and advocacy. Learn more Improving the lives of all affected by autism. The Autism Society is the ...

  5. Density-dependent benefits in ant-hemipteran mutualism? The case of the ghost ant Tapinoma melanocephalum (Hymenoptera: Formicidae) and the invasive mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    PubMed

    Zhou, Aiming; Kuang, Beiqing; Gao, Yingrui; Liang, Guangwen

    2015-01-01

    Although density-dependent benefits to hemipterans from ant tending have been measured many times, few studies have focused on integrated effects such as interactions between ant tending, natural enemy density, and hemipteran density. In this study, we tested whether the invasive mealybug Phenacoccus solenopsis is affected by tending by ghost ants (Tapinoma melanocephalum), the presence of parasitoids, mealybug density, parasitoid density and interactions among these factors. Our results showed that mealybug colony growth rate and percentage parasitism were significantly affected by ant tending, parasitoid presence, and initial mealybug density separately. However, there were no interactions among the independent factors. There were also no significant interactions between ant tending and parasitoid density on either mealybug colony growth rate or percentage parasitism. Mealybug colony growth rate showed a negative linear relationship with initial mealybug density but a positive linear relationship with the level of ant tending. These results suggest that benefits to mealybugs are density-independent and are affected by ant tending level.

  6. Wolbachia transmission dynamics in Formica wood ants

    PubMed Central

    2008-01-01

    the ants were infected irrespective of the family structure of their societies gives no support to the proposed hypotheses that the spreading of Wolbachia in ants might be associated to the types of their societies. PMID:18291041

  7. Rationality in collective decision-making by ant colonies

    PubMed Central

    Edwards, Susan C.; Pratt, Stephen C.

    2009-01-01

    Economic models of animal behaviour assume that decision-makers are rational, meaning that they assess options according to intrinsic fitness value and not by comparison with available alternatives. This expectation is frequently violated, but the significance of irrational behaviour remains controversial. One possibility is that irrationality arises from cognitive constraints that necessitate short cuts like comparative evaluation. If so, the study of whether and when irrationality occurs can illuminate cognitive mechanisms. We applied this logic in a novel setting: the collective decisions of insect societies. We tested for irrationality in colonies of Temnothorax ants choosing between two nest sites that varied in multiple attributes, such that neither site was clearly superior. In similar situations, individual animals show irrational changes in preference when a third relatively unattractive option is introduced. In contrast, we found no such effect in colonies. We suggest that immunity to irrationality in this case may result from the ants’ decentralized decision mechanism. A colony's choice does not depend on site comparison by individuals, but instead self-organizes from the interactions of multiple ants, most of which are aware of only a single site. This strategy may filter out comparative effects, preventing systematic errors that would otherwise arise from the cognitive limitations of individuals. PMID:19625319

  8. Resource redistribution in polydomous ant nest networks: local or global?

    PubMed Central

    Franks, Daniel W.; Robinson, Elva J.H.

    2014-01-01

    An important problem facing organisms in a heterogeneous environment is how to redistribute resources to where they are required. This is particularly complex in social insect societies as resources have to be moved both from the environment into the nest and between individuals within the nest. Polydomous ant colonies are split between multiple spatially separated, but socially connected, nests. Whether, and how, resources are redistributed between nests in polydomous colonies is unknown. We analyzed the nest networks of the facultatively polydomous wood ant Formica lugubris. Our results indicate that resource redistribution in polydomous F. lugubris colonies is organized at the local level between neighboring nests and not at the colony level. We found that internest trails connecting nests that differed more in their amount of foraging were stronger than trails between nests with more equal foraging activity. This indicates that resources are being exchanged directly from nests with a foraging excess to nests that require resources. In contrast, we found no significant relationships between nest properties, such as size and amount of foraging, and network measures such as centrality and connectedness. This indicates an absence of a colony-level resource exchange. This is a clear example of a complex behavior emerging as a result of local interactions between parts of a system. PMID:25214755

  9. Entangled active matter: From cells to ants

    NASA Astrophysics Data System (ADS)

    Hu, D. L.; Phonekeo, S.; Altshuler, E.; Brochard-Wyart, F.

    2016-07-01

    Both cells and ants belong to the broad field of active matter, a novel class of non-equilibrium materials composed of many interacting units that individually consume energy and collectively generate motion or mechanical stresses. However cells and ants differ from fish and birds in that they can support static loads. This is because cells and ants can be entangled, so that individual units are bound by transient links. Entanglement gives cells and ants a set of remarkable properties usually not found together, such as the ability to flow like a fluid, spring back like an elastic solid, and self-heal. In this review, we present the biology, mechanics and dynamics of both entangled cells and ants. We apply concepts from soft matter physics and wetting to characterize these systems as well as to point out their differences, which arise from their differences in size. We hope that our viewpoints will spur further investigations into cells and ants as active materials, and inspire the fabrication of synthetic active matter.

  10. Congestion and communication in confined ant traffic

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.

    2014-03-01

    Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.

  11. Social coercion of larval development in an ant species

    NASA Astrophysics Data System (ADS)

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  12. Fire Ant Allergy

    MedlinePlus

    ... Pongdee, MD, FAAAAI Fire ants are a stinging insect typically found in the South/Southeast areas of ... specialized training and skills to test for stinging insect allergy and develop a plan to manage allergies. ...

  13. Ants and ant scent reduce bumblebee pollination of artificial flowers.

    PubMed

    Cembrowski, Adam R; Tan, Marcus G; Thomson, James D; Frederickson, Megan E

    2014-01-01

    Ants on flowers can disrupt pollination by consuming rewards or harassing pollinators, but it is difficult to disentangle the effects of these exploitative and interference forms of competition on pollinator behavior. Using highly rewarding and quickly replenishing artificial flowers that simulate male or female function, we allowed bumblebees (Bombus impatiens) to forage (1) on flowers with or without ants (Myrmica rubra) and (2) on flowers with or without ant scent cues. Bumblebees transferred significantly more pollen analogue both to and from ant-free flowers, demonstrating that interference competition with ants is sufficient to modify pollinator foraging behavior. Bees also removed significantly less pollen analogue from ant-scented flowers than from controls, making this the first study to show that bees can use ant scent to avoid harassment at flowers. Ant effects on pollinator behavior, possibly in addition to their effects on pollen viability, may contribute to the evolution of floral traits minimizing ant visitation.

  14. Planetary Society

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  15. Recognition of Social Identity in Ants

    PubMed Central

    Bos, Nick; d’Ettorre, Patrizia

    2012-01-01

    Recognizing the identity of others, from the individual to the group level, is a hallmark of society. Ants, and other social insects, have evolved advanced societies characterized by efficient social recognition systems. Colony identity is mediated by colony specific signature mixtures, a blend of hydrocarbons present on the cuticle of every individual (the “label”). Recognition occurs when an ant encounters another individual, and compares the label it perceives to an internal representation of its own colony odor (the “template”). A mismatch between label and template leads to rejection of the encountered individual. Although advances have been made in our understanding of how the label is produced and acquired, contradictory evidence exists about information processing of recognition cues. Here, we review the literature on template acquisition in ants and address how and when the template is formed, where in the nervous system it is localized, and the possible role of learning. We combine seemingly contradictory evidence in to a novel, parsimonious theory for the information processing of nestmate recognition cues. PMID:22461777

  16. Alate susceptibility in ants

    PubMed Central

    Ho, Eddie K H; Frederickson, Megan E

    2014-01-01

    Pathogens are predicted to pose a particular threat to eusocial insects because infections can spread rapidly in colonies with high densities of closely related individuals. In ants, there are two major castes: workers and reproductives. Sterile workers receive no direct benefit from investing in immunity, but can gain indirect fitness benefits if their immunity aids the survival of their fertile siblings. Virgin reproductives (alates), on the other hand, may be able to increase their investment in reproduction, rather than in immunity, because of the protection they receive from workers. Thus, we expect colonies to have highly immune workers, but relatively more susceptible alates. We examined the survival of workers, gynes, and males of nine ant species collected in Peru and Canada when exposed to the entomopathogenic fungus Beauveria bassiana. For the seven species in which treatment with B. bassiana increased ant mortality relative to controls, we found workers were significantly less susceptible compared with both alate sexes. Female and male alates did not differ significantly in their immunocompetence. Our results suggest that, as with other nonreproductive tasks in ant colonies like foraging and nest maintenance, workers have primary responsibility for colony immunity, allowing alates to specialize on reproduction. We highlight the importance of colony-level selection on individual immunity in ants and other eusocial organisms. PMID:25540683

  17. Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial

    NASA Astrophysics Data System (ADS)

    Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam

    2016-01-01

    Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.

  18. Routing Vehicles with Ants

    NASA Astrophysics Data System (ADS)

    Tan, Wen Fang; Lee, Lai Soon; Majid, Zanariah Abdul; Seow, Hsin Vonn

    Routing vehicles involve the design of an optimal set of routes for a fleet of vehicles to serve a number of customers with known demands. This research develops an Ant Colony Optimization for the vehicle routing with one central depot and identical vehicles. The procedure simulates the behavior of real ants that always find the shortest path between their nest and a food source through a form of communication, pheromone trail. Finally, preliminary results on the learning of the algorithm testing on benchmark data set will be presented in this paper.

  19. Fossil evidence for the early ant evolution

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André

    2008-02-01

    Ants are one of the most studied insects in the world; and the literature devoted to their origin and evolution, systematics, ecology, or interactions with plants, fungi and other organisms is prolific. However, no consensus yet exists on the age estimate of the first Formicidae or on the origin of their eusociality. We review the fossil and biogeographical record of all known Cretaceous ants. We discuss the possible origin of the Formicidae with emphasis on the most primitive subfamily Sphecomyrminae according to its distribution and the Early Cretaceous palaeogeography. And we review the evidence of true castes and eusociality of the early ants regarding their morphological features and their manner of preservation in amber. The mid-Cretaceous amber forest from south-western France where some of the oldest known ants lived, corresponded to a moist tropical forest close to the shore with a dominance of gymnosperm trees but where angiosperms (flowering plants) were already diversified. This palaeoenvironmental reconstruction supports an initial radiation of ants in forest ground litter coincident with the rise of angiosperms, as recently proposed as an ecological explanation for their origin and successful evolution.

  20. Nectar Theft and Floral Ant-Repellence: A Link between Nectar Volume and Ant-Repellent Traits?

    PubMed Central

    Ballantyne, Gavin; Willmer, Pat

    2012-01-01

    As flower visitors, ants rarely benefit a plant. They are poor pollinators, and can also disrupt pollination by deterring other flower visitors, or by stealing nectar. Some plant species therefore possess floral ant-repelling traits. But why do particular species have such traits when others do not? In a dry forest in Costa Rica, of 49 plant species around a third were ant-repellent at very close proximity to a common generalist ant species, usually via repellent pollen. Repellence was positively correlated with the presence of large nectar volumes. Repellent traits affected ant species differently, some influencing the behaviour of just a few species and others producing more generalised ant-repellence. Our results suggest that ant-repellent floral traits may often not be pleiotropic, but instead could have been selected for as a defence against ant thieves in plant species that invest in large volumes of nectar. This conclusion highlights to the importance of research into the cost of nectar production in future studies into ant-flower interactions. PMID:22952793

  1. The ants go marching millions by millions: invasive ant research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...

  2. The Ants Go Marching Millions by Millions: Invasive Ant Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...

  3. Army ants: an evolutionary bestseller?

    PubMed

    Berghoff, Stefanie M

    2003-09-02

    Army ants are characterized by a complex combination of behavioral and morphological traits. Molecular data now indicate that army ant behavior has a unique evolutionary origin and has been conserved for over more than 100 million years.

  4. Odorous House Ants (Tapinoma sessile) as Back-Seat Drivers of Localized Ant Decline in Urban Habitats

    PubMed Central

    Salyer, Adam; Bennett, Gary W.; Buczkowski, Grzegorz A.

    2014-01-01

    Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban ‘invasion’. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a

  5. Odorous house ants (Tapinoma sessile) as back-seat drivers of localized ant decline in urban habitats.

    PubMed

    Salyer, Adam; Bennett, Gary W; Buczkowski, Grzegorz A

    2014-01-01

    Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban 'invasion'. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a "back

  6. Ant species identity mediates reproductive traits and allocation in an ant-garden bromeliad

    PubMed Central

    Leroy, Céline; Corbara, Bruno; Pélozuelo, Laurent; Carrias, Jean-François; Dejean, Alain; Céréghino, Régis

    2012-01-01

    Background and Aims Determining the sources of variation in floral morphology is crucial to understanding the mechanisms underlying Angiosperm evolution. The selection of floral and reproductive traits is influenced by the plant's abiotic environment, florivores and pollinators. However, evidence that variations in floral traits result from mutualistic interactions with insects other than pollinators is lacking in the published literature and has rarely been investigated. We aimed to determine whether the association with either Camponotus femoratus or Pachycondyla goeldii (both involved in seed dispersal and plant protection) mediates the reproductive traits and allocation of Aechmea mertensii, an obligatory ant-garden tank-bromeliad, differently. Methods Floral and reproductive traits were compared between the two A. mertensii ant-gardens. The nitrogen flux from the ants to the bromeliads was investigated through experimental enrichments with stable isotopes (15N). Key Results Camponotus femoratus-associated bromeliads produced inflorescences up to four times longer than did P. goeldii-associated bromeliads. Also, the numbers of flowers and fruits were close to four times higher, and the number of seeds and their mass per fruit were close to 1·5 times higher in C. femoratus than in P. goeldii-associated bromeliads. Furthermore, the 15N-enrichment experiment showed that C. femoratus-associated bromeliads received more nitrogen from ants than did P. goeldii-associated bromeliads, with subsequent positive repercussions on floral development. Greater benefits were conferred to A. mertensii by the association with C. femoratus compared with P. goeldii ants. Conclusions We show for the first time that mutualistic associations with ants can result in an enhanced reproductive allocation for the bromeliad A. mertensii. Nevertheless, the strength and direction of the selection of floral and fruit traits change based on the ant species and were not related to light

  7. Can the Argentine ant ( Linepithema humile Mayr) replace native ants in myrmecochory?

    NASA Astrophysics Data System (ADS)

    Gómez, Crisanto; Oliveras, Jordi

    2003-04-01

    We analyse the influence of the Argentine ant ( Linepithema humile Mayr) on the seed dispersal process of the myrmecochorous plants Euphorbia characias, E. biumbellata, Genista linifolia, G. triflora, G. monspessulana and Sarothamnus arboreus. The observations were made in two study plots of Mediterranean cork-oak secondary forest (invaded and non-invaded by L. humile). The presence of L. humile implies the displacement of all native ant species that disperse seeds. Seed transports in the non-invaded zone were carried out by eight ant species. In the invaded zone, L. humile workers removed and transported seeds to the nest. In vertebrate exclusion trials, we observed the same level of seed removal in the invaded and non-invaded zones. Two findings could explain this result. Although mean time to seed localization was higher for native ants (431.7 s) than that for L. humile (150.5 s), the mean proportion of seeds transported after being detected was higher (50.1%) in non-invaded than in invaded (16.8%) zones. The proportion of seeds removed and transported into an ant nest after an ant-seed interaction had dramatically reduced from non-invaded (41.9%) to invaded (7.4%) zones. The levels of seed dispersal by ants found prior to invasion are unlikely to be maintained in invaded zones. However, total replacement of seed dispersal function is possible if contact iteration finally offers similar levels or quantities of seeds reaching the nests. The results obtained confirm that the Argentine ant invasion may affect myrmecochory dramatically in the Mediterranean biome.

  8. Tiny, Powerful, Awesome Ants!

    ERIC Educational Resources Information Center

    Tate, Kathleen

    2007-01-01

    Peering through a thematic science lens--elementary students embarked on a one-week study of ants during a month-long summer school program. This integrated unit addressed reading and writing skills while developing the science-process skills of observation, inferring, and communicating in a motivating and authentic way. Pre- and post-assessments…

  9. Spectacular Batesian mimicry in ants.

    PubMed

    Ito, Fuminori; Hashim, Rosli; Huei, Yek Sze; Kaufmann, Eva; Akino, Toshiharu; Billen, Johan

    2004-10-01

    The mechanism by which palatable species take advantage of their similarity in appearance to those that are unpalatable, in order to avoid predation, is called Batesian mimicry. Several arthropods are thought to be Batesian mimics of social insects; however, social insects that are Batesian mimics among themselves are rare. In Malaysia we found a possible Batesian mimic in an arboreal ant species, Camponotus sp., which was exclusively observed on foraging trails of the myrmicine ant Crematogaster inflata. The bright yellow and black colouring pattern, as well as the walking behaviour, were very similar in both species. We observed general interactions between the two species, and tested their palatability and the significance of the remarkably similar visual colour patterns for predator avoidance. Prey offered to C. inflata was also eaten by Camponotus workers in spite of their being attacked by C. inflata, indicating that Camponotus sp. is a commensal of C. inflata. An experiment with chicks as potential predators suggests that Camponotus sp. is palatable whereas C. inflata is unpalatable. After tasting C. inflata, the chicks no longer attacked Camponotus sp., indicating that Camponotus sp. is a Batesian mimic of Crematogaster inflata.

  10. Spectacular Batesian mimicry in ants

    NASA Astrophysics Data System (ADS)

    Ito, Fuminori; Hashim, Rosli; Huei, Yek Sze; Kaufmann, Eva; Akino, Toshiharu; Billen, Johan

    2004-10-01

    The mechanism by which palatable species take advantage of their similarity in appearance to those that are unpalatable, in order to avoid predation, is called Batesian mimicry. Several arthropods are thought to be Batesian mimics of social insects; however, social insects that are Batesian mimics among themselves are rare. In Malaysia we found a possible Batesian mimic in an arboreal ant species, Camponotus sp., which was exclusively observed on foraging trails of the myrmicine ant Crematogaster inflata. The bright yellow and black colouring pattern, as well as the walking behaviour, were very similar in both species. We observed general interactions between the two species, and tested their palatability and the significance of the remarkably similar visual colour patterns for predator avoidance. Prey offered to C. inflata was also eaten by Camponotus workers in spite of their being attacked by C. inflata, indicating that Camponotus sp. is a commensal of C. inflata. An experiment with chicks as potential predators suggests that Camponotus sp. is palatable whereas C. inflata is unpalatable. After tasting C. inflata, the chicks no longer attacked Camponotus sp., indicating that Camponotus sp. is a Batesian mimic of Crematogaster inflata.

  11. Ant allergens and hypersensitivity reactions in response to ant stings.

    PubMed

    Potiwat, Rutcharin; Sitcharungsi, Raweerat

    2015-12-01

    Hypersensitivity reactions caused by ant stings are increasingly recognized as an important cause of death by anaphylaxis. Only some species of ants ( e.g. Solenopsis spp., Myrmecia spp., and Pachycondyla spp.) cause allergic reactions. Ant species are identified by evaluating the morphologic structures of worker ants or by molecular techniques. Ant venom contains substances, including acids and alkaloids, that cause toxic reactions, and those from Solenopsis invicta or the imported fire ant have been widely studied. Piperidine alkaloids and low protein contents can cause local reactions (sterile pustules) and systemic reactions (anaphylaxis). Imported fire ant venoms are cross-reactive; for example, the Sol i 1 allergen from S. invicta has cross-reactivity with yellow jacket phospholipase. The Sol i 3 allergen is a member of the antigen 5 family that has amino acid sequence identity with vespid antigen 5. The clinical presentations of ant hypersensitivity are categorized into immediate and delayed reactions: immediate reactions, such as small local reactions, large local reactions, and systemic reactions, occur within 1-4 hours after the ant stings, whereas delayed reactions, such as serum sickness and vasculitis, usually occur more than 4 hours after the stings. Tools for the diagnosis of ant hypersensitivity are skin testing, serum specific IgE, and sting challenge tests. Management of ant hypersensitivity can be divided into immediate (epinephrine, corticosteroids), symptomatic (antihistamines, bronchodilators), supportive (fluid resuscitation, oxygen therapy), and preventive (re-sting avoidance and immunotherapy) treatments.

  12. Coevolution between attine ants and actinomycete bacteria: a reevaluation.

    PubMed

    Mueller, Ulrich G; Dash, Debadutta; Rabeling, Christian; Rodrigues, Andre

    2008-11-01

    insufficient support for the reverse, modifications of the bacteria resulting from the interaction with attine ants. The defining feature of coevolution--reciprocal modification--therefore remains to be established for the attine ant-actinomycete mutualism.

  13. Wood-nesting ants and their parasites in forests and coffee agroecosystems.

    PubMed

    De La Mora, Aldo; Philpott, Stacy M

    2010-10-01

    Agricultural intensification is linked to reduced species richness and may limit the effectiveness of predators in agricultural systems. We studied the abundance, diversity, and species composition of wood-nesting ants and frequency of parasitism of poneromorph ants in coffee agroeco systems and a forest fragment in Chiapas, Mexico. In three farms differing in shade management and in a nearby forest fragment, we surveyed ants nesting in rotten wood. We collected pupae of all poneromorph ants encountered, and incubated pupae for 15 d to recover emerging ant parasites. If no parasites emerged, we dissected pupae to examine for parasitism. Overall, we found 63 ant morphospecies, 29 genera, and 7 subfamilies from 520 colonies. There were no significant differences in ant richness or abundance between the different sites. However, there were significant differences in the species composition of ants sampled in the four different sites. The parasitism rates of ants differed according to site; in the forest 77.7% of species were parasitized, and this number declined with increasing intensification in traditional polyculture (40%),commercial polyculture (25%), and shade monoculture (16.6%). For three of four poneromorph species found in >1 habitat, parasitism rates were higher in the more vegetatively complex sites. The result that both ant species composition and ant parasitism differed among by site indicates that coffee management intensification affects wood-nesting ant communities. Further, coffee intensification may significantly alter interactions between ants and their parasites, with possible implications for biological control in coffee agroecosystems.

  14. Lipid-Loving ANTs: Molecular Simulations of Cardiolipin Interactions and the Organization of the Adenine Nucleotide Translocase in Model Mitochondrial Membranes

    PubMed Central

    2016-01-01

    The exchange of ADP and ATP across the inner mitochondrial membrane is a fundamental cellular process. This exchange is facilitated by the adenine nucleotide translocase, the structure and function of which are critically dependent on the signature phospholipid of mitochondria, cardiolipin (CL). Here we employ multiscale molecular dynamics simulations to investigate CL interactions within a membrane environment. Using simulations at both coarse-grained and atomistic resolutions, we identify three CL binding sites on the translocase, in agreement with those seen in crystal structures and inferred from nuclear magnetic resonance measurements. Characterization of the free energy landscape for lateral lipid interaction via potential of mean force calculations demonstrates the strength of interaction compared to those of binding sites on other mitochondrial membrane proteins, as well as their selectivity for CL over other phospholipids. Extending the analysis to other members of the family, yeast Aac2p and mouse uncoupling protein 2, suggests a degree of conservation. Simulation of large patches of a model mitochondrial membrane containing multiple copies of the translocase shows that CL interactions persist in the presence of protein–protein interactions and suggests CL may mediate interactions between translocases. This study provides a key example of how computational microscopy may be used to shed light on regulatory lipid–protein interactions. PMID:27786441

  15. Ants and the fossil record.

    PubMed

    LaPolla, John S; Dlussky, Gennady M; Perrichot, Vincent

    2013-01-01

    The dominance of ants in the terrestrial biosphere has few equals among animals today, but this was not always the case. The oldest ants appear in the fossil record 100 million years ago, but given the scarcity of their fossils, it is presumed they were relatively minor components of Mesozoic insect life. The ant fossil record consists of two primary types of fossils, each with inherent biases: as imprints in rock and as inclusions in fossilized resins (amber). New imaging technology allows ancient ant fossils to be examined in ways never before possible. This is particularly helpful because it can be difficult to distinguish true ants from non-ants in Mesozoic fossils. Fossil discoveries continue to inform our understanding of ancient ant morphological diversity, as well as provide insights into their paleobiology.

  16. Colony-level impacts of parasitoid flies on fire ants.

    PubMed Central

    Mehdiabadi, Natasha J; Gilbert, Lawrence E

    2002-01-01

    The red imported fire ant is becoming a global ecological problem, having invaded the United States, Puerto Rico, New Zealand and, most recently, Australia. In its established areas, this pest is devastating natural biodiversity. Early attempts to halt fire ant expansion with pesticides actually enhanced its spread. Phorid fly parasitoids from South America have now been introduced into the United States as potential biological control agents of the red imported fire ant, but the impact of these flies on fire ant populations is currently unknown. In the laboratory, we show that an average phorid density of as little as one attacking fly per 200 foraging ants decreased colony protein consumption nearly twofold and significantly reduced numbers of large-sized workers 50 days later. The high impact of a single phorid occurred mainly because ants decreased foraging rates in the presence of the flies. Our experiments, the first (to our knowledge) to link indirect and direct effects of phorids on fire ants, demonstrate that colonies can be stressed with surprisingly low parasitoid densities. We interpret our findings with regard to the more complex fire ant-phorid interactions in the field. PMID:12204130

  17. Multiple ant species tending lac insect Kerria yunnanensis (Hemiptera: Kerriidae) provide asymmetric protection against parasitoids.

    PubMed

    Chen, Youqing; Lu, Zhixing; Li, Qiao; Hoffmann, Benjamin D; Zhang, Wei

    2014-01-01

    This study investigated the effects of ant attendance on the parasitoid community and parasitism of lac insect Kerria yunnanensis aggregations in Yunnan province, China. We manipulated ant attendance to establish three treatments: (1) ant exclusion; (2) low ant attendance by several ant species; and (3) high ant attendance by Crematogaster macaoensis. Five parasitoid species were collected, with two species contributing 82.7 and 13.2% of total abundance respectively. Total parasitoid abundance was lowest in the February sample when K. yunnanensis was in its younger life stage, being significantly lower in the ant exclusion treatment. In April, all three treatments had significantly different parasitoid abundances, being highest in the ant exclusion treatment and the lowest in the high ant attendance treatment. When ants were present, there were strong negative relationships between total parasitoid abundance and ant abundance, with the relationships being dependent upon the ant species composition and abundance. The patterns of total parasitoid abundance were driven by the two most abundant parasitoid species. Parasitoid species richness did not differ among treatments or between sample times, however, multivariate analysis confirmed that overall parasitoid community structure differed significantly among treatments and between sample times, with the high ant attendance treatment differing most from the other two treatments. Interestingly the absence of ants did not result in increased parasitism from four of the five parasitoids. Ants in lac insect farming systems have a clear role for agricultural pest management. A full understanding of the asymmetric abilities of ants to influence parasitoid communities, and affect parasitism of hosts will require further experimental manipulation to assess the relative roles of 1) the abundance of each individual ant species on parasitoid access to hosts, 2) competition among parasitoids, and 3) the interaction between the

  18. The Frugal Cosmic Ant

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Using ESO's Very Large Telescope Interferometer and its unique ability to see small details, astronomers have uncovered a flat, nearly edge-on disc of silicates in the heart of the magnificent Ant Nebula. The disc seems, however, too 'skinny' to explain how the nebula got its intriguing ant-like shape. ESO PR Photo 42/07 ESO PR Photo 42/07 A Disc in the Ant Nebula The Ant Nebula is one of the most striking planetary nebulae known. Planetary nebulae - whose name arises because most are spherical and looked like planets when they were first discovered through older, less powerful telescopes - are glowing structures of gas cast off by solar-like stars at the ends of their lives. The morphology of the Ant Nebula - a bright core, three nested pairs of bipolar lobes and a ring-like outflow - is so unique that it was nicknamed the 'Chamber of Horrors' of planetary nebulae in the late 1950s. But how can a spherical star produce such complex structures? The answer, many astronomers think, requires understanding of the discs surrounding the central star. By their nature, these discs bear witness to the phenomena that lead to the asymmetrical structures of planetary nebulae. "The challenge is to actually detect these discs," explains team leader Olivier Chesneau, from the Observatoire de la Côte d'Azur, France. "Most astronomical instruments do not have a sharp enough view to find, let alone study them. The Very Large Telescope Interferometer however, with its exceptionally high spatial resolution, is a powerful disc-hunter." The disc of the Ant Nebula, which cannot be detected with a single 8.2-m VLT Unit Telescope, was uncovered in the interferometric mode where two 8.2-m Unit Telescopes were used to combine light, through the MID-infrared Interferometric instrument (MIDI). The observations reveal a flat, nearly edge-on disc whose major axis is perpendicular to the axis of the bipolar lobes. The disc extends from about 9 times the mean distance between the Earth and the

  19. Ant-mediated seed dispersal in a warmed world.

    PubMed

    Stuble, Katharine L; Patterson, Courtney M; Rodriguez-Cabal, Mariano A; Ribbons, Relena R; Dunn, Robert R; Sanders, Nathan J

    2014-01-01

    Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of eastern North America. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed dispersal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed.

  20. Electric ants: A cross-disciplinary approach to understanding insect behavior

    SciTech Connect

    Slowik, T.J.; Thorvilson, H.G.; Green, B.L.

    1996-12-31

    The response and attraction of the red imported fire ant, Solenopsis invicta, to electrical equipment was examined using an interdisciplinary approach. Entomologists specializing in fire ant behavior combined expertise with electrical engineers to investigate the economically damaging interaction of fire ants with electrical circuitry. Knowledge from the realms of physics, engineering, and biology were integrated in experimentation to test for a fire ant response to electric fields and magnetic fields associated with electrical equipment. It was determined that fire ants react to electrified conductive material and the alternating-current magnetic fields associated with electricity.

  1. Distributed nestmate recognition in ants

    PubMed Central

    Esponda, Fernando; Gordon, Deborah M.

    2015-01-01

    We propose a distributed model of nestmate recognition, analogous to the one used by the vertebrate immune system, in which colony response results from the diverse reactions of many ants. The model describes how individual behaviour produces colony response to non-nestmates. No single ant knows the odour identity of the colony. Instead, colony identity is defined collectively by all the ants in the colony. Each ant responds to the odour of other ants by reference to its own unique decision boundary, which is a result of its experience of encounters with other ants. Each ant thus recognizes a particular set of chemical profiles as being those of non-nestmates. This model predicts, as experimental results have shown, that the outcome of behavioural assays is likely to be variable, that it depends on the number of ants tested, that response to non-nestmates changes over time and that it changes in response to the experience of individual ants. A distributed system allows a colony to identify non-nestmates without requiring that all individuals have the same complete information and helps to facilitate the tracking of changes in cuticular hydrocarbon profiles, because only a subset of ants must respond to provide an adequate response. PMID:25833853

  2. Distributed nestmate recognition in ants.

    PubMed

    Esponda, Fernando; Gordon, Deborah M

    2015-05-07

    We propose a distributed model of nestmate recognition, analogous to the one used by the vertebrate immune system, in which colony response results from the diverse reactions of many ants. The model describes how individual behaviour produces colony response to non-nestmates. No single ant knows the odour identity of the colony. Instead, colony identity is defined collectively by all the ants in the colony. Each ant responds to the odour of other ants by reference to its own unique decision boundary, which is a result of its experience of encounters with other ants. Each ant thus recognizes a particular set of chemical profiles as being those of non-nestmates. This model predicts, as experimental results have shown, that the outcome of behavioural assays is likely to be variable, that it depends on the number of ants tested, that response to non-nestmates changes over time and that it changes in response to the experience of individual ants. A distributed system allows a colony to identify non-nestmates without requiring that all individuals have the same complete information and helps to facilitate the tracking of changes in cuticular hydrocarbon profiles, because only a subset of ants must respond to provide an adequate response.

  3. Interactions and Interventions: Current Research on Improving Informal Astronomy Education via the Astronomical Society of the Pacific (ASP)

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Gurton, S.; Hurst, A.; Berendsen, M.; Storksdieck, M.; Haley-Goldman, K.; Stein, J.; Pompea, S.; Garmany, C.; Sparks, R.; Pollock, W.

    2007-12-01

    In building national capacity for better informal astronomy education and public outreach (EPO), what sorts of professional development interactions are most effective in what situations--and what interventions for improvement can be effectively applied? Building on previous experience, the ASP, in conjunction with its partners, is conducting two National Science Foundation (NSF) funded projects investigating astronomy teaching and learning in informal contexts to explore these questions in both museum-based and amateur astronomy club settings. "Astronomy from the Ground Up" (AfGU) develops capacity for hands-on astronomy education in small and medium-sized science centers and nature centers through on-site and online professional development workshops and the establishment of a "community of practice" network. The ASP, in collaboration with the National Optical Astronomy Observatory (NOAO) and the Association of Science and Technology Centers (ASTC), is investigating which model--face-to-face or online professional development--works best and will be sustainable for that target group. "Sharing the Universe" (STU) builds on the Night Sky Network in which amateur astronomy clubs, through the ASP with financial and logistical support from NASA and its missions, are provided tools and training to conduct EPO activities with their public audiences. The ASP, in collaboration with the Institute for Learning Innovation (ILI), launched a national survey in late 2007 to investigate the factors that either support or discourage sustained amateur astronomer EPO efforts, followed by an in-depth study of a subset of both successful and struggling clubs, and leading to the development of interventions that support amateur astronomy outreach within the context of a nurturing club environment. The presentation will offer some early and initial results of the AfGU project--which reveal some interesting and unforeseen advantages of the online model over the on-site model--and some

  4. Assessing ant seed predation in threatened plants: a case study

    NASA Astrophysics Data System (ADS)

    Albert, María José; Escudero, Adrián; Iriondo, José María

    2005-11-01

    Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant-plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.

  5. Trade-offs in an ant-plant-fungus mutualism.

    PubMed

    Orivel, Jérôme; Malé, Pierre-Jean; Lauth, Jérémie; Roux, Olivier; Petitclerc, Frédéric; Dejean, Alain; Leroy, Céline

    2017-03-15

    Species engaged in multiple, simultaneous mutualisms are subject to trade-offs in their mutualistic investment if the traits involved in each interaction are overlapping, which can lead to conflicts and affect the longevity of these associations. We investigate this issue via a tripartite mutualism involving an ant plant, two competing ant species and a fungus the ants cultivate to build galleries under the stems of their host plant to capture insect prey. The use of the galleries represents an innovative prey capture strategy compared with the more typical strategy of foraging on leaves. However, because of a limited worker force in their colonies, the prey capture behaviour of the ants results in a trade-off between plant protection (i.e. the ants patrol the foliage and attack intruders including herbivores) and ambushing prey in the galleries, which has a cascading effect on the fitness of all of the partners. The quantification of partners' traits and effects showed that the two ant species differed in their mutualistic investment. Less investment in the galleries (i.e. in fungal cultivation) translated into more benefits for the plant in terms of less herbivory and higher growth rates and vice versa. However, the greater vegetative growth of the plants did not produce a positive fitness effect for the better mutualistic ant species in terms of colony size and production of sexuals nor was the mutualist compensated by the wider dispersal of its queens. As a consequence, although the better ant mutualist is the one that provides more benefits to its host plant, its lower host-plant exploitation does not give this ant species a competitive advantage. The local coexistence of the ant species is thus fleeting and should eventually lead to the exclusion of the less competitive species.

  6. Alkaloid venom weaponry of three Megalomyrmex thief ants and the behavioral response of Cyphomyrmex costatus host ants.

    PubMed

    Adams, Rachelle M M; Jones, Tappey H; Longino, John T; Weatherford, Robert G; Mueller, Ulrich G

    2015-04-01

    Social parasites exploit other societies by invading and stealing resources. Some enter protected nests using offensive chemical weaponry made from alkaloid-based venom. We characterized the venoms of three Megalomyrmex thief ant species (M. mondabora, M. mondaboroides, and M. silvestrii) that parasitize the fungus-growing ants, and developed an ethogram to describe host ant reactions to raiding M. mondaboroides and M. silvestrii parasites. We compared piperidine, pyrrolidine, and pyrolizidine venom alkaloid structures with synthetic samples from previous studies, and describe the novel stereochemistry of trans 2-hexyl-5-[8-oxononyl]-pyrrolidine (3) from M. mondabora. We showed that workers of Cyphomyrmex costatus, the host of M. mondaboroides and M. silvestrii, react to a sting by Megalomyrmex parasites mainly with submissive behavior, playing dead or retreating. Host submission also followed brief antennal contact. The behavior of C. costatus ants observed in this study was similar to that of Cyphomyrmex cornutus, host of M. mondabora, suggesting that the alkaloidal venoms with pyrrolidines from M. mondabora, piperidines from M. mondaboroides, and pyrolizidines from M. silvestrii may function similarly as appeasement and repellent allomones against host ants, despite their different chemical structure. With the use of these chemical weapons, the Megalomyrmex thief ants are met with little host resistance and easily exploit host colony resources.

  7. Science and Society Colloquium

    SciTech Connect

    2008-03-10

    Mr. Randi will give an update of his lecture to the American Physical Society on the occasion of his award of the 1989 Forum Prize. The citation said: "for his unique defense of Science and the scientific method in many disciplines, including physics, against pseudoscience, frauds and charlatans. His use of scientific techniques has contributed to refuting suspicious and fraudulent claims of paranormal results. He has contributed significantly to public understanding of important issues where science and society interact". He is a professional magician and author of many books. He worked with John Maddox, the Editor of Nature to investigate the claims of "water with memory".

  8. Science and Society Colloquium

    ScienceCinema

    None

    2016-07-12

    Mr. Randi will give an update of his lecture to the American Physical Society on the occasion of his award of the 1989 Forum Prize. The citation said: "for his unique defense of Science and the scientific method in many disciplines, including physics, against pseudoscience, frauds and charlatans. His use of scientific techniques has contributed to refuting suspicious and fraudulent claims of paranormal results. He has contributed significantly to public understanding of important issues where science and society interact". He is a professional magician and author of many books. He worked with John Maddox, the Editor of Nature to investigate the claims of "water with memory".

  9. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes.

    PubMed

    Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T; Mueller, Ulrich

    2015-02-22

    Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved.

  10. Wasps robbing food from ants: a frequent behavior?

    NASA Astrophysics Data System (ADS)

    Lapierre, Louis; Hespenheide, Henry; Dejean, Alain

    2007-12-01

    Food robbing, or cleptobiosis, has been well documented throughout the animal kingdom. For insects, intrafamilial food robbing is known among ants, but social wasps (Vespidae; Polistinae) taking food from ants has, to the best of our knowledge, never been reported. In this paper, we present two cases involving social wasps robbing food from ants associated with myrmecophytes. (1) Polybioides tabida F. (Ropalidiini) rob pieces of prey from Tetraponera aethiops Smith (Formicidae; Pseudomyrmecinae) specifically associated with Barteria fistulosa Mast. (Passifloraceae). (2) Charterginus spp. (Epiponini) rob food bodies from myrmecophytic Cecropia (Cecropiaceae) exploited by their Azteca mutualists (Formicidae; Dolichoderinae) or by opportunistic ants (that also attack cleptobiotic wasps). We note here that wasps gather food bodies (1) when ants are not yet active; (2) when ants are active, but avoiding any contact with them by flying off when attacked; and (3) through the coordinated efforts of two to five wasps, wherein one of them prevents the ants from leaving their nest, while the other wasps freely gather the food bodies. We suggest that these interactions are more common than previously thought.

  11. Stridulations Reveal Cryptic Speciation in Neotropical Sympatric Ants

    PubMed Central

    Ferreira, Ronara Souza; Poteaux, Chantal; Delabie, Jacques Hubert Charles; Fresneau, Dominique; Rybak, Fanny

    2010-01-01

    The taxonomic challenge posed by cryptic species underlines the importance of using multiple criteria in species delimitation. In the current paper we tested the use of acoustic analysis as a tool to assess the real diversity in a cryptic species complex of Neotropical ants. In order to understand the potential of acoustics and to improve consistency in the conclusions by comparing different approaches, phylogenetic relationships of all the morphs considered were assessed by the analysis of a fragment of the mitochondrial DNA cytochrome b. We observed that each of the cryptic morph studied presents a morphologically distinct stridulatory organ and that all sympatric morphs produce distinctive stridulations. This is the first evidence of such a degree of specialization in the acoustic organ and signals in ants, which suggests that stridulations may be among the cues used by these ants during inter-specific interactions. Mitochondrial DNA variation corroborated the acoustic differences observed, confirming acoustics as a helpful tool to determine cryptic species in this group of ants, and possibly in stridulating ants in general. Congruent morphological, acoustic and genetic results constitute sufficient evidence to propose each morph studied here as a valid new species, suggesting that P. apicalis is a complex of at least 6 to 9 species, even if they present different levels of divergence. Finally, our results highlight that ant stridulations may be much more informative than hitherto thought, as much for ant communication as for integrative taxonomists. PMID:21203529

  12. Cotton Rats Alter Foraging in Response to an Invasive Ant

    PubMed Central

    Darracq, Andrea K.; Conner, L. Mike; Brown, Joel S.; McCleery, Robert A.

    2016-01-01

    We assessed the effects of red imported fire ants (Solenopsis invicta; hereafter fire ant) on the foraging of hispid cotton rats (Sigmodon hispidus). We used a manipulative experiment, placing resource patches with a known amount of millet seed within areas with reduced (RIFA [–]) or ambient (RIFA [+]) numbers of fire ants. We measured giving up densities (the amount of food left within each patch) within the resource patches for 4 days to quantify the effects of fire ants on cotton rat foraging. We assessed the effects of fire ant treatment (RIFA), Day, and their interaction on cotton rat giving up densities. Giving up densities on RIFA [+] grids were nearly 2.2 times greater across all foraging days and ranged from 1.6 to 2.3 times greater from day 1 to day 4 than the RIFA [–] grids. From day 1 to day 4, mean giving up densities decreased significantly faster for the RIFA [–] than RIFA [+] treatments, 58% and 13%, respectively. Our results demonstrate that cotton rats perceive a risk of injury from fire ants, which is likely caused by interference competition, rather than direct predation. Envenomation from ants likely decrease the foraging efficiency of cotton rats resulting in more time spent foraging. Increased time spent foraging is likely stressful in terms of the opportunity for direct injury and encounters with other predators. These indirect effects may reduce an individual cotton rat’s fitness and translate into lowered population abundances. PMID:27655320

  13. Fire ant microsporidia acquired by parasitoid flies of fire ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microsporidium Kneallhazia (formerly Thelohania) solenopsae and parasitoid flies in the genus Pseudacteon are natural enemies of the invasive fire ant, Solenopsis invicta. Pseudacteon flies oviposit into adult fire ants, where maggots that eclose from eggs migrate to the ants’ head, pupate, and...

  14. Studying the Complex Communities of Ants and Their Symbionts Using Ecological Network Analysis.

    PubMed

    Ivens, Aniek B F; von Beeren, Christoph; Blüthgen, Nico; Kronauer, Daniel J C

    2016-01-01

    Ant colonies provide well-protected and resource-rich environments for a plethora of symbionts. Historically, most studies of ants and their symbionts have had a narrow taxonomic scope, often focusing on a single ant or symbiont species. Here we discuss the prospects of studying these assemblies in a community ecology context using the framework of ecological network analysis. We introduce three basic network metrics that we consider particularly relevant for improving our knowledge of ant-symbiont communities: interaction specificity, network modularity, and phylogenetic signal. We then discuss army ant symbionts as examples of large and primarily parasitic communities, and symbiotic sternorrhynchans as examples of generally smaller and primarily mutualistic communities in the context of these network analyses. We argue that this approach will provide new and complementary insights into the evolutionary and ecological dynamics between ants and their many associates, and will facilitate comparisons across different ant-symbiont assemblages as well as across different types of ecological networks.

  15. Benefits for plants in ant-plant protective mutualisms: a meta-analysis.

    PubMed

    Trager, Matthew D; Bhotika, Smriti; Hostetler, Jeffrey A; Andrade, Gilda V; Rodriguez-Cabal, Mariano A; McKeon, C Seabird; Osenberg, Craig W; Bolker, Benjamin M

    2010-12-22

    Costs and benefits for partners in mutualistic interactions can vary greatly, but surprisingly little is known about the factors that drive this variation across systems. We conducted a meta-analysis of ant-plant protective mutualisms to quantify the effects of ant defenders on plant reproductive output, to evaluate if reproductive effects were predicted from reductions in herbivory and to identify characteristics of the plants, ants and environment that explained variation in ant protection. We also compared our approach with two other recent meta-analyses on ant-plant mutualisms, emphasizing differences in our methodology (using a weighted linear mixed effects model) and our focus on plant reproduction rather than herbivore damage. Based on 59 ant and plant species pairs, ant presence increased plant reproductive output by 49% and reduced herbivory by 62%. The effects on herbivory and reproduction within systems were positively correlated, but the slope of this relationship (0.75) indicated that tolerance to foliar herbivory may be a common plant response to absence of ant guards. Furthermore, the relationship between foliar damage and reproduction varied substantially among systems, suggesting that herbivore damage is not a reliable surrogate for fitness consequences of ant protection. Studies that experimentally excluded ants reported a smaller effect of ant protection on plant reproduction than studies that relied upon natural variation in ant presence, suggesting that study methods can affect results in these systems. Of the ecological variables included in our analysis, only plant life history (i.e., annual or perennial) explained variation in the protective benefit of mutualistic ants: presence of ants benefitted reproduction of perennials significantly more than that of annuals. These results contrast with other quantitative reviews of these relationships that did not include plant life history as an explanatory factor and raise several questions to guide

  16. Using VisANT to Analyze Networks

    PubMed Central

    Hu, Zhenjun

    2014-01-01

    VisANT is a Web-based workbench for the integrative analysis of biological networks with unique features such as exploratory navigation of interaction network and multi-scale visualization and inference with integrated hierarchical knowledge. It provides functionalities for convenient construction, visualization, and analysis of molecular and higher order networks based on functional (e.g., expression profiles, phylogenetic profiles) and physical (e.g., yeast two-hybrid, chromatin-immunoprecipitation and drug target) relations from either the Predictome database or user-defined data sets. Analysis capabilities include network structure analysis, overrepresentation analysis, expression enrichment analysis etc. Additionally, network can be saved, accessed, and shared online. VisANT is able to develop and display meta-networks for meta-nodes that are structural complexes or pathways or any kind of subnetworks. Further, VisANT supports a growing number of standard exchange formats and database referencing standards, e.g., PSI-MI, KGML, BioPAX, SBML(in progress) Multiple species are supported to the extent that interactions or associations are available (i.e., public datasets or Predictome database). PMID:25422679

  17. Temperature: Human Regulating, Ants Conforming

    ERIC Educational Resources Information Center

    Clopton, Joe R.

    2007-01-01

    Biological processes speed up as temperature rises. Procedures for demonstrating this with ants traveling on trails, and data gathered by students on the Argentine ant ("Linepithema humile") are presented. The concepts of temperature regulation and conformity are detailed with a focus on the processes rather than on terms that label the organisms.

  18. Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land-atmosphere-ocean-society continuum in the northern Eurasian region

    NASA Astrophysics Data System (ADS)

    Lappalainen, Hanna K.; Kerminen, Veli-Matti; Petäjä, Tuukka; Kurten, Theo; Baklanov, Aleksander; Shvidenko, Anatoly; Bäck, Jaana; Vihma, Timo; Alekseychik, Pavel; Andreae, Meinrat O.; Arnold, Stephen R.; Arshinov, Mikhail; Asmi, Eija; Belan, Boris; Bobylev, Leonid; Chalov, Sergey; Cheng, Yafang; Chubarova, Natalia; de Leeuw, Gerrit; Ding, Aijun; Dobrolyubov, Sergey; Dubtsov, Sergei; Dyukarev, Egor; Elansky, Nikolai; Eleftheriadis, Kostas; Esau, Igor; Filatov, Nikolay; Flint, Mikhail; Fu, Congbin; Glezer, Olga; Gliko, Aleksander; Heimann, Martin; Holtslag, Albert A. M.; Hõrrak, Urmas; Janhunen, Juha; Juhola, Sirkku; Järvi, Leena; Järvinen, Heikki; Kanukhina, Anna; Konstantinov, Pavel; Kotlyakov, Vladimir; Kieloaho, Antti-Jussi; Komarov, Alexander S.; Kujansuu, Joni; Kukkonen, Ilmo; Duplissy, Ella-Maria; Laaksonen, Ari; Laurila, Tuomas; Lihavainen, Heikki; Lisitzin, Alexander; Mahura, Alexsander; Makshtas, Alexander; Mareev, Evgeny; Mazon, Stephany; Matishov, Dmitry; Melnikov, Vladimir; Mikhailov, Eugene; Moisseev, Dmitri; Nigmatulin, Robert; Noe, Steffen M.; Ojala, Anne; Pihlatie, Mari; Popovicheva, Olga; Pumpanen, Jukka; Regerand, Tatjana; Repina, Irina; Shcherbinin, Aleksei; Shevchenko, Vladimir; Sipilä, Mikko; Skorokhod, Andrey; Spracklen, Dominick V.; Su, Hang; Subetto, Dmitry A.; Sun, Junying; Terzhevik, Arkady Y.; Timofeyev, Yuri; Troitskaya, Yuliya; Tynkkynen, Veli-Pekka; Kharuk, Viacheslav I.; Zaytseva, Nina; Zhang, Jiahua; Viisanen, Yrjö; Vesala, Timo; Hari, Pertti; Christen Hansson, Hans; Matvienko, Gennady G.; Kasimov, Nikolai S.; Guo, Huadong; Bondur, Valery; Zilitinkevich, Sergej; Kulmala, Markku

    2016-11-01

    The northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The Arctic-boreal natural environments play a crucial role in the global climate via albedo change, carbon sources and sinks as well as atmospheric aerosol production from biogenic volatile organic compounds. Furthermore, it is expected that global trade activities, demographic movement, and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but also is able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX sets a research approach by which large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land-atmosphere-aquatic-society continuum in the northern Eurasian region. We introduce here the state of the art for the key topics in the PEEX research agenda and present the future prospects of the research, which we see relevant in this context.

  19. Competitive assembly of South Pacific invasive ant communities

    PubMed Central

    Lester, Philip J; Abbott, Kirsti L; Sarty, Megan; Burns, KC

    2009-01-01

    Background The relative importance of chance and determinism in structuring ecological communities has been debated for nearly a century. Evidence for determinism or assembly rules is often evaluated with null models that randomize the occurrence of species in particular locales. However, analyses of the presence or absence of species ignores the potential influence of species abundances, which have long been considered of major importance on community structure. Here, we test for community assembly rules in ant communities on small islands of the Tokelau archipelago using both presence-absence and abundance data. We conducted three sets of analyses on two spatial scales using three years of sampling data from 39 plots on 11 islands. Results First, traditional null model tests showed support for negative species co-occurrence patterns among plots within islands, but not among islands. A plausible explanation for this result is that analyses at larger spatial scales merge heterogeneous habitats that have considerable effects on species occurrences. Second, analyses of ant abundances showed that samples with high ant abundances had fewer species than expected by chance, both within and among islands. One ant species, the invasive yellow crazy ant Anoplolepis gracilipes, appeared to have a particularly strong effect on community structure correlated with its abundance. Third, abundances of most ant species were inversely correlated with the abundances of all other ants at both spatial scales. This result is consistent with competition theory, which predicts species distributions are affected by diffuse competition with suites of co-occurring species. Conclusion Our results support a pluralistic explanation for ant species abundances and assembly. Both stochastic and deterministic processes interact to determine ant community assembly, though abundance patterns clearly drive the deterministic patterns in this community. These deterministic patterns were observed at two

  20. Ants have a negative rather than a positive effect on extrafloral nectaried Crotalaria pallida performance

    NASA Astrophysics Data System (ADS)

    Pereira, Marcela Fernandes; Trigo, José Roberto

    2013-08-01

    Crotalaria pallida (Fabaceae) is a pantropical plant with extrafloral nectaries (EFNs) near the reproductive structures. EFN-visiting ants attack and remove arctiid moth Utetheisa ornatrix larvae, the main pre-dispersal seed predator, but the impact of ants on C. pallida fitness is unknown. To assess this impact, we controlled ant presence on plants and evaluated the reproductive output of C. pallida with and without ants. Predatory wasps also visit EFNs, prey upon U. ornatrix larvae, and may be driven out by ants during EFN feeding. Does this agonistic interaction affect the multitrophic interaction outcome? We found it difficult to evaluate the effect of both visitors because cages excluding wasps affect plant growth and do not allow U. ornatrix oviposition. Therefore, we verified whether ant presence inhibited wasp EFN visitation and predicted that (1) if ants confer a benefit for C. pallida, any negative effect of ants on wasps would be negligible for the plant because ants would be the best guardians, and (2) if ants are poor guardians, they would negatively affect wasps and negatively impact the fitness of C. pallida. Surprisingly, we found that the number of seeds/pods significantly increased, ca. 4.7 times, after ant removal. Additionally, we unexpectedly verified that controls showed a higher percentage of herbivore bored pods than ant-excluded plants. We found that wasps spent less time visiting EFNs patrolled by ants (ca. 299 s less). These results support our second prediction and suggest that the outcome of multitrophic interactions may vary with natural enemy actors.

  1. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    PubMed

    Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A Q; Silva, Mara S A; Vieira, Marisa C L; Izzo, Thiago J; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor

    2014-01-01

    Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  2. Bacterial community composition and diversity in an ancestral ant fungus symbiosis.

    PubMed

    Kellner, Katrin; Ishak, Heather D; Linksvayer, Timothy A; Mueller, Ulrich G

    2015-07-01

    Fungus-farming ants (Hymenoptera: Formicidae, Attini) exhibit some of the most complex microbial symbioses because both macroscopic partners (ants and fungus) are associated with a rich community of microorganisms. The ant and fungal microbiomes are thought to serve important beneficial nutritional and defensive roles in these symbioses. While most recent research has investigated the bacterial communities in the higher attines (e.g. the leaf-cutter ant genera Atta and Acromyrmex), which are often associated with antibiotic-producing Actinobacteria, very little is known about the microbial communities in basal lineages, labeled as 'lower attines', which retain the ancestral traits of smaller and more simple societies. In this study, we used 16S amplicon pyrosequencing to characterize bacterial communities of the lower attine ant Mycocepurus smithii among seven sampling sites in central Panama. We discovered that ant and fungus garden-associated microbiota were distinct from surrounding soil, but unlike the situation in the derived fungus-gardening ants, which show distinct ant and fungal microbiomes, microbial community structure of the ants and their fungi were similar. Another surprising finding was that the abundance of actinomycete bacteria was low and instead, these symbioses were characterized by an abundance of Lactobacillus and Pantoea bacteria. Furthermore, our data indicate that Lactobacillus strains are acquired from the environment rather than acquired vertically.

  3. Behavioral Plasticity in Ant Queens: Environmental Manipulation Induces Aggression among Normally Peaceful Queens in the Socially Polymorphic Ant Leptothorax acervorum

    PubMed Central

    Trettin, Jürgen; Seyferth, Thomas; Heinze, Jürgen

    2014-01-01

    The behavioral traits that shape the structure of animal societies vary considerably among species but appear to be less flexible within species or at least within populations. Populations of the ant Leptothorax acervorum differ in how queens interact with other queens. Nestmate queens from extended, homogeneous habitats tolerate each other and contribute quite equally to the offspring of the colony (polygyny: low reproductive skew). In contrast, nestmate queens from patchy habitats establish social hierarchies by biting and antennal boxing, and eventually only the top-ranking queen of the colony lays eggs (functional monogyny: high reproductive skew). Here we investigate whether queen-queen behavior is fixed within populations or whether aggression and high skew can be elicited by manipulation of socio-environmental factors in colonies from low skew populations. An increase of queen/worker ratio and to a lesser extent food limitation elicited queen-queen antagonism in polygynous colonies from Nürnberger Reichswald similar to that underlying social and reproductive hierarchies in high-skew populations from Spain, Japan, and Alaska. In manipulated colonies, queens differed more in ovarian status than in control colonies. This indicates that queens are in principle capable of adapting the magnitude of reproductive skew to environmental changes in behavioral rather than evolutionary time. PMID:24743352

  4. Competition can lead to unexpected patterns in tropical ant communities

    NASA Astrophysics Data System (ADS)

    Ellwood, M. D. Farnon; Blüthgen, Nico; Fayle, Tom M.; Foster, William A.; Menzel, Florian

    2016-08-01

    Ecological communities are structured by competitive, predatory, mutualistic and parasitic interactions combined with chance events. Separating deterministic from stochastic processes is possible, but finding statistical evidence for specific biological interactions is challenging. We attempt to solve this problem for ant communities nesting in epiphytic bird's nest ferns (Asplenium nidus) in Borneo's lowland rainforest. By recording the frequencies with which each and every single ant species occurred together, we were able to test statistically for patterns associated with interspecific competition. We found evidence for competition, but the resulting co-occurrence pattern was the opposite of what we expected. Rather than detecting species segregation-the classical hallmark of competition-we found species aggregation. Moreover, our approach of testing individual pairwise interactions mostly revealed spatially positive rather than negative associations. Significant negative interactions were only detected among large ants, and among species of the subfamily Ponerinae. Remarkably, the results from this study, and from a corroborating analysis of ant communities known to be structured by competition, suggest that competition within the ants leads to species aggregation rather than segregation. We believe this unexpected result is linked with the displacement of species following asymmetric competition. We conclude that analysing co-occurrence frequencies across complete species assemblages, separately for each species, and for each unique pairwise combination of species, represents a subtle yet powerful way of detecting structure and compartmentalisation in ecological communities.

  5. Stigmergic construction and topochemical information shape ant nest architecture

    PubMed Central

    Khuong, Anaïs; Gautrais, Jacques; Perna, Andrea; Sbaï, Chaker; Combe, Maud; Kuntz, Pascale; Jost, Christian; Theraulaz, Guy

    2016-01-01

    The nests of social insects are not only impressive because of their sheer complexity but also because they are built from individuals whose work is not centrally coordinated. A key question is how groups of insects coordinate their building actions. Here, we use a combination of experimental and modeling approaches to investigate nest construction in the ant Lasius niger. We quantify the construction dynamics and the 3D structures built by ants. Then, we characterize individual behaviors and the interactions of ants with the structures they build. We show that two main interactions are involved in the coordination of building actions: (i) a stigmergic-based interaction that controls the amplification of depositions at some locations and is attributable to a pheromone added by ants to the building material; and (ii) a template-based interaction in which ants use their body size as a cue to control the height at which they start to build a roof from existing pillars. We then develop a 3D stochastic model based on these individual behaviors to analyze the effect of pheromone presence and strength on construction dynamics. We show that the model can quantitatively reproduce key features of construction dynamics, including a large-scale pattern of regularly spaced pillars, the formation and merging of caps over the pillars, and the remodeling of built structures. Finally, our model suggests that the lifetime of the pheromone is a highly influential parameter that controls the growth and form of nest architecture. PMID:26787857

  6. Stigmergic construction and topochemical information shape ant nest architecture.

    PubMed

    Khuong, Anaïs; Gautrais, Jacques; Perna, Andrea; Sbaï, Chaker; Combe, Maud; Kuntz, Pascale; Jost, Christian; Theraulaz, Guy

    2016-02-02

    The nests of social insects are not only impressive because of their sheer complexity but also because they are built from individuals whose work is not centrally coordinated. A key question is how groups of insects coordinate their building actions. Here, we use a combination of experimental and modeling approaches to investigate nest construction in the ant Lasius niger. We quantify the construction dynamics and the 3D structures built by ants. Then, we characterize individual behaviors and the interactions of ants with the structures they build. We show that two main interactions are involved in the coordination of building actions: (i) a stigmergic-based interaction that controls the amplification of depositions at some locations and is attributable to a pheromone added by ants to the building material; and (ii) a template-based interaction in which ants use their body size as a cue to control the height at which they start to build a roof from existing pillars. We then develop a 3D stochastic model based on these individual behaviors to analyze the effect of pheromone presence and strength on construction dynamics. We show that the model can quantitatively reproduce key features of construction dynamics, including a large-scale pattern of regularly spaced pillars, the formation and merging of caps over the pillars, and the remodeling of built structures. Finally, our model suggests that the lifetime of the pheromone is a highly influential parameter that controls the growth and form of nest architecture.

  7. No sex in fungus-farming ants or their crops

    PubMed Central

    Himler, Anna G.; Caldera, Eric J.; Baer, Boris C.; Fernández-Marín, Hermógenes; Mueller, Ulrich G.

    2009-01-01

    Asexual reproduction imposes evolutionary handicaps on asexual species, rendering them prone to extinction, because asexual reproduction generates novel genotypes and purges deleterious mutations at lower rates than sexual reproduction. Here, we report the first case of complete asexuality in ants, the fungus-growing ant Mycocepurus smithii, where queens reproduce asexually but workers are sterile, which is doubly enigmatic because the clonal colonies of M. smithii also depend on clonal fungi for food. Degenerate female mating anatomy, extensive field and laboratory surveys, and DNA fingerprinting implicate complete asexuality in this widespread ant species. Maternally inherited bacteria (e.g. Wolbachia, Cardinium) and the fungal cultivars can be ruled out as agents inducing asexuality. M. smithii societies of clonal females provide a unique system to test theories of parent–offspring conflict and reproductive policing in social insects. Asexuality of both ant farmer and fungal crop challenges traditional views proposing that sexual farmer ants outpace coevolving sexual crop pathogens, and thus compensate for vulnerabilities of their asexual crops. Either the double asexuality of both farmer and crop may permit the host to fully exploit advantages of asexuality for unknown reasons or frequent switching between crops (symbiont reassociation) generates novel ant–fungus combinations, which may compensate for any evolutionary handicaps of asexuality in M. smithii. PMID:19369264

  8. Specialized myrmecophily at the ecological dawn of modern ants.

    PubMed

    Parker, Joseph; Grimaldi, David A

    2014-10-20

    Myrmecophiles--species that depend on ant societies--include some of the most morphologically and behaviorally specialized animals known. Remarkable adaptive characters enable these creatures to bypass fortress-like security, integrate into colony life, and exploit abundant resources and protection inside ant nests. Such innovations must result from intimate coevolution with hosts, but a scarcity of definitive fossil myrmecophiles obscures when and how this lifestyle arose. Here, we report the earliest known morphologically specialized and apparently obligate myrmecophile, in Early Eocene (∼ 52 million years old) Cambay amber from India. Protoclaviger trichodens gen. et sp. nov. is a stem-group member of Clavigeritae, a speciose supertribe of pselaphine rove beetles (Coleoptera: Staphylinidae) heavily modified for myrmecophily via reduced mouthparts for trophallaxis with worker ants, brush-like trichomes that exude appeasement compounds, and fusions of many body and antennal segments. Protoclaviger captures a transitional stage in the evolutionary development of this novel body plan, most evident in its still-distinct abdominal tergites. The Cambay paleobiota marks one of the first occurrences in the fossil record of a significant presence of modern ants. Protoclaviger reveals that sophisticated social parasites were nest intruders throughout, and probably before, the ascent of ants to ecological dominance, with ancient groups such as Clavigeritae primed to radiate as their hosts became increasingly ubiquitous.

  9. Social isolation and brain development in the ant Camponotus floridanus

    NASA Astrophysics Data System (ADS)

    Seid, Marc A.; Junge, Erich

    2016-06-01

    Social interactions play a key role in the healthy development of social animals and are most pronounced in species with complex social networks. When developing offspring do not receive proper social interaction, they show developmental impairments. This effect is well documented in mammalian species but controversial in social insects. It has been hypothesized that the enlargement of the mushroom bodies, responsible for learning and memory, observed in social insects is needed for maintaining the large social networks and/or task allocation. This study examines the impact of social isolation on the development of mushroom bodies of the ant Camponotus floridanus. Ants raised in isolation were shown to exhibit impairment in the growth of the mushroom bodies as well as behavioral differences when compared to ants raised in social groups. These results indicate that social interaction is necessary for the proper development of C. floridanus mushroom bodies.

  10. Effects of habitat fragmentation and degradation on flocks of African ant-following birds.

    PubMed

    Peters, Marcell K; Likare, Smith; Kraemer, Manfred

    2008-06-01

    Tropical rain forests are rapidly cleared, fragmented, and degraded in sub-Saharan Africa; however, little is known about the response of species and even of key ecological groups to these processes. One of the most intriguing (but often neglected) ecological phenomena in African rain forests is the interaction between swarm-raiding army ants and ant-following birds. Similar to their well-known Neotropical representatives, ant-following birds in Africa track the massive swarm raids of army ants and feed on arthropods flushed by the ants. In this study we analyzed the effect of habitat fragmentation and degradation of a mid-altitude Congo-Guinean rain forest in western Kenya on the structure of ant-following bird flocks. Significant numbers of swarm raids were located in all forest fragments and in both undegraded and degraded forest. Fifty-six different species of birds followed army ant raids, forming bird flocks of one to 15 species. We quantitatively differentiated the bird community into five species of specialized ant-followers and 51 species of opportunistic ant-followers. Species richness and size of bird flocks decreased with decreasing size of forest fragments and was higher in undegraded than in degraded habitat. This was caused by the decrease of the species richness and number of specialized ant-followers at swarms, while the group of opportunistic ant-followers was affected little by habitat fragmentation and degradation. The composition of bird flocks was more variable in small fragments and degraded forest, compared to undegraded habitat in large fragments. The effect of habitat fragmentation on flock structure was best explained by the strong decline of the abundance of specialized ant-followers in small forest fragments. To conserve the association of army ants and ant-following birds in its natural state, vast areas of unfragmented and undegraded tropical rain forest are necessary.

  11. Temporal Variation in the Abundance and Richness of Foliage-Dwelling Ants Mediated by Extrafloral Nectar

    PubMed Central

    Belchior, Ceres; Sendoya, Sebastián F.

    2016-01-01

    Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010–2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation. PMID:27438722

  12. FORMIDABEL: The Belgian Ants Database

    PubMed Central

    Brosens, Dimitri; Vankerkhoven, François; Ignace, David; Wegnez, Philippe; Noé, Nicolas; Heughebaert, André; Bortels, Jeannine; Dekoninck, Wouter

    2013-01-01

    Abstract FORMIDABEL is a database of Belgian Ants containing more than 27.000 occurrence records. These records originate from collections, field sampling and literature. The database gives information on 76 native and 9 introduced ant species found in Belgium. The collection records originated mainly from the ants collection in Royal Belgian Institute of Natural Sciences (RBINS), the ‘Gaspar’ Ants collection in Gembloux and the zoological collection of the University of Liège (ULG). The oldest occurrences date back from May 1866, the most recent refer to August 2012. FORMIDABEL is a work in progress and the database is updated twice a year. The latest version of the dataset is publicly and freely accessible through this url: http://ipt.biodiversity.be/resource.do?r=formidabel. The dataset is also retrievable via the GBIF data portal through this link: http://data.gbif.org/datasets/resource/14697 A dedicated geo-portal, developed by the Belgian Biodiversity Platform is accessible at: http://www.formicidae-atlas.be Purpose: FORMIDABEL is a joint cooperation of the Flemish ants working group “Polyergus” (http://formicidae.be) and the Wallonian ants working group “FourmisWalBru” (http://fourmiswalbru.be). The original database was created in 2002 in the context of the preliminary red data book of Flemish Ants (Dekoninck et al. 2003). Later, in 2005, data from the Southern part of Belgium; Wallonia and Brussels were added. In 2012 this dataset was again updated for the creation of the first Belgian Ants Atlas (Figure 1) (Dekoninck et al. 2012). The main purpose of this atlas was to generate maps for all outdoor-living ant species in Belgium using an overlay of the standard Belgian ecoregions. By using this overlay for most species, we can discern a clear and often restricted distribution pattern in Belgium, mainly based on vegetation and soil types. PMID:23794918

  13. A Systematic Review of Global Drivers of Ant Elevational Diversity

    PubMed Central

    Szewczyk, Tim; McCain, Christy M.

    2016-01-01

    Ant diversity shows a variety of patterns across elevational gradients, though the patterns and drivers have not been evaluated comprehensively. In this systematic review and reanalysis, we use published data on ant elevational diversity to detail the observed patterns and to test the predictions and interactions of four major diversity hypotheses: thermal energy, the mid-domain effect, area, and the elevational climate model. Of sixty-seven published datasets from the literature, only those with standardized, comprehensive sampling were used. Datasets included both local and regional ant diversity and spanned 80° in latitude across six biogeographical provinces. We used a combination of simulations, linear regressions, and non-parametric statistics to test multiple quantitative predictions of each hypothesis. We used an environmentally and geometrically constrained model as well as multiple regression to test their interactions. Ant diversity showed three distinct patterns across elevations: most common were hump-shaped mid-elevation peaks in diversity, followed by low-elevation plateaus and monotonic decreases in the number of ant species. The elevational climate model, which proposes that temperature and precipitation jointly drive diversity, and area were partially supported as independent drivers. Thermal energy and the mid-domain effect were not supported as primary drivers of ant diversity globally. The interaction models supported the influence of multiple drivers, though not a consistent set. In contrast to many vertebrate taxa, global ant elevational diversity patterns appear more complex, with the best environmental model contingent on precipitation levels. Differences in ecology and natural history among taxa may be crucial to the processes influencing broad-scale diversity patterns. PMID:27175999

  14. Fluvial landscapes - human societies interactions during the last 2000 years: the Middle Loire River and its embanking since the Middle Ages (France)

    NASA Astrophysics Data System (ADS)

    Castanet, Cyril; Carcaud, Nathalie

    2015-04-01

    This research deals with the study of fluvial landscapes, heavily and precociously transformed by societies (fluvial anthroposystems). It aims to characterize i), fluvial responses to climate, environmental and anthropogenic changes ii), history of hydraulical constructions relative to rivers iii), history of fluvial origin risks and their management - (Program: AGES Ancient Geomorphological EvolutionS of the Loire River hydrosystem). The Middle Loire River valley in the Val d'Orléans was strongly and precociously occupied, particularly during historical periods. Hydrosedimentary flows are there irregular. The river dykes were built during the Middle Ages (dykes named turcies) and the Modern Period, but ages and localizations of the oldest dykes were not precisely known. A systemic and multi-scaled approach aimed to characterize i), palaeo-hydrographical, -hydrological and -hydraulical evolutions of the Loire River, fluvial risks (palaeo-hazards and -vulnerabilities) and their management. It is based on an integrated approach, in and out archaeological sites: morpho-stratigraphy, sedimentology, geophysics, geochemistry, geomatics, geochronology, archaeology. Spatio-temporal variability of fluvial hazards is characterized. A model of the Loire River fluvial activity is developed: multicentennial scale variability, with higher fluvial activity episodes during the Gallo-Roman period, IX-XIth centuries and LIA. Fluvial patterns changes are indentified. Settlement dynamics and hydraulical constructions of the valley are specified. We establish the ages and localizations of the oldest discovered dikes of the Middle Loire River: after the Late Antiquity and before the end of the Early Middle Ages (2 dated dykes), between Bou and Orléans cities. During historical periods, we suggest 2 main thresholds concerning socio-environmental interactions: the first one during the Early Middle Ages (turcies: small scattered dykes), the second during the Modern Period (levees: high

  15. Rapid modification in the olfactory signal of ants following a change in reproductive status

    NASA Astrophysics Data System (ADS)

    Cuvillier-Hot, Virginie; Renault, Valérie; Peeters, Christian

    2005-02-01

    In insect societies, the presence and condition of egg-layers can be assessed with pheromones. Exocrine secretions are expected to vary in time in order to give up-to-date information on an individual’s reproductive physiology. In the queenless monogynous ant Streblognathus peetersi, we allowed a previously infertile high-ranking worker to accede to the alpha rank, thus triggering the onset of her oogenesis (15 replicates). We then studied her interactions with an established egg-layer from the same colony after different durations, ranging from 20 h to several days. Even though her eggs are only ready to be laid after 30 days, the new alpha was recognised within 1 2 days. Detection occurred at a distance of a few millimetres, suggesting the involvement of a pheromone with low volatility, such as cuticular hydrocarbons. When the new alpha had differentiated for >48 h, she was attacked by the established egg-layer. In all cases, low-ranking workers eventually immobilised one of the two alphas: the new alpha was the target if she had differentiated only recently, suggesting that police workers select the dominant worker with the “less fertile” odour. Using the behaviour of ants as our measure, we demonstrate that a dominant’s olfactory signal changes rapidly with a modification in her social status, and it occurs well before the onset of egg-laying.

  16. The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies.

    PubMed

    Bächtold, Alexandra; Alves-Silva, Estevão; Kaminski, Lucas A; Del-Claro, Kleber

    2014-11-01

    Ovipositing adult females of myrmecophilous lycaenids are expected to select plants based on ant presence in order to maximize the survivorship of immature stages. Usually, larvae feed ants with honey-like solutions and, in turn, ants ward off parasitoids. Nonetheless, a rarely investigated approach is whether ant partners can also extend their protective behavior towards lycaenids eggs. Here, we investigated the ant-related oviposition pattern of Allosmaitia strophius and Rekoa marius; then, we compared egg parasitism according to the presence of ants. Lycaenid oviposition and egg parasitism (in percent) were experimentally compared in ant-present and ant-excluded treatments. The study plant, Heteropterys byrsonimifolia, is an extrafloral nectaried shrub which supports several ant species. We sampled 280 eggs, of which 39.65 % belonged to A. strophius and 60.35 % to R. marius. Both lycaenids eggs were significantly more abundant on branches with ants, especially those with Camponotus crassus and Camponotus blandus, two ant species known to attend to lycaenids. A. strophius and R. marius parasitism was 4.5- and 2.4-fold higher, respectively, in ant-present treatments, but the results were not statistically significant. Our study shows that ant-mediated host plant selection in lycaenids might be much more widespread than previously thought, and not restricted to obligate myrmecophilous species. Tending ants may be inefficient bodyguards of lycaenid eggs, because unlike larvae which release sugared liquids, eggs do not offer obvious rewards to ants. Ants can ward off parasitoids of larvae, as observed elsewhere, but our findings show that positive ant-lycaenid interactions are conditional and depend on immature ontogeny.

  17. Action of Ants on Vertebrate Carcasses and Blow Flies (Calliphoridae).

    PubMed

    Paula, Michele C; Morishita, Gustavo M; Cavarson, Carolina H; Gonçalves, Cristiano R; Tavares, Paulo R A; Mendonça, Angélica; Súarez, Yzel R; Antonialli-Junior, William F

    2016-11-01

    Forensic entomology is a science that uses insect fauna as a tool to assist in criminal investigations and civil proceedings. Although the most researched insects are the Diptera and Coleoptera, ants may be present in all stages of decomposition. The aim of this study was to evaluate the role of ants and their action on blow flies during the decomposition process. Experiments were performed in which four pig carcasses were exposed in the cold and dry season (November/2012 and March/2013) and four in the hot and wet season (May/2013 and August/2013). Flies were the first insects to detect and interact with the carcasses, and six species of the Calliphoridae family were identified. Ants (Hymenoptera: Formicidae) were the second group, with six subfamilies identified. Myrmycinae represented 42% of the species, followed by Formicinae (28%), Ectatominae and Ponerinae (both 10%), and Ecitoninae and Dolichoderinae (both 5%). The ants acted on the carcasses as predators of visiting species, omnivores, and necrophagous, in all cases significantly affecting the decomposition time, slowing it down when the ants preyed on adult and immature insects consuming the carcass, or accelerating it by consuming the carcass and creating holes that could serve as gateways for the action of other organisms. The ants also generated artifacts that could lead to forensic misinterpretation.

  18. An invasive slug exploits an ant-seed dispersal mutualism.

    PubMed

    Meadley Dunphy, Shannon A; Prior, Kirsten M; Frederickson, Megan E

    2016-05-01

    Plant-animal mutualisms, such as seed dispersal, are often vulnerable to disruption by invasive species. Here, we show for the first time how a non-ant invasive species negatively affects seed dispersal by ants. We examined the effects of several animal species that co-occur in a temperate deciduous forest-including native and invasive seed-dispersing ants (Aphaenogaster rudis and Myrmica rubra, respectively), an invasive slug (Arion subfuscus), and native rodents-on a native myrmecochorous plant, Asarum canadense. We experimentally manipulated ant, slug, and rodent access to seed depots and measured seed removal. We also video-recorded depots to determine which other taxa interact with seeds. We found that A. rudis was the main disperser of seeds and that A. subfuscus consumed elaiosomes without dispersing seeds. Rodent visitation was rare, and rodent exclusion had no significant effect on seed or elaiosome removal. We then used data obtained from laboratory and field mesocosm experiments to determine how elaiosome robbing by A. subfuscus affects seed dispersal by A. rudis and M. rubra. We found that elaiosome robbing by slugs reduced seed dispersal by ants, especially in mesocosms with A. rudis, which picks up seeds more slowly than M. rubra. Taken together, our results show that elaiosome robbing by an invasive slug reduces seed dispersal by ants, suggesting that invasive slugs can have profound negative effects on seed dispersal mutualisms.

  19. Trap-mulching Argentine ants.

    PubMed

    Silverman, Jules; Sorenson, Clyde E; Waldvogel, Michael G

    2006-10-01

    Argentine ant, Linepithema humile (Mayr), management is constrained, in large part, by polydomy where nestmates are distributed extensively across urban landscapes, particularly within mulch. Management with trap-mulching is a novel approach derived from trap-cropping where ants are repelled from a broad domain of nest sites to smaller defined areas, which are subsequently treated with insecticide. This concept was field-tested with mulch surrounding ornamental trees replaced with a narrow band of pine (Pinus spp.) needle mulch (trap) within a much larger patch of repellent aromatic cedar (Juniperus spp.) mulch. After ants reestablished around the trees, the pine needle mulch band was treated with 0.06% fipronil (Termidor). Poor results were obtained when the trap extended from the tree trunk to the edge of the mulched area. When the trap was applied as a circular band around the tree trunk reductions in the number of foraging ants were recorded through 14 d compared with an untreated mulch control, but not for longer periods. Reductions in the number of ant nests within mulch were no different between the trap mulch and any of the other treatments. We conclude that trap-mulching offers limited benefits, and that successful management of Argentine ants will require implementation of complementary or perhaps alternative strategies.

  20. Ants use partner specific odors to learn to recognize a mutualistic partner.

    PubMed

    Hojo, Masaru K; Yamamoto, Ari; Akino, Toshiharu; Tsuji, Kazuki; Yamaoka, Ryohei

    2014-01-01

    Regulation via interspecific communication is an important for the maintenance of many mutualisms. However, mechanisms underlying the evolution of partner communication are poorly understood for many mutualisms. Here we show, in an ant-lycaenid butterfly mutualism, that attendant ants selectively learn to recognize and interact cooperatively with a partner. Workers of the ant Pristomyrmex punctatus learn to associate cuticular hydrocarbons of mutualistic Narathura japonica caterpillars with food rewards and, as a result, are more likely to tend the caterpillars. However, the workers do not learn to associate the cuticular hydrocarbons of caterpillars of a non-ant-associated lycaenid, Lycaena phlaeas, with artificial food rewards. Chemical analysis revealed cuticular hydrocarbon profiles of the mutualistic caterpillars were complex compared with those of non-ant-associated caterpillars. Our results suggest that partner-recognition based on partner-specific chemical signals and cognitive abilities of workers are important mechanisms underlying the evolution and maintenance of mutualism with ants.

  1. Density-Dependent Benefits in Ant-Hemipteran Mutualism? The Case of the Ghost Ant Tapinoma melanocephalum (Hymenoptera: Formicidae) and the Invasive Mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae)

    PubMed Central

    Zhou, Aiming; Kuang, Beiqing; Gao, Yingrui; Liang, Guangwen

    2015-01-01

    Although density-dependent benefits to hemipterans from ant tending have been measured many times, few studies have focused on integrated effects such as interactions between ant tending, natural enemy density, and hemipteran density. In this study, we tested whether the invasive mealybug Phenacoccus solenopsis is affected by tending by ghost ants (Tapinoma melanocephalum), the presence of parasitoids, mealybug density, parasitoid density and interactions among these factors. Our results showed that mealybug colony growth rate and percentage parasitism were significantly affected by ant tending, parasitoid presence, and initial mealybug density separately. However, there were no interactions among the independent factors. There were also no significant interactions between ant tending and parasitoid density on either mealybug colony growth rate or percentage parasitism. Mealybug colony growth rate showed a negative linear relationship with initial mealybug density but a positive linear relationship with the level of ant tending. These results suggest that benefits to mealybugs are density-independent and are affected by ant tending level. PMID:25886510

  2. Behavioral Strategies of Phorid Parasitoids and Responses of Their Hosts, the Leaf-Cutting Ants

    PubMed Central

    Elizalde, Luciana; Folgarait, Patricia Julia

    2012-01-01

    Host-searching and oviposition behaviors of parasitoids, and defensive responses of the hosts, are fundamental in shaping the ecology of host-parasitoid interactions. In order to uncover key behavioral features for the little known interactions between phorid parasitoids (Diptera: Phoridae) and their leaf-cutting ant hosts (Formicidae: Attini), host-related behavioral strategies (i.e., host searching and oviposition) for 13 phorid species, and host defensive responses (i.e., hitchhikers and particular body postures) for 11 ant species, were studied. Data was collected at 14 localities, one of them characterized by its high species richness for this host-parasitoid system. Phorid species showed both great variation and specificity in attacking behaviors. Some chose their hosts using either an ambush or an actively searching strategy, while some species attacked ants on different body parts, and specialized on ants performing different tasks, such as when ants were foraging, removing wastes to refuse piles, or repairing the nest. Combining all the behaviors recorded, most phorid species differed in performance in at least one, making it possible to recognize species in the field through their behavior. Phorid species that attacked hosts with greater activity levels showed overall higher attack rates, although there was no significant correlation between attack rates by most phorid species and ant activity outside the nest while parasitoids were attacking. The presence of phorids was a significant determinant for the presence of defensive behaviors by the ants. Although ant species varied in the incidence levels of these defensive behaviors, most ant species reacted against different phorids by utilizing similar behaviors, in contrast to what parasitoids do. General features of the observed phorid-ant interactions were parasitoid specialization and corresponding high interspecific variation in their behaviors, while their hosts showed generalized responses to attacks

  3. Thermoregulation strategies in ants in comparison to other social insects, with a focus on red wood ants ( Formica rufa group)

    PubMed Central

    Kadochová, Štěpánka; Frouz, Jan

    2014-01-01

    Temperature influences every aspect of ant biology, especially metabolic rate, growth and development. Maintenance of high inner nest temperature increases the rate of sexual brood development and thereby increases the colony fitness. Insect societies can achieve better thermoregulation than solitary insects due to the former’s ability to build large and elaborated nests and display complex behaviour. In ants and termites the upper part of the nest, the mound, often works as a solar collector and can also have an efficient ventilation system. Two thermoregulatory strategies could be applied. Firstly the ants use an increased thermal gradient available in the mound for brood relocation. Nurse workers move the brood according to the thermal gradients to ensure the ideal conditions for development. A precise perception of temperature and evolution of temperature preferences are needed to make the correct choices. A second thermoregulatory strategy used by mound nesting ants is keeping a high temperature inside large nests. The unique thermal and insulation properties of the nest material help to maintain stable conditions, which is the case of the Wood ant genus Formica. Ants can regulate thermal loss by moving nest aggregation and alternating nest ventilation. Metabolic heat produced by ant workers or associated micro organisms is an important additional source of heat which helps to maintain thermal homeostasis in the nest. PMID:24715967

  4. Thermoregulation strategies in ants in comparison to other social insects, with a focus on red wood ants ( Formica rufa group).

    PubMed

    Kadochová, Stěpánka; Frouz, Jan

    2013-01-01

    Temperature influences every aspect of ant biology, especially metabolic rate, growth and development. Maintenance of high inner nest temperature increases the rate of sexual brood development and thereby increases the colony fitness. Insect societies can achieve better thermoregulation than solitary insects due to the former's ability to build large and elaborated nests and display complex behaviour. In ants and termites the upper part of the nest, the mound, often works as a solar collector and can also have an efficient ventilation system. Two thermoregulatory strategies could be applied. Firstly the ants use an increased thermal gradient available in the mound for brood relocation. Nurse workers move the brood according to the thermal gradients to ensure the ideal conditions for development. A precise perception of temperature and evolution of temperature preferences are needed to make the correct choices. A second thermoregulatory strategy used by mound nesting ants is keeping a high temperature inside large nests. The unique thermal and insulation properties of the nest material help to maintain stable conditions, which is the case of the Wood ant genus Formica. Ants can regulate thermal loss by moving nest aggregation and alternating nest ventilation. Metabolic heat produced by ant workers or associated micro organisms is an important additional source of heat which helps to maintain thermal homeostasis in the nest.

  5. Widespread Chemical Detoxification of Alkaloid Venom by Formicine Ants.

    PubMed

    LeBrun, Edward G; Diebold, Peter J; Orr, Matthew R; Gilbert, Lawrence E

    2015-10-01

    The ability to detoxify defensive compounds of competitors provides key ecological advantages that can influence community-level processes. Although common in plants and bacteria, this type of detoxification interaction is extremely rare in animals. Here, using laboratory behavioral assays and analyses of videotaped interactions in South America, we report widespread venom detoxification among ants in the subfamily Formicinae. Across both data sets, nine formicine species, representing all major clades, used a stereotyped grooming behavior to self-apply formic acid (acidopore grooming) in response to fire ant (Solenopsis invicta and S. saevissima) venom exposure. In laboratory assays, this behavior increased the survivorship of species following exposure to S. invicta venom. Species expressed the behavior when exposed to additional alkaloid venoms, including both compositionally similar piperidine venom of an additional fire ant species and the pyrrolidine/pyrroline alkaloid venom of a Monomorium species. In addition, species expressed the behavior following exposure to the uncharacterized venom of a Crematogaster species. However, species did not express acidopore grooming when confronted with protein-based ant venoms or when exposed to monoterpenoid-based venom. This pattern, combined with the specific chemistry of the reaction of formic acid with venom alkaloids, indicates that alkaloid venoms are targets of detoxification grooming. Solenopsis thief ants, and Monomorium species stand out as brood-predators of formicine ants that produce piperidine, pyrrolidine, and pyrroline venom, providing an important ecological context for the use of detoxification behavior. Detoxification behavior also represents a mechanism that can influence the order of assemblage dominance hierarchies surrounding food competition. Thus, this behavior likely influences ant-assemblages through a variety of ecological pathways.

  6. Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants

    PubMed Central

    Ruiz-González, Mario X.; Malé, Pierre-Jean G.; Leroy, Céline; Dejean, Alain; Gryta, Hervé; Jargeat, Patricia; Quilichini, Angélique; Orivel, Jérôme

    2011-01-01

    Ant–fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant–fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries. PMID:21084334

  7. Effects of substrate, ant and fungal species on plant fiber degradation in a fungus-gardening ant symbiosis.

    PubMed

    DeMilto, Alexandria M; Rouquette, Monte; Mueller, Ulrich G; Kellner, Katrin; Seal, Jon N

    2017-02-11

    fungal species grown by T. arizonensis colonies, hemicellulose utilization was higher in T. arizonensis colonies growing a derived leaf-cutting ant fungal symbiont than when growing a native type of symbiont. The results of this study demonstrate that fiber digestion in fungus-gardening ants is an outcome of ant-fungal interaction.

  8. A Specialist Herbivore Uses Chemical Camouflage to Overcome the Defenses of an Ant-Plant Mutualism

    PubMed Central

    Whitehead, Susan R.; Reid, Ellen; Sapp, Joseph; Poveda, Katja; Royer, Anne M.; Posto, Amanda L.; Kessler, André

    2014-01-01

    Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms. PMID:25047551

  9. Glass-like dynamics in confined and congested ant traffic.

    PubMed

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A D; Goldman, Daniel I

    2015-09-07

    The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft

  10. Specificity and transmission mosaic of ant nest-wall fungi

    PubMed Central

    Schlick-Steiner, Birgit C.; Steiner, Florian M.; Konrad, Heino; Seifert, Bernhard; Christian, Erhard; Moder, Karl; Stauffer, Christian; Crozier, Ross H.

    2008-01-01

    Mutualism, whereby species interact to their mutual benefit, is extraordinary in a competitive world. To recognize general patterns of origin and maintenance from the plethora of mutualistic associations proves a persisting challenge. The simplest situation is believed to be that of a single mutualist specific to a single host, vertically transmitted from one host generation to the next. We characterized ascomycete fungal associates cultured for nest architecture by the ant subgenera Dendrolasius and Chthonolasius. The ants probably manage their fungal mutualists by protecting them against fungal competitors. The ant subgenera display different ant-to-fungus specificity patterns, one-to-two and many-to-one, and we infer vertical transmission, in the latter case overlaid by horizontal transmission. Possible evolutionary trajectories include a reversal from fungiculture by other Lasius subgenera and inheritance of fungi through life cycle interactions of the ant subgenera. The mosaic indicates how specificity patterns can be shaped by an interplay between host life-cycles and transmission adaptations. PMID:18195358

  11. New mutualism for old: indirect disruption and direct facilitation of seed dispersal following Argentine ant invasion.

    PubMed

    Rowles, Alexei D; O'Dowd, Dennis J

    2009-01-01

    The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly

  12. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants.

    PubMed

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-11-01

    In plant-ant-hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field.

  13. Monoculture of Leafcutter Ant Gardens

    PubMed Central

    Mueller, Ulrich G.; Scott, Jarrod J.; Ishak, Heather D.; Cooper, Michael; Rodrigues, Andre

    2010-01-01

    Background Leafcutter ants depend on the cultivation of symbiotic Attamyces fungi for food, which are thought to be grown by the ants in single-strain, clonal monoculture throughout the hundreds to thousands of gardens within a leafcutter nest. Monoculture eliminates cultivar-cultivar competition that would select for competitive fungal traits that are detrimental to the ants, whereas polyculture of several fungi could increase nutritional diversity and disease resistance of genetically variable gardens. Methodology/Principal Findings Using three experimental approaches, we assessed cultivar diversity within nests of Atta leafcutter ants, which are most likely among all fungus-growing ants to cultivate distinct cultivar genotypes per nest because of the nests' enormous sizes (up to 5000 gardens) and extended lifespans (10–20 years). In Atta texana and in A. cephalotes, we resampled nests over a 5-year period to test for persistence of resident cultivar genotypes within each nest, and we tested for genetic differences between fungi from different nest sectors accessed through excavation. In A. texana, we also determined the number of Attamyces cells carried as a starter inoculum by a dispersing queens (minimally several thousand Attamyces cells), and we tested for genetic differences between Attamyces carried by sister queens dispersing from the same nest. Except for mutational variation arising during clonal Attamyces propagation, DNA fingerprinting revealed no evidence for fungal polyculture and no genotype turnover during the 5-year surveys. Conclusions/Significance Atta leafcutter ants can achieve stable, fungal monoculture over many years. Mutational variation emerging within an Attamyces monoculture could provide genetic diversity for symbiont choice (gardening biases of the ants favoring specific mutational variants), an analog of artificial selection. PMID:20844760

  14. Comparative dating of attine ant and lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord.

    PubMed

    Mikheyev, Alexander S; Mueller, Ulrich G; Abbot, Patrick

    2010-06-01

    The mutualistic symbiosis between fungus-gardening ants and their cultivars has made fundamental contributions to our understanding of the coevolution of complex species interactions. Reciprocal specialization and vertical symbiont cotransmission are thought to promote a pattern of largely synchronous coevolutionary diversification in attines. Here we test this hypothesis by inferring the first time-calibrated multigene phylogeny of the lepiotaceous attine cultivars and comparing it with the recently published fossil-anchored phylogeny of the attine ants. While this comparison reveals some possible cases of synchronous origins of ant and fungal clades, there were a number of surprising asynchronies. For example, leaf-cutter cultivars appear to be significantly younger than the corresponding ant genera. Similarly, a clade of fungi interacting with primitive fungus-gardening ants--thought to be ancestral to the more derived leaf-cutter symbionts--appears instead to be a more recent acquisition from free-living stock. These macroevolutionary patterns are consistent with recent population-level studies suggesting occasional acquisition of novel cultivar types from environmental sources and horizontal transmission of cultivars between different ant species. Horizontal transmission events, even if rare, appear to form loose ecological connections between diffusely coevolving ant and fungus lineages that permit punctuated changes in the topology of the mutualistic ant-fungus interaction network.

  15. VideoANT: Extending Online Video Annotation beyond Content Delivery

    ERIC Educational Resources Information Center

    Hosack, Bradford

    2010-01-01

    This paper expands the boundaries of video annotation in education by outlining the need for extended interaction in online video use, identifying the challenges faced by existing video annotation tools, and introducing Video-ANT, a tool designed to create text-based annotations integrated within the time line of a video hosted online. Several…

  16. Ant exclusion in citrus over an 8-year period reveals a pervasive yet changing effect of ants on a Mediterranean spider assemblage.

    PubMed

    Mestre, L; Piñol, J; Barrientos, J A; Espadaler, X

    2013-09-01

    Ants and spiders are ubiquitous generalist predators that exert top-down control on herbivore populations. Research shows that intraguild interactions between ants and spiders can negatively affect spider populations, but there is a lack of long-term research documenting the strength of such interactions and the potentially different effects of ants on the diverse array of species in a spider assemblage. Similarly, the suitability of family-level surrogates for finding patterns revealed by species-level data (taxonomic sufficiency) has almost never been tested in spider assemblages. We present a long-term study in which we tested the impact of ants on the spider assemblage of a Mediterranean citrus grove by performing sequential 1-year experimental exclusions on tree canopies for 8 years. We found that ants had a widespread influence on the spider assemblage, although the effect was only evident in the last 5 years of the study. During those years, ants negatively affected many spiders, and effects were especially strong for sedentary spiders. Analyses at the family level also detected assemblage differences between treatments, but they concealed the different responses to ant exclusion shown by some related spider species. Our findings show that the effects of experimental manipulations in ecology can vary greatly over time and highlight the need for long-term studies to document species interactions.

  17. Mimetic host shifts in an endangered social parasite of ants

    PubMed Central

    Thomas, Jeremy A.; Elmes, Graham W.; Sielezniew, Marcin; Stankiewicz-Fiedurek, Anna; Simcox, David J.; Settele, Josef; Schönrogge, Karsten

    2013-01-01

    An emerging problem in conservation is whether listed morpho-species with broad distributions, yet specialized lifestyles, consist of more than one cryptic species or functionally distinct forms that have different ecological requirements. We describe extreme regional divergence within an iconic endangered butterfly, whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate and supplant the brood in ant societies. Although indistinguishable morphologically or when using current mitochondrial and nuclear sequence-, or microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit different Myrmica ant species and experience 100 per cent mortality with each other's hosts. This reflects major differences in the hydrocarbons synthesized from each region by the larvae, which so closely mimic the recognition profiles of their respective hosts that nurse ants afford each parasite a social status above that of their own kin larvae. The two host ants occupy separate niches within grassland; thus, conservation management must differ in each region. Similar cryptic differentiation may be common, yet equally hard to detect, among the approximately 10 000 unstudied morpho-species of social parasite that are estimated to exist, many of which are Red Data Book listed. PMID:23193127

  18. Reproductive phenologies in a diverse temperate ant fauna

    USGS Publications Warehouse

    Dunn, R.R.; Parker, C.R.; Geraghty, M.; Sanders, N.J.

    2007-01-01

    1. Ant nuptial flights are central to understanding ant life history and ecology but have been little studied. This study examined the timing of nuptial flights, the synchronicity of nuptial flights (as a potential index of mating strategy), and variation in nuptial flights with elevation and among years in a diverse temperate ant fauna. 2. Flights occurred throughout the year, but were concentrated in the beginning of summer and in early fall (autumn). Relative to the entire flight season, closely related species tended to be more likely than expected by chance to fly at similar times, perhaps because of phylogenetic constraints on life history evolution. 3. Flights were relatively synchronous within species for nearly all species considered, but synchronicity did not appear to be a robust estimate of overall mating strategy. 4. Overall patterns in nuptial flights among species and the timing of flights for individual species varied with elevation, but did not vary greatly among years. 5. Although this study is one of the most comprehensive on the reproductive flight phenologies of ants, much remains to be learned about the causes and consequences of such spatial and temporal variation in flight phenology. ?? 2007 The Royal Entomological Society.

  19. Social, spatial, and temporal organization in a complex insect society.

    PubMed

    Quevillon, Lauren E; Hanks, Ephraim M; Bansal, Shweta; Hughes, David P

    2015-08-24

    High-density living is often associated with high disease risk due to density-dependent epidemic spread. Despite being paragons of high-density living, the social insects have largely decoupled the association with density-dependent epidemics. It is hypothesized that this is accomplished through prophylactic and inducible defenses termed 'collective immunity'. Here we characterise segregation of carpenter ants that would be most likely to encounter infectious agents (i.e. foragers) using integrated social, spatial, and temporal analyses. Importantly, we do this in the absence of disease to establish baseline colony organization. Behavioural and social network analyses show that active foragers engage in more trophallaxis interactions than their nest worker and queen counterparts and occupy greater area within the nest. When the temporal ordering of social interactions is taken into account, active foragers and inactive foragers are not observed to interact with the queen in ways that could lead to the meaningful transfer of disease. Furthermore, theoretical resource spread analyses show that such temporal segregation does not appear to impact the colony-wide flow of food. This study provides an understanding of a complex society's organization in the absence of disease that will serve as a null model for future studies in which disease is explicitly introduced.

  20. Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics

    PubMed Central

    Chomicki, Guillaume; Ward, Philip S.; Renner, Susanne S.

    2015-01-01

    Symbioses include some of the clearest cases of coevolution, but their origin, loss or reassembly with different partners can rarely be inferred. Here we use ant/plant symbioses involving three plant clades to investigate the evolution of symbioses. We generated phylogenies for the big-eyed arboreal ants (Pseudomyrmecinae), including 72% of their 286 species, as well as for five of their plant host groups, in each case sampling more than 61% of the species. We show that the ant-housing Vachellia (Mimosoideae) clade and its ants co-diversified for the past 5 Ma, with some species additionally colonized by younger plant-nesting ant species, some parasitic. An apparent co-radiation of ants and Tachigali (Caesalpinioideae) was followed by waves of colonization by the same ant clade, and subsequent occupation by a younger ant group. Wide crown and stem age differences between the ant-housing genus Triplaris (Polygonaceae) and its obligate ant inhabitants, and stochastic trait mapping, indicate that its domatium evolved earlier than the ants now occupying it, suggesting previous symbioses that dissolved. Parasitic ant species evolved from generalists, not from mutualists, and are younger than the mutualistic systems they parasitize. Our study illuminates the macroevolutionary assembly of ant/plant symbioses, which has been highly dynamic, even in very specialized systems. PMID:26582029

  1. Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics.

    PubMed

    Chomicki, Guillaume; Ward, Philip S; Renner, Susanne S

    2015-11-22

    Symbioses include some of the clearest cases of coevolution, but their origin, loss or reassembly with different partners can rarely be inferred. Here we use ant/plant symbioses involving three plant clades to investigate the evolution of symbioses. We generated phylogenies for the big-eyed arboreal ants (Pseudomyrmecinae), including 72% of their 286 species, as well as for five of their plant host groups, in each case sampling more than 61% of the species. We show that the ant-housing Vachellia (Mimosoideae) clade and its ants co-diversified for the past 5 Ma, with some species additionally colonized by younger plant-nesting ant species, some parasitic. An apparent co-radiation of ants and Tachigali (Caesalpinioideae) was followed by waves of colonization by the same ant clade, and subsequent occupation by a younger ant group. Wide crown and stem age differences between the ant-housing genus Triplaris (Polygonaceae) and its obligate ant inhabitants, and stochastic trait mapping, indicate that its domatium evolved earlier than the ants now occupying it, suggesting previous symbioses that dissolved. Parasitic ant species evolved from generalists, not from mutualists, and are younger than the mutualistic systems they parasitize. Our study illuminates the macroevolutionary assembly of ant/plant symbioses, which has been highly dynamic, even in very specialized systems.

  2. The need for interaction between assisted reproduction technology and genetics: recommendations of the European Societies of Human Genetics and Human Reproduction and Embryology.

    PubMed

    2006-08-01

    Infertility and reproductive genetic risk are both increasing in our societies because of lifestyle changes and possibly environmental factors. Owing to the magnitude of the problem, they have implications not only at the individual and family levels but also at the community level. This leads to an increasing demand for access to assisted reproduction technology (ART) and genetic services, especially when the cause of infertility may be genetic in origin. The increasing application of genetics in reproductive medicine and vice versa requires closer collaboration between the two disciplines. ART and genetics are rapidly evolving fields where new technologies are currently introduced without sufficient knowledge of their potential long-term effects. As for any medical procedures, there are possible unexpected effects which need to be envisaged to make sure that the balance between benefits and risks is clearly on the benefit side. The development of ART and genetics as scientific activities is creating an opportunity to understand the early stages of human development, which is leading to new and challenging findings/knowledge. However, there are opinions against investigating the early stages of development in humans who deserve respect and attention. For all these reasons, these two societies, European Society of Human Genetics (ESHG) and European Society of Human Reproduction and Embryology (ESHRE), have joined efforts to explore the issues at stake and to set up recommendations to maximize the benefit for the couples in need and for the community.

  3. Parabiotic associations between tropical ants: equal partnership or parasitic exploitation?

    PubMed

    Menzel, F; Blüthgen, N

    2010-01-01

    1. The huge diversity of symbiotic associations among animals and/or plants comprises both mutualisms and parasitisms. Most symbioses between social insect species, however, involve social parasites, while mutual benefits have been only suspected for some parabiotic associations - two colonies that share a nest. 2. In the rainforest of Borneo, we studied parabiotic associations between the ants Crematogaster modiglianii and Camponotus rufifemur. Parabiotic nests were regularly found inside hollow tree trunks, most likely initiated by Cr. modiglianii. This species frequently nested without its partner, whereas we never found non-parabiotic Ca. rufifemur nests. We experimentally investigated potential benefits, potential interference competition for food (as a probable cost), and foraging niches of both species. 3. The two species never showed aggressive interactions and amicably shared food resources. However, Cr. modiglianii had a wider temporal and spatial foraging range than Ca. rufifemur, always found baits before Ca. rufifemur and recruited more efficiently. Camponotus rufifemur probably benefited from following pheromone trails of Cr. modiglianii. In turn, Ca. rufifemur was significantly more successful in defending the nest against alien ants. Crematogaster modiglianii hence may profit from its partner's defensive abilities. 4. In neotropical parabioses, epiphytes grown in 'ant-gardens' play a crucial role in the association, e.g. by stabilization of nests. Hemiepiphytic Poikilospermum cordifolium (Cecropiaceae) seedlings and saplings frequently grew in the entrances of parabiotic nests in Borneo, obviously dispersed by the ants. In cafeteria experiments, both parabiotic ants carried its elaiosome-bearing seeds into the nest. However, P. cordifolium does not provide additional nest space, contrasting with neotropical ant-gardens. 5. The parabiotic association appears beneficial for both ant species, the main benefits being nest initiation by Cr. modiglianii

  4. Few Ant Species Play a Central Role Linking Different Plant Resources in a Network in Rupestrian Grasslands

    PubMed Central

    Mello, Marco A. R.; Bronstein, Judith L.; Guerra, Tadeu J.; Muylaert, Renata L.; Leite, Alice C.; Neves, Frederico S.

    2016-01-01

    Ant-plant associations are an outstanding model to study the entangled ecological interactions that structure communities. However, most studies of plant-animal networks focus on only one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased understanding of community structure. New approaches, however, have made possible to study several interaction types simultaneously through multilayer networks models. Here, we use this approach to ask whether the structural patterns described to date for ant-plant networks hold when multiple interactions with plant-derived food rewards are considered. We tested whether networks characterized by different resource types differ in specialization and resource partitioning among ants, and whether the identity of the core ant species is similar among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant network in which plants offering different resource types are connected by a few central ant species. The multilayer network had low modularity and specialization, but ant specialization and niche overlap differed according to the type of resource used. Beyond detecting structural differences across networks, our study demonstrates empirically that the core of most central ant species is similar across them. We suggest that foraging strategies of ant species, such as massive recruitment, may determine specialization and resource partitioning in ant-plant interactions. As this core of ant species is involved in multiple ecosystem functions, it may drive the diversity and evolution of the entire campo rupestre community. PMID:27911919

  5. Ants medicate to fight disease.

    PubMed

    Bos, Nick; Sundström, Liselotte; Fuchs, Siiri; Freitak, Dalial

    2015-11-01

    Parasites are ubiquitous, and the ability to defend against these is of paramount importance. One way to fight diseases is self-medication, which occurs when an organism consumes biologically active compounds to clear, inhibit, or alleviate disease symptoms. Here, we show for the first time that ants selectively consume harmful substances (reactive oxygen species, ROS) upon exposure to a fungal pathogen, yet avoid these in the absence of infection. This increased intake of ROS, while harmful to healthy ants, leads to higher survival of exposed ants. The fact that ingestion of this substance carries a fitness cost in the absence of pathogens rules out compensatory diet choice as the mechanism, and provides evidence that social insects medicate themselves against fungal infection, using a substance that carries a fitness cost to uninfected individuals.

  6. Species-Specific Seed Dispersal in an Obligate Ant-Plant Mutualism

    PubMed Central

    Youngsteadt, Elsa; Baca, Jeniffer Alvarez; Osborne, Jason; Schal, Coby

    2009-01-01

    Throughout lowland Amazonia, arboreal ants collect seeds of specific plants and cultivate them in nutrient-rich nests, forming diverse yet obligate and species-specific symbioses called Neotropical ant-gardens (AGs). The ants depend on their symbiotic plants for nest stability, and the plants depend on AGs for substrate and nutrients. Although the AGs are limited to specific participants, it is unknown at what stage specificity arises, and seed fate pathways in AG epiphytes are undocumented. Here we examine the specificity of the ant-seed interaction by comparing the ant community observed at general food baits to ants attracted to and removing seeds of the AG plant Peperomia macrostachya. We also compare seed removal rates under treatments that excluded vertebrates, arthropods, or both. In the bait study, only three of 70 ant species collected P. macrostachya seeds, and 84% of observed seed removal by ants was attributed to the AG ant Camponotus femoratus. In the exclusion experiment, arthropod exclusion significantly reduced seed removal rates, but vertebrate exclusion did not. We provide the most extensive empirical evidence of species specificity in the AG mutualism and begin to quantify factors that affect seed fate in order to understand conditions that favor its departure from the typical diffuse model of plant-animal mutualism. PMID:19194502

  7. Monopolization of resources by ground-nesting ants foraging on trees in Mediterranean forests

    NASA Astrophysics Data System (ADS)

    Martinez, Jean-Jacques Itzhak

    2015-05-01

    Ant communities are generally structured by territoriality, dominance and resource monopolization, but in Mediterranean hot grassland thermal tolerance plays a more important role. The main purposes of the present research were to investigate the hypothesis that in cooler Mediterranean forests resource monopolization structures the generalist ground-nesting ant community while foraging on trees, and to learn if tree heterogeneity plays any role in this structure. In Mediterranean forests in Israel, I visually recorded and trapped ants on the forest floor and those climbing on trees of five species. Ants of 27 species were detected, while the Chao2 index indicated an asymptotic richness estimation of 31 ± 8.1 species (mean ± S.D.). The numerically dominant species were Crematogaster lorteti and Tapinoma simrothi followed by Tapinoma israele and Crematogaster scutellaris. In more than 80% of the cases, specimens of only one ant species climbed at the same time on any individual tree, and no tree was occupied by more than three species. The C-score of climbing ants was statistically higher than simulated indexes when resources were individual trees, indicating that the ants strongly monopolized each tree. No difference was detected between observed and simulated C-scores when resources were tree species. The observed index of Pianka's niche overlap indicated no species specific interaction between trees and ants. In conclusion, this study confirms that ant mosaic structure may be formed by ground-nesting ants while foraging on trees. Tree species heterogeneity did not have a selective impact on the ants nor a central role in the ant community structure.

  8. Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants.

    PubMed

    Bologna, Audrey; Detrain, Claire

    2015-01-01

    Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects -positive, negative or none - on ants' demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants.

  9. Neuromodulation of Nestmate Recognition Decisions by Pavement Ants

    PubMed Central

    Bubak, Andrew N.; Yaeger, Jazmine D. W.; Renner, Kenneth J.; Swallow, John G.; Greene, Michael J.

    2016-01-01

    Ant colonies are distributed systems that are regulated in a non-hierarchical manner. Without a central authority, individuals inform their decisions by comparing information in local cues to a set of inherent behavioral rules. Individual behavioral decisions collectively change colony behavior and lead to self-organization capable of solving complex problems such as the decision to engage in aggressive societal conflicts with neighbors. Despite the relevance to colony fitness, the mechanisms that drive individual decisions leading to cooperative behavior are not well understood. Here we show how sensory information, both tactile and chemical, and social context—isolation, nestmate interaction, or fighting non-nestmates—affects brain monoamine levels in pavement ants (Tetramorium caespitum). Our results provide evidence that changes in octopamine and serotonin in the brains of individuals are sufficient to alter the decision by pavement ants to be aggressive towards non-nestmate ants whereas increased brain levels of dopamine correlate to physical fighting. We propose a model in which the changes in brain states of many workers collectively lead to the self-organization of societal aggression between neighboring colonies of pavement ants. PMID:27846261

  10. Ant-like task allocation and recruitment in cooperative robots.

    PubMed

    Krieger, M J; Billeter, J B; Keller, L

    2000-08-31

    One of the greatest challenges in robotics is to create machines that are able to interact with unpredictable environments in real time. A possible solution may be to use swarms of robots behaving in a self-organized manner, similar to workers in an ant colony. Efficient mechanisms of division of labour, in particular series-parallel operation and transfer of information among group members, are key components of the tremendous ecological success of ants. Here we show that the general principles regulating division of labour in ant colonies indeed allow the design of flexible, robust and effective robotic systems. Groups of robots using ant-inspired algorithms of decentralized control techniques foraged more efficiently and maintained higher levels of group energy than single robots. But the benefits of group living decreased in larger groups, most probably because of interference during foraging. Intriguingly, a similar relationship between group size and efficiency has been documented in social insects. Moreover, when food items were clustered, groups where robots could recruit other robots in an ant-like manner were more efficient than groups without information transfer, suggesting that group dynamics of swarms of robots may follow rules similar to those governing social insects.

  11. Society of Reproductive Surgeons

    MedlinePlus

    The Society of Reproductive Surgeons Home About Us About SRS Mission Statement Officers The Role of Reproductive Surgeons For ... Fact Sheets and Booklets SRS is an affiliated society to the American Society for Reproductive Medicine . Below ...

  12. [Ants and aliens. An episode in the history of entomological and sociological construction of knowledge].

    PubMed

    Werber, Niels

    2011-09-01

    The frequent use of biological metaphors in descriptions of society is well known and has already been investigated. Even the traces of biological theory in sociology have been explored. In this field of science, studies of social insects play an important role, because ants, bees, and termites have been considered to be genuinely political animals and founders of societies. Like men, social insects exist only in collectives; thus, the entomologist's research directs him from the individual insect, its morphology and taxonomy to the analysis of insect societies. Entomologists like Wheeler or Wilson become sociologists and develop methods to deal with a society whose members are dumb, soulless, without reason, rational choice, or motives. Tools invented to describe the evolution of insect societies have been picked up by sociological founders of systems theory like Parsons or Luhmann, who were busy building a theory of a society, which for heuristic reasons is not composed of men (individuals with souls, motives, consciousness and so on) but rather of communications, media, or codes. My paper treats 1.) the genealogy of this discursive mixture of problems, methods, and focuses on 2.) the rhetorical dimension of this entomological-sociological passage. I will sketch certain 'evident' pictures of society, which function as media of a subliminal crossing of entomological and sociological premises, models, and assumptions. Both can be found in novels like Wilson's Anthill, which this paper analyzes with respect to the concepts of society implied by them, that is, concepts whose blueprints are based on models of an ant society.

  13. Drivers of Spatial Variation in the Role of Ants as Secondary Seed Dispersers.

    PubMed

    Bottcher, C; Peixoto, P E C; Silva, W R; Pizo, M A

    2016-08-01

    The spatial variation in the outcome of the interaction between secondary dispersers and seeds is superimposed upon the variation produced by primary dispersers. Investigating the factors that drive the outcome of the interactions with secondary seed dispersers thus represents an essential refinement to our understanding of the complete seed dispersal process. We studied the interactions between two ponerine ants (Pachycondyla striata Smith, 1858 and Odontomachus chelifer (Latreille, 1802)) with fruits experimentally set on the ground, and estimated the effects of ants on seedling establishment in three areas distributed along a 2-km stretch of a Brazilian Atlantic rainforest that differ in soil properties and vegetation physiognomies. We tested the hypothesis that interactions are more frequent, resulting in greater seedling establishment at the site with harsher abiotic and biotic conditions. Both ant species removed fruits frequently and have a positive effect on seedling establishment in all study areas, but fruit removal did not differ among areas, while seedling establishment was more pronounced at the site with stressful abiotic conditions. The two ant species differed in important aspects of their seed dispersal services, including the propensity to interact with seeds. As a result, both the species of ant and abiotic conditions interact at the scale of 2 km to determine the fate of seeds interacting with ants, thus creating a mosaic of outcomes with variable benefits to plants.

  14. Convergent coevolution in the domestication of coral mushrooms by fungus-growing ants.

    PubMed Central

    Munkacsi, A. B.; Pan, J. J.; Villesen, P.; Mueller, U. G.; Blackwell, M.; McLaughlin, D. J.

    2004-01-01

    Comparisons of phylogenetic patterns between coevolving symbionts can reveal rich details about the evolutionary history of symbioses. The ancient symbiosis between fungus-growing ants, their fungal cultivars, antibiotic-producing bacteria and cultivar-infecting parasites is dominated by a pattern of parallel coevolution, where the symbionts of each functional group are members of monophyletic groups. However, there is one outstanding exception in the fungus-growing ant system, the unidentified cultivar grown only by ants in the Apterostigma pilosum group. We classify this cultivar in the coral-mushroom family Pterulaceae using phylogenetic reconstructions based on broad taxon sampling, including the first mushroom collected from the garden of an ant species in the A. pilosum group. The domestication of the pterulaceous cultivar is independent from the domestication of the gilled mushrooms cultivated by all other fungus-growing ants. Yet it has the same overall assemblage of coevolved ant-cultivar-parasite-bacterium interactions as the other ant-grown fungal cultivars. This indicates a pattern of convergent coevolution in the fungus-growing ant system, where symbionts with both similar and very different evolutionary histories converge to functionally identical interactions. PMID:15315892

  15. Consequences of forest clear-cuts for native and nonindigenous ants (Hymenoptera: Formicidae)

    USGS Publications Warehouse

    Zettler, J.A.; Taylor, M.D.; Allen, C.R.; Spira, T.P.

    2004-01-01

    Currently, the southern United States produces more timber than any other region in the world. Entire timber stands are removed through a harvesting method called clear-cutting. This common forestry practice may lead to the replacement of native ant communities with invasive, nonindigenous species. In four deciduous forest sites in South Carolina, we monitored the change in ant species richness, diversity, and abundance immediately after forest clearing for a period of 15 mo to 2 yr and determined the incidence of colonization of the red imported fire ant Solenopsis invicta into these four newly disturbed sites. Each site consisted of an uncut, forested plot and a logged, pine-planted plot. Fire ants were collected in clear-cuts as early as 3 mo postcutting, and by the end of the experiment, they were found in all four treatment sites. Our study is the first to document, through a controlled experiment, that clear-cutting alters ant species assemblages by increasing S. invicta and Pheidole spp. populations and significantly reducing native ant numbers. Long-term studies are needed to assess how replacing native deciduous forests with pine monocultures affects ant assemblages. ?? 2004 Entomological Society of America.

  16. Ant opsins: sequences from the Saharan silver ant and the carpenter ant.

    PubMed

    Popp, M P; Grisshammer, R; Hargrave, P A; Smith, W C

    1996-03-01

    cDNA clones encoding opsins from compound eyes of carpenter ant, Camponotus abdominalis, and Saharan silver ant, Cataglyphis bombycina, were isolated from cDNA libraries. The opsin cDNAs from each species code for deduced proteins with 378 amino acids which are 92% identical. Of the 30 amino acid differences between the two proteins, 13 are non-conservative. Eight of these non-conservative substitutions are within the membrane spanning domain. The presence of a potential Schiff-base counterion in helix III in both species suggests that these opsins are the protein moiety of the visible range pigments. When compared to all known opsins, these opsins are most similar to the opsin from preying mantis (76% identity at the amino acid level). Phyletic comparisons group the two ant opsins with the other arthropod long wavelength opsins.

  17. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

    PubMed Central

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-01-01

    In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  18. Prudent sperm use by leaf-cutter ant queens

    PubMed Central

    den Boer, Susanne P. A.; Baer, Boris; Dreier, Stephanie; Aron, Serge; Nash, David R.; Boomsma, Jacobus J.

    2009-01-01

    In many species, females store sperm between copulation and egg fertilization, but the consequences of sperm storage and patterns of sperm use for female life history and reproductive success have not been investigated in great detail. In hymenopteran insect societies (ants, bees, wasps), reproduction is usually monopolized by one or relatively few queens, who mate only during a brief period early in life and store sperm for later use. The queens of some ants are particularly long-lived and have the potential to produce millions of offspring during their life. To do so, queens store many sperm cells, and this sperm must remain viable throughout the years of storage. Queens should also be under strong selection to use stored sperm prudently when fertilizing eggs. We used the leaf-cutter ant Atta colombica to investigate the dynamics of sperm use during egg fertilization. We show that queens are able to fertilize close to 100 per cent of the eggs and that the average sperm use per egg is very low, but increases with queen age. The robustness of stored sperm was found to decrease with years of storage, signifying that senescence affects sperm either directly or indirectly via the declining glandular secretions or deteriorating sperm-storage organs. We evaluate our findings with a heuristic model, which suggests that the average queen has sperm for almost 9 years of normal colony development. We discuss the extent to which leaf-cutter ant queens have been able to optimize their sperm expenditure and infer that our observed averages of sperm number, sperm robustness and sperm use are consistent with sperm depletion being a significant cause of mortality of mature colonies of Atta leaf-cutter ants. PMID:19710057

  19. Prudent sperm use by leaf-cutter ant queens.

    PubMed

    den Boer, Susanne P A; Baer, Boris; Dreier, Stephanie; Aron, Serge; Nash, David R; Boomsma, Jacobus J

    2009-11-22

    In many species, females store sperm between copulation and egg fertilization, but the consequences of sperm storage and patterns of sperm use for female life history and reproductive success have not been investigated in great detail. In hymenopteran insect societies (ants, bees, wasps), reproduction is usually monopolized by one or relatively few queens, who mate only during a brief period early in life and store sperm for later use. The queens of some ants are particularly long-lived and have the potential to produce millions of offspring during their life. To do so, queens store many sperm cells, and this sperm must remain viable throughout the years of storage. Queens should also be under strong selection to use stored sperm prudently when fertilizing eggs. We used the leaf-cutter ant Atta colombica to investigate the dynamics of sperm use during egg fertilization. We show that queens are able to fertilize close to 100 per cent of the eggs and that the average sperm use per egg is very low, but increases with queen age. The robustness of stored sperm was found to decrease with years of storage, signifying that senescence affects sperm either directly or indirectly via the declining glandular secretions or deteriorating sperm-storage organs. We evaluate our findings with a heuristic model, which suggests that the average queen has sperm for almost 9 years of normal colony development. We discuss the extent to which leaf-cutter ant queens have been able to optimize their sperm expenditure and infer that our observed averages of sperm number, sperm robustness and sperm use are consistent with sperm depletion being a significant cause of mortality of mature colonies of Atta leaf-cutter ants.

  20. Ant Ecdysteroid Extraction and Radioimmunoassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecdysteroids are a group of steroid compounds present in many plant and invertebrate species. In arthropods, they function primarily as hormones involved in the regulation of molting. This protocol describes how to extract ecdysteroid hormones from ant specimens and subsequently quantify circulating...

  1. Ants, Wasps, and Bees (Hymenoptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stinging wasps, bees, and ants are a problem for farm workers, particularly at harvest when these insects are attracted to ripe fruits. Researchers at the USDA-ARS Yakima Agricultural Research Laboratory, Wapato, WA, together with personnel at Oral Roberts University compiled available information o...

  2. Optimal cue integration in ants

    PubMed Central

    Wystrach, Antoine; Mangan, Michael; Webb, Barbara

    2015-01-01

    In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy. PMID:26400741

  3. Optimal cue integration in ants.

    PubMed

    Wystrach, Antoine; Mangan, Michael; Webb, Barbara

    2015-10-07

    In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy.

  4. Myrmecochores can target high-quality disperser ants: variation in elaiosome traits and ant preferences for myrmecochorous Euphorbiaceae in Brazilian Caatinga.

    PubMed

    Leal, Laura Carolina; Lima Neto, Mário Correia; de Oliveira, Antônio Fernando Morais; Andersen, Alan N; Leal, Inara R

    2014-02-01

    Recent evidence suggests that the traditional view of myrmecochory as a highly diffuse interaction between diaspores and a wide range of ant species attracted to their elaiosomes may not be correct. The effectiveness of dispersal varies markedly among ant species, and combined with differential attractiveness of diaspores due to elaiosome size and composition, this raises the potential for myrmecochorous plants to target ant species that offer the highest quality dispersal services. We ask the question: Do particular physical and chemical traits of elaiosomes result in disproportionate removal of Euphorbiaceae diaspores by high-quality disperser ants in Caatinga vegetation of north-eastern Brazil? We offered seeds of five euphorb species that varied in morphological and chemical traits of elaiosomes to seed-dispersing ants. High-quality seed-disperser ants (species of Dinoponera, Ectatomma and Camponotus) were identified as those that rapidly collected and transported diaspores to their nests, often over substantial distances, whereas low-quality disperser ants (primarily species of Pheidole and Solenopsis) typically fed on elaiosomes in situ, and only ever transported diaspores very short distances. Low-quality disperser ants were equally attracted to the elaiosomes of all study species. However, high-quality dispersers showed a strong preference for diaspores with the highest elaiosome mass (and especially proportional mass). As far as we are aware, this is the first study to identify a mechanism of diaspore selection by high-quality ant dispersers based on elaiosome traits under field conditions. Our findings suggest that myrmecochorous plants can preferentially target high-quality seed-disperser ants through the evolution of particular elaiosome traits.

  5. Using Ants To Investigate the Environment.

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2003-01-01

    Describes three inquiry-based activities designed for students to begin to understand complex environmental relationships in their own backyard. Includes investigations of ants, which allow students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenances, and increase student…

  6. Raves & rants about invasive crazy ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crazy ants” is a name that refers to various species of ants that are characterized by erratic, scurrying, or running, behavior when disturbed. Two of these species, the yellow crazy ant and the Caribbean or Rasberry [sic] crazy ant, are invasive with extremely large populations that inundate lands...

  7. Using Ants to Investigate the Environment

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2005-01-01

    The best place for students to begin to understand complex environmental relationships is in their own back yards. Doing investigations of ants allows students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenance, and increase their understanding of the environment and their…

  8. Reconstructing Death in Postmodern Society.

    ERIC Educational Resources Information Center

    Kastenbaum, Robert

    1993-01-01

    Examines interaction between emerging thanatological movement and its sociohistorical context. Notes that thanatology will take on new shape as individuals and society attempt to cope with postmodernistic forces and deconstructive mentality. Considers prospect for authentic solidarity against distress in reconstructed death system. (Author/NB)

  9. A selection mosaic in the facultative mutualism between ants and wild cotton.

    PubMed

    Rudgers, Jennifer A; Strauss, Sharon Y

    2004-12-07

    In protection mutualisms, one mutualist defends its partner against a natural enemy in exchange for a reward, usually food or shelter. For both partners, the costs and benefits of these interactions often vary considerably in space because the outcome (positive, negative or neutral) depends on the local abundance of at least three species: the protector, the beneficiary of protection and the beneficiary's natural enemy. In Gossypium thurberi (wild cotton), ants benefit nutritionally from the plant's extrafloral nectaries and guard plants from herbivores. Experimentally altering the availability of both ants and extrafloral nectar in three populations demonstrated that the mutualism is facultative, depending, in part, on the abundance of ants and the level of herbivore damage. The species composition of ants and a parasitic alga that clogs extrafloral nectaries were also implicated in altering the outcome of plant-ant interactions. Furthermore, experimental treatments that excluded ants (the putative selective agents) in combination with phenotypic selection analyses revealed that selection on extrafloral nectary traits was mediated by ants and, importantly, varied across populations. This work is some of the first to manipulate interactions experimentally across multiple sites and thereby document that geographically variable selection, mediated by a mutualist, can shape the evolution of plant traits.

  10. A selection mosaic in the facultative mutualism between ants and wild cotton.

    PubMed Central

    Rudgers, Jennifer A.; Strauss, Sharon Y.

    2004-01-01

    In protection mutualisms, one mutualist defends its partner against a natural enemy in exchange for a reward, usually food or shelter. For both partners, the costs and benefits of these interactions often vary considerably in space because the outcome (positive, negative or neutral) depends on the local abundance of at least three species: the protector, the beneficiary of protection and the beneficiary's natural enemy. In Gossypium thurberi (wild cotton), ants benefit nutritionally from the plant's extrafloral nectaries and guard plants from herbivores. Experimentally altering the availability of both ants and extrafloral nectar in three populations demonstrated that the mutualism is facultative, depending, in part, on the abundance of ants and the level of herbivore damage. The species composition of ants and a parasitic alga that clogs extrafloral nectaries were also implicated in altering the outcome of plant-ant interactions. Furthermore, experimental treatments that excluded ants (the putative selective agents) in combination with phenotypic selection analyses revealed that selection on extrafloral nectary traits was mediated by ants and, importantly, varied across populations. This work is some of the first to manipulate interactions experimentally across multiple sites and thereby document that geographically variable selection, mediated by a mutualist, can shape the evolution of plant traits. PMID:15590599

  11. Experience influences aggressive behaviour in the Argentine ant

    PubMed Central

    Van Wilgenburg, Ellen; Clémencet, Johanna; Tsutsui, Neil D.

    2010-01-01

    All animals interact with conspecifics during their life, and nearly all also display some form of aggression. An enduring challenge, however, is to understand how the experiences of an individual animal influence its later behaviours. Several studies have shown that prior winning experience increases the probability of initiating fights in later encounters. Using behavioural assays in the laboratory, we provide evidence that, in Argentine ants (Linepithema humile), the mere exposure to an opponent, without the encounter escalating to a fight, also increases the probability that it will display aggression in later encounters. Argentine ant workers differ in their propensity to attack non-colonymates, with some ants repeatedly aggressive and others consistently more docile. Although 78 per cent of the workers were consistent in their behaviour from one encounter to the next, workers that did change their behaviour after an encounter with a non-colonymate more often changed from non-aggressive to aggressive, rather than the reverse. Surprisingly, a single encounter with a non-colonymate increased a worker's propensity to fight in encounters up to a week later. An encounter with a non-colonymate also increased the probability that a worker would attack ants from a colony that it had not previously encountered. Thus, these interactions lowered the overall aggression threshold, rather than stimulating a specific aggressive response to a particular foreign colony. Finally, our data suggest that aggression towards non-colonymates increases with age. PMID:19793741

  12. Trafficlike collective movement of ants on trails: absence of a jammed phase.

    PubMed

    John, Alexander; Schadschneider, Andreas; Chowdhury, Debashish; Nishinari, Katsuhiro

    2009-03-13

    We report experimental results on unidirectional trafficlike collective movement of ants on trails. Our work is primarily motivated by fundamental questions on the collective spatiotemporal organization in systems of interacting motile constituents driven far from equilibrium. Making use of the analogies with vehicular traffic, we analyze our experimental data for the spatiotemporal organization of ants on a trail. From this analysis, we extract the flow-density relation as well as the distributions of velocities of the ants and distance headways. Some of our observations are consistent with our earlier models of ant traffic, which are appropriate extensions of the asymmetric simple exclusion process. In sharp contrast to highway traffic and most other transport processes, the average velocity of the ants is almost independent of their density on the trail. Consequently, no jammed phase is observed.

  13. Steep Decline and Cessation in Seed Dispersal by Myrmica rubra Ants

    PubMed Central

    2015-01-01

    Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects −positive, negative or none − on ants’ demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered. In this paper, we investigate whether the dynamics of myrmecochory also vary on a temporal scale, for a given pair of partners: Myrmica rubra ants and Viola odorata seeds. During their first encounter with seeds, ants collect all the diaspores and eat the majority of elaiosomes. Both the harvesting effort and the elaiosome consumption decline when seeds are offered on the next week and completely cease for the following weeks. This is related to a decrease in the number of foragers reaching the food source, as well as to a reduced probability for an ant contacting a seed to retrieve it. Seed retrieval is not reactivated after seven weeks without any encounter with V. odorata seeds. By contrast, naive ant colonies only fed with fruit flies do not show a decline of prey harvesting of which the speed of retrieval even increases over the successive weeks. Myrmecochory may thus be labile at the scale of a fruiting season due to the ability of ants to steeply tune and cease for several months the harvesting of these seemingly poorly rewarding items and to maintain cessation of seed exploitation. The present study emphasizes the importance of a long-lasting follow up of the myrmecochory process, to assess the stability of this ant-plant partnership and to identify mechanisms of adaptive harvesting in ants. PMID:26414161

  14. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J

    2013-01-08

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non-leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya.

  15. Explosive adaptive radiation and extreme phenotypic diversity within ant-nest beetles.

    PubMed

    Moore, Wendy; Robertson, James A

    2014-10-20

    Ant-nest beetles (Paussus) are the quintessential Trojan horses of the insect world. They hack the complex communication system of ants, allowing them to blend into the ant society and be treated as royalty, all the while preying upon the ants and the ants' brood and duping the ants into rearing their young. Here we present results of the first molecular-based phylogeny of ant-nest beetles, which reveals that this symbiosis has produced one of the most stunning examples of rapid adaptive radiation documented to date. The most recent ancestor of a Paussus clade endemic to Madagascar is only 2.6 million years old. This species gave rise to a remarkably phenotypically diverse clade of 86 extant species with a net diversification interval of 0.38-0.81 million years, a rate of radiation faster than classic textbook examples of large, recent, rapid radiations such as Anolis lizards on Caribbean islands, cichlids of the East African Great Lakes, finches on the Galápagos Islands, and Drosophila and tetragnathid spiders on the Hawaiian Islands. In order for Paussus to adapt to a new host ant species, the beetle's ability to perceive, deceive, and communicate with the new host must evolve quickly and in synchrony in both the larval and adult life stages, resulting in unusually strong selective pressure levied by their host ants. Data on host associations suggest that the history of host shifts may help explain both the striking phenotypic diversity within the Malagasy radiation and the evolution of phenotypically similar yet distantly related species in Madagascar and Africa.

  16. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts

    PubMed Central

    De Fine Licht, Henrik H.; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J.

    2013-01-01

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non–leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya. PMID:23267060

  17. Methods for Casting Subterranean Ant Nests

    PubMed Central

    Tschinkel, Walter R.

    2010-01-01

    The study of subterranean ant nests has been impeded by the difficulty of rendering their structures in visible form. Here, several different casting materials are shown to make perfect casts of the underground nests of ants. Each material (dental plaster, paraffin wax, aluminum, zinc) has advantages and limitations, which are discussed. Some of the materials allow the recovery of the ants entombed in the casts, allowing a census of the ants to be connected with features of their nest architecture. The necessary equipment and procedures are described in the hope that more researchers will study this very important aspect of ant natural history. PMID:20673073

  18. Habitat contrasts reveal a shift in the trophic position of ant assemblages.

    PubMed

    Gibb, Heloise; Cunningham, Saul A

    2011-01-01

    1. Trophic structure within a guild can be influenced by factors such as resource availability and competition. While ants occupy a wide range of positions in food webs, and ant community composition changes with habitat, it is not well understood if ant genera tend to maintain their position in the trophic structure, or if trophic position varies across habitats. 2. We used ratios of stable isotopes of carbon and nitrogen to test for differences in the trophic structure and position of assemblages of ants among habitat types. We tested for differences between assemblages in replicate sites of the land use categories: (i) pastures with old large trees; (ii) recently revegetated pastures with small young trees; and (iii) remnant woodlands. Known insect herbivores and predatory spiders provided baselines for herbivorous and predaceous arthropods. Soil samples were used to correct for the base level of isotopic enrichment at each site. 3. We found no significant interactions between land use and ant genus for isotope enrichment, indicating that trophic structure is conserved across land use categories. The fixed relative positions of genera in the trophic structure might be re-enforced by competition or some other factor. However, the entire ant assemblage had significantly lower δ(15) N values in revegetated sites, suggesting that ants feed lower down in the food chain i.e. they are more 'herbivorous' in revegetated sites. This may be a result of the high availability of plant sugars, honeydew and herbivorous arthropod prey. 4. Surprisingly, ants in remnants and pastures with trees displayed similar isotopic compositions. Interactions within ant assemblages are thus likely to be resilient to changes in land use, but ant diets in early successional habitats may reflect the simplicity of communities, which may have comparatively lower rates of saprophagy and predation.

  19. Ant-fungus species combinations engineer physiological activity of fungus gardens.

    PubMed

    Seal, J N; Schiøtt, M; Mueller, U G

    2014-07-15

    Fungus-gardening insects are among the most complex organisms because of their extensive co-evolutionary histories with obligate fungal symbionts and other microbes. Some fungus-gardening insect lineages share fungal symbionts with other members of their lineage and thus exhibit diffuse co-evolutionary relationships, while others exhibit little or no symbiont sharing, resulting in host-fungus fidelity. The mechanisms that maintain this symbiont fidelity are currently unknown. Prior work suggested that derived leaf-cutting ants in the genus Atta interact synergistically with leaf-cutter fungi (Attamyces) by exhibiting higher fungal growth rates and enzymatic activities than when growing a fungus from the sister-clade to Attamyces (so-called 'Trachymyces'), grown primarily by the non-leaf cutting Trachymyrmex ants that form, correspondingly, the sister-clade to leaf-cutting ants. To elucidate the enzymatic bases of host-fungus specialization in leaf-cutting ants, we conducted a reciprocal fungus-switch experiment between the ant Atta texana and the ant Trachymyrmex arizonensis and report measured enzymatic activities of switched and sham-switched fungus gardens to digest starch, pectin, xylan, cellulose and casein. Gardens exhibited higher amylase and pectinase activities when A. texana ants cultivated Attamyces compared with Trachymyces fungi, consistent with enzymatic specialization. In contrast, gardens showed comparable amylase and pectinase activities when T. arizonensis cultivated either fungal species. Although gardens of leaf-cutting ants are not known to be significant metabolizers of cellulose, T. arizonensis were able to maintain gardens with significant cellulase activity when growing either fungal species. In contrast to carbohydrate metabolism, protease activity was significantly higher in Attamyces than in Trachymyces, regardless of the ant host. Activity of some enzymes employed by this symbiosis therefore arises from complex interactions between the

  20. Quantifying Ant Activity Using Vibration Measurements

    PubMed Central

    Oberst, Sebastian; Baro, Enrique Nava; Lai, Joseph C. S.; Evans, Theodore A.

    2014-01-01

    Ant behaviour is of great interest due to their sociality. Ant behaviour is typically observed visually, however there are many circumstances where visual observation is not possible. It may be possible to assess ant behaviour using vibration signals produced by their physical movement. We demonstrate through a series of bioassays with different stimuli that the level of activity of meat ants (Iridomyrmex purpureus) can be quantified using vibrations, corresponding to observations with video. We found that ants exposed to physical shaking produced the highest average vibration amplitudes followed by ants with stones to drag, then ants with neighbours, illuminated ants and ants in darkness. In addition, we devised a novel method based on wavelet decomposition to separate the vibration signal owing to the initial ant behaviour from the substrate response, which will allow signals recorded from different substrates to be compared directly. Our results indicate the potential to use vibration signals to classify some ant behaviours in situations where visual observation could be difficult. PMID:24658467

  1. Quantifying ant activity using vibration measurements.

    PubMed

    Oberst, Sebastian; Baro, Enrique Nava; Lai, Joseph C S; Evans, Theodore A

    2014-01-01

    Ant behaviour is of great interest due to their sociality. Ant behaviour is typically observed visually, however there are many circumstances where visual observation is not possible. It may be possible to assess ant behaviour using vibration signals produced by their physical movement. We demonstrate through a series of bioassays with different stimuli that the level of activity of meat ants (Iridomyrmex purpureus) can be quantified using vibrations, corresponding to observations with video. We found that ants exposed to physical shaking produced the highest average vibration amplitudes followed by ants with stones to drag, then ants with neighbours, illuminated ants and ants in darkness. In addition, we devised a novel method based on wavelet decomposition to separate the vibration signal owing to the initial ant behaviour from the substrate response, which will allow signals recorded from different substrates to be compared directly. Our results indicate the potential to use vibration signals to classify some ant behaviours in situations where visual observation could be difficult.

  2. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    PubMed

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  3. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta.

    PubMed

    Vander Meer, Robert K; Preston, Catherine A; Choi, Man-Yeon

    2010-02-01

    Alarm pheromones in social insects are an essential part of a complex of pheromone interactions that contribute to the maintenance of colony integrity and sociality. The alarm pheromones of ants were among the first examples of animal pheromones identified, primarily because of the large amount of chemical produced and the distinctive responses of ants to the pheromone. However, the alarm pheromone of the fire ant, Solenopsis invicta, eluded identification for over four decades. We identified 2-ethyl-3,6-dimethylpyrazine as an alarm pheromone component of S. invicta. Worker fire ants detect the pyrazine alarm pheromone at 30 pg/ml, which is comparable to alarm pheromone sensitivities reported for other ant species. The source of this alarm pheromone are the mandibular glands, which, in fire ants, are not well developed and contain only about 300 pg of the compound, much less than the microgram quantities of alarm pheromones reported for several other ant species. Female and male sexuals and workers produce the pyrazine, which suggests that it may be involved in fire ant mating flight initiation, as well as the typical worker alarm response. This is the first report of 2-ethyl-3,6-dimethylpyrazine from a Solenopsis species and the first example of this alkaloid functioning as an alarm pheromone.

  4. Exploiting a mutualism: parasite specialization on cultivars within the fungus-growing ant symbiosis.

    PubMed Central

    Gerardo, Nicole M.; Mueller, Ulrich G.; Price, Shauna L.; Currie, Cameron R.

    2004-01-01

    Fungus-growing ants, their cultivated fungi and the cultivar-attacking parasite Escovopsis coevolve as a complex community. Higher-level phylogenetic congruence of the symbionts suggests specialized long-term associations of host-parasite clades but reveals little about parasite specificity at finer scales of species-species and genotype-genotype interactions. By coupling sequence and amplified fragment length polymorphism genotyping analyses with experimental evidence, we examine (i) the host specificity of Escovopsis strains infecting colonies of three closely related ant species in the genus Cyphomyrmex, and (ii) potential mechanisms constraining the Escovopsis host range. Incongruence of cultivar and ant relationships across the three focal Cyphomyrmex spp. allows us to test whether Escovopsis strains track their cultivar or the ant hosts. Phylogenetic analyses demonstrate that the Escovopsis phylogeny matches the cultivar phylogeny but not the ant phylogeny, indicating that the parasites are cultivar specific. Cross-infection experiments establish that ant gardens can be infected by parasite strains with which they are not typically associated in the field, but that infection is more likely when gardens are inoculated with their typical parasite strains. Thus, Escovopsis specialization is shaped by the parasite's ability to overcome only a narrow range of garden-specific defences, but specialization is probably additionally constrained by ecological factors, including the other symbionts (i.e. ants and their antibiotic-producing bacteria) within the coevolved fungus-growing ant symbiosis. PMID:15315894

  5. Beneficial Effects of Ants and Spiders on the Reproductive Value of Eriotheca gracilipes (Malvaceae) in a Tropical Savanna.

    PubMed

    Stefani, Vanessa; Pires, Tayna Lopes; Torezan-Silingardi, Helena Maura; Del-Claro, Kleber

    2015-01-01

    Predators affect plant fitness when they forage on them and reduce the action of herbivores. Our study evaluates the complementary effects of spiders and ants that visit the extrafloral nectaries of Eriotheca gracilipes (Malvaceae) on the production of fruits and viable seeds of these savanna trees. Four experimental groups were established: control group - with free access of spiders and ants; exclusion group - spiders and ants excluded; ant group - absence of spiders; and spider group - absence of ants. The presence of ants reduced the spider richness; however, the presence of spiders did not affect the ant richness. A significantly higher number of fruits per buds were found in the presence of spiders alone or spiders and ants together (control group) compared with the absence of both predators (exclusion group). The number of seeds per fruits and seed viability were higher in the control group. This is the first study showing that spiders and ants may exert a positive and complementary effect on the reproductive value of an extrafloral nectaried plant. Mostly the impact of ants and/or spiders on herbivores is considered, whereas our study reinforces the importance of evaluating the effect of multiple predators simultaneously, exploring how the interactions among predators with distinct skills may affect the herbivores and the plants on which they forage.

  6. Beneficial Effects of Ants and Spiders on the Reproductive Value of Eriotheca gracilipes (Malvaceae) in a Tropical Savanna

    PubMed Central

    2015-01-01

    Predators affect plant fitness when they forage on them and reduce the action of herbivores. Our study evaluates the complementary effects of spiders and ants that visit the extrafloral nectaries of Eriotheca gracilipes (Malvaceae) on the production of fruits and viable seeds of these savanna trees. Four experimental groups were established: control group – with free access of spiders and ants; exclusion group – spiders and ants excluded; ant group – absence of spiders; and spider group – absence of ants. The presence of ants reduced the spider richness; however, the presence of spiders did not affect the ant richness. A significantly higher number of fruits per buds were found in the presence of spiders alone or spiders and ants together (control group) compared with the absence of both predators (exclusion group). The number of seeds per fruits and seed viability were higher in the control group. This is the first study showing that spiders and ants may exert a positive and complementary effect on the reproductive value of an extrafloral nectaried plant. Mostly the impact of ants and/or spiders on herbivores is considered, whereas our study reinforces the importance of evaluating the effect of multiple predators simultaneously, exploring how the interactions among predators with distinct skills may affect the herbivores and the plants on which they forage. PMID:26168036

  7. The interaction of the international society concerning kidney transplants--a consideration of diseased kidney transplants in Japan and transplant tourism over the world.

    PubMed

    Kokubo, Asako

    2009-04-01

    In November 2006 in Japan, it was detected that there were 41 cases that diseased kidneys were harvested from patients and then were transplanted to other renal failure patients. This "Diseased kidney transplant" was prohibited in Japan since 2007 because of a lot of problems. On the other hand, in Japan, although there are about 12,000 patients on a waiting list for a transplant, only 10% of those get a transplant. Recently it appears that some patients have gone overseas for kidney transplants (transplant tourism). Concerning the background of transplant tourism, the issues are three points following. First, globalization caused recipients to go abroad easier and faster. Second, transnational law is difficult to institutionalize. Third, there is economical gap in not only international but also domestic. We should discuss again diseased kidney transplant in not only professionals but also in Japanese civilized society.

  8. Reduced entomopathogen abundance in Myrmica ant nests-testing a possible immunological benefit of myrmecophily using Galleria mellonella as a model.

    PubMed

    Schär, Sämi; Larsen, Louise L M; Meyling, Nicolai V; Nash, David R

    2015-10-01

    Social insects such as ants have evolved collective rather than individual immune defence strategies against diseases and parasites at the level of their societies (colonies), known as social immunity. Ants frequently host other arthropods, so-called myrmecophiles, in their nests. Here, we tested the hypothesis that myrmecophily may partly arise from selection for exploiting the ants' social immunity. We used larvae of the wax moth Galleria mellonella as 'model myrmecophiles' (baits) to test this hypothesis. We found significantly reduced abundance of entomopathogens in ant nests compared with the surrounding environment. Specific entomopathogen groups (Isaria fumosorosea and nematodes) were also found to be significantly less abundant inside than outside ant nests, whereas one entomopathogen (Beauveria brongniartii) was significantly more abundant inside nests. We therefore hypothesize that immunological benefits of entering ant nests may provide us a new explanation of why natural selection acts in favour of such a life-history strategy.

  9. Ecological dominance of the red imported fire ant, Solenopsis invicta, in its native range.

    PubMed

    Calcaterra, Luis A; Livore, Juan P; Delgado, Alicia; Briano, Juan A

    2008-05-01

    Despite the widespread impacts invasive species can have in introduced populations, little is known about competitive mechanisms and dominance hierarchies between invaders and similar taxa in their native range. This study examines interactions between the red imported fire ant, Solenopsis invicta, and other above-ground foraging ants in two habitats in northeastern Argentina. A combination of pitfall traps and baits was used to characterize the ant communities, their dominance relationships, and to evaluate the effect of phorid flies on the interactions. Twenty-eight ant species coexisted with S. invicta in a gallery forest gap, whereas only ten coexisted with S. invicta in a xerophytic forest grassland. S. invicta was the most numerically dominant species in the richest and complex habitat (gallery forest); however it performed better as discoverer and dominator in the simpler habitat. S. invicta was active during day and night. In spite of its poor capacity to discover resources, S. invicta showed the highest ecological dominance and the second-best behavioral dominance after Camponotus blandus. S. invicta won 78% of the interactions with other ants, mostly against its most frequent competitor, Pheidole cf. obscurithorax, dominating baits via mass recruitment and chemical aggression. P. cf. obscurithorax was the best food discoverer. S. invicta won 80% of the scarce interactions with Linepithema humile. Crematogaster quadriformis was one of the fastest foragers and the only ant that won an equal number of contests against S. invicta. The low presence of phorid flies affected the foraging rate of S. invicta, but not the outcome of interspecific interactions. This study revealed that the red imported fire ant ecologically dominated other terrestrial ants in its native range; however, other species were able to be numerically dominant or co-dominant in its presence.

  10. Communicating Science to Society

    NASA Astrophysics Data System (ADS)

    Illingworth, Samuel; Muller, Jennifer; Leather, Kimberley; Morgan, William; O'Meara, Simon; Topping, David; Booth, Alastair; Llyod, Gary; Young, Dominique; Bannan, Thomas; Simpson, Emma; Percival, Carl; Allen, Grant; Clark, Elaine; Muller, Catherine; Graves, Rosemarie

    2014-05-01

    "Nothing in science has any value to society if it is not communicated." So goes the 1952 quote from Anne Roe, the noted twentieth century American psychologist and writer. She went on to say that "scientists are beginning to learn their social obligations", and now over 60 years later there is certainly evidence to support her assertions. As scientists, by communicating our research to the general public we not only better inform the tax payer where their money is being spent, but are also able to help put into context the topical environmental challenges and issues that society faces, as well as inspiring a whole new generation of future scientists. This process of communication is very much a two-way street; by presenting our work to people outside of our usual spheres of contemporaries, we expose ourselves to alternative thoughts and insights that can inspire us, as scientists, to take another look at our research from angles that we had never before considered. This work presents the results and experiences from a number of public engagement and outreach activities across the UK, in which geoscientists engaged and interacted with members of the general public. These include the design and implementation of Raspberry Pi based outreach activities for several hundred high school students; the process of running a successful podcast (http://thebarometer.podbean.com); hosting and participating in science events for thousands of members of the general public (e.g. http://www.manchestersciencefestival.com and http://sse.royalsociety.org/2013); and creating a citizen science activity that involved primary school children from across the UK. In communicating their research it is imperative that scientists interact with their audience in an effective and engaging manner, whether in an international conference, a classroom, or indeed down the pub. This work also presents a discussion of how these skills can be developed at an early stage in the careers of a research

  11. Do additional sugar sources affect the degree of attendance of Dysmicoccus brevipes by the fire ant Solenopsis geminata?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutualistic interactions between ants and Hemiptera are mediated to large extent by the amount and quality of sugar-rich honeydew produced. Throughout the neotropics, the fire ant Solenopsis geminata (F.) (Hymenoptera: Formicidae) is found in association with colonies of the pineapple mealybug Dysmi...

  12. Complete Genome of Serratia sp. Strain FGI 94, a Strain Associated with Leaf-Cutter Ant Fungus Gardens.

    PubMed

    Aylward, Frank O; Tremmel, Daniel M; Starrett, Gabriel J; Bruce, David C; Chain, Patrick; Chen, Amy; Davenport, Karen W; Detter, Chris; Han, Cliff S; Han, James; Huntemann, Marcel; Ivanova, Natalia N; Kyrpides, Nikos C; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Teshima, Hazuki; Deshpande, Shweta; Goodwin, Lynne; Woyke, Tanja; Currie, Cameron R

    2013-03-14

    Serratia sp. strain FGI 94 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its 4.86-Mbp chromosome will help advance our knowledge of symbiotic interactions and plant biomass degradation in this ancient ant-fungus mutualism.

  13. Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus

    PubMed Central

    Hojo, Masaru K.; Ishii, Kenichi; Sakura, Midori; Yamaguchi, Katsushi; Shigenobu, Shuji; Ozaki, Mamiko

    2015-01-01

    Chemical communication is essential for the coordination of complex organisation in ant societies. Recent comparative genomic approaches have revealed that chemosensory genes are diversified in ant lineages, and suggest that this diversification is crucial for social organisation. However, how such diversified genes shape the peripheral chemosensory systems remains unknown. In this study, we annotated and analysed the gene expression profiles of chemosensory proteins (CSPs), which transport lipophilic compounds toward chemosensory receptors in the carpenter ant, Camponotus japonicus. Transcriptome analysis revealed 12 CSP genes and phylogenetic analysis showed that 3 of these are lineage-specifically expanded in the clade of ants. RNA sequencing and real-time quantitative polymerase chain reaction revealed that, among the ant specific CSP genes, two of them (CjapCSP12 and CjapCSP13) were specifically expressed in the chemosensory organs and differentially expressed amongst ant castes. Furthermore, CjapCSP12 and CjapCSP13 had a ratio of divergence at non-synonymous and synonymous sites (dN/dS) greater than 1, and they were co-expressed with CjapCSP1, which is known to bind cuticular hydrocarbons. Our results suggested that CjapCSP12 and CjapCSP13 were functionally differentiated for ant-specific chemosensory events, and that CjapCSP1, CjapCSP12, and CjapCSP13 work cooperatively in the antennal chemosensilla of worker ants. PMID:26310137

  14. Electronic Communities in an Information Society: Paradise, Mirage, or Malaise?

    ERIC Educational Resources Information Center

    Komito, Lee

    2001-01-01

    Discusses communities in the information society and examines virtual communities and the relation between technology and social life. Topics include interaction; idealized community; proximate communities; normative community; virtual communities and fragmented society; and social change versus technological change. (LRW)

  15. Ant association facilitates the evolution of diet breadth in a lycaenid butterfly

    PubMed Central

    Forister, Matthew L.; Gompert, Zachariah; Nice, Chris C.; Forister, Glen W.; Fordyce, James A.

    2011-01-01

    The role of mutualistic interactions in adaptive diversification has not been thoroughly examined. Lycaenid butterflies provide excellent systems for exploring mutualistic interactions, as more than half of this family is known to use ants as a resource in interactions that range from parasitism to mutualism. We investigate the hypothesis that protection from predators offered to caterpillars by ants might facilitate host-range evolution. Specifically, experiments with the butterfly Lycaeides melissa investigated the role of ant association in the use of a novel host, alfalfa, Medicago sativa, which is a sub-optimal host for larval development. Survival on alfalfa is increased by the presence of ants, thus supporting the hypothesis that interaction with ants might be important for host-range evolution. Using a demographic model to explore ecological conditions associated with host-range expansion in L. melissa, we conclude that the presence of ants might be an essential component for populations persisting on the novel, sub-optimal host. PMID:21047856

  16. Are invasive fire ants kept in check by native aerial insectivores?

    PubMed

    Helms, Jackson A; Godfrey, Aaron P; Ames, Tayna; Bridge, Eli S

    2016-05-01

    Aerial predator-prey interactions may impact populations of many terrestrial species. Here, we use altitude loggers to study aerial foraging in a native insectivore, the purple martin (Progne subis), in the southern USA. Purple martins fed primarily on mating queens and males of the invasive red imported fire ant (Solenopsis invicta), and doubled their foraging efficiency by doing so. Across the USA, purple martins likely eat billions of fire ant queens each year, potentially impacting the spread of this species. Alternatively, predation on fire ants may help sustain populations of purple martins and other aerial insectivores.

  17. Onset of fights and mutual assessment in ant founding queens.

    PubMed

    Berthelot, Kévin; Portugal, Felipe Ramon; Jeanson, Raphaël

    2017-03-01

    In animals, the progress and outcome of contests can be influenced by an individual's own condition, their opponent's condition or a combination of the two. The use of chemical information to assess the quality of rivals has been underestimated despite its central role in the regulation of social interactions in many taxa. Here, we studied pairwise contests between founding queens of the ant Lasius niger to investigate whether the decision to engage in agonistic interactions relies on self-assessment or mutual assessment. Queens modulated their aggressive behaviours depending on both their own status and their opponent's status. We found no influence of lipid stores or size on the onset of fights. However, differences in cuticular chemical signatures linked to fertility status accurately predicted the probability of behaving aggressively in pairs. Our study thus suggests that ant queens could rely on mutual assessment via chemical cues to make informed decisions about fight initiation.

  18. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew.

    PubMed

    Blüthgen, N; Verhaagh, M; Goitía, W; Jaffé, K; Morawetz, W; Barthlott, W

    2000-10-01

    Ant-plant interactions in the canopy of a lowland Amazonian rainforest of the upper Orinoco, Venezuela, were studied using a modified commercial crane on rails (Surumoni project). Our observations show a strong correlation between plant sap exudates and both abundance of ants and co-occurrence of ant species in tree canopies. Two types of plant sap sources were compared: extrafloral nectaries (EFNs) and honeydew secretions by homopterans. EFNs were a frequent food source for ants on epiphytes (Philodendron spp., Araceae) and lianas (Dioclea, Fabaceae), but rare on canopy trees in the study area, whereas the majority of trees were host to aggregations of homopterans tended by honeydew-seeking ants (on 62% of the trees examined). These aggregations rarely occurred on epiphytes. Baited ant traps were installed on plants with EFNs and in the crowns of trees from three common genera, including trees with and without ant-tended homopterans: Goupia glabra (Celastraceae), Vochysia spp. (Vochysiaceae), and Xylopia spp. (Annonaceae). The number of ant workers per trap was significantly higher on plants offering one of the two plant sap sources than on trees without such resources. Extrafloral nectaries were used by a much broader spectrum of ant species and genera than honeydew, and co-occurrence of ant species (in traps) was significantly higher on plants bearing EFNs than on trees. Homopteran honeydew (Coccidae and Membracidae), on the other hand, was mostly monopolised by a single ant colony per tree. Homopteran-tending ants were generally among the most dominant ants in the canopy. The most prominent genera were Azteca, Dolichoderus (both Dolichoderinae), Cephalotes, Pheidole, Crematogaster (all Myrmicinae), and Ectatomma (Ponerinae). Potential preferences were recorded between ant and homopteran species, and also between ant-homopteran associations and tree genera. We hypothesize that the high availability of homopteran honeydew provides a key resource for ant mosaics

  19. Drug-drug interactions in older patients with cancer: a report from the 15th Conference of the International Society of Geriatric Oncology, Prague, Czech Republic, November 2015

    PubMed Central

    Stepney, Rob; Lichtman, Stuart M; Danesi, Romano

    2016-01-01

    Drugs taken for cancer can interact with each other, with agents taken as part of supportive care, with drugs taken for comorbid conditions (which are particularly common in the elderly patients), and with herbal supplements and complementary medicines. We tend to focus on the narrow therapeutic window of cytotoxics, but the metabolism of tyrosine kinase inhibitors by the cytochrome P450 3A4 enzyme (CYP3A4) makes some TKIs particularly prone to interference with or from other agents sharing this pathway. There is also potential for adverse pharmacokinetic interactions with new hormonal agents used in advanced prostate cancer. PMID:26823680

  20. Society for Vascular Medicine

    MedlinePlus

    ... Certification with this new online course from the Society for Vascular Medicine. Learn more. Looking for a ... jobs are listed right now. Copyright © 2016 The Society for Vascular Medicine. All Rights Reserved.

  1. American Cancer Society

    MedlinePlus

    ... your friends, your family, and the American Cancer Society help you take a step closer toward a ... DNA Offers Lung Cancer Clues An American Cancer Society grantee discovers a non-coding gene that may ...

  2. Ehlers-Danlos Society

    MedlinePlus

    ... Scientific Board Staff Volunteer Leaders The Ehlers-Danlos Society Center for EDS Research & Clinical Care Our History ... Message Boards Patient Resource Library The Ehlers-Danlos Society Center for EDS Research & Clinical Care Loose Connections ...

  3. American Rocket Society

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In addition to Dr. Robert Goddard's pioneering work, American experimentation in rocketry prior to World War II grew, primarily in technical societies. This is an early rocket motor designed and developed by the American Rocket Society in 1932.

  4. Ehlers-Danlos Society

    MedlinePlus

    ... Patient Expert Panel Volunteer Leaders The Ehlers-Danlos Society Center for EDS Research & Clinical Care Our History ... Online Communities Patient Resource Library The Ehlers-Danlos Society Center for EDS Research & Clinical Care Loose Connections ...

  5. Society of Gynecologic Surgeons

    MedlinePlus

    ... Myers, MD SGS Mission The mission of the Society of Gynecologic Surgeons is to promote excellence in ... research, and professional and public education. Research The Society prides itself in mentoring young gynecologic surgeons and ...

  6. American Urogynecologic Society

    MedlinePlus

    ... Patient Site » PFD Registry » Contact Us American Urogynecologic Society 1100 Wayne Avenue, Suite 670 Silver Spring, MD ... Us | Privacy Policy | HONcode Accredited © 2017 American Urogynecologic Society. All rights reserved.

  7. Society for Ambulatory Anesthesia

    MedlinePlus

    ... We Represent Ambulatory and Office-Based Anesthesia The Society for Ambulatory Anesthesia provides educational opportunities, encourages research ... 6620 | E-mail: info@sambahq.org Copyright | 2017 Society for Ambulatory Anesthesia Home | Search | Terms | Privacy Policy | ...

  8. Scoliosis Research Society

    MedlinePlus

    Scoliosis Research Society Close Menu Member Login Become a Member Home Find a Specialist | Calendar Contact | Donate Patients and Families Professionals ... Find a Specialist Calendar Contact Donate Scoliosis Research Society Dedicated to the optimal care of patients with ...

  9. Society for Vascular Medicine

    MedlinePlus

    ... Journal Scientific Sessions Website FAQ Copyright © 2017 The Society for Vascular Medicine. All Rights Reserved. Phone: +1- ... page Videos Training Programs Journal Access the Journal Society Communications Patient Information Pages Vascular Medicine Journal CME ...

  10. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and -within each of these two plot types- mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.

  11. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed Central

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A.; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and –within each of these two plot types– mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity. PMID:26241962

  12. Ecosystem engineering of harvester ants: effects on vegetation in a sagebrush-steppe ecosystem

    USGS Publications Warehouse

    Gosselin, Elyce N; Holbrook, Joseph D.; Huggler, Katey; Brown, Emily; Vierling, Kerri T.; Arkle, Robert; Pilliod, David

    2016-01-01

    Harvester ants are influential in many ecosystems because they distribute and consume seeds, remove vegetation, and redistribute soil particles and nutrients. Understanding the interaction between harvester ants and plant communities is important for management and restoration efforts, particularly in systems altered by fire and invasive species such as the sagebrush-steppe. Our objective was to evaluate how vegetation cover changed as a function of distance from Owyhee harvester ant (Pogonomyrmex salinus) nests within a sagebrush-steppe ecosystem. We sampled 105 harvester ant nests within southern Idaho, USA, that occurred in different habitats: annual grassland, perennial grassland, and native shrubland. The influence of Owyhee harvester ants on vegetation was larger at the edge of ant nests, but the relationship was inconsistent among plant species. Percent cover was positively associated with distance from harvester ant nests for plant species that were considered undesirable food sources and were densely distributed. However, percent cover was negatively associated with distance-from-nests for patchily distributed and desirable plant species. For some plant species, there was no change in cover associated with distance-from-nests. Total vegetation cover was associated with distance-from-nests in the shrubland habitat but not in the 2 grasslands. The dominant plant species in the shrubland habitat was a densely distributed shrub (winterfat, Krascheninnikovia lanata) that was defoliated by harvester ants. Our results suggest that Owyhee harvester ants increase spatial heterogeneity in plant communities through plant clearing, but the direction and magnitude of effect will likely be contingent on the dominant vegetation groups. This information may inform future management and plant restoration efforts in sagebrush-steppe by directly considering the islands of influence associated with harvester ant engineering.

  13. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.

    PubMed

    Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto

    2013-08-01

    Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams

  14. Fire ant-detecting canines: a complementary method in detecting red imported fire ants.

    PubMed

    Lin, Hui-Min; Chi, Wei-Lien; Lin, Chung-Chi; Tseng, Yu-Ching; Chen, Wang-Ting; Kung, Yu-Ling; Lien, Yi-Yang; Chen, Yang-Yuan

    2011-02-01

    In this investigation, detection dogs are trained and used in identifying red imported fire ants, Solenopsis invicta Buren, and their nests. The methodology could assist in reducing the frequency and scope of chemical treatments for red imported fire ant management and thus reduce labor costs and chemical use as well as improve control and quarantine efficiency. Three dogs previously trained for customs quarantine were retrained to detect the scents of red imported fire ants. After passing tests involving different numbers of live red imported fire ants and three other ant species--Crematogaster rogenhoferi Mayr, Paratrechina longicornis Latreille, and Pheidole megacephala F.--placed in containers, ajoint field survey for red imported fire ant nests by detection dogs and bait traps was conducted to demonstrate their use as a supplement to conventional detection methods. The most significant findings in this report are (1) with 10 or more red imported fire ants in scent containers, the dogs had >98% chance in tracing the red imported fire ant. Upon the introduction of other ant species, the dogs still achieved on average, a 93% correct red imported fire ant indication rate. Moreover, the dogs demonstrated great competence in pinpointing emerging and smaller red imported fire ant nests in red imported fire ant-infested areas that had been previously confirmed by bait trap stations. (2) Along with the bait trap method, we also discovered that approximately 90% of red imported fire ants foraged within a distance of 14 m away from their nests. The results prove detection dogs to be most effective for red imported fire ant control in areas that have been previously treated with pesticides and therefore containing a low density of remaining red imported fire ant nests. Furthermore, as a complement to other red imported fire ant monitoring methods, this strategy will significantly increase the efficacy of red imported fire ant control in cases of individual mount treatment.

  15. Ants on plants: a meta-analysis of the role of ants as plant biotic defenses.

    PubMed

    Rosumek, Felix B; Silveira, Fernando A O; de S Neves, Frederico; de U Barbosa, Newton P; Diniz, Livia; Oki, Yumi; Pezzini, Flavia; Fernandes, G Wilson; Cornelissen, Tatiana

    2009-06-01

    We reviewed the evidence on the role of ants as plant biotic defenses, by conducting meta-analyses for the effects of experimental removal of ants on plant herbivory and fitness with data pooled from 81 studies. Effects reviewed were plant herbivory, herbivore abundance, hemipteran abundance, predator abundance, plant biomass and reproduction in studies where ants were experimentally removed (n = 273 independent comparisons). Ant removal exhibited strong effects on herbivory rates, as plants without ants suffered almost twice as much damage and exhibited 50% more herbivores than plants with ants. Ants also influenced several parameters of plant fitness, as plants without ants suffered a reduction in biomass (-23.7%), leaf production (-51.8%), and reproduction (-24.3%). Effects were much stronger in tropical regions compared to temperate ones. Tropical plants suffered almost threefold higher herbivore damage than plants from temperate regions and exhibited three times more herbivores. Ant removal in tropical plants resulted in a decrease in plant fitness of about 59%, whereas in temperate plants this reduction was not statistically significant. Ant removal effects were also more important in obligate ant-plants (=myrmecophytes) compared to plants exhibiting facultative relationships with hemiptera or those plants with extrafloral nectaries and food bodies. When only tropical plants were considered and the strength of the association between ants and plants taken into account, plants with obligate association with ants exhibited almost four times higher herbivory compared to plants with facultative associations with ants, but similar reductions in plant reproduction. The removal of a single ant species increased plant herbivory by almost three times compared to the removal of several ant species. Altogether, these results suggest that ants do act as plant biotic defenses, but the effects of their presence are more pronounced in tropical systems, especially in

  16. Climatic warming destabilizes forest ant communities

    PubMed Central

    Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.

    2016-01-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044

  17. A 10-year Retrospective of NASA's Contribution to NEESPI Science: What we Have Learned on Climate-Ecosystem-Society Interactions in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Gutman, G.; Groisman, P. Y.

    2015-12-01

    The Northern Eurasia Earth Science Partnership Initiative (NEESPI) has produced over 1500 scientific papers based on 170+ projects with international teams from over 200 institutions in 30 countries. This overview will provide a summary of the achievements in the NASA component of this large international initiative during the last 10 years. It will cover various NEESPI sectors, including the Arctic, the boreal systems of Siberia and Far East, the dry lands of Central Asia and ecosystems of Eastern Europe. The emphasis will be made on what we have learned from the NEESPI studies supported by the NASA Land-Cover/Land- Use Change Program. It will include examples of forest and agricultural changes, implications to carbon and hydrologic cycles, changes in environmental pollution, urban changes and impacts on society. The presentation will illustrate land-use changes during the last couple of decades and describe impacts of land-use change in the Arctic, where land use practiced by indigenous people is giving way to intensive exploitation of the land for commercial and industrial uses. Fields abandonment and more recent returning agricultural practices in mid-latitudes will also be discussed. The presentation will be based on the results from the NEESPI Synthesis projects supported by the NASA LCLUC program and the material described in the books published by international NEESPI teams.

  18. Floral visitation by the Argentine ant reduces bee visitation and plant seed set.

    PubMed

    Hanna, Cause; Naughton, Ida; Boser, Christina; Alarcón, Ruben; Hung, Keng-Lou James; Holway, David

    2015-01-01

    Ants often visit flowers, but have only seldom been documented to provide effective pollination services. Floral visitation by ants can also compromise plant reproduction in situations where ants interfere with more effective pollinators. Introduced ants may be especially likely to reduce plant reproductive success through floral visitation, but existing experimental studies have found little support for this hypothesis. Here, we combine experimental and observational approaches to examine the importance of floral visitation by the nonnative Argentine ant (Linepithema humile) on plant species native to Santa Cruz Island, California, USA. First, we determine how L. humile affects floral visitor diversity, bee visitation rates, and levels of pollen limitation for the common, focal plant species island morning glory (Calystegia macrostegia ssp. macrostegia). Second, we assess the broader ecological consequences of floral visitation by L. humile by comparing floral visitation networks between invaded and uninvaded sites. The Argentine ant and native ants both visited island morning glory flowers, but L. humile was much more likely to behave aggressively towards other floral visitors and to be the sole floral occupant. The presence of L. humile in morning glory flowers reduced floral visitor diversity, decreased rates of bee visitation, and increased levels of pollen limitation. Network comparisons between invaded and uninvaded. sites revealed differences in both network structure and species-level attributes. In. invaded sites, floral visitors were observed on fewer plant species, ants had a higher per-plant interaction strength relative to that of other visitors, and interaction strengths between bees and plants were weaker. These results illustrate that introduced ants can negatively affect plant reproduction and potentially disrupt pollination services at an ecosystem scale.

  19. Ants are less attracted to the extrafloral nectar of plants with symbiotic, nitrogen-fixing rhizobia.

    PubMed

    Godschalx, Adrienne L; Schädler, Martin; Trisel, Julie A; Balkan, Mehmet A; Ballhorn, Daniel J

    2015-02-01

    Plants simultaneously maintain mutualistic relationships with different partners that are connected through the same host, but do not interact directly. One or more participating mutualists may alter their host's phenotype, resulting in a shift in the host's ecological interactions with all other mutualists involved. Understanding the functional interplay of mutualists associated with the same host remains an important challenge in biology. Here, we show belowground nitrogen-fixing rhizobia on lima bean (Phaseolus lunatus) alter their host plant's defensive mutualism with aboveground ants. We induced extrafloral nectar (EFN), an indirect defense acting through ant attraction. We also measured various nutritive and defensive plant traits, biomass, and counted ants on rhizobial and rhizobia-free plants. Rhizobia increased plant protein as well as cyanogenesis, a direct chemical defense against herbivores, but decreased EFN. Ants were significantly more attracted to rhizobia-free plants, and our structural equation model shows a strong link between rhizobia and reduced EFN as well as between EFN and ants: the sole path to ant recruitment. The rhizobia-mediated effects on simultaneously expressed defensive plant traits indicate rhizobia can have significant bottom-up effects on higher trophic levels. Our results show belowground symbionts play a critical and underestimated role in determining aboveground mutualistic interactions.

  20. Path integration in desert ants, Cataglyphis fortis

    PubMed Central

    Müller, Martin; Wehner, Rüdiger

    1988-01-01

    Foraging desert ants, Cataglyphis fortis, continually keep track of their own posotions relative to home— i.e., integrate their tortuous outbound routes and return home along straight (inbound) routes. By experimentally manipulating the ants' outbound trajectories we show that the ants solve this path integration problem not by performing a true vector summation (as a human navigator does) but by employing a computationally simple approximation. This approximation is characterized by small, but systematic, navigational errors that helped us elucidate the ant's way of computing its mean home vector. PMID:16593958

  1. Major evolutionary transitions in ant agriculture.

    PubMed

    Schultz, Ted R; Brady, Seán G

    2008-04-08

    Agriculture is a specialized form of symbiosis that is known to have evolved in only four animal groups: humans, bark beetles, termites, and ants. Here, we reconstruct the major evolutionary transitions that produced the five distinct agricultural systems of the fungus-growing ants, the most well studied of the nonhuman agriculturalists. We do so with reference to the first fossil-calibrated, multiple-gene, molecular phylogeny that incorporates the full range of taxonomic diversity within the fungus-growing ant tribe Attini. Our analyses indicate that the original form of ant agriculture, the cultivation of a diverse subset of fungal species in the tribe Leucocoprineae, evolved approximately 50 million years ago in the Neotropics, coincident with the early Eocene climatic optimum. During the past 30 million years, three known ant agricultural systems, each involving a phylogenetically distinct set of derived fungal cultivars, have separately arisen from the original agricultural system. One of these derived systems subsequently gave rise to the fifth known system of agriculture, in which a single fungal species is cultivated by leaf-cutter ants. Leaf-cutter ants evolved remarkably recently ( approximately 8-12 million years ago) to become the dominant herbivores of the New World tropics. Our analyses identify relict, extant attine ant species that occupy phylogenetic positions that are transitional between the agricultural systems. Intensive study of those species holds particular promise for clarifying the sequential accretion of ecological and behavioral characters that produced each of the major ant agricultural systems.

  2. Usefulness of fire ant genetics in insecticide efficacy trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mature fire ant colonies contain an average of 80,000 worker ants. For this study, eight fire ant workers were randomly sampled from each colony. DNA fingerprints for each individual ant were generated using 21 simple sequence repeats (SSR) markers that were developed from fire ant DNA by other lab...

  3. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses

    PubMed Central

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the ‘productivity hypothesis’ and the ‘productivity-based thinning hypothesis’. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the ‘productivity hypothesis’ for specialized seed-eaters and the

  4. Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles

    ERIC Educational Resources Information Center

    Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick

    2010-01-01

    Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.

  5. Thermal ecology of the neotropical army ant Eciton burchellii.

    PubMed

    Meisel, Joe E

    2006-06-01

    I explored the thermal ecology of Eciton burchellii, a New World army ant, in primary forest and forest fragments in the Atlantic lowlands of Costa Rica in 2002 and 2003. My primary objective was to determine whether high surface temperatures in pastures surrounding forest fragments posed a thermal barrier to ant colonies within those fragments; secondarily, I assessed whether thermal gradients within continuous moist forest were sufficient to elicit avoidance reactions from foraging colonies. E. burchellii colonies in forest fragments avoided entering open pasture in full sun (51.3 degrees C) on 100% of all edge interactions; however, edges were readily crossed where artificial shaded areas had previously been installed. Ant raids in primary forest avoided artificially established temperatures >43 degrees C but tolerated 45.5 degrees C in the presence of prey baits. Captive ants held at 43 degrees C survived 18.5 min; at temperatures of 51.3 degrees C survival time was only 2.8 min. Ants running on established foraging trails increased running velocity by 18% when substrate temperature was raised from 28.4 degrees to 38.0 degrees C, and they abandoned trails at temperatures >43 degrees C. The standard deviation (s) of temperatures on active raid trails in continuous forest was 2.13 degrees C, while nearby systematic sampling revealed a greater background standard deviation of 4.13 degrees C. E. burchellii colonies in this region appear to be living surprisingly near their upper limits of thermal tolerance. The heat of open pastures alone is sufficient to prevent their exiting forest fragments, or entering similarly hot areas within continuous forest. Shaded vegetative corridors are sufficient to permit mobility between isolated fragments, and their preservation should be encouraged. Despite views that tropical lowland moist forests have an essentially homogenous microclimate, army ants appear to avoid local hot spots on the forest floor, steering daily foraging

  6. Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit.

    PubMed

    Wystrach, Antoine; Schwarz, Sebastian; Baniel, Alice; Cheng, Ken

    2013-10-22

    Ants use multiple sources of information to navigate, but do not integrate all this information into a unified representation of the world. Rather, the available information appears to serve three distinct main navigational systems: path integration, systematic search and the use of learnt information--mainly via vision. Here, we report on an additional behaviour that suggests a supplemental system in the ant's navigational toolkit: 'backtracking'. Homing ants, having almost reached their nest but, suddenly displaced to unfamiliar areas, did not show the characteristic undirected headings of systematic searches. Instead, these ants backtracked in the compass direction opposite to the path that they had just travelled. The ecological function of this behaviour is clear as we show it increases the chances of returning to familiar terrain. Importantly, the mechanistic implications of this behaviour stress an extra level of cognitive complexity in ant navigation. Our results imply: (i) the presence of a type of 'memory of the current trip' allowing lost ants to take into account the familiar view recently experienced, and (ii) direct sharing of information across different navigational systems. We propose a revised architecture of the ant's navigational toolkit illustrating how the different systems may interact to produce adaptive behaviours.

  7. Clonal structure affects the assembling behavior in the Japanese queenless ant Pristomyrmex punctatus

    NASA Astrophysics Data System (ADS)

    Nishide, Yudai; Satoh, Toshiyuki; Hiraoka, Tuyosi; Obara, Yoshiaki; Iwabuchi, Kikuo

    2007-10-01

    The queenless ant Pristomyrmex punctatus (Hymenoptera: Myrmicinae) has a unique society that differs from those of other typical ants. This species does not have a queen, and the workers lay eggs and produce their clones parthenogenetically. However, a colony of these ants does not always comprise members derived from a single clonal line. In this study, we examined whether P. punctatus changes its “assembling behavior” based on colony genetic structure. We prepared two subcolonies—a larger one comprising 200 individuals and a smaller one comprising 100 individuals; these subcolonies were established from a single stock colony. We investigated whether these subcolonies assemble into a single nest. The genetically monomorphic subcolonies (single clonal line) always fused into a single nest; however, the genetically polymorphic subcolonies (multiple clonal lines) did not tend to form a single colony. The present study is the first to demonstrate that the colony genetic structure significantly affects social viscosity in social insects.

  8. The evolution of genome size in ants

    PubMed Central

    2008-01-01

    Background Despite the economic and ecological importance of ants, genomic tools for this family (Formicidae) remain woefully scarce. Knowledge of genome size, for example, is a useful and necessary prerequisite for the development of many genomic resources, yet it has been reported for only one ant species (Solenopsis invicta), and the two published estimates for this species differ by 146.7 Mb (0.15 pg). Results Here, we report the genome size for 40 species of ants distributed across 10 of the 20 currently recognized subfamilies, thus making Formicidae the 4th most surveyed insect family and elevating the Hymenoptera to the 5th most surveyed insect order. Our analysis spans much of the ant phylogeny, from the less derived Amblyoponinae and Ponerinae to the more derived Myrmicinae, Formicinae and Dolichoderinae. We include a number of interesting and important taxa, including the invasive Argentine ant (Linepithema humile), Neotropical army ants (genera Eciton and Labidus), trapjaw ants (Odontomachus), fungus-growing ants (Apterostigma, Atta and Sericomyrmex), harvester ants (Messor, Pheidole and Pogonomyrmex), carpenter ants (Camponotus), a fire ant (Solenopsis), and a bulldog ant (Myrmecia). Our results show that ants possess small genomes relative to most other insects, yet genome size varies three-fold across this insect family. Moreover, our data suggest that two whole-genome duplications may have occurred in the ancestors of the modern Ectatomma and Apterostigma. Although some previous studies of other taxa have revealed a relationship between genome size and body size, our phylogenetically-controlled analysis of this correlation did not reveal a significant relationship. Conclusion This is the first analysis of genome size in ants (Formicidae) and the first across multiple species of social insects. We show that genome size is a variable trait that can evolve gradually over long time spans, as well as rapidly, through processes that may include occasional

  9. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    PubMed

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly

  10. A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings

    NASA Astrophysics Data System (ADS)

    Geiselhardt, Stefanie F.; Peschke, Klaus; Nagel, Peter

    2007-11-01

    Myrmecophily provides various examples of how social structures can be overcome to exploit vast and well-protected resources. Ant nest beetles (Paussinae) are particularly well suited for ecological and evolutionary considerations in the context of association with ants because life habits within the subfamily range from free-living and predatory in basal taxa to obligatory myrmecophily in derived Paussini. Adult Paussini are accepted in the ant society, although parasitising the colony by preying on ant brood. Host species mainly belong to the ant families Myrmicinae and Formicinae, but at least several paussine genera are not host-specific. Morphological adaptations, such as special glands and associated tufts of hair (trichomes), characterise Paussini as typical myrmecophiles and lead to two different strategical types of body shape: while certain Paussini rely on the protective type with less exposed extremities, other genera access ant colonies using glandular secretions and trichomes (symphile type). We compare these adaptations with other taxonomic groups of insects by joining contemporary research and early sources and discuss the possibility of an attracting or appeasing effect of the secretion. Species that are ignored by their host ants might use chemical mimicry instead. Furthermore, vibrational signals may contribute to ant-beetle communication, and chemical signals have proven to play a role in host finding. The powerful defense chemistry of paussines as “bombardier beetles” is not used in contact with host ants. We attempt to trace the evolution of myrmecophily in paussines by reviewing important aspects of the association between paussine beetles and ants, i.e. morphological and potential chemical adaptations, life cycle, host specificity, alimentation, parasitism and sound production.

  11. Enough is enough: the effects of symbiotic ant abundance on herbivory, growth, and reproduction in an African acacia.

    PubMed

    Palmer, Todd M; Brody, Alison K

    2013-03-01

    Understanding how cooperative interactions evolve and persist remains a central challenge in biology. Many mutualisms are thought to be maintained by "partner fidelity feedback," in which each partner bases their investment on the benefits they receive. Yet, we know little about how benefits change as mutualists vary their investment, which is critical to understanding the balance between mutualism and antagonism in any given partnership. Using an obligate ant-plant mutualism, we manipulated the density of symbiotic acacia ants (Crematogaster mimosae) and examined how the costs and benefits to Acacia drepanolobium trees scaled with ant abundance. Benefits of ants to plants saturated with increasing ant abundance for protection from branch browsing by elephants and attack by branch galling midges, while varying linearly for protection from cerambycid beetles. In addition, the risk of catastrophic whole-tree herbivory by elephants was highest for trees with very low ant abundance. However, there was no relationship between ant abundance and herbivory by leaf-feeding invertebrates, nor by vertebrate browsers such as giraffe, steinbuck, and Grant's gazelle. Ant abundance did not significantly influence rates of branch growth on acacias, but there was a significant negative relationship between ant abundance and the number of fruits produced by host plants, suggesting that maintaining high-density ant colonies is costly. Because benefits to plants largely saturated with increasing colony size, while costs to plant reproduction increased, we suggest that ant colonies may achieve abundances that are higher than optimal for host plants. Our results highlight the conflicts of interest inherent in many mutualisms, and demonstrate the value of examining the shape of curves relating costs and benefits within these globally important interactions.

  12. Sugary food robbing in ants: a case of temporal cleptobiosis.

    PubMed

    Richard, Freddie-Jeanne; Dejean, Alain; Lachaud, Jean-Paul

    2004-05-01

    This study reports new information on interactions between Ectatomma tuberculatum (Ponerinae) and Crematogaster limata parabiotica (Myrmicinae). Workers of these sympatric arboreal ant species forage on the same pioneer trees. Diurnally, Ectatomma preyed on Crematogaster workers that avoided overt aggression by respecting a 'safe distance'. At night, Crematogaster initiated raids within the Ectatomma nests that they apparently left with their abdomen empty, then remained near the nest entrances where they successfully intercepted 75.2% of the returning Ectatomma foragers (N = 322). Certain intercepted workers rapidly resumed their return trip. Others (39.1%) were stopped, explored and licked during a long time by the Crematogaster. Most of them were carrying between their mandibles a droplet of liquid food that was stolen. This relationship, that appears to be a typical case of interspecific cleptobiosis, whose expression varies during the daytime, demonstrates for the first time sugary-food robbing, instead of prey robbing, in ants.

  13. The Müller-Lyer illusion in ant foraging.

    PubMed

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2013-01-01

    The Müller-Lyer illusion is a classical geometric illusion in which the apparent (perceived) length of a line depends on whether the line terminates in an arrow tail or arrowhead. This effect may be caused by economic compensation for the gap between the physical stimulus and visual fields. Here, we show that the Müller-Lyer illusion can also be produced by the foraging patterns of garden ants (Lasius niger) and that the pattern obtained can be explained by a simple, asynchronously updated foraging ant model. Our results suggest that the geometric illusion may be a byproduct of the foraging process, in which local interactions underlying efficient exploitation can also give rise to global exploration, and that visual information processing in human could implement similar modulation between local efficient processing and widespread computation.

  14. Study on bi-directional pedestrian movement using ant algorithms

    NASA Astrophysics Data System (ADS)

    Sibel, Gokce; Ozhan, Kayacan

    2016-01-01

    A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones’ on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians’ walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following’. At some densities, the relationships of velocity-density and flux-density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones.

  15. Hey! A Fire Ant Stung Me!

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Hey! A Fire Ant Stung Me! KidsHealth > For Kids > Hey! A Fire Ant Stung Me! Print A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Bee Stung Me! Hey! A Scorpion Stung ...

  16. The Use of Ants in Field Work.

    ERIC Educational Resources Information Center

    Skinner, Gary J.

    1988-01-01

    Provided is a brief description of the biology and taxonomy of British ants. Suggested are a range of exercises which could be used for class or project work in secondary biology classes. Illustrates many ecological, behavioral and physiological points regarding the species of ants found in Great Britain. (Author/CW)

  17. The Biochemical Toxin Arsenal from Ant Venoms

    PubMed Central

    Touchard, Axel; Aili, Samira R.; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  18. Improving Emergency Management by Modeling Ant Colonies

    DTIC Science & Technology

    2015-03-01

    Charles D. Michener and Mary H. Michener, “American Social Insects: A Book About Bees, Ants, Wasps, and Termites ” (New York: D Van Nostrand, 1951...no. 2 (1978): 183–216. Michener, Charles D. and Mary H. Michener. American Social Insects: A Book About Bees, Ants, Wasps, and Termites . New York

  19. Neuropeptidomics of the carpenter ant Camponotus floridanus.

    PubMed

    Schmitt, Franziska; Vanselow, Jens T; Schlosser, Andreas; Kahnt, Jörg; Rössler, Wolfgang; Wegener, Christian

    2015-03-06

    Ants show a rich behavioral repertoire and a highly complex organization, which have been attracting behavioral and sociobiological researchers for a long time. The neuronal underpinnings of ant behavior and social organization are, however, much less understood. Neuropeptides are key signals that orchestrate animal behavior and physiology, and it is thus feasible to assume that they play an important role also for the social constitution of ants. Despite the availability of different ant genomes and in silico prediction of ant neuropeptides, a comprehensive biochemical survey of the neuropeptidergic communication possibilities of ants is missing. We therefore combined different mass spectrometric methods to characterize the neuropeptidome of the adult carpenter ant Camponotus floridanus. We also characterized the local neuropeptide complement in different parts of the nervous and neuroendocrine system, including the antennal and optic lobes. Our analysis identifies 39 neuropeptides encoded by different prepropeptide genes, and in silico predicts new prepropeptide genes encoding CAPA peptides, CNMamide as well as homologues of the honey bee IDLSRFYGHFNT- and ITGQGNRIF-containing peptides. Our data provides basic information about the identity and localization of neuropeptides that is required to anatomically and functionally address the role and significance of neuropeptides in ant behavior and physiology.

  20. The Biochemical Toxin Arsenal from Ant Venoms.

    PubMed

    Touchard, Axel; Aili, Samira R; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M; Dejean, Alain

    2016-01-20

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  1. Urban Pest Management of Ants in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Keeping pace with the dynamic and evolving landscape of invasive ants in California presents a formidable challenge to the pest management industry. Pest management professionals (PMPs) are on the frontlines when it comes to battling these exotic ant pests, and are often the first ones to intercept ...

  2. Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis.

    PubMed

    Mikheyev, Alexander S; Mueller, Ulrich G; Abbot, Patrick

    2006-07-11

    The fungus-growing ants have long provided a spectacular example of coevolutionary integration. Their ecological success is thought to depend largely on the evolutionary alignment of reproductive interests between ants and fungi after vertical transmission and the ancient suppression of fungal sexuality. In the present study we test these assumptions and provide the first evidence of recombination in attine cultivars, contradicting widely held perceptions of obligate clonality. In addition, we document long-distance horizontal transmission of symbionts between leaf-cutter ant species on mainland Central America and South America and those endemic to Cuba, suggesting both lack of pairwise coevolutionary specificity in ant/cultivar interactions and dispersal of symbionts independent of their ant hosts. The coevolution between leaf-cutters and their fungal symbionts is thus not reciprocally pairwise. Rather, a single widespread and sexual fungal symbiont species is engaged in multiple interactions with divergent ant lineages. Strict fungal clonality and vertical transmission evidently have not played a critical role in the long-term evolutionary or ecological success of this well known mutualism.

  3. Ant-seed mutualisms: Can red imported fire ants sour the relationship?

    USGS Publications Warehouse

    Zettler, J.A.; Spira, T.P.; Allen, C.R.

    2001-01-01

    Invasion by the red imported fire ant, Solenopsis invicta, has had negative impacts on individual animal and plant species, but little is known about how S. invicta affects complex mutualistic relationships. In some eastern forests of North America, 30% of herbaceous species have ant-dispersed seeds. We conducted experiments to determine if fire ants are attracted to seeds of these plant species and assessed the amount of scarification or damage that results from handling by fire ants. Fire ants removed nearly 100% of seeds of the ant-dispersed plants Trillium undulatum, T. discolor, T. catesbaei, Viola rotundifolia, and Sanguinaria canadensis. In recovered seeds fed to ant colonies, fire ants scarified 80% of S. canadensis seeds and destroyed 86% of V. rotundifolia seeds. Our study is the first to document that red imported fire ants are attracted to and remove seeds of species adapted for ant dispersal. Moreover, fire ants might damage these seeds and discard them in sites unfavorable for germination and seedling establishment. ?? 2001 Elsevier Science Ltd. All rights reserved.

  4. Fidelity and Promiscuity in an Ant-Plant Mutualism: A Case Study of Triplaris and Pseudomyrmex

    PubMed Central

    Sanchez, Adriana

    2015-01-01

    The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism but no molecular studies have examined this association to date. In this study, the interspecific relationships of Triplaris were reconstructed using five molecular markers (two chloroplast and three nuclear), and the relationships of the associated Pseudomyrmex using two molecular regions (one mitochondrial and one nuclear). A data set including all known collections of plant hosts and resident ants was also compiled. The pattern of distribution of both organisms reveals that there are varying degrees of host specificity; most ants show broader host usage (promiscuous) but one species (P. dendroicus) is faithful to a single species of Triplaris. In most ant-plant interactions, host usage is not specific at the species level and preferences may result from geographical or ecological sorting. The specificity of P. dendroicus could be based on chemical recognition of the host they were raised on. PMID:26630384

  5. Fidelity and Promiscuity in an Ant-Plant Mutualism: A Case Study of Triplaris and Pseudomyrmex.

    PubMed

    Sanchez, Adriana

    2015-01-01

    The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism but no molecular studies have examined this association to date. In this study, the interspecific relationships of Triplaris were reconstructed using five molecular markers (two chloroplast and three nuclear), and the relationships of the associated Pseudomyrmex using two molecular regions (one mitochondrial and one nuclear). A data set including all known collections of plant hosts and resident ants was also compiled. The pattern of distribution of both organisms reveals that there are varying degrees of host specificity; most ants show broader host usage (promiscuous) but one species (P. dendroicus) is faithful to a single species of Triplaris. In most ant-plant interactions, host usage is not specific at the species level and preferences may result from geographical or ecological sorting. The specificity of P. dendroicus could be based on chemical recognition of the host they were raised on.

  6. ANT2-defective fibroblasts exhibit normal mitochondrial bioenergetics

    PubMed Central

    Prabhu, Dolly; Goldstein, Amy C.; El-Khoury, Riyad; Rak, Malgorzata; Edmunds, Lia; Rustin, Pierre; Vockley, Jerry; Schiff, Manuel

    2015-01-01

    Adenine nucleotide translocase 2 (ANT2) transports glycolytic ATP across the inner mitochondrial membrane. Patients with ANT2 deletion were recently reported. We aimed at characterizing mitochondrial functions in ANT2-defective fibroblasts. In spite of ANT2 expression in fibroblasts, we observed no difference between ANT2-defective and control fibroblasts for mitochondrial respiration, respiratory chain activities, mitochondrial membrane potential and intracellular ATP levels. This indicates that ANT2 insufficiency does not alter fibroblast basal mitochondrial bioenergetics. PMID:26000237

  7. Effects of aromatic cedar mulch on the Argentine ant and the odorous house ant (Hymenoptera: Formicidae).

    PubMed

    Meissner, H E; Silverman, J

    2001-12-01

    In laboratory studies, the Argentine ant, Linepithema humile (Mayr), and the odorous house ant, Tapinoma sessile (Say), avoided aromatic cedar mulch as a nesting substrate. Both ant species were killed when confined with fresh aromatic cedar mulch in sealed containers. However, when confined with cedar mulch that had been aged outdoors for up to 140 d, mortality of L. humile was complete regardless of mulch age, whereas T. sessile mortality declined significantly over the mulch-aging period. Argentine ant susceptibility to aromatic cedar mulch was also greater than that of the odorous house ant when colonies were restricted to mulch in open trays. In addition, commercial aromatic cedar oil was lethal to both ant species. Our results suggest that aromatic cedar mulch may serve as an effective component of a comprehensive urban ant management program.

  8. Microclimatic conditions of Lasius flavus ant mounds

    NASA Astrophysics Data System (ADS)

    Véle, Adam; Holuša, Jaroslav

    2016-11-01

    Like other organisms, ants require suitable microclimatic conditions for their development. Thus, ant species inhabiting colder climates build nest mounds that rise above the soil surface, presumably to obtain heating from solar radiation. Although some ant species construct mounds of organic materials, which generate substantial heat due to microbial metabolism, Lasius flavus mounds consists mostly of soil, not organic material. The use of artificial shading in the current study demonstrated that L. flavus depends on direct solar radiation to regulate the temperature in its mound-like nests. Temperatures were much lower in shaded mounds than in unshaded mounds and were likely low enough in shaded mounds to reduce ant development and reproduction. In areas where L. flavus and similar ants are undesirable, they might be managed by shading.

  9. Microclimatic conditions of Lasius flavus ant mounds.

    PubMed

    Véle, Adam; Holuša, Jaroslav

    2016-11-23

    Like other organisms, ants require suitable microclimatic conditions for their development. Thus, ant species inhabiting colder climates build nest mounds that rise above the soil surface, presumably to obtain heating from solar radiation. Although some ant species construct mounds of organic materials, which generate substantial heat due to microbial metabolism, Lasius flavus mounds consists mostly of soil, not organic material. The use of artificial shading in the current study demonstrated that L. flavus depends on direct solar radiation to regulate the temperature in its mound-like nests. Temperatures were much lower in shaded mounds than in unshaded mounds and were likely low enough in shaded mounds to reduce ant development and reproduction. In areas where L. flavus and similar ants are undesirable, they might be managed by shading.

  10. Ants defend aphids against lethal disease.

    PubMed

    Nielsen, Charlotte; Agrawal, Anurag A; Hajek, Ann E

    2010-04-23

    Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies.

  11. Increasing trophic complexity influences aphid attendance by ants (Hymenoptera: Formicidae) and predation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species that are involved in multitrophic interactions are affected by the trophic levels that are above and below them in both indirect and direct ways. In this experiment, interactions among ants (Formica montana Wheeler; Hymenoptera: Formicidae), aphids (Myzus persicae [Sulzer]; Hemiptera: Aphidi...

  12. Mimicry and eavesdropping enable a new form of social parasitism in ants.

    PubMed

    Powell, Scott; Del-Claro, Kleber; Feitosa, Rodrigo M; Brandão, Carlos Roberto F

    2014-10-01

    Social parasitism is defined by the exploitation of the social mechanisms of one society by another whole society. Here, we use quantitative ecological data and experiments to identify the components of a new form of social parasitism by the recently discovered "mirror turtle ant," Cephalotes specularis. We show that C. specularis workers visually mimic and actively avoid contact with foragers of the hyperaggressive host ant Crematogaster ampla, allowing them to move freely in the extensive and otherwise defended foraging networks of host colonies. Workers from parasite colonies have immediate access to these networks by nesting exclusively within host territories, and 89% of all potential host territories were parasitized. Inside the network, parasite workers eavesdrop on the host's trail pheromones to locate and exploit food resources that are defended by the host to the exclusion of all other ants. Experiments demonstrated the unprecedented capacity of the parasite for superior foraging performance on its host's pheromone trails than on trails of its own. Considered together, the apparent Batesian-Wallacian mimicry, pheromone-based interceptive eavesdropping, kleptoparasitism, and xenobiotic nesting ecology displayed by C. specularis within the territory and foraging network of a host ant represents a novel adaptive syndrome for social exploitation.

  13. Ant larvae as players in social conflict: relatedness and individual identity mediate cannibalism intensity.

    PubMed

    Schultner, Eva; Gardner, Andy; Karhunen, Markku; Helanterä, Heikki

    2014-12-01

    Conflict arises among social organisms when individuals differ in their inclusive-fitness interests. Ant societies are excellent models for understanding how genetic relatedness mediates conflict intensity. However, although conflicts within colonies typically arise over offspring production, the role of larvae as actors in social conflict has received little attention. We develop and empirically test kin-selection theory of larval egg cannibalism in ant societies. Specifically, we investigate how selection for cannibalism is mediated by nestmate relatedness and larval sex in a mathematical model and then test the model's predictions by measuring cannibalism levels in eight ant species with varying nestmate relatedness. In line with our theoretical predictions, cannibalism levels in larvae were significantly influenced by relatedness and sex. Increased relatedness was associated with reduced levels of cannibalism, indicating that larval behavior is mediated by inclusive-fitness considerations. Levels of cannibalism were significantly higher in male larvae, and our model suggests that this is due to sex differences in the benefits of cannibalism. By examining the selfish interests of larvae and the constraints they face in a social environment, our study presents a novel perspective on conflict in ants and on the evolution of selfish elements in social systems in general.

  14. Environmental Design for a Structured Network Learning Society

    ERIC Educational Resources Information Center

    Chang, Ben; Cheng, Nien-Heng; Deng, Yi-Chan; Chan, Tak-Wai

    2007-01-01

    Social interactions profoundly impact the learning processes of learners in traditional societies. The rapid rise of the Internet using population has been the establishment of numerous different styles of network communities. Network societies form when more Internet communities are established, but the basic form of a network society, especially…

  15. Learning about a Fish from an ANT: Actor Network Theory and Science Education in the Postgenomic Era

    ERIC Educational Resources Information Center

    Pierce, Clayton

    2015-01-01

    This article uses actor network theory (ANT) to develop a more appropriate model of scientific literacy for students, teachers, and citizens in a society increasingly populated with biotechnological and bioscientific nonhumans. In so doing, I take the recent debate surrounding the first genetically engineered animal food product under review by…

  16. Are local filters blind to provenance? Ant seed predation suppresses exotic plants more than natives.

    PubMed

    Pearson, Dean E; Icasatti, Nadia S; Hierro, Jose L; Bird, Benjamin J

    2014-01-01

    The question of whether species' origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species' traits interact with community filters, a process presumably blind to species' origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters.

  17. FDTD-ANT User Manual

    NASA Technical Reports Server (NTRS)

    Zimmerman, Martin L.

    1995-01-01

    This manual explains the theory and operation of the finite-difference time domain code FDTD-ANT developed by Analex Corporation at the NASA Lewis Research Center in Cleveland, Ohio. This code can be used for solving electromagnetic problems that are electrically small or medium (on the order of 1 to 50 cubic wavelengths). Calculated parameters include transmission line impedance, relative effective permittivity, antenna input impedance, and far-field patterns in both the time and frequency domains. The maximum problem size may be adjusted according to the computer used. This code has been run on the DEC VAX and 486 PC's and on workstations such as the Sun Sparc and the IBM RS/6000.

  18. Ant-Based Cyber Security

    SciTech Connect

    Haack, Jereme N.; Fink, Glenn A.; Maiden, Wendy M.; McKinnon, Archibald D.; Templeton, Steven J.; Fulp, Errin W.

    2011-07-12

    We describe a swarming-agent-based, mixed-initiative approach to infrastructure defense where teams of humans and software agents defend cooperating organizations in tandem by sharing insights and solutions without violating proprietary boundaries. The system places human administrators at the appropriate level where they provide system guidance while lower-level agents carry out tasks humans are unable to perform quickly enough to mitigate today’s security threats. Cooperative Infrastructure Defense (CID) uses our ant-based approach to enable dialogue between humans and agents to foster a collaborative problem-solving environment, increase human situational awareness and influence using visualization and shared control. We discuss theoretical implementation characteristics along with results from recent proof-of-concept implementations.

  19. Wood ants produce a potent antimicrobial agent by applying formic acid on tree-collected resin.

    PubMed

    Brütsch, Timothée; Jaffuel, Geoffrey; Vallat, Armelle; Turlings, Ted C J; Chapuisat, Michel

    2017-04-01

    Wood ants fight pathogens by incorporating tree resin with antimicrobial properties into their nests. They also produce large quantities of formic acid in their venom gland, which they readily spray to defend or disinfect their nest. Mixing chemicals to produce powerful antibiotics is common practice in human medicine, yet evidence for the use of such "defensive cocktails" by animals remains scant. Here, we test the hypothesis that wood ants enhance the antifungal activity of tree resin by treating it with formic acid. In a series of experiments, we document that (i) tree resin had much higher inhibitory activity against the common entomopathogenic fungus Metarhizium brunneum after having been in contact with ants, while no such effect was detected for other nest materials; (ii) wood ants applied significant amounts of endogenous formic and succinic acid on resin and other nest materials; and (iii) the application of synthetic formic acid greatly increased the antifungal activity of resin, but had no such effect when applied to inert glass material. Together, these results demonstrate that wood ants obtain an effective protection against a detrimental microorganism by mixing endogenous and plant-acquired chemical defenses. In conclusion, the ability to synergistically combine antimicrobial substances of diverse origins is not restricted to humans and may play an important role in insect societies.

  20. Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants

    PubMed Central

    Fernández-Marín, Hermógenes; Zimmerman, Jess K.; Nash, David R.; Boomsma, Jacobus J.; Wcislo, William T.

    2009-01-01

    To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia antibiotics are narrow-spectrum and control a fungus (Escovopsis) that parasitizes the ants' fungal symbiont, and (ii) MG secretions have broad-spectrum activity and protect ants and brood. We assessed the relative importance of these lines of defence, and their activity spectra, by scoring abundance of visible Pseudonocardia for nine species from five genera and measuring rates of MG grooming after challenging ants with disease agents of differing virulence. Atta and Sericomyrmex have lost or greatly reduced the abundance of visible bacteria. When challenged with diverse disease agents, including Escovopsis, they significantly increased MG grooming rates and expanded the range of targets. By contrast, species of Acromyrmex and Trachymyrmex maintain abundant Pseudonocardia. When challenged, these species had lower MG grooming rates, targeted primarily to brood. More elaborate MG defences and reduced reliance on mutualistic Pseudonocardia are correlated with larger colony size among attine genera, raising questions about the efficacy of managing disease in large societies with chemical cocktails versus bacterial antimicrobial metabolites. PMID:19324734

  1. Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda.

    PubMed

    Witte, Volker; Foitzik, Susanne; Hashim, Rosli; Maschwitz, Ulrich; Schulz, Stefan

    2009-03-01

    Myrmecophiles are animals that live in close association with ants and that frequently develop elaborate mechanisms to infiltrate their well-defended host societies. We compare the social integration strategies of two myrmecophilic species, the spider, Gamasomorpha maschwitzi, and the newly described silverfish, Malayatelura ponerophila gen. n. sp. n., into colonies of the ponerine army ant, Leptogenys distinguenda (Emery) (Hymenoptera: Formicidae). Both symbionts use chemical mimicry through adoption of host cuticular hydrocarbons. Exchange experiments between L. distinguenda and an undetermined Leptogenys species demonstrate that reduced aggression toward alien ants and increased social acceptance occurred with individuals of higher chemical similarity in their cuticular hydrocarbon profiles. We found striking differences in chemical and behavioral strategies between the two myrmecophiles. Spider cuticular hydrocarbon profiles were chemically less similar to the host than silverfish profiles were. Nevertheless, spiders received significantly fewer attacks from host ants and survived longer in laboratory colonies, whereas silverfish were treated with high aggression and were killed more frequently. When discovered and confronted by the host, silverfish tended to escape and were chased aggressively, whereas spiders remained in contact with the confronting host ant until aggression ceased. Thus, spiders relied less on chemical mimicry but were nevertheless accepted more frequently by the host on the basis of behavioral mechanisms. These findings give insights into the fine tuning of social integration mechanisms and show the significance of qualitative differences among strategies.

  2. Computational model of collective nest selection by ants with heterogeneous acceptance thresholds.

    PubMed

    Masuda, Naoki; O'shea-Wheller, Thomas A; Doran, Carolina; Franks, Nigel R

    2015-06-01

    Collective decision-making is a characteristic of societies ranging from ants to humans. The ant Temnothorax albipennis is known to use quorum sensing to collectively decide on a new home; emigration to a new nest site occurs when the number of ants favouring the new site becomes quorate. There are several possible mechanisms by which ant colonies can select the best nest site among alternatives based on a quorum mechanism. In this study, we use computational models to examine the implications of heterogeneous acceptance thresholds across individual ants in collective nest choice behaviour. We take a minimalist approach to develop a differential equation model and a corresponding non-spatial agent-based model. We show, consistent with existing empirical evidence, that heterogeneity in acceptance thresholds is a viable mechanism for efficient nest choice behaviour. In particular, we show that the proposed models show speed-accuracy trade-offs and speed-cohesion trade-offs when we vary the number of scouts or the quorum threshold.

  3. Reduced entomopathogen abundance in Myrmica ant nests—testing a possible immunological benefit of myrmecophily using Galleria mellonella as a model

    PubMed Central

    Schär, Sämi; Larsen, Louise L. M.; Meyling, Nicolai V.; Nash, David R.

    2015-01-01

    Social insects such as ants have evolved collective rather than individual immune defence strategies against diseases and parasites at the level of their societies (colonies), known as social immunity. Ants frequently host other arthropods, so-called myrmecophiles, in their nests. Here, we tested the hypothesis that myrmecophily may partly arise from selection for exploiting the ants’ social immunity. We used larvae of the wax moth Galleria mellonella as ‘model myrmecophiles’ (baits) to test this hypothesis. We found significantly reduced abundance of entomopathogens in ant nests compared with the surrounding environment. Specific entomopathogen groups (Isaria fumosorosea and nematodes) were also found to be significantly less abundant inside than outside ant nests, whereas one entomopathogen (Beauveria brongniartii) was significantly more abundant inside nests. We therefore hypothesize that immunological benefits of entering ant nests may provide us a new explanation of why natural selection acts in favour of such a life-history strategy. PMID:26587252

  4. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  5. Towards the Learning Society.

    ERIC Educational Resources Information Center

    Ranson, Stewart

    1992-01-01

    Britain's education system is a beleaguered service accused of failing young people who leave school early without developing their potential. Education will always fail if youngsters' capacities are sectioned off to match a pyramidal, hierarchical society. The conditions for a learning society are basically political, requiring creation of a…

  6. Schools, Violence, and Society.

    ERIC Educational Resources Information Center

    Hoffman, Allan M., Ed.

    The seeming increase of violence in American society and its schools has become a pressing issue. Some researchers argue that the American education system mirrors the dynamics of society. The articles in this book address the following issues: the extent of violence in American schools; the forms that violence takes; its root causes; the effects…

  7. Geologists' Role in Society

    ERIC Educational Resources Information Center

    Bally, A. W.; And Others

    1976-01-01

    At a meeting sponsored by the Geological Society of America, earth scientists examined their function in society. Participants concluded that earth scientists are not providing a rationale for value judgments concerning the use and limitations of the earth and a program aimed at understanding solid-Earth resource systems is needed. (BT)

  8. Leadership in an egalitarian society.

    PubMed

    von Rueden, Christopher; Gurven, Michael; Kaplan, Hillard; Stieglitz, Jonathan

    2014-12-01

    Leadership is instrumental to resolution of collective action dilemmas, particularly in large, heterogeneous groups. Less is known about the characteristics or effectiveness of leadership in small-scale, homogeneous, and relatively egalitarian societies, in which humans have spent most of our existence. Among Tsimane' forager-horticulturalists of Bolivia, we (1) assess traits of elected leaders under experimental and naturalistic conditions and (2) test whether leaders impact or differentially benefit from collective action outcomes. We find that elected leaders are physically strong and have more kin and other exchange partners. Their ranks on physical dominance, kin support, and trustworthiness predict how well their groups perform, but only where group members have a history of collaborative interaction. Leaders do not take more of the spoils. We discuss why physically strong leaders can be compatible with egalitarianism, and we suggest that leaders in egalitarian societies may be more motivated by maintaining an altruistic reputation than by short-term rewards of collective action.

  9. Leadership in an Egalitarian Society

    PubMed Central

    von Rueden, Christopher; Gurven, Michael; Kaplan, Hillard; Stieglitz, Jonathan

    2014-01-01

    Leadership is instrumental to resolution of collective action dilemmas, particularly in large, heterogeneous groups. Less is known about the characteristics or effectiveness of leadership in small-scale, homogeneous, and relatively egalitarian societies, in which humans have spent most of our existence. Among Tsimane’ forager-horticulturalists of Bolivia, we (1) assess traits of elected leaders under experimental and naturalistic conditions and (2) test whether leaders impact collective action outcomes. We find that elected leaders are physically strong and have more kin and other exchange partners. Their ranks on physical dominance, kin support, and trustworthiness predict how well their groups perform, but only where group members have a history of collaborative interaction. Leaders do not take more of the spoils. We discuss why physically strong leaders can be compatible with egalitarianism, and we suggest that leaders in egalitarian societies may be more motivated by maintaining an altruistic reputation than by short-term rewards of collective action. PMID:25240393

  10. Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant-plant mutualism.

    PubMed

    Pringle, Elizabeth G

    2014-06-22

    In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant-plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output.

  11. Analysis of acoustic communication by ants.

    PubMed

    Hickling, R; Brown, R L

    2000-10-01

    An analysis is presented of acoustic communication by ants, based on near-field theory and on data obtained from the black imported fire ant Solenopsis richteri and other sources. Generally ant stridulatory sounds are barely audible, but they occur continuously in ant colonies. Because ants appear unresponsive to airborne sound, myrmecologists have concluded that stridulatory signals are transmitted through the substrate. However, transmission through the substrate is unlikely, for reasons given in the paper. Apparently ants communicate mainly through the air, and the acoustic receptors are hairlike sensilla on the antennae that respond to particle sound velocity. This may seem inconsistent with the fact that ants are unresponsive to airborne sound (on a scale of meters), but the inconsistency can be resolved if acoustic communication occurs within the near field, on a scale of about 100 mm. In the near field, the particle sound velocity is significantly enhanced and has a steep gradient. These features can be used to exclude extraneous sound, and to determine the direction and distance of a near-field source. Additionally, we observed that the tracheal air sacs of S. richteri can expand within the gaster, possibly amplifying the radiation of stridulatory sound.

  12. The agricultural pathology of ant fungus gardens

    PubMed Central

    Currie, Cameron R.; Mueller, Ulrich G.; Malloch, David

    1999-01-01

    Gardens of fungus-growing ants (Formicidae: Attini) traditionally have been thought to be free of microbial parasites, with the fungal mutualist maintained in nearly pure “monocultures.” We conducted extensive isolations of “alien” (nonmutualistic) fungi from ant gardens of a phylogenetically representative collection of attine ants. Contrary to the long-standing assumption that gardens are maintained free of microbial pathogens and parasites, they are in fact host to specialized parasites that are only known from attine gardens and that are found in most attine nests. These specialized garden parasites, belonging to the microfungus genus Escovopsis (Ascomycota: anamorphic Hypocreales), are horizontally transmitted between colonies. Consistent with theory of virulence evolution under this mode of pathogen transmission, Escovopsis is highly virulent and has the potential for rapid devastation of ant gardens, leading to colony mortality. The specialized parasite Escovopsis is more prevalent in gardens of the more derived ant lineages than in gardens of the more “primitive” (basal) ant lineages. Because fungal cultivars of derived attine lineages are asexual clones of apparently ancient origin whereas cultivars of primitive ant lineages were domesticated relatively recently from free-living sexual stocks, the increased virulence of pathogens associated with ancient asexual cultivars suggests an evolutionary cost to cultivar clonality, perhaps resulting from slower evolutionary rates of cultivars in the coevolutionary race with their pathogens. PMID:10393936

  13. Ant-lepidopteran associations along African forest edges.

    PubMed

    Dejean, Alain; Azémar, Frédéric; Libert, Michel; Compin, Arthur; Hérault, Bruno; Orivel, Jérôme; Bouyer, Thierry; Corbara, Bruno

    2017-02-01

    Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.

  14. Ant-lepidopteran associations along African forest edges

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Azémar, Frédéric; Libert, Michel; Compin, Arthur; Hérault, Bruno; Orivel, Jérôme; Bouyer, Thierry; Corbara, Bruno

    2017-02-01

    Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.

  15. Floral visitation by the Argentine ant reduces pollinator visitation and seed set in the coast barrel cactus, Ferocactus viridescens.

    PubMed

    LeVan, Katherine E; Hung, Keng-Lou James; McCann, Kyle R; Ludka, John T; Holway, David A

    2014-01-01

    Mounting evidence indicates that trade-offs between plant defense and reproduction arise not only from resource allocation but also from interactions among mutualists. Indirect costs of plant defense by ants, for example, can outweigh benefits if ants deter pollinators. Plants can dissuade ants from occupying flowers, but such arrangements may break down when novel ant partners infiltrate mutualisms. Here, we examine how floral visitation by ants affects pollination services when the invasive Argentine ant (Linepithema humile) replaces a native ant species in a food-for-protection mutualism with the coast barrel cactus (Ferocactus viridescens), which, like certain other barrel cacti, produces extrafloral nectar. We compared the effects of floral visitation by the Argentine ant with those of the most prevalent native ant species (Crematogaster californica). Compared to C. californica, the Argentine ant was present in higher numbers in flowers. Cactus bees (Diadasia spp.), the key pollinators in this system, spent less time in flowers when cacti were occupied by the Argentine ant compared to when cacti were occupied by C. californica. Presumably as a consequence of decreased duration of floral visits by Diadasia, cacti occupied by L. humile set fewer seeds per fruit and produced fewer seeds overall compared to cacti occupied by C. californica. These data illustrate the importance of mutualist identity in cases where plants balance multiple mutualisms. Moreover, as habitats become increasingly infiltrated by introduced species, the loss of native mutualists and their replacement by non-native species may alter the shape of trade-offs between plant defense and reproduction.

  16. Timekeeping through social contacts: social synchronization of circadian locomotor activity rhythm in the carpenter ant Camponotus paria.

    PubMed

    Lone, Shahnaz Rahman; Sharma, Vijay Kumar

    2011-12-01

    In ant colonies a large proportion of individuals remain inside nests for most of their lives and come out only when necessary. It is not clear how, in a nest of several thousand individuals, information about local time is communicated among members of the colony. Central to this seem to be circadian clocks, which have an intrinsic ability to keep track of local time by entraining to environmental light-dark, temperature, and social cycles. Here, the authors report the results of their study aimed at understanding the role of cyclic social interactions in circadian timekeeping of a day-active species of carpenter ant Camponotus paria. The authors found that daily social interactions with visitors (worker ants) was able to synchronize the circadian locomotor activity rhythm of host worker ants and queens, in one-on-one (pair-wise) and multi-individual (group-wise) interactions. Interestingly, the outcome of cyclic social interactions was context specific; when visitor workers socially interacted with host workers one-on-one, host workers considered the time of interaction as subjective day, but when visitor workers interacted with a group of workers and queens, the hosts considered the time of interaction as subjective night. These results can be taken to suggest that members of the ant species C. paria keep track of local time by socially interacting with workers (foragers) who shuttle in and out of the colony in search of food. (Author correspondence: vsharma@jncasr.ac.in ).

  17. Pheromone disruption of Argentine ant trail integrity

    USGS Publications Warehouse

    Suckling, D.M.; Peck, R.W.; Manning, L.M.; Stringer, L.D.; Cappadonna, J.; El-Sayed, A. M.

    2008-01-01

    Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m2) to 1- and 4-m2 plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected. ?? 2008 Springer Science+Business Media, LLC.

  18. Society of Mind project. Final report

    SciTech Connect

    Minsky, M.

    1988-08-01

    This project was concerned with developing a theory of intelligent thinking and learning, based on the Society of Mind model of intelligence. The research was funded over a period of years by the Computer Science Office of the Office of Naval Research. The research included the following specific subjects: Connectionism of Parallel Computers, Exploiting Parallel Processing, Connectedness of Commonsense Knowledge Bases, Connectedness and Society of Mind, Advantages and Deficiencies of Connectionist Networks, Insulation and Interaction, Learning and Representation, Intermediate Units and Significance, Associations and Connections, Unifying Frames and K-lines, Clarifying Conceptual Dependency, Computational linguistics, Research tools for society of mind models, Discovery processes, and Bridges between symbolic and connectionist models.

  19. Analysis of how ant behaviors affect germination in a tropical myrmecochore Calathea microcephala (P. & E.) Koernicke (Marantaceae): Microsite selection and aril removal by neotropical ants, Odontomachus, Pachycondyla, and Solenopsis (Formicidae).

    PubMed

    Horvitz, C C

    1981-10-01

    The evolutionary effects of a tropical ant-seed interaction are examined by posing questions about the fate of Calathea seeds carried by neotropical ants. Where do ants take seeds and what do they do with them? How do ant behaviors affect seed germination? Treatment of seeds by ants is determined by a series of seed-fate trials in captive colonies. There is no evidence of seed predation by ants. Odontomachus laticeps, Pachycondyla spp, and Solenopsis geminata rapidly displace seeds to ant nests, determine the microsites of seeds, and remove the seed arils for food. The seed arils are rich in lipids. The effects on germination of microsite selection and aril removal are quantitatively evaluated. Seeds which are immediately taken to a consistently moist spot germinate readily; 72% germinate, with a mean germination speed of 29 days. For such seeds aril removal does not significantly affect germination. In contrast, seeds which experience a delay before encountering appropriate germination conditions seem to exhibit an induced dormancy (sensu, Harper 1977) and a lower germination percentage. They take longer to germinate (up to 85 days) even after conditions become appropriate. It appears that their germination is enhanced by aril removal, which may act as an environmental cue to break dormancy. Such a mechanism would indicate that ant-handling of seeds is predictive of favorable conditions for seedling growth and establishment. The exact nature of such conditions and the effects on plant population dynamics remain to be seen.

  20. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism.

    PubMed

    Fitzpatrick, Ginny; Lanan, Michele C; Bronstein, Judith L

    2014-09-01

    Mutualism is an often complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and, in exchange, protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40 °C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0 °C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species.

  1. Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism

    PubMed Central

    Fitzpatrick, Ginny; Lanan, Michele C.; Bronstein, Judith L.

    2014-01-01

    Mutualism is an often-complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and in exchange protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40°C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0°C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species. PMID:25012597

  2. How to escape from the host nest: imperfect chemical mimicry in eucharitid parasitoids and exploitation of the ants' hygienic behavior.

    PubMed

    Pérez-Lachaud, Gabriela; Bartolo-Reyes, Juan Carlos; Quiroa-Montalván, Claudia M; Cruz-López, Leopoldo; Lenoir, Alain; Lachaud, Jean-Paul

    2015-04-01

    Communication in ants is based to a great extent on chemical compounds. Recognition of intruders is primarily based on cuticular hydrocarbon (CHC) profile matching but is prone to being cheated. Eucharitid wasps are specific parasitoids of the brood of ants; the immature stages are either well integrated within the colony or are protected within the host cocoons, whereas adult wasps at emergence must leave their host nest to reproduce and need to circumvent the ant recognition system to escape unscathed. The behavioral interactions between eucharitid wasps and workers of their host, the Neotropical ant Ectatomma tuberculatum, are characterized. In experimental bioassays, newly emerged parasitoids were not violently aggressed. They remained still and were grabbed by ants upon contact and transported outside the nest; host workers were even observed struggling to reject them. Parasitoids were removed from the nest within five minutes, and most were unharmed, although two wasps (out of 30) were killed during the interaction with the ants. We analyzed the CHCs of the ant and its two parasitoids, Dilocantha lachaudii and Isomerala coronata, and found that although wasps shared all of their compounds with the ants, each wasp species had typical blends and hydrocarbon abundance was also species specific. Furthermore, the wasps had relatively few CHCs compared to E. tuberculatum (22-44% of the host components), and these were present in low amounts. Wasps, only partially mimicking the host CHC profile, were immediately recognized as alien and actively removed from the nest by the ants. Hexane-washed wasps were also transported to the refuse piles, but only after being thoroughly inspected and after most of the workers had initially ignored them. Being recognized as intruder may be to the parasitoids' advantage, allowing them to quickly leave the natal nest, and therefore enhancing the fitness of these very short lived parasitoids. We suggest that eucharitids take advantage

  3. Autonomous Agents on Expedition: Humans and Progenitor Ants and Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Rilee, M. L.; Clark, P. E.; Curtis, S. A.; Truszkowski, W. F.

    2002-01-01

    The Autonomous Nano-Technology Swarm (ANTS) is an advanced mission architecture based on a social insect analog of many specialized spacecraft working together to achieve mission goals. The principal mission concept driving the ANTS architecture is a Main Belt Asteroid Survey in the 2020s that will involve a thousand or more nano-technology enabled, artificially intelligent, autonomous pico-spacecraft (< 1 kg). The objective of this survey is to construct a compendium of composition, shape, and other physical parameter observations of a significant fraction of asteroid belt objects. Such an atlas will be of primary scientific importance for the understanding of Solar System origins and evolution and will lay the foundation for future exploration and capitalization of space. As the capabilities enabling ANTS are developed over the next two decades, these capabilities will need to be proven. Natural milestones for this process include the deployment of progenitors to ANTS on human expeditions to space and remote missions with interfaces for human interaction and control. These progenitors can show up in a variety of forms ranging from spacecraft subsystems and advanced handheld sensors, through complete prototypical ANTS spacecraft. A critical capability to be demonstrated is reliable, long-term autonomous operations across the ANTS architecture. High level, mission-oriented behaviors are to be managed by a control / communications layer of the swarm, whereas common low level functions required of all spacecraft, e.g. attitude control and guidance and navigation, are handled autonomically on each spacecraft. At the higher levels of mission planning and social interaction deliberative techniques are to be used. For the asteroid survey, ANTS acts as a large community of cooperative agents while for precursor missions there arises the intriguing possibility of Progenitor ANTS and humans acting together as agents. For optimal efficiency and responsiveness for individual

  4. Divergent Chemical Cues Elicit Seed Collecting by Ants in an Obligate Multi-Species Mutualism in Lowland Amazonia

    PubMed Central

    Youngsteadt, Elsa; Guerra Bustios, Patricia; Schal, Coby

    2010-01-01

    In lowland Amazonian rainforests, specific ants collect seeds of several plant species and cultivate them in arboreal carton nests, forming species-specific symbioses called ant-gardens (AGs). In this obligate mutualism, ants depend on the plants for nest stability and the plants depend on ant nests for substrate and nutrients. AG ants and plants are abundant, dominant members of lowland Amazonian ecosystems, but the cues ants use to recognize the seeds are poorly understood. To address the chemical basis of the ant-seed interaction, we surveyed seed chemistry in nine AG species and eight non-AG congeners. We detected seven phenolic and terpenoid volatiles common to seeds of all or most of the AG species, but a blend of the shared compounds was not attractive to the AG ant Camponotus femoratus. We also analyzed seeds of three AG species (Anthurium gracile, Codonanthe uleana, and Peperomia macrostachya) using behavior-guided fractionation. At least one chromatographic fraction of each seed extract elicited retrieval behavior in C. femoratus, but the active fractions of the three plant species differed in polarity and chemical composition, indicating that shared compounds alone did not explain seed-carrying behavior. We suggest that the various AG seed species must elicit seed-carrying with different chemical cues. PMID:21209898

  5. ANTS/PAM: Future Exploration of the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C. Y.

    2004-05-01

    The Autonomous Nano-Technology Swarm (ANTS) is applied to the Prospecting Asteroid Mission (PAM) concept, as part of a NASA RASC study. The ANTS architecture is inspired by success of social insect colonies, based on the division of labor within the colonies: 1) within their specialties, individual specialists generally outperform general-ists, and 2) with sufficiently efficient social interaction and coordination, the group of specialists generally outper-forms the group of generalists. ANTS as applied to PAM involves a thousand individual specialist `sciencecraft', one subswarm per target, in an environment where detection and tracking of irregular, infrequent targets is a major chal-lenge. Workers, carry and operate eight to nine different scientific instruments, including spectrometers, ranging and radio science devices, imagers. The remaining specialists, Messenger/Rulers, provide communication and coordina-tion. The non-expendable propulsion system is based on autonomously deployable and configurable solar sails, a system suitable to a low gravity environment. The design of the neural basis function requires a minimum of 4 or 5 specialists for collective decision making. Allowing for ten instrument specialist teams and compensating for antici-pated high attrition, we calculate an initial minimum of 100 per subswarm should allow characterization of hundreds of asteroids. The difficulty in observing irregular, rapidly moving, poorly illuminated objects is largely overcome by the ANT sciencecraft capability to optimize conditions for each instrument. Components are composed of carbon nanotubules reversibly deployable from NEMS nodes, allowing 100 times decrease in packaging volume. 1000 smart 10 centimeter, 1 kg cubic boxes create a 1000 kg 1 meter cube.

  6. Reactions by army ant workers to nestmates having had contact with sympatric ant species.

    PubMed

    Dejean, Alain; Corbara, Bruno

    2014-11-01

    It was recently shown that Pheidole megacephala colonies (an invasive species originating from Africa) counterattack when raided by the army ant, Eciton burchellii. The subsequent contact permits Pheidole cuticular compounds (that constitute the "colony odour") to be transferred onto the raiding Eciton, which are then not recognised by their colony-mates and killed. Using a simple method for transferring cuticular compounds, we tested if this phenomenon occurs for Neotropical ants. Eciton workers rubbed with ants from four sympatric species were released among their colony-mates. Individuals rubbed with Solenopsis saevissima or Camponotus blandus workers were attacked, but not those rubbed with Atta sexdens, Pheidole fallax or with colony-mates (control lot). So, the chemicals of certain sympatric ant species, but not others, trigger intra-colonial aggressiveness in Eciton. We conclude that prey-ant chemicals might have played a role in the evolution of army ant predatory behaviour, likely influencing prey specialization in certain cases.

  7. Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association

    PubMed Central

    Lachaud, Jean-Paul; Klompen, Hans; Pérez-Lachaud, Gabriela

    2016-01-01

    Mites are frequent ant symbionts, yet the exact nature of their interactions with their hosts is poorly known. Generally, myrmecophilous mites show adaptations for dispersal through phoresis, but species that lack such an adaptation may have evolved unusual specialized relationships with their hosts. The immature stages of Macrodinychus multispinosus develop as ectoparasitoids of pupae of the invasive ant Paratrechina longicornis. Feeding stages show regressed locomotor appendages. These mites complete their development on a single host, sucking all of its body content and therefore killing it. Locally high proportions of parasitized host pupae suggest that M. multispinosus could serve as a biological control agent. This is the ninth species of Macrodinychus reported as ant parasite, and the third known as parasitoid of invasive ants, confirming a unique habit in the evolution of mite feeding strategies and suggesting that the entire genus might be parasitic on ants. Several mites’ characteristics, such as their protective morphology, possible viviparity, lack of a specialized stage for phoretic dispersal, and low host specificity, combined with both the general low aggressiveness of invasive P. longicornis towards other ants and its possible susceptibility to generalist ectoparasites would account for the host shift in native macrodinychid mites. PMID:27444515

  8. Direct and indirect effects of warming on aphids, their predators, and ant mutualists.

    PubMed

    Barton, Brandon T; Ives, Anthony R

    2014-06-01

    Species exist within communities of other interacting species, so an exogenous force that directly affects one species can indirectly affect all other members of the community. In the case of climate change, many species may be affected directly and subsequently initiate numerous indirect effects that propagate throughout the community. Therefore, the net effect of climate change on any one species is a function of the direct and indirect effects. We investigated the direct and indirect effects of climate warming on corn leaf aphids, a pest of corn and other grasses, by performing an experimental manipulation of temperature, predators, and two common aphid-tending ants. Although warming had a positive direct effect on aphid population growth rate, warming reduced aphid abundance when ants and predators were present. This occurred because winter ants, which aggressively defend aphids from predators under control temperatures, were less aggressive toward predators and less abundant when temperatures were increased. In contrast, warming increased the abundance of cornfield ants, but they did not protect aphids from predators with the same vigor as winter ants. Thus, warming broke down the ant-aphid mutualism and counterintuitively reduced the abundance of this agricultural pest.

  9. Olfactory memory established during trophallaxis affects food search behaviour in ants.

    PubMed

    Provecho, Yael; Josens, Roxana

    2009-10-01

    Camponotus mus ants can associate sucrose and odour at the source during successive foraging cycles and use this memory to locate the nectar in the absence of other cues. These ants perform conspicuous trophallactic behaviour during recruitment while foraging for nectar. In this work, we studied whether Camponotus mus ants are able to establish this odour-sucrose association in the social context of trophallaxis and we evaluated this memory in another context previously experienced by the ant, as a nectar source. After a single trophallaxis of a scented solution, the receiver ant was tested in a Y-maze without any reward, where two scents were presented: in one arm, the solution scent and in the other, a new scent. Ants consistently chose the arm with the solution scent and stayed longer therein. Trophallaxis duration had no effect on the arm choice or with the time spent in each arm. Workers are able to associate an odour (conditioned stimulus) with the sucrose (unconditioned stimulus) they receive through a social interaction and use this memory as choice criteria during food searching.

  10. Repeated evolution of fungal cultivar specificity in independently evolved ant-plant-fungus symbioses.

    PubMed

    Blatrix, Rumsaïs; Debaud, Sarah; Salas-Lopez, Alex; Born, Céline; Benoit, Laure; McKey, Doyle B; Attéké, Christiane; Djiéto-Lordon, Champlain

    2013-01-01

    Some tropical plant species possess hollow structures (domatia) occupied by ants that protect the plant and in some cases also provide it with nutrients. Most plant-ants tend patches of chaetothyrialean fungi within domatia. In a few systems it has been shown that the ants manure the fungal patches and use them as a food source, indicating agricultural practices. However, the identity of these fungi has been investigated only in a few samples. To examine the specificity and constancy of ant-plant-fungus interactions we characterised the content of fungal patches in an extensive sampling of three ant-plant symbioses (Petalomyrmex phylax/Leonardoxa africana subsp. africana, Aphomomyrmex afer/Leonardoxa africana subsp. letouzeyi and Tetraponera aethiops/Barteria fistulosa) by sequencing the Internal Transcribed Spacers of ribosomal DNA. For each system the content of fungal patches was constant over individuals and populations. Each symbiosis was associated with a specific, dominant, primary fungal taxon, and to a lesser extent, with one or two specific secondary taxa, all of the order Chaetothyriales. A single fungal patch sometimes contained both a primary and a secondary taxon. In one system, two founding queens were found with the primary fungal taxon only, one that was shown in a previous study to be consumed preferentially. Because the different ant-plant symbioses studied have evolved independently, the high specificity and constancy we observed in the composition of the fungal patches have evolved repeatedly. Specificity and constancy also characterize other cases of agriculture by insects.

  11. Geographic mosaic of plant evolution: extrafloral nectary variation mediated by ant and herbivore assemblages.

    PubMed

    Nogueira, Anselmo; Rey, Pedro J; Alcántara, Julio M; Feitosa, Rodrigo M; Lohmann, Lúcia G

    2015-01-01

    and highly detrimental herbivores. Our findings provide insights on the ecology and evolution of plant-ant guarding systems, and suggest new directions to research on facultative mutualistic interactions at wide geographic scales.

  12. Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources.

    PubMed

    Sala, Marco; Casacci, Luca Pietro; Balletto, Emilio; Bonelli, Simona; Barbero, Francesca

    2014-01-01

    About 10,000 arthropods live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea "predatory species" directly feed on the ant larvae, while those of "cuckoo species" are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony's hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens' than to workers' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry.

  13. Caterpillars and Fungal Pathogens: Two Co-Occurring Parasites of an Ant-Plant Mutualism

    PubMed Central

    Roux, Olivier; Céréghino, Régis; Solano, Pascal J.; Dejean, Alain

    2011-01-01

    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth. PMID:21655182

  14. Variation in Butterfly Larval Acoustics as a Strategy to Infiltrate and Exploit Host Ant Colony Resources

    PubMed Central

    Sala, Marco; Casacci, Luca Pietro; Balletto, Emilio; Bonelli, Simona; Barbero, Francesca

    2014-01-01

    About 10,000 arthropods live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Many of them can intercept and manipulate their host communication systems. This is particularly important for butterflies of the genus Maculinea, which spend the majority of their lifecycle inside Myrmica ant nests. Once in the colony, caterpillars of Maculinea “predatory species” directly feed on the ant larvae, while those of “cuckoo species” are fed primarily by attendance workers, by trophallaxis. It has been shown that Maculinea cuckoo larvae are able to reach a higher social status within the colony's hierarchy by mimicking the acoustic signals of their host queen ants. In this research we tested if, when and how myrmecophilous butterflies may change sound emissions depending on their integration level and on stages of their life cycle. We studied how a Maculinea predatory species (M. teleius) can acoustically interact with their host ants and highlighted differences with respect to a cuckoo species (M. alcon). We recorded sounds emitted by Maculinea larvae as well as by their Myrmica hosts, and performed playback experiments to assess the parasites' capacity to interfere with the host acoustic communication system. We found that, although varying between and within butterfly species, the larval acoustic emissions are more similar to queens' than to workers' stridulations. Nevertheless playback experiments showed that ant workers responded most strongly to the sounds emitted by the integrated (i.e. post-adoption) larvae of the cuckoo species, as well as by those of predatory species recorded before any contact with the host ants (i.e. in pre-adoption), thereby revealing the role of acoustic signals both in parasite integration and in adoption rituals. We discuss our findings in the broader context of parasite adaptations, comparing effects of acoustical and chemical mimicry. PMID:24718496

  15. Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism.

    PubMed

    Roux, Olivier; Céréghino, Régis; Solano, Pascal J; Dejean, Alain

    2011-01-01

    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth.

  16. Molecular evolutionary analyses of insect societies.

    PubMed

    Fischman, Brielle J; Woodard, S Hollis; Robinson, Gene E

    2011-06-28

    The social insects live in extraordinarily complex and cohesive societies, where many individuals sacrifice their personal reproduction to become helpers in the colony. Identifying adaptive molecular changes involved in eusocial evolution in insects is important for understanding the mechanisms underlying transitions from solitary to social living, as well as the maintenance and elaboration of social life. Here, we review recent advances made in this area of research in several insect groups: the ants, bees, wasps, and termites. Drawing from whole-genome comparisons, candidate gene approaches, and a genome-scale comparative analysis of protein-coding sequence, we highlight novel insights gained for five major biological processes: chemical signaling, brain development and function, immunity, reproduction, and metabolism and nutrition. Lastly, we make comparisons across these diverse approaches and social insect lineages and discuss potential common themes of eusocial evolution, as well as challenges and prospects for future research in the field.

  17. Molecular evolutionary analyses of insect societies

    PubMed Central

    Fischman, Brielle J.; Woodard, S. Hollis; Robinson, Gene E.

    2011-01-01

    The social insects live in extraordinarily complex and cohesive societies, where many individuals sacrifice their personal reproduction to become helpers in the colony. Identifying adaptive molecular changes involved in eusocial evolution in insects is important for understanding the mechanisms underlying transitions from solitary to social living, as well as the maintenance and elaboration of social life. Here, we review recent advances made in this area of research in several insect groups: the ants, bees, wasps, and termites. Drawing from whole-genome comparisons, candidate gene approaches, and a genome-scale comparative analysis of protein-coding sequence, we highlight novel insights gained for five major biological processes: chemical signaling, brain development and function, immunity, reproduction, and metabolism and nutrition. Lastly, we make comparisons across these diverse approaches and social insect lineages and discuss potential common themes of eusocial evolution, as well as challenges and prospects for future research in the field. PMID:21690385

  18. Positive effects of shade and shelter construction by ants on leafhopper-ant mutualism.

    PubMed

    Moya-Raygoza, Gustavo; Larsen, Kirk J

    2008-12-01

    The myrmecophilous five-spotted gamagrass leafhopper, Dalbulus quinquenotatus DeLong and Nault, and its tending ants on gamagrass Tripsacum dactyloides L. were examined to determine the influence of shade and ant-constructed shelters on the population sizes of D. quinquenotatus and ants. Gamagrass plants hosting ants and leafhoppers were exposed to 50, 30, or 0% artificially constructed shade. The greatest numbers of leafhoppers and ants were found on plants that received 50% shade. Shelters made by the ant Solenopsis geminata (F.) contained large numbers of leafhoppers and ants but were found only on T. dactyloides exposed to 50% shade in artificially constructed habitats. Additional sampling was conducted on wild gamagrass plants in the field to explore the presence of ants tending leafhoppers in shelters and to evaluate whether ant-constructed shelters protect leafhopper nymphs from parasitoid wasps. Large aggregations of S. geminata in shelters were also found in natural gamagrass habitats. Leafhopper nymphs living in shelters made by S. geminata may be protected against the dryinid wasp parasitoid Anteon ciudadi Olmi. No sheltered nymphs were parasitized by dryinids, whereas 24% of unsheltered nymphs had dryinid parasitism.

  19. Exploration adjustment by ant colonies

    PubMed Central

    2016-01-01

    How do animals in groups organize their work? Division of labour, i.e. the process by which individuals within a group choose which tasks to perform, has been extensively studied in social insects. Variability among individuals within a colony seems to underpin both the decision over which tasks to perform and the amount of effort to invest in a task. Studies have focused mainly on discrete tasks, i.e. tasks with a recognizable end. Here, we study the distribution of effort in nest seeking, in the absence of new nest sites. Hence, this task is open-ended and individuals have to decide when to stop searching, even though the task has not been completed. We show that collective search effort declines when colonies inhabit better homes, as a consequence of a reduction in the number of bouts (exploratory events). Furthermore, we show an increase in bout exploration time and a decrease in bout instantaneous speed for colonies inhabiting better homes. The effect of treatment on bout effort is very small; however, we suggest that the organization of work performed within nest searching is achieved both by a process of self-selection of the most hard-working ants and individual effort adjustment. PMID:26909180

  20. Tight knit under stress: colony resilience to the loss of tandem leaders during relocation in an Indian ant

    PubMed Central

    Kolay, Swetashree; Annagiri, Sumana

    2015-01-01

    The movement of colonies from one nest to another is a frequent event in the lives of many social insects and is important for their survival and propagation. This goal-oriented task is accomplished by means of tandem running in some ant species, such as Diacamma indicum. Tandem leaders are central to this process as they know the location of the new nest and lead colony members to it. Relocations involving targeted removal of leaders were compared with unmanipulated and random member removal relocations. Behavioural observations were integrated with network analysis to examine the differences in the pattern of task organization at the level of individuals and that of the colony. All colonies completed relocation successfully and leaders who substituted the removed tandem leaders conducted the task at a similar rate having redistributed the task in a less skewed manner. In terms of network structure, this resilience was due to significantly higher density and outcloseness indicating increased interaction between substitute leaders. By contrast, leader–follower interactions and random removal networks showed no discernible changes. Similar explorations of other goal-oriented tasks in other societies will possibly unveil new facets in the interplay between individuals that enable the group to respond effectively to stress. PMID:26473038

  1. Tight knit under stress: colony resilience to the loss of tandem leaders during relocation in an Indian ant.

    PubMed

    Kolay, Swetashree; Annagiri, Sumana

    2015-09-01

    The movement of colonies from one nest to another is a frequent event in the lives of many social insects and is important for their survival and propagation. This goal-oriented task is accomplished by means of tandem running in some ant species, such as Diacamma indicum. Tandem leaders are central to this process as they know the location of the new nest and lead colony members to it. Relocations involving targeted removal of leaders were compared with unmanipulated and random member removal relocations. Behavioural observations were integrated with network analysis to examine the differences in the pattern of task organization at the level of individuals and that of the colony. All colonies completed relocation successfully and leaders who substituted the removed tandem leaders conducted the task at a similar rate having redistributed the task in a less skewed manner. In terms of network structure, this resilience was due to significantly higher density and outcloseness indicating increased interaction between substitute leaders. By contrast, leader-follower interactions and random removal networks showed no discernible changes. Similar explorations of other goal-oriented tasks in other societies will possibly unveil new facets in the interplay between individuals that enable the group to respond effectively to stress.

  2. Evidence that insect herbivores are deterred by ant pheromones.

    PubMed Central

    Offenberg, Joachim; Nielsen, Mogens Gissel; MacIntosh, Donald J; Havanon, Sopon; Aksornkoae, Sanit

    2004-01-01

    It is well documented that ants can protect plants against insect herbivores, but the underlying mechanisms remain almost undocumented. We propose and test the pheromone avoidance hypothesis--an indirect mechanism where insect herbivores are repelled not only by ants but also by ant pheromones. Herbivores subjected to ant predation will experience a selective advantage if they evolve mechanisms enabling them to avoid feeding within ant territories. Such a mechanism could be based on the ability to detect and evade ant pheromones. Field observations and data from the literature showed that the ant Oecophylla smaragdina distributes persistent pheromones throughout its territory. In addition, a laboratory test showed that the beetle Rhyparida wallacei, which this ant preys on, was reluctant to feed on leaves sampled within ant territories compared with leaves sampled outside territories. Thus, this study provides an example of an ant-herbivore system conforming to the pheromone avoidance hypothesis. PMID:15801596

  3. Thank you, Royal Society

    NASA Astrophysics Data System (ADS)

    Toumey, Chris

    2015-04-01

    More than a decade after it was first published, Chris Toumey revisits a report from the Royal Society on the opportunities and uncertainties of nanotechnology, and finds that it still has plenty to offer.

  4. American Headache Society

    MedlinePlus

    ... NEWS VIEW ALL NEWS FIRST ANNUAL “MIGRAINE MOMENT” FILM CONTEST WINNERS The American Headache Society and American ... RT @mrobbinsmd : A7 See the recent @amfmigraine #MigraineMoment film competition & stories like @brainstorm83 to understand the gravity & ...

  5. American Epilepsy Society

    MedlinePlus

    ... Epilepsy Society CLINICAL RESOURCES FAQs GUIDELINES IOM EPILEPSY MEDICAL MARIJUANA SUDEP SURGERY DEVICES GENETICS TREATMENTS Drug Alerts and ... RESOURCES Navigation CLINICAL RESOURCES FAQs GUIDELINES IOM EPILEPSY MEDICAL MARIJUANA SUDEP SURGERY DEVICES GENETICS TREATMENTS Drug Alerts and ...

  6. North American Menopause Society

    MedlinePlus

    ... Advertisements NAMS in the News Press Room Assistance Society Overview Top 10 reasons why NAMS is your ... fully updated and referenced 5th edition of the Society’s leading professional resource, featuring the latest comprehensive clinical ...

  7. Society of Interventional Radiology

    MedlinePlus

    ... decoded SIR’s Health Policy and Economics team provides information on the varied activities the society engages in to ensure proper coding of interventional radiology services. SIR is committed to assisting you, your institution ...

  8. Radiation and Society

    ERIC Educational Resources Information Center

    Shaw, Edward I.

    1974-01-01

    Presents a discussion of the risks, to society, from radiation-associated technologies and urges that science teachers help the public understand the decision-making process relative to nuclear power as well as the problems and alternatives. (PEB)

  9. Consumption in the Information Society

    ERIC Educational Resources Information Center

    Zherebin, V. M.; Ermakova, N. A.; Makhrova, O. N.

    2010-01-01

    The current state of the economy in the developed countries make it possible to characterize them using concepts and terms such as the postindustrial society, the new economy, the service economy, the creative economy, the posteconomic society, the information society, the knowledge society, and the consumer society. Among these terms and…

  10. Toxic industrial deposit remediation by ant activity

    NASA Astrophysics Data System (ADS)

    Jilkova, Veronika; Frouz, Jan

    2016-04-01

    Toxic industrial deposits are often contaminated by heavy metals and the substrates have low pH values. In such systems, soil development is thus slowed down by high toxicity and acidic conditions which are unfavourable to soil fauna. Ants (Hymenoptera, Formicidae) are considered tolerant to heavy metal pollution and are known to increase organic matter content and microbial activity in their nests. Here, we focused on soil remediation caused by three ant species (Formica sanguinea, Lasius niger, and Tetramorium sp.) in an ore-washery sedimentation basin near Chvaletice (Czech Republic). Soil samples were taken from the centre of ant nests and from the nest surroundings (>3 m from nests). Samples were then analyzed for microbial activity and biomass and contents of organic matter and nutrients. As a result, ant species that most influenced soil properties was F. sanguinea as there were higher microbial activity and total nitrogen and ammonia contents in ant nests than in the surrounding soil. We expected such a result because F. sanguinea builds conspicuous large nests and is a carnivorous species that brings substantial amounts of nitrogen in insect prey to their nests. Effects of the other two ant species might be lower because of smaller nests and different feeding habits as they rely mainly on honeydew from aphids or on plant seeds that do not contain much nutrients.

  11. Antarctic Tephra Database (AntT)

    NASA Astrophysics Data System (ADS)

    Kurbatov, A.; Dunbar, N. W.; Iverson, N. A.; Gerbi, C. C.; Yates, M. G.; Kalteyer, D.; McIntosh, W. C.

    2014-12-01

    Modern paleoclimate research is heavily dependent on establishing accurate timing related to rapid shifts in Earth's climate system. The ability to correlate these events at local, and ideally at the intercontinental scales, allows assessment, for example, of phasing or changes in atmospheric circulation. Tephra-producing volcanic eruptions are geologically instantaneous events that are largely independent of climate. We have developed a tephrochronological framework for paleoclimate research in Antarctic in a user friendly, freely accessible online Antarctic tephra (AntT) database (http://cci.um.maine.edu/AntT/). Information about volcanic events, including physical and geochemical characteristics of volcanic products collected from multiple data sources, are integrated into the AntT database.The AntT project establishes a new centralized data repository for Antarctic tephrochronology, which is needed for precise correlation of records between Antarctic ice cores (e.g. WAIS Divide, RICE, Talos Dome, ITASE) and global paleoclimate archives. The AntT will help climatologists, paleoclimatologists, atmospheric chemists, geochemists, climate modelers synchronize paleoclimate archives using volcanic products that establishing timing of climate events in different geographic areas, climate-forcing mechanisms, natural threshold levels in the climate system. All these disciplines will benefit from accurate reconstructions of the temporal and spatial distribution of past rapid climate change events in continental, atmospheric, marine and polar realms. Research is funded by NSF grants: ANT-1142007 and 1142069.

  12. The macroevolutionary dynamics of ant diversification.

    PubMed

    Pie, Marcio R; Tschá, Marcel K

    2009-11-01

    The availability of increasingly comprehensive phylogenies has provided unprecedented opportunities to assess macroevolutionary patterns, yet studies on invertebrate diversification are few. In particular, despite the ecological and evolutionary importance of ants, little is known about their tempo and mode of diversification. Recent advances in ant phylogenetics can now provide a basis for rigorous analyses of the diversification of ant lineages. The goals of the present study are threefold. First, we demonstrate that a hypothesized disproportionate increase in ant diversification during the angiosperm radiation is largely artifactual. Rather, current evidence points to a fairly constant rate of lineage growth during its history. Moreover, an analysis of diversification patterns across the ant phylogeny indicates considerable rate heterogeneity among lineages. Indeed, and contrary to the expectation if lineages had experienced a single rate of lineage increase, we found no correspondence between genus age and diversity. Finally, we demonstrate a statistically significant phylogenetic signal in ant diversification: closely related genera have diversities that are more similar to one another than one would expect by chance. This suggests that the capacity for diversification may be itself a biological trait that evolved during the radiation of the family Formicidae.

  13. Microfungal "weeds" in the leafcutter ant symbiosis.

    PubMed

    Rodrigues, A; Bacci, M; Mueller, U G; Ortiz, A; Pagnocca, F C

    2008-11-01

    Leafcutter ants (Formicidae: tribe Attini) are well-known insects that cultivate basidiomycete fungi (Agaricales: Lepiotaceae) as their principal food. Fungus gardens are monocultures of a single cultivar strain, but they also harbor a diverse assemblage of additional microbes with largely unknown roles in the symbiosis. Cultivar-attacking microfungi in the genus Escovopsis are specialized parasites found only in association with attine gardens. Evolutionary theory predicts that the low genetic diversity in monocultures should render ant gardens susceptible to a wide range of diseases, and additional parasites with roles similar to that of Escovopsis are expected to exist. We profiled the diversity of cultivable microfungi found in 37 nests from ten Acromyrmex species from Southern Brazil and compared this diversity to published surveys. Our study revealed a total of 85 microfungal strains. Fusarium oxysporum and Escovopsis were the predominant species in the surveyed gardens, infecting 40.5% and 27% of the nests, respectively. No specific relationship existed regarding microfungal species and ant-host species, ant substrate preference (dicot versus grass) or nesting habit. Molecular data indicated high genetic diversity among Escovopsis isolates. In contrast to the garden parasite, F. oxysporum strains are not specific parasites of the cultivated fungus because strains isolated from attine gardens have similar counterparts found in the environment. Overall, the survey indicates that saprophytic microfungi are prevalent in South American leafcutter ants. We discuss the antagonistic potential of these microorganisms as "weeds" in the ant-fungus symbiosis.

  14. Functional role of phenylacetic acid from metapleural gland secretions in controlling fungal pathogens in evolutionarily derived leaf-cutting ants.

    PubMed

    Fernández-Marín, Hermógenes; Nash, David R; Higginbotham, Sarah; Estrada, Catalina; van Zweden, Jelle S; d'Ettorre, Patrizia; Wcislo, William T; Boomsma, Jacobus J

    2015-05-22

    Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens.

  15. Functional role of phenylacetic acid from metapleural gland secretions in controlling fungal pathogens in evolutionarily derived leaf-cutting ants

    PubMed Central

    Fernández-Marín, Hermógenes; Nash, David R.; Higginbotham, Sarah; Estrada, Catalina; van Zweden, Jelle S.; d'Ettorre, Patrizia; Wcislo, William T.; Boomsma, Jacobus J.

    2015-01-01

    Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens. PMID:25925100

  16. Extrafloral-nectar-based partner manipulation in plant–ant relationships

    PubMed Central

    Grasso, D. A.; Pandolfi, C.; Bazihizina, N.; Nocentini, D.; Nepi, M.; Mancuso, S.

    2015-01-01

    Plant–ant interactions are generally considered as mutualisms, with both parties gaining benefits from the association. It has recently emerged that some of these mutualistic associations have, however, evolved towards other forms of relationships and, in particular, that plants may manipulate their partner ants to make reciprocation more beneficial, thereby stabilizing the mutualism. Focusing on plants bearing extrafloral nectaries, we review recent studies and address three key questions: (i) how can plants attract potential partners and maintain their services; (ii) are there compounds in extrafloral nectar that could mediate partner manipulation; and (iii) are ants susceptible to such compounds? After reviewing the current knowledge on plant–ant associations, we propose a possible scenario where plant-derived chemicals, such as secondary metabolites, known to have an impact on animal brain, could have evolved in plants to attract and manipulate ant behaviour. This new viewpoint would place plant–animal interaction in a different ecological context, opening new ecological and neurobiological perspectives of drug seeking and use. PMID:25589521

  17. Presence of multiparasite infections within individual colonies of leaf-cutter ants.

    PubMed

    Taerum, S J; Cafaro, M J; Currie, C R

    2010-02-01

    Host-parasite dynamics can be altered when a host is infected by multiple parasite genotypes. The different strains of parasite are expected to compete for the limited host resources, potentially affecting the survival and reproduction of the host as well as the infecting parasites. Fungus-growing ants, including the well-known leaf-cutters, are an emerging model system for studying the evolution and ecology of symbiosis and host-parasite dynamics. We examine whether the fungus gardens of leaf-cutter ants can be simultaneously infected by multiple strains of the fungal pathogen Escovopsis. Intensive sampling of Escovopsis was conducted from individual gardens, as well as between different garden chambers within individual colonies of leaf-cutting ants. Isolates obtained were genotyped by DNA sequencing. We found that, minimally, 67% of the individual colonies of the leaf-cutter ant genera Atta and Acromyrmex and 50% of the At. colombica garden chambers studied were simultaneously infected by multiple distinct Escovopsis strains. Experimental challenges showed that different Escovopsis strains do not exhibit obvious antagonism toward each other, suggesting that coinfecting strains of the parasite do not engage in interference competition, although interactions were not studied at the cellular level. Further research is needed to understand interparasite interactions between coinfecting Escovopsis strains and to understand the impact of multiparasite infections on the survival of leaf-cutter ant gardens.

  18. Nest architecture shapes the collective behaviour of harvester ants.

    PubMed

    Pinter-Wollman, Noa

    2015-10-01

    Structures influence how individuals interact and, therefore, shape the collective behaviours that emerge from these interactions. Here I show that the structure of a nest influences the collective behaviour of harvester ant colonies. Using network analysis, I quantify nest architecture and find that as chamber connectivity and redundancy of connections among chambers increase, so does a colony's speed of recruitment to food. Interestingly, the volume of the chambers did not influence speed of recruitment, suggesting that the spatial organization of a nest has a greater impact on collective behaviour than the number of workers it can hold. Thus, by changing spatial constraints on social interactions organisms can modify their behaviour and impact their fitness.

  19. Nest architecture shapes the collective behaviour of harvester ants

    PubMed Central

    Pinter-Wollman, Noa

    2015-01-01

    Structures influence how individuals interact and, therefore, shape the collective behaviours that emerge from these interactions. Here I show that the structure of a nest influences the collective behaviour of harvester ant colonies. Using network analysis, I quantify nest architecture and find that as chamber connectivity and redundancy of connections among chambers increase, so does a colony's speed of recruitment to food. Interestingly, the volume of the chambers did not influence speed of recruitment, suggesting that the spatial organization of a nest has a greater impact on collective behaviour than the number of workers it can hold. Thus, by changing spatial constraints on social interactions organisms can modify their behaviour and impact their fitness. PMID:26490416

  20. The ant's estimation of distance travelled: experiments with desert ants, Cataglyphis fortis.

    PubMed

    Sommer, S; Wehner, R

    2004-01-01

    Foraging desert ants, Cataglyphis fortis, monitor their position relative to the nest by path integration. They continually update the direction and distance to the nest by employing a celestial compass and an odometer. In the present account we addressed the question of how the precision of the ant's estimate of its homing distance depends on the distance travelled. We trained ants to forage at different distances in linear channels comprising a nest entrance and a feeder. For testing we caught ants at the feeder and released them in a parallel channel. The results show that ants tend to underestimate their distances travelled. This underestimation is the more pronounced, the larger the foraging distance gets. The quantitative relationship between training distance and the ant's estimate of this distance can be described by a logarithmic and an exponential model. The ant's odometric undershooting could be adaptive during natural foraging trips insofar as it leads the homing ant to concentrate the major part of its nest-search behaviour on the base of its individual foraging sector, i.e. on its familiar landmark corridor.

  1. The descent of ant: field-measured performance of gliding ants.

    PubMed

    Munk, Yonatan; Yanoviak, Stephen P; Koehl, M A R; Dudley, Robert

    2015-05-01

    Gliding ants avoid predatory attacks and potentially mortal consequences of dislodgement from rainforest canopy substrates by directing their aerial descent towards nearby tree trunks. The ecologically relevant measure of performance for gliding ants is the ratio of net horizontal to vertical distance traveled over the course of a gliding trajectory, or glide index. To study variation in glide index, we measured three-dimensional trajectories of Cephalotes atratus ants gliding in natural rainforest habitats. We determined that righting phase duration, glide angle, and path directness all significantly influence variation in glide index. Unsuccessful landing attempts result in the ant bouncing off its target and being forced to make a second landing attempt. Our results indicate that ants are not passive gliders and that they exert active control over the aerodynamic forces they experience during their descent, despite their apparent lack of specialized control surfaces.

  2. Ant colony optimization algorithm for continuous domains based on position distribution model of ant colony foraging.

    PubMed

    Liu, Liqiang; Dai, Yuntao; Gao, Jinyu

    2014-01-01

    Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm. In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules of ant colony position, and the processing method of constraint condition. Algorithm performance against a set of test trials was unconstrained optimization test functions and a set of optimization test functions, and test results of other algorithms are compared and analyzed to verify the correctness and effectiveness of the proposed algorithm.

  3. Argentine ants (Linepithema humile) use adaptable transportation networks to track changes in resource quality.

    PubMed

    Latty, Tanya; Holmes, Michael J; Makinson, James C; Beekman, Madeleine

    2017-02-15

    Transportation networks play a crucial role in human and animal societies. For a transportation network to be efficient, it must have adequate capacity to meet traffic demand. Network design becomes increasingly difficult in situations where traffic demand can change unexpectedly. In humans, network design is often constrained by path dependency because it is difficult to move a road once it is built. A similar issue theoretically faces pheromone-trail-laying social insects; once a trail has been laid, positive feedback makes re-routing difficult because new trails cannot compete with continually reinforced pre-existing trails. In the present study, we examined the response of Argentine ant colonies and their trail networks to variable environments where resources differ in quality and change unexpectedly. We found that Argentine ant colonies effectively tracked changes in food quality such that colonies allocated the highest proportion of foragers to the most rewarding feeder. Ant colonies maximised access to high concentration feeders by building additional trails and routes connecting the nest to the feeder. Trail networks appeared to form via a pruning process in which lower traffic trails were gradually removed from the network. At the same time, we observed several instances where new trails appear to have been built to accommodate a surge in demand. The combination of trail building when traffic demand is high and trail pruning when traffic demand is low results in a demand-driven network formation system that allows ants to monopolise multiple dynamic resources.

  4. Advanced information society(2)

    NASA Astrophysics Data System (ADS)

    Masuyama, Keiichi

    Our modern life is full of information and information infiltrates into our daily life. Networking of the telecommunication is extended to society, company, and individual level. Although we have just entered the advanced information society, business world and our daily life have been steadily transformed by the advancement of information network. This advancement of information brings a big influence on economy, and will play they the main role in the expansion of domestic demands. This paper tries to view the image of coming advanced information society, focusing on the transforming businessman's life and the situation of our daily life, which became wealthy by the spread of daily life information and the visual information by satellite system, in the development of the intelligent city.

  5. Impacts of residual insecticide barriers on perimeter-invading ants, with particular reference to the odorous house ant, Tapinoma sessile.

    PubMed

    Scharf, Michael E; Ratliff, Catina R; Bennett, Gary W

    2004-04-01

    Three liquid insecticide formulations were evaluated as barrier treatments against perimeter-invading ants at a multifamily housing complex in West Lafayette, IN. Several ant species were present at the study site, including (in order of abundance) pavement ant, Tetramorium caespitum (L.); honey ant, Prenolepis imparis (Say); odorous house ant, Tapinoma sessile (Say); thief ant, Solenopsis molesta (Say); acrobat ant, Crematogaster ashmeadi (Mayr); crazy ant, Paratrechina longicornis (Latrielle), field ants, Formica spp.; and carpenter ant Camponotus pennsylvanicus (DeGeer). Studies began in May 2001 and concluded 8 wk later in July. Individual replicate treatments were placed 0.61 in (2 feet) up and 0.92 m (3 feet) out from the ends of 46.1 by 10.1-m (151 by 33-foot) apartment buildings. Ant sampling was performed with 10 placements of moist cat food for 1 h within treatment zones, followed by capture and removal of recruited ants for later counting. All treatments led to substantial reductions in ant numbers relative to untreated controls. The most effective treatment was fipronil, where 2% of before-treatment ant numbers were present at 8 wk after treatment. Both imidacloprid and cyfluthrin barrier treatments had efficacy comparative with fipronil, but to 4 and 2 wk, respectively. Odorous house ants were not sampled before treatment. Comparisons of ant species composition between treatments and controls revealed an increase in odorous house ant frequencies at 1-8 wk after treatment in treated locations only. These results demonstrate efficacy for both nonrepellent and repellent liquid insecticides as perimeter treatments for pest ants. In addition, our findings with odorous house ant highlight an apparent invasive-like characteristic of this species that may contribute to its dramatic increase in structural infestation rates in many areas of the United States.

  6. Statistical Mechanics of Collective Transport by Ants

    NASA Astrophysics Data System (ADS)

    Pinkoviezky, Itai; Gelblum, Aviram; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer

    Collective decisions and cooperation within groups are essential for the survival of many species. Conflicts within the group must be suppressed but conformism may render the system unresponsive to new information. Collective transport by ants is therefore an ideal model system to study how animal groups optimize these opposing requirements. We combine experiments and theory to characterize the collective transport. The ants are modeled as binary Ising spins, representing the two roles ants can perform during transport. It turns out that the ants poise themselves collectively near a critical point where the response to a newly attached ant is maximized. We identify the size as being proportional to an inverse effective temperature and thus the system can exhibit a mesoscopic transition between order and disorder by manipulating the size. Constraining the cargo with a string makes the system behave as a strongly non-linear pendulum. Theoretically we predict that a Hopf bifurcation occurs at a critical size followed by a global bifurcation where full swings emerge. Remarkably, these theoretical predictions were verified experimentally.

  7. Early ant trajectories: spatial behaviour before behaviourism.

    PubMed

    Wehner, Rüdiger

    2016-04-01

    In the beginning of the twentieth century, when Jacques Loeb's and John Watson's mechanistic view of life started to dominate animal physiology and behavioural biology, several scientists with different academic backgrounds got engaged in studying the wayfinding behaviour of ants. Largely unaffected by the scientific spirit of the time, they worked independently of each other in different countries: in Algeria, Tunisia, Spain, Switzerland and the United States of America. In the current literature on spatial cognition these early ant researchers--Victor Cornetz, Felix Santschi, Charles Turner and Rudolf Brun--are barely mentioned. Moreover, it is virtually unknown that the great neuroanatomist Santiago Ramón y Cajal had also worked on spatial orientation in ants. This general neglect is certainly due to the fact that nearly all these ant researchers were scientific loners, who did their idiosyncratic investigations outside the realm of comparative physiology, neurobiology and the behavioural sciences of the time, and published their results in French, German, and Spanish at rather inaccessible places. Even though one might argue that much of their work resulted in mainly anecdotal evidence, the conceptual approaches of these early ant researchers preempt much of the present-day discussions on spatial representation in animals.

  8. Society's expectations of health

    PubMed Central

    Leach, Edmund

    1975-01-01

    Sir Edmund Leach argues that doctors in the modern world, fortified by the traditional concept that the life of the sick person must at all costs be preserved, are to some extent guilty of the false antitheses current today between youth and age. Moreover youth means health, age illness and senility. Until this imbalance is corrected society will be in danger of `a kind of civil war between the generations'. Society must be taught again that mortality cannot be avoided or conquered by medical science, and at the same time that `health' is not enshrined in the young alone. PMID:1177271

  9. Advanced information society(7)

    NASA Astrophysics Data System (ADS)

    Chiba, Toshihiro

    Various threats are hiding in advanced informationalized society. As we see car accident problems in motorization society light aspects necessarily accompy shady ones. Under the changing circumstances of advanced informationalization added values of information has become much higher. It causes computer crime, hacker, computer virus to come to the surface. In addition it can be said that infringement of intellectual property and privacy are threats brought by advanced information. Against these threats legal, institutional and insurance measures have been progressed, and newly security industry has been established. However, they are not adequate individually or totally. The future vision should be clarified, and countermeasures according to the visions have to be considered.

  10. Predicting future coexistence in a North American ant community

    PubMed Central

    Bewick, Sharon; Stuble, Katharine L; Lessard, Jean-Phillipe; Dunn, Robert R; Adler, Frederick R; Sanders, Nathan J

    2014-01-01

    Global climate change will remodel ecological communities worldwide. However, as a consequence of biotic interactions, communities may respond to climate change in idiosyncratic ways. This makes predictive models that incorporate biotic interactions necessary. We show how such models can be constructed based on empirical studies in combination with predictions or assumptions regarding the abiotic consequences of climate change. Specifically, we consider a well-studied ant community in North America. First, we use historical data to parameterize a basic model for species coexistence. Using this model, we determine the importance of various factors, including thermal niches, food discovery rates, and food removal rates, to historical species coexistence. We then extend the model to predict how the community will restructure in response to several climate-related changes, such as increased temperature, shifts in species phenology, and altered resource availability. Interestingly, our mechanistic model suggests that increased temperature and shifts in species phenology can have contrasting effects. Nevertheless, for almost all scenarios considered, we find that the most subordinate ant species suffers most as a result of climate change. More generally, our analysis shows that community composition can respond to climate warming in nonintuitive ways. For example, in the context of a community, it is not necessarily the most heat-sensitive species that are most at risk. Our results demonstrate how models that account for niche partitioning and interspecific trade-offs among species can be used to predict the likely idiosyncratic responses of local communities to climate change. PMID:24963378

  11. Geographic Mosaic of Plant Evolution: Extrafloral Nectary Variation Mediated by Ant and Herbivore Assemblages

    PubMed Central

    Nogueira, Anselmo; Rey, Pedro J.; Alcántara, Julio M.; Feitosa, Rodrigo M.; Lohmann, Lúcia G.

    2015-01-01

    and highly detrimental herbivores. Our findings provide insights on the ecology and evolution of plant–ant guarding systems, and suggest new directions to research on facultative mutualistic interactions at wide geographic scales. PMID:25885221

  12. Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles.

    PubMed

    von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J C

    2016-02-01

    Army ants and their arthropod symbionts represent one of the most species-rich animal associations on Earth, and constitute a fascinating example of diverse host-symbiont interaction networks. However, despite decades of research, our knowledge of army ant symbionts remains fragmentary due to taxonomic ambiguity and the inability to study army ants in the laboratory. Here, we present an integrative approach that allows us to reliably determine species boundaries, assess biodiversity, match different developmental stages and sexes, and to study the life cycles of army ant symbionts. This approach is based on a combination of community sampling, DNA barcoding, morphology and physiology. As a test case, we applied this approach to the staphylinid beetle genus Vatesus and its different Eciton army ant host species at La Selva Biological Station, Costa Rica. DNA barcoding led to the discovery of cryptic biodiversity and, in combination with extensive community sampling, revealed strict host partitioning with no overlap in host range. Using DNA barcoding, we were also able to match the larval stages of all focal Vatesus species. In combination with studies of female reproductive physiology, this allowed us to reconstruct almost the complete life cycles of the different beetle species. We show that Vatesus beetles are highly adapted to the symbiosis with army ants, in that their reproduction and larval development are synchronized with the stereotypical reproductive and behavioural cycles of their host colonies. Our approach can now be used to study army ant-symbiont communities more broadly, and to obtain novel insights into co-evolutionary and ecological dynamics in species-rich host-symbiont systems.

  13. Symbiotic bacterial communities in ants are modified by invasion pathway bottlenecks and alter host behavior.

    PubMed

    Lester, Philip J; Sébastien, Alexandra; Suarez, Andrew V; Barbieri, Rafael F; Gruber, Monica A M

    2017-03-01

    Biological invasions are a threat to global biodiversity and provide unique opportunities to study ecological processes. Population bottlenecks are a common feature of biological invasions and the severity of these bottlenecks is likely to be compounded as an invasive species spreads from initial invasion sites to additional locations. Despite extensive work on the genetic consequences of bottlenecks, we know little about how they influence microbial communities of the invaders themselves. Due to serial bottlenecks, invasive species may lose microbial symbionts including pathogenic taxa (the enemy release hypothesis) and/or may accumulate natural enemies with increasing time after invasion (the pathogen accumulation and invasive decline hypothesis). We tested these alternate hypotheses by surveying bacterial communities of Argentine ants (Linepithema humile). We found evidence for serial symbiont bottlenecks: the bacterial community richness declined over the invasion pathway from Argentina to New Zealand. The abundance of some genera, such as Lactobacillus, also significantly declined over the invasion pathway. Argentine ants from populations in the United States shared the most genera with ants from their native range in Argentina, while New Zealand shared the least (120 vs. 57, respectively). Nine genera were present in all sites around the globe possibly indicating a core group of obligate microbes. In accordance with the pathogen accumulation and invasive decline hypothesis, Argentine ants acquired genera unique to each specific invaded country. The United States had the most unique genera, though even within New Zealand these ants acquired symbionts. In addition to our biogeographic sampling, we administered antibiotics to Argentine ants to determine if changes in the micro-symbiont community could influence behavior and survival in interspecific interactions. Treatment with the antibiotics spectinomycin and kanamycin only slightly increased Argentine ant

  14. Simulations in a Science and Society Course.

    ERIC Educational Resources Information Center

    Maier, Mark H.; Venanzi, Thomas

    1984-01-01

    Provides a course outline which includes simulation exercises designed as in-class activities related to science and society interactions. Simulations focus on the IQ debate, sociobiology, nuclear weapons and nulcear strategy, nuclear power and radiation, computer explosion, and cosmology. Indicates that learning improves when students take active…

  15. Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants.

    PubMed

    Poulsen, Michael; Cafaro, Matías J; Erhardt, Daniel P; Little, Ainslie E F; Gerardo, Nicole M; Tebbets, Brad; Klein, Bruce S; Currie, Cameron R

    2010-08-01

    Host-parasite associations are potentially shaped by evolutionary reciprocal selection dynamics, in which parasites evolve to overcome host defences and hosts are selected to counteract these through the evolution of new defences. This is expected to result in variation in parasite-defence interactions, and the evolution of resistant parasites causing increased virulence. Fungus-growing ants maintain antibiotic-producing Pseudonocardia (Actinobacteria) that aid in protection against specialized parasites of the ants' fungal gardens, and current evidence indicates that both symbionts have been associated with the ants for millions of years. Here we examine the extent of variation in the defensive capabilities of the ant-actinobacterial association against Escovopsis (parasite-defence interactions), and evaluate how variation impacts colonies of fungus-growing ants. We focus on five species of Acromyrmex leaf-cutting ants, crossing 12 strains of Pseudonocardia with 12 strains of Escovopsis in a Petri plate bioassay experiment, and subsequently conduct subcolony infection experiments using resistant and non-resistant parasite strains. Diversity in parasite-defence interactions, including pairings where the parasites are resistant, suggests that chemical variation in the antibiotics produced by different actinobacterial strains are responsible for the observed variation in parasite susceptibility. By evaluating the role this variation plays during infection, we show that infection of ant subcolonies with resistant parasite strains results in significantly higher parasite-induced morbidity with respect to garden biomass loss. Our findings thus further establish the role of Pseudonocardia-derived antibiotics in helping defend the ants' fungus garden from the parasite Escovopsis, and provide evidence that small molecules can play important roles as antibiotics in a natural system.

  16. Establishing food site vectors in desert ants.

    PubMed

    Bolek, Siegfried; Wittlinger, Matthias; Wolf, Harald

    2012-02-15

    When returning to the site of a successful previous forage, where does one search for the goodies? Should one rely on experience from the previous homebound journey, or should one consider the outbound journey as well, or even exclusively? Desert ants are particularly well suited for pursuing this question because of their primary reliance on path integration in open and featureless desert habitats. Path integration has been studied particularly with regard to homing after lengthy foraging trips. The ants also use path integration to return to plentiful feeding sites, but what is memorised for revisiting the feeder remains controversial. Here, we demonstrate that desert ants consider, and indeed linearly average, both outbound and inbound travel for their return to a familiar feeder. This may be interpreted as a strategy to reduce navigation errors.

  17. Desert ants learn vibration and magnetic landmarks.

    PubMed

    Buehlmann, Cornelia; Hansson, Bill S; Knaden, Markus

    2012-01-01

    The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.

  18. Moribund Ants Do Not Call for Help

    PubMed Central

    Miler, Krzysztof

    2016-01-01

    When an antlion captures a foraging ant, the victim’s nestmates may display rescue behaviour. This study tested the hypothesis that the expression of rescue behaviour depends on the life expectancy of the captured ant. This hypothesis predicts that the expression of rescue behaviour will be less frequent when the captured ant has a lower life expectancy than when it has a higher life expectancy because such a response would be adaptive at the colony level. Indeed, significant differences were found in the frequency of rescue behaviours in response to antlion victims with differing life expectancies. In agreement with prediction, victims with lower life expectancies were rescued less frequently, and those rescues had a longer latency and shorter duration. There was also a qualitative difference in the behaviour of rescuers to victims from the low and high life expectancy groups. Several explanations for these findings are proposed. PMID:26986741

  19. Variation in the outcomes of an ant-plant system: fire and leaf fungus infection reduce benefits to plants with extrafloral nectaries.

    PubMed

    Pires, L P; Del-Claro, K

    2014-01-01

    Interactions between species are evolutionary malleable and may suffer changes in small timescales. Environmental disturbances, such as fire, can deeply affect species interactions, but how they influence the outcome of a mutualistic interaction has yet to be studied. In order to test the hypothesis that an environmental disturbance, in this case fire, may produce differences in the outcome of the association of ants with the extrafloral-nectaries-bearing plant Qualea multiflora Mart. (Myrtales: Vochysiaceae), a previous study was replicated, but this time after fire incidence, at the same study site and with the same plant species. Eight ant species visited Q. multiflora, and the most abundant genera were Crematogaster, Cephalotes, and Camponotus. Herbivores were found in branches with and without ants with no statistical difference, but foliar herbivory was always higher in branchs where ants were absent. Leaves were infested by fungi, and fungi spots were higher in branches where ants were present. Compared to the previous study, it was clearly observed that ant benefits to Q. multiflora varied over time. The most common ant species still protected leaves against chewing herbivores, but a new kind of leaf damage appeared, namely fungi spots. Data also support that ants may be acting as vectors of fungi spores on plants, as ant visited branches had higher fungus incidence than non-visited branches. Fire is a major source of disturbance in tropical savannas, and we suggest that it can cause strong variation in the outcomes of interactions between ants and plants with extrafloral nectaries in the Brazilian tropical savanna.

  20. An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation.

    PubMed

    Fayle, Tom M; Edwards, David P; Foster, William A; Yusah, Kalsum M; Turner, Edgar C

    2015-06-01

    Anthropogenic disturbance and the spread of non-native species disrupt natural communities, but also create novel interactions between species. By-product mutualisms, in which benefits accrue as side effects of partner behaviour or morphology, are often non-specific and hence may persist in novel ecosystems. We tested this hypothesis for a two-way by-product mutualism between epiphytic ferns and their ant inhabitants in the Bornean rain forest, in which ants gain housing in root-masses while ferns gain protection from herbivores. Specifically, we assessed how the specificity (overlap between fern and ground-dwelling ants) and the benefits of this interaction are altered by selective logging and conversion to an oil palm plantation habitat. We found that despite the high turnover of ant species, ant protection against herbivores persisted in modified habitats. However, in ferns growing in the oil palm plantation, ant occupancy, abundance and species richness declined, potentially due to the harsher microclimate. The specificity of the fern-ant interactions was also lower in the oil palm plantation habitat than in the forest habitats. We found no correlations between colony size and fern size in modified habitats, and hence no evidence for partner fidelity feedbacks, in which ants are incentivised to protect fern hosts. Per species, non-native ant species in the oil palm plantation habitat (18 % of occurrences) were as important as native ones in terms of fern protection and contributed to an increase in ant abundance and species richness with fern size. We conclude that this by-product mutualism persists in logged forest and oil palm plantation habitats, with no detectable shift in partner benefits. Such persistence of generalist interactions in novel ecosystems may be important for driving ecosystem functioning.

  1. Variation in the Outcomes of an Ant-Plant System: Fire and Leaf Fungus Infection Reduce Benefits to Plants with Extrafloral Nectaries

    PubMed Central

    Pires, L. P.; Del-Claro, K.

    2014-01-01

    Interactions between species are evolutionary malleable and may suffer changes in small timescales. Environmental disturbances, such as fire, can deeply affect species interactions, but how they influence the outcome of a mutualistic interaction has yet to be studied. In order to test the hypothesis that an environmental disturbance, in this case fire, may produce differences in the outcome of the association of ants with the extrafloral-nectaries-bearing plant Qualea multiflora Mart. (Myrtales: Vochysiaceae), a previous study was replicated, but this time after fire incidence, at the same study site and with the same plant species. Eight ant species visited Q. multiflora, and the most abundant genera were Crematogaster, Cephalotes, and Camponotus. Herbivores were found in branches with and without ants with no statistical difference, but foliar herbivory was always higher in branchs where ants were absent. Leaves were infested by fungi, and fungi spots were higher in branches where ants were present. Compared to the previous study, it was clearly observed that ant benefits to Q. multiflora varied over time. The most common ant species still protected leaves against chewing herbivores, but a new kind of leaf damage appeared, namely fungi spots. Data also support that ants may be acting as vectors of fungi spores on plants, as ant visited branches had higher fungus incidence than non-visited branches. Fire is a major source of disturbance in tropical savannas, and we suggest that it can cause strong variation in the outcomes of interactions between ants and plants with extrafloral nectaries in the Brazilian tropical savanna. PMID:25368040

  2. Values and Society.

    ERIC Educational Resources Information Center

    Nelson, Jack L.

    The idea of a democratic society based on human rights and social justice is the social issue examined in this book which is one of a series on challenges and choices in American values. The format followed in the series includes the following for secondary students: case studies illustrating the issue by focusing on human institutions, factual…

  3. The School in Society.

    ERIC Educational Resources Information Center

    Tasmanian Education Dept., Hobart (Australia).

    This document is an English-language abstract (approximately 1,500 words) of the role of school in Tasmania as seen in a report by a committee appointed to determine that question. At present, Tasmanian children are required to attend school between the ages of 6 and 16. About 20% of children attend private schools. The demands of society for…

  4. Man--Society--Technology.

    ERIC Educational Resources Information Center

    Taxis, Linda A., Ed.

    The 32nd annual American Industrial Arts Association (AIAA) Convention was held in Louisville in 1970. Topics for the AIAA general session addresses were: (1) "Industrial Arts--The Blender Between Social Form and Technical Function," (2) "Technology and Society: Present and Future Challenges," (3) "A Student-Oriented Industrial Arts," (4) "Man:…

  5. Teaching Global Society.

    ERIC Educational Resources Information Center

    Peet, Richard

    2002-01-01

    Describes the course, "Global Society," for first-year International Studies students at a Massachusetts liberal arts college. The course, which takes a historical approach, informs students about the nature, history, and present characteristics of the global system, taking theoretical, historical, and critical approaches that stress the…

  6. Time and Society.

    ERIC Educational Resources Information Center

    Kazancigil, Ali, Ed.

    1986-01-01

    The articles in this issue review the history of the sociological study of different societies' conceptions of time. Social time is the way people regard and employ time dependent on economic conditions, the organization of daily life, the cultural setting, and religion. (JDH)

  7. Art, Society and Education

    ERIC Educational Resources Information Center

    Smith, Ralph A.

    1976-01-01

    In considering the relation of art with society the author comments on the ideas of the American philosopher, John Dewey, the art historian, Lord Kenneth Clark, a popular humanistic educator, Clifton Fadiman, and a major cultural critic, Jacques Barzun. (Author/RK)

  8. Education for Jobless Society

    ERIC Educational Resources Information Center

    Sidorkin, Alexander M.

    2017-01-01

    The advent of societies with low employment rates will present a challenge to education. Education must move away from the discourse of skills and towards the discourse of meaning and motivation. The paper considers three kinds of non-waged optional labor that may form the basis of the future economy: prosumption, volunteering, and self-design.…

  9. The Learning Society.

    ERIC Educational Resources Information Center

    van der Zee, Hendrik

    1991-01-01

    Strategic issues in the development of a learning society are (1) broadening the definition of learning; (2) making the goal of learning growth toward completeness; (3) increasing collective competence; (4) fostering autonomy in learners; and (5) stressing a political approach to learning (the right to learn as a civil right). (SK)

  10. Big Society, Big Deal?

    ERIC Educational Resources Information Center

    Thomson, Alastair

    2011-01-01

    Political leaders like to put forward guiding ideas or themes which pull their individual decisions into a broader narrative. For John Major it was Back to Basics, for Tony Blair it was the Third Way and for David Cameron it is the Big Society. While Mr. Blair relied on Lord Giddens to add intellectual weight to his idea, Mr. Cameron's legacy idea…

  11. Air pollution and society

    NASA Astrophysics Data System (ADS)

    Brimblecombe, P.

    2010-12-01

    Air pollution is as much a product of our society as it is one of chemistry and meteorology. Social variables such as gender, age, health status and poverty are often linked with our exposure to air pollutants. Pollution can also affect our behaviour, while regulations to improve the environment can often challenge of freedom.

  12. Science Serves Society.

    ERIC Educational Resources Information Center

    Sneed, G. C.

    This book discusses how some of the topics taught in a conventional physics course have been used to solve interesting technical problems in industry, medicine, agriculture, transportation, and other areas of society. The topics include heat, optics, magnetism and electricity, nuclear physics, and sound. (MLH)

  13. Education, Change and Society.

    ERIC Educational Resources Information Center

    Karmel, Peter, Ed.

    The conference papers in this publication focus on the interrelationship between change in the education sector and change in the wider society. The papers were generated by an invitational conference held in 1980 to mark the golden jubilee year of the Australian Council for Educational Research. While many of the papers have an Australian…

  14. The New Rural Society.

    ERIC Educational Resources Information Center

    Goldmark, Peter C.

    The New Rural Society project concerns itself with the deterioration of America through urban overcrowding and rural depletion. Coupled with experimentation and pilot testing, the study is designed to demonstrate that imaginative application of telecommunication will enable business and government departments to function effectively though their…

  15. Detection of Mitochondrial COII DNA Sequences in Ant Guts as a Method for Assessing Termite Predation by Ants

    PubMed Central

    Fayle, Tom M.; Scholtz, Olivia; Dumbrell, Alex J.; Russell, Stephen; Segar, Simon T.; Eggleton, Paul

    2015-01-01

    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs. PMID:25853549

  16. Detection of mitochondrial COII DNA sequences in ant guts as a method for assessing termite predation by ants.

    PubMed

    Fayle, Tom M; Scholtz, Olivia; Dumbrell, Alex J; Russell, Stephen; Segar, Simon T; Eggleton, Paul

    2015-01-01

    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.

  17. Ant-gardens of tropical Asian rainforests.

    PubMed

    Kaufmann, Eva; Maschwitz, Ulrich

    2006-05-01

    Ant-garden (AG) associations are systems of epiphytic plants and arboricolous (i.e., tree-living) ants, in which the ants build fragile carton nests containing organic material. They collect and incorporate seeds or fruits of epiphytes that then germinate and grow on the nest [sensu Corbara et al. (1999) 38:73-89]. The plant roots stabilize the nest carton. AGs have been well-known in the neotropics for more than 100 years. In contrast, reports on similar associations in the paleotropics are scarce so far. After discovering a first common AG system on giant bamboo [Kaufmann et al. (2001) 48:125-133], we started a large-scale survey for AGs in Peninsular Malaysia, Borneo, Java, and southern Thailand. A great variety of AG systems (altogether including 18 ant species and 51 plant species) was discovered and is described in the present paper. The high number of species participating in AG associations was reflected by a great variability in the specific appearances of the nest gardens. Frequently, further groups of organisms (e.g., hemipteran trophobionts, fungi) were also involved. Preference patterns of particular ant and epiphyte species for each other and for particular phorophytes (carrier trees) were detected. We integrate domatia-producing, so-called ant-house epiphytes in our study and compare their phases of establishment, as well as other characteristics, to "classical" AGs, coming to the conclusion that they should be regarded only as a special type of AG epiphyte and not as a separate ecological category.

  18. Ant-gardens of tropical Asian rainforests

    NASA Astrophysics Data System (ADS)

    Kaufmann, Eva; Maschwitz, Ulrich

    2006-05-01

    Ant-garden (AG) associations are systems of epiphytic plants and arboricolous (i.e., tree-living) ants, in which the ants build fragile carton nests containing organic material. They collect and incorporate seeds or fruits of epiphytes that then germinate and grow on the nest [sensu Corbara et al. (1999) 38:73-89]. The plant roots stabilize the nest carton. AGs have been well-known in the neotropics for more than 100 years. In contrast, reports on similar associations in the paleotropics are scarce so far. After discovering a first common AG system on giant bamboo [Kaufmann et al. (2001) 48:125-133], we started a large-scale survey for AGs in Peninsular Malaysia, Borneo, Java, and southern Thailand. A great variety of AG systems (altogether including 18 ant species and 51 plant species) was discovered and is described in the present paper. The high number of species participating in AG associations was reflected by a great variability in the specific appearances of the nest gardens. Frequently, further groups of organisms (e.g., hemipteran trophobionts, fungi) were also involved. Preference patterns of particular ant and epiphyte species for each other and for particular phorophytes (carrier trees) were detected. We integrate domatia-producing, so-called ant-house epiphytes in our study and compare their phases of establishment, as well as other characteristics, to “classical” AGs, coming to the conclusion that they should be regarded only as a special type of AG epiphyte and not as a separate ecological category.

  19. An ant's-eye view of an ant-plant protection mutualism.

    PubMed

    Lanan, M C; Bronstein, J L

    2013-07-01

    Ant protection of extrafloral nectar (EFN)-secreting plants is a common form of mutualism found in most habitats around the world. However, very few studies have considered these mutualisms from the ant, rather than the plant, perspective. In particular, a whole-colony perspective that takes into account the spatial structure and nest arrangement of the ant colonies that visit these plants has been lacking, obscuring when and how colony-level foraging decisions might affect tending rates on individual plants. Here, we experimentally demonstrate that recruitment of Crematogaster opuntiae (Buren) ant workers to the EFN-secreting cactus Ferocactus wislizeni (Englem) is not independent between plants up to 5 m apart. Colony territories of C. opuntiae are large, covering areas of up to 5,000 m(2), and workers visit between five and 34 EFN-secreting barrel cacti within the territories. These ants are highly polydomous, with up to 20 nest entrances dispersed throughout the territory and interconnected by trail networks. Our study demonstrates that worker recruitment is not independent within large polydomous ant colonies, highlighting the importance of considering colonies rather than individual workers as the relevant study unit within ant/plant protection mutualisms.

  20. An ants-eye view of an ant-plant protection mutualism

    PubMed Central

    Lanan, M. C.; Bronstein, J. L.

    2013-01-01

    Ant protection of extrafloral nectar-secreting plants (EFN plants) is a common form of mutualism found in most habitats around the world. However, very few studies have considered these mutualisms from the ant, rather than the plant, perspective. In particular, a whole-colony perspective that takes into account the spatial structure and nest arrangement of the ant colonies that visit these plants has been lacking, obscuring when and how colony-level foraging decisions might affect tending rates on individual plants. Here, we experimentally demonstrate that recruitment of Crematogaster opuntiae (Buren) ant workers to the extrafloral nectar-secreting cactus Ferocactus wislizeni (Englem) is not independent between plants up to 5m apart. Colony territories of C. opuntiae are large, covering areas of up to 5000m2, and workers visit between five and thirty-four extrafloral nectar-secreting barrel cacti within the territories. These ants are highly polydomous, with up to twenty nest entrances dispersed throughout the territory and interconnected by trail networks. Our study demonstrates that worker recruitment is not independent within large polydomous ant colonies, highlighting the importance of considering colonies rather than individual workers as the relevant study unit within ant/plant protection mutualisms PMID:23515612

  1. Chemical recognition of partner plant species by foundress ant queens in Macaranga-Crematogaster myrmecophytism.

    PubMed

    Inui, Y; Itioka, T; Murase, K; Yamaoka, R; Itino, T

    2001-10-01

    The partnership in the Crematogaster-Macaranga ant-plant interaction is highly species-specific. Because a mutualistic relationship on a Macaranga plant starts with colonization by a foundress queen of a partner Crematogaster species, we hypothesized that the foundress queens select their partner plant species by chemical recognition. We tested this hypothesis with four sympatric Macaranga species and their Crematogaster plant-ant species. We demonstrated that foundress Crematogaster queens can recognize their partner Macaranga species by contact with the surface of the seedlings, that they can recognize compounds from the stem surface of seedlings of their partner plant species, and that the gas chromatographic profiles are characteristic of the plant species. These findings support the hypothesis that foundress queens of the Crematogaster plant-ant species select their partner Macaranga species by recognizing nonvolatile chemical characteristics of the stem surfaces of seedlings.

  2. Autumn leaf colouration: a new hypothesis involving plant-ant mutualism via aphids

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo

    2008-07-01

    Several recent hypotheses on the adaptive significance of autumn leaf colours have focused on specialist aphids. However, these hypotheses have overlooked several factors: the preferential investment by healthy vigorous trees in growth rather than defence against herbivores, variation among aphid species in their responses to bright autumn leaves and plant defences and the occurrence of tritrophic interactions in tree crowns. I incorporate these factors into a hypothesis that autumn leaf colours signal tree quality to myrmecophilous specialist aphids, with the aphids, in turn, attracting aphid-tending ants during the following spring, and the ants defending the trees from other aphids and herbivores. Therefore, bright autumn leaves may have adaptive significance, attracting myrmecophilous specialist aphids and their attending ants and, thus, reducing herbivory and competition among aphids.

  3. The Dynamics of Foraging Trails in the Tropical Arboreal Ant Cephalotes goniodontus

    PubMed Central

    Gordon, Deborah M.

    2012-01-01

    The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest. PMID:23209749

  4. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    PubMed

    Gordon, Deborah M

    2012-01-01

    The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  5. Potential sources of nitrogen in an ant-garden tank-bromeliad

    PubMed Central

    Corbara, Bruno; Dejean, Alain; Céréghino, Régis

    2009-01-01

    Epiphytic plants in general and bromeliads in particular live in a water and nutrient-stressed environment often limited in nitrogen. Thus, these plants have developed different ways to survive in such an environment. We focused on Aechmea mertensii (Bromeliaceae), which is both a tank-bromeliad and an ant-garden (AG) epiphyte initiated by either the ants Camponotus femoratus or Pachycondyla goeldii. By combining a study of plant morphology and physiology associated with aquatic insect biology, we demonstrate that the ant species influences the leaf structure of the bromeliad, the structure of the aquatic community in its tank, and nutrient assimilation by the leaves. Based on nitrogen and nitrogen stable isotope measurements of the A. mertensii leaves, the leaf litter inside of the tank and the root-embedded carton nest, we discuss the potential sources of available nitrogen for the plant based on the ant partner. We demonstrate the existence of a complex ant-plant interaction that subsequently affects the biodiversity of a broader range of organisms that are themselves likely to influence nutrient assimilation by the A. mertensii leaves in a kind of plant-invertebrate-plant feedback loop. PMID:19847109

  6. Material civilization: things and society.

    PubMed

    Dant, Tim

    2006-06-01

    This paper argues that although classical sociology has largely overlooked the importance of social relations with the material world in shaping the form of society, Braudel's concept of 'material civilization' is a useful way to begin to understand the sociological significance of this relationship. The limitations of Braudel's historical and general concept can be partially overcome with Elias's analysis of the connection between 'technization' and 'civilization' that allows for both a civilizing and a de-civilizing impact of emergent forms of material relation that both lengthen and shorten the chains of interdependence between the members of a society. It is suggested that the concept of the 'morality of things' employed by a number of commentators is useful in summarizing the civilizing effects of material objects and addressing their sociological significance. From the sociology of consumption the idea of materiality as a sign of social relationships can be drawn, and from the sociology of technology the idea of socio-technical systems and actor-networks can contribute to the understanding of material civilization. It is argued that the concept of 'material capital' can usefully summarize the variable social value of objects but to understand the complexity of material civilization as it unfolds in everyday life, an analysis of 'material interaction' is needed. Finally the paper suggests some initial themes and issues apparent in contemporary society that the sociological study of material civilization might address; the increased volume, functional complexity and material specificity of objects and the increased social complexity, autonomy and substitutability that is entailed. A theory of 'material civilization' is the first step in establishing a sociology of objects.

  7. Chemical and genetic defenses against disease in insect societies.

    PubMed

    Stow, Adam; Beattie, Andrew

    2008-10-01

    The colonies of ants, bees, wasps and termites, the social insects, consist of large numbers of closely related individuals; circumstances ideal for contagious diseases. Antimicrobial assays of these animals have demonstrated a wide variety of chemical defenses against both bacteria and fungi that can be broadly classified as either external antiseptic compounds or internal immune molecules. Reducing the disease risks inherent in colonies of social insects is also achieved by behaviors, such as multiple mating or dispersal, that lower genetic relatedness both within- and among colonies. The interactions between social insects and their pathogens are complex, as illustrated by some ants that require antimicrobial and behavioral defenses against highly specialized fungi, such as those in the genus Cordyceps that attack larvae and adults and species in the genus Escovopsis that attack their food supplies. Studies of these defenses, especially in ants, have revealed remarkably sophisticated immune systems, including peptides induced by, and specific to, individual bacterial strains. The latter may be the result of the recruitment by the ants of antibiotic-producing bacteria but the extent of such three-way interactions remains unknown. There is strong experimental evidence that the evolution of sociality required dramatic increases in antimicrobial defenses and that microbes have been powerful selective agents. The antimicrobial chemicals and the insect-killing fungi may be useful in medicine and agriculture, respectively.

  8. Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants.

    PubMed

    Pagnocca, Fernando C; Rodrigues, André; Nagamoto, Nilson S; Bacci, Maurício

    2008-11-01

    Insect-associated microbes exhibit a wide range of interactions with their hosts. One example of such interactions is the insect-driven dispersal of microorganisms, which plays an essential role in the ecology of several microbes. To study dispersal of microorganisms by leaf-cutting ants (Formicidae: Attini), we applied culture-dependent methods to identify the filamentous fungi and yeasts found in two different body parts of leaf-cutting ant gynes: the exoskeleton and the infrabuccal pocket. The gynes use the latter structure to store a pellet of the ants' symbiotic fungus during nest founding. Many filamentous fungi (n = 142) and yeasts (n = 19) were isolated from the gynes' exoskeleton. In contrast, only seven filamentous fungi and three yeasts isolates were recovered from the infrabuccal pellets, suggesting an efficient mechanism utilized by the gynes to prevent contamination of the symbiotic fungus inoculum. The genus Cladosporium prevailed (78%) among filamentous fungi whereas Aureobasidium, Candida and Cryptococcus prevailed among yeasts associated with gynes. Interestingly, Escovopsis, a specialized fungal pathogen of the leaf-cutting ant-fungus symbiosis, was not isolated from the body parts or from infrabuccal pellets of any gynes sampled. Our results suggest that gynes of the leaf-cutter ants Atta laevigata and A. capiguara do not vertically transmit any particular species of yeasts or filamentous fungi during the foundation of a new nest. Instead, fungi found in association with gynes have a cosmopolitan distribution, suggesting they are probably acquired from the environment and passively dispersed during nest foundation. The possible role of these fungi for the attine ant-microbial symbiosis is discussed.

  9. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-09-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitt