Communicative Interaction Processes Involving Non-Vocal Physically Handicapped Children.
ERIC Educational Resources Information Center
Harris, Deberah
1982-01-01
Communication prostheses are critical components of the nonvocal child's communication process, but are only one component. This article focuses on the steps involved in communicative interaction processes and the potential barriers to the development of effective interaction and analysis of nonvocal communicative interactions. A discussion of the…
Wu, Qiong; Chang, Chi-Fu; Xi, Sisi; Huang, I-Wen; Liu, Zuxiang; Juan, Chi-Hung; Wu, Yanhong; Fan, Jin
2015-01-01
Information processing can be biased toward behaviorally relevant and salient stimuli by top-down (goal-directed) and bottom-up (stimulus-driven) attentional control processes. However, the neural basis underlying the integration of these processes is not well understood. We employed functional magnetic resonance imaging and transcranial direct-current stimulation (tDCS) in humans to examine the brain mechanisms underlying the interaction between these two processes. We manipulated the cognitive load involved in top-down processing and stimulus surprise involved in bottom-up processing in a factorial design by combining a majority function task and an oddball paradigm. We found that high cognitive load and high surprise level were associated with prolonged reaction time compared to low cognitive load and low surprise level, with a synergistic interaction effect which was accompanied by a greater deactivation of bilateral temporoparietal junction (TPJ). In addition, the TPJ displayed negative functional connectivity with right middle occipital gyrus involved in bottom-up processing (modulated by the interaction effect) and the right frontal eye field (FEF) involved in top-down control. The enhanced negative functional connectivity between the TPJ and right FEF was accompanied by a larger behavioral interaction effect across subjects. Application of cathodal tDCS over the right TPJ eliminated the interaction effect. These results suggest that the TPJ plays a critical role in processing bottom-up information for top-down control of attention. PMID:26308973
Alborghetti, Marcos Rodrigo; Furlan, Ariane da Silva; da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg
2013-01-01
Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.
da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L.; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg
2013-01-01
Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth. PMID:24116125
Procedural justice and quality of life in compensation processes.
Elbers, Nieke A; Akkermans, Arno J; Cuijpers, Pim; Bruinvels, David J
2013-11-01
There is considerable evidence that being involved in compensation processes has a negative impact on claimants' health. Previous studies suggested that this negative effect is caused by a stressful compensation process: claimants suffered from a lack of communication, a lack of information, and feelings of distrust. However, these rather qualitative findings have not been quantitatively investigated yet. This observational study aimed to fill this gap of knowledge, investigating the claimants' perceived fairness of the compensation process, the provided information, and the interaction with lawyers and insurance companies, in relation to the claimants' quality of life. Participants were individuals injured in traffic accidents, older than 18 years, who were involved in a compensation process in the Netherlands. They were recruited by three claims settlement offices. Outcome measures were procedural, interactional, and informational justice, and quality of life. Participants (n=176) perceived the interaction with lawyers to be fairer than the interaction with insurance companies (p<.001). The length of hospital stay was positively associated with procedural justice (β=.31, p<.001). Having trunk/back injury was negatively related to procedural justice (β=-.25, p=.001). Whiplash injury and length of time involved in the claim process were not associated with any of the justice scales. Finally, procedural justice was found to be positively correlated with quality of life (rs=.22, p=.004). The finding that the interaction with insurance companies was considered less fair than the interaction with lawyers may imply that insurers could improve their interaction with claimants, e.g. by communicating more directly. The result that claimants with mild injuries and with trunk/back injuries considered the compensation process to be less fair than those with respectively severe injuries and injuries to other body parts suggests that especially the former two require an attentive treatment. Finally, the fact that procedural justice was positively correlated with quality of life could implicate that it is possible to improve claimants' health in compensation processes by enhancing procedural justice, e.g. by increasing the ability for claimants to express their views and feelings and by involving claimants in the decision-making process. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Nguyen, Thi Thao Duyen
2013-01-01
This dissertation explores how participants express and interpret verbal cues of interaction involvement in dyadic conversations via text-based Instant Messaging (IM). Moreover, it seeks to discover differences in the way American participants and Chinese participants use verbal cues when they are highly, or lowly involved. Based on previous…
Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J.
2016-01-01
Protein-protein interactions are key events controlling several biological processes. We have developed and employed a method to trap transiently interacting protein complexes for structural studies using glycine-rich linkers to fuse interacting partners, one of which is unstructured. Initial steps involve isothermal titration calorimetry to identify the minimum binding region of the unstructured protein in its interaction with its stable binding partner. This is followed by computational analysis to identify the approximate site of the interaction and to design an appropriate linker length. Subsequently, fused constructs are generated and characterized using size exclusion chromatography and dynamic light scattering experiments. The structure of the chimeric protein is then solved by crystallization, and validated both in vitro and in vivo by substituting key interacting residues of the full length, unlinked proteins with alanine. This protocol offers the opportunity to study crucial and currently unattainable transient protein interactions involved in various biological processes. PMID:26985443
Haraldseid, Cecilie; Friberg, Febe; Aase, Karina
2016-01-01
Policy initiatives and an increasing amount of the literature within higher education both call for students to become more involved in creating their own learning. However, there is a lack of studies in undergraduate nursing education that actively involve students in developing such learning material with descriptions of the students' roles in these interactive processes. Explorative qualitative study, using data from focus group interviews, field notes and student notes. The data has been subjected to qualitative content analysis. Active student involvement through an iterative process identified five different learning needs that are especially important to the students: clarification of learning expectations, help to recognize the bigger picture, stimulation of interaction, creation of structure, and receiving context- specific content. The iterative process involvement of students during the development of new technological learning material will enhance the identification of important learning needs for students. The use of student and teacher knowledge through an adapted co-design process is the most optimal level of that involvement.
Empowerment through public involvement functional interactive planning (PIFIP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, J. E.; Davidson, S. A.
1993-05-01
This paper constructs a planning process that will enable private industries, government, and public interest organizations to actualize their visions. The public involvement functional interactive planning (PIFIP) model can facilitate these groups in actualizing their visions by forcing them to recognize their stakeholder`s values, interests and expectations.
Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics.
Ritterson Lew, Carolyn; Tolan, Dean R
2013-08-01
In addition to its roles in sugar metabolism, fructose-1,6-bisphosphate aldolase (aldolase) has been implicated in cellular functions independent from these roles, termed "moonlighting functions." These moonlighting functions likely involve the known aldolase-actin interaction, as many proteins with which aldolase interacts are involved in actin-dependent processes. Specifically, aldolase interacts both in vitro and in cells with Wiskott-Aldrich Syndrome Protein (WASP), a protein involved in controlling actin dynamics, yet the function of this interaction remains unknown. Here, the effect of aldolase on WASP-dependent processes in vitro and in cells is investigated. Aldolase inhibits WASP/Arp2/3-dependent actin polymerization in vitro. In cells, knockdown of aldolase results in a decreased rate of cell motility and cell spreading, two WASP-dependent processes. Expression of exogenous aldolase rescues these defects. Whether these effects of aldolase on WASP-dependent processes were due to aldolase catalysis or moonlighting functions is tested using aldolase variants defective in either catalytic or actin-binding activity. While the actin-binding deficient aldolase variant is unable to inhibit actin polymerization in vitro and is unable to rescue cell motility defects in cells, the catalytically inactive aldolase is able to perform these functions, providing evidence that aldolase moonlighting plays a role in WASP-mediated processes. Copyright © 2013 Wiley Periodicals, Inc.
Ding, Dewu; Sun, Xiao
2018-01-16
Shewanella oneidensis MR-1 can transfer electrons from the intracellular environment to the extracellular space of the cells to reduce the extracellular insoluble electron acceptors (Extracellular Electron Transfer, EET). Benefiting from this EET capability, Shewanella has been widely used in different areas, such as energy production, wastewater treatment, and bioremediation. Genome-wide proteomics data was used to determine the active proteins involved in activating the EET process. We identified 1012 proteins with decreased expression and 811 proteins with increased expression when the EET process changed from inactivation to activation. We then networked these proteins to construct the active protein networks, and identified the top 20 key active proteins by network centralization analysis, including metabolism- and energy-related proteins, signal and transcriptional regulatory proteins, translation-related proteins, and the EET-related proteins. We also constructed the integrated protein interaction and transcriptional regulatory networks for the active proteins, then found three exclusive active network motifs involved in activating the EET process-Bi-feedforward Loop, Regulatory Cascade with a Feedback, and Feedback with a Protein-Protein Interaction (PPI)-and identified the active proteins involved in these motifs. Both enrichment analysis and comparative analysis to the whole-genome data implicated the multiheme c -type cytochromes and multiple signal processing proteins involved in the process. Furthermore, the interactions of these motif-guided active proteins and the involved functional modules were discussed. Collectively, by using network-based methods, this work reported a proteome-wide search for the key active proteins that potentially activate the EET process.
ERIC Educational Resources Information Center
Goodman, Geoff; Athey-Lloyd, Laura
2011-01-01
Leading the charge to link intervention research with clinical practice is the development of process research, which involves a detailed analysis of specific therapeutic processes over the course of treatment. The delineation of interaction structures--repetitive patterns of interactions between patient and therapist over the course of…
The Role of Parental Involvement in the Autonomy Development of Traditional-Age College Students
ERIC Educational Resources Information Center
Cullaty, Brian
2011-01-01
Increased parental involvement in higher education has led to a rise in the number of parent interactions with university faculty and staff. The purpose of this study was to explore how parental involvement influences the process of college student autonomy development and to examine the implications of this process for college administrators.…
Cognitive Load in Algebra: Element Interactivity in Solving Equations
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing
2015-01-01
Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…
Interactivity Between Proteges and Scientists in an Electronic Mentoring Program
ERIC Educational Resources Information Center
Bonnett, Cara; Wildemuth, Barbara M.; Sonnenwald, Diane H.
2006-01-01
Interactivity is defined by Henri (1992) as a three-step process involving communication of information, a response to this information, and a reply to that first response. It is a key dimension of computer-mediated communication, particularly in the one-on-one communication involved in an electronic mentoring program. This report analyzes the…
Genes involved in host-parasite interactions can be revealed by their correlated expression.
Reid, Adam James; Berriman, Matthew
2013-02-01
Molecular interactions between a parasite and its host are key to the ability of the parasite to enter the host and persist. Our understanding of the genes and proteins involved in these interactions is limited. To better understand these processes it would be advantageous to have a range of methods to predict pairs of genes involved in such interactions. Correlated gene expression profiles can be used to identify molecular interactions within a species. Here we have extended the concept to different species, showing that genes with correlated expression are more likely to encode proteins, which directly or indirectly participate in host-parasite interaction. We go on to examine our predictions of molecular interactions between the malaria parasite and both its mammalian host and insect vector. Our approach could be applied to study any interaction between species, for example, between a host and its parasites or pathogens, but also symbiotic and commensal pairings.
USDA-ARS?s Scientific Manuscript database
Plants are under continuous threat of infection by pathogens endowed with diverse strategies to colonize their host. Knowledge of plant susceptibility factors and the molecular processes involved in the infection process are critical for understanding plant-pathogen interactions. We used SuperSAGE t...
Risk based decision tool for space exploration missions
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Cornford, Steve; Moran, Terrence
2003-01-01
This paper presents an approach and corresponding tool to assess and analyze the risks involved in a mission during the pre-phase A design process. This approach is based on creating a risk template for each subsystem expert involved in the mission design process and defining appropriate interactions between the templates.
Tamayo, Diana; Hernández, Orville; Muñoz-Cadavid, Cesar; Cano, Luz Elena; González, Angel
2013-01-01
The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination. PMID:23827999
Strong field QED in lepton colliders and electron/laser interactions
NASA Astrophysics Data System (ADS)
Hartin, Anthony
2018-05-01
The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.
An approach to evaluating drug-nutrient interactions.
Santos, Cristina A; Boullata, Joseph I
2005-12-01
Although the significance of interactions between drugs is widely appreciated, little attention has been given to interactions between drugs and nutrients. Pharmacists are challenged to remember documented interactions involving available drugs, and they face the possibility that each newly approved therapeutic agent may be involved not only in unrecognized drug-drug interactions but in drug-nutrient interactions as well. A more consistent approach to evaluating drug-nutrient interactions is needed. The approach must be systematic in order to assess the influence of nutritional status, food, or specific nutrients on a drug's pharmacokinetics and pharmacodynamics, as well as the influence of a drug on overall nutritional status or on the status of a specific nutrient. We provide such a process, using several recently approved drugs as working examples. Risk factors and clinical relevance are described, with distinctions made between documented and potential interactions. Application of this process by the pharmacist to any drug will help increase their expertise. Furthermore, full consideration by pharmacists of all possible interactions of the drug regimens used in practice can allow for improved patient care.
ERIC Educational Resources Information Center
Tucker-Drob, Elliot M.; Harden, K. Paige
2012-01-01
Recent studies have demonstrated that genetic influences on cognitive ability and academic achievement are larger for children raised in higher socioeconomic status (SES) homes. However, little work has been done to document the psychosocial processes that underlie this Gene x Environment interaction. One process may involve the conversion of…
Modeling disturbance and succession in forest landscapes using LANDIS: introduction
Brian R. Sturtevant; Eric J. Gustafson; Hong S. He
2004-01-01
Modeling forest landscape change is challenging because it involves the interaction of a variety of factors and processes, such as climate, succession, disturbance, and management. These processes occur at various spatial and temporal scales, and the interactions can be complex on heterogeneous landscapes. Because controlled field experiments designed to investigate...
In silico prediction of protein-protein interactions in human macrophages
2014-01-01
Background Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. Results We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. Conclusion Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level. PMID:24636261
Mechanisms of Interaction in Speech Production
ERIC Educational Resources Information Center
Baese-Berk, Melissa; Goldrick, Matthew
2009-01-01
Many theories predict the presence of interactive effects involving information represented by distinct cognitive processes in speech production. There is considerably less agreement regarding the precise cognitive mechanisms that underlie these interactive effects. For example, are they driven by purely production-internal mechanisms (e.g., Dell,…
de Storme, Nico; Geelen, Danny
2014-01-01
In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved. PMID:23731015
Analysis of DNA interactions using single-molecule force spectroscopy.
Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert
2013-06-01
Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.
Induction of CD4 T cell memory by local cellular collectivity.
Polonsky, Michal; Rimer, Jacob; Kern-Perets, Amos; Zaretsky, Irina; Miller, Stav; Bornstein, Chamutal; David, Eyal; Kopelman, Naama Meira; Stelzer, Gil; Porat, Ziv; Chain, Benjamin; Friedman, Nir
2018-06-15
Cell differentiation is directed by signals driving progenitors into specialized cell types. This process can involve collective decision-making, when differentiating cells determine their lineage choice by interacting with each other. We used live-cell imaging in microwell arrays to study collective processes affecting differentiation of naïve CD4 + T cells into memory precursors. We found that differentiation of precursor memory T cells sharply increases above a threshold number of locally interacting cells. These homotypic interactions involve the cytokines interleukin-2 (IL-2) and IL-6, which affect memory differentiation orthogonal to their effect on proliferation and survival. Mathematical modeling suggests that the differentiation rate is continuously modulated by the instantaneous number of locally interacting cells. This cellular collectivity can prioritize allocation of immune memory to stronger responses. Copyright © 2018, American Association for the Advancement of Science.
EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units
Kam-Thong, Tony; Czamara, Darina; Tsuda, Koji; Borgwardt, Karsten; Lewis, Cathryn M; Erhardt-Lehmann, Angelika; Hemmer, Bernhard; Rieckmann, Peter; Daake, Markus; Weber, Frank; Wolf, Christiane; Ziegler, Andreas; Pütz, Benno; Holsboer, Florian; Schölkopf, Bernhard; Müller-Myhsok, Bertram
2011-01-01
Detection of epistatic interaction between loci has been postulated to provide a more in-depth understanding of the complex biological and biochemical pathways underlying human diseases. Studying the interaction between two loci is the natural progression following traditional and well-established single locus analysis. However, the added costs and time duration required for the computation involved have thus far deterred researchers from pursuing a genome-wide analysis of epistasis. In this paper, we propose a method allowing such analysis to be conducted very rapidly. The method, dubbed EPIBLASTER, is applicable to case–control studies and consists of a two-step process in which the difference in Pearson's correlation coefficients is computed between controls and cases across all possible SNP pairs as an indication of significant interaction warranting further analysis. For the subset of interactions deemed potentially significant, a second-stage analysis is performed using the likelihood ratio test from the logistic regression to obtain the P-value for the estimated coefficients of the individual effects and the interaction term. The algorithm is implemented using the parallel computational capability of commercially available graphical processing units to greatly reduce the computation time involved. In the current setup and example data sets (211 cases, 222 controls, 299468 SNPs; and 601 cases, 825 controls, 291095 SNPs), this coefficient evaluation stage can be completed in roughly 1 day. Our method allows for exhaustive and rapid detection of significant SNP pair interactions without imposing significant marginal effects of the single loci involved in the pair. PMID:21150885
The chemical basis for the origin of the genetic code and the process of protein synthesis
NASA Technical Reports Server (NTRS)
1981-01-01
The principles upon which the process of protein synthesis and the genetic code were established are elucidated. Extensive work on nuclear magnetic resonance studies of both monomermonomer and monoamino acid polynucleotide interactions is included. A new method of general utility for studying any amino acid interacting with any polynucleotide was developed. This system involves the use of methyl esters of amino acids interacting with polynucleotides.
Dynamical analysis of yeast protein interaction network during the sake brewing process.
Mirzarezaee, Mitra; Sadeghi, Mehdi; Araabi, Babak N
2011-12-01
Proteins interact with each other for performing essential functions of an organism. They change partners to get involved in various processes at different times or locations. Studying variations of protein interactions within a specific process would help better understand the dynamic features of the protein interactions and their functions. We studied the protein interaction network of Saccharomyces cerevisiae (yeast) during the brewing of Japanese sake. In this process, yeast cells are exposed to several stresses. Analysis of protein interaction networks of yeast during this process helps to understand how protein interactions of yeast change during the sake brewing process. We used gene expression profiles of yeast cells for this purpose. Results of our experiments revealed some characteristics and behaviors of yeast hubs and non-hubs and their dynamical changes during the brewing process. We found that just a small portion of the proteins (12.8 to 21.6%) is responsible for the functional changes of the proteins in the sake brewing process. The changes in the number of edges and hubs of the yeast protein interaction networks increase in the first stages of the process and it then decreases at the final stages.
Architecting Systems for Human Space Flight
NASA Technical Reports Server (NTRS)
Wocken, Gerald
2002-01-01
Human-system interactions have been largely overlooked in the traditional systems engineering process. Awareness of human factors (HF) has increased in the past few years, but the involvement of HF specialists is still often too little and too late. In systems involving long-duration human space flight, it is essential that the human component be properly considered in the initial architectural definition phase, as well as throughout the system design process. HF analysis must include not only the strengths and limitations of humans in general, but the variability between individuals and within an individual over time, and the dynamics of group interactions.
Law, Emily F; Dahlquist, Lynnda M; Sil, Soumitri; Weiss, Karen E; Herbert, Linda Jones; Wohlheiter, Karen; Horn, Susan Berrin
2011-01-01
This study examined whether increasing the demand for central cognitive processing involved in a distraction task, by involving the child in ongoing, effortful interaction with the distraction stimulus, would increase children's tolerance for cold pressor pain. Seventy-nine children ages 6-15 years underwent a baseline cold pressor trial followed by two cold pressor trials in which they received interactive distraction (i.e., used voice commands to play a videogame) or passive distraction (in which they merely watched the output from the same videogame segment) in counterbalanced order. Both distraction conditions were presented via a virtual reality-type helmet. As expected, children demonstrated significant improvement in pain tolerance during distraction relative to baseline. Children showed the greatest improvement during the interactive distraction task. The effects of distraction on children's cold pressor pain tolerance are significantly enhanced when the distraction task also includes greater demands for central cognitive processing.
A review of human-automation interaction and lessons learned
DOT National Transportation Integrated Search
2006-10-01
This report reviews 37 accidents in aviation, other vehicles, process control and other complex systems where human-automation interaction is involved. Implications about causality with respect to design, procedures, management and training are drawn...
The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy.
Wang, Zhihua; Zhang, Xiao-Jing; Ji, Yan-Xiao; Zhang, Peng; Deng, Ke-Qiong; Gong, Jun; Ren, Shuxun; Wang, Xinghua; Chen, Iris; Wang, He; Gao, Chen; Yokota, Tomohiro; Ang, Yen Sin; Li, Shen; Cass, Ashley; Vondriska, Thomas M; Li, Guangping; Deb, Arjun; Srivastava, Deepak; Yang, Huang-Tian; Xiao, Xinshu; Li, Hongliang; Wang, Yibin
2016-10-01
Epigenetic reprogramming is a critical process of pathological gene induction during cardiac hypertrophy and remodeling, but the underlying regulatory mechanisms remain to be elucidated. Here we identified a heart-enriched long noncoding (lnc)RNA, named cardiac-hypertrophy-associated epigenetic regulator (Chaer), which is necessary for the development of cardiac hypertrophy. Mechanistically, Chaer directly interacts with the catalytic subunit of polycomb repressor complex 2 (PRC2). This interaction, which is mediated by a 66-mer motif in Chaer, interferes with PRC2 targeting to genomic loci, thereby inhibiting histone H3 lysine 27 methylation at the promoter regions of genes involved in cardiac hypertrophy. The interaction between Chaer and PRC2 is transiently induced after hormone or stress stimulation in a process involving mammalian target of rapamycin complex 1, and this interaction is a prerequisite for epigenetic reprogramming and induction of genes involved in hypertrophy. Inhibition of Chaer expression in the heart before, but not after, the onset of pressure overload substantially attenuates cardiac hypertrophy and dysfunction. Our study reveals that stress-induced pathological gene activation in the heart requires a previously uncharacterized lncRNA-dependent epigenetic checkpoint.
Social interaction enhances motor resonance for observed human actions.
Hogeveen, Jeremy; Obhi, Sukhvinder S
2012-04-25
Understanding the neural basis of social behavior has become an important goal for cognitive neuroscience and a key aim is to link neural processes observed in the laboratory to more naturalistic social behaviors in real-world contexts. Although it is accepted that mirror mechanisms contribute to the occurrence of motor resonance (MR) and are common to action execution, observation, and imitation, questions remain about mirror (and MR) involvement in real social behavior and in processing nonhuman actions. To determine whether social interaction primes the MR system, groups of participants engaged or did not engage in a social interaction before observing human or robotic actions. During observation, MR was assessed via motor-evoked potentials elicited with transcranial magnetic stimulation. Compared with participants who did not engage in a prior social interaction, participants who engaged in the social interaction showed a significant increase in MR for human actions. In contrast, social interaction did not increase MR for robot actions. Thus, naturalistic social interaction and laboratory action observation tasks appear to involve common MR mechanisms, and recent experience tunes the system to particular agent types.
A Dynamic Interactive Theory of Person Construal
ERIC Educational Resources Information Center
Freeman, Jonathan B.; Ambady, Nalini
2011-01-01
A dynamic interactive theory of person construal is proposed. It assumes that the perception of other people is accomplished by a dynamical system involving continuous interaction between social categories, stereotypes, high-level cognitive states, and the low-level processing of facial, vocal, and bodily cues. This system permits lower-level…
Facilitating Trust Engenderment in Secondary School Nurse Interactions with Students
ERIC Educational Resources Information Center
Summach, Anne H. J.
2011-01-01
School nurses are involved in a complex framework of interactions with students, other professionals, parents, and administrators. Trust between nurse and student is critical for interaction effectiveness. The goal of this study was to understand through phenomenology the process of engendering trust in school nurse-high school student…
NASA Astrophysics Data System (ADS)
McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan
2014-03-01
Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikatsu, Yuki; Ishida, Yo-ichi; Sudo, Haruka
Nuclear VCP-like 2 (NVL2) is a member of the chaperone-like AAA-ATPase family and is involved in the biosynthesis of 60S ribosomal subunits in mammalian cells. We previously showed the interaction of NVL2 with a DExD/H-box RNA helicase MTR4/DOB1, which is a known cofactor for an exoribonuclease complex, the exosome. This finding implicated NVL2 in RNA metabolic processes during ribosome biogenesis. In the present study, we found that a series of mutations within the ATPase domain of NVL2 causes a defect in pre-rRNA processing into mature 28S and 5.8S rRNAs. Co-immunoprecipitation analysis showed that NVL2 was associated with the nuclear exosomemore » complex, which includes RRP6 as a nucleus-specific catalytic subunit. This interaction was prevented by depleting either MTR4 or RRP6, indicating their essential role in mediating this interaction with NVL2. Additionally, knockdown of MPP6, another cofactor for the nuclear exosome, also prevented the interaction by causing MTR4 to dissociate from the nuclear exosome. These results suggest that NVL2 is involved in pre-rRNA processing by associating with the nuclear exosome complex and that MPP6 is required for maintaining the integrity of this rRNA processing complex. - Highlights: • ATPase-deficient mutants of NVL2 have decreased pre-rRNA processing. • NVL2 associates with the nuclear exosome through interactions with MTR4 and RRP6. • MPP6 stabilizes MTR4-RRP6 interaction and allows NVL2 to interact with the complex.« less
Noise squeezing of fields that bichromatically excite atoms in a cavity.
Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun
2016-11-14
It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.
Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.
2010-01-01
Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e., increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of neural development. To differentiate between these accounts, the present study also examined regressive changes (i.e., decreases in specialization in certain regions with age), which is predicted by the IS but not maturational account. The fMRI results show that both progressive and regressive changes occur, consistent with IS. Progressive changes mostly occurred in occipital-fusiform and inferior frontal cortex whereas regressive changes largely emerged in parietal and lateral temporal cortices. Moreover, inconsistent with the maturational account, all of the regions involved in face viewing in adults were active in children, with some regions already specialized for face processing by 5 years of age and other regions activated in children but not specifically for faces. Thus, neurodevelopment of face processing involves dynamic interactions among brain regions including age-related increases and decreases in specialization and the involvement of different regions at different ages. These results are more consistent with IS than maturational models of neural development. PMID:21399706
Bruylants, Gilles; Wintjens, René; Looze, Yvan; Redfield, Christina; Bartik, Kristin
2007-12-01
Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.
Everything You Have Always Wanted to Know about Academic Advising (Well, Almost)
ERIC Educational Resources Information Center
Robbins, Rich
2012-01-01
Answering the question "What occurs in an academic advising interaction?" is not as easy as one might think. Many factors contribute to the academic advising process, and no two advising interactions are the same. This article discusses the different factors involved in an academic advising interaction, emphasizing the need for psychological…
Designing and Producing Videotex Instruction. A Producer's Handbook.
ERIC Educational Resources Information Center
Nugent, Gwen; And Others
One of the objectives of the Nebraska Interactive Cable Project, an investigation of the educational potential of interactive cable, was to develop a design and production process for interactive cable/videotex instruction. The first part of the project involved the adaptation of three existing correspondence courses on marriage and the family,…
Identifying Systems of Interaction in Mathematical Engagement
ERIC Educational Resources Information Center
Brown, Bruce J. L.
2014-01-01
Mathematical engagement is a complex process of interaction between the person and the world. This interaction is strongly influenced by the concepts and structure of the mathematical field, by the practical and symbolic tools of mathematics and by the focus of investigation in the world. This paper reports on research that involves a detailed…
Interactive planning workshop. Volume 2. Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
The Division of Fossil Fuel Utilization has sponsored a series of interactive planning workshops designed to involve private citizens and representatives in industry, the academic community, public interest groups, and state and local governments in the division's planning process. The findings of the Mt. Hood Interactive Planning Workshop are presented in this summary. This conclave was held at Timberline Lodge on October 15-17, 1978, and was hosted by the Mt. Hood Community College of Gresham, Oregon. Participants examined the division's program goals, planning process, and project appraisal methodology.
Comparisons of Attacks on Honeypots With Those on Real Networks
2006-03-01
Oracle , MySQL , or PostgreSQL. Figure 2 shows an incoming packet and the process involved before and after the Snort engine detects the suspicious...stored on a separate, secured system.”[2]. Honeypots have several other uses besides monitoring attackers. They serve to protect real networks and...interaction vs . high-interaction. Although, both low-interaction and high-interaction honeypots are effective in soliciting attacks, high-interaction
ERIC Educational Resources Information Center
Kyzar, Kathleen; Jimerson, Jo Beth
2018-01-01
Evidence around adolescent learning and development is clear: School-family partnerships matter. However, traditional methods for engaging families that narrowly define who is involved and what constitutes involvement fall short of promoting optimal outcomes. Meaningful family engagement practices involve reciprocal, two-way interactions between…
Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S
2017-04-01
Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
New levels of language processing complexity and organization revealed by granger causation.
Gow, David W; Caplan, David N
2012-01-01
Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all non-redundant potentially interacting signals, and has shown that even "early" processes such as speech perception involve interactions of many areas in a strikingly large network that extends well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of milliseconds. In this paper we describe this technique and review several general findings that reframe the way we think about language processing and brain function in general. These include the extent and complexity of language processing networks, the central role of interactive processing dynamics, the role of processing hubs where the input from many distinct brain regions are integrated, and the degree to which task requirements and stimulus properties influence processing dynamics and inform our understanding of "language-specific" localized processes.
Dissociations and interactions between time, numerosity and space processing
Cappelletti, Marinella; Freeman, Elliot D.; Cipolotti, Lisa
2009-01-01
This study investigated time, numerosity and space processing in a patient (CB) with a right hemisphere lesion. We tested whether these magnitude dimensions share a common magnitude system or whether they are processed by dimension-specific magnitude systems. Five experimental tasks were used: Tasks 1–3 assessed time and numerosity independently and time and numerosity jointly. Tasks 4 and 5 investigated space processing independently and space and numbers jointly. Patient CB was impaired at estimating time and at discriminating between temporal intervals, his errors being underestimations. In contrast, his ability to process numbers and space was normal. A unidirectional interaction between numbers and time was found in both the patient and the control subjects. Strikingly, small numbers were perceived as lasting shorter and large numbers as lasting longer. In contrast, number processing was not affected by time, i.e. short durations did not result in perceiving fewer numbers and long durations in perceiving more numbers. Numbers and space also interacted, with small numbers answered faster when presented on the left side of space, and the reverse for large numbers. Our results demonstrate that time processing can be selectively impaired. This suggests that mechanisms specific for time processing may be partially independent from those involved in processing numbers and space. However, the interaction between numbers and time and between numbers and space also suggests that although independent, there maybe some overlap between time, numbers and space. These data suggest a partly shared mechanism between time, numbers and space which may be involved in magnitude processing or may be recruited to perform cognitive operations on magnitude dimensions. PMID:19501604
Bohl, Vivian; van den Bos, Wouter
2012-01-01
Traditional theory of mind (ToM) accounts for social cognition have been at the basis of most studies in the social cognitive neurosciences. However, in recent years, the need to go beyond traditional ToM accounts for understanding real life social interactions has become all the more pressing. At the same time it remains unclear whether alternative accounts, such as interactionism, can yield a sufficient description and explanation of social interactions. We argue that instead of considering ToM and interactionism as mutually exclusive opponents, they should be integrated into a more comprehensive account of social cognition. We draw on dual process models of social cognition that contrast two different types of social cognitive processing. The first type (labeled Type 1) refers to processes that are fast, efficient, stimulus-driven, and relatively inflexible. The second type (labeled Type 2) refers to processes that are relatively slow, cognitively laborious, flexible, and may involve conscious control. We argue that while interactionism captures aspects of social cognition mostly related to Type 1 processes, ToM is more focused on those based on Type 2 processes. We suggest that real life social interactions are rarely based on either Type 1 or Type 2 processes alone. On the contrary, we propose that in most cases both types of processes are simultaneously involved and that social behavior may be sustained by the interplay between these two types of processes. Finally, we discuss how the new integrative framework can guide experimental research on social interaction. PMID:23087631
Bohl, Vivian; van den Bos, Wouter
2012-01-01
Traditional theory of mind (ToM) accounts for social cognition have been at the basis of most studies in the social cognitive neurosciences. However, in recent years, the need to go beyond traditional ToM accounts for understanding real life social interactions has become all the more pressing. At the same time it remains unclear whether alternative accounts, such as interactionism, can yield a sufficient description and explanation of social interactions. We argue that instead of considering ToM and interactionism as mutually exclusive opponents, they should be integrated into a more comprehensive account of social cognition. We draw on dual process models of social cognition that contrast two different types of social cognitive processing. The first type (labeled Type 1) refers to processes that are fast, efficient, stimulus-driven, and relatively inflexible. The second type (labeled Type 2) refers to processes that are relatively slow, cognitively laborious, flexible, and may involve conscious control. We argue that while interactionism captures aspects of social cognition mostly related to Type 1 processes, ToM is more focused on those based on Type 2 processes. We suggest that real life social interactions are rarely based on either Type 1 or Type 2 processes alone. On the contrary, we propose that in most cases both types of processes are simultaneously involved and that social behavior may be sustained by the interplay between these two types of processes. Finally, we discuss how the new integrative framework can guide experimental research on social interaction.
Group facilitation: building that winning team.
Krumberger, J M
1992-12-01
Team building does not occur by chance; it involves using techniques to make it easier for members to contribute their expertise while working with others to achieve quality results. Evaluation of team effectiveness involves assessing both the processes (team interactions and work processes) and accomplishment of goals (out-comes; see box). Productivity and quality that could not be accomplished by individual efforts may be enhanced by effectively working teams.
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process
Chen, Yang; Zhang, Michael Q.
2018-01-01
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. PMID:29440282
Law, Emily F.; Sil, Soumitri; Weiss, Karen E.; Herbert, Linda Jones; Wohlheiter, Karen; Horn, Susan Berrin
2011-01-01
Objective This study examined whether increasing the demand for central cognitive processing involved in a distraction task, by involving the child in ongoing, effortful interaction with the distraction stimulus, would increase children's tolerance for cold pressor pain. Methods Seventy-nine children ages 6–15 years underwent a baseline cold pressor trial followed by two cold pressor trials in which they received interactive distraction (i.e., used voice commands to play a videogame) or passive distraction (in which they merely watched the output from the same videogame segment) in counterbalanced order. Both distraction conditions were presented via a virtual reality-type helmet. Results As expected, children demonstrated significant improvement in pain tolerance during distraction relative to baseline. Children showed the greatest improvement during the interactive distraction task. Conclusion The effects of distraction on children's cold pressor pain tolerance are significantly enhanced when the distraction task also includes greater demands for central cognitive processing. PMID:20656761
Rebiere-Huët, Julie; Di Martino, Patrick; Hulen, Christian
2004-05-01
Pseudomonas aeruginosa adherence to fibronectin has been shown to be important to bacterial colonization and infection. To better understand the mechanisms involved in this interaction, the role of the carbohydrate moiety of the fibronectin molecule in P. aeruginosa adhesion was studied. Strain NK 125 502 adhered to immobilized fibronectin with an adherence index of 4.8 x 10(5) CFU/ micro g. Periodic oxidation of fibronectin markedly reduced the adhesion of P. aeruginosa, while a neuraminidase treatment increased bacteria adhesion. N-Acetylgalactosamine, N-acetylglucosamine, sialic acid, and also lectin PA-IL worked as efficient inhibitors in adhesion assays: 59%, 70.7%, 100%, and 60% of inhibition, respectively. We have demonstrated here the involvement of a lectin-like process in the interaction of P. aeruginosa NK 125 502 with immobilized fibronectin.
Internalization, separation-individuation, and the nature of therapeutic action.
Blatt, S J; Behrends, R S
1987-01-01
Based on the assumption that the mutative factors that facilitate growth in psychoanalysis involve the same fundamental mechanisms that lead to psychological growth in normal development, this paper considers the constant oscillation between gratification and deprivation leading to internalization as the central therapeutic mechanism of the psychoanalytic process. Patients experience the analytic process as a series of gratifying involvements and experienced incompatibilities that facilitate internalization, whereby the patient recovers lost or disrupted regulatory, gratifying interactions with the analyst, which are real or fantasied, by appropriating these interactions, transforming them into their own, enduring, self-generated functions and characteristics. Patients internalize not only the analyst's interpretive activity, but also the analyst's sensitivity, compassion and acceptance, and, in addition, their own activity in relation to the analyst such as free association. Both interpretation and the therapeutic relationship can contain elements of gratifying involvement and experienced incompatibility that lead to internalization and therefore both can be mutative factors in the therapeutic process.
Multimedia And Internetworking Architecture Infrastructure On Interactive E-Learning System
NASA Astrophysics Data System (ADS)
Indah, K. A. T.; Sukarata, G.
2018-01-01
Interactive e-learning is a distance learning method that involves information technology, electronic system or computer as one means of learning system used for teaching and learning process that is implemented without having face to face directly between teacher and student. A strong dependence on emerging technologies greatly influences the way in which the architecture is designed to produce a powerful interactive e-learning network. In this paper analyzed an architecture model where learning can be done interactively, involving many participants (N-way synchronized distance learning) using video conferencing technology. Also used broadband internet network as well as multicast techniques as a troubleshooting method for bandwidth usage can be efficient.
Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F
2017-01-01
Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.
Effects of Real-Time Cochlear Implant Simulation on Speech Perception and Production
ERIC Educational Resources Information Center
Casserly, Elizabeth D.
2013-01-01
Real-time use of spoken language is a fundamentally interactive process involving speech perception, speech production, linguistic competence, motor control, neurocognitive abilities such as working memory, attention, and executive function, environmental noise, conversational context, and--critically--the communicative interaction between…
Lisofsky, Nina; Kazzer, Philipp; Heekeren, Hauke R; Prehn, Kristin
2014-08-01
Recent neuroimaging studies have found a broad network of brain regions involved in deception, including the prefrontal cortex, insula, anterior cingulate cortex (ACC), and inferior parietal lobule (IPL). Although deception can be conceptualized as the attempt to deliberately cause another person to accept a false belief, research to date has mainly focused on executive control processes when participants are instructed to lie under certain conditions. Recently, more ecologically valid and interactive experimental paradigms have been used in which subjects were also requested to take the perspective of another person, read his or her intentions, and make a self-determined decision to deceive that person and break a moral rule. To investigate the influence of these socio-cognitive processes on the neural network of deception, we performed a quantitative meta-analysis combining the data from 416 participants across 22 fMRI and two PET studies. Based on the description of the experimental paradigm, studies were divided in social interactive and non-interactive deception studies. Increased activation in the dorsal ACC, the right temporo-parietal junction (TPJ)/angular gyrus, and the bilateral temporal pole (TP) was found to be greater in social interactive than in non-interactive deception. These results demonstrate the important role of perspective taking, theory of mind, and moral reasoning processes in deception as well as conflict processing. In addition to the role of executive control processes determined by previous meta-analyses, our findings show the importance of these socio-cognitive processes in deception and give new insight into the function and interpretation of the brain regions involved. Copyright © 2014 Elsevier Ltd. All rights reserved.
Handwriting Fluency and Visuospatial Generativity at Primary School
ERIC Educational Resources Information Center
Stievano, Paolo; Michetti, Silvia; McClintock, Shawn M.; Levi, Gabriel; Scalisi, Teresa Gloria
2016-01-01
Handwriting is a complex activity that involves continuous interaction between lowerlevel perceptual-motor and higher-level cognitive processes. All handwriting models describe involvement of executive functions (EF) in handwriting development. Particular EF domains associated with handwriting include maintenance of information in working memory,…
Specificity of marine microbial surface interactions.
Imam, S H; Bard, R F; Tosteson, T R
1984-01-01
The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293
Kramer, Ueli; Pascual-Leone, Antonio; Rohde, Kristina B; Sachse, Rainer
2016-06-01
It is important to understand the change processes involved in psychotherapies for patients with personality disorders (PDs). One patient process that promises to be useful in relation to the outcome of psychotherapy is emotional processing. In the present process-outcome analysis, we examine this question by using a sequential model of emotional processing and by additionally taking into account a therapist's appropriate responsiveness to a patient's presentation in clarification-oriented psychotherapy (COP), a humanistic-experiential form of therapy. The present study involved 39 patients with a range of PDs undergoing COP. Session 25 was assessed as part of the working phase of each therapy by external raters in terms of emotional processing using the Classification of Affective-Meaning States (CAMS) and in terms of the overall quality of therapist-patient interaction using the Process-Content-Relationship Scale (BIBS). Treatment outcome was assessed pre- and post-therapy using the Global Severity Index (GSI) of the SCL-90-R and the BDI. Results indicate that the good outcome cases showed more self-compassion, more rejecting anger, and a higher quality of therapist-patient interaction compared to poorer outcome cases. For good outcome cases, emotional processing predicted 18% of symptom change at the end of treatment, which was not found for poor outcome cases. These results are discussed within the framework of an integrative understanding of emotional processing as an underlying mechanism of change in COP, and perhaps in other effective therapy approaches for PDs.
Are decisions under risk malleable?
Fong, C; McCabe, K
1999-09-14
Human decision making under risk and uncertainty may depend on individual involvement in the outcome-generating process. Expected utility theory is silent on this issue. Prospect theory in its current form offers little, if any, prediction of how or why involvement in a process should matter, although it may offer ex post interpretations of empirical findings. Well-known findings in psychology demonstrate that when subjects exercise more involvement or choice in lottery procedures, they value their lottery tickets more highly. This often is interpreted as an "illusion of control," meaning that when subjects are more involved in a lottery, they may believe they are more likely to win, perhaps because they perceive that they have more control over the outcome. Our experimental design eliminates several possible alternative explanations for the results of previous studies in an experiment that varies the degree and type of involvement in lottery procedures. We find that in treatments with more involvement subjects on average place less rather than more value on their lottery tickets. One possible explanation for this is that involvement interacts with loss aversion by causing subjects to weigh losses more heavily than they would otherwise. One implication of our study is that involvement, either independently or in interaction with myopic loss aversion, may help explain the extreme risk aversion of bond investors.
NASA Astrophysics Data System (ADS)
Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.
2015-12-01
Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.
Djekidel, Mohamed Nadhir; Chen, Yang; Zhang, Michael Q
2018-02-12
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. © 2018 Djekidel et al.; Published by Cold Spring Harbor Laboratory Press.
Classroom Response Systems for Implementing "Interactive Inquiry" in Large Organic Chemistry Classes
ERIC Educational Resources Information Center
Morrison, Richard W.; Caughran, Joel A.; Sauers, Angela L.
2014-01-01
The authors have developed "sequence response applications" for classroom response systems (CRSs) that allow instructors to engage and actively involve students in the learning process, probe for common misconceptions regarding lecture material, and increase interaction between instructors and students. "Guided inquiry" and…
Cardona, Alvaro; Nieto, Emmanuel; Mejía, Luz M
2010-01-01
Performing an academic exercise aimed at applying the analytical categories from the governance approach developed by Marc Hufty et al., to understand social actors relationships in an investigation and intervention project studying so-cioeconomic conditions and seeking to guarantee health insurance continuity for those workers who had lost their work in the city of Medellin, Colombia, from 2004 to 2007. A process of investigation and intervention was examined as a casestudy in which researchers were one of the actors so involved. Characterising stake-holders included: their level of inclusion/involvement in the problem; their power for influencing public policy proposals; their perceptions and proposals characteristics, power and dynamics regarding the problem of unemployment and health insurance when someone has lost her/his work; and the characteristics of their interaction with other actors. The results showed that the four analytical dimensions proposed by Hufty (actors, social norms, nodal points and processes) were useful for describing and understanding the interaction of the actors involved in the research and intervention proposal being analysed here (i.e. the case-study). It was concluded that the analytical governance framework proposed by Hufty was useful for understanding how the social subjects interacted; these were the rules which were taken for describing their interaction, being the most important nodes for interaction and progresses achieved whilst implementing the intervention proposal.
Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis
NASA Astrophysics Data System (ADS)
Li, Yue; Zhang, Zhaolei
2014-11-01
Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.
Neuroanatomical Correlates of Oral Reading in Acute Left Hemispheric Stroke
ERIC Educational Resources Information Center
Cloutman, Lauren L.; Newhart, Melisssa; Davis, Cameron L.; Heidler-Gary, Jennifer; Hillis, Argye E.
2011-01-01
Oral reading is a complex skill involving the interaction of orthographic, phonological, and semantic processes. Functional imaging studies with nonimpaired adult readers have identified a widely distributed network of frontal, inferior parietal, posterior temporal, and occipital brain regions involved in the task. However, while functional…
Fort, Alexandra; Delpuech, Claude; Pernier, Jacques; Giard, Marie-Hélène
2002-10-01
Very recently, a number of neuroimaging studies in humans have begun to investigate the question of how the brain integrates information from different sensory modalities to form unified percepts. Already, intermodal neural processing appears to depend on the modalities of inputs or the nature (speech/non-speech) of information to be combined. Yet, the variety of paradigms, stimuli and technics used make it difficult to understand the relationships between the factors operating at the perceptual level and the underlying physiological processes. In a previous experiment, we used event-related potentials to describe the spatio-temporal organization of audio-visual interactions during a bimodal object recognition task. Here we examined the network of cross-modal interactions involved in simple detection of the same objects. The objects were defined either by unimodal auditory or visual features alone, or by the combination of the two features. As expected, subjects detected bimodal stimuli more rapidly than either unimodal stimuli. Combined analysis of potentials, scalp current densities and dipole modeling revealed several interaction patterns within the first 200 micro s post-stimulus: in occipito-parietal visual areas (45-85 micro s), in deep brain structures, possibly the superior colliculus (105-140 micro s), and in right temporo-frontal regions (170-185 micro s). These interactions differed from those found during object identification in sensory-specific areas and possibly in the superior colliculus, indicating that the neural operations governing multisensory integration depend crucially on the nature of the perceptual processes involved.
Estrogenic involvement in social learning, social recognition and pathogen avoidance.
Choleris, Elena; Clipperton-Allen, Amy E; Phan, Anna; Valsecchi, Paola; Kavaliers, Martin
2012-04-01
Sociality comes with specific cognitive skills that allow the proper processing of information about others (social recognition), as well as of information originating from others (social learning). Because sociality and social interactions can also facilitate the spread of infection among individuals the ability to recognize and avoid pathogen threat is also essential. We review here various studies primarily from the rodent literature supporting estrogenic involvement in the regulation of social recognition, social learning (socially acquired food preferences and mate choice copying) and the recognition and avoidance of infected and potentially infected individuals. We consider both genomic and rapid estrogenic effects involving estrogen receptors α and β, and G-protein coupled estrogen receptor 1, along with their interactions with neuropeptide systems in the processing of social stimuli and the regulation and expression of these various socially relevant behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.
Oberwelland, E; Schilbach, L; Barisic, I; Krall, S C; Vogeley, K; Fink, G R; Herpertz-Dahlmann, B; Konrad, K; Schulte-Rüther, M
2016-04-15
Joint attention, the shared attentional focus of at least two people on a third significant object, is one of the earliest steps in social development and an essential aspect of reciprocal interaction. However, the neural basis of joint attention (JA) in the course of development is completely unknown. The present study made use of an interactive eye-tracking paradigm in order to examine the developmental trajectories of JA and the influence of a familiar interaction partner during the social encounter. Our results show that across children and adolescents JA elicits a similar network of "social brain" areas as well as attention and motor control associated areas as in adults. While other-initiated JA particularly recruited visual, attention and social processing areas, self-initiated JA specifically activated areas related to social cognition, decision-making, emotions and motivational/reward processes highlighting the rewarding character of self-initiated JA. Activation was further enhanced during self-initiated JA with a familiar interaction partner. With respect to developmental effects, activation of the precuneus declined from childhood to adolescence and additionally shifted from a general involvement in JA towards a more specific involvement for self-initiated JA. Similarly, the temporoparietal junction (TPJ) was broadly involved in JA in children and more specialized for self-initiated JA in adolescents. Taken together, this study provides first-time data on the developmental trajectories of JA and the effect of a familiar interaction partner incorporating the interactive character of JA, its reciprocity and motivational aspects. Copyright © 2016 Elsevier Inc. All rights reserved.
Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism.
Lairon, Denis; Play, Barbara; Jourdheuil-Rahmani, Dominique
2007-04-01
The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.
Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.
Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P
2012-08-01
Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.
Heffernan, Kayla Joanne; Chang, Shanton; Maclean, Skye Tamara; Callegari, Emma Teresa; Garland, Suzanne Marie; Reavley, Nicola Jane; Varigos, George Andrew; Wark, John Dennis
2016-02-09
The now ubiquitous catchphrase, "There's an app for that," rings true owing to the growing number of mobile phone apps. In excess of 97,000 eHealth apps are available in major app stores. Yet the effectiveness of these apps varies greatly. While a minority of apps are developed grounded in theory and in conjunction with health care experts, the vast majority are not. This is concerning given the Hippocratic notion of "do no harm." There is currently no unified formal theory for developing interactive eHealth apps, and development is especially difficult when complex messaging is required, such as in health promotion and prevention. This paper aims to provide insight into the creation of interactive eHealth apps for complex messaging, by leveraging the Safe-D case study, which involved complex messaging required to guide safe but sufficient UV exposure for vitamin D synthesis in users. We aim to create recommendations for developing interactive eHealth apps for complex messages based on the lessons learned during Safe-D app development. For this case study we developed an Apple and Android app, both named Safe-D, to safely improve vitamin D status in young women through encouraging safe ultraviolet radiation exposure. The app was developed through participatory action research involving medical and human computer interaction researchers, subject matter expert clinicians, external developers, and target users. The recommendations for development were created from analysis of the development process. By working with clinicians and implementing disparate design examples from the literature, we developed the Safe-D app. From this development process, recommendations for developing interactive eHealth apps for complex messaging were created: (1) involve a multidisciplinary team in the development process, (2) manage complex messages to engage users, and (3) design for interactivity (tailor recommendations, remove barriers to use, design for simplicity). This research has provided principles for developing interactive eHealth apps for complex messaging as guidelines by aggregating existing design concepts and expanding these concepts and new learnings from our development process. A set of guidelines to develop interactive eHealth apps generally, and specifically those for complex messaging, was previously missing from the literature; this research has contributed these principles. Safe-D delivers complex messaging simply, to aid education, and explicitly, considering user safety.
Heffernan, Kayla Joanne; Maclean, Skye Tamara; Callegari, Emma Teresa; Garland, Suzanne Marie; Reavley, Nicola Jane; Varigos, George Andrew; Wark, John Dennis
2016-01-01
Background The now ubiquitous catchphrase, “There’s an app for that,” rings true owing to the growing number of mobile phone apps. In excess of 97,000 eHealth apps are available in major app stores. Yet the effectiveness of these apps varies greatly. While a minority of apps are developed grounded in theory and in conjunction with health care experts, the vast majority are not. This is concerning given the Hippocratic notion of “do no harm.” There is currently no unified formal theory for developing interactive eHealth apps, and development is especially difficult when complex messaging is required, such as in health promotion and prevention. Objective This paper aims to provide insight into the creation of interactive eHealth apps for complex messaging, by leveraging the Safe-D case study, which involved complex messaging required to guide safe but sufficient UV exposure for vitamin D synthesis in users. We aim to create recommendations for developing interactive eHealth apps for complex messages based on the lessons learned during Safe-D app development. Methods For this case study we developed an Apple and Android app, both named Safe-D, to safely improve vitamin D status in young women through encouraging safe ultraviolet radiation exposure. The app was developed through participatory action research involving medical and human computer interaction researchers, subject matter expert clinicians, external developers, and target users. The recommendations for development were created from analysis of the development process. Results By working with clinicians and implementing disparate design examples from the literature, we developed the Safe-D app. From this development process, recommendations for developing interactive eHealth apps for complex messaging were created: (1) involve a multidisciplinary team in the development process, (2) manage complex messages to engage users, and (3) design for interactivity (tailor recommendations, remove barriers to use, design for simplicity). Conclusions This research has provided principles for developing interactive eHealth apps for complex messaging as guidelines by aggregating existing design concepts and expanding these concepts and new learnings from our development process. A set of guidelines to develop interactive eHealth apps generally, and specifically those for complex messaging, was previously missing from the literature; this research has contributed these principles. Safe-D delivers complex messaging simply, to aid education, and explicitly, considering user safety. PMID:26860623
Co-Construction in Korean Interaction
ERIC Educational Resources Information Center
Ju, Hee
2011-01-01
This dissertation explores co-construction of a situated activity in a current unit by mainly focusing on hearers' actions. The "co-construction" involves a process of interaction in which speakers and hearers jointly construct the form and the meaning of ongoing utterances even when they disagree with each other (Jacoby & Ochs,…
ERIC Educational Resources Information Center
Fan, Xinxin; Geelan, David; Gillies, Robyn
2018-01-01
This study investigated the effectiveness of a novel inquiry-based instructional sequence using interactive simulations for supporting students' development of conceptual understanding, inquiry process skills and confidence in learning. The study, conducted in Beijing, involved two teachers and 117 students in four classes. The teachers…
Testing an Integrated Model of Advice Giving in Supportive Interactions
ERIC Educational Resources Information Center
Feng, Bo
2009-01-01
Viewing supportive communication as a multistage process, the present study proposed and tested an integrated model of advice giving, which specifies three sequential moves in supportive interactions involving advice: emotional support, problem inquiry and analysis, and advice. Seven hundred and fifty-two participants read and responded to a…
Bioinformatic prediction of leader genes in human periodontitis.
Covani, Ugo; Marconcini, Simone; Giacomelli, Luca; Sivozhelevov, Victor; Barone, Antonio; Nicolini, Claudio
2008-10-01
Genes involved in different biologic processes form complex interaction networks. However, only a few have a high number of interactions with the other genes in the network. In previous bioinformatics and experimental studies concerning the T lymphocyte cell cycle, these genes were identified and termed "leader genes." In this work, genes involved in human periodontitis were tentatively identified and ranked according to their number of interactions to obtain a preliminary, broader view of molecular mechanisms of periodontitis and plan targeted experimentation. Genes were identified with interrelated queries of several databases. The interactions among these genes were mapped and given a significance score. The weighted number of links (weighted sum of scores for every interaction in which the given gene is involved) was calculated for each gene. Genes were clustered according to this parameter. The genes in the highest cluster were termed leader genes. Sixty-one genes involved or potentially involved in periodontitis were identified. Only five were identified as leader genes, whereas 12 others were ranked in an immediately lower cluster. For 10 of 17 genes there is evidence of involvement in periodontitis; seven new genes that are potentially involved in this disease were identified. The involvement in periodontitis has been completely established for only two leader genes. We applied a validated bioinformatics algorithm to increase our knowledge of molecular mechanisms of periodontitis. Even with the limitations of this ab initio analysis, this theoretical study can suggest ad hoc experimentation targeted on significant genes and, therefore, simpler than mass-scale molecular genomics. Moreover, the identification of leader genes might suggest new potential risk factors and therapeutic targets.
Sonic Onyx: Case Study of an Interactive Artwork
NASA Astrophysics Data System (ADS)
Ahmed, Salah Uddin; Jaccheri, Letizia; M'kadmi, Samir
Software supported art projects are increasing in numbers in recent years as artists are exploring how computing can be used to create new forms of live art. Interactive sound installation is one kind of art in this genre. In this article we present the development process and functional description of Sonic Onyx, an interactive sound installation. The objective is to show, through the life cycle of Sonic Onyx, how a software dependent interactive artwork involves its users and raises issues related to its interaction and functionalities.
Spitters, Hilde P E M; Lau, Cathrine J; Sandu, Petru; Quanjel, Marcel; Dulf, Diana; Glümer, Charlotte; van Oers, Hans A M; van de Goor, Ien A M
2017-02-03
Facilitating and enhancing interaction between stakeholders involved in the policymaking process to stimulate collaboration and use of evidence, is important to foster the development of effective Health Enhancing Physical Activity (HEPA) policies. Performing an analysis of real-world policymaking processes will help reveal the complexity of a network of stakeholders. Therefore, the main objectives were to unravel the stakeholder network in the policy process by conducting three systems analyses, and to increase insight into the similarities and differences in the policy processes of these European country cases. A systems analysis of the local HEPA policymaking process was performed in three European countries involved in the 'REsearch into POlicy to enhance Physical Activity' (REPOPA) project, resulting in three schematic models showing the main stakeholders and their relationships. The models were used to compare the systems, focusing on implications with respect to collaboration and use of evidence in local HEPA policymaking. Policy documents and relevant webpages were examined and main stakeholders were interviewed. The systems analysis in each country identified the main stakeholders involved and their position and relations in the policymaking process. The Netherlands and Denmark were the most similar and both differed most from Romania, especially at the level of accountability of the local public authorities for local HEPA policymaking. The categories of driving forces underlying the relations between stakeholders were formal relations, informal interaction and knowledge exchange. A systems analysis providing detailed descriptions of positions and relations in the stakeholder network in local level HEPA policymaking is rather unique in this area. The analyses are useful when a need arises for increased interaction, collaboration and use of knowledge between stakeholders in the local HEPA network, as they provide an overview of the stakeholders involved and their mutual relations. This information can be an important starting point to enhance the uptake of evidence and build more effective public health policies.
Differences That Make a Difference: A Study in Collaborative Learning
ERIC Educational Resources Information Center
Touchman, Stephanie
2012-01-01
Collaborative learning is a common teaching strategy in classrooms across age groups and content areas. It is important to measure and understand the cognitive process involved during collaboration to improve teaching methods involving interactive activities. This research attempted to answer the question: why do students learn more in…
Stålberg, Anna; Sandberg, Anette; Söderbäck, Maja; Larsson, Thomas
2016-06-01
During the last decade, interactive technology has entered mainstream society. Its many users also include children, even the youngest ones, who use the technology in different situations for both fun and learning. When designing technology for children, it is crucial to involve children in the process in order to arrive at an age-appropriate end product. In this study we describe the specific iterative process by which an interactive application was developed. This application is intended to facilitate young children's, three-to five years old, participation in healthcare situations. We also describe the specific contributions of the children, who tested the prototypes in a preschool, a primary health care clinic and an outpatient unit at a hospital, during the development process. The iterative phases enabled the children to be involved at different stages of the process and to evaluate modifications and improvements made after each prior iteration. The children contributed their own perspectives (the child's perspective) on the usability, content and graphic design of the application, substantially improving the software and resulting in an age-appropriate product. Copyright © 2016 Elsevier Inc. All rights reserved.
Resolving a Prickly Situation: Involving Stakeholders in Invasive Cactus Management in South Africa
NASA Astrophysics Data System (ADS)
Novoa, Ana; Kaplan, Haylee; Wilson, John R. U.; Richardson, David M.
2016-05-01
The regulation and management of alien species can be contentious, particularly when the stakeholders who benefit from alien species are different from those who suffer the costs. We propose a consultative process involving relevant stakeholders in invasive species management decisions. The process involves (1) the identification of relevant stakeholders, (2) assessing their perceptions, (3) enhancing interaction between stakeholders, (4) assessing changes in stakeholders' perceptions following interactions with other stakeholders, and (5) developing management recommendations in collaboration with stakeholders. We demonstrate the application of the process using the family Cactaceae (`cacti') in South Africa. Many species of cacti have been introduced to the country over the past two centuries, mostly for horticulture, food and fodder, and hundreds of other species have been introduced in the past few decades (or are likely to be introduced soon) for horticulture. Using the proposed process enabled the negotiation and participation of all stakeholders in decision making and helped minimize contentious situations by clarifying stakeholder's beliefs and exploring consensus solutions. Consequently, management objectives were broadly supported by all stakeholders. These results will be included in a national cactus management strategy for South Africa.
Resolving a Prickly Situation: Involving Stakeholders in Invasive Cactus Management in South Africa.
Novoa, Ana; Kaplan, Haylee; Wilson, John R U; Richardson, David M
2016-05-01
The regulation and management of alien species can be contentious, particularly when the stakeholders who benefit from alien species are different from those who suffer the costs. We propose a consultative process involving relevant stakeholders in invasive species management decisions. The process involves (1) the identification of relevant stakeholders, (2) assessing their perceptions, (3) enhancing interaction between stakeholders, (4) assessing changes in stakeholders' perceptions following interactions with other stakeholders, and (5) developing management recommendations in collaboration with stakeholders. We demonstrate the application of the process using the family Cactaceae ('cacti') in South Africa. Many species of cacti have been introduced to the country over the past two centuries, mostly for horticulture, food and fodder, and hundreds of other species have been introduced in the past few decades (or are likely to be introduced soon) for horticulture. Using the proposed process enabled the negotiation and participation of all stakeholders in decision making and helped minimize contentious situations by clarifying stakeholder's beliefs and exploring consensus solutions. Consequently, management objectives were broadly supported by all stakeholders. These results will be included in a national cactus management strategy for South Africa.
Pi-Pi contacts are an overlooked protein feature relevant to phase separation
Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong
2018-01-01
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691
Dynamic functional brain networks involved in simple visual discrimination learning.
Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis
2014-10-01
Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Limited Role of Contextual Information in Adult Word Recognition. Technical Report No. 411.
ERIC Educational Resources Information Center
Durgunoglu, Aydin Y.
Recognizing a word in a meaningful text involves processes that combine information from many different sources, and both bottom-up processes (such as feature extraction and letter recognition) and top-down processes (contextual information) are thought to interact when skilled readers recognize words. Two similar experiments investigated word…
Schneider, Bradley B.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.
2013-01-01
Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure. PMID:20065515
Noninvasive imaging of protein-protein interactions in living organisms.
Haberkorn, Uwe; Altmann, Annette
2003-06-01
Genomic research is expected to generate new types of complex observational data, changing the types of experiments as well as our understanding of biological processes. The investigation and definition of relationships among proteins is essential for understanding the function of each gene and the mechanisms of biological processes that specific genes are involved in. Recently, a study by Paulmurugan et al. demonstrated a tool for in vivo noninvasive imaging of protein-protein interactions and intracellular networks.
Neural substrates of interactive musical improvisation: an FMRI study of 'trading fours' in jazz.
Donnay, Gabriel F; Rankin, Summer K; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J
2014-01-01
Interactive generative musical performance provides a suitable model for communication because, like natural linguistic discourse, it involves an exchange of ideas that is unpredictable, collaborative, and emergent. Here we show that interactive improvisation between two musicians is characterized by activation of perisylvian language areas linked to processing of syntactic elements in music, including inferior frontal gyrus and posterior superior temporal gyrus, and deactivation of angular gyrus and supramarginal gyrus, brain structures directly implicated in semantic processing of language. These findings support the hypothesis that musical discourse engages language areas of the brain specialized for processing of syntax but in a manner that is not contingent upon semantic processing. Therefore, we argue that neural regions for syntactic processing are not domain-specific for language but instead may be domain-general for communication.
Neural Substrates of Interactive Musical Improvisation: An fMRI Study of ‘Trading Fours’ in Jazz
Donnay, Gabriel F.; Rankin, Summer K.; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J.
2014-01-01
Interactive generative musical performance provides a suitable model for communication because, like natural linguistic discourse, it involves an exchange of ideas that is unpredictable, collaborative, and emergent. Here we show that interactive improvisation between two musicians is characterized by activation of perisylvian language areas linked to processing of syntactic elements in music, including inferior frontal gyrus and posterior superior temporal gyrus, and deactivation of angular gyrus and supramarginal gyrus, brain structures directly implicated in semantic processing of language. These findings support the hypothesis that musical discourse engages language areas of the brain specialized for processing of syntax but in a manner that is not contingent upon semantic processing. Therefore, we argue that neural regions for syntactic processing are not domain-specific for language but instead may be domain-general for communication. PMID:24586366
Subliminally and consciously induced cognitive conflicts interact at several processing levels.
Stock, Ann-Kathrin; Friedrich, Julia; Beste, Christian
2016-12-01
Controlled behavior is susceptible to conflicts that can emerge from subliminal or consciously processed information. While research suggests that both sources of conflicting information may interact in their modulation of controlled behavior, it has remained unclear which cognitive sub-processes involved in controlled behavior are affected by this interaction; i.e., at which processing level subliminally and consciously induced response conflicts interact in modulating controlled behavior. Moreover, we investigated whether this interaction of subliminally and consciously induced response conflicts was due to a nexus between the two types of conflict like a common cognitive process or factor. For this, n = 38 healthy young subjects completed a paradigm which combines subliminal primes and consciously perceived flankers while an electroencephalography (EEG) was recorded. We show that the interaction of subliminal and conscious sources of conflict is not restricted to the response selection level (N2) but can already be shown at the earliest stages of perceptual and attentional processing (P1). While the degree of early attentional processing of subliminal information seems to depend on the absence of consciously perceived response conflicts, conflicts during the stage of response selection may be either reduced or enhanced by subliminal priming. Moreover, the results showed that even though the two different sources of conflict interact at the response selection level, they clearly originate from two distinct processes that interact before they detrimentally affect cognitive control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microbial interactions: ecology in a molecular perspective.
Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz
2016-12-01
The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Reward acts on the pFC to enhance distractor resistance of working memory representations.
Fallon, Sean James; Cools, Roshan
2014-12-01
Working memory and reward processing are often thought to be separate, unrelated processes. However, most daily activities involve integrating these two types of information, and the two processes rarely, if ever, occur in isolation. Here, we show that working memory and reward interact in a task-dependent manner and that this task-dependent interaction involves modulation of the pFC by the ventral striatum. Specifically, BOLD signal during gains relative to losses in the ventral striatum and pFC was associated not only with enhanced distractor resistance but also with impairment in the ability to update working memory representations. Furthermore, the effect of reward on working memory was accompanied by differential coupling between the ventral striatum and ignore-related regions in the pFC. Together, these data demonstrate that reward-related signals modulate the balance between cognitive stability and cognitive flexibility by altering functional coupling between the ventral striatum and the pFC.
Wang, Yi; Lee, Sui Mae; Dykes, Gary
2015-01-01
Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.
Gene-environment interaction involving recently identified colorectal cancer susceptibility loci
Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily
2014-01-01
BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789
The Cognitive Neuroscience of the Teacher-Student Interaction
ERIC Educational Resources Information Center
Battro, Antonio M.; Calero, Cecilia I.; Goldin, Andrea P.; Holper, Lisa; Pezzatti, Laura; Shalóm, Diego E.; Sigman, Mariano
2013-01-01
Pedagogy is the science and art of teaching. Each generation needs to explore the history, theory, and practice of the teacher-student interaction. Here we pave the path to develop a science that explores the cognitive and physiological processes involved in the human capacity to communicate knowledge through teaching. We review examples from our…
Dual Learning Processes in Interactive Skill Acquisition
ERIC Educational Resources Information Center
Fu, Wai-Tat; Anderson, John R.
2008-01-01
Acquisition of interactive skills involves the use of internal and external cues. Experiment 1 showed that when actions were interdependent, learning was effective with and without external cues in the single-task condition but was effective only with the presence of external cues in the dual-task condition. In the dual-task condition, actions…
Physical Attractiveness: Interactive Effects of Counselor and Client on Counseling Processes.
ERIC Educational Resources Information Center
Vargas, Alice M.; Borkowski, John G.
1983-01-01
Assessed how the physical attractiveness of counselors and clients interacted to build rapport in two experiments involving college students (N=128 and N=64). Results showed the counselor's physical attractiveness had a major impact on her perceived effectiveness and the client's expectation of success irrespective of the client's attractiveness…
Who decides? The decision-making process of juvenile judges concerning minors with mental disorders.
Cappon, Leen
2016-01-01
Previous research on juvenile judges' decision-making process has neglected the role of the different actors involved in judicial procedures. The decision can be considered as a result of information exchange between the different actors involved. The process of making a decision is equally important as the decision itself, especially when the decision considers minors with mental disorders. The presence and the type of interaction determine the information available to the juvenile judges to make their final decision. The overall aim of this study is to gain insight into the role of all actors, including the juvenile judge, in the juvenile judge's decision-making process in cases relating to minors with mental disorders. Semi-structured interviews were carried out with professional actors (n=32), minors (n=31) and parents (n=17). The findings indicated that the judge's decision is overall the result of an interaction between the juvenile judge, the social services investigator and the youth psychiatrist. The other professional actors, the minors and the parents had only a limited role in the decision-making process. The research concludes that the judge's decision-making process should be based on dialogue, and requires enhanced collaboration between the juvenile court and youth psychiatrists from mental health services. Future decision-making research should pay more attention to the interactions of the actors that guide a juvenile judge's decision. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Rational Analysis of the Effects of Memory Biases on Serial Reproduction
ERIC Educational Resources Information Center
Xu, Jing; Griffiths, Thomas L.
2010-01-01
Many human interactions involve pieces of information being passed from one person to another, raising the question of how this process of information transmission is affected by the cognitive capacities of the agents involved. Bartlett (1932) explored the influence of memory biases on the "serial reproduction" of information, in which one…
(Fish) Food for Thought: Authority Shifts in the Interaction between Mathematics and Reality
ERIC Educational Resources Information Center
Peled, Irit
2010-01-01
This theoretical paper explores the decision-making process involved in modelling and mathematizing situations during problem solving. Specifically, it focuses on the authority behind these choices (i.e., what or who determines the chosen mathematical models). We show that different types of situations involve different sources of authority,…
USDA-ARS?s Scientific Manuscript database
The plant pathogen Pseudomonas syringae accounts for substantial crop losses and is considered an important agricultural issue. Although many genes involved in interactions of this pathogen with hosts have been identified and characterized, little is known about processes involving bacterial metabol...
Assessing the Utility of Work Team Theory in a Unified Command Environment at Catastrophic Incidents
2005-03-01
between agencies that potentially affects command post (CP) interactions . All of the foregoing factors contribute to a turbulent management environment...requiring special strategy consideration with and IMT preparation. “Conflict refers to a process of social interaction involving a struggle over...from interactions . These schemas can be grouped as cultural norms perpetuated generationally from seasoned officers to raw recruits, and shared by
Role of Silicon on Plant–Pathogen Interactions
Wang, Min; Gao, Limin; Dong, Suyue; Sun, Yuming; Shen, Qirong; Guo, Shiwei
2017-01-01
Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant–pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant–pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant–microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture. PMID:28529517
Replication protein A 32 interacts through a similar binding interface with TIPIN, XPA, and UNG2.
Ali, Seikh Imtiaz; Shin, Jae-Sun; Bae, Sung-Hun; Kim, Byoungkook; Choi, Byong-Seok
2010-07-01
The 32kDa subunit of replication protein A (RPA32) is involved in various DNA repair systems such as nucleotide excision repair, base excision repair, and homologous recombination. In these processes, RPA32 interacts with different binding partners via its C-terminal domain (RPA32C; residues 172-270). It has been reported recently that RPA32C also interacts with TIPIN during the intra-S checkpoint. To determine the significance of the interaction of RPA32C with TIPIN, we have examined the interaction mode using NMR spectroscopy and an in silico modeling approach. Here, we show that TIPIN(185-218), which shares high sequence similarity with XPA(10-43) and UNG2(56-89), is less ordered in the free state and then forms a longer alpha-helix upon binding to RPA32C. The binding interface between TIPIN(185-218) and RPA32C is similar to those of XPA and UNG2, but its mode of interaction is different. The results suggest that RPA32 is an exchange point for multiple proteins involved in DNA repair, homologous recombination, and checkpoint processes and that it binds to different partners with comparable binding affinity using a single site. Copyright 2010 Elsevier Ltd. All rights reserved.
The Longitudinal Process of Early Parent Involvement on Student Achievement: A Path Analysis
Hayakawa, Momoko; Englund, Michelle M.; Warner-Richter, Mallory N.; Reynolds, Arthur J
2016-01-01
This longitudinal study investigated the process whereby early parent involvement in preschool effects student achievement from kindergarten through 6th grade. Participants were 1,539 low-income, mainly African American children and their mothers, in the Chicago Longitudinal Study. Program children (N = 989) received one or two years of the Child-Parent Center (CPC) program – a preschool intervention that strongly promoted parents' development of parent involvement skills within the school and at home. Children from similar backgrounds who did not attend the CPC, but participated in available local resources (e.g. day care), were obtained as a comparison group (N = 550). Path analysis revealed an interactive process between parent involvement, academic achievement, and children's motivation. Early parent involvement directly influenced kindergarten achievement, which in turn influenced first grade student motivation. Highly motivated children then encouraged parents to continue involvement. The cyclic nature of this process across elementary school was observed. The model accounted for 61% of the variance in 6th grade achievement. Findings suggest that early parent involvement promoted in the CPC program, sets the stage for subsequent parent involvement, student motivation, and academic achievement throughout early and middle childhood. PMID:27867317
NASA Astrophysics Data System (ADS)
Bommel, P.; Bautista Solís, P.; Leclerc, G.
2016-12-01
We implemented a participatory process with water stakeholders for improving resilience to drought at watershed scale, and for reducing water pollution disputes in drought prone Northwestern Costa Rica. The purpose is to facilitate co-management in a rural watershed impacted by recurrent droughts related to ENSO. The process involved designing "ContaMiCuenca", a hybrid agent-based model where users can specify the decisions of their agents. We followed a Companion Modeling approach (www.commod.org) and organized 10 workshops that included research techniques such as participatory diagnostics, actor-resources-interaction and UML diagrams, multi-agents model design, and interactive simulation sessions. We collectively assessed the main water issues in the watershed, prioritized their importance, defined the objectives of the process, and pilot-tested ContaMiCuenca for environmental education with adults and children. Simulation sessions resulted in debates about the need to improve the model accuracy, arguably more relevant for decision-making. This helped identify sensible knowledge gaps in the groundwater pollution and aquifer dynamics that need to be addressed in order to improve our collective learning. Significant mismatches among participants expectations, objectives, and agendas considerably slowed down the participatory process. The main issue may originate in participants expecting technical solutions from a positivist science, as constantly promoted in the region by dole-out initiatives, which is incompatible with the constructivist stance of participatory modellers. This requires much closer interaction of community members with modellers, which may be hard to attain in the current research practice and institutional context. Nevertheless, overcoming these constraints is necessary for a true involvement of water stakeholders to achieve community-based decisions that facilitate integrated water management. Our findings provide significant guidance for improving the trans-generational engagement of stakeholders in participatory modeling processes in a context of limited technical skills and information, research expectative mismatches, and poor multi-stakeholder interaction for decision-making.
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
An integrative process model of leadership: examining loci, mechanisms, and event cycles.
Eberly, Marion B; Johnson, Michael D; Hernandez, Morela; Avolio, Bruce J
2013-09-01
Utilizing the locus (source) and mechanism (transmission) of leadership framework (Hernandez, Eberly, Avolio, & Johnson, 2011), we propose and examine the application of an integrative process model of leadership to help determine the psychological interactive processes that constitute leadership. In particular, we identify the various dynamics involved in generating leadership processes by modeling how the loci and mechanisms interact through a series of leadership event cycles. We discuss the major implications of this model for advancing an integrative understanding of what constitutes leadership and its current and future impact on the field of psychological theory, research, and practice. © 2013 APA, all rights reserved.
Learner Centred Design for a Hybrid Interaction Application
ERIC Educational Resources Information Center
Wood, Simon; Romero, Pablo
2010-01-01
Learner centred design methods highlight the importance of involving the stakeholders of the learning process (learners, teachers, educational researchers) at all stages of the design of educational applications and of refining the design through an iterative prototyping process. These methods have been used successfully when designing systems…
Pi-Pi contacts are an overlooked protein feature relevant to phase separation.
Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah
2018-02-09
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.
Ikemoto, Satoshi; Bonci, Antonello
2013-01-01
In recent years, neuroscientists have produced profound conceptual and mechanistic advances on the neurocircuitry of reward and substance use disorders. Here, we will provide a brief review of intracranial drug self-administration and optogenetic self-stimulation studies that identified brain regions and neurotransmitter systems involved in drug- and reward-related behaviors. Also discussed is a theoretical framework that helps to understand the functional properties of the circuitry involved in these behaviors. The circuitry appears to be homeostatically regulated and mediate anticipatory processes that regulate behavioral interaction with the environment in response to salient stimuli. That is, abused drugs or, at least, some may act on basic motivation and mood processes, regulating behavior-environment interaction. Optogenetics and related technologies have begun to uncover detailed circuit mechanisms linking key brain regions in which abused drugs act for rewarding effects. PMID:23664810
An efficient way of studying protein-protein interactions involving HIF-α, c-Myc, and Sp1.
To, Kenneth K-W; Huang, L Eric
2013-01-01
Protein-protein interaction is an essential biochemical event that mediates various cellular processes including gene expression, intracellular signaling, and intercellular interaction. Understanding such interaction is key to the elucidation of mechanisms of cellular processes in biology and diseases. The hypoxia-inducible transcription factor HIF-1α possesses a non-transcriptional activity that competes with c-Myc for Sp1 binding, whereas its isoform HIF-2α lacks Sp1-binding activity due to phosphorylation. Here, we describe the use of in vitro translation to effectively investigate the dynamics of protein-protein interactions among HIF-1α, c-Myc, and Sp1 and to demonstrate protein phosphorylation as a molecular determinant that functionally distinguishes HIF-2α from HIF-1α.
Hage, David S.
2017-01-01
BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically-related binding agent, are two methods that can be used to study these interactions. CONTENT This review looks at various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. PMID:28396561
Atomic and molecular data for spacecraft re-entry plasmas
NASA Astrophysics Data System (ADS)
Celiberto, R.; Armenise, I.; Cacciatore, M.; Capitelli, M.; Esposito, F.; Gamallo, P.; Janev, R. K.; Laganà, A.; Laporta, V.; Laricchiuta, A.; Lombardi, A.; Rutigliano, M.; Sayós, R.; Tennyson, J.; Wadehra, J. M.
2016-06-01
The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires a large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong non-equilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electron-impact excitation of molecules, atom-diatom and molecule-molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N2, O2, NO), Mars (CO2, CO, N2) and Jupiter (H2, He) atmospheres are considered.
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.
2015-12-01
Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.
Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M
1998-04-01
Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.
Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight
NASA Technical Reports Server (NTRS)
Narducci, Robert; Orr, Stanley; Kreeger, Richard E.
2012-01-01
An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.
Neves, Robson da Fonseca; Nunes, Mônica de Oliveira; Magalhães, Lilian
2015-11-01
Mental disorders cause impact in the work environment. Investigations of interaction among stakeholders who are involved in the return to work are scarce. Meta-ethnography serves to synthesize qualitative studies by means of ongoing interpretation and comparison of the ideas presented in the articles. The goal of this study is to present a meta-ethnography of the interactions among the stakeholders involved in the return to work process after leave of absence due to mental disorders. It aims: (1) to investigate the interactions among stakeholders involved in return to work; (2) to identify enablers or obstacles for the return to work. The database search found 619 articles, 16 of which met the inclusion criteria. Analysis of the articles revealed six second-order concepts that resulted in two syntheses. The first is about performance ethos in the return to work, and the second shows return to work as a catalyst of new life styles. Models that favor the worker's performance ethos, as well as a perspective oriented by psychosocial aspects may enable return to work practices after leave of absence due to mental disorders.
Making Transitions: The Role of Interaction in Joining a Workplace Community of Practice
ERIC Educational Resources Information Center
Holmes, Janet
2015-01-01
In the process of transitioning from one institution or workplace to another, people often encounter new interactional norms and values. For those moving countries as well as workplaces, the transition may involve different cultural and societal norms and values; but even a move between organisations or workplace teams within a country may present…
ERIC Educational Resources Information Center
Duffield, Cecily Jill
2013-01-01
A key debate in the psycholinguistic study of grammatical language production is whether the process is a syntactocentric one, driven by grammatical information and grammatical rules, or a dynamic, interactive one, involving both semantic and syntactic information. Examining how speakers produce subject-verb number agreement has been useful in…
On the Relation of Locus of Control and L2 Reading and Writing Achievement
ERIC Educational Resources Information Center
Ghonsooly, Behzad; Shirvan, Majid Elahi
2011-01-01
Locus of control, a psychological construct, has been the focus of attention in recent decades. Psychologists have discussed the effect of locus of control on achieving life goals in social/psychological interactions. While learning a foreign language involves both social interactions and psychological processes, the role and relation of locus of…
ERIC Educational Resources Information Center
Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.
2003-01-01
Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. "Cancer Cell Biology," an interactive, multimedia,…
An Evaluation-Driven Design Approach to Develop Learning Environments Based on Full-Body Interaction
ERIC Educational Resources Information Center
Malinverni, Laura; Schaper, Marie-Monique; Pares, Narcís
2016-01-01
The development of learning environments based on full-body interaction has become an increasingly important field of research in recent years. However, the design and evaluation strategies currently used present some significant limitations. Two major shortcomings are: the inadequate involvement of children in the design process and a lack of…
Parent-Child Interaction Processes Related to Scholastic Achievement in Urban Elementary Children.
ERIC Educational Resources Information Center
Portes, Pedro R.; And Others
In an attempt to identify parent-child interaction patterns that might differentiate bright from below-average elementary students, 16 high achievers and 16 low achievers were paired with their mothers and then videotaped whilst engaged in 3 sets of task situations, which involved copying of Block Design models and categorization of words and…
Virtual Titrator: A Student-Oriented Instrument.
ERIC Educational Resources Information Center
Ritter, David; Johnson, Michael
1997-01-01
Describes a titrator system, constructed from a computer-interfaced pH-meter, that was designed to increase student involvement in the process. Combines automatic data collection with real-time graphical display and interactive controls to focus attention on the process rather than on bits of data. Improves understanding of concepts and…
Beyond Word Processing: Rhetorical Invention with Computers.
ERIC Educational Resources Information Center
Strickland, James
In the area of composition, computer assisted instruction (CAI) must move beyond the limited concerns of the current-traditional rhetoric to address the larger issues of writing, become process-centered, and involve active writing rather than answering multiple-choice questions. Researchers cite four major types of interactive CAI, the last of…
George Herbert Mead's Contribution to the Philosophy of American Education.
ERIC Educational Resources Information Center
Renger, Paul, III
1980-01-01
George Herbert Mead's general philsophy showed that he regarded the development of distinctively human behavior as essentially the result of an individual's meaningful participation in the social process of the community to which he belongs. Mead believed that education was a social process involving the meaningful interaction and communication…
The Technological Culture of War
ERIC Educational Resources Information Center
Pretorius, Joelien
2008-01-01
The article proceeds from the argument that war is a social institution and not a historical inevitability of human interaction, that is, war can be "unlearned." This process involves deconstructing/dismantling war as an institution in society. An important step in this process is to understand the philosophical and cultural bases on…
Left Lateralized Enhancement of Orofacial Somatosensory Processing Due to Speech Sounds
ERIC Educational Resources Information Center
Ito, Takayuki; Johns, Alexis R.; Ostry, David J.
2013-01-01
Purpose: Somatosensory information associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which cortical processes are involved in the interaction between speech sounds and orofacial somatosensory…
Dores, A R; Almeida, I; Barbosa, F; Castelo-Branco, M; Monteiro, L; Reis, M; de Sousa, L; Caldas, A Castro
2013-01-01
Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed. The effect of emotional valence and visualization types and their interaction were analyzed through a 3 × 2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios' valence) and their interaction with three-dimensionality.
Exploring the Emotional Side of Job Search Behavior for Younger Workforce Entrants.
ERIC Educational Resources Information Center
Linnehan, Frank; Blau, Gary
1998-01-01
A sample of 18- to 23-year-old workforce entrants (N=332) was broken into subsamples. Study 1 found support for detached and interactive job-search behavior which seemed to represent different levels of emotional involvement in the job-search process. Study 2 involved working college students (N=117) and found that extroverts favored interactive…
Processes Underlying Father Involvement in Dual-Earner and Single-Earner Families.
ERIC Educational Resources Information Center
Crouter, Ann C.; And Others
1987-01-01
Correlates of father involvement were examined in 40 dual- and single-earner families with 1- to 25-month-old children. Fathers' work hours, sex role attitudes, perceived child care skill and perceived love for wives were assessed. On nine occasions, parents were asked to report on child care, leisure activities, and marital interactions during…
Georgescu, Alexandra L; Kuzmanovic, Bojana; Santos, Natacha S; Tepest, Ralf; Bente, Gary; Tittgemeyer, Marc; Vogeley, Kai
2014-04-01
Despite the fact that nonverbal dyadic social interactions are abundant in the environment, the neural mechanisms underlying their processing are not yet fully understood. Research in the field of social neuroscience has suggested that two neural networks appear to be involved in social understanding: (1) the action observation network (AON) and (2) the social neural network (SNN). The aim of this study was to determine the differential contributions of the AON and the SNN to the processing of nonverbal behavior as observed in dyadic social interactions. To this end, we used short computer animation sequences displaying dyadic social interactions between two virtual characters and systematically manipulated two key features of movement activity, which are known to influence the perception of meaning in nonverbal stimuli: (1) movement fluency and (2) contingency of movement patterns. A group of 21 male participants rated the "naturalness" of the observed scenes on a four-point scale while undergoing fMRI. Behavioral results showed that both fluency and contingency significantly influenced the "naturalness" experience of the presented animations. Neurally, the AON was preferentially engaged when processing contingent movement patterns, but did not discriminate between different degrees of movement fluency. In contrast, regions of the SNN were engaged more strongly when observing dyads with disturbed movement fluency. In conclusion, while the AON is involved in the general processing of contingent social actions, irrespective of their kinematic properties, the SNN is preferentially recruited when atypical kinematic properties prompt inferences about the agents' intentions. Copyright © 2013 Wiley Periodicals, Inc.
Sahaï, Aïsha; Pacherie, Elisabeth; Grynszpan, Ouriel; Berberian, Bruno
2017-01-01
Nowadays, interactions with others do not only involve human peers but also automated systems. Many studies suggest that the motor predictive systems that are engaged during action execution are also involved during joint actions with peers and during other human generated action observation. Indeed, the comparator model hypothesis suggests that the comparison between a predicted state and an estimated real state enables motor control, and by a similar functioning, understanding and anticipating observed actions. Such a mechanism allows making predictions about an ongoing action, and is essential to action regulation, especially during joint actions with peers. Interestingly, the same comparison process has been shown to be involved in the construction of an individual's sense of agency, both for self-generated and observed other human generated actions. However, the implication of such predictive mechanisms during interactions with machines is not consensual, probably due to the high heterogeneousness of the automata used in the experimentations, from very simplistic devices to full humanoid robots. The discrepancies that are observed during human/machine interactions could arise from the absence of action/observation matching abilities when interacting with traditional low-level automata. Consistently, the difficulties to build a joint agency with this kind of machines could stem from the same problem. In this context, we aim to review the studies investigating predictive mechanisms during social interactions with humans and with automated artificial systems. We will start by presenting human data that show the involvement of predictions in action control and in the sense of agency during social interactions. Thereafter, we will confront this literature with data from the robotic field. Finally, we will address the upcoming issues in the field of robotics related to automated systems aimed at acting as collaborative agents. PMID:29081744
McDavitt, Bryce; Bogart, Laura M; Mutchler, Matt G; Wagner, Glenn J; Green, Harold D; Lawrence, Sean Jamar; Mutepfa, Kieta D; Nogg, Kelsey A
2016-03-17
A fundamental feature of community-based participatory research (CBPR) is sharing findings with community members and engaging community partners in the dissemination process. To be truly collaborative, dissemination should involve community members in a two-way dialogue about new research findings. Yet little literature describes how to engage communities in dialogue about research findings, especially with historically marginalized communities where mistrust of researchers may exist because of past or present social injustices. Through a series of interactive community presentations on findings from a longitudinal study, we developed a process for community dissemination that involved several overlapping phases: planning, outreach, content development, interactive presentations, and follow-up. Through this process, we built on existing and new community relationships. Following each interactive presentation, the research team debriefed and reviewed notes to identify lessons learned from the process. Key themes included the importance of creating a flexible dissemination plan, tailoring presentations to each community group, establishing a point person to serve as a community liaison, and continuing dialogue with community members after the presentations. Core strategies for developing trust during dissemination included engaging community members at every step, reserving ample time for discussion during presentations, building rapport by sharing personal experiences, being receptive to and learning from criticism, and implementing input from community members. This process led to a deeper understanding of research findings and ensured that results reached community members who were invested in them.
Dissemination as Dialogue: Building Trust and Sharing Research Findings Through Community Engagement
Bogart, Laura M.; Mutchler, Matt G.; Wagner, Glenn J.; Green, Harold D.; Lawrence, Sean Jamar; Mutepfa, Kieta D.; Nogg, Kelsey A.
2016-01-01
A fundamental feature of community-based participatory research (CBPR) is sharing findings with community members and engaging community partners in the dissemination process. To be truly collaborative, dissemination should involve community members in a two-way dialogue about new research findings. Yet little literature describes how to engage communities in dialogue about research findings, especially with historically marginalized communities where mistrust of researchers may exist because of past or present social injustices. Through a series of interactive community presentations on findings from a longitudinal study, we developed a process for community dissemination that involved several overlapping phases: planning, outreach, content development, interactive presentations, and follow-up. Through this process, we built on existing and new community relationships. Following each interactive presentation, the research team debriefed and reviewed notes to identify lessons learned from the process. Key themes included the importance of creating a flexible dissemination plan, tailoring presentations to each community group, establishing a point person to serve as a community liaison, and continuing dialogue with community members after the presentations. Core strategies for developing trust during dissemination included engaging community members at every step, reserving ample time for discussion during presentations, building rapport by sharing personal experiences, being receptive to and learning from criticism, and implementing input from community members. This process led to a deeper understanding of research findings and ensured that results reached community members who were invested in them. PMID:26986541
Ajmal, Mohammad Rehan; Chaturvedi, Sumit Kumar; Zaidi, Nida; Alam, Parvez; Zaman, Masihuz; Siddiqi, Mohammad Khursheed; Nusrat, Saima; Jamal, Mohammad Sarwar; Mahmoud, Mohamed H; Badr, Gamal; Khan, Rizwan Hasan
2017-08-01
The present study details the binding process of clofazimine to hen egg white lysozyme (HEWL) using spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and molecular docking techniques. Clofazimine binds to the protein with binding constant (K b ) in the order of 1.57 × 10 4 at 298 K. Binding process is spontaneous and exothermic. Molecular docking results suggested the involvement of hydrogen bonding and hydrophobic interactions in the binding process. Bacterial cell lytic activity in the presence of clofazimine increased to more than 40% of the value obtained with HEWL only. Interaction of the drug with HEWL induced ordered secondary structure in the protein and molecular compaction. Clofazimine also effectively inhibited the sodium dodecyl sulfate (SDS) induced amyloid formation in HEWL and caused disaggregation of preformed fibrils, reinforcing the notion that there is involvement of hydrophobic interactions and hydrogen bonding in the binding process of clofazimine with HEWL and clofazimine destabilizes the mature fibrils. Further, TEM images confirmed that fibrillar species were absent in the samples where amyloid induction was performed in the presence of clofazimine. As clofazimine is a drug less explored for the inhibition of fibril formation of the proteins, this study reports the inhibition of SDS-induced amyloid formation of HEWL by clofazimine, which will help in the development of clofazimine-related molecules for the treatment of amyloidosis.
Cochlear Implant: the complexity involved in the decision making process by the family.
Vieira, Sheila de Souza; Bevilacqua, Maria Cecília; Ferreira, Noeli Marchioro Liston Andrade; Dupas, Giselle
2014-01-01
to understand the meanings the family attributes to the phases of the decision-making process on a cochlear implant for their child. qualitative research, using Symbolic Interactionism and Grounded Theory as the theoretical and methodological frameworks, respectively. Data collection instrument: semistructured interview. Nine families participated in the study (32 participants). knowledge deficit, difficulties to contextualize benefits and risks and fear are some factors that make this process difficult. Experiences deriving from interactions with health professionals, other cochlear implant users and their relatives strengthen decision making in favor of the implant. deciding on whether or not to have the implant involves a complex process, in which the family needs to weigh gains and losses, experience feelings of accountability and guilt, besides overcoming the risk aversion. Hence, this demands cautious preparation and knowledge from the professionals involved in this intervention.
Galectin-3 as a Potential Target to Prevent Cancer Metastasis
Ahmed, Hafiz; AlSadek, Dina M. M.
2015-01-01
Interactions between two cells or between cell and extracellular matrix mediated by protein–carbohydrate interactions play pivotal roles in modulating various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of the β-galactoside-binding lectin family, is involved in fibrosis as well as cancer progression and metastasis, but the detailed mechanisms of its functions remain elusive. This review discusses its structure, carbohydrate-binding properties, and involvement in various aspects of tumorigenesis and some potential carbohydrate ligands that are currently investigated to block galectin-3 activity. PMID:26640395
A challenge to lepton universality in B-meson decays
Ciezarek, Gregory; Franco Sevilla, Manuel; Hamilton, Brian; ...
2017-06-07
One of the key assumptions of the standard model of particle physics is that the interactions of the charged leptons, namely electrons, muons and taus, differ only because of their different masses. Whereas precision tests comparing processes involving electrons and muons have not revealed any definite violation of this assumption, recent studies of B-meson decays involving the higher-mass tau lepton have resulted in observations that challenge lepton universality at the level of four standard deviations. Here, a confirmation of these results would point to new particles or interactions, and could have profound implications for our understanding of particle physics.
A Study of the Community College Board of Trustees and the Process of Institutional Change.
ERIC Educational Resources Information Center
Mills, Peter K.
A study was conducted to: (1) ascertain the characteristics, attitudes and activities of public community college trustees; (2) describe the process by which institutional change occurs at these colleges; and (3) examine the interaction or involvement of trustees with the process of change. A two-phase questionnaire was designed; phase I was used…
ERIC Educational Resources Information Center
Zhang, Jinguang
2010-01-01
Research suggests that first- and third-person perceptions are driven by the motive to self-enhance and cognitive processes involving the perception of social norms. This article proposes and tests a dual-process model that predicts an interaction between cognition and motivation. Consistent with the model, Experiment 1 (N = 112) showed that…
Jeffrey A. Falke; Jason B. Dunham; Christopher E. Jordan; Kristina M. McNyset; Gordon H. Reeves
2013-01-01
Processes that influence habitat selection in landscapes involve the interaction of habitat composition and configuration and are particularly important for species with complex life cycles. We assessed the relative influence of landscape spatial processes and local habitat characteristics on patterns in the distribution and abundance of spawning steelhead (...
Processing structure in language and music: a case for shared reliance on cognitive control.
Slevc, L Robert; Okada, Brooke M
2015-06-01
The relationship between structural processing in music and language has received increasing interest in the past several years, spurred by the influential Shared Syntactic Integration Resource Hypothesis (SSIRH; Patel, Nature Neuroscience, 6, 674-681, 2003). According to this resource-sharing framework, music and language rely on separable syntactic representations but recruit shared cognitive resources to integrate these representations into evolving structures. The SSIRH is supported by findings of interactions between structural manipulations in music and language. However, other recent evidence suggests that such interactions also can arise with nonstructural manipulations, and some recent neuroimaging studies report largely nonoverlapping neural regions involved in processing musical and linguistic structure. These conflicting results raise the question of exactly what shared (and distinct) resources underlie musical and linguistic structural processing. This paper suggests that one shared resource is prefrontal cortical mechanisms of cognitive control, which are recruited to detect and resolve conflict that occurs when expectations are violated and interpretations must be revised. By this account, musical processing involves not just the incremental processing and integration of musical elements as they occur, but also the incremental generation of musical predictions and expectations, which must sometimes be overridden and revised in light of evolving musical input.
Classification of processes involved in sharing individual participant data from clinical trials.
Ohmann, Christian; Canham, Steve; Banzi, Rita; Kuchinke, Wolfgang; Battaglia, Serena
2018-01-01
Background: In recent years, a cultural change in the handling of data from research has resulted in the strong promotion of a culture of openness and increased sharing of data. In the area of clinical trials, sharing of individual participant data involves a complex set of processes and the interaction of many actors and actions. Individual services/tools to support data sharing are available, but what is missing is a detailed, structured and comprehensive list of processes/subprocesses involved and tools/services needed. Methods : Principles and recommendations from a published data sharing consensus document are analysed in detail by a small expert group. Processes/subprocesses involved in data sharing are identified and linked to actors and possible services/tools. Definitions are adapted from the business process model and notation (BPMN) and applied in the analysis. Results: A detailed and comprehensive list of individual processes/subprocesses involved in data sharing, structured according to 9 main processes, is provided. Possible tools/services to support these processes/subprocesses are identified and grouped according to major type of support. Conclusions: The list of individual processes/subprocesses and tools/services identified is a first step towards development of a generic framework or architecture for sharing of data from clinical trials. Such a framework is strongly needed to give an overview of how various actors, research processes and services could form an interoperable system for data sharing.
Classification of processes involved in sharing individual participant data from clinical trials
Ohmann, Christian; Canham, Steve; Banzi, Rita; Kuchinke, Wolfgang; Battaglia, Serena
2018-01-01
Background: In recent years, a cultural change in the handling of data from research has resulted in the strong promotion of a culture of openness and increased sharing of data. In the area of clinical trials, sharing of individual participant data involves a complex set of processes and the interaction of many actors and actions. Individual services/tools to support data sharing are available, but what is missing is a detailed, structured and comprehensive list of processes/subprocesses involved and tools/services needed. Methods: Principles and recommendations from a published data sharing consensus document are analysed in detail by a small expert group. Processes/subprocesses involved in data sharing are identified and linked to actors and possible services/tools. Definitions are adapted from the business process model and notation (BPMN) and applied in the analysis. Results: A detailed and comprehensive list of individual processes/subprocesses involved in data sharing, structured according to 9 main processes, is provided. Possible tools/services to support these processes/subprocesses are identified and grouped according to major type of support. Conclusions: The list of individual processes/subprocesses and tools/services identified is a first step towards development of a generic framework or architecture for sharing of data from clinical trials. Such a framework is strongly needed to give an overview of how various actors, research processes and services could form an interoperable system for data sharing. PMID:29623192
Grapefruit and drug interactions.
2012-12-01
Since the late 1980s, grapefruit juice has been known to affect the metabolism of certain drugs. Several serious adverse effects involving drug interactions with grapefruit juice have been published in detail. The components of grapefruit juice vary considerably depending on the variety, maturity and origin of the fruit, local climatic conditions, and the manufacturing process. No single component accounts for all observed interactions. Other grapefruit products are also occasionally implicated, including preserves, lyophylised grapefruit juice, powdered whole grapefruit, grapefruit seed extract, and zest. Clinical reports of drug interactions with grapefruit juice are supported by pharmacokinetic studies, each usually involving about 10 healthy volunteers, in which the probable clinical consequences were extrapolated from the observed plasma concentrations. Grapefruit juice inhibits CYP3A4, the cytochrome P450 isoenzyme most often involved in drug metabolism. This increases plasma concentrations of the drugs concerned, creating a risk of overdose and dose-dependent adverse effects. Grapefruit juice also inhibits several other cytochrome P450 isoenzymes, but they are less frequently implicated in interactions with clinical consequences. Drugs interacting with grapefruit and inducing serious clinical consequences (confirmed or very probable) include: immunosuppressants, some statins, benzodiazepines, most calcium channel blockers, indinavir and carbamazepine. There are large inter-individual differences in enzyme efficiency. Along with the variable composition of grapefruit juice, this makes it difficult to predict the magnitude and clinical consequences of drug interactions with grapefruit juice in a given patient. There is increasing evidence that transporter proteins such as organic anion transporters and P-glycoprotein are involved in interactions between drugs and grapefruit juice. In practice, numerous drugs interact with grapefruit juice. Although only a few reports involving severe clinical consequences have been published, they suggest that grapefruit juice should be avoided during drug therapy, especially when the drug has a narrow therapeutic margin or carries a risk of serious dose-dependent adverse effects. Patients should be informed of this risk whenever a drug is prescribed or dispensed.
SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.
Vasilenko, Natalia; Moshynskyy, Igor; Zakhartchouk, Alexander
2010-02-09
The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm.
Choudhury, Kamalika Roy; Raychaudhuri, Swasti; Bhattacharyya, Nitai P.
2012-01-01
Huntingtin Yeast Two-Hybrid Protein K (HYPK) is an intrinsically unstructured huntingtin (HTT)-interacting protein with chaperone-like activity. To obtain more information about the function(s) of the protein, we identified 27 novel interacting partners of HYPK by pull-down assay coupled with mass spectrometry and, further, 9 proteins were identified by co-localization and co-immunoprecipitation (co-IP) assays. In neuronal cells, (EEF1A1 and HSPA1A), (HTT and LMNB2) and (TP53 and RELA) were identified in complex with HYPK in different experiments. Various Gene Ontology (GO) terms for biological processes, like protein folding (GO: 0006457), response to unfolded protein (GO: 0006986), cell cycle arrest (GO: 0007050), anti-apoptosis (GO: 0006916) and regulation of transcription (GO: 0006355) were significantly enriched with the HYPK-interacting proteins. Cell growth and the ability to refold heat-denatured reporter luciferase were decreased, but cytotoxicity was increased in neuronal cells where HYPK was knocked-down using HYPK antisense DNA construct. The proportion of cells in different phases of cell cycle was also altered in cells with reduced levels of HYPK. These results show that HYPK is involved in several biological processes, possibly through interaction with its partners. PMID:23272104
Katsogiannou, Maria; Andrieu, Claudia; Baylot, Virginie; Baudot, Anaïs; Dusetti, Nelson J.; Gayet, Odile; Finetti, Pascal; Garrido, Carmen; Birnbaum, Daniel; Bertucci, François; Brun, Christine; Rocchi, Palma
2014-01-01
Previously, we identified the stress-induced chaperone, Hsp27, as highly overexpressed in castration-resistant prostate cancer and developed an Hsp27 inhibitor (OGX-427) currently tested in phase I/II clinical trials as a chemosensitizing agent in different cancers. To better understand the Hsp27 poorly-defined cytoprotective functions in cancers and increase the OGX-427 pharmacological safety, we established the Hsp27-protein interaction network using a yeast two-hybrid approach and identified 226 interaction partners. As an example, we showed that targeting Hsp27 interaction with TCTP, a partner protein identified in our screen increases therapy sensitivity, opening a new promising field of research for therapeutic approaches that could decrease or abolish toxicity for normal cells. Results of an in-depth bioinformatics network analysis allying the Hsp27 interaction map into the human interactome underlined the multifunctional character of this protein. We identified interactions of Hsp27 with proteins involved in eight well known functions previously related to Hsp27 and uncovered 17 potential new ones, such as DNA repair and RNA splicing. Validation of Hsp27 involvement in both processes in human prostate cancer cells supports our system biology-predicted functions and provides new insights into Hsp27 roles in cancer cells. PMID:25277244
NASA Technical Reports Server (NTRS)
Van Dongen, Hans P A.; Dinges, David F.
2003-01-01
The two-process model of sleep regulation has been applied successfully to describe, predict, and understand sleep-wake regulation in a variety of experimental protocols such as sleep deprivation and forced desynchrony. A non-linear interaction between the homeostatic and circadian processes was reported when the model was applied to describe alertness and performance data obtained during forced desynchrony. This non-linear interaction could also be due to intrinsic non-linearity in the metrics used to measure alertness and performance, however. Distinguishing these possibilities would be of theoretical interest, but could also have important implications for the design and interpretation of experiments placing sleep at different circadian phases or varying the duration of sleep and/or wakefulness. Although to date no resolution to this controversy has been found, here we show that the issue can be addressed with existing data sets. The interaction between the homeostatic and circadian processes of sleep-wake regulation was investigated using neurobehavioural performance data from a laboratory experiment involving total sleep deprivation. The results provided evidence of an actual non-linear interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance.
Shimizu, Hiroshi; Daibo, Ikuo
2008-02-01
A hierarchical data analysis was conducted using data from couples to examine how self-reports of interactions between partners in romantic relationships predict the quality of the relationships. Whereas the social exchange theory has elucidated the quality of relationships from the individual level of subjectivity, this study focused on the structure of interactions between the partners (i.e., the frequency, strength, and diversity) through a process of inter-subjectivity at the couple level. A multilevel covariance structure analysis of 194 university students involved in romantic relationships revealed that the quality of relationships was mainly related to the strength and the diversity of interactions at the couple level, rather than the strength of interactions at the individual level. These results indicate that the inter-subjective process in romantic relationships may primarily explain the quality of relationships.
von der Lippe, Anna Louise; Oddli, Hanne Weie; Halvorsen, Margrethe Seeger
2017-09-10
Within a mixed methods program of research the present study aimed at expanding knowledge about interactions in the initial therapeutic collaboration by combining focus on client interpersonal style and therapist contribution. The study involves in-depth analyses of therapist-client interactions in the initial two sessions of good and poor outcome therapies. Based on interpersonal theory and previous research, the Inventory of Interpersonal Problems (IIP-64-C) was used to define poor outcome cases, that is, low proactive agency cases. To compare good and poor outcome cases matched on this interpersonal pattern, cases were drawn from two different samples; nine poor outcome cases from a large multi-site outpatient clinic study and nine good outcome cases from a process-outcome study of highly experienced therapists. Qualitative analysis of therapist behaviors resulted in 2 main categories, fostering client's proactive agentic involvement in change work and discouraging client's proactive agentic involvement in change work, 8 categories and 22 sub-categories. The findings revealed distinct and cohesive differences in therapist behaviors between the two outcome groups, and point to the particular therapist role of fostering client agency through engagement in a shared work on change when clients display strong unassertiveness and low readiness for change. Clinical or Methodological Significance Summary: The present analysis combines focus on client interpersonal style, therapist strategies/process and outcome. The categories generated from the present grounded theory analysis may serve as a foundation for identifying interactions that are associated with agentic involvement in future process research and practice, and hence we have formulated principles/strategies that were identified by the analysis.
Obseving Nurse Interaction With Infusion Pump Technologies
2005-01-01
24 Observations of the medication administration process , as described below, were performed to provide data to the FMEA team on nursing practice...involves an FMEA of the medication administration process using the observation data as input into the assessment process .29 One use of the...invaluable to the FMEA team in many ways. First, it allowed for an unbiased and nonjudgmental look at the actual nursing processes in place, as
[Interaction of clay minerals with microorganisms: a review of experimental data].
Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I
2009-01-01
A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.
Chan, H T; Anthony, C
1991-01-01
The quinoprotein methanol dehydrogenase (MDH) of Acetobacter methanolicus has an alpha 2 beta 2 structure. By contrast with other MDHs, the beta-subunit (approx. 8.5 kDa) does not contain the five lysine residues previously proposed to be involved in ionic interactions with the electron acceptor cytochrome cL. That electrostatic interactions are involved was confirmed by the demonstration that methanol:cytochrome cL oxidoreductase activity was inhibited by high ionic strength (I), the strength of interaction being inversely related to the square root of I. Specific modifiers of arginine residues on MDH inhibited this reaction but not the dye-linked MDH activity. Modification of lysine residues on MDH that altered its charge had no effect on the dye-linked activity but inhibited reaction with cytochrome cL. When the charge was retained on modification of lysine residues, little effect on either activity was observed. Cross-linking experiments confirmed that lysine residues on the alpha-subunit, but not the beta-subunit, are involved in the 'docking' process between the proteins. Images Fig. 4. PMID:1660263
NASA Astrophysics Data System (ADS)
Huang, Li-Ting
2016-01-01
Research indicated that in order for properly utilizing recommendation agents (RAs), customers must rationally evaluate capability and suggestions of RAs during the interaction process. However, enjoying interactive processes and interface is also important. Methods for increasing user enjoyment of RAs are yet unknown. This study investigated the influences of utilitarian and hedonic factors on intention to adopt RAs suggestions and their antecedents. Involvement influences relative importance of utilitarian and hedonic factors. Contrary to common assumptions, customers may make unplanned purchases, rather than rational purchase. A field experiment with 2 × 2 × 2 factorial design reveals main findings. First, information diagnosticity and enjoyment enhance adoption intention simultaneously. Information diagnosticity is more important than enjoyment. Diagnosticity was determined by outcome similarity, and enjoyment was determined by both outcome similarity and atmospherics. The context of interacting with RAs is important. Outcome similarity even directly affects adoption intention. Second, highly involved users considered enjoyment and diagnosticity when forming adoption intentions, while users with low involvement only considered enjoyment. Third, information cascades altered the relationship between adoption intention and unplanned purchases. Most customers change selection after seeing ratings from other customers, even if they originally strongly want to adoption suggestion from RAs. Theoretical and managerial implications are proposed.
MHD Modeling of the Interaction of the Solar Wind With Venus
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1996-01-01
The primary objective of this research program is to improve our understanding of the physical processes occurring in the interaction of the solar wind with Venus. This will be accomplished through the use of numerical solutions of the two- and three-dimensional magnetohydrodynamic (MHD) equations and through comparisons of the computed results with available observations. A large portion of this effort involves the study of processes due to the presence of the magnetic field and the effects of mass loading. Published papers are included in the appendix.
Interactive genetic counseling role-play: a novel educational strategy for family physicians.
Blaine, Sean M; Carroll, June C; Rideout, Andrea L; Glendon, Gord; Meschino, Wendy; Shuman, Cheryl; Telner, Deanna; Van Iderstine, Natasha; Permaul, Joanne
2008-04-01
Family physicians (FPs) are increasingly involved in delivering genetic services. Familiarization with aspects of genetic counseling may enable FPs to help patients make informed choices. Exploration of interactive role-play as a means to raise FPs' awareness of the process and content of genetic counseling. FPs attending two large Canadian family medicine conferences in 2005 were eligible -- 93 participated. FPs discussed a case during a one-on-one session with a genetic counselor. Evaluation involved pre and post intervention questionnaires FPs' baseline genetic knowledge was self-rated as uniformly poor. Baseline confidence was highest in eliciting family history and providing psychosocial support and lowest in discussing risks/benefits of genetic testing and counseling process. Post-intervention, 80% of FPs had better appreciation of family history and 97% indicated this was an effective learning experience. Role-play with FPs is effective in raising awareness of the process and content of genetic counseling and may be applied to other health disciplines.
ERIC Educational Resources Information Center
Brownlee, Matthew T.J.; Powell, Robert B.; Hallo, Jeffery C.
2013-01-01
Recently, many organizations involved in environmental education have initiated programs that aim to educate visitors or other publics who interact with nature-based resources about the impacts and landscape transformations occurring because of climatic changes. However, many psychological, human-evolutionary, and social-ecological processes that…
Planning Effective Educational Programs for Adult Learners
ERIC Educational Resources Information Center
Shi, Hong
2017-01-01
Educational program planning is a complex ongoing process and planners should reflect on and consider for all of the involved factors, context, and people. The purpose of this study is to analyze how to plan effective educational programs for adult learners. Adult education is a developmental process and interacts with broad social events. Adult…
ERIC Educational Resources Information Center
Shlechter, Theodore M.; And Others
This paper focuses upon the research and development (R&D) process associated with developing automated feedback materials for the SIMulation NETworking (SIMNET) training system. This R&D process involved a partnership among instructional developers, practitioners, and researchers. Users' input has been utilized to help: (1) design the…
Northeastern Forest Experiment Station
1973-01-01
This booklet outlines what happens most of the time as decay develops in a living tree. The drawings are designed to give an accurate general presentation of the decay process by focusing only on the major portions of an extremely complex process that involves the interactions among microorganisms, environmental factors, and the tree. The better we understand these...
Planning that works: Empowerment through stakeholder focused interactive planning (SFIP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, J.E.; Ison, S.A.
1994-12-31
This paper describes a powerful planning tool that can enable government, private industries, and public interest organizations to actualize their visions through sound decision making. The stakeholder focused interactive planning model is designed to integrate and ultimately gain stakeholder investment in the success of attainment of their vision. The only concessions required of the planning organization using this process is the acceptance of the premise that sustained vision success requires the support of both internal and external stakeholders and that each step in the process must be used as a validation of the previous step and essential to the completionmore » of the next step. What is stakeholder/public involvement? It is the process in which the stakeholders (both internal and external) values, interests and expectations are included in decision-making processes. The primary goal of public involvement efforts is to include all those who have a stake in the decision, whether or not they have already been identified. Stakeholders are individuals, contractors, clients, suppliers, public organizations, state and local governments, Indian tribes, federal agencies, and other parties affected by decisions.« less
Exclusive Reactions Involving Pions and Nucleons
NASA Technical Reports Server (NTRS)
Norbury, John W.; Blattnig, Steve R.; Tripathi, R. K.
2002-01-01
The HZETRN code requires inclusive cross sections as input. One of the methods used to calculate these cross sections requires knowledge of all exclusive processes contributing to the inclusive reaction. Conservation laws are used to determine all possible exclusive reactions involving strong interactions between pions and nucleons. Inclusive particle masses are subsequently determined and are needed in cross-section calculations for inclusive pion production.
Charles C. Harris; Erik A. Nielsen; Dennis R. Becker; Dale J. Blahna; William J. McLaughlin
2012-01-01
Participatory processes for obtaining residents' input about community impacts of proposed environmental management actions have long raised concerns about who participates in public involvement efforts and whose interests they represent. This study explored methods of broad-based involvement and the role of deliberation in social impact assessment. Interactive...
Yang, Jie; Andric, Michael; Mathew, Mili M
2015-10-01
Gestures play an important role in face-to-face communication and have been increasingly studied via functional magnetic resonance imaging. Although a large amount of data has been provided to describe the neural substrates of gesture comprehension, these findings have never been quantitatively summarized and the conclusion is still unclear. This activation likelihood estimation meta-analysis investigated the brain networks underpinning gesture comprehension while considering the impact of gesture type (co-speech gestures vs. speech-independent gestures) and task demand (implicit vs. explicit) on the brain activation of gesture comprehension. The meta-analysis of 31 papers showed that as hand actions, gestures involve a perceptual-motor network important for action recognition. As meaningful symbols, gestures involve a semantic network for conceptual processing. Finally, during face-to-face interactions, gestures involve a network for social emotive processes. Our finding also indicated that gesture type and task demand influence the involvement of the brain networks during gesture comprehension. The results highlight the complexity of gesture comprehension, and suggest that future research is necessary to clarify the dynamic interactions among these networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Familiarity does indeed promote attraction in live interaction.
Reis, Harry T; Maniaci, Michael R; Caprariello, Peter A; Eastwick, Paul W; Finkel, Eli J
2011-09-01
Does familiarity promote attraction? Prior research has generally suggested that it does, but a recent set of studies by Norton, Frost, and Ariely (2007) challenged that assumption. Instead, they found that more information about another person, when that information was randomly selected from lists of trait adjectives, using a trait evaluation paradigm, promoted perceptions of dissimilarity and, hence, disliking. The present research began with the assumption that natural social interaction involves contexts and processes not present in Norton et al.'s research or in the typical familiarity experiment. We theorized that these processes imply a favorable impact of familiarity on attraction. Two experiments are reported using a live interaction paradigm in which two previously unacquainted same-sex persons interacted with each other for varying amounts of time. Findings strongly supported the "familiarity leads to attraction" hypothesis: The more participants interacted, the more attracted they were to each other. Mediation analyses identified three processes that contribute to this effect: perceived responsiveness, increased comfort and satisfaction during interaction, and perceived knowledge. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Structural study of complexes formed by acidic and neutral organophosphorus reagents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braatz, Alexander D.; Antonio, Mark R.; Nilsson, Mikael
The coordination of the trivalent 4f ions, Ln = La 3+, Dy 3+, and Lu 3+, with neutral and acidic organophosphorus reagents, both individually and combined, was studied by use of X-ray absorption spectroscopy. These studies provide metrical information about the interatomic interactions between these cations and the ligands tri- n-butyl phosphate (TBP) and di- n-butyl phosphoric acid (HDBP), whose behavior are of practical importance to chemical separation processes that are currently used on an industrial scale. Previous studies have suggested the existence of complexes involving a mixture of ligands, accounting for extraction synergy. Through systematic variation of the aqueousmore » phase acidity and extractant concentration and combination, we have found that complexes with Ln and TBP : HDBP at any mixture and HDBP alone involve direct Ln–O interactions involving 6 oxygen atoms and distant Ln–P interactions involving on average 3–5 phosphorus atoms per Ln ion. It was also found that Ln complexes formed by TBP alone seem to favor eight oxygen coordination, though we were unable to obtain metrical results regarding the distant Ln–P interactions due to the low signal attributed to a lower concentration of Ln ions in the organic phases. Our study does not support the existence of mixed Ln–TBP–HDBP complexes but, rather, indicates that the lanthanides are extracted as either Ln–HDBP complexes or Ln–TBP complexes and that these complexes exist in different ratios depending on the conditions of the extraction system. Furthermore, this fundamental structural information offers insight into the solvent extraction processes that are taking place and are of particular importance to issues arising from the separation and disposal of radioactive materials from used nuclear fuel.« less
Connexin-Dependent Neuroglial Networking as a New Therapeutic Target.
Charvériat, Mathieu; Naus, Christian C; Leybaert, Luc; Sáez, Juan C; Giaume, Christian
2017-01-01
Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the "tripartite synapse" with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial networking may emerge as new therapeutic targets in neurological and psychiatric disorders.
Structural study of complexes formed by acidic and neutral organophosphorus reagents
Braatz, Alexander D.; Antonio, Mark R.; Nilsson, Mikael
2016-12-23
The coordination of the trivalent 4f ions, Ln = La 3+, Dy 3+, and Lu 3+, with neutral and acidic organophosphorus reagents, both individually and combined, was studied by use of X-ray absorption spectroscopy. These studies provide metrical information about the interatomic interactions between these cations and the ligands tri- n-butyl phosphate (TBP) and di- n-butyl phosphoric acid (HDBP), whose behavior are of practical importance to chemical separation processes that are currently used on an industrial scale. Previous studies have suggested the existence of complexes involving a mixture of ligands, accounting for extraction synergy. Through systematic variation of the aqueousmore » phase acidity and extractant concentration and combination, we have found that complexes with Ln and TBP : HDBP at any mixture and HDBP alone involve direct Ln–O interactions involving 6 oxygen atoms and distant Ln–P interactions involving on average 3–5 phosphorus atoms per Ln ion. It was also found that Ln complexes formed by TBP alone seem to favor eight oxygen coordination, though we were unable to obtain metrical results regarding the distant Ln–P interactions due to the low signal attributed to a lower concentration of Ln ions in the organic phases. Our study does not support the existence of mixed Ln–TBP–HDBP complexes but, rather, indicates that the lanthanides are extracted as either Ln–HDBP complexes or Ln–TBP complexes and that these complexes exist in different ratios depending on the conditions of the extraction system. Furthermore, this fundamental structural information offers insight into the solvent extraction processes that are taking place and are of particular importance to issues arising from the separation and disposal of radioactive materials from used nuclear fuel.« less
Chemical signaling involved in plant-microbe interactions.
Chagas, Fernanda Oliveira; Pessotti, Rita de Cassia; Caraballo-Rodríguez, Andrés Mauricio; Pupo, Mônica Tallarico
2018-03-05
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Altering sensorimotor feedback disrupts visual discrimination of facial expressions.
Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula
2016-08-01
Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities.
Cochlear Implant: the complexity involved in the decision making process by the family1
Vieira, Sheila de Souza; Bevilacqua, Maria Cecília; Ferreira, Noeli Marchioro Liston Andrade; Dupas, Giselle
2014-01-01
Objective to understand the meanings the family attributes to the phases of the decision-making process on a cochlear implant for their child. Method qualitative research, using Symbolic Interactionism and Grounded Theory as the theoretical and methodological frameworks, respectively. Data collection instrument: semistructured interview. Nine families participated in the study (32 participants). Results knowledge deficit, difficulties to contextualize benefits and risks and fear are some factors that make this process difficult. Experiences deriving from interactions with health professionals, other cochlear implant users and their relatives strengthen decision making in favor of the implant. Conclusion deciding on whether or not to have the implant involves a complex process, in which the family needs to weigh gains and losses, experience feelings of accountability and guilt, besides overcoming the risk aversion. Hence, this demands cautious preparation and knowledge from the professionals involved in this intervention. PMID:25029052
75 FR 47458 - TRICARE; Diabetic Education
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
... counseling for socioeconomic purposes, stress management, lifestyle modification. Services provided by a...: Joy Saly, Medical Benefits and Reimbursement Branch, TRICARE Management Activity, telephone (303) 676... education. Diabetes self-management training (DSMT) is an interactive, collaborative process involving...
Glimpses into the blind spot: Social interaction and autism.
Bottema-Beutel, Kristen
2017-07-01
A primary feature of autism spectrum disorder (ASD) is marked difficulty in social interactions. Despite the centrality of social interaction differences to the clinical presentation of ASD, only a small portion of research in this field characterizes interaction in everyday social contexts. This theoretical paper reviews the growing corpus of interactional research on ASD, including discourse analysis (DA) and conversation analysis (CA) approaches. DA and CA are micro-analytic methods aimed at understanding the organizational structure of, and actions pursued within, social encounters. These methods are aligned with enactive theories of social interaction. The bulk of current ASD research construes social interaction as involving isolated individuals who represent and/or theorize about the minds of an interlocutor. Enactive approaches posit that achieving intersubjectivity does not require theories of other minds, but instead a propensity for coordinating social actions with others. Through the complementary lenses of enactivism and interactional research, I offer an account of autistic social interaction as involving differences in interactional coordination, interactional priorities, and the enactment of meaning across conversational turns. This characterization challenges the explanatory role of cognitive processes such as Theory of Mind, and points to new avenues for conceptualizing, measuring, and supporting social interaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Linking heterometallic rings for quantum information processing and amusement.
Timco, Grigore A; Faust, Thomas B; Tuna, Floriana; Winpenny, Richard E P
2011-06-01
Linking polymetallic cages can be a method for creating new structures and new properties. In this tutorial review we use heterometallic anti-ferromagnetically coupled rings (AF-rings) as exemplars for three approaches that can be used to link cage compounds. The first of three routes involves an ion-pair interaction supported by hydrogen-bonding interactions, which allows the synthesis of hybrid rotaxanes among other materials. The second route involves functionalising the exterior of the AF-ring so that it will act as a Lewis base; complexes involving coordination of pyridine to bridging monometallic and dimetallic fragments are discussed. The third route involves creating a vacancy on one site of the AF-ring, and then using the ring as a Lewis acid. Di-imine ligands can then be used to link the AF-rings into dimers. A brief discussion of the physical properties of these systems is also included.
Adapting physics courses in an engineering school to the b-learning philosophy
NASA Astrophysics Data System (ADS)
Borondo, J.; Benito, R. M.; Losada, J. C.
2014-09-01
In this paper we introduce the methodology that we have followed to convert traditional notes into interactive online materials. The idea behind this has been to make self-consistent and interactive online materials capable of motivating the students to get involved in the learning process. For this purpose, we have used the e-learning environment Moodle, which is a platform with a high interactivity potential. We conclude that the academic performance reaches its maximum when correctly combining self-organising with minimum teacher guidance.
Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions.
Meisel, Eshcar; Tobelaim, William; Dvir, Meidan; Haitin, Yoni; Peretz, Asher; Attali, Bernard
2018-01-01
Inactivation is an intrinsic property of numerous voltage-gated K + (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.
Sahadevan, Sonu; Antonopoulos, Aristotelis; Haslam, Stuart M; Dell, Anne; Ramaswamy, Subramanian; Babu, Ponnusamy
2014-01-17
Cell-cell communications, cell-matrix interactions, and cell migrations play a major role in regeneration. However, little is known about the molecular players involved in these critical events, especially cell surface molecules. Here, we demonstrate the role of specific glycan-receptor interactions in the regenerative process using Hydra magnipapillata as a model system. Global characterization of the N- and O-glycans expressed by H. magnipapillata using ultrasensitive mass spectrometry revealed mainly polyfucosylated LacdiNAc antennary structures. Affinity purification showed that a putative C-type lectin (accession number Q6SIX6) is a likely endogenous receptor for the novel polyfucosylated glycans. Disruption of glycan-receptor interactions led to complete shutdown of the regeneration machinery in live Hydra. A time-dependent, lack-of-regeneration phenotype observed upon incubation with exogenous fuco-lectins suggests the involvement of a polyfucose receptor-mediated signaling mechanism during regeneration. Thus, for the first time, the results presented here provide direct evidence for the role of polyfucosylated glycan-receptor interactions in the regeneration of H. magnipapillata.
Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin
2013-12-01
Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with werewolf (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER's nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization.
Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin
2013-01-01
Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with WEREWOLF (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER’s nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization. PMID:24368785
Manzano, David; Marquardt, Sebastian; Jones, Alexandra M. E.; Bäurle, Isabel; Liu, Fuquan; Dean, Caroline
2009-01-01
The role of RNA metabolism in chromatin silencing is now widely recognized. We have studied the Arabidopsis RNA-binding protein FCA that down-regulates an endogenous floral repressor gene through a chromatin mechanism involving histone demethylase activity. This mechanism needs FCA to interact with an RNA 3′ processing/polyadenylation factor (FY/Pfs2p), but the subsequent events leading to chromatin changes are unknown. Here, we show that this FCA–FY interaction is required for general chromatin silencing roles where hairpin transgenes induce DNA methylation of an endogenous gene. We also show 2 conserved RNA processing factors, AtCPSF100 and AtCPSF160, but not FCA, are stably associated with FY in vivo and form a range of different-sized complexes. A hypomorphic fy allele producing a shorter protein, able to provide some FY functions but unable to interact with FCA, reduces abundance of some of the larger MW complexes. Suppressor mutants, which specifically disrupt the FY motif through which FCA interacts, also lacked these larger complexes. Our data support a model whereby FCA, perhaps after recognition of a specific RNA feature, transiently interacts with FY, an integral component of the canonical RNA 3′ processing machinery, changing the interactions of the different RNA processing components. These altered interactions would appear to be a necessary step in this RNA-mediated chromatin silencing. PMID:19439664
Manzano, David; Marquardt, Sebastian; Jones, Alexandra M E; Bäurle, Isabel; Liu, Fuquan; Dean, Caroline
2009-05-26
The role of RNA metabolism in chromatin silencing is now widely recognized. We have studied the Arabidopsis RNA-binding protein FCA that down-regulates an endogenous floral repressor gene through a chromatin mechanism involving histone demethylase activity. This mechanism needs FCA to interact with an RNA 3' processing/polyadenylation factor (FY/Pfs2p), but the subsequent events leading to chromatin changes are unknown. Here, we show that this FCA-FY interaction is required for general chromatin silencing roles where hairpin transgenes induce DNA methylation of an endogenous gene. We also show 2 conserved RNA processing factors, AtCPSF100 and AtCPSF160, but not FCA, are stably associated with FY in vivo and form a range of different-sized complexes. A hypomorphic fy allele producing a shorter protein, able to provide some FY functions but unable to interact with FCA, reduces abundance of some of the larger MW complexes. Suppressor mutants, which specifically disrupt the FY motif through which FCA interacts, also lacked these larger complexes. Our data support a model whereby FCA, perhaps after recognition of a specific RNA feature, transiently interacts with FY, an integral component of the canonical RNA 3' processing machinery, changing the interactions of the different RNA processing components. These altered interactions would appear to be a necessary step in this RNA-mediated chromatin silencing.
Genes, emotions and gut microbiota: The next frontier for the gastroenterologist
Panduro, Arturo; Rivera-Iñiguez, Ingrid; Sepulveda-Villegas, Maricruz; Roman, Sonia
2017-01-01
Most medical specialties including the field of gastroenterology are mainly aimed at treating diseases rather than preventing them. Genomic medicine studies the health/disease process based on the interaction of the human genes with the environment. The gastrointestinal (GI) system is an ideal model to analyze the interaction between our genes, emotions and the gut microbiota. Based on the current knowledge, this mini-review aims to provide an integrated synopsis of this interaction to achieve a better understanding of the GI disorders related to bad eating habits and stress-related disease. Since human beings are the result of an evolutionary process, many biological processes such as instincts, emotions and behavior are interconnected to guarantee survival. Nourishment is a physiological need triggered by the instinct of survival to satisfy the body’s energy demands. The brain-gut axis comprises a tightly connected neural-neuroendocrine circuitry between the hunger-satiety center, the dopaminergic reward system involved in the pleasure of eating and the gut microbiota that regulates which food we eat and emotions. However, genetic variations and the consumption of high-sugar and high-fat diets have overridden this energy/pleasure neurocircuitry to the point of addiction of several foodstuffs. Consequently, a gut dysbiosis generates inflammation and a negative emotional state may lead to chronic diseases. Balancing this altered processes to regain health may involve personalized-medicine and genome-based strategies. Thus, an integrated approach based on the understanding of the gene-emotions-gut microbiota interaction is the next frontier that awaits the gastroenterologist to prevent and treat GI disorders associated with obesity and negative emotions. PMID:28533660
Genes, emotions and gut microbiota: The next frontier for the gastroenterologist.
Panduro, Arturo; Rivera-Iñiguez, Ingrid; Sepulveda-Villegas, Maricruz; Roman, Sonia
2017-05-07
Most medical specialties including the field of gastroenterology are mainly aimed at treating diseases rather than preventing them. Genomic medicine studies the health/disease process based on the interaction of the human genes with the environment. The gastrointestinal (GI) system is an ideal model to analyze the interaction between our genes, emotions and the gut microbiota. Based on the current knowledge, this mini-review aims to provide an integrated synopsis of this interaction to achieve a better understanding of the GI disorders related to bad eating habits and stress-related disease. Since human beings are the result of an evolutionary process, many biological processes such as instincts, emotions and behavior are interconnected to guarantee survival. Nourishment is a physiological need triggered by the instinct of survival to satisfy the body's energy demands. The brain-gut axis comprises a tightly connected neural-neuroendocrine circuitry between the hunger-satiety center, the dopaminergic reward system involved in the pleasure of eating and the gut microbiota that regulates which food we eat and emotions. However, genetic variations and the consumption of high-sugar and high-fat diets have overridden this energy/pleasure neurocircuitry to the point of addiction of several foodstuffs. Consequently, a gut dysbiosis generates inflammation and a negative emotional state may lead to chronic diseases. Balancing this altered processes to regain health may involve personalized-medicine and genome-based strategies. Thus, an integrated approach based on the understanding of the gene-emotions-gut microbiota interaction is the next frontier that awaits the gastroenterologist to prevent and treat GI disorders associated with obesity and negative emotions.
Co-transcriptional nuclear actin dynamics
Percipalle, Piergiorgio
2013-01-01
Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified. PMID:23138849
Parental involvement in elementary school-aged child’s creativity
NASA Astrophysics Data System (ADS)
Suparmi; Suardiman, S. P.; Kumara, A.
2018-01-01
This study aims at describing the parental involvement in cultivating elementary school-aged child’s creativity. The qualitative research was designed with multidisciplinary study approach. Eight students and some parents from public elementary schools of Ngawen 4th of Gunungkidul, Yogyakarta, and 4 students from an elementary school in Sleman, Yogyakarta were involved in the process of collecting the data. In-depth interview, observation, and documentation were used simultaneously to collect the data. The results showed that: 1) the subject had a level of intelligence quotient; the intelligence of verbal creativity above the average level, and creative behaviour on average, 2) interaction of parents and child-related discussions, experiences, and plans, academic problems in school were needed to boost the students’ creativity, 3) interactions of parents and school-related participations in school were also encouraged to implant students’ social awareness, 4) interaction among parents communicated each other to have a better result of academic awareness, and 5) Parents should install family norms to cultivate children’s intelligence quotient.
Defining the human deubiquitinating enzyme interaction landscape.
Sowa, Mathew E; Bennett, Eric J; Gygi, Steven P; Harper, J Wade
2009-07-23
Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
Defining the Human Deubiquitinating Enzyme Interaction Landscape
Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade
2009-01-01
Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732
Agent-based modeling: a new approach for theory building in social psychology.
Smith, Eliot R; Conrey, Frederica R
2007-02-01
Most social and psychological phenomena occur not as the result of isolated decisions by individuals but rather as the result of repeated interactions between multiple individuals over time. Yet the theory-building and modeling techniques most commonly used in social psychology are less than ideal for understanding such dynamic and interactive processes. This article describes an alternative approach to theory building, agent-based modeling (ABM), which involves simulation of large numbers of autonomous agents that interact with each other and with a simulated environment and the observation of emergent patterns from their interactions. The authors believe that the ABM approach is better able than prevailing approaches in the field, variable-based modeling (VBM) techniques such as causal modeling, to capture types of complex, dynamic, interactive processes so important in the social world. The article elaborates several important contrasts between ABM and VBM and offers specific recommendations for learning more and applying the ABM approach.
ERIC Educational Resources Information Center
Reis, Giuliano; Barwell, Richard
2013-01-01
The day-to-day business of being a science or mathematics teacher involves the continuous assessment of students. This, in turn, is an inherently discursive process. The aim of the present study is to examine some of the specific discursive practices through which science and mathematics knowing is jointly produced through classroom interaction.…
The Network Architecture of Cortical Processing in Visuo-spatial Reasoning
Shokri-Kojori, Ehsan; Motes, Michael A.; Rypma, Bart; Krawczyk, Daniel C.
2012-01-01
Reasoning processes have been closely associated with prefrontal cortex (PFC), but specifically emerge from interactions among networks of brain regions. Yet it remains a challenge to integrate these brain-wide interactions in identifying the flow of processing emerging from sensory brain regions to abstract processing regions, particularly within PFC. Functional magnetic resonance imaging data were collected while participants performed a visuo-spatial reasoning task. We found increasing involvement of occipital and parietal regions together with caudal-rostral recruitment of PFC as stimulus dimensions increased. Brain-wide connectivity analysis revealed that interactions between primary visual and parietal regions predominantly influenced activity in frontal lobes. Caudal-to-rostral influences were found within left-PFC. Right-PFC showed evidence of rostral-to-caudal connectivity in addition to relatively independent influences from occipito-parietal cortices. In the context of hierarchical views of PFC organization, our results suggest that a caudal-to-rostral flow of processing may emerge within PFC in reasoning tasks with minimal top-down deductive requirements. PMID:22624092
The network architecture of cortical processing in visuo-spatial reasoning.
Shokri-Kojori, Ehsan; Motes, Michael A; Rypma, Bart; Krawczyk, Daniel C
2012-01-01
Reasoning processes have been closely associated with prefrontal cortex (PFC), but specifically emerge from interactions among networks of brain regions. Yet it remains a challenge to integrate these brain-wide interactions in identifying the flow of processing emerging from sensory brain regions to abstract processing regions, particularly within PFC. Functional magnetic resonance imaging data were collected while participants performed a visuo-spatial reasoning task. We found increasing involvement of occipital and parietal regions together with caudal-rostral recruitment of PFC as stimulus dimensions increased. Brain-wide connectivity analysis revealed that interactions between primary visual and parietal regions predominantly influenced activity in frontal lobes. Caudal-to-rostral influences were found within left-PFC. Right-PFC showed evidence of rostral-to-caudal connectivity in addition to relatively independent influences from occipito-parietal cortices. In the context of hierarchical views of PFC organization, our results suggest that a caudal-to-rostral flow of processing may emerge within PFC in reasoning tasks with minimal top-down deductive requirements.
Dechat, Thomas; Adam, Stephen A.; Taimen, Pekka; Shimi, Takeshi; Goldman, Robert D.
2010-01-01
The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription. PMID:20826548
Micro- and mesoscopic process interactions in protein coagulation
NASA Astrophysics Data System (ADS)
San Biagio, P. L.; Martorana, V.; Emanuele, A.; Vaiana, S. M.; Manno, M.; Bulone, D.; Palma-Vittorelli, M. B.; Palma, M. U.
2000-04-01
It has recently been recognized that pathological protein coagulation is responsible for lethal pathologies as diverse as amyloidosis, Alzheimer and TSE. Understanding the coagulation mechanisms is therefore stirring great interest. In previous studies we have shown that on profoundly different systems coagulation is the result of a strong interaction between two processes on different length scales (mesoscopic and microscopic). Here we report experiments on bovine serum albumin (BSA) showing that the overall mechanism is the result of at least 3 distinct and strongly intertwined processes, on both length scales: molecular conformational changes, solution demixing and intermolecular crosslinking. This mechanism involves the statistical mechanics of protein-solvent interaction, its relation to the protein's landscape of configurational free energy and to the solution's thermodynamic stability, and its relation to the topological problem of crosslink-percolation, responsible for coagulation.
Web-based Interactive Landform Simulation Model - Grand Canyon
NASA Astrophysics Data System (ADS)
Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.
2013-12-01
Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.
Genome-Wide Protein Interaction Screens Reveal Functional Networks Involving Sm-Like Proteins
Fromont-Racine, Micheline; Mayes, Andrew E.; Brunet-Simon, Adeline; Rain, Jean-Christophe; Colley, Alan; Dix, Ian; Decourty, Laurence; Joly, Nicolas; Ricard, Florence; Beggs, Jean D.
2000-01-01
A set of seven structurally related Sm proteins forms the core of the snRNP particles containing the spliceosomal U1, U2, U4 and U5 snRNAs. A search of the genomic sequence of Saccharomyces cerevisiae has identified a number of open reading frames that potentially encode structurally similar proteins termed Lsm (Like Sm) proteins. With the aim of analysing all possible interactions between the Lsm proteins and any protein encoded in the yeast genome, we performed exhaustive and iterative genomic two-hybrid screens, starting with the Lsm proteins as baits. Indeed, extensive interactions amongst eight Lsm proteins were found that suggest the existence of a Lsm complex or complexes. These Lsm interactions apparently involve the conserved Sm domain that also mediates interactions between the Sm proteins. The screens also reveal functionally significant interactions with splicing factors, in particular with Prp4 and Prp24, compatible with genetic studies and with the reported association of Lsm proteins with spliceosomal U6 and U4/U6 particles. In addition, interactions with proteins involved in mRNA turnover, such as Mrt1, Dcp1, Dcp2 and Xrn1, point to roles for Lsm complexes in distinct RNA metabolic processes, that are confirmed in independent functional studies. These results provide compelling evidence that two-hybrid screens yield functionally meaningful information about protein–protein interactions and can suggest functions for uncharacterized proteins, especially when they are performed on a genome-wide scale. PMID:10900456
Chen, Hao; Sun, Wei; Zhang, Xian Sheng
2013-01-01
Pollination is the first crucial step of sexual reproduction in flowering plants, and it requires communication and coordination between the pollen and the stigma. Maize (Zea mays) is a model monocot with extraordinarily long silks, and a fully sequenced genome, but little is known about the mechanism of its pollen–stigma interactions. In this study, the dynamic gene expression of silks at four different stages before and after pollination was analyzed. The expression profiles of immature silks (IMS), mature silks (MS), and silks at 20 minutes and 3 hours after pollination (20MAP and 3HAP, respectively) were compared. In total, we identified 6,337 differentially expressed genes in silks (SDEG) at the four stages. Among them, the expression of 172 genes were induced upon pollination, most of which participated in RNA binding, processing and transcription, signal transduction, and lipid metabolism processes. Genes in the SDEG dataset could be divided into 12 time-course clusters according to their expression patterns. Gene Ontology (GO) enrichment analysis revealed that many genes involved in microtubule-based movement, ubiquitin-mediated protein degradation, and transport were predominantly expressed at specific stages, indicating that they might play important roles in the pollination process of maize. These results add to current knowledge about the pollination process of grasses and provide a foundation for future studies on key genes involved in the pollen–silk interaction in maize. PMID:23301084
The turbulent cascade of individual eddies
NASA Astrophysics Data System (ADS)
Huertas-Cerdeira, Cecilia; Lozano-Durán, Adrián; Jiménez, Javier
2014-11-01
The merging and splitting processes of Reynolds-stress carrying structures in the inertial range of scales are studied through their time-resolved evolution in channels at Reλ = 100 - 200 . Mergers and splits coexist during the whole life of the structures, and are responsible for a substantial part of their growth and decay. Each interaction involves two or more eddies and results in little overall volume loss or gain. Most of them involve a small eddy that merges with, or splits from, a significantly larger one. Accordingly, if merge and split indexes are respectively defined as the maximum number of times that a structure has merged from its birth or will split until its death, the mean eddy volume grows linearly with both indexes, suggesting an accretion process rather than a hierarchical fragmentation. However, a non-negligible number of interactions involve eddies of similar scale, with a second probability peak of the volume of the smaller parent or child at 0.3 times that of the resulting or preceding structure. Funded by the Multiflow project of the ERC.
NASA Astrophysics Data System (ADS)
Marpaung, B. O. Y.; Waginah
2018-03-01
Every existence of community settlements that formed has related to social, culture, and economy that exists in that society. Participation is a process that involving human interaction towards each other, of these interactions creates activities that potentially form a new space (Hendriksen, et al., 2012). Problems in this research are related to community involvement in building residential, determining land used, building roads, and utilities in Kampung Nelayan Belawan Medan residential. The aim of this research is to find the community involvement of building residential, determining land used, building roads, and utilities in Kampung Nelayan Belawan Medan residential. In the process of collecting data, researchers conducted field observation and interviews. Then the researchers connect the theory and interpretation of data in determining the method of data analysis. Then the researchers connect the theory and interpretation of data in determining the method of data analysis. The discovery of this research is that the formation of settlement spaces in the fishing village is inseparable from the participation in Kampung Nelayan Belawan Medan residential.
Public involvement in research: making sense of the diversity.
Oliver, Sandy; Liabo, Kristin; Stewart, Ruth; Rees, Rebecca
2015-01-01
This paper presents a coherent framework for designing and evaluating public involvement in research by drawing on an extensive literature and the authors' experience. The framework consists of three key interrelated dimensions: the drivers for involvement; the processes for involvement and the impact of involvement. The pivotal point in this framework is the opportunity for researchers and others to exchange ideas. This opportunity results from the processes which bring them together and which support their debates and decisions. It is also the point at which research that is in the public interest is open to public influence and the point at which the interaction can also influence anyone directly involved. Judicious choice of methods for bringing people together, and supporting their debate and decisions, depends upon the drivers of those involved; these vary with their characteristics, particularly their degree of enthusiasm and experience, and their motivation. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
FACTORS INFLUENCING LIGHT-INDUCED MORTALITY OF ENTEROCOCCI IN SEDIMENT SUSPENSIONS
Contamination of recreational waters by pathogenic microorganisms occurs through complex, poorly understood interactions involving variable microbial sources, hydrodynamic transport, arid microbial fate processes. Fecal indicator bacteria such as enterococci have been used to ass...
ERIC Educational Resources Information Center
Luo, Wei; Pelletier, Jon; Duffin, Kirk; Ormand, Carol; Hung, Wei-chen; Shernoff, David J.; Zhai, Xiaoming; Iverson, Ellen; Whalley, Kyle; Gallaher, Courtney; Furness, Walter
2016-01-01
The long geological time needed for landform development and evolution poses a challenge for understanding and appreciating the processes involved. The Web-based Interactive Landform Simulation Model--Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is an educational tool designed to help students better understand such processes,…
ERIC Educational Resources Information Center
Svihla, Vanessa Lynn
2009-01-01
Authentic design commonly involves teams of designers collaborating on ill-structured problems over extended time periods. Nonetheless, design has been studied extensively in sequestered settings, limiting our understanding of design as process and especially of learning design process. This study addresses potential shortcomings of such studies…
FAA Aviation Forecast Conference Proceedings (16th)
1991-02-01
FORECASTS The FAA forecasting process is a continuous one which involves FAA Forecast Branch’s interaction with various FAA Offices and Services... process uses various economic and aviation data bases, the outputs of several econometric models and equations, and other analytical techniques. The FAA...workload measures, summarized numerically in the table on page 8, are the resultant forecasts of this process and are used annually by the agency for
Heath, Joel P.; Gilchrist, H. Grant; Ydenberg, Ronald C.
2010-01-01
To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of diving for benthic invertebrates, digestive processing rate and a nonlinear decrease in profitability of diving as currents increase over the tidal cycle. Using a multi-scale dynamic modelling approach and continuous field observations of individuals, we demonstrate that the strategy that maximizes long-term energy gain involves resting during the most profitable foraging period (slack currents). These counterintuitive foraging patterns are an adaptive trade-off between multiple overlapping rate processes and cannot be explained by classical rate-maximizing optimization theory, which only considers a single timescale and predicts a constant rate of foraging. By reducing foraging and instead digesting during slack currents, eiders structure their activity in order to maximize long-term energetic gain over an entire tide cycle. This study reveals how counterintuitive patterns and a complex functional response can result from a simple trade-off among several overlapping rate processes, emphasizing the necessity of a multi-scale approach for understanding adaptive routines in the wild and evaluating mechanisms in ecological time series. PMID:20504814
An ERP investigation of visual word recognition in syllabary scripts.
Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J
2013-06-01
The bimodal interactive-activation model has been successfully applied to understanding the neurocognitive processes involved in reading words in alphabetic scripts, as reflected in the modulation of ERP components in masked repetition priming. In order to test the generalizability of this approach, in the present study we examined word recognition in a different writing system, the Japanese syllabary scripts hiragana and katakana. Native Japanese participants were presented with repeated or unrelated pairs of Japanese words in which the prime and target words were both in the same script (within-script priming, Exp. 1) or were in the opposite script (cross-script priming, Exp. 2). As in previous studies with alphabetic scripts, in both experiments the N250 (sublexical processing) and N400 (lexical-semantic processing) components were modulated by priming, although the time course was somewhat delayed. The earlier N/P150 effect (visual feature processing) was present only in "Experiment 1: Within-script priming", in which the prime and target words shared visual features. Overall, the results provide support for the hypothesis that visual word recognition involves a generalizable set of neurocognitive processes that operate in similar manners across different writing systems and languages, as well as pointing to the viability of the bimodal interactive-activation framework for modeling such processes.
An ERP Investigation of Visual Word Recognition in Syllabary Scripts
Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J.
2013-01-01
The bi-modal interactive-activation model has been successfully applied to understanding the neuro-cognitive processes involved in reading words in alphabetic scripts, as reflected in the modulation of ERP components in masked repetition priming. In order to test the generalizability of this approach, the current study examined word recognition in a different writing system, the Japanese syllabary scripts Hiragana and Katakana. Native Japanese participants were presented with repeated or unrelated pairs of Japanese words where the prime and target words were both in the same script (within-script priming, Experiment 1) or were in the opposite script (cross-script priming, Experiment 2). As in previous studies with alphabetic scripts, in both experiments the N250 (sub-lexical processing) and N400 (lexical-semantic processing) components were modulated by priming, although the time-course was somewhat delayed. The earlier N/P150 effect (visual feature processing) was present only in Experiment 1 where prime and target words shared visual features. Overall, the results provide support for the hypothesis that visual word recognition involves a generalizable set of neuro-cognitive processes that operate in a similar manner across different writing systems and languages, as well as pointing to the viability of the bi-modal interactive activation framework for modeling such processes. PMID:23378278
Sander, David; Grandjean, Didier; Pourtois, Gilles; Schwartz, Sophie; Seghier, Mohamed L; Scherer, Klaus R; Vuilleumier, Patrik
2005-12-01
Multiple levels of processing are thought to be involved in the appraisal of emotionally relevant events, with some processes being engaged relatively independently of attention, whereas other processes may depend on attention and current task goals or context. We conducted an event-related fMRI experiment to examine how processing angry voice prosody, an affectively and socially salient signal, is modulated by voluntary attention. To manipulate attention orthogonally to emotional prosody, we used a dichotic listening paradigm in which meaningless utterances, pronounced with either angry or neutral prosody, were presented simultaneously to both ears on each trial. In two successive blocks, participants selectively attended to either the left or right ear and performed a gender-decision on the voice heard on the target side. Our results revealed a functional dissociation between different brain areas. Whereas the right amygdala and bilateral superior temporal sulcus responded to anger prosody irrespective of whether it was heard from a to-be-attended or to-be-ignored voice, the orbitofrontal cortex and the cuneus in medial occipital cortex showed greater activation to the same emotional stimuli when the angry voice was to-be-attended rather than to-be-ignored. Furthermore, regression analyses revealed a strong correlation between orbitofrontal regions and sensitivity on a behavioral inhibition scale measuring proneness to anxiety reactions. Our results underscore the importance of emotion and attention interactions in social cognition by demonstrating that multiple levels of processing are involved in the appraisal of emotionally relevant cues in voices, and by showing a modulation of some emotional responses by both the current task-demands and individual differences.
Katsogiannou, Maria; Andrieu, Claudia; Baylot, Virginie; Baudot, Anaïs; Dusetti, Nelson J; Gayet, Odile; Finetti, Pascal; Garrido, Carmen; Birnbaum, Daniel; Bertucci, François; Brun, Christine; Rocchi, Palma
2014-12-01
Previously, we identified the stress-induced chaperone, Hsp27, as highly overexpressed in castration-resistant prostate cancer and developed an Hsp27 inhibitor (OGX-427) currently tested in phase I/II clinical trials as a chemosensitizing agent in different cancers. To better understand the Hsp27 poorly-defined cytoprotective functions in cancers and increase the OGX-427 pharmacological safety, we established the Hsp27-protein interaction network using a yeast two-hybrid approach and identified 226 interaction partners. As an example, we showed that targeting Hsp27 interaction with TCTP, a partner protein identified in our screen increases therapy sensitivity, opening a new promising field of research for therapeutic approaches that could decrease or abolish toxicity for normal cells. Results of an in-depth bioinformatics network analysis allying the Hsp27 interaction map into the human interactome underlined the multifunctional character of this protein. We identified interactions of Hsp27 with proteins involved in eight well known functions previously related to Hsp27 and uncovered 17 potential new ones, such as DNA repair and RNA splicing. Validation of Hsp27 involvement in both processes in human prostate cancer cells supports our system biology-predicted functions and provides new insights into Hsp27 roles in cancer cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Cerebro-cerebellar interactions underlying temporal information processing.
Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao
2010-12-01
The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.
A dimensional analysis of patient-centered care.
Hobbs, Jennifer Lynn
2009-01-01
Patient-centered care (PCC) is a poorly conceptualized phenomenon and can indicate anything from soothing room design, emotional support of patients, customization of meals, to support of patient decision making. This inconsistency across the clinical and research literature makes the application of PCC difficult. The objective of this study was to identify dimensions of PCC as found in the literature. A dimensional analysis of PCC was conducted from 69 clinical and research articles published from 2000 to 2006. Coding of the literature for the perspective, context, conditions, process, and consequences of PCC was completed. These codes were used to determine literature selected for inclusion, organize article content, and frame the delineation of PCC. Alleviating vulnerabilities, consisting of both compromised physiological states and threats to individual identity, was constant throughout the literature. Therapeutic engagement was the process sustaining the patient during an illness episode that necessitated service use and involved allocating time, carrying out information practices, knowing the patient, and developing a relationship. This process occurs during nurse-patient interaction, sustained during successive interactions, and reinforced by the information practices of a particular setting. The interaction between nurse and patient is central to the effective study and application of PCC. Appropriate use of PCC can improve study outcomes and measurements by clarifying the variables involved, and PCC holds great promise to frame patient outcome and satisfaction research by analyzing how and with what effect nurses alleviate patient vulnerability. Moreover, consideration of information practices as a critical supporting structure of nurse-patient interaction can be explored.
Interactive information processing for NASA's mesoscale analysis and space sensor program
NASA Technical Reports Server (NTRS)
Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.
1985-01-01
The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.
Friend versus foe: Neural correlates of prosocial decisions for liked and disliked peers.
Schreuders, Elisabeth; Klapwijk, Eduard T; Will, Geert-Jan; Güroğlu, Berna
2018-02-01
Although the majority of our social interactions are with people we know, few studies have investigated the neural correlates of sharing valuable resources with familiar others. Using an ecologically valid research paradigm, this functional magnetic resonance imaging study examined the neural correlates of prosocial and selfish behavior in interactions with real-life friends and disliked peers in young adults. Participants (N = 27) distributed coins between themselves and another person, where they could make selfish choices that maximized their own gains or prosocial choices that maximized outcomes of the other. Participants were more prosocial toward friends and more selfish toward disliked peers. Individual prosociality levels toward friends were associated negatively with supplementary motor area and anterior insula activity. Further preliminary analyses showed that prosocial decisions involving friends were associated with heightened activity in the bilateral posterior temporoparietal junction, and selfish decisions involving disliked peers were associated with heightened superior temporal sulcus activity, which are brain regions consistently shown to be involved in mentalizing and perspective taking in prior studies. Further, activation of the putamen was observed during prosocial choices involving friends and selfish choices involving disliked peers. These findings provide insights into the modulation of neural processes that underlie prosocial behavior as a function of a positive or negative relationship with the interaction partner.
Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions
Hasson, Uri; Frith, Chris D.
2016-01-01
When people observe one another, behavioural alignment can be detected at many levels, from the physical to the mental. Likewise, when people process the same highly complex stimulus sequences, such as films and stories, alignment is detected in the elicited brain activity. In early sensory areas, shared neural patterns are coupled to the low-level properties of the stimulus (shape, motion, volume, etc.), while in high-order brain areas, shared neural patterns are coupled to high-levels aspects of the stimulus, such as meaning. Successful social interactions require such alignments (both behavioural and neural), as communication cannot occur without shared understanding. However, we need to go beyond simple, symmetric (mirror) alignment once we start interacting. Interactions are dynamic processes, which involve continuous mutual adaptation, development of complementary behaviour and division of labour such as leader–follower roles. Here, we argue that interacting individuals are dynamically coupled rather than simply aligned. This broader framework for understanding interactions can encompass both processes by which behaviour and brain activity mirror each other (neural alignment), and situations in which behaviour and brain activity in one participant are coupled (but not mirrored) to the dynamics in the other participant. To apply these more sophisticated accounts of social interactions to the study of the underlying neural processes we need to develop new experimental paradigms and novel methods of data analysis PMID:27069044
Pervasive competition between threat and reward in the brain
Choi, Jong Moon; Padmala, Srikanth; Spechler, Philip
2014-01-01
In the current functional MRI study, we investigated interactions between reward and threat processing. Visual cues at the start of each trial informed participants about the chance of winning monetary reward and/or receiving a mild aversive shock. We tested two competing hypothesis: according to the ‘salience hypothesis’, in the condition involving both reward and threat, enhanced activation would be observed because of increased salience; according to the ‘competition hypothesis’, the processing of reward and threat would trade-off against each other, leading to reduced activation. Analysis of skin conductance data during a delay phase revealed an interaction between reward and threat processing, such that the effect of reward was reduced during threat and the effect of threat was reduced during reward. Analysis of imaging data during the same task phase revealed interactions between reward and threat processing in several regions, including the midbrain/ventral tegmental area, caudate, putamen, bed nucleus of the stria terminalis, anterior insula, middle frontal gyrus and dorsal anterior cingulate cortex. Taken together, our findings reveal conditions during which reward and threat trade-off against each other across multiple sites. Such interactions are suggestive of competitive processes and may reflect the organization of opponent systems in the brain. PMID:23547242
Lopes, Edilene; Carter, Drew; Street, Jackie
2015-06-01
We collected and analysed views of key stakeholders on the processes used to involve patient organisations in health care funding decision making in Australia. We conducted 12 semi-structured interviews with patient organisation representatives and members of Advisory Committees that provide advice to the Australian Department of Health and employ Health Technology Assessment (HTA) as an evaluation framework. Using two theoretical frameworks, we analysed structural and contextual elements pertaining to the involvement processes. The findings reported in this article relate to interviewees' perspectives on contextual elements, analysed using a Foucauldian lens. These elements include: the perspectives of marginalised voices; the diversity of views on what ought to be considered valid evidence in a HTA setting; and the relationships between stakeholders, along with how these relationships impact on involvement processes and the outcomes of those processes. The findings demonstrate that the involvement processes currently used are deemed inadequate by both patient organisation representatives and Advisory Committee members, but for different reasons connected to how different stakeholders conceptualise evidence. Advisory Committee members viewed evidence as encompassing clinical outcomes and patient preferences, whereas patient organisation representatives tended to view evidence as encompassing aspects not directly related to a disease entity, such as the social and emotional aspects of patients' experiences in living with illness. Patient organisation representatives reported interacting with other stakeholders (especially industry) to increase the influence of their conception of evidence on decision making. The use of this strategy by interviewees illustrates how power struggles occur in government decision-making processes which involve both medical expertise and patients' accounts. Such struggles, and the power differentials they reflect, need to be considered by those responsible for designing and implementing meaningful public- and patient-involvement processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multicriteria decision analysis: Overview and implications for environmental decision making
Hermans, Caroline M.; Erickson, Jon D.; Erickson, Jon D.; Messner, Frank; Ring, Irene
2007-01-01
Environmental decision making involving multiple stakeholders can benefit from the use of a formal process to structure stakeholder interactions, leading to more successful outcomes than traditional discursive decision processes. There are many tools available to handle complex decision making. Here we illustrate the use of a multicriteria decision analysis (MCDA) outranking tool (PROMETHEE) to facilitate decision making at the watershed scale, involving multiple stakeholders, multiple criteria, and multiple objectives. We compare various MCDA methods and their theoretical underpinnings, examining methods that most realistically model complex decision problems in ways that are understandable and transparent to stakeholders.
Picosecond Laser Pulse Interactions with Metallic and Semiconductor Surfaces.
1983-11-01
Materials Research Society-Europe Meeting, Laset Solid Interactions and Transient Thermal Processing of Materials. Strasbourg, May 1983, 3. de Physique...of or assisting the heating of the sample. In this experiment the the Brillouin zone are involved, the index variations are de - probe fluence was...the entire range -of fluences below the threshold for phase transition. A de - tailed analysis of this fitting procedure is beyond the scope of 900
2012-09-01
ecological processes involve the invasion of non-native (exotic) species (USEPA 1999). Through direct biotic interactions (predation and competition) and...indirect interactions ( ecological engineering and habitat modification), invasive species can disrupt the natural population dynamics of native...species (USEPA 1999). Invasives can include noxious plants (i.e., plants that are listed by a state because of their unfavorable economic or ecological
Plat, Rika; Lowie, Wander; de Bot, Kees
2017-01-01
Reaction time data have long been collected in order to gain insight into the underlying mechanisms involved in language processing. Means analyses often attempt to break down what factors relate to what portion of the total reaction time. From a dynamic systems theory perspective or an interaction dominant view of language processing, it is impossible to isolate discrete factors contributing to language processing, since these continually and interactively play a role. Non-linear analyses offer the tools to investigate the underlying process of language use in time, without having to isolate discrete factors. Patterns of variability in reaction time data may disclose the relative contribution of automatic (grapheme-to-phoneme conversion) processing and attention-demanding (semantic) processing. The presence of a fractal structure in the variability of a reaction time series indicates automaticity in the mental structures contributing to a task. A decorrelated pattern of variability will indicate a higher degree of attention-demanding processing. A focus on variability patterns allows us to examine the relative contribution of automatic and attention-demanding processing when a speaker is using the mother tongue (L1) or a second language (L2). A word naming task conducted in the L1 (Dutch) and L2 (English) shows L1 word processing to rely more on automatic spelling-to-sound conversion than L2 word processing. A word naming task with a semantic categorization subtask showed more reliance on attention-demanding semantic processing when using the L2. A comparison to L1 English data shows this was not only due to the amount of language use or language dominance, but also to the difference in orthographic depth between Dutch and English. An important implication of this finding is that when the same task is used to test and compare different languages, one cannot straightforwardly assume the same cognitive sub processes are involved to an equal degree using the same task in different languages.
Mechanisms and evolution of plant resistance to aphids.
Züst, Tobias; Agrawal, Anurag A
2016-01-06
Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions.
Electron-Driven Processes: From Single Collision Experiments to High-Pressure Discharge Plasmas
NASA Astrophysics Data System (ADS)
Becker, Kurt
2001-10-01
Plasmas are complex systems which consist of various groups of interacting particles (neutral atoms and molecules in their ground states and in excite states, electrons, and positive and negative ions). In principle, one needs to understand and describe all interactions between these particles in order to model the properties of the plasma and to predict its behavior. However, two-body interactions are often the only processes of relevance and only a subset of all possible collisional interactions are important. The focus of this talk is on collisional and radiative processes in low-temperature plasmas, both at low and high pressures. We will limit the discussion (i) to ionization and dissociation processes in molecular low-pressure plasmas and (ii) to collisional and radiative processes in high-pressure plasmas in rare gases and mixtures of rare gases and N2, O2, and H2. Electron-impact dissociation processes can be divided into dissociative excitation and dissociation into neutral ground-state fragments. Neutral molecular dissociation has only recently received attention from experimentalists and theorists because of the serious difficulties associated with the investigation of these processes. Collisional and radiative processes in high-pressure plasmas provide a fertile environment to the study of interactions that go beyond binary collisions involving ground-state species. Step-wise processes and three-body collisions begin to dominate the behavior of such plasmas. We will discuss examples of such processes as they relate to high-pressure rare gas discharge plasmas. Work supported by NSF, DOE, DARPA, NASA, and ABA Inc.
Guo, Siying
2018-02-01
Family processes, adolescent religious involvement, and self-control may serve as important mechanisms that mediate the relationship between parental religious involvement and delinquency. However, at present no study has systematically investigated the relationships among these factors and how these mediating mechanisms work. To address this gap, path analyses are conducted to test the hypothesized pathways whereby parental religious involvement operates to discourage delinquent behaviors of offspring. The study variables are taken from three waves of the study of the National Longitudinal Survey of Youth 1979 and its descendent NLSY79 Child and Young Adults at two year intervals (2000, 2002, and 2004). 1020 American adolescents who are 10-14 years old in 2002 are selected for final analyses. The findings suggest that parental religious involvement does not affect adolescent delinquency four years later directly, but indirectly through its influence on adolescent religious involvement, parenting practices, inter-parental conflict, and their interactions with adolescent self-control. Copyright © 2017. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Sanya, Losira Nasirumbi; Sseguya, Haroon; Kyazze, Florence Birungi; Baguma, Yona; Kibwika, Paul
2018-01-01
Purpose: We examine the nature of networks through which new hybrid banana varieties (HBVs) in Uganda are developed, and how different actors engage in the technology development process. Design/methodology/approach: We collected the data through 20 key informant interviews and 5 focus group discussions with actors involved in the process. We…
Chemical and Physical Interactions of Martian Surface Material
NASA Astrophysics Data System (ADS)
Bishop, J. L.
1999-09-01
A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.
Transcription Factors in Long-Term Memory and Synaptic Plasticity
Alberini, Cristina M.
2013-01-01
Transcription is a molecular requisite for long-term synaptic plasticity and long-term memory formation. Thus, in the last several years, one main interest of molecular neuroscience has been the identification of families of transcription factors that are involved in both of these processes. Transcription is a highly regulated process that involves the combined interaction and function of chromatin and many other proteins, some of which are essential for the basal process of transcription, while others control the selective activation or repression of specific genes. These regulated interactions ultimately allow a sophisticated response to multiple environmental conditions, as well as control of spatial and temporal differences in gene expression. Evidence based on correlative changes in expression, genetic mutations, and targeted molecular inhibition of gene expression have shed light on the function of transcription in both synaptic plasticity and memory formation. This review provides a brief overview of experimental work showing that several families of transcription factors, including CREB, C/EBP, Egr, AP-1, and Rel have essential functions in both processes. The results of this work suggest that patterns of transcription regulation represent the molecular signatures of long-term synaptic changes and memory formation. PMID:19126756
The dynamics of meaningful social interactions and the emergence of collective knowledge
Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka
2015-01-01
Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games. PMID:26174482
The dynamics of meaningful social interactions and the emergence of collective knowledge
NASA Astrophysics Data System (ADS)
Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka
2015-07-01
Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.
The dynamics of meaningful social interactions and the emergence of collective knowledge.
Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka
2015-07-15
Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions &Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor's expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.
Extended cognition and the space of social interaction.
Krueger, Joel
2011-09-01
The extended mind thesis (EM) asserts that some cognitive processes are (partially) composed of actions consisting of the manipulation and exploitation of environmental structures. Might some processes at the root of social cognition have a similarly extended structure? In this paper, I argue that social cognition is fundamentally an interactive form of space management--the negotiation and management of "we-space"--and that some of the expressive actions involved in the negotiation and management of we-space (gesture, touch, facial and whole-body expressions) drive basic processes of interpersonal understanding and thus do genuine social-cognitive work. Social interaction is a kind of extended social cognition, driven and at least partially constituted by environmental (non-neural) scaffolding. Challenging the Theory of Mind paradigm, I draw upon research from gesture studies, developmental psychology, and work on Moebius Syndrome to support this thesis. Copyright © 2010 Elsevier Inc. All rights reserved.
Ma, Le; Li, Fang; Zhang, Jing-Wei; Li, Wei; Zhao, Dong-Ming; Wang, Han; Hua, Rong-Hong; Bu, Zhi-Gao
2018-03-28
Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Herein, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. Loss of SPCS1 function markedly reduced intracellular virion assembly and production of infectious JEV particles, but did not affect virus cell entry, RNA replication, or translation. SPCS1 was found to interact with NS2B, which is involved in post-translational protein processing and viral assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B (1-49) and NS2B (84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B (1-49), and P112A in NS2B (84-131), weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1 (91-169) which containing two transmembrane domains was involved in the interaction with both NS2B (1-49) and NS2B (84-131). Taken together, the results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing post-translational processing of JEV proteins and the assembly of virions. IMPORTANCE Understanding viral-host interactions is important for elucidating the molecular mechanisms of viral propagation, and identifying potential anti-viral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the post-translational protein processing and viral assembly stages of the JEV lifecycle, but not in the cell entry, genome RNA replication, or translation stages. Furthermore, we found that SPCS1 interacts with two independent transmembrane domains of the Flavivirus NS2B protein. NS2B also interacts with NS2A, which is proposed to mediate viral assembly. Therefore, we propose a protein-protein interaction model showing how SPCS1 participates in the assembly of JEV particles. The findings expand our understanding of how host factors participate in the flavivirus replication lifecycle, and identify potential anti-viral targets for combatting flavivirus infection. Copyright © 2018 American Society for Microbiology.
Folly, Brenda B; Weffort-Santos, Almeriane M; Fathman, C G; Soares, Luis R B
2011-01-31
Dengue virus infection is a public health threat to hundreds of millions of individuals in the tropical regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global biological processes affected by virus entry into a cell might help shed new light on this long-standing problem. A bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and pathway enrichment, along with network topology and microarray meta-analysis, were used to generate hypothesis regarding dengue disease biology. Combining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified 31 interacting human proteins representing distinct biological processes that are closely related to the major clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells and the innate immune response to infection. Construction of a DENV2-human global protein interaction network revealed interesting biological properties suggested by simple network topology analysis. Our experimental strategy revealed that dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti-viral response processes, and predicts that the interaction of dengue proteins with a proposed human protein interaction network produces a modified biological outcome that may be behind the hallmark pathologies of dengue infection.
Drug interactions evaluation: An integrated part of risk assessment of therapeutics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Reynolds, Kellie S.; Zhao, Ping
2010-03-01
Pharmacokinetic drug interactions can lead to serious adverse events or decreased drug efficacy. The evaluation of a new molecular entity's (NME's) drug-drug interaction potential is an integral part of risk assessment during drug development and regulatory review. Alteration of activities of enzymes or transporters involved in the absorption, distribution, metabolism, or excretion of a new molecular entity by concomitant drugs may alter drug exposure, which can impact response (safety or efficacy). The recent Food and Drug Administration (FDA) draft drug interaction guidance ( (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072101.pdf)) highlights the methodologies and criteria that may be used to guide drug interaction evaluation by industrymore » and regulatory agencies and to construct informative labeling for health practitioner and patients. In addition, the Food and Drug Administration established a 'Drug Development and Drug Interactions' website to provide up-to-date information regarding evaluation of drug interactions ( (http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm080499.htm)). This review summarizes key elements in the FDA drug interaction guidance and new scientific developments that can guide the evaluation of drug-drug interactions during the drug development process.« less
Piezoelectric Templates - New Views on Biomineralization and Biomimetics.
Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim
2016-05-23
Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.
Piezoelectric Templates - New Views on Biomineralization and Biomimetics
NASA Astrophysics Data System (ADS)
Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim
2016-05-01
Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template’s piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V-1 compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.
Roles and regulations of the ETS transcription factor ELF4/MEF
Suico, Mary Ann; Shuto, Tsuyoshi; Kai, Hirofumi
2017-01-01
Abstract Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity. PMID:27932483
NOP132 is required for proper nucleolus localization of DEAD-box RNA helicase DDX47
Sekiguchi, Takeshi; Hayano, Toshiya; Yanagida, Mitsuaki; Takahashi, Nobuhiro; Nishimoto, Takeharu
2006-01-01
Previously, we described a novel nucleolar protein, NOP132, which interacts with the small GTP binding protein RRAG A. To elucidate the function of NOP132 in the nucleolus, we identified proteins that interact with NOP132 using mass spectrometric methods. NOP132 associated mainly with proteins involved in ribosome biogenesis and RNA metabolism, including the DEAD-box RNA helicase protein, DDX47, whose yeast homolog is Rrp3, which has roles in pre-rRNA processing. Immunoprecipitation of FLAG-tagged DDX47 co-precipitated rRNA precursors, as well as a number of proteins that are probably involved in ribosome biogenesis, implying that DDX47 plays a role in pre-rRNA processing. Introduction of NOP132 small interfering RNAs induced a ring-like localization of DDX47 in the nucleolus, suggesting that NOP132 is required for the appropriate localization of DDX47 within the nucleolus. We propose that NOP132 functions in the recruitment of pre-rRNA processing proteins, including DDX47, to the region where rRNA is transcribed within the nucleolus. PMID:16963496
Role of Osmolytes in Regulating Immune System.
Kumar, Tarun; Yadav, Manisha; Singh, Laishram Rajendrakumar
2016-01-01
The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.
NASA Astrophysics Data System (ADS)
Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.
2015-03-01
DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.
The involvement of central attention in visual search is determined by task demands.
Han, Suk Won
2017-04-01
Attention, the mechanism by which a subset of sensory inputs is prioritized over others, operates at multiple processing stages. Specifically, attention enhances weak sensory signal at the perceptual stage, while it serves to select appropriate responses or consolidate sensory representations into short-term memory at the central stage. This study investigated the independence and interaction between perceptual and central attention. To do so, I used a dual-task paradigm, pairing a four-alternative choice task with a visual search task. The results showed that central attention for response selection was engaged in perceptual processing for visual search when the number of search items increased, thereby increasing the demand for serial allocation of focal attention. By contrast, central attention and perceptual attention remained independent as far as the demand for serial shifting of focal attention remained constant; decreasing stimulus contrast or increasing the set size of a parallel search did not evoke the involvement of central attention in visual search. These results suggest that the nature of concurrent visual search process plays a crucial role in the functional interaction between two different types of attention.
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell.
Lin, Congping; White, Rhiannon R; Sparkes, Imogen; Ashwin, Peter
2017-07-11
The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of complex geometry. ER network morphology and dynamics are influenced by a number of biophysical processes, including filament/tubule tension, viscous forces, Brownian diffusion, and interactions with many other organelles and cytoskeletal elements. Previous studies have indicated that ER networks can be thought of as constrained minimal-length networks acted on by a variety of forces that perturb and/or remodel the network. Here, we study two specific biophysical processes involved in remodeling. One is the dynamic relaxation process involving a combination of tubule tension and viscous forces. The other is the rapid creation of cross-connection tubules by direct or indirect interactions with cytoskeletal elements. These processes are able to remodel the ER network: the first reduces network length and complexity whereas the second increases both. Using live cell imaging of ER network dynamics in tobacco leaf epidermal cells, we examine these processes on ER network dynamics. Away from regions of cytoplasmic streaming, we suggest that the dynamic network structure is a balance between the two processes, and we build an integrative model of the two processes for network remodeling. This model produces quantitatively similar ER networks to those observed in experiments. We use the model to explore the effect of parameter variation on statistical properties of the ER network. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Clayton, Lynette; Robinson, Luther D.
1971-01-01
Observations based on psychodrama with deaf people, relating to interaction between people and the communication process, are made. How role training skills, which involve some of the skills of psychodrama, can be applied by professionals in vocational and social learning situations is illustrated. (KW)
ERIC Educational Resources Information Center
Rodgers, Diane M.
2003-01-01
Describes classroom exercises involving sociology students in the process of learning social construction of reality concepts. Focuses on stigmas and social interaction. States students gain deeper understanding of sociological concepts useful in real life situations. (KDR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afeyan, Bedros; Charbonneau-Lefort, Mathieu; Fejer, Martin
With a finite lateral width pump, non-collinear interactions result in metastable or stable laterally localized bound states. The physical processes involved are group velocity walk-off, diffraction, chirped QPM gratings and different pump shapes.
Visual Compositions and Language Development.
ERIC Educational Resources Information Center
Sinatra, Richard
1981-01-01
Presents an approach for improving verbal development by using organized slide shows to produce visual/verbal interaction in classroom. Suggests strength of visual involvement is that it provides a procedure for language discovery while achieving cooperation between right and left brain processing. (Author/BK)
Malfait, Simon; Van Hecke, Ann; Hellings, Johan; De Bodt, Griet; Eeckloo, Kristof
2017-02-01
In many health care systems, strategies are currently deployed to engage patients and other stakeholders in decisions affecting hospital services. In this paper, a model for stakeholder involvement is presented and evaluated in three Flemish hospitals. In the model, a stakeholder committee advises the hospital's board of directors on themes of strategic importance. To study the internal hospital's decision processes in order to identify the impact of a stakeholder involvement committee on strategic themes in the hospital decision processes. A retrospective analysis of the decision processes was conducted in three hospitals that implemented a stakeholder committee. The analysis consisted of process and outcome evaluation. Fifteen themes were discussed in the stakeholder committees, whereof 11 resulted in a considerable change. None of these were on a strategic level. The theoretical model was not applied as initially developed, but was altered by each hospital. Consequentially, the decision processes differed between the hospitals. Despite alternation of the model, the stakeholder committee showed a meaningful impact in all hospitals on the operational level. As a result of the differences in decision processes, three factors could be identified as facilitators for success: (1) a close interaction with the board of executives, (2) the inclusion of themes with a more practical and patient-oriented nature, and (3) the elaboration of decisions on lower echelons of the organization. To effectively influence the organization's public accountability, hospitals should involve stakeholders in the decision-making process of the organization. The model of a stakeholder committee was not applied as initially developed and did not affect the strategic decision-making processes in the involved hospitals. Results show only impact at the operational level in the participating hospitals. More research is needed connecting stakeholder involvement with hospital governance.
Explorers of the Universe: Interactive Collaborations via the Internet
NASA Astrophysics Data System (ADS)
Burks, G.
1999-05-01
This proposal details how self-directed case-based research with earth/space investigations, and instruction together with collaborative interactions with teachers, students, scientists, and university educators using metacognitive tools (e.g., concept maps, interactive vee diagrams, and thematic organizers), and innovative technology promotes meaningful learning in ways that differ from conventional and atypical educational settings. Our Explorers of the Universe Scientific/Literacy project (http://explorers.tsuniv.edu) promotes earth/space science inquires in non-conventional learning environments with middle, secondary, and postsecondary students. Outlined are programs and educational processes and outcomes that meet both local and national contexts for achieving meaningful learner-centered science and mathematics goals. All information is entered electronically by students and collected for analyses in a database at our TSU web server. Scientists and university educators review and respond to these postings of students by writing in their electronic notebooks, commenting on their concept maps and interactive vee diagrams, and guiding them to pertinent papers and journal articles. Teachers are active learners with their students. They facilitate the learning process by guiding students in their inquires, evoking discussions, and involving their students with other affiliated schools whose students may be engaged in similar research topics. Teachers manage their student electronic accounts by assigning passwords, determining the degree of portfolio sharing among students, and responding to student inquires. Students post their thoughts, progress, inquires, and data on their individualized electronic notebook. Likewise, they plan, carry out, and finalize their case-based research using electronic transmissions via e-mail and the Internet of their concept maps and interactive vee diagrams. Their peer-edited papers are posted on the WWW for others to read and react. The final process involves students developing CDs of their case research report, which serves as a longitudinal case for others to pursue.
Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.
2014-01-01
Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630
Wilson, Katie A.; Kellie, Jennifer L.; Wetmore, Stacey D.
2014-01-01
Four hundred twenty-eight high-resolution DNA–protein complexes were chosen for a bioinformatics study. Although 164 crystal structures (38% of those searched) contained no interactions, 574 discrete π–contacts between the aromatic amino acids and the DNA nucleobases or deoxyribose were identified using strict criteria, including visual inspection. The abundance and structure of the interactions were determined by unequivocally classifying the contacts as either π–π stacking, π–π T-shaped or sugar–π contacts. Three hundred forty-four nucleobase–amino acid π–π contacts (60% of all interactions identified) were identified in 175 of the crystal structures searched. Unprecedented in the literature, 230 DNA–protein sugar–π contacts (40% of all interactions identified) were identified in 137 crystal structures, which involve C–H···π and/or lone–pair···π interactions, contain any amino acid and can be classified according to sugar atoms involved. Both π–π and sugar–π interactions display a range of relative monomer orientations and therefore interaction energies (up to –50 (–70) kJ mol−1 for neutral (charged) interactions as determined using quantum chemical calculations). In general, DNA–protein π-interactions are more prevalent than perhaps currently accepted and the role of such interactions in many biological processes may yet to be uncovered. PMID:24744240
Bautista-Toledo, M I; Méndez-Díaz, J D; Sánchez-Polo, M; Rivera-Utrilla, J; Ferro-García, M A
2008-01-01
The objective of the present investigation was to determine the effectiveness of activated carbon in removing sodium dodecylbenzenesulfonate (SDBS) and to analyze the chemical and textural characteristics of the activated carbons that are involved in the adsorption process. Studies were also performed on the influence of operational variables (pH, ionic strength, and presence of microorganisms) and on the kinetics and interactions involved in the adsorption of this pollutant on activated carbon. The kinetics study of SDBS adsorption revealed no problems in its diffusion on any of the activated carbons studied, and Weisz-Prater coefficient (C WP) values were considerably lower than unity for all activated carbons studied. SDBS adsorption isotherms on these activated carbons showed that: (i) adsorption capacity of activated carbons was very high (260-470 mg/g) and increased with larger surface area; and (ii) dispersive interactions between SDBS and carbon surface were largely responsible for the adsorption of this pollutant. SDBS adsorption was not significantly affected by the solution pH, indicating that electrostatic adsorbent-adsorbate interactions do not play an important role in this process. The presence of electrolytes (NaCl) in the medium favors SDBS adsorption, accelerating the process and increasing adsorption capacity. Under the working conditions used, SDBS is not degraded by bacteria; however, the presence of bacteria during the process accelerates and increases SDBS adsorption on the activated carbon. Microorganism adsorption on the activated carbon surface increases its hydrophobicity, explaining the results observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown-VanHoozer, S.A.
Most designers are not schooled in the area of human-interaction psychology and therefore tend to rely on the traditional ergonomic aspects of human factors when designing complex human-interactive workstations related to reactor operations. They do not take into account the differences in user information processing behavior and how these behaviors may affect individual and team performance when accessing visual displays or utilizing system models in process and control room areas. Unfortunately, by ignoring the importance of the integration of the user interface at the information process level, the result can be sub-optimization and inherently error- and failure-prone systems. Therefore, tomore » minimize or eliminate failures in human-interactive systems, it is essential that the designers understand how each user`s processing characteristics affects how the user gathers information, and how the user communicates the information to the designer and other users. A different type of approach in achieving this understanding is Neuro Linguistic Programming (NLP). The material presented in this paper is based on two studies involving the design of visual displays, NLP, and the user`s perspective model of a reactor system. The studies involve the methodology known as NLP, and its use in expanding design choices from the user`s ``model of the world,`` in the areas of virtual reality, workstation design, team structure, decision and learning style patterns, safety operations, pattern recognition, and much, much more.« less
Predicting PDZ domain mediated protein interactions from structure
2013-01-01
Background PDZ domains are structural protein domains that recognize simple linear amino acid motifs, often at protein C-termini, and mediate protein-protein interactions (PPIs) in important biological processes, such as ion channel regulation, cell polarity and neural development. PDZ domain-peptide interaction predictors have been developed based on domain and peptide sequence information. Since domain structure is known to influence binding specificity, we hypothesized that structural information could be used to predict new interactions compared to sequence-based predictors. Results We developed a novel computational predictor of PDZ domain and C-terminal peptide interactions using a support vector machine trained with PDZ domain structure and peptide sequence information. Performance was estimated using extensive cross validation testing. We used the structure-based predictor to scan the human proteome for ligands of 218 PDZ domains and show that the predictions correspond to known PDZ domain-peptide interactions and PPIs in curated databases. The structure-based predictor is complementary to the sequence-based predictor, finding unique known and novel PPIs, and is less dependent on training–testing domain sequence similarity. We used a functional enrichment analysis of our hits to create a predicted map of PDZ domain biology. This map highlights PDZ domain involvement in diverse biological processes, some only found by the structure-based predictor. Based on this analysis, we predict novel PDZ domain involvement in xenobiotic metabolism and suggest new interactions for other processes including wound healing and Wnt signalling. Conclusions We built a structure-based predictor of PDZ domain-peptide interactions, which can be used to scan C-terminal proteomes for PDZ interactions. We also show that the structure-based predictor finds many known PDZ mediated PPIs in human that were not found by our previous sequence-based predictor and is less dependent on training–testing domain sequence similarity. Using both predictors, we defined a functional map of human PDZ domain biology and predict novel PDZ domain function. Users may access our structure-based and previous sequence-based predictors at http://webservice.baderlab.org/domains/POW. PMID:23336252
Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae-Hyung
2007-01-01
Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries severalmore » regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this dissertation provide novel insights into the strategy used by EIAV to replicate itself, and provide new details about how the host cell responds to and defends against EIAV upon the infection. Moreover, they have contributed to the understanding of the macromolecular recognition events that regulate these processes.« less
Vernazza-Martin, S; Longuet, S; Damry, T; Chamot, J M; Dru, V
2015-10-01
Walking as a means to interact with the environment has a twofold goal: body displacement (intermediate goal) and the future action on the environment (final representational goal). This involves different processes that plan, program, and control goal-directed locomotion linked to motivation as an "emotional state," which leads to achieving this twofold goal. The aim of the present study was to determine whether emotional valence associated with the final representational goal influences these processes or whether they depend more on the emotional valence associated with the intermediate goal in young adults. Twenty subjects, aged 18-35 years, were instructed to erase an emotional picture that appeared on a wall as soon as they saw it. They had to press a stop button located 5 m in front of them with their right hand. Their gait was analyzed using a force platform and the Vicon system. The main results suggest that the emotional valence of the intermediate goal has the greatest effect on the processes that organize and modulate goal-directed locomotion. A positive valence facilitates cognitive processes involved in the temporal organization of locomotion. A negative valence disturbs the cognitive processes involved in the spatial organization of the locomotion and online motor control, leading to a deviating trajectory and a final body position that is more distant from the stop button. These results are discussed in line with the motivational direction hypothesis and with the affective meaning of the intended response goal.
NASA Astrophysics Data System (ADS)
Chaplain, Mark A. J.; Powathil, Gibin G.
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.
NASA Astrophysics Data System (ADS)
Chaplain, Mark A. J.; Powathil, Gibin G.
2015-04-01
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.
Weak-interaction rates in stellar conditions
NASA Astrophysics Data System (ADS)
Sarriguren, Pedro
2018-05-01
Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.
Precipitates and boundaries interaction in ferritic ODS steels
NASA Astrophysics Data System (ADS)
Sallez, Nicolas; Hatzoglou, Constantinos; Delabrouille, Fredéric; Sornin, Denis; Chaffron, Laurent; Blat-Yrieix, Martine; Radiguet, Bertrand; Pareige, Philippe; Donnadieu, Patricia; Bréchet, Yves
2016-04-01
In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels.
Luo, Xinlong; Yang, Wei; Gao, Guangxia
2018-07-01
Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells via passing through the nuclear pore complex. The nuclear membrane-imbedded protein SUN2 was recently reported to be involved in the nuclear import of HIV-1. Whether SUN1, which shares many functional similarities with SUN2, is involved in this process remained to be explored. Here we report that overexpression of SUN1 specifically inhibited infection by HIV-1 but not that by simian immunodeficiency virus (SIV) or murine leukemia virus (MLV). Overexpression of SUN1 did not affect reverse transcription but led to reduced accumulation of the 2-long-terminal-repeat (2-LTR) circular DNA and integrated viral DNA, suggesting a block in the process of nuclear import. HIV-1 CA was mapped as a determinant for viral sensitivity to SUN1. Treatment of SUN1-expressing cells with cyclosporine (CsA) significantly reduced the sensitivity of the virus to SUN1, and an HIV-1 mutant containing CA-G89A, which does not interact with cyclophilin A (CypA), was resistant to SUN1 overexpression. Downregulation of endogenous SUN1 inhibited the nuclear entry of the wild-type virus but not that of the G89A mutant. These results indicate that SUN1 participates in the HIV-1 nuclear entry process in a manner dependent on the interaction of CA with CypA. IMPORTANCE HIV-1 infects both dividing and nondividing cells. The viral preintegration complex (PIC) can enter the nucleus through the nuclear pore complex. It has been well known that the viral protein CA plays an important role in determining the pathways by which the PIC enters the nucleus. In addition, the interaction between CA and the cellular protein CypA has been reported to be important in the selection of nuclear entry pathways, though the underlying mechanisms are not very clear. Here we show that both SUN1 overexpression and downregulation inhibited HIV-1 nuclear entry. CA played an important role in determining the sensitivity of the virus to SUN1: the regulatory activity of SUN1 toward HIV-1 relied on the interaction between CA and CypA. These results help to explain how SUN1 is involved in the HIV-1 nuclear entry process. Copyright © 2018 American Society for Microbiology.
Microorganisms meet solid minerals: interactions and biotechnological applications.
Ng, Daphne H P; Kumar, Amit; Cao, Bin
2016-08-01
In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications.
Facilitating trust engenderment in secondary school nurse interactions with students.
Summach, Anne H J
2011-04-01
School nurses are involved in a complex framework of interactions with students, other professionals, parents, and administrators. Trust between nurse and student is critical for interaction effectiveness. The goal of this study was to understand through phenomenology the process of engendering trust in school nurse-high school student interactions. The qualitative approach explored school nurse perceptions of experiences interacting with students, yielding insights into nurse- and setting-based factors contributing to the development of trust. Subthemes within these included key behaviors and attributes enhancing trust engenderment in school nurse-student interactions. Study findings were well supported by the existing nursing and psychological research literature. Nurses that purposefully strive to develop trust in young people will maximize adolescent health results.
Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy
Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.
2012-01-01
Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their populationmore » was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.« less
Hacker, Benedikt; Schultheiß, Christoph; Döring, Michael; Kurzik-Dumke, Ursula
2018-06-01
This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence for its in vivo interaction with the functionally linked proteins OSBP, OSBPL9 and LRP1, the SYPL1 protein and the transcription factor CREB3. Regarding the latter, we show that the 55 kDa N-glycosylated hNOT-1/ALG3-1 molecule binds the N-glycosylated CREB3 precursor but does not interact with CREB3's proteolytic products specific to the endoplasmic reticulum and to the nucleus. The interaction between the two partners is a prerequisite for the proteolytic activation of CREB3. In case of the further binding partners, our data suggest that hNOT-1/ALG3-1 interacts with both OSBPs and with their direct targets LRP1 and VAMP/VAP-A. Moreover, our results show that various partners of hNOT-1/ALG3-1 interact with its diverse post translationally processed products destined to distinct cellular compartments. Generally, our data suggest the involvement of hNOT-1/ALG3-1 in various molecular contexts determining essential processes associated with distinct cellular machineries and related to various pathologies, such as cancer, viral infections, neuronal and immunological disorders and CDG.
Involving vendors in continuous quality improvement efforts.
McDevitt, M C
1995-03-01
In the hospital environment, vendors supply a wide range of items, from surgical sutures to the latest in high-cost technological equipment. Also, many clinical and support services, such as respiratory therapy, transcription, and computer databanks are now outsourced to commercial vendors. Interaction with such vendors is often less than satisfactory, with prolonged timelines and disruption of an important process that is being computerized. Although hospitals deal with very few vendors in long-term relationships, such as those seen in manufacturing, this should not preclude the formation of a supplier-customer relationship that goes beyond management's interaction with the sales representative in response to a request for proposal. This is especially true when a process improvement team has studied an internal process and defined a key quality characteristic.
Denys, A; Allain, F; Carpentier, M; Spik, G
1998-12-15
Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway, and is released in biological fluids. We recently reported that CyPB specifically binds to T-lymphocytes and promotes enhanced incorporation of CsA. The interactions with cellular binding sites involved, at least in part, the specific N-terminal extension of the protein. In this study, we intended to specify further the nature of the CyPB-binding sites on peripheral blood T-lymphocytes. We first provide evidence that the CyPB binding to heparin-Sepharose is prevented by soluble sulphated glycosaminoglycans (GAG), raising the interesting possibility that such interactions may occur on the T-cell surface. We then characterized CyPB binding to T-cell surface GAG and found that these interactions involved the N-terminal extension of CyPB, but not its conserved CsA-binding domain. In addition, we determined the presence of a second CyPB binding site, which we termed a type I site, in contrast with type II for GAG interactions. The two binding sites exhibit a similar affinity but the expression of the type I site was 3-fold lower. The conclusion that CyPB binding to the type I site is distinct from the interactions with GAG was based on the findings that it was (1) resistant to NaCl wash and GAG-degrading enzyme treatments, (2) reduced in the presence of CsA or cyclophilin C, and (3) unmodified in the presence of either the N-terminal peptide of CyPB or protamine. Finally, we showed that the type I binding sites were involved in an endocytosis process, supporting the hypothesis that they may correspond to a functional receptor for CyPB.
Adolescents Background - NCS Dietary Assessment Literature Review
Within any 24-hour period in the life of a teenager, eating may be a positive or a negative experience. It may involve a quick snack or a grazing process. Eating for teens may be a group decision, an interaction, or an independent endeavor.
Special Issue: Troubled Family Interactions and Group Intervention.
ERIC Educational Resources Information Center
West, John D.; Kirby, Jonell, Eds.
1981-01-01
Examines the view that individual pathologies and problems are manifestations of family dysfunctions. The interdependence of family members is the critical element in the family group therapy process. Intervention involves the disruption of the dynamic balance maintained by the family system. (RC)
Taking Venus models to new dimensions.
NASA Astrophysics Data System (ADS)
Murawski, K.
1997-11-01
Space plasma physicists in Poland and Japan have gained new insights into the interaction between the solar wind and Venus. Computer simulations of this 3D global interaction between the solar wind and nonmagnetized bodies have enabled greater understanding of the large-scale processes involved in such phenomena. A model that offers improved understanding of the solar wind interaction with Venus (as well as other nonmagnetized bodies impacted by the solar wind) has been developed. In this model, the interaction of the solar wind with the ionosphere of Venus is studied by calculating numerical solutions of the 3D MHD equations for two-component, chemically reactive plasma. The author describes the innovative model.
Chondroitin sulfates and their binding molecules in the central nervous system.
Djerbal, L; Lortat-Jacob, H; Kwok, Jcf
2017-06-01
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.
Carbohydrates in Supramolecular Chemistry.
Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H
2016-02-24
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Petersen, Kirsten Schultz; Labriola, Merete; Nielsen, Claus Vinther; Larsen, Eva Ladekjær
2016-09-01
The purpose of the study is to identify domains of influence on co-workers' ability to be supportive of returning worker during the work reintegration (WR) process. An ethnographic study design was chosen involving fieldwork at four different workplaces, at an emergency care service, a waste disposal company and at two nursing homes. Qualitative methods for inquiry were used including participant observation, individual- and group interviews of 30 participants. Data were coded and analysed according to a grounded theory approach. Four themes were identified related to domains of influence on co-workers' ability to be supportive of returning worker during the WR process: (1) organisation of work and level of interaction; (2) disruption of work routines, (3) relationship with returning worker and (4) attitudes towards sick leave. The WR process after long-term sick leave is not only influenced by the WR's arrangements made, but also by the co-workers' responses to the process. Work arrangements not only affect the returning worker's ability to return-to-work (RTW) successfully, but also the co-workers' ability to be supportive and their ability to take active part in the process. Implications for Rehabilitation The process of WR after long-term sick leave involves interaction with co-workers. Domains of influence is in the co-workers' perspective influencing their ability to be supportive during reintegration of a returning worker. Future WR management could benefit from integrating the conditions for co-worker support. We encourage co-workers to be involved in the RTW planning, monitoring and evaluation with particular focus on how the WR arrangements are influencing their work and their ability to be supportive.
NASA Astrophysics Data System (ADS)
Jardine, P. M.; Gentry, R. W.
2011-12-01
Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.
Comparative analysis of uranium bioassociation with halophilic bacteria and archaea
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten
2018-01-01
Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319
Open Standards in Practice: An OGC China Forum Initiative
NASA Astrophysics Data System (ADS)
Yue, Peng; Zhang, Mingda; Taylor, Trevor; Xie, Jibo; Zhang, Hongping; Tong, Xiaochong; Yu, Jinsongdi; Huang, Juntao
2016-11-01
Open standards like OGC standards can be used to improve interoperability and support machine-to-machine interaction over the Web. In the Big Data era, standard-based data and processing services from various vendors could be combined to automate the extraction of information and knowledge from heterogeneous and large volumes of geospatial data. This paper introduces an ongoing OGC China forum initiative, which will demonstrate how OGC standards can benefit the interaction among multiple organizations in China. The ability to share data and processing functions across organizations using standard services could change traditional manual interactions in their business processes, and provide on-demand decision support results by on-line service integration. In the initiative, six organizations are involved in two “MashUp” scenarios on disaster management. One “MashUp” is to derive flood maps in the Poyang Lake, Jiangxi. And the other one is to generate turbidity maps on demand in the East Lake, Wuhan, China. The two scenarios engage different organizations from the Chinese community by integrating sensor observations, data, and processing services from them, and improve the automation of data analysis process using open standards.
Direction of Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing.
Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshikawa, Sakiko; Toichi, Motomi
2017-03-01
Dynamic facial expressions of emotion strongly elicit multifaceted emotional, perceptual, cognitive, and motor responses. Neuroimaging studies revealed that some subcortical (e.g., amygdala) and neocortical (e.g., superior temporal sulcus and inferior frontal gyrus) brain regions and their functional interaction were involved in processing dynamic facial expressions. However, the direction of the functional interaction between the amygdala and the neocortex remains unknown. To investigate this issue, we re-analyzed functional magnetic resonance imaging (fMRI) data from 2 studies and magnetoencephalography (MEG) data from 1 study. First, a psychophysiological interaction analysis of the fMRI data confirmed the functional interaction between the amygdala and neocortical regions. Then, dynamic causal modeling analysis was used to compare models with forward, backward, or bidirectional effective connectivity between the amygdala and neocortical networks in the fMRI and MEG data. The results consistently supported the model of effective connectivity from the amygdala to the neocortex. Further increasing time-window analysis of the MEG demonstrated that this model was valid after 200 ms from the stimulus onset. These data suggest that emotional processing in the amygdala rapidly modulates some neocortical processing, such as perception, recognition, and motor mimicry, when observing dynamic facial expressions of emotion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2017-01-01
We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.
Kushniruk, A. W.; Patel, V. L.; Cimino, J. J.
1997-01-01
This paper describes an approach to the evaluation of health care information technologies based on usability engineering and a methodological framework from the study of medical cognition. The approach involves collection of a rich set of data including video recording of health care workers as they interact with systems, such as computerized patient records and decision support tools. The methodology can be applied in the laboratory setting, typically involving subjects "thinking aloud" as they interact with a system. A similar approach to data collection and analysis can also be extended to study of computer systems in the "live" environment of hospital clinics. Our approach is also influenced from work in the area of cognitive task analysis, which aims to characterize the decision making and reasoning of subjects of varied levels of expertise as they interact with information technology in carrying out representative tasks. The stages involved in conducting cognitively-based usability analyses are detailed and the application of such analysis in the iterative process of system and interface development is discussed. PMID:9357620
Bodner, Todd E.
2017-01-01
Wilkinson and Task Force on Statistical Inference (1999) recommended that researchers include information on the practical magnitude of effects (e.g., using standardized effect sizes) to distinguish between the statistical and practical significance of research results. To date, however, researchers have not widely incorporated this recommendation into the interpretation and communication of the conditional effects and differences in conditional effects underlying statistical interactions involving a continuous moderator variable where at least one of the involved variables has an arbitrary metric. This article presents a descriptive approach to investigate two-way statistical interactions involving continuous moderator variables where the conditional effects underlying these interactions are expressed in standardized effect size metrics (i.e., standardized mean differences and semi-partial correlations). This approach permits researchers to evaluate and communicate the practical magnitude of particular conditional effects and differences in conditional effects using conventional and proposed guidelines, respectively, for the standardized effect size and therefore provides the researcher important supplementary information lacking under current approaches. The utility of this approach is demonstrated with two real data examples and important assumptions underlying the standardization process are highlighted. PMID:28484404
Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor.
Edwards, Katrina J; Bach, Wolfgang; McCollom, Thomas M
2005-09-01
Oceanography is inherently interdisciplinary and, since its inception, has included the study of microbe-mineral interactions. From early studies of manganese nodules, to the discovery of hydrothermal vents, it has been recognized that microorganisms are involved at various levels in the transformation of rocks and minerals at and below the seafloor. Recent studies include mineral weathering at low temperatures and microbe-mineral interactions in the subseafloor "deep biosphere". A common characteristic of seafloor and subseafloor geomicrobiological processes that distinguishes them from terrestrial or near-surface processes is that they occur in the dark, one or more steps removed from the sunlight that fuels the near-surface biosphere on Earth. This review focuses on geomicrobiological studies and energy flow in dark, deep-ocean and subseafloor rock habitats.
NASA's MERBoard: An Interactive Collaborative Workspace Platform. Chapter 4
NASA Technical Reports Server (NTRS)
Trimble, Jay; Wales, Roxana; Gossweiler, Rich
2003-01-01
This chapter describes the ongoing process by which a multidisciplinary group at NASA's Ames Research Center is designing and implementing a large interactive work surface called the MERBoard Collaborative Workspace. A MERBoard system involves several distributed, large, touch-enabled, plasma display systems with custom MERBoard software. A centralized server and database back the system. We are continually tuning MERBoard to support over two hundred scientists and engineers during the surface operations of the Mars Exploration Rover Missions. These scientists and engineers come from various disciplines and are working both in small and large groups over a span of space and time. We describe the multidisciplinary, human-centered process by which this h4ERBoard system is being designed, the usage patterns and social interactions that we have observed, and issues we are currently facing.
Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan
2013-08-01
Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion. © 2013 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.
2014-12-01
A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.
NASA Astrophysics Data System (ADS)
Puranik, Bhalchandra; Watvisave, Deepak; Bhandarkar, Upendra
2016-11-01
The interaction of a shock with a density interface is observed in several technological applications such as supersonic combustion, inertial confinement fusion, and shock-induced fragmentation of kidney and gall-stones. The central physical process in this interaction is the mechanism of the Richtmyer-Meshkov Instability (RMI). The specific situation where the density interface is initially an isolated spherical or cylindrical gas bubble presents a relatively simple geometry that exhibits all the essential RMI processes such as reflected and refracted shocks, secondary instabilities, turbulence and mixing of the species. If the incident shocks are strong, the calorically imperfect nature needs to be modelled. In the present work, we have carried out simulations of the shock-bubble interaction using the DSMC method for such situations. Specifically, an investigation of the shock-bubble interaction with diatomic gases involving rotational and vibrational excitations at high temperatures is performed, and the effects of such high temperature phenomena will be presented.
Jensen, Todd M
2018-03-09
Stepfamilies are an increasingly common family form, many of which are headed by a resident mother and stepfather. Stepfather-child relationships exert notable influence on stepfamily stability and individual well-being. Although various stepfather roles have been observed, more research is warranted by which stepfather-child interactions are explored holistically and across a variety of life domains (e.g., recreational, personal, academic, and disciplinary). Thus, the primary purpose of the current study is to explore varying interactional patterns between youth and their stepfathers. A latent class analysis is conducted using a representative sample of 1,183 youth (53% female; mean age = 15.64 years, SD = 1.70 years; 62% non-Hispanic White) residing in mother-stepfather families from Wave I of the National Longitudinal Study of Adolescent to Adult Health. Latent-class enumeration processes support a four-class solution, with latent classes representing inactive, academically oriented, casually connected, and versatile and involved patterns of youth-stepparent interaction. Notable differences and similarities are evident across patterns with respect to family relationship quality, youth well-being, and socio-demographic characteristics. Differences are most stark between the inactive and versatile and involved patterns. Ultimately, the results showcase notable variation in youth-stepparent interactional patterns, and one size does not necessarily fit all stepfamilies. Family practitioners should be mindful of variation in youth-stepparent interactional patterns and assist stepfamilies in seeking out stepparent-child dynamics that are most compatible with the needs and dynamics of the larger family system. © 2018 Family Process Institute.
NASA Technical Reports Server (NTRS)
Landsfeld, M.; Gautier, C.; Figel, T.
1995-01-01
To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. We are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government agencies. Our contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface and satellite observations and complex modeling of the interaction of radiation with clouds. One of our first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, we have produced an environment whereby we can easily modify and monitor the data processing as required. Through the principles of modular programming, we have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants. In this way, the data flow can be interactively assessed and altered as needed. In this environment, the intermediate data processing 'images' can be viewed, enabling the investigator to easily monitor the various data processing steps as they progress. Additionally, this environment allows the rapid testing of new processing modules and allows their effects to be visually compared with previous results.
Tanaka, Yukari; Kanakogi, Yasuhiro; Kawasaki, Masahiro; Myowa, Masako
2018-04-01
Interaction between caregivers and infants is multimodal in nature. To react interactively and smoothly to such multimodal signals, infants must integrate all these signals. However, few empirical infant studies have investigated how multimodal social interaction with physical contact facilitates multimodal integration, especially regarding audio - tactile (A-T) information. By using electroencephalogram (EEG) and event-related potentials (ERPs), the present study investigated how neural processing involved in A-T integration is modulated by tactile interaction. Seven- to 8-months-old infants heard one pseudoword both whilst being tickled (multimodal 'A-T' condition), and not being tickled (unimodal 'A' condition). Thereafter, their EEG was measured during the perception of the same words. Compared to the A condition, the A-T condition resulted in enhanced ERPs and higher beta-band activity within the left temporal regions, indicating neural processing of A-T integration. Additionally, theta-band activity within the middle frontal region was enhanced, which may reflect enhanced attention to social information. Furthermore, differential ERPs correlated with the degree of engagement in the tickling interaction. We provide neural evidence that the integration of A-T information in infants' brains is facilitated through tactile interaction with others. Such plastic changes in neural processing may promote harmonious social interaction and effective learning in infancy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conformational relaxation dynamics in the excited electronic states of benzil in solution
NASA Astrophysics Data System (ADS)
Singh, Ajay K.; Palit, Dipak K.; Mittal, Jai P.
2002-07-01
Relaxation dynamics in the excited singlet (S1) state of benzil have been studied in solution using pico and subpicosecond transient absorption spectroscopic techniques. The triple exponential decay dynamics of the S1 state indicates that the process of conformational change from the cis-skewed to the trans-planar form takes place via the formation of a meta-stable intermediate conformer resulting the involvement of two consequent barrier crossing processes. The barrier crossing dynamics is governed by both the polarity of the solvent, which alters the barrier heights by `static' interactions, as well as the viscosity of the solvent via `dynamical' interactions.
Affective indicators of the psychotherapeutic process: an empirical case study.
Dreher, M; Mengele, U; Krause, R; Kämmerer, A
2001-03-01
By analyzing facial expressions of emotion and the emotional experience of a patient and a psychotherapist, we attempted to objectively register unconscious interaction processes that could have contributed to the failure of a psychotherapy that ended prematurely. In this connection, the affect 'contempt' played a particular role. It is made clear how an unconscious enactment results in a gap between emotional expression and experience. In addition, the countertransference of the psychotherapist is examined and the emotional experience is contrasted with her affective behavior. In this study, it is demonstrated how this particular psychotherapy failed due to a lack of acknowledging the involvement of the interactive dynamics.
Parameterization Interactions in Global Aquaplanet Simulations
NASA Astrophysics Data System (ADS)
Bhattacharya, Ritthik; Bordoni, Simona; Suselj, Kay; Teixeira, João.
2018-02-01
Global climate simulations rely on parameterizations of physical processes that have scales smaller than the resolved ones. In the atmosphere, these parameterizations represent moist convection, boundary layer turbulence and convection, cloud microphysics, longwave and shortwave radiation, and the interaction with the land and ocean surface. These parameterizations can generate different climates involving a wide range of interactions among parameterizations and between the parameterizations and the resolved dynamics. To gain a simplified understanding of a subset of these interactions, we perform aquaplanet simulations with the global version of the Weather Research and Forecasting (WRF) model employing a range (in terms of properties) of moist convection and boundary layer (BL) parameterizations. Significant differences are noted in the simulated precipitation amounts, its partitioning between convective and large-scale precipitation, as well as in the radiative impacts. These differences arise from the way the subcloud physics interacts with convection, both directly and through various pathways involving the large-scale dynamics and the boundary layer, convection, and clouds. A detailed analysis of the profiles of the different tendencies (from the different physical processes) for both potential temperature and water vapor is performed. While different combinations of convection and boundary layer parameterizations can lead to different climates, a key conclusion of this study is that similar climates can be simulated with model versions that are different in terms of the partitioning of the tendencies: the vertically distributed energy and water balances in the tropics can be obtained with significantly different profiles of large-scale, convection, and cloud microphysics tendencies.
Design, Development, Testing, and Evaluation: Human Factors Engineering
NASA Technical Reports Server (NTRS)
Adelstein, Bernard; Hobbs, Alan; OHara, John; Null, Cynthia
2006-01-01
While human-system interaction occurs in all phases of system development and operation, this chapter on Human Factors in the DDT&E for Reliable Spacecraft Systems is restricted to the elements that involve "direct contact" with spacecraft systems. Such interactions will encompass all phases of human activity during the design, fabrication, testing, operation, and maintenance phases of the spacecraft lifespan. This section will therefore consider practices that would accommodate and promote effective, safe, reliable, and robust human interaction with spacecraft systems. By restricting this chapter to what the team terms "direct contact" with the spacecraft, "remote" factors not directly involved in the development and operation of the vehicle, such as management and organizational issues, have been purposely excluded. However, the design of vehicle elements that enable and promote ground control activities such as monitoring, feedback, correction and reversal (override) of on-board human and automation process are considered as per NPR8705.2A, Section 3.3.
Lin, Nan; Yang, Xiaohong; Li, Jing; Wang, Shaonan; Hua, Huimin; Ma, Yujun; Li, Xingshan
2018-04-01
Neuroimaging studies have found that theory of mind (ToM) and discourse comprehension involve similar brain regions. These brain regions may be associated with three cognitive components that are necessarily or frequently involved in ToM and discourse comprehension, including social concept representation and retrieval, domain-general semantic integration, and domain-specific integration of social semantic contents. Using fMRI, we investigated the neural correlates of these three cognitive components by exploring how discourse topic (social/nonsocial) and discourse processing period (ending/beginning) modulate brain activation in a discourse comprehension (and also ToM) task. Different sets of brain areas showed sensitivity to discourse topic, discourse processing period, and the interaction between them, respectively. The most novel finding was that the right temporoparietal junction and middle temporal gyrus showed sensitivity to discourse processing period only during social discourse comprehension, indicating that they selectively contribute to domain-specific semantic integration. Our finding indicates how different domains of semantic information are processed and integrated in the brain and provides new insights into the neural correlates of ToM and discourse comprehension.
NASA Astrophysics Data System (ADS)
Leewis, Mary-Cathrine; Uhlik, Ondrej; Leigh, Mary Beth
2016-02-01
Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing 13C-biphenyl (unchlorinated analogue of PCBs) and/or 13C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community.
Laur, Joan; Ramakrishnan, Gowsica Bojarajan; Labbé, Caroline; Lefebvre, François; Spanu, Pietro D; Bélanger, Richard R
2018-01-01
Tritrophic interactions involving a biocontrol agent, a pathogen and a plant have been analyzed predominantly from the perspective of the biocontrol agent. We have conducted the first comprehensive transcriptomic analysis of all three organisms in an effort to understand the elusive properties of Pseudozyma flocculosa in the context of its biocontrol activity against Blumeria graminis f.sp. hordei as it parasitizes Hordeum vulgare. After inoculation of P. flocculosa, the tripartite interaction was monitored over time and samples collected for scanning electron microscopy and RNA sequencing. Based on our observations, P. flocculosa indirectly parasitizes barley, albeit transiently, by diverting nutrients extracted by B. graminis from barley leaves through a process involving unique effectors. This brings novel evidence that such molecules can also influence fungal-fungal interactions. Their release is synchronized with a higher expression of powdery mildew haustorial effectors, a sharp decline in the photosynthetic machinery of barley and a developmental peak in P. flocculosa. The interaction culminates with a collapse of B. graminis haustoria, thereby stopping P. flocculosa growth, as barley plants show higher metabolic activity. To conclude, our study has uncovered a complex and intricate phenomenon, described here as hyperbiotrophy, only achievable through the conjugated action of the three protagonists. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Orozco-Valencia, Ulises; Gázquez, José L; Vela, Alberto
2017-07-01
The net charge transfer process that occurs between two species, A and B, interacting with each other, may be decomposed into two processes: one in which A receives charge from B, which can be identified as the electrophilic channel for A or the nucleophilic channel for B, and a second in which A donates charge to B, which can be identified as the nucleophilic channel for A or the electrophilic channel for B. By determining the amount of charge associated with both processes through the minimization of the interaction energy associated with each case, the expressions for the amount of charge involved in each case can be expressed in terms of the directional chemical potentials and the hardnesses of the interacting species. The correlation between the charges obtained for the interaction between phosphine ligands of the type PRR'R'' and Ni, and the A 1 carbonyl stretching frequency provides support for their interpretation as measures of the electrophilicity and nucleophilicity of a chemical species, and, at the same time, allows one to describe the donation and back-donation processes in terms of the density functional theory of chemical reactivity.
NASA Astrophysics Data System (ADS)
Johnson, Andrew P.
1999-11-01
This dissertation is a study of students' model development processes in a physical science course for preservice elementary teachers. It details the models of magnetic materials developed and used by students during a unit on static electricity and magnetism. In this inquiry-based course, the class developed and formally accepted a model, in the form of diagrams and descriptions, that is very similar to the accepted magnetic domains model. They did this without textbooks or lectures on magnetism. Before adopting this model, however, most groups in the class temporarily used models involving opposite charges at the two ends of magnetized nails. How did the students do it? The explanation involves detailed study of the groups' interactions and use of structure in the classroom environment. This dissertation uses two theoretical frameworks to analyze interactions. It applies Yackel and Cobb's (1996) concepts of classroom social norms to characterize aspects of the classroom participation structure which affected groups' construction and declaration of models. It also applies distributed cognition ideas to analyze the sense-making conversations that small groups had when constructing group responses. This research found that conversations in one small group could be characterized into sixteen categories. Important categories included "extending ideas" which involved gradual deepening and elaboration of the group's understanding of their model(s), and "joint typing", an interactive process by which group members collaborated on typed statements or group diagrams and simultaneously developed common language for communicating their ideas to each other. Some of these categories of activity were closely connected to computer use. Also, four classroom norms are described. One small group social classroom norm involved group members developing a "common ground" consisting of agreed-upon group statements. Three sociophysics norms which characterize the whole class interactions as well as those of the small group involved a distinction between generalizations of phenomena and theoretical statements, class criteria for accepting evidence, and the obligation for each group to have a model of magnetic materials that they could support with acceptable evidence.
Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions
NASA Astrophysics Data System (ADS)
Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena
2007-08-01
Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.
Analysis of complex decisionmaking processes. [with application to jet engine development
NASA Technical Reports Server (NTRS)
Hill, J. D.; Ollila, R. G.
1978-01-01
The analysis of corporate decisionmaking processes related to major system developments is unusually difficult because of the number of decisionmakers involved in the process and the long development cycle. A method for analyzing such decision processes is developed and illustrated through its application to the analysis of the commercial jet engine development process. The method uses interaction matrices as the key tool for structuring the problem, recording data, and analyzing the data to establish the rank order of the major factors affecting development decisions. In the example, the use of interaction matrices permitted analysts to collect and analyze approximately 50 factors that influenced decisions during the four phases of the development cycle, and to determine the key influencers of decisions at each development phase. The results of this study indicate that the cost of new technology installed on an aircraft is the prime concern of the engine manufacturer.
Zhang, Yunzeng; Xu, Jin; Riera, Nadia; Jin, Tao; Li, Jinyun; Wang, Nian
2017-08-10
Roots are the primary site for plant-microbe interactions. Among the three root-associated layers (i.e., rhizosphere, rhizoplane, and endorhiza), the rhizoplane is a key component serving a critical gating role that controls microbial entry into plant roots. The microbial communities colonizing the three layers are believed to be gradually enriched from the bulk soil inoculum. However, it is unknown how this enrichment process, particularly the rhizosphere to rhizoplane step, is affected by biotic stresses, such as disease. In this study, we address this question using the citrus root-associated microbiome as a model. We identified the rhizosphere-to-rhizoplane-enriched taxonomic and functional properties of the citrus root-associated microbiome and determined how they were affected by Huanglongbing (HLB), a severe systemic disease caused by Candidatus Liberibacter asiaticus, using metagenomic and metatranscriptomic approaches. Multiple rhizoplane-enriched genera were identified, with Bradyrhizobium and Burkholderia being the most dominant. Plant-derived carbon sources are an important driving force for the enrichment process. The enrichment of functional attributes, such as motility, chemotaxis, secretion systems, and lipopolysaccharide (LPS) synthesis, demonstrated more active microbe-plant interactions on the rhizoplane than the rhizosphere. We observed that HLB impaired the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome in three ways: (1) by decreasing the relative abundance of most rhizoplane-enriched genera; (2) by reducing the relative abundance and/or expression activity of the functional attributes involved in microbe-plant interactions; and (3) by recruiting more functional features involved in autotrophic life cycle adaptation, such as carbon fixation and nitrogen nitrification in the HLB rhizoplane microbiome. Finally, our data showed that inoculation of Burkholderia strains isolated from the healthy citrus root-associated microbiome could trigger the expression of genes involved in induced systemic resistance in inoculated plants. HLB causes decreased relative abundance and/or expression activity of rhizoplane-enriched taxonomic and functional properties, collectively resulting in impaired plant host-microbiome interactions. Manipulation of the citrus root-associated microbiome, for instance, by inoculating citrus roots with beneficial Burkholderia strains, has potential to promote plant health. Our results provide novel insights for understanding the contributions of the community enrichment process of the root-associated microbiome to the plant hosts.
The Social Neuroscience of Interpersonal Emotions.
Müller-Pinzler, Laura; Krach, Sören; Krämer, Ulrike M; Paulus, Frieder M
In our daily lives, we constantly engage in reciprocal interactions with other individuals and represent ourselves in the context of our surrounding social world. Within social interactions, humans often experience interpersonal emotions such as embarrassment, shame, guilt, or pride. How interpersonal emotions are processed on the neural systems level is of major interest for social neuroscience research. While the configuration of laboratory settings in general is constraining for emotion research, recent neuroimaging investigations came up with new approaches to implement socially interactive and immersive scenarios for the real-life investigation of interpersonal emotions. These studies could show that among other brain regions the so-called mentalizing network, which is typically involved when we represent and make sense of others' states of mind, is associated with interpersonal emotions. The anterior insula/anterior cingulate cortex network at the same time processes one's own bodily arousal during such interpersonal emotional experiences. Current research aimed to explore how we make sense of others' emotional states during social interactions and investigates the modulating factors of our emotional experiences during social interactions. Understanding how interpersonal emotions are processed on the neural systems level may yield significant implications for neuropsychiatric disorders that affect social behavior such as social anxiety disorders or autism.
Dusseldorp, Elise; Doove, Lisa; Mechelen, Iven van
2016-06-01
In the analysis of randomized controlled trials (RCTs), treatment effect heterogeneity often occurs, implying differences across (subgroups of) clients in treatment efficacy. This phenomenon is typically referred to as treatment-subgroup interactions. The identification of subgroups of clients, defined in terms of pretreatment characteristics that are involved in a treatment-subgroup interaction, is a methodologically challenging task, especially when many characteristics are available that may interact with treatment and when no comprehensive a priori hypotheses on relevant subgroups are available. A special type of treatment-subgroup interaction occurs if the ranking of treatment alternatives in terms of efficacy differs across subgroups of clients (e.g., for one subgroup treatment A is better than B and for another subgroup treatment B is better than A). These are called qualitative treatment-subgroup interactions and are most important for optimal treatment assignment. The method QUINT (Qualitative INteraction Trees) was recently proposed to induce subgroups involved in such interactions from RCT data. The result of an analysis with QUINT is a binary tree from which treatment assignment criteria can be derived. The implementation of this method, the R package quint, is the topic of this paper. The analysis process is described step-by-step using data from the Breast Cancer Recovery Project, showing the reader all functions included in the package. The output is explained and given a substantive interpretation. Furthermore, an overview is given of the tuning parameters involved in the analysis, along with possible motivational concerns associated with choice alternatives that are available to the user.
FORCES DICTATING COLLOIDAL INTERACTIONS BETWEEN VIRUSES AND SOIL
The fate and transport of viruses in soil and aquatic environments were studied with respect to the different forces involved in the process of sorption of these viruses on soil particles. In accordance with the classical DLVO theory, we have calculated the repulsive electrostat...
Steam Hydrocarbon Cracking and Reforming
ERIC Educational Resources Information Center
Golombok, Michael
2004-01-01
The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…
ERIC Educational Resources Information Center
Spain, James D.; Soldan, Theodore
1983-01-01
Describes two computer simulations of the predator-prey interaction in which students explore theories and mathematical equations involved in this biological process. The programs (for Apple II), designed for college level ecology, may be used in lecture/demonstrations or as a basis for laboratory assignments. A list of student objectives is…
Multidisciplinary Graduate Curriculum on Integrative Biointerfacial Engineering
ERIC Educational Resources Information Center
Moghe, Prabhas V.; Roth, Charles M.
2006-01-01
A wide range of biotechnological and biomedical processes and products involves the design, synthesis, and analysis of biological interfaces. Such biointerfaces mediate interactions between living cells or intracellular species and designed materials or biologics. Incorporating the experiences of a NSF-sponsored IGERT (Integrative Graduate…
ERIC Educational Resources Information Center
Vardell, Sylvia M.; Wong, Janet S.
2014-01-01
Like science, poetry often involves a high level of abstraction in language and ideas, requiring specific critical-thinking skills and promoting interaction. Casteel and Isom (1994) acknowledge, "The literacy processes are the means by which science content is learned because content information is rooted in written and oral language"…
Statistical Discourse Analysis: A Method for Modelling Online Discussion Processes
ERIC Educational Resources Information Center
Chiu, Ming Ming; Fujita, Nobuko
2014-01-01
Online forums (synchronous and asynchronous) offer exciting data opportunities to analyze how people influence one another through their interactions. However, researchers must address several analytic difficulties involving the data (missing values, nested structure [messages within topics], non-sequential messages), outcome variables (discrete…
ERIC Educational Resources Information Center
Moore, Chris
1998-01-01
Maintains that Carpenter, Nagell, and Tomasello's (1998) data reveal little definitive information on cognitive processes involved in infants' social interactive behaviors. Evaluates support for Carpenter et al.'s claims for infant social cognition and discusses the nature of infant cognition. Maintains that what is needed is experimental evidence…
ERIC Educational Resources Information Center
Lammi, Matthew; Becker, Kurt
2013-01-01
Engineering design thinking is "a complex cognitive process" including divergence-convergence, a systems perspective, ambiguity, and collaboration (Dym, Agogino, Eris, Frey, & Leifer, 2005, p. 104). Design is often complex, involving multiple levels of interacting components within a system that may be nested within or connected to other systems.…
Some Solutions for Successful Aging.
ERIC Educational Resources Information Center
Demery, Marie
America is rapidly becoming an aging society. This phenomenon is supported by statistics and fueled by socioeconomic developments, medical advances, and the probability of continued lower fertility. Seven themes provide some solutions for the successful process of aging: (1) "Vital Involvement" stresses interactions that are important to the…
NASA Technical Reports Server (NTRS)
Sedbrook, J. C.; Chen, R.; Masson, P. H.
1999-01-01
Gravitropism allows plant organs to direct their growth at a specific angle from the gravity vector, promoting upward growth for shoots and downward growth for roots. Little is known about the mechanisms underlying gravitropic signal transduction. We found that mutations in the ARG1 locus of Arabidopsis thaliana alter root and hypocotyl gravitropism without affecting phototropism, root growth responses to phytohormones or inhibitors of auxin transport, or starch accumulation. The positional cloning of ARG1 revealed a DnaJ-like protein containing a coiled-coil region homologous to coiled coils found in cytoskeleton-interacting proteins. These data suggest that ARG1 participates in a gravity-signaling process involving the cytoskeleton. A combination of Northern blot studies and analysis of ARG1-GUS fusion-reporter expression in transgenic plants demonstrated that ARG1 is expressed in all organs. Ubiquitous ARG1 expression in Arabidopsis and the identification of an ortholog in Caenorhabditis elegans suggest that ARG1 is involved in other essential processes.
Gilet, Estelle; Diard, Julien; Bessière, Pierre
2011-01-01
In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments. PMID:21674043
Incorporating BDI Agents into Human-Agent Decision Making Research
NASA Astrophysics Data System (ADS)
Kamphorst, Bart; van Wissen, Arlette; Dignum, Virginia
Artificial agents, people, institutes and societies all have the ability to make decisions. Decision making as a research area therefore involves a broad spectrum of sciences, ranging from Artificial Intelligence to economics to psychology. The Colored Trails (CT) framework is designed to aid researchers in all fields in examining decision making processes. It is developed both to study interaction between multiple actors (humans or software agents) in a dynamic environment, and to study and model the decision making of these actors. However, agents in the current implementation of CT lack the explanatory power to help understand the reasoning processes involved in decision making. The BDI paradigm that has been proposed in the agent research area to describe rational agents, enables the specification of agents that reason in abstract concepts such as beliefs, goals, plans and events. In this paper, we present CTAPL: an extension to CT that allows BDI software agents that are written in the practical agent programming language 2APL to reason about and interact with a CT environment.
Is nanotechnology the key to unravel and engineer biological processes?
Navarro, Melba; Planell, Josep A
2012-01-01
Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.
Pervasive competition between threat and reward in the brain.
Choi, Jong Moon; Padmala, Srikanth; Spechler, Philip; Pessoa, Luiz
2014-06-01
In the current functional MRI study, we investigated interactions between reward and threat processing. Visual cues at the start of each trial informed participants about the chance of winning monetary reward and/or receiving a mild aversive shock. We tested two competing hypothesis: according to the 'salience hypothesis', in the condition involving both reward and threat, enhanced activation would be observed because of increased salience; according to the 'competition hypothesis', the processing of reward and threat would trade-off against each other, leading to reduced activation. Analysis of skin conductance data during a delay phase revealed an interaction between reward and threat processing, such that the effect of reward was reduced during threat and the effect of threat was reduced during reward. Analysis of imaging data during the same task phase revealed interactions between reward and threat processing in several regions, including the midbrain/ventral tegmental area, caudate, putamen, bed nucleus of the stria terminalis, anterior insula, middle frontal gyrus and dorsal anterior cingulate cortex. Taken together, our findings reveal conditions during which reward and threat trade-off against each other across multiple sites. Such interactions are suggestive of competitive processes and may reflect the organization of opponent systems in the brain. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Psychological Processing in Chronic Pain: A Neural Systems Approach
Simons, Laura; Elman, Igor; Borsook, David
2014-01-01
Our understanding of chronic pain involves complex brain circuits that include sensory, emotional, cognitive and interoceptive processing. The feed-forward interactions between physical (e.g., trauma) and emotional pain and the consequences of altered psychological status on the expression of pain have made the evaluation and treatment of chronic pain a challenge in the clinic. By understanding the neural circuits involved in psychological processes, a mechanistic approach to the implementation of psychology-based treatments may be better understood. In this review we evaluate some of the principle processes that may be altered as a consequence of chronic pain in the context of localized and integrated neural networks. These changes are ongoing, vary in their magnitude, and their hierarchical manifestations, and may be temporally and sequentially altered by treatments, and all contribute to an overall pain phenotype. Furthermore, we link altered psychological processes to specific evidence-based treatments to put forth a model of pain neuroscience psychology. PMID:24374383
M-DAS: System for multispectral data analysis. [in Saginaw Bay, Michigan
NASA Technical Reports Server (NTRS)
Johnson, R. H.
1975-01-01
M-DAS is a ground data processing system designed for analysis of multispectral data. M-DAS operates on multispectral data from LANDSAT, S-192, M2S and other sources in CCT form. Interactive training by operator-investigators using a variable cursor on a color display was used to derive optimum processing coefficients and data on cluster separability. An advanced multivariate normal-maximum likelihood processing algorithm was used to produce output in various formats: color-coded film images, geometrically corrected map overlays, moving displays of scene sections, coverage tabulations and categorized CCTs. The analysis procedure for M-DAS involves three phases: (1) screening and training, (2) analysis of training data to compute performance predictions and processing coefficients, and (3) processing of multichannel input data into categorized results. Typical M-DAS applications involve iteration between each of these phases. A series of photographs of the M-DAS display are used to illustrate M-DAS operation.
From the epididymis to the egg: participation of CRISP proteins in mammalian fertilization.
Da Ros, Vanina G; Muñoz, Mariana Weigel; Battistone, Maria A; Brukman, Nicolás G; Carvajal, Guillermo; Curci, Ludmila; Gómez-ElIas, MatIas D; Cohen, D Bora J; Cuasnicu, Patricia S
2015-01-01
Mammalian fertilization is a complex process that involves different steps of interaction between the male and female gametes. In spite of its relevance, the molecular mechanisms underlying this process still remain to be elucidated. The present review describes the contribution of our laboratory to the understanding of mammalian fertilization using Cysteine-RIch Secretory Proteins (CRISP) as model molecules. Substantial evidence obtained from in vitro assays and knockout models shows that epididymal CRISP1 associates with the sperm surface with two different affinities during maturation, and participates in the regulation of signaling pathways during capacitation as well as in both sperm-zona pellucida interaction and gamete fusion. These observations can be extended to humans as judged by our findings showing that the human homolog of the rodent protein (hCRISP1) is also involved in both stages of fertilization. Evidence supports that other members of the CRISP family secreted in the testis (CRISP2), epididymis (CRISP3-4) or during ejaculation (CRISP3) are also involved in sperm-egg interaction, supporting the existence of a functional redundancy and cooperation between homolog proteins ensuring the success of fertilization. Together, our observations indicate that CRISP proteins accompany spermatozoa along their transit through both the male and female reproductive tracts. We believe these results not only contribute to a better mechanistic understanding of fertilization but also support CRISP proteins as excellent candidates for future research on infertility and contraception.
Ben-Yehuda, S; Dix, I; Russell, C S; McGarvey, M; Beggs, J D; Kupiec, M
2000-01-01
The PRP17/CDC40 gene of Saccharomyces cerevisiae functions in two different cellular processes: pre-mRNA splicing and cell cycle progression. The Prp17/Cdc40 protein participates in the second step of the splicing reaction and, in addition, prp17/cdc40 mutant cells held at the restrictive temperature arrest in the G2 phase of the cell cycle. Here we describe the identification of nine genes that, when mutated, show synthetic lethality with the prp17/cdc40Delta allele. Six of these encode known splicing factors: Prp8p, Slu7p, Prp16p, Prp22p, Slt11p, and U2 snRNA. The other three, SYF1, SYF2, and SYF3, represent genes also involved in cell cycle progression and in pre-mRNA splicing. Syf1p and Syf3p are highly conserved proteins containing several copies of a repeated motif, which we term RTPR. This newly defined motif is shared by proteins involved in RNA processing and represents a subfamily of the known TPR (tetratricopeptide repeat) motif. Using two-hybrid interaction screens and biochemical analysis, we show that the SYF gene products interact with each other and with four other proteins: Isy1p, Cef1p, Prp22p, and Ntc20p. We discuss the role played by these proteins in splicing and cell cycle progression. PMID:11102353
Ben-Yehuda, S; Dix, I; Russell, C S; McGarvey, M; Beggs, J D; Kupiec, M
2000-12-01
The PRP17/CDC40 gene of Saccharomyces cerevisiae functions in two different cellular processes: pre-mRNA splicing and cell cycle progression. The Prp17/Cdc40 protein participates in the second step of the splicing reaction and, in addition, prp17/cdc40 mutant cells held at the restrictive temperature arrest in the G2 phase of the cell cycle. Here we describe the identification of nine genes that, when mutated, show synthetic lethality with the prp17/cdc40Delta allele. Six of these encode known splicing factors: Prp8p, Slu7p, Prp16p, Prp22p, Slt11p, and U2 snRNA. The other three, SYF1, SYF2, and SYF3, represent genes also involved in cell cycle progression and in pre-mRNA splicing. Syf1p and Syf3p are highly conserved proteins containing several copies of a repeated motif, which we term RTPR. This newly defined motif is shared by proteins involved in RNA processing and represents a subfamily of the known TPR (tetratricopeptide repeat) motif. Using two-hybrid interaction screens and biochemical analysis, we show that the SYF gene products interact with each other and with four other proteins: Isy1p, Cef1p, Prp22p, and Ntc20p. We discuss the role played by these proteins in splicing and cell cycle progression.
Watabe, Hidenori; Valencia, Julio C.; Le Pape, Elodie; Yamaguchi, Yuji; Nakamura, Masayuki; Rouzaud, François; Hoashi, Toshihiko; Kawa, Yoko; Mizoguchi, Masako; Hearing, Vincent J.
2007-01-01
Melanosomes are unique membrane-bound organelles specialized for the synthesis and distribution of melanin. Mechanisms involved in the trafficking of proteins to melanosomes and in the transport of mature pigmented melanosomes to the dendrites of melanocytic cells are being characterized but details about those processes during early stages of melanosome maturation are not well understood. Early melanosomes must remain in the perinuclear area until critical components are assembled. In this study, we characterized the processing of two distinct melanosomal proteins, TYR and Pmel17, to elucidate protein processing in early or late steps of the secretory pathway, respectively, and to determine mechanisms underlying the subcellular localization and transport of early melanosomes. We used immunological, biochemical and molecular approaches to demonstrate that the movement of early melanosomes in the perinuclear area depends primarily on microtubules but not on actin filaments. In contrast, the trafficking of TYR and Pmel17 depends on cytoplasmic dynein and its interaction with the spectrin/ankyrin system which is involved with the sorting of cargo from the plasma membrane. These results provide important clues towards understanding the processes involved with early events in melanosome formation and transport. PMID:17687388
The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.
Du, Yue; Clark, Jane E
2018-05-03
This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.
Individual Differences and Social Influences on the Neurobehavioral Pharmacology of Abused Drugs
Neisewander, J. L.; Kelly, T. H.
2013-01-01
The interaction of drugs with biologic targets is a critical area of research, particularly for the development of medications to treat substance use disorders. In addition to understanding these drug-target interactions, however, there is a need to understand more fully the psychosocial influences that moderate these interactions. The first section of this review introduces some examples from human behavioral pharmacology that illustrate the clinical importance of this research. The second section covers preclinical evidence to characterize some of the key individual differences that alter drug sensitivity and abuse vulnerability, related primarily to differences in response to novelty and impulsivity. Evidence is presented to indicate that critical neuropharmacological mechanisms associated with these individual differences involve integrated neurocircuits underlying stress, reward, and behavioral inhibitory processes. The third section covers social influences on drug abuse vulnerability, including effects experienced during infancy, adolescence, and young adulthood, such as maternal separation, housing conditions, and social interactions (defeat, play, and social rank). Some of the same neurocircuits involved in individual differences also are altered by social influences, although the precise neurochemical and cellular mechanisms involved remain to be elucidated fully. Finally, some speculation is offered about the implications of this research for the prevention and treatment of substance abuse. PMID:23343975
Creative Cognition and Brain Network Dynamics
Beaty, Roger E.; Benedek, Mathias; Silvia, Paul J.; Schacter, Daniel L.
2015-01-01
Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relationship, actually cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. PMID:26553223
Carpendale, Jeremy I M; Lewis, Charlie
2004-02-01
Theories of children's developing understanding of mind tend to emphasize either individualistic processes of theory formation, maturation, or introspection, or the process of enculturation. However, such theories must be able to account for the accumulating evidence of the role of social interaction in the development of social understanding. We propose an alternative account, according to which the development of children's social understanding occurs within triadic interaction involving the child's experience of the world as well as communicative interaction with others about their experience and beliefs (Chapman 1991; 1999). It is through such triadic interaction that children gradually construct knowledge of the world as well as knowledge of other people. We contend that the extent and nature of the social interaction children experience will influence the development of children's social understanding. Increased opportunity to engage in cooperative social interaction and exposure to talk about mental states should facilitate the development of social understanding. We review evidence suggesting that children's understanding of mind develops gradually in the context of social interaction. Therefore, we need a theory of development in this area that accords a fundamental role to social interaction, yet does not assume that children simply adopt socially available knowledge but rather that children construct an understanding of mind within social interaction.
NASA Astrophysics Data System (ADS)
Madhan, B.; Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, Balachandran; Ramasami, T.
2001-10-01
Molecular modelling approaches have been used to understand the interaction of collagen-like peptides with gallic acid, which mimic vegetable tanning processes involved in protein stabilization. Several interaction sites have been identified and the binding energies of the complexes have been calculated. The calculated binding energies for various geometries are in the range 6-13 kcal/mol. It is found that some complexes exhibit hydrogen bonding, and electrostatic interaction plays a dominant role in the stabilization of the peptide by gallic acid. The π-OH type of interaction is also observed in the peptide stabilization. Molecular dynamics (MD) simulation for 600 ps revealed the possibility of hydrogen bonding between the collagen-like peptide and gallic acid.
NASA Astrophysics Data System (ADS)
Csanady, G. T.
2001-03-01
In recent years air-sea interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both air and sea. Air-Sea Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.
Pinto, Eduardo; Brito, António Carvalho; Cruz-Correia, Ricardo João
2016-12-21
To understand and build a collective vision of all existing institutions in the Portuguese National Health Service as well as to perceive how and how far the interaction between those multiple institutions is supported by Information Systems (IS). Upon identification of the institutions involved in the healthcare process, a set of interviews with experienced people from those institutions was conducted, which produced about five hours of tape. The research was focused exclusively on processes involving two different organizations and any internal processes were altogether excluded from it. The study allowed the identification of about 50 recurrent interaction processes, which were classified into four different varieties in accordance with the nature of the information flow: administrative, clinical, identificational and statistical. In addition, these processes were divided in accordance with the way how that integration is achieved, from completely automated to email or telephone-based. Funds/Money related processes are technologically more rigid and standardized, whereas auditing and inspection ones are less supported by automatic systems. There emerged an interesting level of sharing and integration in clinical processes, although the integration is mostly made at the interface level. The authors identified 5 particularly relevant and dominant actors (2 classes of individuals and 3 institutions) with which there is a need for coordination and cooperation. The authors consider that, in future works, an effort should be made to provide the various institutions with guidelines/interfaces and prompt such institutions to elaborate upon these.
Brito, António Carvalho; Cruz-Correia, Ricardo João
2016-01-01
Summary Objectives To understand and build a collective vision of all existing institutions in the Portuguese National Health Service as well as to perceive how and how far the interaction between those multiple institutions is supported by Information Systems (IS). Methods Upon identification of the institutions involved in the healthcare process, a set of interviews with experienced people from those institutions was conducted, which produced about five hours of tape. The research was focused exclusively on processes involving two different organizations and any internal processes were altogether excluded from it. Results The study allowed the identification of about 50 recurrent interaction processes, which were classified into four different varieties in accordance with the nature of the information flow: administrative, clinical, identificational and statistical. In addition, these processes were divided in accordance with the way how that integration is achieved, from completely automated to email or telephone-based. Conclusions Funds/Money related processes are technologically more rigid and standardized, whereas auditing and inspection ones are less supported by automatic systems. There emerged an interesting level of sharing and integration in clinical processes, although the integration is mostly made at the interface level. The authors identified 5 particularly relevant and dominant actors (2 classes of individuals and 3 institutions) with which there is a need for coordination and cooperation. The authors consider that, in future works, an effort should be made to provide the various institutions with guidelines/interfaces and prompt such institutions to elaborate upon these. PMID:27999840
USDA-ARS?s Scientific Manuscript database
Glycosylation often mediates important biological processes through the interaction of carbohydrates with complementary proteins. Most chemical tools for the functional analysis of glycans are highly dependent upon various linkage chemistries that involve the reducing-terminus of carbohydrates. Ho...
Application of Technology to Cognitive Development.
ERIC Educational Resources Information Center
Wilson, Louise
This report presents a summary of research being conducted at the University of Minnesota in which new technologies are being applied to development of cognition in hearing impaired learners. The study involved an application of concept analysis, information-processing theories, and group-based interactive technology in the teaching of…
A Rationale for Developmental Testing and Training.
ERIC Educational Resources Information Center
Arner, Robert S.
Man's phylogenetic development has resulted in a potential for environmental interaction in a symbolic and conceptual manner. There are ontogenetic requirements to develop such potential. The process by which man learns is sequential and involves perceptual-motor-cognitive abilities. There is an optimum respectivity period at each developmental…
Virtual Environments in Biology Teaching
ERIC Educational Resources Information Center
Mikropoulos, Tassos A.; Katsikis, Apostolos; Nikolou, Eugenia; Tsakalis, Panayiotis
2003-01-01
This article reports on the design, development and evaluation of an educational virtual environment for biology teaching. In particular it proposes a highly interactive three-dimensional synthetic environment involving certain learning tasks for the support of teaching plant cell biology and the process of photosynthesis. The environment has been…
ERIC Educational Resources Information Center
Thurston, Allen; Grant, G.; Topping, K. J.
2006-01-01
This study explored the process and outcomes of constructivist methods of enhancing science understanding in the topic areas of light and the earth in space. The sample was drawn from a group of 41 nine-year-old children, delivered in four two-hour weekly sessions. Each session involved different combinations of interactive discussion and…
Social cognition and psychopathology: a critical overview
Gallagher, Shaun; Varga, Somogy
2015-01-01
The philosophical and interdisciplinary debate about the nature of social cognition, and the processes involved, has important implications for psychiatry. On one account, mindreading depends on making theoretical inferences about another person's mental states based on knowledge of folk psychology, the so-called “theory theory” (TT). On a different account, “simulation theory” (ST), mindreading depends on simulating the other's mental states within one's own mental or motor system. A third approach, “interaction theory” (IT), looks to embodied processes (involving movement, gesture, facial expression, vocal intonation, etc.) and the dynamics of intersubjective interactions (joint attention, joint action, and processes not confined to an individual system) in highly contextualized situations to explain social cognition, and disruptions of these processes in some psychopathological conditions. In this paper, we present a brief summary of these three theoretical frameworks (TT, ST, IT). We then focus on impaired social abilities in autism and schizophrenia from the perspective of the three approaches. We discuss the limitations of such approaches in the scientific studies of these and other pathologies, and we close with a short reflection on the future of the field. In this regard we argue that, to the extent that TT, ST and IT offer explanations that capture different (limited) aspects of social cognition, a pluralist approach might be best. PMID:25655144
Yaseen, Zimri S.; Zhang, Xian; Muran, J. Christopher; Winston, Arnold; Galynker, Igor I.
2016-01-01
Objectives: The Adult Attachment Interview (AAI) has been the gold standard of attachment assessment, but requires special training. The Relationship Scales Questionnaire (RSQ) is a widely used self-report measure. We investigate how each correlates with brain activity during appraisal of subjects’ mothers. Methods: Twenty-eight women were scored on the AAI, RSQ, and mood measures. During functional magnetic resonance imaging, subjects viewed their mothers in neutral-, valence-, and salience-rating conditions. We identified regions where contrasts in brain activity between appraisal and neutral viewing conditions correlated with each measure of attachment after covarying for mood. AAI and RSQ measures were then compared in terms of the extent to which regions of correlating brain activity overlapped with “default mode network” (DMN) vs. executive frontal network (EFN) masks and cortical vs. subcortical masks. Additionally, interactions with mood were examined. Results: Salience and valence processing associated with increased thalamo-striatal, posterior cingulate, and visual cortex activity. Salience processing decreased PFC activity, whereas valence processing increased left insula activity. Activity correlating with AAI vs. RSQ measures demonstrated significantly more DMN and subcortical involvement. Interactions with mood were observed in the middle temporal gyrus and precuneus for both measures. Conclusion: The AAI appears to disproportionately correlate with conscious appraisal associated activity in DMN and subcortical structures, while the RSQ appears to tap EFN structures more extensively. Thus, the AAI may assess more interoceptive, ‘core-self’-related processes, while the RSQ captures higher-order cognitions involved in attachment. Shared interaction effects between mood and AAI and RSQ-measures may suggest that processes tapped by each belong to a common system. PMID:27014022
NASA Astrophysics Data System (ADS)
Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.
2016-02-01
The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning, supporting ecosystem-based management.
NASA Astrophysics Data System (ADS)
Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.
2016-12-01
The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning, supporting ecosystem-based management.
Yaseen, Zimri S; Zhang, Xian; Muran, J Christopher; Winston, Arnold; Galynker, Igor I
2016-01-01
The Adult Attachment Interview (AAI) has been the gold standard of attachment assessment, but requires special training. The Relationship Scales Questionnaire (RSQ) is a widely used self-report measure. We investigate how each correlates with brain activity during appraisal of subjects' mothers. Twenty-eight women were scored on the AAI, RSQ, and mood measures. During functional magnetic resonance imaging, subjects viewed their mothers in neutral-, valence-, and salience-rating conditions. We identified regions where contrasts in brain activity between appraisal and neutral viewing conditions correlated with each measure of attachment after covarying for mood. AAI and RSQ measures were then compared in terms of the extent to which regions of correlating brain activity overlapped with "default mode network" (DMN) vs. executive frontal network (EFN) masks and cortical vs. subcortical masks. Additionally, interactions with mood were examined. Salience and valence processing associated with increased thalamo-striatal, posterior cingulate, and visual cortex activity. Salience processing decreased PFC activity, whereas valence processing increased left insula activity. Activity correlating with AAI vs. RSQ measures demonstrated significantly more DMN and subcortical involvement. Interactions with mood were observed in the middle temporal gyrus and precuneus for both measures. The AAI appears to disproportionately correlate with conscious appraisal associated activity in DMN and subcortical structures, while the RSQ appears to tap EFN structures more extensively. Thus, the AAI may assess more interoceptive, 'core-self'-related processes, while the RSQ captures higher-order cognitions involved in attachment. Shared interaction effects between mood and AAI and RSQ-measures may suggest that processes tapped by each belong to a common system.
Terband, H; Maassen, B; Guenther, F H; Brumberg, J
2014-01-01
Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
Leader genes in osteogenesis: a theoretical study.
Orlando, Bruno; Giacomelli, Luca; Ricci, Massimiliano; Barone, Antonio; Covani, Ugo
2013-01-01
Little is still known about the molecular mechanisms involved in the process of osteogenesis. In this paper, the leader genes approach, a new bioinformatics method which has already been experimentally validated, is adopted in order to identify the genes involved in human osteogenesis. Interactions among genes are then calculated and genes are ranked according to their relative importance in this process. In total, 167 genes were identified as being involved in osteogenesis. Genes were divided into 4 groups, according to their main function in the osteogenic processes: skeletal development; cell adhesion and proliferation; ossification; and calcium ion binding. Seven genes were consistently identified as leader genes (i.e. the genes with the greatest importance in osteogenesis), while 14 were found to have slightly less importance (class B genes). It was interesting to notice that the larger part of leader and class B genes belonged to the cell adhesion and proliferation or to the ossification sub-groups. This finding suggested that these two particular sub-processes could play a more important role in osteogenesis. Moreover, among the 7 leader genes, it is interesting to notice that RUNX2, BMP2, SPARC, PTH play a direct role in bone formation, while the 3 other leader genes (VEGF, IL6, FGF2) seem to be more connected with an angiogenetic process. Twenty-nine genes have no known interactions (orphan genes). From these results, it may be possible to plan an ad hoc experimentation, for instance by microarray analyses, focused on leader, class B and orphan genes, with the aim to shed new light on the molecular mechanisms underlying osteogenesis. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Dynamic Duo–Inflammatory M1 macrophages and Th17 cells in Rheumatic Diseases
Li, Jun; Hsu, Hui-Chen; Mountz, John D.
2014-01-01
The synovial tissue of Rheumatoid Arthritis (RA) patients is enriched with macrophages and T lymphocytes which are two central players in the pathogenesis of RA. Interaction between myeloid cells and T cells are essential for the initiation and progression of the inflammatory processes in the synovium. With the rapid evolution of our understanding of how these two cell types are involved in the regulation of immune responses, RA is emerging as an ideal disease model for investigating the cell-cell interactions and consequently introducing novel biologic agents that are designed to disrupt these processes. This review will discuss the bidirectional interaction between the IL-23+ inflammatory macrophages and IL-17+ GM-CSF+ CD4 T cells in rheumatic diseases as well as potential antirheumatic strategies via apoptosis induction in this context. PMID:25309946
Selective Plasma Etching of Polymeric Substrates for Advanced Applications
Puliyalil, Harinarayanan; Cvelbar, Uroš
2016-01-01
In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance. PMID:28335238
Social cognitive neuroscience and humanoid robotics.
Chaminade, Thierry; Cheng, Gordon
2009-01-01
We believe that humanoid robots provide new tools to investigate human social cognition, the processes underlying everyday interactions between individuals. Resonance is an emerging framework to understand social interactions that is based on the finding that cognitive processes involved when experiencing a mental state and when perceiving another individual experiencing the same mental state overlap, both at the behavioral and neural levels. We will first review important aspects of his framework. In a second part, we will discuss how this framework is used to address questions pertaining to artificial agents' social competence. We will focus on two types of paradigm, one derived from experimental psychology and the other using neuroimaging, that have been used to investigate humans' responses to humanoid robots. Finally, we will speculate on the consequences of resonance in natural social interactions if humanoid robots are to become integral part of our societies.
Anthropological Perspectives on Participation in CBPR: Insights From the Water Project, Maras, Peru.
Cartwright, Elizabeth; Schow, Diana
2016-01-01
In this article, we anthropologically explore one part of the process of Community-Based Participatory Research (CBPR): participation. Participation in CBPR is usually conceptualized as whether, and the degree to which, community members are involved in the research process. Our focus regarding participation is less on quantity and more on quality of the interaction between community members and researchers; within this context, we elaborate the concept of "bridging" as it is understood in CBPR. Using data from our ongoing "Water Project" in the Peruvian Andes, we explore how interaction, as a participative act of the research interview, creates the space for participating and imagining. Out of this interaction come data that are elaborated, contextualized, and, ultimately, from a CBPR perspective, made useful for meaningful engagement and community action. © The Author(s) 2015.
PAMPs, PRRs, effectors and R-genes associated with citrus–pathogen interactions
Dalio, Ronaldo J. D.; Magalhães, Diogo M.; Rodrigues, Carolina M.; Arena, Gabriella D.; Oliveira, Tiago S.; Souza-Neto, Reinaldo R.; Picchi, Simone C.; Martins, Paula M. M.; Santos, Paulo J. C.; Maximo, Heros J.; Pacheco, Inaiara S.; De Souza, Alessandra A.
2017-01-01
Abstract Background Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant–pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. Scope This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot. PMID:28065920
Organizing Safe Transitions from Intensive Care
Häggström, Marie; Bäckström, Britt
2014-01-01
Background. Organizing and performing patient transfers in the continuum of care is part of the work of nurses and other staff of a multiprofessional healthcare team. An understanding of discharge practices is needed in order to ultimate patients' transfers from high technological intensive care units (ICU) to general wards. Aim. To describe, as experienced by intensive care and general ward staff, what strategies could be used when organizing patient's care before, during, and after transfer from intensive care. Method. Interviews of 15 participants were conducted, audio-taped, transcribed verbatim, and analyzed using qualitative content analysis. Results. The results showed that the categories secure, encourage, and collaborate are strategies used in the three phases of the ICU transitional care process. The main category; a safe, interactive rehabilitation process, illustrated how all strategies were characterized by an intention to create and maintain safety during the process. A three-way interaction was described: between staff and patient/families, between team members and involved units, and between patient/family and environment. Discussion/Conclusions. The findings highlight that ICU transitional care implies critical care rehabilitation. Discharge procedures need to be safe and structured and involve collaboration, encouraging support, optimal timing, early mobilization, and a multidiscipline approach. PMID:24782924
Ribeiro, Marta; Monteiro, Fernando J.; Ferraz, Maria P.
2012-01-01
Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field. PMID:23507884
Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense
Häffner, Eva; Konietzki, Sandra; Diederichsen, Elke
2015-01-01
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding. PMID:27135337
Pezard, Laurent; Doba, Karyn; Lesne, Annick; Nandrino, Jean-Louis
2017-07-01
Emotional interactions have been considered dynamical processes involved in the affective life of humans and their disturbances may induce mental disorders. Most studies of emotional interactions have focused on dyadic behaviors or self-reports of emotional states but neglected the dynamical processes involved in family therapy. The main objective of this study is to quantify the dynamics of emotional expressions and their changes using the family therapy of patients with anorexia nervosa as an example. Nonlinear methods characterize the variability of the dynamics at the level of the whole therapeutic system and reciprocal influence between the participants during family therapy. Results show that the variability of the dynamics is higher at the end of the therapy than at the beginning. The reciprocal influences between therapist and each member of the family and between mother and patient decrease with the course of family therapy. Our results support the development of new interpersonal strategies of emotion regulation during family therapy. The quantification of emotional dynamics can help understanding the emotional processes underlying psychopathology and evaluating quantitatively the changes achieved by the therapeutic intervention. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Gossett, Andrea; Mirza, Mansha; Barnds, Ann Kathleen; Feidt, Daisy
2009-11-01
A growing emphasis has been placed on providing equal opportunities for all people, particularly people with disabilities, to support participation. Barriers to participation are represented in part by physical space restrictions. This article explores the decision-making process during the construction of a new office building housing a disability-rights organization. The building project featured in this study was developed on the principles of universal design, maximal accessibility, and sustainability to support access and participation. A qualitative case study approach was used involving collection of data through in-depth interviews with key decision-makers; non-participant observations at design meetings; and on-site tours. Qualitative thematic analysis along with the development of a classification system was used to understand specific building elements and the relevant decision processes from which they resulted. Recording and analyzing the design process revealed several key issues including grassroots involvement of stakeholders; interaction between universal design and sustainable design; addressing diversity through flexibility and universality; and segregationist accessibility versus universal design. This case study revealed complex interactions between accessibility, universal design, and sustainability. Two visual models were proposed to understand and analyze these complexities.
A cluster expansion model for predicting activation barrier of atomic processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit, E-mail: achatter@iitk.ac.in
2013-06-15
We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEBmore » results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog.« less
Improving TOGAF ADM 9.1 Migration Planning Phase by ITIL V3 Service Transition
NASA Astrophysics Data System (ADS)
Hanum Harani, Nisa; Akhmad Arman, Arry; Maulana Awangga, Rolly
2018-04-01
Modification planning of business transformation involving technological utilization required a system of transition and migration planning process. Planning of system migration activity is the most important. The migration process is including complex elements such as business re-engineering, transition scheme mapping, data transformation, application development, individual involvement by computer and trial interaction. TOGAF ADM is the framework and method of enterprise architecture implementation. TOGAF ADM provides a manual refer to the architecture and migration planning. The planning includes an implementation solution, in this case, IT solution, but when the solution becomes an IT operational planning, TOGAF could not handle it. This paper presents a new model framework detail transitions process of integration between TOGAF and ITIL. We evaluated our models in field study inside a private university.
Shek, Daniel T L; Tam, Suet-yan
2009-01-01
To understand the implementation quality of the Tier 1 Program (Secondary 2 Curriculum) of the P.A.T.H.S. Project, process evaluation was carried out by co-walkers through classroom observation of 195 units in 131 schools. Results showed that the overall level of program adherence was generally high with an average of 84.55%, and different factors of the implementation process were evaluated as positive. Quality of program implementation and achievement of program objectives were predicted by students' participation and involvement, strategies to enhance students' motivation, opportunity for reflection, time management, and class preparation. Success in program implementation was predicted by students' participation and involvement, classroom control, interactive delivery method, strategies to enhance students' motivation, opportunity for reflection, and lesson preparation.
Plat, Rika; Lowie, Wander; de Bot, Kees
2018-01-01
Reaction time data have long been collected in order to gain insight into the underlying mechanisms involved in language processing. Means analyses often attempt to break down what factors relate to what portion of the total reaction time. From a dynamic systems theory perspective or an interaction dominant view of language processing, it is impossible to isolate discrete factors contributing to language processing, since these continually and interactively play a role. Non-linear analyses offer the tools to investigate the underlying process of language use in time, without having to isolate discrete factors. Patterns of variability in reaction time data may disclose the relative contribution of automatic (grapheme-to-phoneme conversion) processing and attention-demanding (semantic) processing. The presence of a fractal structure in the variability of a reaction time series indicates automaticity in the mental structures contributing to a task. A decorrelated pattern of variability will indicate a higher degree of attention-demanding processing. A focus on variability patterns allows us to examine the relative contribution of automatic and attention-demanding processing when a speaker is using the mother tongue (L1) or a second language (L2). A word naming task conducted in the L1 (Dutch) and L2 (English) shows L1 word processing to rely more on automatic spelling-to-sound conversion than L2 word processing. A word naming task with a semantic categorization subtask showed more reliance on attention-demanding semantic processing when using the L2. A comparison to L1 English data shows this was not only due to the amount of language use or language dominance, but also to the difference in orthographic depth between Dutch and English. An important implication of this finding is that when the same task is used to test and compare different languages, one cannot straightforwardly assume the same cognitive sub processes are involved to an equal degree using the same task in different languages. PMID:29403404
A model of interaction between anticorruption authority and corruption groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neverova, Elena G.; Malafeyef, Oleg A.
The paper provides a model of interaction between anticorruption unit and corruption groups. The main policy functions of the anticorruption unit involve reducing corrupt practices in some entities through an optimal approach to resource allocation and effective anticorruption policy. We develop a model based on Markov decision-making process and use Howard’s policy-improvement algorithm for solving an optimal decision strategy. We examine the assumption that corruption groups retaliate against the anticorruption authority to protect themselves. This model was implemented through stochastic game.
Molecular Dynamics Characterization of Protein Crystal Contacts in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Pellicane, Giuseppe; Smith, Graham; Sarkisov, Lev
2008-12-01
We employ nonequilibrium molecular dynamics simulation to characterize the effective interactions between lysozyme molecules involved in the formation of two hydrophobic crystal contacts. We show that the effective interactions between crystal contacts do not exceed a few kT, the range of the attractive part of the potential is less than 4 Å, and, within this range, there is a significant depletion of water density between two protein contacts. Our findings highlight the different natures of protein crystallization and protein recognition processes.
Normalizing Stigmatized Practices: Achieving Co-membership by "Doing Being Ordinary".
ERIC Educational Resources Information Center
Lawrence, Samuel G.
1996-01-01
Discusses the effect of the interactive accomplishment of conversational normalization. To illuminate this process, this article investigates how the parties to a news interview collaborate to normalize the interviewee's practices in operating a house of prostitution. The methodological impetus for this study involves a variant of conversation…
Schemata as a Reading Strategy.
ERIC Educational Resources Information Center
Mustapha, Zaliha
Reading is a multileveled, interactive, and hypothesis-generating process in which readers construct a meaningful representation of text by using their knowledge of the world and of language. If reading involves grasping the significance of an input depending on the reader's mental cognitive-perceptual situation, then there is a form of background…
Enactive Metaphors: Learning through Full-Body Engagement
ERIC Educational Resources Information Center
Gallagher, Shaun; Lindgren, Robb
2015-01-01
Building on both cognitive semantics and enactivist approaches to cognition, we explore the concept of enactive metaphor and its implications for learning. Enactive approaches to cognition involve the idea that online sensory-motor and affective processes shape the way the perceiver-thinker experiences the world and interacts with others.…
ERIC Educational Resources Information Center
Brodhag, Christian
2013-01-01
Technology transfer and innovation are considered major drivers of sustainable development; they place knowledge and its dissemination in society at the heart of the development process. This article considers the role of research universities, and how they can interact with key actors and institutions involved in "innovation…
Parental Support of Numeracy during a Cooking Activity with Four-Year-Olds
ERIC Educational Resources Information Center
Vandermaas-Peeler, Maureen; Boomgarden, Erin; Finn, Lauren; Pittard, Caroline
2012-01-01
While research demonstrates the importance of numeracy-related activities performed at home for young children's mathematics achievement, few studies involve observational studies of the processes which support children's mathematical learning at home. On this premise, this study reports evidence from numeracy-related interactions between parents…
Bilinguals' Existing Languages Benefit Vocabulary Learning in a Third Language
ERIC Educational Resources Information Center
Bartolotti, James; Marian, Viorica
2017-01-01
Learning a new language involves substantial vocabulary acquisition. Learners can accelerate this process by relying on words with native-language overlap, such as cognates. For bilingual third language learners, it is necessary to determine how their two existing languages interact during novel language learning. A scaffolding account predicts…
From Needs to Wants: Motivation and the Language Learner.
ERIC Educational Resources Information Center
Ladousse, Gillian Porter
1982-01-01
Discusses theories of motivation in foreign language learning especially as an interactional, dynamic process focusing on how diffuse needs become channeled into wants through behavior itself. Sociological issues involved include the personality model of the learner and the institutional setting where language is being taught. (Author/BK)
The Role of Local Leaders in Cultural Transformation and Development
ERIC Educational Resources Information Center
Carm, Ellen
2012-01-01
Through cross-disciplinary and participatory processes involving key stakeholders from the Zambian education sector, as well as from the traditional leadership structure, a localized HIV/AIDS-prevention strategy, Interactive School and Community Approach (ISACA), was developed and implemented throughout one province between 2002 and 2006. The…
Factors Promoting Engaged Exploration with Computer Simulations
ERIC Educational Resources Information Center
Podolefsky, Noah S.; Perkins, Katherine K.; Adams, Wendy K.
2010-01-01
This paper extends prior research on student use of computer simulations (sims) to engage with and explore science topics, in this case wave interference. We describe engaged exploration; a process that involves students actively interacting with educational materials, sense making, and exploring primarily via their own questioning. We analyze…
Approaching messy problems: strategies for environmental analysis
L. M. Reid; R. R. Ziemer; T. E. Lisle
1996-01-01
Environmental problems are never neatly defined. Instead, each is a tangle of interacting processes whose manifestation and interpretation are warped by the vagaries of time, weather, expectation, and economics. Each problem involves livelihoods, values, and numerous specialized disciplines. Nevertheless, federal agencies in the Pacific Northwest have been given the...
The Haptic Paradigm in Education: Challenges and Case Studies
ERIC Educational Resources Information Center
Hamza-Lup, Felix G.; Stanescu, Ioana A.
2010-01-01
The process of learning involves interaction with the learning environment through our five senses (sight, hearing, touch, smell, and taste). Until recently, distance education focused only on the first two of those senses, sight and sound. Internet-based learning environments are predominantly visual with auditory components. With the advent of…
Enacting the Spiritual Dimension in Physical Education
ERIC Educational Resources Information Center
Lodewyk, Ken; Lu, Chunlei; Kentel, Jeanne
2009-01-01
Spirituality is a fundamental, everyday life process involving a joy of living, sacrifice and love for others, and a connection to self, others, nature, and to a larger meaning or purpose. Distinct from moral or religious beliefs, spirituality engages interactively with the psyche, body, and sociocultural setting to influence human functioning,…
Creating a Common Grammar for European Higher Education Governance
ERIC Educational Resources Information Center
Magalhaes, Antonio; Veiga, Amelia; Ribeiro, Filipa M.; Sousa, Sofia; Santiago, Rui
2013-01-01
This paper addresses the interaction between European Union policies and national higher education sectors in the countries involved in the TRUE project (England, France, Germany, Italy, The Netherlands, Norway, Portugal and Switzerland) making the case for European governance. Relevant for this matter is the role of political processes that…
Dehistoricized Cultural Identity and Cultural Othering
ERIC Educational Resources Information Center
Weiguo, Qu
2013-01-01
The assumption that each culture has its own distinctive identity has been generally accepted in the discussion of cultural identities. Quite often identity formation is not perceived as a dynamic and interactive ongoing process that engages other cultures and involves change in its responses to different challenges at different times. I will…
Is there a role for symbiotic bacteria in plant virus transmission?
USDA-ARS?s Scientific Manuscript database
During the process of circulative plant virus transmission by insect vectors, viruses interact with different insect vector tissues prior to transmission to a new host plant. An area of intense debate in the field is whether bacterial symbionts of insect vectors are involved in the virus transmissi...
A Guide to Curriculum Planning in Reading. Bulletin No. 6305.
ERIC Educational Resources Information Center
Wisconsin State Dept. of Public Instruction, Madison.
Defining reading as a dynamic, interactive process involving the reader in constructing meaning, this guide for the elementary and secondary curriculum was designed to facilitate effective and creative decision making by teachers for (1) integrating reading and writing across the curriculum, (2) developing readers who can independently apply…
Subscriber Response System. Progress Report.
ERIC Educational Resources Information Center
Callais, Richard T.
Results of preliminary tests made prior and subsequent to the installation of a two-way interactive communication system which involves a computer complex termed the Local Processing Center and subscriber terminals located in the home or business location are reported. This first phase of the overall test plan includes tests made at Theta-Com…
Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.
Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P
2010-02-18
Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.
De Oliveira, S; Vitorino de Almeida, V; Calado, A; Rosário, H S; Saldanha, C
2012-03-01
Fibrinogen is a multifunctional plasma protein that plays a crucial role in several biological processes. Elevated fibrinogen induces erythrocyte hyperaggregation, suggesting an interaction between this protein and red blood cells (RBCs). Several studies support the concept that fibrinogen interacts with RBC membrane and this binding, due to specific and non-specific mechanisms, may be a trigger to RBC hyperaggregation in inflammation. The main goals of our work were to prove that human RBCs are able to specifically bind soluble fibrinogen, and identify membrane molecular targets that could be involved in this process. RBCs were first isolated from blood of healthy individuals and then separated in different age fractions by discontinuous Percoll gradients. After isolation RBC samples were incubated with human soluble fibrinogen and/or with a blocking antibody against CD47 followed by fluorescence confocal microscopy, flow cytometry acquisitions and zeta potential measurements. Our data show that soluble fibrinogen interacts with the human RBC membrane in an age-dependent manner, with younger RBCs interacting more with soluble fibrinogen than the older cells. Importantly, this interaction is abrogated in the presence of a specific antibody against CD47. Our results support a specific and age-dependent interaction of soluble fibrinogen with human RBC membrane; additionally we present CD47 as a putative mediator in this process. This interaction may contribute to RBC hyperaggregation in inflammation. Copyright © 2011 Elsevier B.V. All rights reserved.
Interaction in planning vocalizations and grasping.
Tiainen, Mikko; Tiippana, Kaisa; Vainio, Martti; Komeilipoor, Naeem; Vainio, Lari
2017-08-01
Previous studies have shown a congruency effect between manual grasping and syllable articulation. For instance, a power grip is associated with syllables whose articulation involves the tongue body and/or large mouth aperture ([kɑ]) whereas a precision grip is associated with articulations that involve the tongue tip and/or small mouth aperture ([ti]). Previously, this effect has been observed in manual reaction times. The primary aim of the current study was to investigate whether this congruency effect also takes place in vocal responses and to investigate involvement of action selection processes in the effect. The congruency effect was found in vocal and manual responses regardless of whether or not the syllable or grip was known a priori, suggesting that the effect operates with minimal or absent action selection processes. In addition, the effect was observed in vocal responses even when the grip was only prepared but not performed, suggesting that merely planning a grip response primes the corresponding articulatory response. These results support the view that articulation and grasping are processed in a partially overlapping network.
Emotional Modulation of Learning and Memory: Pharmacological Implications.
LaLumiere, Ryan T; McGaugh, James L; McIntyre, Christa K
2017-07-01
Memory consolidation involves the process by which newly acquired information becomes stored in a long-lasting fashion. Evidence acquired over the past several decades, especially from studies using post-training drug administration, indicates that emotional arousal during the consolidation period influences and enhances the strength of the memory and that multiple different chemical signaling systems participate in this process. The mechanisms underlying the emotional influences on memory involve the release of stress hormones and activation of the basolateral amygdala, which work together to modulate memory consolidation. Moreover, work suggests that this amygdala-based memory modulation occurs with numerous types of learning and involves interactions with many different brain regions to alter consolidation. Additionally, studies suggest that emotional arousal and amygdala activity in particular influence synaptic plasticity and associated proteins in downstream brain regions. This review considers the historical understanding for memory modulation and cellular consolidation processes and examines several research areas currently using this foundational knowledge to develop therapeutic treatments. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Gomes, Eriston Vieira; Costa, Mariana do Nascimento; de Paula, Renato Graciano; Ricci de Azevedo, Rafael; da Silva, Francilene Lopes; Noronha, Eliane F.; José Ulhoa, Cirano; Neves Monteiro, Valdirene; Elena Cardoza, Rosa; Gutiérrez, Santiago; Nascimento Silva, Roberto
2015-01-01
Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants. PMID:26647876
Gomes, Eriston Vieira; Costa, Mariana do Nascimento; de Paula, Renato Graciano; de Azevedo, Rafael Ricci; da Silva, Francilene Lopes; Noronha, Eliane F; Ulhoa, Cirano José; Monteiro, Valdirene Neves; Cardoza, Rosa Elena; Gutiérrez, Santiago; Silva, Roberto Nascimento
2015-12-09
Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants.
Chereji, Răzvan V.; Bharatula, Vasudha; Elfving, Nils; Blomberg, Jeanette; Larsson, Miriam; Morozov, Alexandre V.; Broach, James R.
2017-01-01
Abstract Mediator is a multi-unit molecular complex that plays a key role in transferring signals from transcriptional regulators to RNA polymerase II in eukaryotes. We have combined biochemical purification of the Saccharomyces cerevisiae Mediator from chromatin with chromatin immunoprecipitation in order to reveal Mediator occupancy on DNA genome-wide, and to identify proteins interacting specifically with Mediator on the chromatin template. Tandem mass spectrometry of proteins in immunoprecipitates of mediator complexes revealed specific interactions between Mediator and the RSC, Arp2/Arp3, CPF, CF 1A and Lsm complexes in chromatin. These factors are primarily involved in chromatin remodeling, actin assembly, mRNA 3′-end processing, gene looping and mRNA decay, but they have also been shown to enter the nucleus and participate in Pol II transcription. Moreover, we have found that Mediator, in addition to binding Pol II promoters, occupies chromosomal interacting domain (CID) boundaries and that Mediator in chromatin associates with proteins that have been shown to interact with CID boundaries, such as Sth1, Ssu72 and histone H4. This suggests that Mediator plays a significant role in higher-order genome organization. PMID:28575439
Electrophysiological models of neural processing.
Nelson, Mark E
2011-01-01
The brain is an amazing information processing system that allows organisms to adaptively monitor and control complex dynamic interactions with their environment across multiple spatial and temporal scales. Mathematical modeling and computer simulation techniques have become essential tools in understanding diverse aspects of neural processing ranging from sub-millisecond temporal coding in the sound localization circuity of barn owls to long-term memory storage and retrieval in humans that can span decades. The processing capabilities of individual neurons lie at the core of these models, with the emphasis shifting upward and downward across different levels of biological organization depending on the nature of the questions being addressed. This review provides an introduction to the techniques for constructing biophysically based models of individual neurons and local networks. Topics include Hodgkin-Huxley-type models of macroscopic membrane currents, Markov models of individual ion-channel currents, compartmental models of neuronal morphology, and network models involving synaptic interactions among multiple neurons.
Toward a Psychological Science of Advanced Technology Design for Older Adults
Fisk, Arthur D.
2010-01-01
Objectives. Technology represents advances in knowledge that change the way humans perform tasks. Ideally, technology will make the task easier, more efficient, safer, or perhaps more pleasurable. Unfortunately, new technologies can sometimes make a task more difficult, slower, dangerous, or perhaps more frustrating. Older adults interact with a variety of technologies in the course of their daily activities and thus products should be designed to be used by people of varying ages. Methods. In this article, we provide an overview of what psychology has to offer to the design of technology—from understanding what people need, to identifying their preferences for design characteristics, and to defining their capabilities and limitations that will influence technology interactions. Results. We identify how research in the field of psychology and aging has advanced understanding of technology interactions and how research on technology interactions can inform theories of aging. Discussion. Design for aging involves understanding the unique capabilities and limitations of older adults; identifying their needs, preferences, and desires for technology in their lives; and involving them in the design process. PMID:20833690
Zheng, Yong-Sheng; Lu, Yu-Qing; Meng, Ying-Ying; Zhang, Rong-Zhi; Zhang, Han; Sun, Jia-Mei; Wang, Mu-Mu; Li, Li-Hui; Li, Ru-Yu
2017-05-01
WD-40 repeat-containing protein MSI4 (FVE)/MSI4 plays important roles in determining flowering time in Arabidopsis. However, its function is unexplored in wheat. In the present study, coimmunoprecipitation and nanoscale liquid chromatography coupled to MS/MS were used to identify FVE in wheat (TaFVE)-interacting or associated proteins. Altogether 89 differentially expressed proteins showed the same downregulated expression trends as TaFVE in wheat line 5660M. Among them, 62 proteins were further predicted to be involved in the interaction network of TaFVE and 11 proteins have been shown to be potential TaFVE interactors based on curated databases and experimentally determined in other species by the STRING. Both yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that histone deacetylase 6 and histone deacetylase 15 directly interacted with TaFVE. Multiple chromatin-remodelling proteins and polycomb group proteins were also identified and predicted to interact with TaFVE. These results showed that TaFVE directly interacted with multiple proteins to form multiple complexes to regulate spike developmental process, e.g. histone deacetylate, chromatin-remodelling and polycomb repressive complex 2 complexes. In addition, multiple flower development regulation factors (e.g. flowering locus K homology domain, flowering time control protein FPA, FY, flowering time control protein FCA, APETALA 1) involved in floral transition were also identified in the present study. Taken together, these results further elucidate the regulatory functions of TaFVE and help reveal the genetic mechanisms underlying wheat spike differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suksudaj, N; Lekkas, D; Kaidonis, J; Townsend, G C; Winning, T A
2015-02-01
Students' perceptions of their learning environment influence the quality of outcomes they achieve. Learning dental operative techniques in a simulated clinic environment is characterised by reciprocal interactions between skills training, staff- and student-related factors. However, few studies have examined how students perceive their operative learning environments and whether there is a relationship between their perceptions and subsequent performance. Therefore, this study aimed to clarify which learning activities and interactions students perceived as supporting their operative skills learning and to examine relationships with their outcomes. Longitudinal data about examples of operative laboratory sessions that were perceived as effective or ineffective for learning were collected twice a semester, using written critical incidents and interviews. Emergent themes from these data were identified using thematic analysis. Associations between perceptions of learning effectiveness and performance were analysed using chi-square tests. Students indicated that an effective learning environment involved interactions with tutors and peers. This included tutors arranging group discussions to clarify processes and outcomes, providing demonstrations and constructive feedback. Feedback focused on mistakes, and not improvement, was reported as being ineffective for learning. However, there was no significant association between students' perceptions of the effectiveness of their learning experiences and subsequent performance. It was clear that learning in an operative technique setting involved various factors related not only to social interactions and observational aspects of learning but also to cognitive, motivational and affective processes. Consistent with studies that have demonstrated complex interactions between students, their learning environment and outcomes, other factors need investigation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Empathy-Related Responses to Depicted People in Art Works
Kesner, Ladislav; Horáček, Jiří
2017-01-01
Existing theories of empathic response to visual art works postulate the primacy of automatic embodied reaction to images based on mirror neuron mechanisms. Arguing for a more inclusive concept of empathy-related response and integrating four distinct bodies of literature, we discuss contextual, and personal factors which modulate empathic response to depicted people. We then present an integrative model of empathy-related responses to depicted people in art works. The model assumes that a response to empathy-eliciting figural artworks engages the dynamic interaction of two mutually interlinked sets of processes: socio-affective/cognitive processing, related to the person perception, and esthetic processing, primarily concerned with esthetic appreciation and judgment and attention to non-social aspects of the image. The model predicts that the specific pattern of interaction between empathy-related and esthetic processing is co-determined by several sets of factors: (i) the viewer's individual characteristics, (ii) the context variables (which include various modes of priming by narratives and other images), (iii) multidimensional features of the image, and (iv) aspects of a viewer's response. Finally we propose that the model is implemented by the interaction of functionally connected brain networks involved in socio-cognitive and esthetic processing. PMID:28286487
Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters.
Alvarado, Alejandra; Montañez-Hernández, Lilia E; Palacio-Molina, Sandra L; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P; Balagurusamy, Nagamani
2014-01-01
Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.
How do we think machines think? An fMRI study of alleged competition with an artificial intelligence
Chaminade, Thierry; Rosset, Delphine; Da Fonseca, David; Nazarian, Bruno; Lutcher, Ewald; Cheng, Gordon; Deruelle, Christine
2012-01-01
Mentalizing is defined as the inference of mental states of fellow humans, and is a particularly important skill for social interactions. Here we assessed whether activity in brain areas involved in mentalizing is specific to the processing of mental states or can be generalized to the inference of non-mental states by comparing brain responses during the interaction with an intentional and an artificial agent. Participants were scanned using fMRI during interactive rock-paper-scissors games while believing their opponent was a fellow human (Intentional agent, Int), a humanoid robot endowed with an artificial intelligence (Artificial agent, Art), or a computer playing randomly (Random agent, Rnd). Participants' subjective reports indicated that they adopted different stances against the three agents. The contrast of brain activity during interaction with the artificial and the random agents didn't yield any cluster at the threshold used, suggesting the absence of a reproducible stance when interacting with an artificial intelligence. We probed response to the artificial agent in regions of interest corresponding to clusters found in the contrast between the intentional and the random agents. In the precuneus involved in working memory, the posterior intraparietal suclus, in the control of attention and the dorsolateral prefrontal cortex, in executive functions, brain activity for Art was larger than for Rnd but lower than for Int, supporting the intrinsically engaging nature of social interactions. A similar pattern in the left premotor cortex and anterior intraparietal sulcus involved in motor resonance suggested that participants simulated human, and to a lesser extend humanoid robot actions, when playing the game. Finally, mentalizing regions, the medial prefrontal cortex and right temporoparietal junction, responded to the human only, supporting the specificity of mentalizing areas for interactions with intentional agents. PMID:22586381
Chaminade, Thierry; Rosset, Delphine; Da Fonseca, David; Nazarian, Bruno; Lutcher, Ewald; Cheng, Gordon; Deruelle, Christine
2012-01-01
Mentalizing is defined as the inference of mental states of fellow humans, and is a particularly important skill for social interactions. Here we assessed whether activity in brain areas involved in mentalizing is specific to the processing of mental states or can be generalized to the inference of non-mental states by comparing brain responses during the interaction with an intentional and an artificial agent. Participants were scanned using fMRI during interactive rock-paper-scissors games while believing their opponent was a fellow human (Intentional agent, Int), a humanoid robot endowed with an artificial intelligence (Artificial agent, Art), or a computer playing randomly (Random agent, Rnd). Participants' subjective reports indicated that they adopted different stances against the three agents. The contrast of brain activity during interaction with the artificial and the random agents didn't yield any cluster at the threshold used, suggesting the absence of a reproducible stance when interacting with an artificial intelligence. We probed response to the artificial agent in regions of interest corresponding to clusters found in the contrast between the intentional and the random agents. In the precuneus involved in working memory, the posterior intraparietal suclus, in the control of attention and the dorsolateral prefrontal cortex, in executive functions, brain activity for Art was larger than for Rnd but lower than for Int, supporting the intrinsically engaging nature of social interactions. A similar pattern in the left premotor cortex and anterior intraparietal sulcus involved in motor resonance suggested that participants simulated human, and to a lesser extend humanoid robot actions, when playing the game. Finally, mentalizing regions, the medial prefrontal cortex and right temporoparietal junction, responded to the human only, supporting the specificity of mentalizing areas for interactions with intentional agents.
Yan, Chao; Yersin, Alexandre; Afrin, Rehana; Sekiguchi, Hiroshi; Ikai, Atsushi
2009-09-01
Glycophorin A (GpA) is one of the most abundant transmembrane proteins in human erythrocytes and its interaction with lectins has been studied as model systems for erythrocyte related biological processes. We performed a force measurement study using the force mode of atomic force microscopy (AFM) to investigate the single molecular level biophysical mechanisms involved in GpA-lectin interactions. GpA was mounted on a mica surface or natively presented on the erythrocyte membrane and probed with an AFM tip coated with the monomeric but multivalent Psathyrella velutina lectin (PVL) through covalent crosslinkers. A dynamic force spectroscopy study revealed similar interaction properties in both cases, with the unbinding force centering around 60 pN with a weak loading rate dependence. Hence we identified the presence of one energy barrier in the unbinding process. Force profile analysis showed that more than 70% of GpAs are free of cytoskeletal associations in agreement with previous reports.
Intercorporeality as a theory of social cognition.
Tanaka, Shogo
2015-08-01
The main aim of this article is to revisit Merleau-Ponty's notion of intercorporeality (intercorporéité) and elaborate it as a new theory of social cognition. As is well known, theory of mind has been the central issue in the field of social cognition for more than two decades. In reviewing the basic concepts involved in two major theories (theory theory and simulation theory), I make clear that both theories have been missing the embodied dimension because of their mind-body dualistic supposition. The notion of intercorporeality, in accordance with the recent interaction theory, stresses the role of embodied interactions between the self and the other in the process of social understanding. I develop this notion into two directions and describe the related process of social cognition: one is behavior matching and primordial empathy, the other is interactional synchrony and the sense of mutual understanding. Through these embodied interactions, intersubjective meanings are created and directly shared between the self and the other, without being mediated by mental representations.
Context clues: the importance of stem cell-material interactions
Murphy, William L.
2014-01-01
Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691
Identification and super-resolution imaging of ligand-activated receptor dimers in live cells
NASA Astrophysics Data System (ADS)
Winckler, Pascale; Lartigue, Lydia; Giannone, Gregory; de Giorgi, Francesca; Ichas, François; Sibarita, Jean-Baptiste; Lounis, Brahim; Cognet, Laurent
2013-08-01
Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies offer live-cell molecular imaging with sub-wavelength resolutions, they lack specificity for distinguishing interacting molecule populations. Here we combine super-resolution microscopy and single-molecule Förster Resonance Energy Transfer (FRET) to identify dimers of receptors induced by ligand binding and provide super-resolved images of their membrane distribution in live cells. By developing a two-color universal-Point-Accumulation-In-the-Nanoscale-Topography (uPAINT) method, dimers of epidermal growth factor receptors (EGFR) activated by EGF are studied at ultra-high densities, revealing preferential cell-edge sub-localization. This methodology which is specifically devoted to the study of molecules in interaction, may find other applications in biological systems where understanding of molecular organization is crucial.
Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function.
Floyd, Brendan J; Wilkerson, Emily M; Veling, Mike T; Minogue, Catie E; Xia, Chuanwu; Beebe, Emily T; Wrobel, Russell L; Cho, Holly; Kremer, Laura S; Alston, Charlotte L; Gromek, Katarzyna A; Dolan, Brendan K; Ulbrich, Arne; Stefely, Jonathan A; Bohl, Sarah L; Werner, Kelly M; Jochem, Adam; Westphall, Michael S; Rensvold, Jarred W; Taylor, Robert W; Prokisch, Holger; Kim, Jung-Ja P; Coon, Joshua J; Pagliarini, David J
2016-08-18
Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function. Copyright © 2016 Elsevier Inc. All rights reserved.
Pedrini, Nicolás
2018-06-01
Entomopathogenic fungi of the order Hypocreales infect their insect hosts mainly by penetrating through the cuticle and colonize them by proliferating throughout the body cavity. In order to ensure a successful infection, fungi first produce a variety of degrading enzymes that help to breach the insect cuticle, and then secrete toxic secondary metabolites that facilitate fungal invasion of the hemolymph. In response, insect hosts activate their innate immune system by triggering both cellular and humoral immune reactions. As fungi are exposed to stress in both cuticle and hemolymph, several mechanisms are activated not only to deal with this situation but also to mimic host epitopes and evade the insect's immune response. In this review, several components involved in the molecular interaction between insects and fungal pathogens are described including chemical, metabolomics, and dual transcriptomics approaches; with emphasis in the involvement of cuticle surface components in (pre-) infection processes, and fungal secondary metabolite (non-ribosomally synthesized peptides and polyketides) analysis. Some of the mechanisms involved in such interaction are also discussed. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
The relationship between paediatricians and commerce.
Hilliard, Tom; Chambers, Timothy
2006-03-01
The interaction between doctors and commerce, particularly the pharmaceutical industry, has recently been subject to increasing scrutiny. Doctors are now exposed to mounting influence from industry as it spends large amounts of money on marketing, is heavily involved with continuing medical education and sponsors a major proportion of research. Conflicts of interest may exist on both sides of the relationship: doctors can be manipulated and companies need to be profitable. Paediatricians are just as open to this influence as are other members of the medical profession. There is evidence that clinical practice is altered by interaction with industry, although doctors appear to deny the likelihood of being influenced. There are significant concerns over the increasing involvement of the pharmaceutical industry with research, although the regulation of the industry continues to be strengthened and the process of research is becoming more transparent. Disclosure of conflicts of interest involving authorship is now common practice and should extend to all facets of the relationship. However, collaboration continues to be necessary in order to develop new therapies, maximise research and particularly in paediatrics, to test medications in children. Paediatricians need to be aware of the sources of influence and understand current guidelines so that interactions with industry continue to be appropriate.
Interaction of the Human Contact System with Pathogens-An Update.
Oehmcke-Hecht, Sonja; Köhler, Juliane
2018-01-01
The name human contact system is related to its mode of action, as "contact" with artificial negatively charged surfaces triggers its activation. Today, it is generally believed that the contact system is an inflammatory response mechanism not only against artificial material but also against misfolded proteins and foreign organisms. Upon activation, the contact system is involved in at least two distinct (patho)physiologic processes: i . the trigger of the intrinsic coagulation via factor XI and ii . the cleavage of high molecular weight kininogen with release of bradykinin and antimicrobial peptides (AMPs). Bradykinin is involved in the regulation of inflammatory processes, vascular permeability, and blood pressure. Due to the release of AMPs, the contact system is regarded as a branch of the innate immune defense against microorganisms. There is an increasing list of pathogens that interact with contact factors, in addition to bacteria also fungi and viruses bind and activate the system. In spite of that, pathogens have developed their own mechanisms to activate the contact system, resulting in manipulation of this host immune response. In this up-to-date review, we summarize present research on the interaction of pathogens with the human contact system, focusing particularly on bacterial and viral mechanisms that trigger inflammation via contact system activation.
André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.
2011-01-01
NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits. PMID:21167848
NASA Astrophysics Data System (ADS)
Xiong, W.; Li, J.; Zhu, Y.; Luo, X.
2018-07-01
The transition between regular reflection (RR) and Mach reflection (MR) of a Type V shock-shock interaction on a double-wedge geometry with non-equilibrium high-temperature gas effects is investigated theoretically and numerically. A modified shock polar method that involves thermochemical non-equilibrium processes is applied to calculate the theoretical critical angles of transition based on the detachment criterion and the von Neumann criterion. Two-dimensional inviscid numerical simulations are performed correspondingly to reveal the interactive wave patterns, the transition processes, and the critical transition angles. The theoretical and numerical results of the critical transition angles are compared, which shows evident disagreement, indicating that the transition mechanism between RR and MR of a Type V shock interaction is beyond the admissible scope of the classical theory. Numerical results show that the collisions of triple points of the Type V interaction cause the transition instead. Compared with the frozen counterpart, it is found that the high-temperature gas effects lead to a larger critical transition angle and a larger hysteresis interval.
Chemotaxing and haptotaxing random walkers having directional persistence
NASA Astrophysics Data System (ADS)
Kwon, Tae Goo; Kyoungjin Lee Team; Taeseok Daniel Yang Team
2015-03-01
Biological cell crawling is a rather complex process involving various bio-chemical and bio-mechanical processes, many of which are still not well understood. The difficulties in understanding the crawling are originating not just from cell-intrinsic factors but from their complex social interactions, cell-to-substrate interactions and nonlinear responses toward extrinsic factors. Here, in this report we investigate chemotactic behavior of mathematical model cells that naturally have directional persistence. A cell density is measured as a function of time and space, then the resulting steady state is compared with that of the well-known Keller-Segal model, which describes a population of chemotactic random walker. Then, we add a cell-to-cell interaction, mimicking a ``haptotaxis'' mediated interaction, to the model and access its role as for altering the steady-state cell density profile. This mathematical model system, which we have developed and considered in this work, can be quite relevant to the chemotactic responses of interacting immune cells, like microglia, moving toward and around a site of wound, as for an example. We conclude by discussing some relevant recent experimental findings.
Mpp10 represents a platform for the interaction of multiple factors within the 90S pre-ribosome
Kharde, Satyavati; Ahmed, Yasar Luqman; Stier, Gunter; Kunze, Ruth; Sinning, Irmgard
2017-01-01
In eukaryotes, ribosome assembly is a highly complex process that involves more than 200 assembly factors that ensure the folding, modification and processing of the different rRNA species as well as the timely association of ribosomal proteins. One of these factors, Mpp10 associates with Imp3 and Imp4 to form a complex that is essential for the normal production of the 18S rRNA. Here we report the crystal structure of a complex between Imp4 and a short helical element of Mpp10 to a resolution of 1.88 Å. Furthermore, we extend the interaction network of Mpp10 and characterize two novel interactions. Mpp10 is able to bind the ribosome biogenesis factor Utp3/Sas10 through two conserved motifs in its N-terminal region. In addition, Mpp10 interacts with the ribosomal protein S5/uS7 using a short stretch within an acidic loop region. Thus, our findings reveal that Mpp10 provides a platform for the simultaneous interaction with multiple proteins in the 90S pre-ribosome. PMID:28813493
Exploring the membrane fusion mechanism through force-induced disassembly of HIV-1 six-helix bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101; University of Chinese Academy of Sciences, Beijing 100049
Enveloped virus, such as HIV-1, employs membrane fusion mechanism to invade into host cell. HIV-1 gp41 ectodomain uses six-helix bundle configuration to accomplish this process. Using molecular dynamic simulations, we confirmed the stability of this six-helix bundle by showing high occupancy of hydrogen bonds and hydrophobic interactions. Key residues and interactions important for the bundle integration were characterized by force-induced unfolding simulations of six-helix bundle, exhibiting the collapse order of these groups of interactions. Moreover, our results in some way concerted with a previous theory that the formation of coiled-coil choose a route which involved cooperative interactions between the N-terminalmore » and C-terminal helix. -- Highlights: •Unfolding of HIV-1 gp41 six-helix bundle is studied by molecular dynamics simulations. •Specific interactions responsible for the stability of HIV-1 envelope post-fusion conformation were identified. •The gp41 six-helix bundle transition inducing membrane fusion might be a cooperative process of the three subunits.« less
Li, Lin; Alper, Joshua; Alexov, Emil
2016-01-01
Dyneins are important molecular motors involved in many essential biological processes, including cargo transport along microtubules, mitosis, and in cilia. Dynein motility involves the coupling of microtubule binding and unbinding to a change in the configuration of the linker domain induced by ATP hydrolysis, which occur some 25 nm apart. This leaves the accuracy of dynein stepping relatively inaccurate and susceptible to thermal noise. Using multi-scale modeling with a computational focusing technique, we demonstrate that the microtubule forms an electrostatic funnel that guides the dynein’s microtubule binding domain (MTBD) as it finally docks to the precise, keyed binding location on the microtubule. Furthermore, we demonstrate that electrostatic component of the MTBD’s binding free energy is linearly correlated with the velocity and run length of dynein, and we use this linearity to predict the effect of mutating each glutamic and aspartic acid located in MTBD domain to alanine. Lastly, we show that the binding of dynein to the microtubule is associated with conformational changes involving several helices, and we localize flexible hinge points within the stalk helices. Taken all together, we demonstrate that long range electrostatic interactions bring a level of precision to an otherwise noisy dynein stepping process. PMID:27531742
From drop impact physics to spray cooling models: a critical review
NASA Astrophysics Data System (ADS)
Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron
2018-03-01
Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.
Timing in turn-taking and its implications for processing models of language
Levinson, Stephen C.; Torreira, Francisco
2015-01-01
The core niche for language use is in verbal interaction, involving the rapid exchange of turns at talking. This paper reviews the extensive literature about this system, adding new statistical analyses of behavioral data where they have been missing, demonstrating that turn-taking has the systematic properties originally noted by Sacks et al. (1974; hereafter SSJ). This system poses some significant puzzles for current theories of language processing: the gaps between turns are short (of the order of 200 ms), but the latencies involved in language production are much longer (over 600 ms). This seems to imply that participants in conversation must predict (or ‘project’ as SSJ have it) the end of the current speaker’s turn in order to prepare their response in advance. This in turn implies some overlap between production and comprehension despite their use of common processing resources. Collecting together what is known behaviorally and experimentally about the system, the space for systematic explanations of language processing for conversation can be significantly narrowed, and we sketch some first model of the mental processes involved for the participant preparing to speak next. PMID:26124727
Fort Collins Science Center Ecosystem Dynamics Branch
Wilson, Jim; Melcher, C.; Bowen, Z.
2009-01-01
Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.
Creative Cognition and Brain Network Dynamics.
Beaty, Roger E; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L
2016-02-01
Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relation, tend to cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. Copyright © 2015 Elsevier Ltd. All rights reserved.
Parental involvement in neonatal comfort care.
Skene, Caryl; Franck, Linda; Curtis, Penny; Gerrish, Kate
2012-01-01
To explore how parents interact with their infants and with nurses regarding the provision of comfort care in a Neonatal Intensive Care Unit (NICU). Focused ethnography. A regional NICU in the United Kingdom. Eleven families (10 mothers, 8 fathers) with infants residing in the NICU participated in the study. Parents were observed during a caregiving interaction with their infants and then interviewed on up to four occasions. Twenty-five periods of observation and 24 semistructured interviews were conducted between January and November 2008. Five stages of learning to parent in the NICU were identified. Although the length and duration of each stage differed for individual parents, movement along the learning trajectory was facilitated when parents were involved in comforting their infants. Transfer of responsibility from nurse to parents for specific aspects of care was also aided by parental involvement in pain care. Nurses' encouragement of parental involvement in comfort care facilitated parental proximity, parent/infant reciprocity, and parental sense of responsibility. Findings suggest that parental involvement in comfort care can aid the process of learning to parent, which is difficult in the NICU. Parental involvement in infant comfort care may also facilitate the transfer of responsibility from nurse to parent and may facilitate antecedents to parent/infant attachment. © 2012 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.
The binary protein-protein interaction landscape of Escherichia coli
Rajagopala, Seesandra V.; Vlasblom, James; Arnold, Roland; Franca-Koh, Jonathan; Pakala, Suman B.; Phanse, Sadhna; Ceol, Arnaud; Häuser, Roman; Siszler, Gabriella; Wuchty, Stefan; Emili, Andrew; Babu, Mohan; Aloy, Patrick; Pieper, Rembert; Uetz, Peter
2014-01-01
Efforts to map the Escherichia coli interactome have identified several hundred macromolecular complexes, but direct binary protein-protein interactions (PPIs) have not been surveyed on a large scale. Here we performed yeast two-hybrid screens of 3,305 baits against 3,606 preys (~70% of the E. coli proteome) in duplicate to generate a map of 2,234 interactions, approximately doubling the number of known binary PPIs in E. coli. Integration of binary PPIs and genetic interactions revealed functional dependencies among components involved in cellular processes, including envelope integrity, flagellum assembly and protein quality control. Many of the binary interactions that could be mapped within multi-protein complexes were informative regarding internal topology and indicated that interactions within complexes are significantly more conserved than those interactions connecting different complexes. This resource will be useful for inferring bacterial gene function and provides a draft reference of the basic physical wiring network of this evolutionarily significant model microbe. PMID:24561554
Selection of peptides interfering with protein-protein interaction.
Gaida, Annette; Hagemann, Urs B; Mattay, Dinah; Räuber, Christina; Müller, Kristian M; Arndt, Katja M
2009-01-01
Cell physiology depends on a fine-tuned network of protein-protein interactions, and misguided interactions are often associated with various diseases. Consequently, peptides, which are able to specifically interfere with such adventitious interactions, are of high interest for analytical as well as medical purposes. One of the most abundant protein interaction domains is the coiled-coil motif, and thus provides a premier target. Coiled coils, which consist of two or more alpha-helices wrapped around each other, have one of the simplest interaction interfaces, yet they are able to confer highly specific homo- and heterotypic interactions involved in virtually any cellular process. While there are several ways to generate interfering peptides, the combination of library design with a powerful selection system seems to be one of the most effective and promising approaches. This chapter guides through all steps of such a process, starting with library options and cloning, detailing suitable selection techniques and ending with purification for further down-stream characterization. Such generated peptides will function as versatile tools to interfere with the natural function of their targets thereby illuminating their down-stream signaling and, in general, promoting understanding of factors leading to specificity and stability in protein-protein interactions. Furthermore, peptides interfering with medically relevant proteins might become important diagnostics and therapeutics.
Miller, Victoria A; Feudtner, Chris; Jawad, Abbas F
2017-04-01
The primary objective of this study was to examine the associations of children's involvement in decisions about research participation with their perceptions of the decision-making process and self-efficacy. Participants were children (ages 8-17) who enrolled in research studies in the prior 2 months. Children completed a questionnaire that yielded three decision-making involvement subscales: Researcher Engages Child, Researcher Supports Autonomy, and Child Participates. Children reported on fairness of the decision-making process and health-related decision self-efficacy. After adjusting for age, higher scores on Researcher Engages Child were associated with greater self-efficacy, and higher scores on Researcher Supports Autonomy were associated with greater perceived fairness. These data underscore the potential importance of researcher-child interactions about research participation when assent is sought, including proactively involving children in the decision by asking for their opinions and communicating their central role in the decision, which are likely to be more meaningful to children than receiving information or signing a form.
SLXL1, a novel acrosomal protein, interacts with DKKL1 and is involved in fertilization in mice.
Zhuang, Xin-jie; Hou, Xiao-jun; Liao, Shang-Ying; Wang, Xiu-Xia; Cooke, Howard J; Zhang, Ming; Han, Chunsheng
2011-01-01
Spermatogenesis is a complex cellular developmental process which involves diverse families of genes. The Xlr (X-linked, lymphocyte regulated) family includes multiple members, only a few of which have reported functions in meiosis, post-meiotic maturation, and fertilization of germ cells. Slx-like1 (Slxl1) is a member of the Xlr family, whose expression and function in spermatogenesis need to be elucidated. The mRNA and protein expression and localization of Slxl1 were investigated by RT-PCR, Western blotting and immunohistochemistry in different tissues and at different stages of spermatogenesis. The interacting partner of SLXL1 was examined by co-immunoprecipitation and co-localization. Assessment of the role of SLXL1 in capacitation, acrosome reaction, zona pellucida binding/penetration, and fertilization was carried out in vitro using blocking antisera. The results showed that Slxl1 mRNA and protein were specifically expressed in the testis. SLXL1 was exclusively located in the acrosome of post-meiotic germ cells and interacts with DKKL1 (Dickkopf-like1), which is an acrosome-associated protein and plays an important role in fertilization. The rates of zona pellucida binding/penetration and fertilization were significantly reduced by the anti-SLXL1 polyclonal antiserum. SLXL1 is the first identified member of the XLR family that is associated with acrosome and is involved in zona pellucid binding/penetration and subsequent fertilization. These results, together with previous studies, suggest that Xlr family members participate in diverse processes from meiosis to fertilization during spermatogenesis.
Feldman, Ruth; Gordon, Ilanit; Zagoory-Sharon, Orna
2011-07-01
Studies in mammals have implicated the neuropeptide oxytocin (OT) in processes of bond formation and stress modulation, yet the involvement of OT in human bonding throughout life remains poorly understood. We assessed OT in the plasma, saliva, and urine of 112 mothers and fathers interacting with their 4-6-month-old infants. Parent-infant interactions were micro-coded for parent and child's social behaviors and for the temporal coordination of their socio-affective cues. Parents were interviewed regarding their attachment to the infant and reported on bonding to own parents, romantic attachment, and parenting stress. Results indicated that OT in plasma (pOT) and saliva (sOT) were inter-related and were unrelated to OT in urine (uOT). pOT and sOT in mothers and fathers were associated with parent and child's social engagement, affect synchrony, and positive communicative sequences between parent and child. uOT was related to moments of interactive stress among mothers only, indexed by the co-occurrence of infant negative engagement and mother re-engagement attempts. pOT and sOT were associated with mothers' and fathers' attachment relationships throughout life: to own parents, partner, and infant, whereas uOT correlated with relationship anxiety and parenting stress among mothers only. Similar to other mammals, OT is involved in human attachment and contingent parenting. The dual role of OT in stress and affiliation underscores its complex involvement in processes of social bonding throughout life. © 2010 Blackwell Publishing Ltd.
Collider study on the loop-induced dark matter mediation
NASA Astrophysics Data System (ADS)
Tsai, Yuhsin
2016-06-01
Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.
Lee, C A; Kalvass, J C; Galetin, A; Zamek-Gliszczynski, M J
2014-09-01
The "P-glycoprotein" IC50 working group reported an 18- to 796-fold interlaboratory range in digoxin transport IC50 (inhibitor concentration achieving 50% of maximal inhibition), raising concerns about the predictability of clinical transporter-based drug-drug interactions (DDIs) from in vitro data. This Commentary describes complexities of digoxin transport, which involve both uptake and efflux processes. We caution against attributing digoxin transport IC50 specifically to P-glycoprotein (P-gp) or extending this composite uptake/efflux IC50 variability to individual transporters. Clinical digoxin interaction studies should be interpreted as evaluation of digoxin safety, not P-gp DDIs.
Effects of multiple enzyme-substrate interactions in basic units of cellular signal processing
NASA Astrophysics Data System (ADS)
Seaton, D. D.; Krishnan, J.
2012-08-01
Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme-substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme-substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein-protein interactions are important in determining the signalling properties of enzymatic signalling pathways.
Automaticity of phonological and semantic processing during visual word recognition.
Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C
2017-04-01
Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Xu; Wang, Fengshan; Sheng, Juzheng
2016-06-16
Heparan sulfate (HS) is widely distributed in mammalian tissues in the form of HS proteoglycans, which play essential roles in various physiological and pathological processes. In contrast to the template-guided processes involved in the synthesis of DNA and proteins, HS biosynthesis is not believed to involve a template. However, it appears that the final structure of HS chains was strictly regulated. Herein, we report research based hypothesis that two major steps, namely "coding" and "decoding" steps, are involved in the biosynthesis of HS, which strictly regulate its chemical structure and biological activity. The "coding" process in this context is based on the distribution of sulfate moieties on the amino groups of the glucosamine residues in the HS chains. The sulfation of these amine groups is catalyzed by N-deacetylase/N-sulfotransferase, which has four isozymes. The composition and distribution of sulfate groups and iduronic acid residues on the glycan chains of HS are determined by several other modification enzymes, which can recognize these coding sequences (i.e., the "decoding" process). The degree and pattern of the sulfation and epimerization in the HS chains determines the extent of their interactions with several different protein factors, which further influences their biological activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ionization of Atoms by Slow Heavy Particles, Including Dark Matter.
Roberts, B M; Flambaum, V V; Gribakin, G F
2016-01-15
Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times.
Quality Interaction Between Mission Assurance and Project Team Members
NASA Technical Reports Server (NTRS)
Kwong-Fu, Helenann H.; Wilson, Robert K.
2006-01-01
Mission Assurance independent assessments started during the development cycle and continued through post launch operations. In operations, Health and Safety of the Observatory is of utmost importance. Therefore, Mission Assurance must ensure requirements compliance and focus on process improvements required across the operational systems including new/modified products, tools, and procedures. The deployment of the interactive model involves three objectives: Team member Interaction, Good Root Cause Analysis Practices, and Risk Assessment to avoid reoccurrences. In applying this model, we use a metric based measurement process and was found to have the most significant effect, which points to the importance of focuses on a combination of root cause analysis and risk approaches allowing the engineers the ability to prioritize and quantify their corrective actions based on a well-defined set of root cause definitions (i.e. closure criteria for problem reports), success criteria and risk rating definitions.
Kushniruk, Andre W; Borycki, Elizabeth M
2015-01-01
Innovations in healthcare information systems promise to revolutionize and streamline healthcare processes worldwide. However, the complexity of these systems and the need to better understand issues related to human-computer interaction have slowed progress in this area. In this chapter the authors describe their work in using methods adapted from usability engineering, video ethnography and analysis of digital log files for improving our understanding of complex real-world healthcare interactions between humans and technology. The approaches taken are cost-effective and practical and can provide detailed ethnographic data on issues health professionals and consumers encounter while using systems as well as potential safety problems. The work is important in that it can be used in techno-anthropology to characterize complex user interactions with technologies and also to provide feedback into redesign and optimization of improved healthcare information systems.
Plasma effects on the interaction of a comet with Jupiter
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.
1994-01-01
I consider some plasma effects to be expected when the fragments of Comet Shoemaker-Levy 9 crash into Jupiter. Emphasis is put on pre-impact effects, and on the possibility of significant radio emission. It is shown than an ionizing shock will develop at altitudes below about 600 km, and that significant ionization will exist above that altitude. The incoming comet and its surroundings will then represent a rapidly moving conductor in a strong magnetic field and will induce large currents in Jupiter's magnetosphere, similar both qualitatively and quantitatively to a way in which Io interacts with Jupiter's magnetic field and with the plasma of the torus. This process is thought to be involved in the generation of decametric radiation, so that the impact of the comet may also produce such radiation. The power involved in this interaction is estimated to be at least 1/15th of the power due to Io, and its duration to be for 10-20 s before the comet's impact with the surface of Jupiter.
Safety inspections in construction sites: A systems thinking perspective.
Saurin, Tarcisio Abreu
2016-08-01
Although safety inspections carried out by government officers are important for the prevention of accidents, there is little in-depth knowledge on their outcomes and processes leading to these. This research deals with this gap by using systems thinking (ST) as a lens for obtaining insights into safety inspections in construction sites. Thirteen case studies of sites with prohibited works were carried out, discussing how four attributes of ST were used in the inspections. The studies were undertaken over 6 years, and sources of evidence involved participant observation, direct observations, analysis of documents and interviews. Two complementary ways for obtaining insights into inspections, based on ST, were identified: (i) the design of the study itself needs to be in line with ST; and (ii) data collection and analysis should focus on the agents involved in the inspections, the interactions between agents, the constraints and opportunities faced by agents, the outcomes of interactions, and the recommendations for influencing interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metal Toxicity at the Synapse: Presynaptic, Postsynaptic, and Long-Term Effects
Sadiq, Sanah; Ghazala, Zena; Chowdhury, Arnab; Büsselberg, Dietrich
2012-01-01
Metal neurotoxicity is a global health concern. This paper summarizes the evidence for metal interactions with synaptic transmission and synaptic plasticity. Presynaptically metal ions modulate neurotransmitter release through their interaction with synaptic vesicles, ion channels, and the metabolism of neurotransmitters (NT). Many metals (e.g., Pb 2+, Cd 2+, and Hg +) also interact with intracellular signaling pathways. Postsynaptically, processes associated with the binding of NT to their receptors, activation of channels, and degradation of NT are altered by metals. Zn 2+, Pb 2+, Cu 2+, Cd 2+, Ni 2+, Co 2+, Li 3+, Hg +, and methylmercury modulate NMDA, AMPA/kainate, and/or GABA receptors activity. Al 3+, Pb 2+, Cd 2+, and As 2 O 3 also impair synaptic plasticity by targeting molecules such as CaM, PKC, and NOS as well as the transcription machinery involved in the maintenance of synaptic plasticity. The multiple effects of metals might occur simultaneously and are based on the specific metal species, metal concentrations, and the types of neurons involved. PMID:22287959
Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang
2015-01-01
Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507
Tenzer, Stefan; Moro, Albertomaria; Kuharev, Jörg; Francis, Ashwanth Christopher; Vidalino, Laura; Provenzani, Alessandro; Macchi, Paolo
2013-06-07
RALY is a member of the heterogeneous nuclear ribonucleoproteins, a family of RNA-binding proteins generally involved in many processes of mRNA metabolism. No quantitative proteomic analysis of RALY-containing ribonucleoparticles (RNPs) has been performed so far, and the biological role of RALY remains elusive. Here, we present a workflow for the characterization of RALY's interaction partners, termed iBioPQ, that involves in vivo biotinylation of biotin acceptor peptide (BAP)-fused protein in the presence of the prokaryotic biotin holoenzyme synthetase of BirA so that it can be purified using streptavidin-coated magnetic beads, circumventing the need for specific antibodies and providing efficient pulldowns. Protein eluates were subjected to tryptic digestion and identified using data-independent acquisition on an ion-mobility enabled high-resolution nanoUPLC-QTOF system. Using label-free quantification, we identified 143 proteins displaying at least 2-fold difference in pulldown compared to controls. Gene Ontology overrepresentation analysis revealed an enrichment of proteins involved in mRNA metabolism and translational control. Among the most abundant interacting proteins, we confirmed RNA-dependent interactions of RALY with MATR3, PABP1 and ELAVL1. Comparative analysis of pulldowns after RNase treatment revealed a protein-protein interaction of RALY with eIF4AIII, FMRP, and hnRNP-C. Our data show that RALY-containing RNPs are much more heterogeneous than previously hypothesized.
Gene fusion analysis in the battle against the African endemic sleeping sickness.
Trimpalis, Philip; Koumandou, Vassiliki Lila; Pliakou, Evangelia; Anagnou, Nicholas P; Kossida, Sophia
2013-01-01
The protozoan Trypanosoma brucei causes African Trypanosomiasis or sleeping sickness in humans, which can be lethal if untreated. Most available pharmacological treatments for the disease have severe side-effects. The purpose of this analysis was to detect novel protein-protein interactions (PPIs), vital for the parasite, which could lead to the development of drugs against this disease to block the specific interactions. In this work, the Domain Fusion Analysis (Rosetta Stone method) was used to identify novel PPIs, by comparing T. brucei to 19 organisms covering all major lineages of the tree of life. Overall, 49 possible protein-protein interactions were detected, and classified based on (a) statistical significance (BLAST e-value, domain length etc.), (b) their involvement in crucial metabolic pathways, and (c) their evolutionary history, particularly focusing on whether a protein pair is split in T. brucei and fused in the human host. We also evaluated fusion events including hypothetical proteins, and suggest a possible molecular function or involvement in a certain biological process. This work has produced valuable results which could be further studied through structural biology or other experimental approaches so as to validate the protein-protein interactions proposed here. The evolutionary analysis of the proteins involved showed that, gene fusion or gene fission events can happen in all organisms, while some protein domains are more prone to fusion and fission events and present complex evolutionary patterns.
The Efficiency of Different Salts to Screen Charge Interactions in Proteins: A Hofmeister Effect?
Perez-Jimenez, Raul; Godoy-Ruiz, Raquel; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.
2004-01-01
Understanding the screening by salts of charge-charge interactions in proteins is important for at least two reasons: a), screening by intracellular salt concentration may modulate the stability and interactions of proteins in vivo; and b), the in vitro experimental estimation of the contributions from charge-charge interactions to molecular processes involving proteins is generally carried out on the basis of the salt effect on process energetics, under the assumption that these interactions are screened out by moderate salt concentrations. Here, we explore experimentally the extent to which the screening efficiency depends on the nature of the salt. To this end, we have carried out an energetic characterization of the effect of NaCl (a nondenaturing salt), guanidinium chloride (a denaturing salt), and guanidinium thiocyanate (a stronger denaturant) on the stability of the wild-type form and a T14K variant of Escherichia coli thioredoxin. Our results suggest that the efficiency of different salts to screen charge-charge interactions correlates with their denaturing strength and with the position of the constituent ions in the Hofmeister rankings. This result appears consistent with the plausible relation of the Hofmeister rankings with the extent of solute accumulation/exclusion from protein surfaces. PMID:15041679
Social regulation of emotion: messy layers
Kappas, Arvid
2013-01-01
Emotions are evolved systems of intra- and interpersonal processes that are regulatory in nature, dealing mostly with issues of personal or social concern. They regulate social interaction and in extension, the social sphere. In turn, processes in the social sphere regulate emotions of individuals and groups. In other words, intrapersonal processes project in the interpersonal space, and inversely, interpersonal experiences deeply influence intrapersonal processes. Thus, I argue that the concepts of emotion generation and regulation should not be artificially separated. Similarly, interpersonal emotions should not be reduced to interacting systems of intraindividual processes. Instead, we can consider emotions at different social levels, ranging from dyads to large scale e-communities. The interaction between these levels is complex and does not only involve influences from one level to the next. In this sense the levels of emotion/regulation are messy and a challenge for empirical study. In this article, I discuss the concepts of emotions and regulation at different intra- and interpersonal levels. I extend the concept of auto-regulation of emotions (Kappas, 2008, 2011a,b) to social processes. Furthermore, I argue for the necessity of including mediated communication, particularly in cyberspace in contemporary models of emotion/regulation. Lastly, I suggest the use of concepts from systems dynamics and complex systems to tackle the challenge of the “messy layers.” PMID:23424049
Auditory Scene Analysis: An Attention Perspective
2017-01-01
Purpose This review article provides a new perspective on the role of attention in auditory scene analysis. Method A framework for understanding how attention interacts with stimulus-driven processes to facilitate task goals is presented. Previously reported data obtained through behavioral and electrophysiological measures in adults with normal hearing are summarized to demonstrate attention effects on auditory perception—from passive processes that organize unattended input to attention effects that act at different levels of the system. Data will show that attention can sharpen stream organization toward behavioral goals, identify auditory events obscured by noise, and limit passive processing capacity. Conclusions A model of attention is provided that illustrates how the auditory system performs multilevel analyses that involve interactions between stimulus-driven input and top-down processes. Overall, these studies show that (a) stream segregation occurs automatically and sets the basis for auditory event formation; (b) attention interacts with automatic processing to facilitate task goals; and (c) information about unattended sounds is not lost when selecting one organization over another. Our results support a neural model that allows multiple sound organizations to be held in memory and accessed simultaneously through a balance of automatic and task-specific processes, allowing flexibility for navigating noisy environments with competing sound sources. Presentation Video http://cred.pubs.asha.org/article.aspx?articleid=2601618 PMID:29049599
Cauberghe, Verolien; De Pelsmacker, Patrick
2008-02-01
In a sample of 281 respondents, the effect of a noninteractive and a medium-interactive television program on recall and brand attitudes for low- and high-involvement products advertised in banners during these programs was investigated. Medium-interactive programs resulted in less product and brand recall and recognition of brands in embedded banner advertisements, but generated more positive brand attitudes than noninteractive programs. These effects were more outspoken for a high-involvement product than for a low-involvement product. The impact of perceived program interactivity on brand attitude is fully mediated program valence and involvement for low-involvement products, but not for high-involvement products, for which perceived program interactivity had a direct impact on brand attitude.
Representing biophysical landscape interactions in soil models by bridging disciplines and scales.
NASA Astrophysics Data System (ADS)
van der Ploeg, M. J.; Carranza, C.; Teixeira da Silva, R.; te Brake, B.; Baartman, J.; Robinson, D.
2017-12-01
The combination of climate change, population growth and soil threats including carbon loss, biodiversity decline and erosion, increasingly confront the global community (Schwilch et al., 2016). One major challenge in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and resulting economic consequences, is that it is an interdisciplinary field (Pelletier et al., 2012). Less stringent scientific disciplinary boundaries are therefore important (Liu et al., 2007), because as a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions. This is especially true in the interaction between a landscape's physical and biological processes (van der Ploeg et al. 2012). Biophysical landscape interactions are those biotic and abiotic processes in a landscape that have an influence on the developments within and evolution of a landscape. An important aspect in biophysical landscape interactions is the differences in scale related to the various processes that play a role in these systems. Moreover, the interplay between the physical landscape and the occurring vegetation, which often co-evolve, and the resulting heterogeneity and emerging patterns are the reason why it is so challenging to establish a theoretical basis to describe biophysical processes in landscapes (e.g. te Brake et al. 2013, Robinson et al. 2016). Another complicating factor is the response of vegetation to changing environmental conditions, including a possible, and often unknown, time-lag (e.g. Metzger et al., 2009). An integrative description for modelling biophysical interactions has been a long standing goal in soil science (Vereecken et al., 2016). We need the development of soil models that are more focused on networks, connectivity and feedbacks incorporating the most important aspects of our detailed mechanistic modelling (Paola & Leeder, 2011). Additionally, remote sensing measurement techniques facilitate non-interfering observation of biophysical interactions on a landscape scale. A joint effort to connect Earth's (sub)surface processes by a combination of innovative big data-assimilation, measurement and modelling techniques will enable the scientific community to accurately address vital issues.
Investigation of the Josephin Domain protein-protein interaction by molecular dynamics.
Deriu, Marco A; Grasso, Gianvito; Licandro, Ginevra; Danani, Andrea; Gallo, Diego; Tuszynski, Jack A; Morbiducci, Umberto
2014-01-01
Spinocerebellar ataxia (SCA) 3, the most common form of SCA, is a neurodegenerative rare disease characterized by polyglutamine tract expansion and self-assembly of Ataxin3 (At3) misfolded proteins into highly organized fibrillar aggregates. The At3 N-terminal Josephin Domain (JD) has been suggested as being responsible for mediating the initial phase of the At3 double-step fibrillogenesis. Several issues concerning the residues involved in the JD's aggregation and, more generally, the JD clumping mechanism have not been clarified yet. In this paper we present an investigation focusing on the JD protein-protein interaction by means of molecular modeling. Our results suggest possible aminoacids involved in JD contact together with local and non-local effects following JD dimerization. Surprisingly, JD conformational changes following the binding may involve ubiquitin binding sites and hairpin region even though they do not pertain to the JD interaction surfaces. Moreover, the JD binding event has been found to alter the hairpin open-like conformation toward a closed-like arrangement over the simulated timescale. Finally, our results suggest that the JD aggregation might be a multi-step process, with an initial fast JD-JD binding mainly driven by Arg101, followed by slower structural global rearrangements involving the exposure to the solvent of Leu84-Trp87, which might play a role in a second step of JD aggregation.
Efficient simulation of press hardening process through integrated structural and CFD analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek
Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integratedmore » commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.« less
A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base
NASA Technical Reports Server (NTRS)
Kautzmann, Frank N., III
1988-01-01
Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.
Vincent, Christopher James; Blandford, Ann
2017-03-01
We present findings of a UK study into how those involved in purchasing interactive medical devices go about evaluating usability, the challenges that arise, and opportunities for improvement. The study focused on procurement of infusion devices because these are used by various professionals across healthcare. A semi-structured interview study was carried out involving a range of stakeholders (20 in total) involved in or impacted by medical device procurement. Data was analysed using thematic analysis, a qualitative method designed to support the identification, analysis and reporting of patterns. In principle, health service purchasing was found to accommodate consideration of equipment usability. In practice, the evaluation process was driven primarily by engineering standards; assessment of local needs did not accommodate substantive assessment of usability; and choice was limited by the availability of equipment on the marketplace. We discuss ways in which purchasing could be improved through techniques that account for social circumstances. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Ling; Wang, Zhouli; Yuan, Yahong; Cai, Rui; Niu, Chen; Yue, Tianli
2015-01-01
The purpose of this study was to identify the key factors involved in patulin adsorption by heat-inactivated lactic acid bacteria (LAB) cells. For preventing bacterial contamination, a sterilization process was involved in the adsorption process. The effects of various physical, chemical, and enzymatic pre-treatments, simultaneous treatments, and post-treatments on the patulin adsorption performances of six LAB strains were evaluated. The pre-treated cells were characterized by scanning electron microscopy (SEM). Results showed that the removal of patulin by viable cells was mainly based on adsorption or degradation, depending on the specific strain. The adsorption abilities were widely increased by NaOH and esterification pre-treatments, and reduced by trypsin, lipase, iodate, and periodate pre-treatments. Additionally, the adsorption abilities were almost maintained at pH 2.2-4.0, and enhanced significantly at pH 4.0-6.0. The effects of sodium and magnesium ions on the adsorption abilities at pH 4 were slight and strain-specific. A lower proportion of patulin was released from the strain with higher adsorption ability. Analyses revealed that the physical structure of peptidoglycan was not a principal factor. Vicinal OH and carboxyl groups were not involved in patulin adsorption, while alkaline amino acids, thiol and ester compounds were important for patulin adsorption. Additionally, besides hydrophobic interaction, electrostatic interaction also participated in patulin adsorption, which was enhanced with the increase in pH (4.0-6.0).
A protein domain-based interactome network for C. elegans early embryogenesis
Boxem, Mike; Maliga, Zoltan; Klitgord, Niels; Li, Na; Lemmens, Irma; Mana, Miyeko; de Lichtervelde, Lorenzo; Mul, Joram D.; van de Peut, Diederik; Devos, Maxime; Simonis, Nicolas; Yildirim, Muhammed A.; Cokol, Murat; Kao, Huey-Ling; de Smet, Anne-Sophie; Wang, Haidong; Schlaitz, Anne-Lore; Hao, Tong; Milstein, Stuart; Fan, Changyu; Tipsword, Mike; Drew, Kevin; Galli, Matilde; Rhrissorrakrai, Kahn; Drechsel, David; Koller, Daphne; Roth, Frederick P.; Iakoucheva, Lilia M.; Dunker, A. Keith; Bonneau, Richard; Gunsalus, Kristin C.; Hill, David E.; Piano, Fabio; Tavernier, Jan; van den Heuvel, Sander; Hyman, Anthony A.; Vidal, Marc
2008-01-01
Summary Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or “interactome” networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed new insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms. PMID:18692475
Sources of Interactional Problems in a Survey of Racial/Ethnic Discrimination
Johnson, Timothy P.; Shariff-Marco, Salma; Willis, Gordon; Cho, Young Ik; Breen, Nancy; Gee, Gilbert C.; Krieger, Nancy; Grant, David; Alegria, Margarita; Mays, Vickie M.; Williams, David R.; Landrine, Hope; Liu, Benmei; Reeve, Bryce B.; Takeuchi, David; Ponce, Ninez A.
2014-01-01
Cross-cultural variability in respondent processing of survey questions may bias results from multiethnic samples. We analyzed behavior codes, which identify difficulties in the interactions of respondents and interviewers, from a discrimination module contained within a field test of the 2007 California Health Interview Survey. In all, 553 (English) telephone interviews yielded 13,999 interactions involving 22 items. Multilevel logistic regression modeling revealed that respondent age and several item characteristics (response format, customized questions, length, and first item with new response format), but not race/ethnicity, were associated with interactional problems. These findings suggest that item function within a multi-cultural, albeit English language, survey may be largely influenced by question features, as opposed to respondent characteristics such as race/ethnicity. PMID:26166949
Mutations in actin used for structural studies partially disrupt β-thymosin/WH2 domains interaction.
Deville, Célia; Girard-Blanc, Christine; Assrir, Nadine; Nhiri, Naïma; Jacquet, Eric; Bontems, François; Renault, Louis; Petres, Stéphane; van Heijenoort, Carine
2016-10-01
Understanding the structural basis of actin cytoskeleton remodeling requires stabilization of actin monomers, oligomers, and filaments in complex with partner proteins, using various biochemical strategies. Here, we report a dramatic destabilization of the dynamic interaction with a model β-thymosin/WH2 domain induced by mutations in actin. This result underlines that mutant actins should be used with prudence to characterize interactions with intrinsically disordered partners as destabilization of dynamic interactions, although identifiable by NMR, may be invisible to other structural techniques. It also highlights how both β-thymosin/WH2 domains and actin tune local structure and dynamics in regulatory processes involving intrinsically disordered domains. © 2016 Federation of European Biochemical Societies.
Bayesian networks and information theory for audio-visual perception modeling.
Besson, Patricia; Richiardi, Jonas; Bourdin, Christophe; Bringoux, Lionel; Mestre, Daniel R; Vercher, Jean-Louis
2010-09-01
Thanks to their different senses, human observers acquire multiple information coming from their environment. Complex cross-modal interactions occur during this perceptual process. This article proposes a framework to analyze and model these interactions through a rigorous and systematic data-driven process. This requires considering the general relationships between the physical events or factors involved in the process, not only in quantitative terms, but also in term of the influence of one factor on another. We use tools from information theory and probabilistic reasoning to derive relationships between the random variables of interest, where the central notion is that of conditional independence. Using mutual information analysis to guide the model elicitation process, a probabilistic causal model encoded as a Bayesian network is obtained. We exemplify the method by using data collected in an audio-visual localization task for human subjects, and we show that it yields a well-motivated model with good predictive ability. The model elicitation process offers new prospects for the investigation of the cognitive mechanisms of multisensory perception.
Haeffel, Gerald J; Abramson, Lyn Y; Brazy, Paige C; Shah, James Y; Teachman, Bethany A; Nosek, Brian A
2007-06-01
Two studies were conducted to test a dual-process theory of cognitive vulnerability to depression. According to this theory, implicit and explicit cognitive processes have differential effects on depressive reactions to stressful life events. Implicit processes are hypothesized to be critical in determining an individual's immediate affective reaction to stress whereas explicit cognitions are thought to be more involved in long-term depressive reactions. Consistent with hypotheses, the results of study 1 (cross-sectional; N=237) showed that implicit, but not explicit, cognitions predicted immediate affective reactions to a lab stressor. Study 2 (longitudinal; N=251) also supported the dual-process model of cognitive vulnerability to depression. Results showed that both the implicit and explicit measures interacted with life stress to predict prospective changes in depressive symptoms, respectively. However, when both implicit and explicit predictors were entered into a regression equation simultaneously, only the explicit measure interacted with stress to remain a unique predictor of depressive symptoms over the five-week prospective interval.
Interactions of tectonic, igneous, and hydraulic processes in the North Tharsis Region of Mars
NASA Technical Reports Server (NTRS)
Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.; Plescia, J. B.
1991-01-01
Recent work on the north Tharsis of Mars has revealed a complex geologic history involving volcanism, tectonism, flooding, and mass wasting. Our detailed photogeologic analysis of this region found many previously unreported volcanic vents, volcaniclastic flows, irregular cracks, and minor pit chains; additional evidence that volcanic tectonic processes dominated this region throughout Martian geologic time; and the local involvement of these processes with surface and near surface water. Also, photoclinometric profiles were obtained within the region of troughs, simple grabens, and pit chains, as well as average spacings of pits along pit chains. These data were used together with techniques to estimate depths of crustal mechanical discontinuities that may have controlled the development of these features. In turn, such discontinuities may be controlled by stratigraphy, presence of water or ice, or chemical cementation.
Liu, Long; Tian, Jiao; Nan, Hao; Tian, Mengmeng; Li, Yuan; Xu, Xiaodong; Huang, Baicheng; Zhou, Enmin; Hiscox, Julian A; Chen, Hongying
2016-06-01
Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis. It is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of longer viral sgmRNAs and gRNA. Our data here provide some new insights into the discontinuous to continuous extension of PRRSV RNA synthesis and also offer a new potential anti-PRRSV strategy targeting the N-Nsp9 and/or N-DHX9 interaction. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Zendejas, Gerardo; Chiasson, Mike
This paper will propose and explore a method to enhance focal actors' abilities to enroll and control the many social and technical components interacting during the initiation, production, and diffusion of innovations. The reassembling and stabilizing of such components is the challenging goal of the focal actors involved in these processes. To address this possibility, a healthcare project involving the initiation, production, and diffusion of an IT-based innovation will be influenced by the researcher, using concepts from actor network theory (ANT), within an action research methodology (ARM). The experiences using this method, and the nature of enrolment and translation during its use, will highlight if and how ANT can provide a problem-solving method to help assemble the social and technical actants involved in the diffusion of an innovation. Finally, the paper will discuss the challenges and benefits of implementing such methods to attain widespread diffusion.
Interaction before Conflict and Conflict Resolution in Pre-School Boys with Language Impairment
ERIC Educational Resources Information Center
Horowitz, Laura; Jansson, Liselotte; Ljungberg, Tomas; Hedenbro, Monica
2006-01-01
Background: Children with language impairment (LI) experience social difficulties, including conflict management. The factors involved in peer-conflict progression in pre-school children with LI, and which of these processes may differ from pre-school children with typical language development (TL), is therefore examined. Aims: To describe the…
ERIC Educational Resources Information Center
Meier, Daniel R.; Britsch, Susan J.
Preschool can be an opportunity to emphasize literacy teaching and learning and to develop the role of "literacy as community," rather than being only kindergarten preparation. The results of two studies view children's literacy development as a dynamic, developmental process involving language, thought, and social interaction. In…
Research in Reading in English as a Second Language.
ERIC Educational Resources Information Center
Devine, Joanne, Ed.; And Others
This collection of essays, most followed by comments, reflect some aspect of the general theme: reading is a multifacted, complex, interactive process that involves many subskills and many types of reader, as well as text, variables. Papers include: "The Eclectic Synergy of Methods of Reading Research" (Ulla Connor); "A View of…
ERIC Educational Resources Information Center
Yesiltas, Erkan
2016-01-01
Web pedagogical content knowledge generally takes pedagogical knowledge, content knowledge, and Web knowledge as basis. It is a structure emerging through the interaction of these three components. Content knowledge refers to knowledge of subjects to be taught. Pedagogical knowledge involves knowledge of process, implementation, learning methods,…
Learning Environments in Children's Museums: Aesthetics, Environmental Preference and Creativity.
ERIC Educational Resources Information Center
Lackney, Jeffery A.
This paper discusses environmental preference, particularly related to the design of children's museums. It explains that preference for an environment leads to motivation to interact with the environment, which leads to learning. It lays out several design principles: (1) involve children in the process of children's museum design in a way that…
L2 Willingness to Communicate (WTC) and International Posture in the Polish Educational Context
ERIC Educational Resources Information Center
Mystkowska-Wiertelak, Anna; Pietrzykowska, Agnieszka
2011-01-01
Speaking, the language skill whose mastering appears to be the ultimate aim of every attempt at learning a foreign language, constitutes a formidable challenge. Apart from involving the online interaction of complex processes of conceptualization, formulation, articulation and monitoring (Levelt, 1989), it appears prone to numerous psychological…
Latino Youth's Out-of-School Math and Science Experiences: Impact on Teacher Candidates
ERIC Educational Resources Information Center
Diaz, Maria E.; Bussert-Webb, Kathy
2017-01-01
This qualitative study examines the learning and interaction processes between Latino/a teacher candidates (TCs) and youth during a community service-learning program involving science and math. Knowing and affirming nondominant youth's strengths are essential from funds of knowledge and Third Space perspectives. Participants were 11 TCs and their…
The Vietnam Era Veteran: Challenge for Change. Administrator's Seminars on Vietnam Era Veterans.
ERIC Educational Resources Information Center
Veterans Administration, Washington, DC.
This report covers 5 regional seminars designed to increase the Veterans Administration understanding of Vietnam Era veterans. The process used was one of involvement and interaction of Veterans Administration officials with returning Vietnam Era veterans and other young people. After the traditional introductions and keynote remarks, there was a…
Preservice Teachers' Instructional Actions To Support Meaningful Interaction with Text.
ERIC Educational Resources Information Center
Dugan, JoAnn
This study investigated the nature of preservice teachers' instructional actions during Directed Reading-Teaching Activities (DR-TA) to involve students in reading and enhance their understanding of text, noting scaffolding processes used to engage children in making sense of text. Twenty-eight preservice teachers who were first-semester K-8…
Social Perception Training: Improving Social Competence by Reducing Cognitive Distortions
ERIC Educational Resources Information Center
Finne, Johannes N.; Svartdal, Frode
2017-01-01
Social Perception Training (SPT) is a program focused on changing the perceptual and cognitive processes involved in suboptimal social interactions. It is administered with whole class of pupils over ten weeks. No previous studies have evaluated its efficacy. The present study investigated the outcome benefit of the program in 18 primary and…
Is This a Meaningful Learning Experience? Interactive Critical Self-Inquiry as Investigation
ERIC Educational Resources Information Center
Allard, Andrea C.; Gallant, Andrea
2012-01-01
What conditions enable educators to engage in meaningful learning experiences with peers and beginning practitioners? This article documents a self-study on our actions-in-practice in a peer mentoring project. The investigation involved an iterative process to improve our knowledge as teacher educators, reflective practitioners, and researchers.…
ERIC Educational Resources Information Center
ReMine, Scott
2005-01-01
After searching for an innovative and interactive project that would not only involve the students, but would also be a benefit to the scientific community and to the natural world, the author created an exotic frog nursery-a long-term project that approached science not as a subject full of categories and definitions, but as an ongoing process in…
ERIC Educational Resources Information Center
Caceffo, Ricardo; Azevedo, Rodolfo
2014-01-01
The constructivist theory indicates that knowledge is not something finished and complete. However, the individuals must construct it through the interaction with the physical and social environment. The Active Learning is a methodology designed to support the constructivism through the involvement of students in their learning process, allowing…
Liquid Spray Characterization in Flow Fields with Centripetal Acceleration
2014-03-27
25 2.4.1 Atomization of Liquid Jets ...volumetric heat release rates, easier light-up, wider burning range, and lower exhaust pollutant emissions [11]. 26 2.4.1 Atomization of Liquid Jets ...Atomization involves the interaction of consolidating and disruptive forces acting on a jet of liquid . The process of atomization can be further
Gene expression in the tanoak-Phytophthora ramorum interaction
Katherine J. Hayden; Matteo Garbelotto; Hardeep Fai; Brian Knaus; Richard Cronn; Jessica W. Wright
2012-01-01
Disease processes are dynamic, involving a suite of gene expression changes in both the host and the pathogen, all within a single tissue. As such, they lend themselves well to transcriptomic analysis. Here we focus on a generalist invasive pathogen (Phytophthora ramorum) and its most susceptible California Floristic Province native host, tanoak (...
Aromatase is a member of the cytochrome P450 superfamily responsible for a key step in the biosynthesis of estrogens. As estrogens are involved in the control of important reproduction-related processes, including sexual differentiation and maturation, aromatase is a potential ta...
Tales of Tutors: The Role of Narrative in Language Learning and Service-Learning
ERIC Educational Resources Information Center
Polansky, Susan G.; Andrianoff, Timothy; Bernard, Jaclyn B.; Flores, Ana; Gardocki, Isabel A.; Handerhan, Ryan J.; Park, Jihea; Young, Lisa
2010-01-01
This article examines the role of narrative in the learning process of language tutors in a university service-learning course involving collaboration between an institution of higher learning and public high schools in an urban setting. The tutors' personal narrative reflections offer multiple perspectives on interactions of tutors with high…
Blogging: Promoting Learner Autonomy and Intercultural Competence through Study Abroad
ERIC Educational Resources Information Center
Lee, Lina
2011-01-01
The current study explores closely how using a combined modalities of asynchronous computer-mediated communication (CMC) via blogs and face-to-face (FTF) interaction through ethnographic interviews with native speakers (L1s) supports autonomous learning as the result of reflective and social processes. The study involves 16 American undergraduate…
Exploring Relationships among TPACK Constructs and ICT Achievement among Trainee Teachers
ERIC Educational Resources Information Center
Khine, Myint Swe; Ali, Nagla; Afari, Ernest
2017-01-01
Teaching in the classroom today can no longer sustain the interest of students and be effective if the process involves traditional approach--teachers as sole provider of content information. In recent years technology has played a significant role in transforming education to more progressive and interactive activities. However the use of…
The Human Dimensions of Riparian Areas: Implications for Management and Planning
John F. Dwyer; Pamela J. Jakes; Susan C. Barro
2000-01-01
This chapter introduces an important dimension in building our understanding of how riparian systems function -- people. The human dimensions of natural resource management concerns how people value and interact with these ecosystems, their processes and functions. People as users, managers, owners, or involved citizens are integral components of riparian ecosystems...
ERIC Educational Resources Information Center
Krueger, Mark
2009-01-01
Child and youth care is a process of human interaction in which knowing, doing, and being in are interconnected. People learn as much as they can about development, program planning, structure, and techniques, but nothing works very well without the capacity to be present and involved in the lives of youth, with curiosity and sensitivity to the…
Mineralogical signatures of stone formation mechanisms.
Gower, Laurie B; Amos, Fairland F; Khan, Saeed R
2010-08-01
The mechanisms involved in biomineralization are modulated through interactions with organic matrix. In the case of stone formation, the role of the organic macromolecules in the complex urinary environment is not clear, but the presence of mineralogical 'signatures' suggests that some aspects of stone formation may result from a non-classical crystallization process that is induced by acidic proteins. An amorphous precursor has been detected in many biologically controlled mineralization reactions, which is thought to be regulated by non-specific interactions between soluble acidic proteins and mineral ions. Using in vitro model systems, we find that a liquid-phase amorphous mineral precursor induced by acidic polypeptides can lead to crystal textures that resemble those found in Randall's plaque and kidney stones. This polymer-induced liquid-precursor process leads to agglomerates of coalesced mineral spherules, dense-packed spherulites with concentric laminations, mineral coatings and 'cements', and collagen-associated mineralization. Through the use of in vitro model systems, the mechanisms involved in the formation of these crystallographic features may be resolved, enhancing our understanding of the potential role(s) that proteins play in stone formation.
Savriama, Yoland; Jernvall, Jukka
2018-01-01
From gastrulation to late organogenesis animal development involves many genetic and bio-mechanical interactions between epithelial and mesenchymal tissues. Ectodermal organs, such as hairs, feathers and teeth are well studied examples of organs whose development is based on epithelial-mesenchymal interactions. These develop from a similar primordium through an epithelial folding and its interaction with the mesenchyme. Despite extensive knowledge on the molecular pathways involved, little is known about the role of bio-mechanical processes in the morphogenesis of these organs. We propose a simple computational model for the biomechanics of one such organ, the tooth, and contrast its predictions against cell-tracking experiments, mechanical relaxation experiments and the observed tooth shape changes over developmental time. We found that two biomechanical processes, differential tissue growth and differential cell adhesion, were enough, in the model, for the development of the 3D morphology of the early tooth germ. This was largely determined by the length and direction of growth of the cervical loops, lateral folds of the enamel epithelium. The formation of these cervical loops was found to require accelerated epithelial growth relative to other tissues and their direction of growth depended on specific differential adhesion between the three tooth tissues. These two processes and geometrical constraints in early tooth bud also explained the shape asymmetry between the lateral cervical loops and those forming in the anterior and posterior of the tooth. By performing mechanical perturbations ex vivo and in silico we inferred the distribution and direction of tensile stresses in the mesenchyme that restricted cervical loop lateral growth and forced them to grow downwards. Overall our study suggests detailed quantitative explanations for how bio-mechanical processes lead to specific morphological 3D changes over developmental time. PMID:29481561
[Brain Organization of the Preparation for Visual Recognition in Preadolescent Children].
Farber, D A; Kurganskii, A V; Petrenko, N E
2015-01-01
The brain organization of the process of preparation for the perception of incomplete images fragmented to different extents. The functional connections of ventrolateral and dorsoventral cortical zones with other zones in 10-11-year-old and 11-12-year-old children were studied at three successive stages of the preparation for the perception of incomplete images. These data were compared with those obtained for adults. In order to reveal the effect of preparatory processes on the image recognition, we also analyzed the regional event-related potentials. In adults, the functional interaction between dorsolateral and ventrolateral prefrontal cortex and other cortical zones of the right hemisphere was found to be enhanced at the stage of waiting for not-yet-recognizable image, while in the left hemisphere the links became stronger shortly before the successful recognition of a stimulus. In children the stage-related changes in functional interactions are similar in both hemispheres, with peak of interaction activity.at the stage preceding the successful recognition. It was found that in 11-12-year-old children the ventrolateral cortex is involved in both preparatory stage and recognition processes to a smaller extent as compared with adults and 10-11-year-old children. At the same time, the group of 11-12-year-old children had more mature pattern of the dorsolateral cortex involvement, which provided more effective recognition of incomplete images in this group as compared with 10-11-year-old children. It is suggested that the features of the brain organization of visual recognition and preceding preparatory processes in 11-12-year-old children are caused by multidirectional effects of sex hormones on the functioning of different zones of the prefrontal cortex at early stages of sexual maturation.
Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions
Roy, Sushmita; Martinez, Diego; Platero, Harriett; Lane, Terran; Werner-Washburne, Margaret
2009-01-01
Background Computational prediction of protein interactions typically use protein domains as classifier features because they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid composition (AAC) for protein interaction prediction. This simple feature, which is based on normalized counts of single or pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of domain information. Results AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized or participated in the same processes. Our high confidence interaction network included both well-studied and uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the uncharacterized proteins. Conclusion AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of interaction, but which is not necessarily restricted to domains. PMID:19936254
New strategy for protein interactions and application to structure-based drug design
NASA Astrophysics Data System (ADS)
Zou, Xiaoqin
One of the greatest challenges in computational biophysics is to predict interactions between biological molecules, which play critical roles in biological processes and rational design of therapeutic drugs. Biomolecular interactions involve delicate interplay between multiple interactions, including electrostatic interactions, van der Waals interactions, solvent effect, and conformational entropic effect. Accurate determination of these complex and subtle interactions is challenging. Moreover, a biological molecule such as a protein usually consists of thousands of atoms, and thus occupies a huge conformational space. The large degrees of freedom pose further challenges for accurate prediction of biomolecular interactions. Here, I will present our development of physics-based theory and computational modeling on protein interactions with other molecules. The major strategy is to extract microscopic energetics from the information embedded in the experimentally-determined structures of protein complexes. I will also present applications of the methods to structure-based therapeutic design. Supported by NSF CAREER Award DBI-0953839, NIH R01GM109980, and the American Heart Association (Midwest Affiliate) [13GRNT16990076].
Wallqvist, Anders; Wang, Hao; Zavaljevski, Nela; Memišević, Vesna; Kwon, Keehwan; Pieper, Rembert; Rajagopala, Seesandra V; Reifman, Jaques
2017-01-01
Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.
Theory of molecular rate processes in the presence of intense laser radiation
NASA Technical Reports Server (NTRS)
George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.
1979-01-01
The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.
Development of cognitive and affective control networks and decision making.
Kar, Bhoomika R; Vijay, Nivita; Mishra, Shreyasi
2013-01-01
Cognitive control and decision making are two important research areas in the realm of higher-order cognition. Control processes such as interference control and monitoring in cognitive and affective contexts have been found to influence the process of decision making. Development of control processes follows a gradual growth pattern associated with the prolonged maturation of underlying neural circuits including the lateral prefrontal cortex, anterior cingulate, and the medial prefrontal cortex. These circuits are also involved in the control of processes that influences decision making, particularly with respect to choice behavior. Developmental studies on affective control have shown distinct patterns of brain activity with adolescents showing greater activation of amygdala whereas adults showing greater activity in ventral prefrontal cortex. Conflict detection, monitoring, and adaptation involve anticipation and subsequent performance adjustments which are also critical to complex decision making. We discuss the gradual developmental patterns observed in two of our studies on conflict monitoring and adaptation in affective and nonaffective contexts. Findings of these studies indicate the need to look at the differences in the effects of the development of cognitive and affective control on decision making in children and particularly adolescents. Neuroimaging studies have shown the involvement of separable neural networks for cognitive (medial prefrontal cortex and anterior cingulate) and affective control (amygdala, ventral medial prefrontal cortex) shows that one system can affect the other also at the neural level. Hence, an understanding of the interaction and balance between the cognitive and affective brain networks may be crucial for self-regulation and decision making during the developmental period, particularly late childhood and adolescence. The chapter highlights the need for empirical investigation on the interaction between the different aspects of cognitive control and decision making from a developmental perspective. Copyright © 2013 Elsevier B.V. All rights reserved.
Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.
Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi
2017-07-01
Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.
Different levels of learning interact to shape the congruency sequence effect.
Weissman, Daniel H; Hawks, Zoë W; Egner, Tobias
2016-04-01
The congruency effect in distracter interference tasks is often reduced after incongruent relative to congruent trials. Moreover, this congruency sequence effect (CSE) is influenced by learning related to concrete stimulus and response features as well as by learning related to abstract cognitive control processes. There is an ongoing debate, however, over whether interactions between these learning processes are best explained by an episodic retrieval account, an adaptation by binding account, or a cognitive efficiency account of the CSE. To make this distinction, we orthogonally manipulated the expression of these learning processes in a novel factorial design involving the prime-probe arrow task. In Experiment 1, these processes interacted in an over-additive fashion to influence CSE magnitude. In Experiment 2, we replicated this interaction while showing it was not driven by conditional differences in the size of the congruency effect. In Experiment 3, we ruled out an alternative account of this interaction as reflecting conditional differences in learning related to concrete stimulus and response features. These findings support an episodic retrieval account of the CSE, in which repeating a stimulus feature from the previous trial facilitates the retrieval and use of previous-trial control parameters, thereby boosting control in the current trial. In contrast, they do not fit with (a) an adaptation by binding account, in which CSE magnitude is directly related to the size of the congruency effect, or (b) a cognitive efficiency account, in which costly control processes are recruited only when behavioral adjustments cannot be mediated by low-level associative mechanisms. (c) 2016 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Goldberg, M.
1982-01-01
NASA's Eastern Regional Remote Sensing Applications Center (ERRSAC) has recognized the need to accommodate spatial analysis techniques in its remote sensing technology transfer program. A computerized Geographic Information System to incorporate remotely sensed data, specifically Landsat, with other relevant data was considered a realistic approach to address a given resource problem. Questions arose concerning the selection of a suitable available software system to demonstrate, train, and undertake demonstration projects with ERRSAC's user community. The very specific requirements for such a system are discussed. The solution found involved the addition of geographic information processing functions to the Interactive Digital Image Manipulation System (IDIMS). Details regarding the functions of the new integrated system are examined along with the characteristics of the software.
8(th) Symposium on Hemostasis: Translational and Basic Science Discoveries.
Margaritis, Paris; Key, Nigel S
2016-05-01
It has been 14 years since the first symposium on hemostasis at UNC Chapel Hill that focused primarily on the tissue factor (TF) and Factor VIIa (FVIIa) biology, biochemistry and translational work for the treatment of bleeding. Concepts, mechanistic data and therapeutic agents have since emerged that permeate not only aspects of the TF and FVIIa functions, but also broader processes in hemostasis and thrombosis. These processes involve circulating proteins, receptors, cells and cellular components that interact within the coagulation system as well as with additional systems that are dysregulated in disorders seemingly unrelated to bleeding/thrombosis. The reviews in this symposium provide the research background to understand such interactions and integrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Future Gamma-Ray Observations of Pulsars and their Environments
NASA Technical Reports Server (NTRS)
Thompson, David J.
2006-01-01
Pulsars and pulsar wind nebulae seen at gamma-ray energies offer insight into particle acceleration to very high energies under extreme conditions. Pulsed emission provides information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars, while the pulsar wind nebulae yield information about high-energy particles interacting with their surroundings. During the next decade, a number of new and expanded gamma-ray facilities will become available for pulsar studies, including Astro-rivelatore Gamma a Immagini LEggero (AGILE) and Gamma-ray Large Area Space Telescope (GLAST) in space and a number of higher-energy ground-based systems. This review describes the capabilities of such observatories to answer some of the open questions about the highest-energy processes involving neutron stars.
Khazan, Inna; McHale, James P; Decourcey, Wendy
2008-01-01
Prior research has indicated that expectant parents overestimate the extent to which fathers will take part in the "work" of parenting, with mothers often becoming disenchanted when these expectations are violated following the baby's arrival. In this study, we examine the role of violated wishes concerning childcare involvement in accounting for variability in maternal and paternal marital satisfaction, and in early coparenting behavior as assessed during family-interaction sessions. The results indicate possible negative effects of violated wishes on the enacted family process and confirm previous findings regarding the effects of marital satisfaction. In addition, we uncovered differences in the way that violated maternal wishes are related to coparenting during playful and mildly stressful family interactions.
Kulshrestha, Saurabh; Hallan, Vipin; Sharma, Anshul; Seth, Chandrika Attri; Chauhan, Anjali; Zaidi, Aijaz Asghar
2013-09-01
Coat protein (CP) and RNA3 from Prunus necrotic ringspot virus (PNRSV-rose), the most prevalent virus infecting rose in India, were characterized and regions in the coat protein important for self-interaction, during dimer formation were identified. The sequence analysis of CP and partial RNA 3 revealed that the rose isolate of PNRSV in India belongs to PV-32 group of PNRSV isolates. Apart from the already established group specific features of PV-32 group member's additional group-specific and host specific features were also identified. Presence of methionine at position 90 in the amino acid sequence alignment of PNRSV CP gene (belonging to PV-32 group) was identified as the specific conserved feature for the rose isolates of PNRSV. As protein-protein interaction plays a vital role in the infection process, an attempt was made to identify the portions of PNRSV CP responsible for self-interaction using yeast two-hybrid system. It was found (after analysis of the deletion clones) that the C-terminal region of PNRSV CP (amino acids 153-226) plays a vital role in this interaction during dimer formation. N-terminal of PNRSV CP is previously known to be involved in CP-RNA interactions, but our results also suggested that N-terminal of PNRSV CP represented by amino acids 1-77 also interacts with C-terminal (amino acids 153-226) in yeast two-hybrid system, suggesting its probable involvement in the CP-CP interaction.
Derix, Johanna; Iljina, Olga; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio
2012-01-01
Human brain processes underlying real-life social interaction in everyday situations have been difficult to study and have, until now, remained largely unknown. Here, we investigated whether electrocorticography (ECoG) recorded for pre-neurosurgical diagnostics during the daily hospital life of epilepsy patients could provide a way to elucidate the neural correlates of non-experimental social interaction. We identified time periods in which patients were involved in conversations with either their respective life partners (Condition 1; C1) or attending physicians (Condition 2; C2). These two conditions can be expected to differentially involve subfunctions of social interaction which have been associated with activity in the anterior temporal lobe (ATL), including the temporal pole (TP). Therefore, we specifically focused on ECoG recordings from this brain region and investigated spectral power modulations in the alpha (8–12 Hz) and theta (3–5 Hz) frequency ranges, which have been previously assumed to play an important role in the processing of social interaction. We hypothesized that brain activity in this region might be sensitive to differences in the two interaction situations and tested whether these differences can be detected by single-trial decoding. Condition-specific effects in both theta and alpha bands were observed: the left and right TP exclusively showed increased power in C1 compared to C2, whereas more posterior parts of the ATL exhibited similar (C1 > C2) and also contrary (C2 > C1) effects. Single-trial decoding accuracies for classification of these effects were highly above chance. Our findings demonstrate that it is possible to study the neural correlates of human social interaction in non-experimental conditions. Decoding the identity of the communication partner and adjusting the speech output accordingly may be useful in the emerging field of brain-machine interfacing for restoration of expressive speech. PMID:22973215
Interaction with Machine Improvisation
NASA Astrophysics Data System (ADS)
Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo
We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.
Geng, Steven B.; Cheung, Jason K.; Narasimhan, Chakravarthy; Shameem, Mohammed; Tessier, Peter M.
2014-01-01
A limitation of using monoclonal antibodies as therapeutic molecules is their propensity to associate with themselves and/or with other molecules via non-affinity (colloidal) interactions. This can lead to a variety of problems ranging from low solubility and high viscosity to off-target binding and fast antibody clearance. Measuring such colloidal interactions is challenging given that they are weak and potentially involve diverse target molecules. Nevertheless, assessing these weak interactions – especially during early antibody discovery and lead candidate optimization – is critical to preventing problems that can arise later in the development process. Here we review advances in developing and implementing sensitive methods for measuring antibody colloidal interactions as well as using these measurements for guiding antibody selection and engineering. These systematic efforts to minimize non-affinity interactions are expected to yield more effective and stable monoclonal antibodies for diverse therapeutic applications. PMID:25209466
Differences That Make A Difference: A Study in Collaborative Learning
NASA Astrophysics Data System (ADS)
Touchman, Stephanie
Collaborative learning is a common teaching strategy in classrooms across age groups and content areas. It is important to measure and understand the cognitive process involved during collaboration to improve teaching methods involving interactive activities. This research attempted to answer the question: why do students learn more in collaborative settings? Using three measurement tools, 142 participants from seven different biology courses at a community college and at a university were tested before and after collaborating about the biological process of natural selection. Three factors were analyzed to measure their effect on learning at the individual level and the group level. The three factors were: difference in prior knowledge, sex and religious beliefs. Gender and religious beliefs both had a significant effect on post-test scores.
Artificial intelligence support for scientific model-building
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1992-01-01
Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.
Cascading activation from lexical processing to letter-level processing in written word production.
Buchwald, Adam; Falconer, Carolyn
2014-01-01
Descriptions of language production have identified processes involved in producing language and the presence and type of interaction among those processes. In the case of spoken language production, consensus has emerged that there is interaction among lexical selection processes and phoneme-level processing. This issue has received less attention in written language production. In this paper, we present a novel analysis of the writing-to-dictation performance of an individual with acquired dysgraphia revealing cascading activation from lexical processing to letter-level processing. The individual produced frequent lexical-semantic errors (e.g., chipmunk → SQUIRREL) as well as letter errors (e.g., inhibit → INBHITI) and had a profile consistent with impairment affecting both lexical processing and letter-level processing. The presence of cascading activation is suggested by lower letter accuracy on words that are more weakly activated during lexical selection than on those that are more strongly activated. We operationalize weakly activated lexemes as those lexemes that are produced as lexical-semantic errors (e.g., lethal in deadly → LETAHL) compared to strongly activated lexemes where the intended target word (e.g., lethal) is the lexeme selected for production.
1994-11-01
the negatively charged halide, X(-), remains scparatcd from the Rgnl(+) hole. But when the (+) holes migrate to the X(-), they rapidly form the exciplex ...Xe2.(+)X(-), releasing the exciton energy as fluorescence. The gas phase equilibrium geometry for the Xe 2C1 exciplex in the 421- state is predicted...understanding of the microscopic processes involved in formation c. the exciplex , as well as the factors determining the lifetime of the separated
The prospects for composites based on boron fibers
NASA Technical Reports Server (NTRS)
Naslain, R.
1978-01-01
The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.
Molecular self-assembly on surfaces
NASA Astrophysics Data System (ADS)
Mateo-Marti, E.; Pradier, C. M.
2012-09-01
The aim of the present research is to study the interaction of biomolecules, among them single amino acids, on metallic and mineral surfaces, and their chemical reactivity by means of powerful surface science techniques. Therefore, the use of simple biomolecules gives fundamental and significant information, including an adequate control of biomolecule-surface interactions, which will be unattainable to develop with more complex molecules. Furthermore, these studies are focussed on the catalytic properties of different surfaces that could be involved in molecular self-organization processes and the formation of prebiotic organic compounds.
Interactive models of communication at the nanoscale using nanoparticles that talk to one another
Llopis-Lorente, Antoni; Díez, Paula; Sánchez, Alfredo; Marcos, María D.; Sancenón, Félix; Martínez-Ruiz, Paloma; Villalonga, Reynaldo; Martínez-Máñez, Ramón
2017-01-01
‘Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating. PMID:28556828