Science.gov

Sample records for interacting semiconductor quantum

  1. Competing interactions in semiconductor quantum dots

    DOE PAGES

    van den Berg, R.; Brandino, G. P.; El Araby, O.; ...

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  2. Competing interactions in semiconductor quantum dots

    SciTech Connect

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.

  3. Ultrashort Pulse Interaction with Intersubband Transitions of Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Katsantonis, Ioannis; Stathatos, Elias; Paspalakis, Emmanuel

    2015-09-01

    We study coherent ultrashort pulse propagation in a two-subband system in a symmetric semiconductor quantum well structure, performing calculations beyond the rotating wave approximation and the slowly varying envelope approximation and taking into account the effects of electron-electron interactions. The interaction of the quantum well structure with the electromagnetic fields is studied with modified, nonlinear, Bloch equations. These equations are combined with the full-wave Maxwell equations for the study of pulse propagation. We present results for the pulse propagation and the population inversion dynamics in the quantum well structure for different electron sheet densities.

  4. Electronic Interactions in Semiconductor Quantum Dots and Quantum Point Contacts

    NASA Astrophysics Data System (ADS)

    Liu, Tai-Min

    We report several detailed experiments on electron transport through Quantum Point Contacts (QPCs) and lateral Quantum Dots (QDs), created in a Single-Electron Transistor (SET). In the experiment for QPCs, we present a zero-bias peak (ZBP) in the differential conductance, G, which splits in an external magnetic field. The observed splitting closely matches the Zeeman energy and shows very little dependence on gate voltage, suggesting that the mechanism responsible for the formation of the peak involves electron spin. We also show that the mechanism that leads to the formation of the ZBP is different from the conventional Kondo effect found in QDs. [1] In the second experiment, we present transport measurements of a QD in a spin-flip cotunneling regime and a quantitative comparison of the data to the microscopic theory by Lehman and Loss. The differential conductance is measured in the presence of an in-plane Zeeman field. We focus on the ratio of the nonlinear G at bias voltages exceeding the Zeeman threshold to G for those below the threshold. The data show good quantitative agreement with the theory with no adjustable parameters. We also compare the theoretical results to the predictions of a phenomenological form used for the determination of a heterostructure g-factor and find good agreement between the two. In the third experiment, we report the magnetic splitting, Delta K, of a Kondo peak in G for a QD while tuning the Kondo temperature, TK, along two different paths in the parameter space: varying the dot-lead coupling at a constant dot energy, and vice versa. At a high magnetic field, B, the changes of DeltaK with TK along the two paths have opposite signs, indicating that Delta K is not a universal function of TK. At low B, we observe a decrease in DeltaK with TK along both paths, in agreement with theoretical predictions. Furthermore, we find DeltaK/Delta < 1 at low B and DeltaK/Delta > 1 at high B, where Delta is the Zeeman energy of the bare spin, in

  5. Parametric interactions in presence of different size colloids in semiconductor quantum plasmas

    SciTech Connect

    Vanshpal, R. Sharma, Uttam; Dubey, Swati

    2015-07-31

    Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction is determined which is found to be equal to the lattice spacing of the crystal.

  6. Interaction of graphene quantum dots with bulk semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Mohapatra, P. K.; Kushavah, Dushyant; Mohapatra, J.; Singh, B. P.

    2015-05-01

    Highly luminescent graphene quantum dots (GQDs) are synthesized through thermolysis of glucose. The average lateral size of the synthesized GQDs is found to be ˜5 nm. The occurrence of D and G band at 1345 and 1580 cm-1 in Raman spectrum confirms the presence of graphene layers. GQDs are mostly consisting of 3 to 4 graphene layers as confirmed from the AFM measurements. Photoluminescence (PL) measurement shows a distinct broadening of the spectrum when GQDs are on the semiconducting bulk surface compared to GQDs in water. The time resolved PL measurement shows a significant shortening in PL lifetime due to the substrate interaction on GQDs compared to the GQDs in solution phase.

  7. Interaction of graphene quantum dots with bulk semiconductor surfaces

    SciTech Connect

    Mohapatra, P. K.; Singh, B. P.; Kushavah, Dushyant; Mohapatra, J.

    2015-05-15

    Highly luminescent graphene quantum dots (GQDs) are synthesized through thermolysis of glucose. The average lateral size of the synthesized GQDs is found to be ∼5 nm. The occurrence of D and G band at 1345 and 1580 cm{sup −1} in Raman spectrum confirms the presence of graphene layers. GQDs are mostly consisting of 3 to 4 graphene layers as confirmed from the AFM measurements. Photoluminescence (PL) measurement shows a distinct broadening of the spectrum when GQDs are on the semiconducting bulk surface compared to GQDs in water. The time resolved PL measurement shows a significant shortening in PL lifetime due to the substrate interaction on GQDs compared to the GQDs in solution phase.

  8. Quantum coherence in the interaction of light with a two-level atom and semiconductor microstructures

    NASA Astrophysics Data System (ADS)

    Erenso, Daniel Bekele

    We have studied quantum statistical properties including squeezing and entanglement, and conditional measurements in a two level atom, semiconductor quantum well and quantum dots interacting with light and a degenerate parametric oscillator. For a two-level atom in a coherently driven cavity and damped by a broad-band squeezed vacuum, we have studied atomic inversion, fluorescent spectrum, and the intensity correlations of the transmitted and fluorescent photons in the bad cavity limit using the Fokker-Planck equation. For semiconductor quantum well with a single exciton mode in a microcavity driven by squeezed vacuum in the low exciton density regime, we have studied the intensity, spectrum, and intensity correlations for the fluorescent light by solving the quantum Langevin equations. We have also derived an expression for the Q-function of the field and using this function we have studied the intracavity photon number distribution and the quadrature fluctuations for the field. For identical semiconductor quantum dots (QDs) interacting with a quantized cavity field, using quantum mechanical as well as semiclassical treatment, we have investigated the time evolution of the states of the QDs, the photon number distribution and the quadratures variances for the cavity field. Specifically, we consider two QDs initially prepared in a Bell and three QDs in a GHZ entangled excitonic states and the field in coherent, squeezed coherent, squeezed vacuum or thermal states at the initial time. By considering the light from a degenerate parametric oscillator, we have also discussed conditional measurements as probes of quantum dynamics and show that they provide novel ways to characterize quantum fluctuations.

  9. Probing interband coulomb interactions in semiconductor nanostructures with 2D double-quantum coherence spectroscopy.

    PubMed

    Velizhanin, Kirill A; Piryatinski, Andrei

    2011-05-12

    Employing the interband exciton scattering model, we have derived a closed set of equations determining the 2D double-quantum coherence signal sensitive to the interband Coulomb interactions (i.e., many-body Coulomb interactions leading to the couplings between exciton and biexciton bands) in semiconductor nanostructures such as nanocrystals, quantum wires, wells, and carbon nanotubes. Our general analysis of 2D double-quantum coherence resonances has demonstrated that the interband Coulomb interactions lead to new cross-peaks whose appearance can be interpreted as a result of exciton and biexciton state mixing. The presence of the strongly coupled resonant states and weakly coupled background of off-resonant states can significantly simplify cross-peak analysis by eliminating the congested background spectrum. Our simulations of the 2D double-quantum coherence signal in PbSe NCs have validated this approach.

  10. Parametric interactions of acoustic waves in semiconductor quantum plasmas with strain dependent dielectric constants

    NASA Astrophysics Data System (ADS)

    Yadav, N.; Ghosh, S.; Agrawal, A.

    2017-05-01

    Using quantum hydrodynamic model (QHD) of semiconductor plasma for a one-component we present an analytical investigation on parametric interaction of a laser radiation in an unmagnetised material with a strain-dependent dielectric constant. The nonlinear current density and third order susceptibility are analyzed in different wave number regions in presence and absence of quantum effect. We present the qualitative behavior of threshold pump intensity with respect to wave number in presence and absence of quantum effect. The numeric estimates are made for n-BaTiO3 crystals at 77k duly irradiated by pulsed 10.6μm CO2 laser. It is found that the quantum correction through Fermi temperature and Bohm potential terms modifies the threshold characteristics.

  11. LDRD final report on quantum computing using interacting semiconductor quantum wires.

    SciTech Connect

    Lyo, Sungkwun Kenneth; Dunn, Roberto G.; Lilly, Michael Patrick; Tibbetts, Denise R. ); Stephenson, Larry L.; Seamons, John Andrew; Reno, John Louis; Bielejec, Edward Salvador; Simmons, Jerry Alvon

    2006-01-01

    For several years now quantum computing has been viewed as a new paradigm for certain computing applications. Of particular importance to this burgeoning field is the development of an algorithm for factoring large numbers which obviously has deep implications for cryptography and national security. Implementation of these theoretical ideas faces extraordinary challenges in preparing and manipulating quantum states. The quantum transport group at Sandia has demonstrated world-leading, unique double quantum wires devices where we have unprecedented control over the coupling strength, number of 1 D channels, overlap and interaction strength in this nanoelectronic system. In this project, we study 1D-1D tunneling with the ultimate aim of preparing and detecting quantum states of the coupled wires. In a region of strong tunneling, electrons can coherently oscillate from one wire to the other. By controlling the velocity of the electrons, length of the coupling region and tunneling strength we will attempt to observe tunneling oscillations. This first step is critical for further development double quantum wires into the basic building block for a quantum computer, and indeed for other coupled nanoelectronic devices that will rely on coherent transport. If successful, this project will have important implications for nanoelectronics, quantum computing and information technology.

  12. Quantum Transport in Semiconductors

    DTIC Science & Technology

    1991-10-01

    SRS i 91 4. TITLE AND SUBTITLE Quantum Transport in Semiconductors 5. FUNDING NUMBER söMtos-rizk-ooss 6. AUTHOR(S) D. K. Ferry ©fte ELECTE...OF ABSTRACT UL NSN 7540-01-280-5500 O 1 9 Standard Form 298 (Rev. 2-89) Presented by ANSI Std «9-18 298-102 Final Report Quantum Transport in... Quantum Transport in Semiconductor Devices This final report describes a program of research investigating quantum effects which become important in

  13. Coherent Pump-Probe Interactions and Terahertz Intersubband Gain in Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    In recent years there has been considerable interest in intersubband-transition-based infrared semiconductor quantum well (QW) lasers because of their potential applications. In the mid-infrared range, both electrically-injected quantum cascade lasers [1] and optically-pumped multiple QW lasers [2] have been experimentally realized. In these studies, optical gain is due to population inversion between the lasing subbands. It was also proposed that stimulated Raman scattering in QW systems can produce net infrared optical gain [3j. In such a nonlinear optical scheme, the appearance of optical gain that may lead to intersubband Raman lasers does not rely on the population inversion. Since, in tile resonant Raman process (Raman gain is the largest in this case), the pump field induces population redistribution among subbands in the QW s ystem, it seems that a realistic estimate of the optical gain has to include this effect. Perturbative calculations used in the previous work [3] may overestimate the Raman gain. In this paper we present a nonperturbative calculation of terahertz gain of optically-pumped semiconductor step quantum wells. Limiting optical transitions within the conduction band of QW, we solve the pump-field-induced nonequilibrium distribution function for each subband of the QW system from a set of coupled rate equations. Both intrasubband and intersubband relaxation processes in the quantum well system are included. Taking into account the coherent interactions between pump and THz (signal) waves, we we derive the susceptibility of the QW system for the THz field. For a GaAs/AlGaAs step QW, we calculate the Thz gain spectrum for different pump frequencies and intensities. Under moderately strong pumping (approximately 0.3 MW/sq cm), a significant THz gain (approximately 300/m) is predicted. It is also shown that the coherent wave interactions (resonant stimulated Raman processes) contribute significantly to the THz gain.

  14. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE PAGES

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less

  15. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    SciTech Connect

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  16. Propagation and interaction of two soliton in a quantum semiconductor plasma with exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Choudhury, Sourav; Das, Tushar Kanti; Ghorui, Malay Kr.; Chatterjee, Prasanta

    2017-06-01

    Collisions of solitary pulses in a four species quantum semiconductor plasma consisting of degenerate electrons, degenerate holes, and non-degenerate ions are investigated. The electron and hole exchange-correlation forces between the identical particles when their wave functions overlap due to the high number densities are considered. Using the extended Poincarê-Lighthill-Kue method in opposite directions, two Korteweg-de Vries equations are derived. Hirota's method is used to derive the analytical phase shifts after the collision of one soliton and two soliton. Typical values for GaAs, GaSb, GaN, and InP semiconductors are considered to analyze the effects after collisions.

  17. Terahertz Optical Gain Based on Intersubband Transitions in Optically-Pumped Semiconductor Quantum Wells: Coherent Pumped-Probe Interactions

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.

  18. Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction

    PubMed Central

    Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao

    2015-01-01

    Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490

  19. Nuclear spin effects in semiconductor quantum dots.

    PubMed

    Chekhovich, E A; Makhonin, M N; Tartakovskii, A I; Yacoby, A; Bluhm, H; Nowack, K C; Vandersypen, L M K

    2013-06-01

    The interaction of an electronic spin with its nuclear environment, an issue known as the central spin problem, has been the subject of considerable attention due to its relevance for spin-based quantum computation using semiconductor quantum dots. Independent control of the nuclear spin bath using nuclear magnetic resonance techniques and dynamic nuclear polarization using the central spin itself offer unique possibilities for manipulating the nuclear bath with significant consequences for the coherence and controlled manipulation of the central spin. Here we review some of the recent optical and transport experiments that have explored this central spin problem using semiconductor quantum dots. We focus on the interaction between 10(4)-10(6) nuclear spins and a spin of a single electron or valence-band hole. We also review the experimental techniques as well as the key theoretical ideas and the implications for quantum information science.

  20. Lande g-factor in semiconductor cylinder quantum dots under magnetic fields and spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Gharaati, Abdolrasoul

    2017-05-01

    In this paper, the electron effective Lande g-factor in semiconductor cylinder quantum dots is studied in the presence of the Rashba spin-orbit effect and an applied magnetic field parallel to the cylinder axis. For this goal, I have obtained an analytical solution to one-particle Schrodinger equation in the presence of both magnetic field and spin-orbit interaction (SOI). Then, using the obtained energy levels, I have study the electron effective Lande g-factor. It is found that: It is found that (i) energy levels strongly depend on the combined effects of external magnetic field and spin-orbit interaction strength. (ii) The effective Lande g-factor decreases when magnetic field increases. (iii) By increasing the cylinder radius ρ, the electron g-factor decreases. (iv) By increasing the strength of SOI, the electron g-factor increases.

  1. Interaction of a conjugated polyaromatic molecule with a single dangling bond quantum dot on a hydrogenated semiconductor.

    PubMed

    Godlewski, Szymon; Kolmer, Marek; Engelund, Mads; Kawai, Hiroyo; Zuzak, Rafal; Garcia-Lekue, Aran; Saeys, Mark; Echavarren, Antonio M; Joachim, Christian; Sanchez-Portal, Daniel; Szymonski, Marek

    2016-02-07

    Controlling the strength of the coupling between organic molecules and single atoms provides a powerful tool for tuning electronic properties of single-molecule devices. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) supported by theoretical modeling, we study the interaction of a planar organic molecule (trinaphthylene) with a hydrogen-passivated Ge(001):H substrate and a single dangling bond quantum dot on that surface. The electronic structure of the molecule adsorbed on the hydrogen-passivated surface is similar to the gas phase structure and the measurements show that HOMO and LUMO states contribute to the STM filled and empty state images, respectively. Furthermore, we show that the electronic properties are not significantly affected when the molecule is attached to the single dangling bond, which is in contrast with the strong interaction of the molecule with a dangling bond dimer. Our results show that the dangling bond quantum dots could stabilize organic molecules on a hydrogenated semiconductor without affecting their originally designed gas phase electronic properties. Together with the ability to laterally manipulate the molecules on the surface, this will be advantageous in the construction of single-molecule devices, where the coupling and positioning of the molecules on the substrate could be tuned by a proper design of the surface quantum dot arrays, comprising both single and dimerized dangling bonds.

  2. Quantum Transport in Semiconductor Devices

    DTIC Science & Technology

    1994-06-30

    TITLE AND SUBTITLE S. FUNDING NUMBERS " Quantum Transport in Semiconductor Devices" 6. AUTHOR(S) ,DftftLo3-91-6-oo 7 David K. Ferry 7. PERFORMING...OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL NZIN 1540-01-280-5500 Standard Form 298 (Rev 2-89) PrinCrlt>• oy ANSI SIC Z39-18 QUANTUM ... TRANSPORT IN SEMICONDUCTOR DEVICES Final Report on DAAL03-91-G-0067 (28461-EL) David K. Ferry, Principal Investigator Department of Electrical Engineering

  3. Semiconductor double quantum dot micromaser.

    PubMed

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. Copyright © 2015, American Association for the Advancement of Science.

  4. Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide.

    PubMed

    Kim, Nam-Chol; Ko, Myong-Chol; Choe, Song-Il; Hao, Zhong-Hua; Zhou, Li; Li, Jian-Bo; Im, Song-Jin; Ko, Yong-Hae; Jo, Chon-Gyu; Wang, Qu-Quan

    2016-11-18

    The transport properties of a single plasmon interacting with a hybrid system composed of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP) coupled to a one-dimensional surface plasmonic waveguide are investigated theoretically via the real-space approach. We considered that the MNP-SQD interaction leads to the formation of a hybrid exciton and the transmission and reflection of a single incident plasmon could be controlled by adjusting the frequency of the classical control field applied to the MNP-SQD hybrid nanosystem, the kinds of MNPs and the background media. The transport properties of a single plasmon interacting with such a hybrid nanosystem discussed here could find applications in the design of next-generation quantum devices, such as single-photon switching and nanomirrors, and in quantum information processing.

  5. Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly.

    PubMed

    Stewart, Michael H; Huston, Alan L; Scott, Amy M; Efros, Alexander L; Melinger, Joseph S; Gemmill, Kelly Boeneman; Trammell, Scott A; Blanco-Canosa, Juan B; Dawson, Philip E; Medintz, Igor L

    2012-06-26

    The ability of luminescent semiconductor quantum dots (QDs) to engage in diverse energy transfer processes with organic dyes, light-harvesting proteins, metal complexes, and redox-active labels continues to stimulate interest in developing them for biosensing and light-harvesting applications. Within biosensing configurations, changes in the rate of energy transfer between the QD and the proximal donor, or acceptor, based upon some external (biological) event form the principle basis for signal transduction. However, designing QD sensors to function optimally is predicated on a full understanding of all relevant energy transfer mechanisms. In this report, we examine energy transfer between a range of CdSe-ZnS core-shell QDs and a redox-active osmium(II) polypyridyl complex. To facilitate this, the Os complex was synthesized as a reactive isothiocyanate and used to label a hexahistidine-terminated peptide. The Os-labeled peptide was ratiometrically self-assembled to the QDs via metal affinity coordination, bringing the Os complex into close proximity of the nanocrystal surface. QDs displaying different emission maxima were assembled with increasing ratios of Os-peptide complex and subjected to detailed steady-state, ultrafast transient absorption, and luminescence lifetime decay analyses. Although the possibility exists for charge transfer quenching interactions, we find that the QD donors engage in relatively efficient Förster resonance energy transfer with the Os complex acceptor despite relatively low overall spectral overlap. These results are in contrast to other similar QD donor-redox-active acceptor systems with similar separation distances, but displaying far higher spectral overlap, where charge transfer processes were reported to be the dominant QD quenching mechanism.

  6. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian; Monniello, Léonard; Bernard, Mathieu; Margaillan, Florent; Lemaitre, Aristide; Martinez, Anthony; McCutcheon, Dara P. S.; Mørk, Jesper; Hostein, Richard; Voliotis, Valia

    2017-06-01

    We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

  7. Multiple Exciton Generation in Semiconductor Quantum Dots.

    PubMed

    Beard, Matthew C

    2011-06-02

    Multiple exciton generation in quantum dots (QDs) has been intensively studied as a way to enhance solar energy conversion by utilizing the excess energy in the absorbed photons. Among other useful properties, quantum confinement can both increase Coulomb interactions that drive the MEG process and decrease the electron-phonon coupling that cools hot excitons in bulk semiconductors. However, variations in the reported enhanced quantum yields (QYs) have led to disagreements over the role that quantum confinement plays. The enhanced yield of excitons per absorbed photon is deduced from a dynamical signature in the transient absorption or transient photoluminescence and is ascribed to the creation of biexcitons. Extraneous effects such as photocharging are partially responsible for the observed variations. When these extraneous effects are reduced, the MEG efficiency, defined in terms of the number of additional electron-hole pairs produced per additional band gap of photon excitation, is about two times better in PbSe QDs than that in bulk PbSe. Thin films of electronically coupled QDs have shown promise in simple photon-to-electron conversion architectures. If the MEG efficiency can be further enhanced and charge separation and transport can be optimized within QD films, then QD solar cells can lead to third-generation solar energy conversion technologies.

  8. Quantum optics with interacting polaritons

    NASA Astrophysics Data System (ADS)

    Portolan, Stefano; Savasta, Salvatore

    The excitonic polariton concept was introduced already in 1958 by J. J. Hopfield. Although its description was based on a full quantum theory including light quantization, the investigations of the optical properties of excitons developed mainly independently of quantum optics. In this chapter we shall review exciton polariton quantum optical effects by means of some recent works and results that have appeared in the literature in both bulk semiconductors and in cavity embedded quantum wells. The first manifestation of excitonic quantum-optical coherent dynamics was observed experimentally 20 years later, in 1978, exploiting resonant hyper-parametric scattering. On the other hand, the possibility of generating entangled photon pairs by means of this resonant process was theoretically pointed out only lately in 1999, whereas the experimental evidence for the generation of ultraviolet polarization-entangled photon pairs by means of biexciton resonant parametric emission in a single crystal of semiconductor CuCl was reported only in 2004. The demonstrations of parametric amplification and parametric emission in semiconductor microcavities, together with the possibility of ultrafast optical manipulation and ease of integration of these micro-devices, have increased the interest in possible realization of nonclassical cavity-polariton states. In 2005 an experiment that probes polariton quantum correlations by exploiting quantum complementarity was proposed and realized. These results unequivocally proved that quantum optical effects at single photon level, arising from the interaction of light with electronic excitations of semiconductors and semiconductor nanostructures, were possible within these solid state systems, despite being far from isolated systems. The theoretical predictions that we review are based on a microscopic quantum theory of the nonlinear optical response of interacting electron systems relying on the dynamics controlled truncation scheme extended

  9. Charge state hysteresis in semiconductor quantum dots

    SciTech Connect

    Yang, C. H.; Rossi, A. Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.

    2014-11-03

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.

  10. Quantum theory of electroabsorption in semiconductor nanocrystals.

    PubMed

    Tepliakov, Nikita V; Leonov, Mikhail Yu; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2016-01-25

    We develop a simple quantum-mechanical theory of interband absorption by semiconductor nanocrystals exposed to a dc electric field. The theory is based on the model of noninteracting electrons and holes in an infinitely deep quantum well and describes all the major features of electroabsorption, including the Stark effect, the Franz-Keldysh effect, and the field-induced spectral broadening. It is applicable to nanocrystals of different shapes and dimensions (quantum dots, nanorods, and nanoplatelets), and will prove useful in modeling and design of electrooptical devices based on ensembles of semiconductor nanocrystals.

  11. Nonlinear optical susceptibilities of semiconductor quantum dot - metal nanoparticle hybrids

    NASA Astrophysics Data System (ADS)

    Terzis, A. F.; Kosionis, S. G.; Boviatsis, J.; Paspalakis, E.

    2016-03-01

    We theoretically study nonlinear optical effects of a semiconductor quantum dot and a spherical metal nanoparticle coupled via long-range Coulomb interaction. We solve the relevant density matrix equations in steady state and use proper perturbation theory to obtain closed-form analytical expressions for the nonlinear susceptibilities of the quantum dot, the metal nanoparticle, and the entire coupled system, up to fifth order. We also investigate the influence of the material of the semiconductor and the impact of the interparticle distance on the form of the spectra of the nonlinear susceptibilities.

  12. Sensitivity of quantum-dot semiconductor lasers to optical feedback.

    PubMed

    O'Brien, D; Hegarty, S P; Huyet, G; Uskov, A V

    2004-05-15

    The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.

  13. Femtosecond laser deposition of semiconductor quantum dot films

    NASA Astrophysics Data System (ADS)

    Oraiqat, Ibrahim; Kennedy, Jack; Mathis, James; Clarke, Roy

    2012-07-01

    We report new results on the deposition of high-density films of semiconductor nanostructures by ultrafast pulsed laser deposition (UFPLD). Such materials are of interest for advanced optoelectronic applications such as quantum dot lasers and energy harvesting devices. The deposition method utilizes the interaction of a focused chirped pulse amplified (CPA) Ti-sapphire laser beam with a solid target (a rotating semiconductor wafer) to produce a hot-dense plasma at the target surface with a power density in excess of 1014 W/cm2. The plasma then undergoes rapid expansion and the resulting condensation process produces a high density of nanoscale particles (average size of a few nm) on a substrate placed a few cm from the target. We have investigated several semiconductor quantum dot systems including silicon and germanium. We observed a significant blue-shift of the optical absorption edge indicating quantum confinement effects which may be of interest for photovoltaic applications.

  14. Intrinsic spin dynamics in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Valín-Rodríguez, Manuel

    2005-12-01

    We investigate the characteristic spin dynamics corresponding to semiconductor quantum dots within the multiband envelope function approximation (EFA). By numerically solving an 8 × 8 k·p Hamiltonian we treat systems based on different III-V semiconductor materials. It is shown that, even in the absence of an applied magnetic field, these systems show intrinsic spin dynamics governed by intraband and interband transitions leading to characteristic spin frequencies ranging from THz to optical frequencies.

  15. Electronic states of semiconductor/metal/semiconductor quantum well structures

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.; Maserjian, J.

    Quantum size effects are calculated in thin layered semiconductor-metal-semi-conductor structures using an ideal free-electron model for the metal layer. The physical insight thereby gained is used to make projections for the behavior of real material systems. The results suggest new quantum well structures having device applications. Structures with sufficiently high quality interfaces should exhibit effects such as negative differential resistance due to tunneling between allowed states. Similarly, optical detection by intersubband absorption may be possible. We also predict that ultrathin metal layers can behave as high density dopant sheets.

  16. Spin dynamics and spin noise in the presence of randomly varying spin-orbit interaction in a semiconductor quantum wire.

    PubMed

    Agnihotri, Pratik; Bandyopadhyay, Supriyo

    2012-05-30

    Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.

  17. Electron - polar acoustical phonon interactions in nitride based diluted magnetic semiconductor quantum well via hot electron magnetotransport

    SciTech Connect

    Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.

    2015-05-15

    In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering.

  18. Probing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons

    NASA Astrophysics Data System (ADS)

    Hargart, F.; Roy-Choudhury, K.; John, T.; Portalupi, S. L.; Schneider, C.; Höfling, S.; Kamp, M.; Hughes, S.; Michler, P.

    2016-12-01

    In this work we present an extensive experimental and theoretical investigation of different regimes of strong field light-matter interaction for cavity-driven quantum dot (QD) cavity systems. The electric field enhancement inside a high-Q micropillar cavity facilitates exceptionally strong interaction with few cavity photons, enabling the simultaneous investigation for a wide range of QD-laser detuning. In case of a resonant drive, the formation of dressed states and a Mollow triplet sideband splitting of up to 45 μeV is measured for a mean cavity photon number < {n}c> ≤slant 1. In the asymptotic limit of the linear AC Stark effect we systematically investigate the power and detuning dependence of more than 400 QDs. Some QD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained by an extended dressed 4-level QD model. We provide a detailed analysis of the QD-cavity systems properties enabling this novel effect. The experimental results are successfully reproduced using a polaron master equation approach for the QD-cavity system, which includes the driving laser field, exciton-cavity and exciton-phonon interactions.

  19. Manipulating Spin-Orbit Interaction in Semiconductors

    NASA Astrophysics Data System (ADS)

    Kohda, Makoto; Bergsten, Tobias; Nitta, Junsaku

    2008-03-01

    Spin-orbit interaction (SOI), where the orbital motion of electrons is coupled with the orientation of electron spins, originates from a relativistic effect. Generally, in nonrelativistic momentum, p = \\hbar k≪ m0c, the SOI is negligible. However, in a semiconductor heterostructure, the small energy-band gap (Eg ≪ m0c2) and the electron wave modulated by the atomic core potential markedly enhance the SOI. Since the SOI acts as an effective magnetic field, it may offer novel functionalities for controlling the spin degree of freedom such as the electrical spin generation and the electrical control of the spin precession in a semiconductor heterojunction. Here, we review recent experimental studies on the manipulation of the SOI in a semiconductor two-dimensional electron gas. We first present a theoretical overview of the Rashba SOI, which lifts the spin degeneracy due to structural inversion asymmetry. We then present experimental results on the quantum well (QW) thickness dependences of the Rashba SOI in InP/InGaAs/InAlAs asymmetric QWs by analyzing the weak antilocalization. Finally, we show quantum interference effects due to the spin precession in a small array of mesoscopic InGaAs rings, which is an experimental demonstration of the time-reversal Aharonov-Casher effect and the electromagnetic dual to the Al’tshuler-Aronov-Spivak effect.

  20. Controllable quantum scars in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Keski-Rahkonen, J.; Luukko, P. J. J.; Kaplan, L.; Heller, E. J.; Räsänen, E.

    2017-09-01

    Quantum scars are enhancements of quantum probability density along classical periodic orbits. We study the recently discovered phenomenon of strong perturbation-induced quantum scarring in the two-dimensional harmonic oscillator exposed to a homogeneous magnetic field. We demonstrate that both the geometry and the orientation of the scars are fully controllable with a magnetic field and a focused perturbative potential, respectively. These properties may open a path into an experimental scheme to manipulate electric currents in nanostructures fabricated in a two-dimensional electron gas.

  1. Semiconductor Quantum Dots with Photoresponsive Ligands.

    PubMed

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  2. Semiconductor quantum dot-sensitized solar cells

    PubMed Central

    Tian, Jianjun; Cao, Guozhong

    2013-01-01

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future. PMID:24191178

  3. Semiconductor quantum dot-sensitized solar cells.

    PubMed

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  4. Semiconductor-inspired superconducting quantum computing

    NASA Astrophysics Data System (ADS)

    Shim, Yun-Pil

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit based quantum computing. Here we present an architecture for superconducting quantum computing based on selective design principles deduced from spin-based systems. We propose an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is especially suited to qubits based on variable super-semi junctions.

  5. Quantum Phenomena in Semiconductor Structures

    DTIC Science & Technology

    1988-04-01

    observed by changing the magnetic field through the loop, which changes the phase of the wavefunction, due to the Aharonov - Bohm effect. The...fields (<IT), in order to determine the dependence of the Aharonov - Bohm (AB) effect on channel width and field. The Quantum Hall Effect was studied at...interference may be observed through the addition of an extra phase difference between the two waves. The Aharonov - Bohm effect gives rise to such a phase

  6. Monitoring Cellular Interactions during T Cell Activation at the Single Molecule Level Using Semiconductor Quantum-Dots

    DTIC Science & Technology

    2005-05-10

    correlation spectroscopy (FCS); (5) testing the lipid raft hypothesis by single molecule imaging of targeted peptide-coated quantum dots; and (6) molecular cloning and fusion of avidin to immunological synapse (IS) components.

  7. Oscillatory quantum interference effects in narrow-gap semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Lillianfeld, R. B.; Kallaher, R. L.; Heremans, J. J.; Chen, Hong; Goel, N.; Chung, S. J.; Santos, M. B.; Van Roy, W.; Borghs, G.

    2010-01-01

    We investigate quantum interference phenomena in narrow bandgap semiconductors under strong spin-orbit interaction, by measuring the magnetoresistance across mesoscopic closed-path structures fabricated in two-dimensional electron systems. We discuss our results in terms of four quantum interference effects brought about by geometric phases acquired by the electron wave functions: the Aharonov-Bohm phase, the Altshuler-Aronov-Spivak effect, the Berry's phase due to the evolution of the spin degree of freedom, and the Aharonov-Casher phase.

  8. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

    SciTech Connect

    Klimov, V.; McBranch, D.; Schwarz, C.

    1998-08-10

    Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

  9. Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications.

    PubMed

    Chistyakov, A A; Zvaigzne, M A; Nikitenko, V R; Tameev, A R; Martynov, I L; Prezhdo, O V

    2017-09-07

    Quantum dot (QD) solids represent a new type of condensed matter drawing high fundamental and applied interest. Quantum confinement in individual QDs, combined with macroscopic scale whole materials, leads to novel exciton and charge transfer features that are particularly relevant to optoelectronic applications. This Perspective discusses the structure of semiconductor QD solids, optical and spectral properties, charge carrier transport, and photovoltaic applications. The distance between adjacent nanoparticles and surface ligands influences greatly electrostatic interactions between QDs and, hence, charge and energy transfer. It is almost inevitable that QD solids exhibit energetic disorder that bears many similarities to disordered organic semiconductors, with charge and exciton transport described by the multiple trapping model. QD solids are synthesized at low cost from colloidal solutions by casting, spraying, and printing. A judicious selection of a layer sequence involving QDs with different size, composition, and ligands can be used to harvest sunlight over a wide spectral range, leading to inexpensive and efficient photovoltaic devices.

  10. Guiding effect of quantum wells in semiconductor lasers

    SciTech Connect

    Aleshkin, V Ya; Dikareva, Natalia V; Dubinov, A A; Zvonkov, B N; Karzanova, Maria V; Kudryavtsev, K E; Nekorkin, S M; Yablonskii, A N

    2013-05-31

    The guiding effect of InGaAs quantum wells in GaAs- and InP-based semiconductor lasers has been studied theoretically and experimentally. The results demonstrate that such waveguides can be effectively used in laser structures with a large refractive index difference between the quantum well material and semiconductor matrix and a large number of quantum wells (e.g. in InP-based structures). (semiconductor lasers. physics and technology)

  11. Modeling and Simulation of Semiconductor Quantum Well Structures and Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Saini, Subbash (Technical Monitor)

    1998-01-01

    In this talk I will cover two aspects of modeling and simulation efforts at NASA Ames Research Center. In the quantum well structure simulation, we typically start from the quantum mechanical calculation of the quantum well structures for the confined/and unconfined eigen states and functions. A bandstructure calculation of the k*p type is then performed for the confined valence states. This information is then used to computer the optical gain and refractive index of the quantum well structures by solving the linearized multiband semiconductor Bloch equations with the many-body interactions included. In our laser simulation, we typically solve the envelope equations for the laser field in space-time domain, coupled with a reduced set of material equations using the microscopic calculation of the first step. Finally I will show some examples of both aspects of simulation and modeling.

  12. Exciton binding energy in semiconductor quantum dots

    SciTech Connect

    Pokutnii, S. I.

    2010-04-15

    In the adiabatic approximation in the context of the modified effective mass approach, in which the reduced exciton effective mass {mu} = {mu}(a) is a function of the radius a of the semiconductor quantum dot, an expression for the exciton binding energy E{sub ex}(a) in the quantum dot is derived. It is found that, in the CdSe and CdS quantum dots with the radii a comparable to the Bohr exciton radii a{sub ex}, the exciton binding energy E{sub ex}(a) is substantially (respectively, 7.4 and 4.5 times) higher than the exciton binding energy in the CdSe and CdS single crystals.

  13. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    PubMed

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  14. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    PubMed Central

    He, Yong; Zhu, Ka-Di

    2017-01-01

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165

  15. Quantum Confined Semiconductors for High Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Beard, Matthew

    2014-03-01

    Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.

  16. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    NASA Astrophysics Data System (ADS)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  17. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    PubMed

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  18. Quantum-confined Stark effects in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Wen, G. W.; Lin, J. Y.; Jiang, H. X.; Chen, Z.

    1995-08-01

    Quantum-confined Stark effects (QCSE) on excitons, i.e., the influence of a uniform electric field on the confined excitons in semiconductor quantum dots (QD's), have been studied by using a numerical matrix-diagonalization scheme. The energy levels and the wave functions of the ground and several excited states of excitons in CdS and CdS1-xSex quantum dots as functions of the size of the quantum dot and the applied electric field have been obtained. The electron and hole distributions and wave function overlap inside the QD's have also been calculated for different QD sizes and electric fields. It is found that the electron and hole wave function overlap decreases under an electric field, which implies an increased exciton recombination lifetime due to QCSE. The energy level redshift and the enhancement of the exciton recombination lifetime are due to the polarization of the electron-hole pair under the applied electric field.

  19. Quantum walks of interacting fermions on a cycle graph

    PubMed Central

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2016-01-01

    Quantum walks have been employed widely to develop new tools for quantum information processing recently. A natural quantum walk dynamics of interacting particles can be used to implement efficiently the universal quantum computation. In this work quantum walks of electrons on a graph are studied. The graph is composed of semiconductor quantum dots arranged in a circle. Electrons can tunnel between adjacent dots and interact via Coulomb repulsion, which leads to entanglement. Fermionic entanglement dynamics is obtained and evaluated. PMID:27681057

  20. Biosensing with Luminescent Semiconductor Quantum Dots

    PubMed Central

    Sapsford, Kim E.; Pons, Thomas; Medintz, Igor L.; Mattoussi, Hedi

    2006-01-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recently developed class of nanomaterial whose unique photophysical properties are helping to create a new generation of robust fluorescent biosensors. QD properties of interest for biosensing include high quantum yields, broad absorption spectra coupled to narrow size-tunable photoluminescent emissions and exceptional resistance to both photobleaching and chemical degradation. In this review, we examine the progress in adapting QDs for several predominantly in vitro biosensing applications including use in immunoassays, as generalized probes, in nucleic acid detection and fluorescence resonance energy transfer (FRET) - based sensing. We also describe several important considerations when working with QDs mainly centered on the choice of material(s) and appropriate strategies for attaching biomolecules to the QDs.

  1. Electron states in semiconductor quantum dots

    SciTech Connect

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  2. Quantum tunneling between bent semiconductor nanowires

    SciTech Connect

    Sousa, A. A.; Chaves, Andrey Farias, G. A.; Pereira, T. A. S.; Peeters, F. M.

    2015-11-07

    We theoretically investigate the electronic transport properties of two closely spaced L-shaped semiconductor quantum wires, for different configurations of the output channel widths as well as the distance between the wires. Within the effective-mass approximation, we solve the time-dependent Schrödinger equation using the split-operator technique that allows us to calculate the transmission probability, the total probability current, the conductance, and the wave function scattering between the energy subbands. We determine the maximum distance between the quantum wires below which a relevant non-zero transmission is still found. The transmission probability and the conductance show a strong dependence on the width of the output channel for small distances between the wires.

  3. Semiconductor Quantum Dots for Biomedicial Applications

    PubMed Central

    Shao, Lijia; Gao, Yanfang; Yan, Feng

    2011-01-01

    Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690

  4. Universal quantum computation in a semiconductor quantum wire network

    NASA Astrophysics Data System (ADS)

    Sau, Jay D.; Tewari, Sumanta; Das Sarma, S.

    2010-11-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10-3 to 10-4 in ordinary unprotected quantum computation.

  5. The Quantum Hydrodynamic Model for Semiconductor Devices: Theory and Computations

    DTIC Science & Technology

    2007-11-02

    Quantum transport effects including electron or hole tunneling through potential barriers and buildup in quantum wells are important in predicting...semiconductor device. A new extension of the classical hydrodynamic model to include quantum transport effects was derived. This "smooth" quantum

  6. Bulk Rashba Semiconductors and Related Quantum Phenomena.

    PubMed

    Bahramy, Mohammad Saeed; Ogawa, Naoki

    2017-03-29

    Bithmuth tellurohalides BiTeX (X = Cl, Br and I) are model examples of bulk Rashba semiconductors, exhibiting a giant Rashba-type spin splitting among their both valence and conduction bands. Extensive spectroscopic and transport experiments combined with the state-of-the-art first-principles calculations have revealed many unique quantum phenomena emerging from the bulk Rashba effect in these systems. The novel features such as the exotic inter- and intra-band optical transitions, enhanced magneto-optical response, divergent orbital dia-/para-magnetic susceptibility and helical spin textures with a nontrivial Berry's phase in the momentum space are among the salient discoveries, all arising from this effect. Also, it is theoretically proposed and indications have been experimentally reported that bulk Rashba semiconductors such as BiTeI have the capability of becoming a topological insulator under the application of a hydrostatic pressure. Here, we overview these studies and show that BiTeX are an ideal platform to explore the next aspects of quantum matter, which could ultimately be utilized to create spintronic devices with novel functionalities.

  7. Optical Studies of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Yükselici, H.; Allahverdi, Ç.; Aşıkoğlu, A.; Ünlü, H.; Baysal, A.; Çulha, M.; İnce, R.; İnce, A.; Feeney, M.; Athalin, H.

    Optical absorption (ABS), steady-state photoluminescence (PL), resonant Raman, and photoabsorption (PA) spectroscopies are employed to study quantum-size effects in II-VI semiconductor quantum dots (QDs) grown in glass samples. We observe a size-dependent shift in the energetic position of the first exciton peak and have examined the photoinduced evolution of the differential absorption spectra. The Raman shifts of the phonon modes are employed to monitor stoichiometric changes in the composition of the QDs during growth. Two sets of glass samples were prepared from color filters doped with CdS x Se1 - x and Zn x Cd1 - x Te. We analyze the optical properties of QDs through the ABS, PL, resonant Raman, and PA spectroscopies. The glass samples were prepared from commercially available semiconductor doped filters by a two-step thermal treatment. The average size of QDs is estimated from the energetic position of the first exciton peak in the ABS spectrum. A calculation based on a quantized-state effective mass model in the strong confinement regime predicts that the average radius of QDs in the glass samples ranges from 2.9 to 4.9 nm for CdTe and from 2.2 to 9.3 nm for CdS0. 08Se0. 92. We have also studied the nonlinear optical properties of QDs by reviewing the results of size-dependent photoinduced modulations in the first exciton band of CdTe QDs studied by PA spectroscopy.

  8. Semiconductor Lasers Containing Quantum Wells in Junctions

    NASA Technical Reports Server (NTRS)

    Yang, Rui Q.; Qiu, Yueming

    2004-01-01

    In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).

  9. Semiconductor quantum dots for photodynamic therapy.

    PubMed

    Samia, Anna C S; Chen, Xiaobo; Burda, Clemens

    2003-12-24

    The applicability of semiconductor QDs in photodynamic therapy (PDT) was evaluated by studying the interaction between CdSe QDs with a known silicon phthalocyanine PDT photosensitizer, Pc4. The study revealed that the QDs could be used to sensitize the PDT agent through a fluorescence resonance energy transfer (FRET) mechanism, or interact directly with molecular oxygen via a triplet energy-transfer process (TET). Both mechanisms result in the generation of reactive singlet oxygen species that can be used for PDT cancer therapy.

  10. Optically Loaded Semiconductor Quantum Memory Register

    NASA Astrophysics Data System (ADS)

    Kim, Danny; Kiselev, Andrey A.; Ross, Richard S.; Rakher, Matthew T.; Jones, Cody; Ladd, Thaddeus D.

    2016-02-01

    We propose and analyze an optically loaded quantum memory that exploits capacitive coupling between self-assembled quantum-dot molecules and electrically gated quantum-dot molecules. The self-assembled dots are used for spin-photon entanglement, which is transferred to the gated dots for long-term storage or processing via a teleportation process heralded by single-photon detection. We illustrate a device architecture enabling this interaction and outline both its operation and fabrication. We provide self-consistent Poisson-Schrödinger simulations to establish the design viability, to refine the design, and to estimate the physical coupling parameters and their sensitivities to dot placement. The device we propose generates heralded copies of an entangled state between a photonic qubit and a solid-state qubit with a rapid reset time upon failure. The resulting fast rate of entanglement generation is of high utility for heralded quantum networking scenarios involving lossy optical channels.

  11. Nonlinear Optical Interactions in Semiconductors

    DTIC Science & Technology

    1984-03-16

    optical pumping in semiconductors to generate IR radiation and a variety of studies involving narrow gap semiconducting compounds outlined in our proposal... radiation and a variety of studies involving narrow gap semiconducting compounds outlined in our proposal. We have studied the feasibility of room...processes we are studying, or plan to study, are the following: A. Multiphoton optical pumping in semiconductors to generate IR radiation , e.g

  12. Nonlinear Optical Interactions in Semiconductors

    DTIC Science & Technology

    1984-10-01

    careful study of multiphoton optical pumping in semiconductors to generate IR radiation and a variety of studies involving narrow-gap semiconducting...This will allow us to undertake a i-arefa: . dy of multiphoton optical pumping in semiconductors to generate IR radiation and a variety of studies...to generate IR radiation , e.g., narrow-gap semiconducting compounds such as Hg!_xCdxTe. B. Generation of high-power coherent infrared (21 with

  13. Semiconductor quantum dot-inorganic nanotube hybrids.

    PubMed

    Kreizman, Ronen; Schwartz, Osip; Deutsch, Zvicka; Itzhakov, Stella; Zak, Alla; Cohen, Sidney R; Tenne, Reshef; Oron, Dan

    2012-03-28

    A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.

  14. Gain in three-dimensional metamaterials utilizing semiconductor quantum structures

    NASA Astrophysics Data System (ADS)

    Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan

    2011-10-01

    We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.

  15. Quantum spectroscopy of semiconductors with Schr"odinger's cat states

    NASA Astrophysics Data System (ADS)

    Kira, Mackillo

    2012-02-01

    Quantum investigations on simple systems --- such as atoms or quantized light modes --- have reached a level where one can read and write information directly onto the density matrix itself. Currently, the same level of quantum-information control seems inconceivable in condensed-matter systems simply because the many-body states involved are unimaginably complicated. In this talk, I will present the first steps in realizing targeted access of many-body states within condensed-matter systems by combining quantum-optics and many-body theory [1] with classical high-precision laser spectroscopy. The light--matter interaction has an inherent capability to directly excite targeted many-body states through the light source's quantum fluctuations [2]. The related quantum-optical responses can be projected from the classical data set by applying the cluster-expansion transformation [3] (CET). As a proof of principle, we CET project the measured nonlinear absorption of semiconductor quantum wells [4] into the quantum absorption generated by Schr"odinger's cat-state sources. The results expose a completely new level of many-body physics that remains otherwise hidden. Especially, the investigations reveal an anomalous reduction of Coulomb scattering of excitons, the excitation-induced narrowing of the exciton-molecule resonance, and the formation of electron--hole complexes (multi-exciton clusters) [5]. [4pt] [1] M. Kira and S.W. Koch, Semiconductor quantum optics, (Cambridge University Press, 2011). [0pt] [2] M. Kira and S.W. Koch, Phys. Rev. A 73, 013813 (2006); S.W. Koch, M. Kira, G. Khitrova, and H.M. Gibbs, Nature Mat. 5, 523 (2006); M. Kira and S.W. Koch, Prog. Quantum Electr. 30, 155 (2006). [0pt] [3] M. Kira and S.W. Koch, Phys. Rev. A 78, 022102 (2008). [0pt] [4] R.P. Smith et al., Phys. Rev. Lett. 104, 247401 (2010). [0pt] [5] M. Kira et al., Nature Physics 7, 799-804 (2011).

  16. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    PubMed

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  17. Voltage-controlled quantum light from an atomically thin semiconductor.

    PubMed

    Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M; Beams, Ryan; Vamivakas, A Nick

    2015-06-01

    Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.

  18. Electronic states of semiconductor-metal-semiconductor quantum-well structures

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.; Maserjian, J.

    1988-05-01

    Quantum-size effects are calculated in thin layered semiconductor-metal-semiconductor structures using an ideal free-electron model for the metal layer. The results suggest new quantum-well structures having device applications. Structures with sufficiently high-quality interfaces should exhibit effects such as negative differential resistance due to tunneling between allowed states. Similarly, optical detection by intersubband absorption may be possible. Ultrathin metal layers are predicted to behave as high-density dopant sheets.

  19. Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature

    PubMed Central

    Kolarczik, Mirco; Owschimikow, Nina; Korn, Julian; Lingnau, Benjamin; Kaptan, Yücel; Bimberg, Dieter; Schöll, Eckehard; Lüdge, Kathy; Woggon, Ulrike

    2013-01-01

    Coherence in light–matter interaction is a necessary ingredient if light is used to control the quantum state of a material system. Coherent effects are firmly associated with isolated systems kept at low temperature. The exceedingly fast dephasing in condensed matter environments, in particular at elevated temperatures, may well erase all coherent information in the material at timescales shorter than a laser excitation pulse. Here we show for an ensemble of semiconductor quantum dots that even in the presence of ultrafast dephasing, for suitably designed condensed matter systems quantum-coherent effects are robust enough to be observable at room temperature. Our conclusions are based on an analysis of the reshaping an ultrafast laser pulse undergoes on propagation through a semiconductor quantum dot amplifier. We show that this pulse modification contains the signature of coherent light–matter interaction and can be controlled by adjusting the population of the quantum dots via electrical injection. PMID:24336000

  20. Exciton absorption of entangled photons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  1. Quantum well engineering for semiconductor integrated optical sensors

    NASA Astrophysics Data System (ADS)

    Zappe, Hans P.; Hofstetter, Daniel; Arnot, Hazel E.

    1994-07-01

    Semiconductor technology, when applied to the design and fabrication of integrated optical sensors, will yield structures of improved performance and reduced cost. Key advances in this area employ two quantum well-based effects, the quantum confined Stark effect and selective quantum well intermixing, the use of which enable the monolithic integration and enhanced functionality of semiconductor-based optical sensor circuits. In this paper, we discuss the application of these effects to the fabrication of semiconductor devices useful for integrated optical sensors based on waveguide interferometry. The quantum confined Stark effect allows us to electrically define the absorption edge of detectors and permits the fabrication of high- efficiency phase modulators. By the use of different surface dielectrics, quantum well intermixing is employed to generate transparent and absorbing regions on a single substrate. Current and future applications are discussed.

  2. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    SciTech Connect

    Cundiff, Steven T.

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  3. Integrated superconducting detectors on semiconductors for quantum optics applications

    NASA Astrophysics Data System (ADS)

    Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.

    2016-05-01

    Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

  4. Quantum coherence in semiconductor nanostructures for improved lasers and detectors.

    SciTech Connect

    Chow, Weng Wah Dr.; Lyo, Sungkwun Kenneth; Cederberg, Jeffrey George; Modine, Normand Arthur; Biefeld, Robert Malcolm

    2006-02-01

    The potential for implementing quantum coherence in semiconductor self-assembled quantum dots has been investigated theoretically and experimentally. Theoretical modeling suggests that coherent dynamics should be possible in self-assembled quantum dots. Our experimental efforts have optimized InGaAs and InAs self-assembled quantum dots on GaAs for demonstrating coherent phenomena. Optical investigations have indicated the appropriate geometries for observing quantum coherence and the type of experiments for observing quantum coherence have been outlined. The optical investigation targeted electromagnetically induced transparency (EIT) in order to demonstrate an all optical delay line.

  5. Effects of quantum interference on the electron transport in the semiconductor/benzene/semiconductor junction

    NASA Astrophysics Data System (ADS)

    Vahedi, Javad; Sartipi, Zahra

    2015-06-01

    Using the tight-binding model and the generalised Green's function formalism, the effect of quantum interference on the electron transport through the benzene molecule in a semiconductor/benzene/semiconductor junction is numerically investigated. We show how the quantum interference sources, different contact positions and local gate can control the transmission characteristics of the electrode/molecule/electrode junction. We also study the occurrence of antiresonant states in the transmission probability function using a simple graphical scheme for different geometries of the contacts between the benzene molecule and semiconductor (silicon and titanium dioxide) electrodes.

  6. Influence of the Nuclear Electric Quadrupolar Interaction on the Coherence Time of Hole and Electron Spins Confined in Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hackmann, J.; Glasenapp, Ph.; Greilich, A.; Bayer, M.; Anders, F. B.

    2015-11-01

    The real-time spin dynamics and the spin noise spectra are calculated for p and n -charged quantum dots within an anisotropic central spin model extended by additional nuclear electric quadrupolar interactions and augmented by experimental data. Using realistic estimates for the distribution of coupling constants including an anisotropy parameter, we show that the characteristic long time scale is of the same order for electron and hole spins strongly determined by the quadrupolar interactions even though the analytical form of the spin decay differs significantly consistent with our measurements. The low frequency part of the electron spin noise spectrum is approximately 1 /3 smaller than those for hole spins as a consequence of the spectral sum rule and the different spectral shapes. This is confirmed by our experimental spectra measured on both types of quantum dot ensembles in the low power limit of the probe laser.

  7. Antimonide-Based Compound Semiconductors for Quantum Computing

    NASA Astrophysics Data System (ADS)

    Shojaei, Borzoyeh

    Quantum information science has made significant progress over the last several decades, but the eventual form a quantum computer will take has yet to be determined. Several physical systems have been shown to operate as quantum bits, or qubits, but each faces a central challenge: the qubit must be sufficiently isolated from its environment to maintain quantum coherence while simultaneously having sufficient coupling to the environment to allow quantum mechanical interactions for manipulation and measurement. An approach to achieve these conflicting requirements is to create qubits that are insensitive to small perturbing interactions within their environment by using topological properties of the physical system in which the qubits are formed. This dissertation presents studies on low-dimensional semiconductor heterostructures of InAs, GaSb and AlSb fabricated by molecular beam epitaxy with focus on relevant properties for their utilization in forming a topologically protected (TP) qubit. The theoretical basis regarding the semiconductor characteristics suitable for realizing TP qubits stipulates the need for strong spin-orbit coupled semiconductors with high carrier mobility. A comparative study of InAs/AlSb heterostructures wherein structure parameters were systematically varied led to a greater understanding of the limits to mobility in InAs quantum wells. Magnetotransport measurements using a dual-gated device geometry and a comparison of experiment to models of carrier mobility as a function of carrier density were used to identify dominant scattering mechanisms in these heterostructures. The development of dual-gated devices and high quality InAs channels with AlSb barriers led to a demonstration of the gate control of spin-orbit coupling in a high mobility InAs/AlSb quantum well in which the gate-tuned electron mobility exceeded 700,000 cm2/V·s. Analysis of low temperature magnetoresistance oscillations indicated the zero field spin-splitting could be

  8. Electron Liquids in Semiconductor Quantum Structures

    SciTech Connect

    Aron Pinczuk

    2009-05-25

    The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.

  9. Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato; Le Gros, Mark; Larabell, Carolyn; Alivisatos, A. Paul

    2006-05-29

    In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.

  10. Semiconductor quantum dot scintillation under gamma-ray irradiation.

    PubMed

    Létant, S E; Wang, T-F

    2006-12-01

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.

  11. Charge transport in semiconductor nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Mentzel, Tamar Shoshana

    In this thesis, we study charge transport in arrays of semiconductor nanocrystal quantum dots. Nanocrystals are synthesized in solution, and an organic ligand on the surface of the nanocrystal creates a potential barrier that confines charges in the nanocrystal. Optical absorption measurements reveal discrete electronic energy levels in the nanocrystals resulting from quantum confinement. When nanocrystals are deposited on a surface, they self-assemble into a close-packed array forming a nanocrystal solid. We report electrical transport measurements of a PbSe nanocrystal solid that serves as the channel of an inverted field-effect transistor. We measure the conductance as a function of temperature, source-drain bias and. gate voltage. The data indicates that holes are the majority carriers; the Fermi energy lies in impurity states in the bandgap of the nanocrystal; and charges hop between the highest occupied valence state in the nanocrystals (the 1S h states). At low source-drain voltages, the activation energy for hopping is given by the energy required to generate holes in the 1Sh state plus activation over barriers resulting from site disorder. The barriers from site disorder are eliminated with a sufficiently high source-drain bias. From the gate effect, we extract the Thomas-Fermi screening length and a density of states that is consistent with the estimated value. We consider variable-range hopping as an alternative model, and find no self-consistent evidence for it. Next, we employ charge sensing as an alternative to current measurements for studying transport in materials with localized sites. A narrow-channel MOSFET serves as a charge sensor because its conductance is sensitive to potential fluctuations in the nearby environment caused by the motion of charge. In particular, it is sensitive to the fluctuation of single electrons at the silicon-oxide interface within the MOSFET. We pattern a strip of amorphous germanium within 100 nm of the transistor. The

  12. Radio-frequency measurement in semiconductor quantum computation

    NASA Astrophysics Data System (ADS)

    Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing

    2017-05-01

    Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

  13. Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors.

    PubMed

    Huang, Hao; Dorn, August; Nair, Gautham P; Bulović, Vladimir; Bawendi, Moungi G

    2007-12-01

    We demonstrate reversible quenching of the photoluminescence from single CdSe/ZnS colloidal quantum dots embedded in thin films of the molecular organic semiconductor N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) in a layered device structure. Our analysis, based on current and charge carrier density, points toward field ionization as the dominant photoluminescence quenching mechanism. Blinking traces from individual quantum dots reveal that the photoluminescence amplitude decreases continuously as a function of increasing forward bias even at the single quantum dot level. In addition, we show that quantum dot photoluminescence is quenched by aluminum tris(8-hydroxyquinoline) (Alq3) in chloroform solutions as well as in thin solid films of Alq3 whereas TPD has little effect. This highlights the importance of chemical compatibility between semiconductor nanocrystals and surrounding organic semiconductors. Our study helps elucidate elementary interactions between quantum dots and organic semiconductors, knowledge needed for designing efficient quantum dot organic optoelectronic devices.

  14. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  15. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  16. Charge- and spin-density modulations in semiconductor quantum wires

    NASA Astrophysics Data System (ADS)

    Lee, Minchul; Bruder, Christoph

    2005-07-01

    We investigate static charge- and spin-density modulation patterns along a ferromagnet-semiconductor single-junction quantum wire in the presence of spin-orbit coupling. Coherent scattering theory is used to calculate the charge and spin densities in the ballistic regime. The observed oscillatory behavior is explained in terms of the symmetry of the charge and spin distributions of eigenstates in the semiconductor quantum wire. Also, we discuss the condition that these charge- and spin-density oscillations can be observed experimentally.

  17. Ionization balance in semiconductor quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Pan, Janet L.

    1994-01-01

    The commonly assumed quasiequilibrium particle distribution with the same quasi-Fermi-level for all quantum-dot carriers in the same energy (conduction or valence) band is found not to be valid for a wide range of temperatures at the inversion populations and bound energy separations (greater than a LO phonon energy) used in the literature. Bound state occupation factors obtained from the steady state solution of rate equations describing the ionization balance in room-temperature 100-Å-radius GaAs quantum dots whose centers are separated by 400 Å are found to be very different from the quasiequilibrium distribution used in an example from the literature. In such quantum dots, bound state transitions result from collisions between charged particles via the Coulomb interaction, and from interband and intraband radiative processes. The critical free electron concentration above which collisional processes can establish a quasiequilibrium in the conduction band is found to exceed 1019 cm-3. Our numerical solution is in good agreement with Pitaevskii's model from atomic physics of an electron random walk in energy as modeled by a Fokker-Planck equation. In our simple model, electrons are captured into a bound conduction band state via three-body recombination and phonon emission, and drop into lower energy bound states via a series of collisional deexcitations before combining with a valence band hole. Solution of the rate equations is standard in numerical studies of stimulated emission in atomic plasmas, but our present discussion is, to our knowledge, the first in the literature on semiconductor quantum-dot lasers.

  18. Pure dephasing of single Mn spin in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Dingyang; Lai, Wenxi; Yang, Wen

    2017-08-01

    We present comprehensive analytical and numerical studies on the pure dephasing of a single Mn spin in a semiconductor quantum dot due to (i) its sp-d exchange interaction with an electronic environment, and (ii) its hyperfine interaction with the nuclear spin environment. For (i), by modeling the electronic environment by an open two-level system, we provide exact analytical expressions and present detailed analysis for the Mn spin pure dephasing in both the Markovian and non-Markovian regimes. This provides a clear physical picture and a general theoretical framework based on which we estimate the Mn spin pure dephasing due to various fluctuations (such as thermal excitation, optical pumping, tunneling, or electron/hole spin relaxation) of the electronic environment and reveals a series of interesting behaviors, such as thermal, optical, and electrical control of the crossover between the Markov and non-Markov regimes. In particular, we find rapid Mn spin pure dephasing on a nanosecond time scale by the thermal fluctuation and optical pumping, but these mechanisms can be strongly suppressed by shifting the electron envelope function relative to the Mn atom with an external electric field through the quantum-confined Stark effect. The thermal fluctuation mechanism is also exponentially suppressed at low temperature. For (ii), we find that the Mn spin dephasing time is limited by the thermal fluctuation of the nuclear spins to a few microseconds even at low temperature and its value varies from sample to sample, depending on the distribution of spinful isotopes on the nearest-neighbor sites surrounding the substitutional Mn atom. Our findings may be useful to understand and suppress the Mn spin pure dephasing for its applications in quantum information processing.

  19. Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots.

    PubMed

    Liu, Jin; Kilina, Svetlana V; Tretiak, Sergei; Prezhdo, Oleg V

    2015-09-22

    It is well-known experimentally and theoretically that surface ligands provide additional pathways for energy relaxation in colloidal semiconductor quantum dots (QDs). They increase the rate of inelastic charge-phonon scattering and provide trap sites for the charges. We show that, surprisingly, ligands have the opposite effect on elastic electron-phonon scattering. Our simulations demonstrate that elastic scattering slows down in CdSe QDs passivated with ligands compared to that in bare QDs. As a result, the pure-dephasing time is increased, and the homogeneous luminescence line width is decreased in the presence of ligands. The lifetime of quantum superpositions of single and multiple excitons increases as well, providing favorable conditions for multiple excitons generation (MEG). Ligands reduce the pure-dephasing rates by decreasing phonon-induced fluctuations of the electronic energy levels. Surface atoms are most mobile in QDs, and therefore, they contribute greatly to the electronic energy fluctuations. The mobility is reduced by interaction with ligands. A simple analytical model suggests that the differences between the bare and passivated QDs persist for up to 5 nm diameters. Both low-frequency acoustic and high-frequency optical phonons participate in the dephasing processes in bare QDs, while low-frequency acoustic modes dominate in passivated QDs. The theoretical predictions regarding the pure-dephasing time, luminescence line width, and MEG can be verified experimentally by studying QDs with different surface passivation.

  20. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  1. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  2. Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures

    DOEpatents

    Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.

    2016-03-01

    Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.

  3. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  4. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  5. Realizing ferromagnetic coupling in diluted magnetic semiconductor quantum dots.

    PubMed

    Yan, Wensheng; Liu, Qinghua; Wang, Chao; Yang, Xiaoyu; Yao, Tao; He, Jingfu; Sun, Zhihu; Pan, Zhiyun; Hu, Fengchun; Wu, Ziyu; Xie, Zhi; Wei, Shiqiang

    2014-01-22

    Manipulating the ferromagnetic interactions in diluted magnetic semiconductor quantum dots (DMSQDs) is a central theme to the development of next-generation spin-based information technologies, but this remains a great challenge because of the intrinsic antiferromagnetic coupling between impurity ions therein. Here, we propose an effective approach capable of activating ferromagnetic exchange in ZnO-based DMSQDs, by virtue of a core/shell structure that engineers the energy level of the magnetic impurity 3d levels relative to the band edge. This idea has been successfully applied to Zn(0.96)Co(0.04)O DMSQDs covered by a shell of ZnS or Ag2S. First-principles calculations further indicate that covering a ZnS shell around the Co-doped ZnO core drives a transition of antiferromagnetic-to-ferromagnetic interaction, which occurs within an effective depth of 1.2 nm underneath the surface in the core. This design opens up new possibility for effective manipulation of exchange interactions in doped oxide nanostructures for future spintronics applications.

  6. Semiconductor quantum dots in bioanalysis: crossing the valley of death.

    PubMed

    Algar, W Russ; Susumu, Kimihiro; Delehanty, James B; Medintz, Igor L

    2011-12-01

    Colloidal semiconductor quantum dots (QDs) have evolved beyond scientific novelties and are transitioning into bona fide analytical tools. We describe the burgeoning role of QDs in many different fields of bioanalyses and highlight the advantages afforded by their unique physical and optical properties.

  7. Valley Polarization in Size-Tunable Monolayer Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wei, Guohua; Czaplewski, David A.; Jung, Il Woong; Lenferink, Erik J.; Stanev, Teodor K.; Stern, Nathaniel P.

    Controlling the size of semiconductor nanostructures allows manipulation of the optical and electrical properties of band carriers. We show that laterally-confined monolayer MoS2 quantum dots can be created through top-down nanopatterning of an atomically-thin two-dimensional semiconductor. Semiconductor-compatible nanofabrication processing allows for these low-dimensional materials to be integrated into complex systems that harness their controllable optical properties. Size-dependent exciton energy shifts and linewidths are observed, demonstrating the influence of quantum confinement. The patterned dots exhibit the same valley polarization characteristics as in a continuous MoS2 sheet, suggesting that monolayer semiconductor quantum dots could have potential for advancing quantum information applications. This work is supported by ISEN, the DOE-BES (DE-SC0012130), the NSF MRSEC program (DMR-1121262), and the Center for Nanoscale Materials, DOE-BES (DE-AC02-06CH11357). N.P.S. is an Alfred P. Sloan Research Fellow.

  8. Quantum noise evolution under optical Kerr effects and two-photon absorption in a semiconductor waveguide.

    PubMed

    Ju, Heongkyu; Lee, Eun-Cheol

    2008-03-03

    We theoretically study evolution of quantum noise of ultrashort pulsed light that propagates a semiconductor waveguide where nonlinear optical interaction occurs. Optical quantum noise is simulated by statistical (pseudo-)random distribution of phasors in a phase space with Gaussian probability weight, and each phasor evolution is governed by beam propagation method. It is shown that Kerr effects squeeze quantum noise of coherent light in a phase space such that photon-number noise is unchanged while phase noise increasing with uncertainty area invariant. However, two-photon absorption alters the photon-number statistics of light unlike Kerr effects.

  9. Magnetoexcitons in type-II semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Fuster, Gonzalo; Barticevic, Zdenka; Pacheco, Monica; Oliveira, Luiz E.

    2004-03-01

    We present a theoretical investigation of excitons in type-II semiconductor quantum dots (QD). In these systems the confinement of electrons inside the QD and the hole outside the QD produces a ring-like structure [1-2]. Recently, Ribeiro et al [3], in a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, observed Aharonov-Bohm-type oscillations characteristic of the ring topology for neutral excitons. Using a simple model they have derived the groundstate hole energy as a function of the magnetic field, and obtained values for the ring parameters which are in good agreement with the measured values. However, some of the features observed experimentally, in the photoluminescence intensity, can not be well explained under that approach. In this work we present a more realistic model which considers the finite width of the ring and the electron-hole interaction included via a perturbative approach. The calculations are performed within the oneparticle formalism using the effective mass approximation. The confinement potential for electrons is modelled as the superposition of a quantum well potential along the axial direction, and a parabolic lateral confinement potential. The energies for the hole in the ring plane are calculated using the method of reference [4]. Theoretical calculations are in good agreement with the experimental results of reference [3] provided that excitonic effects are properly taken into account. References 1. A.O. Govorov et al., Physica E 13 , 297 (2002). 2. K. L. Janssens et al. Phys. Rev B64, 155324 (2001), and Phys. Rev. B66, 075314 (2002). 3. E. Ribeiro, G. Medeiros-Ribeiro, and W.Carvalho Jr., and A.O. Govorov, condmat/0304092 (2003). 4. Z. Barticevic, G. Fuster, and M. Pacheco,Phys. Rev. B 65, 193307 (2002).

  10. Interactions between semiconductor nanowires and living cells.

    PubMed

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  11. Semiconductor Quantum Dots in Chemical Sensors and Biosensors

    PubMed Central

    Frasco, Manuela F.; Chaniotakis, Nikos

    2009-01-01

    Quantum dots are nanometre-scale semiconductor crystals with unique optical properties that are advantageous for the development of novel chemical sensors and biosensors. The surface chemistry of luminescent quantum dots has encouraged the development of multiple probes based on linked recognition molecules such as peptides, nucleic acids or small-molecule ligands. This review overviews the design of sensitive and selective nanoprobes, ranging from the type of target molecules to the optical transduction scheme. Representative examples of quantum dot-based optical sensors from this fast-moving field have been selected and are discussed towards the most promising directions for future research. PMID:22423206

  12. Strain-Gradient Position Mapping of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    de Assis, P.-L.; Yeo, I.; Gloppe, A.; Nguyen, H. A.; Tumanov, D.; Dupont-Ferrier, E.; Malik, N. S.; Dupuy, E.; Claudon, J.; Gérard, J.-M.; Auffèves, A.; Arcizet, O.; Richard, M.; Poizat, J.-Ph.

    2017-03-01

    We introduce a nondestructive method to determine the position of randomly distributed semiconductor quantum dots (QDs) integrated in a solid photonic structure. By setting the structure in an oscillating motion, we generate a large stress gradient across the QDs plane. We then exploit the fact that the QDs emission frequency is highly sensitive to the local material stress to map the position of QDs deeply embedded in a photonic wire antenna with an accuracy ranging from ±35 nm down to ±1 nm . In the context of fast developing quantum technologies, this technique can be generalized to different photonic nanostructures embedding any stress-sensitive quantum emitters.

  13. The quantum hydrodynamic model for semiconductor devices

    SciTech Connect

    Gardner, C.L. )

    1994-04-01

    The classical hydrodynamic equations can be extended to include quantum effects by incorporating the first quantum corrections. The full three-dimensional quantum hydrodynamic (QHD) model is derived for the first time by a moment expansion of the Wigner-Boltzmann equations. The QHD conservation laws have the same form as the classical hydrodynamic equations, but the energy density and stress tensor have additional quantum terms. These quantum terms allow particles to tunnel through potential barriers and to build up in potential wells. The three-dimensional QHD transport equations are mathematically classified as having two Schroedinger modes, two hyperbolic modes, and one parabolic mode. The one-dimensional steady-state QHD equations are discretized in conservation form using the second upwind method. Simulations of a resonant tunneling diode are presented that show charge buildup in the quantum well and negative differential resistance (NDR) in the current-voltage curve. These are the first simulations of the full QHD equations to show NDR in the resonant tunneling diode. The computed current-voltage curve agrees quantitatively with experimental measurements. NDR interpreted in terms of the time spent by electrons in the quantum well.

  14. Patterned semiconductor inverted quantum dot photonic devices

    NASA Astrophysics Data System (ADS)

    Coleman, J. J.

    2016-03-01

    A novel inverted quantum dot structure is presented, which consists of an InGaAs quantum well that has been periodically perforated and then filled with the higher bandgap GaAs barrier material. This structure exhibits a unique quantized energy structure something like a planar atomic bond structure and formation of allowed and forbidden energy bands instead of highly localized, fully discrete states. We describe the growth, processing and characteristics of inverted quantum dot structures and outline interesting and potentially important effects arising from the introduction of nanoscale features (<50 nm) in the active medium.

  15. Energy transfer processes in semiconductor quantum dots: bacteriorhodopsin hybrid system

    NASA Astrophysics Data System (ADS)

    Rakovich, Aliaksandra; Sukhanova, Alyona; Bouchonville, Nicolas; Molinari, Michael; Troyon, Michel; Cohen, Jacques H. M.; Rakovich, Yury; Donegan, John F.; Nabiev, Igor

    2009-05-01

    The potential impact of nanoscience on energy transfer processes in biomolecules was investigated on the example of a complex between fluorescent semiconductor nanocrystals and photochromic membrane protein. The interactions between colloidal CdTe quantum dots (QDs) and bacteriorhodopsin (bR) protein were studied by a variety of spectroscopic techniques, including integrated and time-resolved fluorescence spectroscopies, zeta potential and size measurement, and fluorescence correlation spectroscopy. QDs' luminescence was found to be strongly modulated by bacteriorhodopsin, but in a controllable way. Decreasing emission lifetimes and blue shifts in QDs' emission at increasing protein concentrations suggest that quenching occurs via Förster resonance energy transfer. On the other hand, concave Stern-Volmer plots and sigmoidal photoluminescence quenching curves imply that the self-assembling of NCs and bR exists, and the number of nanocrystals (NCs) per bacteriorhodopsin contributing to energy transfer can be determined from the inflection points of sigmoidal curves. This number was found to be highly dependent not only on the spectral overlap between NC emission and bR absorption bands, but also on nanocrystal surface charge. These results demonstrate the potential of how inorganic nanoscale materials can be employed to improve the generic molecular functions of biomolecules. The observed interactions between CdTe nanocrystals and bacteriorhodopsin can provide the basis for the development of novel functional materials with unique photonic properties and applications in areas such as all-optical switching, photovoltaics and data storage.

  16. Ultrafast dynamics of many-body processes and fundamental quantum mechanical phenomena in semiconductors

    PubMed Central

    Chemla, Daniel S.; Shah, Jagdeep

    2000-01-01

    The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981

  17. Tuning exchange interactions in organometallic semiconductors

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Manning, Lane W.; Hua, Kim-Ngan; Headrick, Randall L.; Cherian, Judy G.; Bishop, Michael M.; McGill, Stephen A.; Furis, Madalina I.

    2015-09-01

    Organic semiconductors are emerging as a leading area of research as they are expected to overcome limitations of inorganic semiconductor devices for certain applications where low cost manufacturing, device transparency in the visible range or mechanical flexibility are more important than fast switching times. Solution processing methods produce thin films with millimeter sized crystalline grains at very low cost manufacturing prices, ideally suited for optical spectroscopy investigations of long range many-body effects in organic systems. To this end, we synthesized an entire family of organosoluble 3-d transition metal Pc's and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of metal-free (H2Pc) molecule and organometallic phthalocyanines (MPc's). Our previous studies on the parent MPc crystalline thin films identified different electronic states mediating exchange interactions in these materials. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins enabled the further tuning of these interactions by mixing CoPc and H2Pc in different ratios ranging from 1:1 to 1000:1 H2Pc:MPc. The magnitude of the exchange is also tunable as a function of the average distance between unpaired spins in these materials. Furthermore, high magnetic field (B < 25T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials.

  18. Single photon sources with single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  19. Introducing and manipulating magnetic dopant exchange interactions in semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Hegde, Manu; Hosein, Ian D.; Sabergharesou, Tahereh; Farvid, Shokouh S.; Radovanovic, Pavle V.

    2013-09-01

    The ability to control both spin and charge degrees of freedom in semiconductor nanostructrures is at heart of spintronic and quantum information technologies. Magnetically-doped semiconductor nanowires have emerged as a promising platform for spintronics, which warrants the exploration of their synthesis, electronic structure, and magnetic properties. Here we demonstrate the preparation of manganese-doped GaN and SnO2 nanowires by chemical vapor deposition and solvothermal methods, respectively. The investigation of both systems by electron microscopy and x-ray absorption spectroscopy at ensemble and single nanowire levels indicates that manganese dopants exist in a dual oxidation state, Mn2+ and Mn3+, with Mn2+ being the majority species. X-ray magnetic circular dichroism studies of individual nanowires suggest ferromagnetic interactions of manganese dopants, and the nanowire orientation-dependent magnetization owing to the magnetocrystalline anisotropy. The results of these studies demonstrate quantitative determination of the dopant electronic structure at the molecular level, and allow for a prediction of the magnetic properties of diluted magnetic semiconductor nanowires based on their orientation and geometry.

  20. Quantum Hall effect in semiconductor systems with quantum dots and antidots

    SciTech Connect

    Beltukov, Ya. M.; Greshnov, A. A.

    2015-04-15

    The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.

  1. Recombination Dynamics in Quantum Well Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Fouquet, Julie Elizabeth

    Time-resolved and time-integrated photoluminescence as a function of excitation energy density have been observed in order to study recombination dynamics in GaAs/Al(,x)Ga(,1 -x)As quantum well structures. The study of room temperature photoluminescence from the molecular beam epitaxy (MBE) -grown multiple quantum well structure and photoluminescence peak energy as a function of tem- perature shows that room temperature recombination at excitation densities above the low 10('16) cm('-3) level is due to free carriers, not excitons. This is the first study of time-resolved photoluminescence of impurities in quantum wells; data taken at different emission wave- lengths at low temperatures shows that the impurity-related states at photon energies lower than the free exciton peaks luminesce much more slowly than the free exciton states. Results from a similar structure grown by metal -organic chemical vapor deposition (MOCVD) are explained by saturation of traps. An unusual increase in decay rate observed tens of nanoseconds after excitation is probably due to carriers falling out of the trap states. Since this is the first study of time-resolved photoluminescence of MOCVD-grown quantum well structures, this unusual behavior may be realted to the MOCVD growth process. Further investigations indi- cate that the traps are not active at low temperatures; they become active at approximately 150 K. The traps are probably associated with the (hetero)interfaces rather than the bulk Al(,x)Ga(,1-x)As material. The 34 K photoluminescence spectrum of this sample revealed a peak shifted down by approximately 36 meV from the main peak. Time-resolved and time-integrated photoluminescence results here show that this peak is not a stimulated phonon emission sideband, but rather is an due to an acceptor impurity, probably carbon. Photo- luminescence for excitation above and below the barrier bandgap shows that carriers are efficiently collected in the wells in both single and multiple

  2. Exciton Relaxation and Electron Transfer Dynamics of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Liu, Cunming

    Quantum dots (QDs), also referred to as colloidal semiconductor nanocrystals, exhibit unique electronic and optical properties arising from their three-dimensional confinement and strongly enhanced coulomb interactions. Developing a detailed understanding of the exciton relaxation dynamics within QDs is important not only for sake of exploring the fundamental physics of quantum confinement processes, but also for their applications. Ultrafast transient absorption (TA) spectroscopy, as a powerful tool to explore the relaxation dynamics of excitons, was employed to characterize the hot single/multiexciton relaxation dynamics at the first four exciton states of CdSe/CdZnS QDs. We observed for the first time that the hot hole can relax through two possible pathways: Intraband multiple phonon coupling and intrinsic defect trapping, with a lifetime of ˜7 ps. Additionally, an ultra-short component of ˜ 8 ps, directly associated with the Auger recombination of highly energetic exciton states, was discovered. After exploring the exciton relaxation inside QDs, ultrafast TA spectroscopy was further applied to study the electron transferring outside from QDs. By using a brand-new photocatalytic system consisting of CdSe QDs and Ni-dihydrolipoic acid (Ni-DHLA) catalyst, which has represented a robust photocatalysis of H2 from water, the photoinduced electron transfer (ET) dynamics between QD and the catalyst, one of most important steps during H2 generation, was studied. We found smaller bare CdSe QDs exhibit a better ET performance and CdS shelling on the bare QDs leads to worsen the ET. The calculations of effective mass approximation (EMA) and Marcus theory show the ET process is mainly dominated by driving force, electronic coupling strength and reorganization energy between QD and the catalyst.

  3. Screening effect on the exciton mediated nonlinear optical susceptibility of semiconductor quantum dots.

    PubMed

    Bautista, Jessica E Q; Lyra, Marcelo L; Lima, R P A

    2014-11-17

    We study the exciton contribution to the third-order optical susceptibility of one-dimensional semiconductor quantum dots and show that the screening of the electron-hole interaction has a strong influence on the nonlinear optical properties in the weak confinement regime. Based on a density matrix formulation, we estimate the spectrum of the third-order optical susceptibility and its contribution to the refraction index and absorption coefficient. In particular, we show that the multipeaked spectrum of the nonlinear susceptibility, which results from the hydrogenoid character of the exciton eigenstates for a purely Coulombian electron-hole coupling, is reverted towards a single peaked structure as the interaction becomes strongly screened, thus leading to a substantial enhancement of the nonlinear optical properties of semiconductor quantum dots.

  4. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.

    PubMed

    Schimpf, Alina M; Thakkar, Niket; Gunthardt, Carolyn E; Masiello, David J; Gamelin, Daniel R

    2014-01-28

    Nanomaterials exhibiting plasmonic optical responses are impacting sensing, information processing, catalysis, solar, and photonics technologies. Recent advances have expanded the portfolio of plasmonic nanostructures into doped semiconductor nanocrystals, which allow dynamic manipulation of carrier densities. Once interpreted as intraband single-electron transitions, the infrared absorption of doped semiconductor nanocrystals is now commonly attributed to localized surface plasmon resonances and analyzed using the classical Drude model to determine carrier densities. Here, we show that the experimental plasmon resonance energies of photodoped ZnO nanocrystals with controlled sizes and carrier densities diverge from classical Drude model predictions at small sizes, revealing quantum plasmons in these nanocrystals. A Lorentz oscillator model more adequately describes the data and illustrates a closer link between plasmon resonances and single-electron transitions in semiconductors than in metals, highlighting a fundamental contrast between these two classes of plasmonic materials.

  5. Controlling Carrier Dynamics using Quantum-Confined Semiconductor Nanocrystals

    SciTech Connect

    Beard, Matthew C.; Klimov, Victor I.

    2016-06-01

    The articles included in this special issue of Chemical Physics explore the use of quantum-confined semiconductor nanocrystals to control the flow of energy and/or charge. Colloidal quantum-confined semiconductor nanostructures are an emerging class of functional materials being developed for novel opto-electronic applications. In the last few years numerous examples in the literature have emerged where novel nanostructures have been tailored such as to achieve a specific function thus moving the field from the stage of discovery of novel behaviors to that of control of nanostructure properties. In addition to the internal structure of the NCs their assemblies can be tailored to achieve emergent properties and add additional control parameters that determine the final opto-electronic properties. These principles are explored via variations in shape, size, surface ligands, heterostructuring, morphology, composition, and assemblies and are demonstrated through measurements of excited state processes, such as Auger recombination; photoluminescence; charge separation and charge transport.

  6. A bird's-eye view on the evolution of semiconductor superlattices and quantum wells

    NASA Astrophysics Data System (ADS)

    Esaki, L.

    1986-09-01

    An historical account is given of 17 years of interdisciplinary development in semiconductor superlattice effect and quantum well experimental research, with emphasis on the cooperative interaction between reduced dimensionality physics and heteroepitaxial growth materials science. Because some of the transport and optical properties obtained (such as ultrahigh carrier mobilities and semimetallic coexistence of electrons and holes) do not exist in any natural crystal, an invaluable contribution has been made toward such otherwise unknowable phenomena as fractional quantization.

  7. Static gain saturation in quantum dot semiconductor optical amplifiers.

    PubMed

    Meuer, Christian; Kim, Jungho; Laemmlin, Matthias; Liebich, Sven; Capua, Amir; Eisenstein, Gadi; Kovsh, Alexey R; Mikhrin, Sergey S; Krestnikov, Igor L; Bimberg, Dieter

    2008-05-26

    Measurements of saturated amplified spontaneous emission-spectra of quantum dot semiconductor optical amplifiers demonstrate efficient replenishment of the quantum-dot ground state population from excited states. This saturation behavior is perfectly modeled by a rate equation model. We examined experimentally the dependence of saturation on the drive current and the saturating optical pump power as well as on the pump wavelength. A coherent noise spectral hole is observed with which we assess dynamical properties and propose optimization of the SOA operating parameters for high speed applications.

  8. Iterative bandgap engineering at selected areas of quantum semiconductor wafers.

    PubMed

    Stanowski, Radoslaw; Martin, Matthieu; Ares, Richard; Dubowski, Jan J

    2009-10-26

    We report on the application of a laser rapid thermal annealing technique for iterative bandgap engineering at selected areas of quantum semiconductor wafers. The approach takes advantage of the quantum well intermixing (QWI) effect for achieving targeted values of the bandgap in a series of small annealing steps. Each QWI step is monitored by collecting a photoluminescence map and, consequently, choosing the annealing strategy of the next step. An array of eight sites, 280 mum in diameter, each emitting at 1480 nm, has been fabricated with a spectral accuracy of better than 2 nm in a standard InGaAs/InGaAsP QW heterostructure that originally emitted at 1550 nm.

  9. Quantum Spin Hall Effect in Inverted Type II Semiconductors

    SciTech Connect

    Liu, Chaoxing; Hughes, Taylor L.; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall (QSH) state is a topologically non-trivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells. In this work we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. Because of a rare band alignment the quantum well band structure exhibits an 'inverted' phase similar to CdTe/HgTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking and inter-layer charge transfer are essential. By standard self-consistent calculations, we show that the QSH state persists when these corrections are included, and a quantum phase transition between the normal insulator and the QSH phase can be electrically tuned by the gate voltage.

  10. Quantum information processing with electronic and nuclear spins in semiconductors

    NASA Astrophysics Data System (ADS)

    Klimov, Paul Victor

    Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.

  11. Excitability in a quantum dot semiconductor laser with optical injection.

    PubMed

    Goulding, D; Hegarty, S P; Rasskazov, O; Melnik, S; Hartnett, M; Greene, G; McInerney, J G; Rachinskii, D; Huyet, G

    2007-04-13

    We experimentally analyze the dynamics of a quantum dot semiconductor laser operating under optical injection. We observe the appearance of single- and double-pulse excitability at one boundary of the locking region. Theoretical considerations show that these pulses are related to a saddle-node bifurcation on a limit cycle as in the Adler equation. The double pulses are related to a period-doubling bifurcation and occur on the same homoclinic curve as the single pulses.

  12. Computational models for the berry phase in semiconductor quantum dots

    SciTech Connect

    Prabhakar, S. Melnik, R. V. N.; Sebetci, A.

    2014-10-06

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  13. Computational models for the berry phase in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Prabhakar, S.; Melnik, R. V. N.; Sebetci, A.

    2014-10-01

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  14. Semiconductor quantum dot toxicity in a mouse in vivo model

    NASA Astrophysics Data System (ADS)

    Bozrova, Svetlana V.; Baryshnikova, Maria A.; Nabiev, Igor; Sukhanova, Alyona

    2017-01-01

    Quantum dots (QDs) are increasingly widely used in clinical medicine. Their most promising potential applications are cancer diagnosis, including in vivo tumour imaging and targeted drug delivery. In this connection, the main questions are whether or not QDs are toxic for humans and, if they are, what concentration is relatively harmless. We have carried out in vivo experiments with CdSe/ZnS fluorescent semiconductor core/shell QDs, which are currently the most widely used in research.

  15. Many-body effects in low-order optical nonlinearities of semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Roumiantsev, Ilia

    significance of many-body correlations. In the case of four-wave mixing in semiconductor microcavities, our theoretical analysis in conjunction with experimental data obtained at the University of Tokyo gave us indications for a significant shortcoming of the second Born approximation (2nd BA) applied to two-exciton Coulomb correlations in a thin semiconductor quantum well, in agreement with the general knowledge of the qualitative failure of the 2nd BA in systems with short-range interaction in two dimensions. We also analyzed a novel all-optical switching technique based on the nonlinear polarization rotation. Apart from identifying the many-particle processes relevant for the switch operation in the chi(3) regime, we proposed ways to further optimize the switch.

  16. Bandgap engineering in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Chia, C. K.; Dong, J. R.; Chua, S. J.; Tripathy, S.

    2006-02-01

    Intermixing in InAs quantum dots (QDs) grown by molecular-beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques on GaAs and InP substrates have been investigated by rapid thermal annealing (RTA) and laser-irradiation techniques. In all cases, substantial energy shifts have been observed after RTA and laser annealing. A comparison between the intermixed QD and quantum well (QW) structures shows distinguished differences in photoluminescence (PL) intensity and full-width at half-maximum (FWHM). For QD structures, an increase in PL intensity and a reduction in FWHM were observed after intermixing, whereas for QW structures the FWHM increased and the PL intensity reduced after intermixing, suggesting degradation of the material quality in the QWs after intermixing. Examination of the role of the surrounding matrix in intermixing process shows that InAs QDs placed in a InGaAs QW can retain its good optical quality after high temperature annealing, as the InGaAs QW provides a foundation for the QDs to be fully desorbed in the well.

  17. Interfacing nanocarbons with organic and inorganic semiconductors: from nanocrystals/quantum dots to extended tetrathiafulvalenes.

    PubMed

    Katsukis, Georgios; Romero-Nieto, Carlos; Malig, Jenny; Ehli, Christian; Guldi, Dirk M

    2012-08-14

    There is no doubt that the outstanding optical and electronic properties that low-dimensional carbon-based nanomaterials exhibit call for their implementation into optoelectronic devices. However, to harvest the enormous potential of these nanocarbons it is essential to probe them in multifunctional electron donor-acceptor systems, placing particular attention on the interactions between electron donors/electron acceptors and nanocarbons. This feature article outlines challenges and recent breakthroughs in the area of interfacing organic and inorganic semiconductors with low-dimensional nanocarbons that range from fullerenes (0D) and carbon nanotubes (1D) to graphene (2D). In the context of organic semiconductors, we focus on aromatic macrocycles and extended tetrathiafulvalenes, and CdTe nanocrystals/quantum dots represent the inorganic semiconductors. Particular emphasis is placed on designing and probing solar energy conversion nanohybrids.

  18. Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar

    2014-07-01

    The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.

  19. Modulation Response of a Long-Cavity, Gain-Levered Quantum-Dot Semiconductor Laser - Postprint

    DTIC Science & Technology

    2014-01-27

    of self-injected quantum-dot semiconductor diode lasers ,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013). 7. M. Asada, Y. Mitamoto, and Y...capacity of existing semiconductor laser material structures by simply adding a single feature to a device’s electrical contact layout. Another...AFRL-RY-WP-TP-2014-0295 MODULATION RESPONSE OF A LONG-CAVITY, GAIN- LEVERED QUANTUM-DOT SEMICONDUCTOR LASER -POSTPRINT Nicholas G. Usechak

  20. Spin dynamics of an individual Cr atom in a semiconductor quantum dot under optical excitation

    SciTech Connect

    Lafuente-Sampietro, A.; Utsumi, H.; Kuroda, S.; Boukari, H.; Besombes, L.

    2016-08-01

    We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Cr interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.

  1. Semiconductor-inspired design principles for superconducting quantum computing

    NASA Astrophysics Data System (ADS)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-01

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  2. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics

    PubMed Central

    Nair, Gautham; Zhao, Jing; Bawendi, Moungi G

    2012-01-01

    Biexciton properties strongly affect the usability of a light emitter in quantum photon sources and lasers but are difficult to measure for single fluorophores at room temperature due to luminescence intermittency and bleaching at the high excitation fluences usually required. Here, we observe the biexciton (BX) to exciton (X) to ground photoluminescence cascade of single colloidal semiconductor nanocrystals (NCs) under weak excitation in a g(2) photon correlation measurement and show that the normalized amplitude of the cascade feature is equal to the ratio of the BX to X fluorescence quantum yields. This imposes a limit on the attainable depth of photon antibunching and provides a robust means to study single emitter biexciton physics. In NC samples, we show that the BX quantum yield is considerably inhomogeneous, consistent with the defect sensitivity expected of the Auger nonradiative recombination mechanism. The method can be extended to study X,BX spectral and polarization correlations. PMID:21288042

  3. Semiconductor-inspired design principles for superconducting quantum computing.

    PubMed

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  4. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics.

    PubMed

    Nair, Gautham; Zhao, Jing; Bawendi, Moungi G

    2011-03-09

    Biexciton properties strongly affect the usability of a light emitter in quantum photon sources and lasers but are difficult to measure for single fluorophores at room temperature due to luminescence intermittency and bleaching at the high excitation fluences usually required. Here, we observe the biexciton (BX) to exciton (X) to ground photoluminescence cascade of single colloidal semiconductor nanocrystals (NCs) under weak excitation in a g((2)) photon correlation measurement and show that the normalized amplitude of the cascade feature is equal to the ratio of the BX to X fluorescence quantum yields. This imposes a limit on the attainable depth of photon antibunching and provides a robust means to study single emitter biexciton physics. In NC samples, we show that the BX quantum yield is considerably inhomogeneous, consistent with the defect sensitivity expected of the Auger nonradiative recombination mechanism. The method can be extended to study X,BX spectral and polarization correlations.

  5. Semiconductor-inspired design principles for superconducting quantum computing

    PubMed Central

    Shim, Yun-Pil; Tahan, Charles

    2016-01-01

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions. PMID:26983379

  6. Laser excited and multiply charged semiconductor quantum dots modeled by empirical tight binding

    NASA Astrophysics Data System (ADS)

    Lee, Seungwon

    The effects of quantum confinement and many-body interactions on the optical and transport properties of semiconductor quantum dots are investigated within the framework of the empirical tight-binding model. The exciton levels of optically excited dots and the electron and hole addition energies of multiply charged dots are described by incorporating many-body interactions, electron-hole dipole moments, and polarization of the dot environment into the tight-binding model. We choose Si quantum dots as an example of an indirect gap semiconductor, and InAs and CdSe dots as examples of typical III-V and II-VI direct-gap semiconductors. To mimic chemically synthesized quantum dots, the dot structure is modeled as a spherical and unstrained crystallite with the surface dangling bonds truncated. Electron and hole single-particle energies are significantly improved by optimizing tight-binding parameters and by extending tight-binding basis orbitals to give the best description of the lowest conduction and the highest valence bands. For Si dots, the exciton gaps calculated with the parameters, optimized to give the good effective mass of the lowest conduction band near its minimum, agree well with experimental gaps. For InAs dots, the inclusion of spin-orbit coupling and d orbitals in a single-particle Hamiltonian increases a single-particle gap as much as 0.2 eV, yielding better agreement with experiments in terms of several low-lying bright-exciton energies and addition energies. Quantitatively, tight-binding treatments of Coulomb interactions are reliable for dots with radii larger than 15--20 A. In direct-gap semiconductor InAs and CdSe quantum dots, the exchange interaction can be long-ranged, extending over the whole dot when there is no local orthogonality between the electron and hole wave functions. In contrast, for Si quantum dots the extra phase factor due to the indirect gap effectively limits the range to about 15 A, independent of the dot size. For optically

  7. Quantum model for mode locking in pulsed semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Beugeling, W.; Uhrig, Götz S.; Anders, Frithjof B.

    2016-12-01

    Quantum dots in GaAs/InGaAs structures have been proposed as a candidate system for realizing quantum computing. The short coherence time of the electronic quantum state that arises from coupling to the nuclei of the substrate is dramatically increased if the system is subjected to a magnetic field and to repeated optical pulsing. This enhancement is due to mode locking: oscillation frequencies resonant with the pulsing frequencies are enhanced, while off-resonant oscillations eventually die out. Because the resonant frequencies are determined by the pulsing frequency only, the system becomes immune to frequency shifts caused by the nuclear coupling and by slight variations between individual quantum dots. The effects remain even after the optical pulsing is terminated. In this work, we explore the phenomenon of mode locking from a quantum mechanical perspective. We treat the dynamics using the central-spin model, which includes coupling to 10-20 nuclei and incoherent decay of the excited electronic state, in a perturbative framework. Using scaling arguments, we extrapolate our results to realistic system parameters. We estimate that the synchronization to the pulsing frequency needs time scales in the order of 1 s .

  8. Quantum effects on compressional Alfven waves in compensated semiconductors

    SciTech Connect

    Amin, M. R.

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.

  9. Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.

    PubMed

    Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani

    2016-07-07

    Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response.

  10. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  11. Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Tisdale, William A., III

    Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots

  12. Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures.

    PubMed

    Zielinski, Marcin; Winter, Shoshana; Kolkowski, Radoslaw; Nogues, Claude; Oron, Dan; Zyss, Joseph; Chauvat, Dominique

    2011-03-28

    We study second-harmonic generation from single CdTe/CdS core/shell rod-on-dot nanocrystals with different geometrical parameters, which allow to fine tune the nonlinear properties of the nanostructure. These hybrid semiconductor-semiconductor nanoparticles exhibit extremely strong and stable second-harmonic emission, although the size of CdTe core is still within the strong quantum confinement regime. The orientation sensitive polarization response is analyzed by means of a pointwise additive model of the third-order tensors associated to the nanoparticle components. These findings prove that engineering of semiconducting complex heterostructures at the single nanoparticle scale can lead to extremely bright nanometric nonlinear light sources.

  13. Photon echo in the ensemble of semiconductor quantum dots spread on a glass substrate

    NASA Astrophysics Data System (ADS)

    Karimullin, K. R.; Knyazev, M. V.; Arzhanov, A. I.; Nurtdinova, L. A.; Naumov, A. V.

    2017-06-01

    Simple procedure to prepare samples containing semiconductor quantum dots was developed. Test photon echo measurements in the ensemble of quantum dots spread on a glass substrate were performed to study optical dephasing processes.

  14. Activation of molecular catalysts using semiconductor quantum dots

    DOEpatents

    Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  15. Water-solubilization and functionalization of semiconductor quantum dots.

    PubMed

    Tyrakowski, Christina M; Isovic, Adela; Snee, Preston T

    2013-01-01

    Semiconductor quantum dots (QDs) are highly fluorescent nanocrystals that have abundant potential for uses in biological imaging and sensing. However, the best materials are synthesized in hydrophobic surfactants that prevent direct aqueous solubilization. While several methods have been developed to impart water-solubility, an aqueous QD dispersion has no inherent useful purpose and must be functionalized further. Due to the colloidal nature of QD dispersions, traditional methods of chemical conjugation in water either have low yields or cause irreversible precipitation of the sample. Here, we describe several methods to water-solubilize QDs and further functionalize the materials with chemical and/or biological vectors.

  16. Nanophotonics Based on Semiconductor-Photonic Crystal/Quantum Dot and Metal-/Semiconductor-Plasmonics

    NASA Astrophysics Data System (ADS)

    Asakawa, Kiyoshi; Sugimoto, Yoshimasa; Ikeda, Naoki; Tsuya, Daiju; Koide, Yasuo; Watanabe, Yoshinori; Ozaki, Nobuhiko; Ohkouchi, Shunsuke; Nomura, Tsuyoshi; Inoue, Daisuke; Matsui, Takayuki; Miura, Atsushi; Fujikawa, Hisayoshi; Sato, Kazuo

    This paper reviews our recent activities on nanophotonics based on a photonic crystal (PC)/quantum dot (QD)-combined structure for an all-optical device and a metal/semiconductor composite structure using surface plasmon (SP) and negative refractive index material (NIM). The former structure contributes to an ultrafast signal processing component by virtue of new PC design and QD selective-area-growth technologies, while the latter provides a new RGB color filter with a high precision and optical beam-steering device with a wide steering angle.

  17. Excitability in optically injected semiconductor lasers: Contrasting quantum- well- and quantum-dot-based devices

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Bonatto, C.; Huyet, G.; Hegarty, S. P.

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  18. Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices.

    PubMed

    Kelleher, B; Bonatto, C; Huyet, G; Hegarty, S P

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  19. Potential energy surface of excited semiconductors: Graphene quantum dot and BODIPY

    NASA Astrophysics Data System (ADS)

    Colherinhas, Guilherme; Fileti, Eudes Eterno; Chaban, Vitaly V.

    2016-08-01

    Binding energy (BE) is an important descriptor in chemistry, which determines thermodynamics and phase behavior of a given substance. BE between two molecules is not directly accessible from the experiment. It has to be reconstructed from cohesive energies, vaporization heats, etc. We report BE for the excited states of two semiconductor molecules - boron-dipyrromethene (BODIPY) and graphene quantum dot (GQD) - with water. We show, for the first time, that excitation increases BE twofold at an optimal separation (energy minimum position), whereas higher separations lead to higher differences. Interestingly, the effects of excitation are similar irrespective of the dominant binding interactions (van der Waals or electrostatic) in the complex. This new knowledge is important for simulations of the excited semiconductors by simplified interaction functions.

  20. EPR and Ferromagnetism in Diluted Magnetic Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    König, Jürgen; MacDonald, Allan H.

    2003-08-01

    Motivated by recent measurements of electron paramagnetic resonance spectra in modulation-doped CdMnTe quantum wells [

    F. J. Teran et al., Phys. Rev. Lett.PRLTAO0031-9007 91, 077201 (2003)
    ], we develop a theory of collective spin excitations in quasi-two-dimensional diluted magnetic semiconductors. Our theory explains the anomalously large Knight shift found in these experiments as a consequence of collective coupling between Mn-ion local moments and itinerant-electron spins. We use this theory to discuss the physics of ferromagnetism in (II,Mn)VI quantum wells and to speculate on the temperature at which it is likely to be observed in n-type modulation-doped systems.

  1. Hybrid Metal-Semiconductor Electron Pump for Quantum Metrology

    NASA Astrophysics Data System (ADS)

    Jehl, X.; Voisin, B.; Charron, T.; Clapera, P.; Ray, S.; Roche, B.; Sanquer, M.; Djordjevic, S.; Devoille, L.; Wacquez, R.; Vinet, M.

    2013-04-01

    Electron pumps capable of delivering a current higher than 100 pA with sufficient accuracy are likely to become the direct mise en pratique of the possible new quantum definition of the ampere. We present here single-island hybrid metal-semiconductor transistor pumps that combine the simplicity and efficiency of Coulomb blockade in metals with the unsurpassed performances of silicon switches. Robust and simple pumping at 650 MHz and 0.5 K is demonstrated. The pumped current obtained over a voltage-bias range of 1.4 mV corresponds to a relative deviation of 5×10-4 from the calculated value, well within the 1.5×10-3 uncertainty of the measurement setup. Multicharge pumping can be performed. The simple design that is fully integrated into an industrial microelectronics process makes it an ideal candidate for national measurement institutes to realize and share a future quantum ampere.

  2. Subtle Chemistry of Colloidal, Quantum-Confined Semiconductor Nanostructures

    SciTech Connect

    Hughes, B. K.; Luther, J. M.; Beard, M. C.

    2012-06-26

    Nanoscale colloidal semiconductor structures with at least one dimension small enough to experience quantum confinement effects have captured the imagination and attention of scientists interested in controlling various chemical and photophysical processes. Aside from having desirable quantum confinement properties, colloidal nanocrystals are attractive because they are often synthesized in low-temperature, low-cost, and potentially scalable manners using simple benchtop reaction baths. Considerable progress in producing a variety of shapes, compositions, and complex structures has been achieved. However, there are challenges to overcome in order for these novel materials to reach their full potential and become new drivers for commercial applications. The final shape, composition, nanocrystal-ligand structure, and size can depend on a delicate interplay of precursors, surface ligands, and other compounds that may or may not participate in the reaction. In this Perspective, we discuss current efforts toward better understanding how the reactivity of the reagents can be used to produce unique and complex nanostructures.

  3. Quantum of optical absorption in two-dimensional semiconductors.

    PubMed

    Fang, Hui; Bechtel, Hans A; Plis, Elena; Martin, Michael C; Krishna, Sanjay; Yablonovitch, Eli; Javey, Ali

    2013-07-16

    The optical absorption properties of free-standing InAs nanomembranes of thicknesses ranging from 3 nm to 19 nm are investigated by Fourier transform infrared spectroscopy. Stepwise absorption at room temperature is observed, arising from the interband transitions between the subbands of 2D InAs nanomembranes. Interestingly, the absorptance associated with each step is measured to be ∼1.6%, independent of thickness of the membranes. The experimental results are consistent with the theoretically predicted absorptance quantum, AQ = πα/nc for each set of interband transitions in a 2D semiconductor, where α is the fine structure constant and nc is an optical local field correction factor. Absorptance quantization appears to be universal in 2D systems including III-V quantum wells and graphene.

  4. Analytical results for semiconductor quantum-well wire: Plasmons, shallow impurity states, and mobility

    NASA Astrophysics Data System (ADS)

    Gold, A.; Ghazali, A.

    1990-04-01

    We present a theoretical investigation of the electronic properties of a quasi-one-dimensional electron system at very low temperature. For a cylindrical quantum wire the electron-impurity interaction and the electron-electron interaction is calculated for a two-subband model. Our analytical results for the electron-impurity and the electron-electron interaction are in good agreement with the exact results for our model. Analytical results for the band bending due to the filling of the lowest subband are evaluated. Within our analytical results we discuss various aspects of the electronic properties of the semiconductor quantum wire: screening (intrasubband and intersubband plasmons), shallow impurity states (screened and unscreened), and mobility (ionized-impurity scattering and interface-roughness scattering). Analytical expressions are given for the dispersion of plasmons, the binding energies of shallow impurities, and the mobility. Our results on intersubband plasmons are compared with experiments.

  5. Polaron mass of charge carriers in semiconductor quantum wells

    SciTech Connect

    Maslov, A. Yu. Proshina, O. V.

    2015-10-15

    A theory of the interaction of charge carriers with optical phonons in a quantum well is developed with consideration for interface optical phonons. The dependence of the polaron effective mass on the quantum-well dimensions and dielectric characteristics of barriers is analyzed in detail. It is shown that, in narrow quantum wells, a quasi-two-dimensional polaron can be formed. In this case, however, the interaction parameters are defined by the charge-carrier effective mass in the quantum well and by the frequencies of interface optical phonons. If barriers are made of a nonpolar material, the polaron effective mass depends on the quantum-well width. As the quantum-well width is increased, a new mechanism of enhancement of the electron–phonon interaction develops. The mechanism is implemented, if the optical phonon energy is equal to the energy of one of the electronic transitions. This condition yields an unsteady dependence of the polaron effective mass on the quantum-well width.

  6. Optical Control of Semiconductor Quantum Dot Spin Qubits with Microcavity Exciton-Polaritons

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2015-03-01

    Topological surface codes demand the least stringent threshold conditions and are most promising for implementing large quantum algorithms. Based on the resource requirements to reach fault tolerance, we develop a hardware platform for large scale quantum computation with semiconductor quantum dot (QD) electron spin qubits. The current proposals for implementation of two-qubit gates and quantum non demolition (QND) readout in a QuDOS (Quantum Dots with Optically Controlled Spins) architecture suffer from large error rates. In our scheme, the optical manipulation of the QD spin qubits is carried out using their Coulomb exchange interaction with optically excited, spin-polarized, laterally confined quantum well (LcQW) exciton-polaritons. The small mass of polaritons protects them from interaction with their solid-state environment (phonons) and enables strong coupling between spin qubits separated by a few microns. Furthermore, the excitation manifold of the QD is well separated from that of the LcQW polaritons, preventing a spin-flip event during readout. We will outline schemes for implementing fast, high-fidelity, single qubit gate, two-qubit geometric phase gate and single-shot QND measurement and analyze important decoherence mechanisms. The work being presented was carried out at Stanford University. Currently the author is at University of Sherbrooke, Canada.

  7. Progress of the quantum nano-optics of semiconductors group at Optical Sciences

    NASA Astrophysics Data System (ADS)

    Gibson, Ricky; Gehl, Michael R.; Zandbergen, Sander; Keiffer, Patrick; Sears, Jasmine; Khitrova, Galina

    2014-09-01

    The history of semiconductor quantum optics group in the College of Optical Sciences will be discussed. The work from planar microcavities including VCSELs, photonic crystal cavities leading to the observation of strong-coupling between an L3 cavity and a quantum dot, and now metallic cavities coupled to quantum wells and quantum dots will be described.

  8. One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces.

    PubMed

    Dudy, L; Aulbach, J; Wagner, T; Schäfer, J; Claessen, R

    2017-09-15

    Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.

  9. Strong coupling among semiconductor quantum dots induced by a metal nanoparticle

    PubMed Central

    2012-01-01

    Based on cavity quantum electrodynamics (QED), we investigate the light-matter interaction between surface plasmon polaritons (SPP) in a metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in an SQD-MNP coupled system. We propose a quantum transformation method to strongly reveal the exciton energy shift and the modified decay rate of SQD as well as the coupling among SQDs. To obtain these parameters, a simple system composed of an SQD, an MNP, and a weak signal light is designed. Furthermore, we consider a model to demonstrate the coupling of two SQDs mediated by SPP field under two cases. It is shown that two SQDs can be entangled in the presence of MNP. A high concurrence can be achieved, which is the best evidence that the coupling among SQDs induced by SPP field in MNP. This scheme may have the potential applications in all-optical plasmon-enhanced nanoscale devices. PMID:22297024

  10. Quantum kinetic equations for the ultrafast spin dynamics of excitons in diluted magnetic semiconductor quantum wells after optical excitation

    NASA Astrophysics Data System (ADS)

    Ungar, F.; Cygorek, M.; Axt, V. M.

    2017-06-01

    Quantum kinetic equations of motion for the description of the exciton spin dynamics in II-VI diluted magnetic semiconductor quantum wells with laser driving are derived. The model includes the magnetic as well as the nonmagnetic carrier-impurity interaction, the Coulomb interaction, Zeeman terms, and the light-matter coupling, allowing for an explicit treatment of arbitrary excitation pulses. Based on a dynamics-controlled truncation scheme, contributions to the equations of motion up to second order in the generating laser field are taken into account. The correlations between the carrier and the impurity subsystems are treated within the framework of a correlation expansion. For vanishing magnetic field, the Markov limit of the quantum kinetic equations formulated in the exciton basis agrees with existing theories based on Fermi's golden rule. For narrow quantum wells excited at the 1 s exciton resonance, numerical quantum kinetic simulations reveal pronounced deviations from the Markovian behavior. In particular, the spin decays initially with approximately half the Markovian rate and a nonmonotonic decay in the form of an overshoot of up to 10 % of the initial spin polarization is predicted.

  11. Optically induced multispin entanglement in a semiconductor quantum well.

    PubMed

    Bao, Jiming; Bragas, Andrea V; Furdyna, Jacek K; Merlin, Roberto

    2003-03-01

    According to quantum mechanics, a many-particle system is allowed to exhibit non-local behaviour, in that measurements performed on one of the particles can affect a second one that is far away. These so-called entangled states are crucial for the implementation of most quantum information protocols and, in particular, gates for quantum computation. Here we use ultrafast optical pulses and coherent techniques to create and control spin-entangled states in an ensemble of non-interacting electrons bound to donors (at least three) and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the exchange interaction between localized excitons and paramagnetic impurities, can in principle be applied to entangle an arbitrarily large number of spins.

  12. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors.

    PubMed

    Awschalom, David D; Bassett, Lee C; Dzurak, Andrew S; Hu, Evelyn L; Petta, Jason R

    2013-03-08

    The past decade has seen remarkable progress in isolating and controlling quantum coherence using charges and spins in semiconductors. Quantum control has been established at room temperature, and electron spin coherence times now exceed several seconds, a nine-order-of-magnitude increase in coherence compared with the first semiconductor qubits. These coherence times rival those traditionally found only in atomic systems, ushering in a new era of ultracoherent spintronics. We review recent advances in quantum measurements, coherent control, and the generation of entangled states and describe some of the challenges that remain for processing quantum information with spins in semiconductors.

  13. Quantum correlation control for two semiconductor microcavities connected by an optical fiber

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-B. A.; Eleuch, H.

    2017-06-01

    We explore the quantum correlations for two coupled quantum wells. Each quantum well is inside a semiconductor microcavity. The two cavities are connected by an optical fiber. The study of quantum correlations, namely the geometric quantum discord, measurement-induced non-locality and negativity, reveals sudden death and sudden birth phenomena. These effects depend not only on the initial states, coupling strengths of the cavity-fiber and cavity-exciton constants, but also on the dissipation rates of the semiconductor microcavities. We show that the coupling constants control the quantum correlations.

  14. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    PubMed

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  15. Dielectric confinement influenced screened Coulomb potential for a semiconductor quantum wire

    NASA Astrophysics Data System (ADS)

    Aharonyan, K. H.; Margaryan, N. B.

    2016-01-01

    A formalism of the Thomas-Fermi method has been applied for studying the screening effect due to quasi-one-dimensional electron gas in a semiconductor cylindrical quantum wire embedded in the barrier environment. With taking into account of strongly low dielectric properties of the barrier material, an applicability of the quantum wire effective interaction potential of the confined charge carriers has been revealed. Both screened quasi- one-dimensional interaction potential and effective screening length analytical expressions are derived in the first time. It is shown that in the long wavelength moderate limit dielectric confinement effect enhances strength of the screening potential depending on the both radius of the wire and effective screening length, whereas in the long wavelength strong limit the screening potential solely is determined by barrier environment dielectric properties.

  16. Theory of quantum control of spin-photon dynamics and spin decoherence in semiconductors

    NASA Astrophysics Data System (ADS)

    Yao, Wang

    Single electron spin in a semiconductor quantum dot (QD) and single photon wavepacket propagating in an optical waveguide are investigated as carriers of quantum bit (qubit) for information processing. Cavity quantum electrodynamics of the coupled system composed of charged QD, microcavity and waveguide provides a quantum interface for the interplay of stationary spin qubits and flying photon qubits via cavity assisted optical control. This interface forms the basis for a wide range of essential functions of a quantum network, including transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape. The cavity assisted optical process also made possible ultrafast initialization and QND readout of the spin qubit in QD. In addition, the strong optical nonlinearity of dot-cavity-waveguide coupled system enables phase gate and entanglement operation for flying single photon qubits in waveguides. The coherence of the electron spin is the wellspring of these quantum applications being investigated. At low temperature and strong magnetic field, the dominant cause of electron spin decoherence is the coupling with the interacting lattice nuclear spins. We present a quantum solution to the coupled dynamics of the electron with the nuclear spin bath. The decoherence is treated in terms of quantum entanglement of the electron with the nuclear pair-flip excitations driven by the various nuclear interactions. A novel nuclear interaction, mediated by virtue spin-flips of the single electron, plays an important role in single spin free-induction decay (FID). The spin echo not only refocuses the dephasing by inhomogeneous broadening in ensemble dynamics but also eliminates the decoherence by electron-mediated nuclear interaction. Thus, the decoherence times for single spin FID and ensemble spin echo are significantly different. The quantum theory of

  17. QCAD simulation and optimization of semiconductor double quantum dots

    SciTech Connect

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design

  18. Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells.

    PubMed

    Sarkar, Susanta; Guo, Yan; Wang, Hailin

    2006-04-03

    We report the experimental realization of a tunable optical delay by exploiting unique incoherent nonlinear optical processes in semiconductors. The tunable optical delay takes advantage of the strong Coulomb interactions between excitons and free carriers and uses optical injection of free carriers to broaden and bleach an exciton absorption resonance. Fractional delay exceeding 200% has been obtained for an 8 ps optical pulse propagating near the heavy-hole excitonic transition in a GaAs quantum well structure. Tunable optical delay based on optical injection of free carriers avoids strong absorption of the pump beam and is also robust against variations in the frequency of the pump beam.

  19. Density-Gradient Theory: A Macroscopic Approach to Quantum Confinement and Tunneling in Semiconductor Devices

    DTIC Science & Technology

    2011-01-01

    flow of electrons and holes in Germanium and other semiconductors. Bell Syst. Tech. J. 29, 560 (1950) 4. Maxwell, J.C.: On stresses in rarefied gases...especially by the phenomena of quantum confinement and quantum tunneling. The various mathematical descriptions of electron flow in biased semiconductors...patently inappropriate. 1.2 Quantum transport The three main “quantum” behaviors of an electron gas in a semiconductor—all of course well known—that

  20. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.

    PubMed

    Ozel, Tuncay; Nizamoglu, Sedat; Sefunc, Mustafa A; Samarskaya, Olga; Ozel, Ilkem O; Mutlugun, Evren; Lesnyak, Vladimir; Gaponik, Nikolai; Eychmuller, Alexander; Gaponenko, Sergey V; Demir, Hilmi Volkan

    2011-02-22

    We propose and demonstrate a nanocomposite localized surface plasmon resonator embedded into an artificial three-dimensional construction. Colloidal semiconductor quantum dots are assembled between layers of metal nanoparticles to create a highly strong plasmon-exciton interaction in the plasmonic cavity. In such a multilayered plasmonic resonator architecture of isotropic CdTe quantum dots, we observed polarized light emission of 80% in the vertical polarization with an enhancement factor of 4.4, resulting in a steady-state anisotropy value of 0.26 and reaching the highest quantum efficiency level of 30% ever reported for such CdTe quantum dot solids. Our electromagnetic simulation results are in good agreement with the experimental characterization data showing a significant emission enhancement in the vertical polarization, for which their fluorescence decay lifetimes are substantially shortened by consecutive replication of our unit cell architecture design. Such strongly plasmon-exciton coupling nanocomposites hold great promise for future exploitation and development of quantum dot plasmonic biophotonics and quantum dot plasmonic optoelectronics.

  1. Dynamics of Photoexcited State of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Trivedi, Dhara J.

    In this thesis, non-adiabatic molecular dynamics (NAMD) of excited states in semiconductor quantum dots are investigated. Nanoscale systems provide important opportunities for theory and computation for research because the experimental tools often provide an incomplete picture of the structure and/or function of nanomaterials, and theory can often fill in missing features crucial in understanding what is being measured. The simulation of NAMD is an indispensable tool for understanding complex ultrafast photoinduced processes such as charge and energy transfer, thermal relaxation, and charge recombination. Based on the state-of-the-art ab initio approaches in both the energy and time domains, the thesis presents a comprehensive discussion of the dynamical processes in quantum dots, ranging from the initial photon absorption to the final emission. We investigate the energy relaxation and transfer rates in pure and surface passivated quantum dots of different sizes. The study establishes the fundamental mechanisms of the electron and hole relaxation processes with and without hole traps. We develop and implement more accurate and efficient methods for NAMD. These methods are advantageous over the traditional ones when one encounters classically forbidden transitions. We also explore the effect of decoherence and non-adiabatic couplings on the dynamics. The results indicate significant influence on the accuracy and related computational cost of the simulated dynamics.

  2. Non-blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics.

    PubMed

    Spinicelli, Piernicola; Mahler, Benoit; Buil, Stéphanie; Quélin, Xavier; Dubertret, Benoit; Hermier, Jean-Pierre

    2009-04-14

    Twinkle, twinkle: The blinking of semiconductor colloidal nanocrystals is the main inconvenience of these bright nanoemitters. There are various approaches for obtaining non-blinking nanocrystals, one of which is to grow a thick coat of CdS on the CdSe core (see picture). Applications of this method in the fields of optoelectronic devices, biologic labelling and quantum information processing are discussed.The blinking of semiconductor colloidal nanocrystals is the main inconvenience of these bright nanoemitters. For some years, research on this phenomenon has demonstrated the possibility to progress beyond this problem by suppressing this fluorescence intermittency in various ways. After a brief overview on the microscopic mechanism of blinking, we review the various approaches used to obtain non-blinking nanocrystals and discuss the commitment of this crucial improvement to applications in the fields of optoelectronic devices, biologic labelling and quantum information processing.

  3. Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics.

    PubMed

    Regelman, D V; Mizrahi, U; Gershoni, D; Ehrenfreund, E; Schoenfeld, W V; Petroff, P M

    2001-12-17

    We investigate the intensity correlation properties of single photons emitted from an optically excited single semiconductor quantum dot. The second order temporal coherence function of the photons emitted at various wavelengths is measured as a function of the excitation power. We show experimentally and theoretically that a quantum dot is not only a source of nonclassically correlated monochromatic photons but is also a source of multicolor photons with tunable correlation properties. We found that the emitted photon statistics can be varied by the excitation rate from a sub-Poissonian one, where the photons are temporally antibunched, to super-Poissonian, where they are temporally bunched.

  4. Exciton-plasmon and spin-plasmon interactions in hybrid semiconductor-metal nanostructures

    NASA Astrophysics Data System (ADS)

    Govorov, Alexander

    2011-03-01

    Coulomb and electromagnetic interactions between excitons and plasmons in nanocrystals cause several effects: energy transfer between nanoparticles, plasmon enhancement, Lamb shifts of exciton lines, Fano interference. In a complex composed of semiconductor quantum dot and metal nanoparticle, plasmons interact with spin-polarized excitons. This interaction leads to the formation of coupled spin-plasmon excitations and to spin-dependent Fano resonances. If an exciton-plasmon system includes chiral elements (chiral molecules or nanocrystals), the exciton-plasmon interaction is able to create new plasmonic lines in circular dichroism spectra.

  5. Quantum simulation with interacting photons

    NASA Astrophysics Data System (ADS)

    Hartmann, Michael J.

    2016-10-01

    Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons, these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting circuits, we focus on analogue quantum simulations in scenarios where effective photon-photon interactions exceed dissipative processes in the considered platforms.

  6. Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Szyniszewski, M.; Mostaani, E.; Drummond, N. D.; Fal'ko, V. I.

    2017-02-01

    Excitonic effects play a particularly important role in the optoelectronic behavior of two-dimensional (2D) semiconductors. To facilitate the interpretation of experimental photoabsorption and photoluminescence spectra we provide statistically exact diffusion quantum Monte Carlo binding-energy data for Mott-Wannier models of excitons, trions, and biexcitons in 2D semiconductors. We also provide contact pair densities to allow a description of contact (exchange) interactions between charge carriers using first-order perturbation theory. Our data indicate that the binding energy of a trion is generally larger than that of a biexciton in 2D semiconductors. We provide interpolation formulas giving the binding energy and contact density of 2D semiconductors as functions of the electron and hole effective masses and the in-plane polarizability.

  7. Modeling of THz Lasers Based on Intersubband Transitions in Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Woo, Alex C. (Technical Monitor)

    1999-01-01

    In semiconductor quantum well structures, the intersubband energy separation can be adjusted to the terahertz (THz) frequency range by changing the well width and material combinations. The electronic and optical properties of these nanostructures can also be controlled by an applied dc electric field. These unique features lead to a large frequency tunability of the quantum well devices. In the on-going project of modeling of the THz lasers, we investigate the possibility of using optical pumping to generate THz radiation based on intersubband transitions in semiconductor quantum wells. We choose the optical pumping because in the electric current injection it is difficult to realize population inversion in the THz frequency range due to the small intersubband separation (4-40 meV). We considered both small conduction band offset (GaAs/AlGaAs) and large band offset (InGaAs/AlAsSb) quantum well structures. For GaAs/AlGaAs quantum wells, mid-infrared C02 lasers are used as pumping sources. For InGaAs/AlAsSb quantum wells, the resonant intersubband transitions can be excited by the near-infrared diode lasers. For three- and four-subband quantum wells, we solve the pumpfield-induced nonequilibrium distribution function for each subband of the quantum well system from a set of rate equations that include both intrasubband and intersubband relaxation processes. Taking into account the coherent interactions between pump and THz (signal) waves, we calculate the optical gain for the THz field. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. A graph shows the calculated THz gain spectra for three-subband GaAs/AlGaAs quantum wells. We see that the coherent pump and signal wave interactions contribute significantly to the gain. The pump intensity dependence of the THz gain is also studied. The calculated results are shown. Because of the optical Stark effect and pump-induced population redistribution, the maximum

  8. Injection Locking of a Semiconductor Double Quantum Dot Micromaser

    PubMed Central

    Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.

    2016-01-01

    Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. PMID:28127226

  9. Magnetically engineered semiconductor quantum dots as multimodal imaging probes.

    PubMed

    Jing, Lihong; Ding, Ke; Kershaw, Stephen V; Kempson, Ivan M; Rogach, Andrey L; Gao, Mingyuan

    2014-10-08

    Light-emitting semiconductor quantum dots (QDs) combined with magnetic resonance imaging contrast agents within a single nanoparticle platform are considered to perform as multimodal imaging probes in biomedical research and related clinical applications. The principles of their rational design are outlined and contemporary synthetic strategies are reviewed (heterocrystalline growth; co-encapsulation or assembly of preformed QDs and magnetic nanoparticles; conjugation of magnetic chelates onto QDs; and doping of QDs with transition metal ions), identifying the strengths and weaknesses of different approaches. Some of the opportunities and benefits that arise through in vivo imaging using these dual-mode probes are highlighted where tumor location and delineation is demonstrated in both MRI and fluorescence modality. Work on the toxicological assessments of QD/magnetic nanoparticles is also reviewed, along with progress in reducing their toxicological side effects for eventual clinical use. The review concludes with an outlook for future biomedical imaging and the identification of key challenges in reaching clinical applications.

  10. Injection Locking of a Semiconductor Double Quantum Dot Micromaser.

    PubMed

    Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R

    2015-11-01

    Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.

  11. Lissajous Rocking Ratchet: Realization in a Semiconductor Quantum Dot

    NASA Astrophysics Data System (ADS)

    Platonov, Sergey; Kästner, Bernd; Schumacher, Hans W.; Kohler, Sigmund; Ludwig, Stefan

    2015-09-01

    Breaking time-reversal symmetry (TRS) in the absence of a net bias can give rise to directed steady-state nonequilibrium transport phenomena such as ratchet effects. Here we present, theoretically and experimentally, the concept of a Lissajous rocking ratchet based on breaking TRS. Our system is a semiconductor quantum dot with periodically modulated dot-lead tunnel barriers. Broken TRS gives rise to single electron tunneling current. Its direction is fully controlled by exploring frequency and phase relations between the two barrier modulations. The concept of Lissajous ratchets can be realized in a large variety of different systems, including nanoelectrical, nanoelectromechanical, or superconducting circuits. It promises applications based on a detailed on-chip comparison of radio-frequency signals.

  12. Lissajous Rocking Ratchet: Realization in a Semiconductor Quantum Dot.

    PubMed

    Platonov, Sergey; Kästner, Bernd; Schumacher, Hans W; Kohler, Sigmund; Ludwig, Stefan

    2015-09-04

    Breaking time-reversal symmetry (TRS) in the absence of a net bias can give rise to directed steady-state nonequilibrium transport phenomena such as ratchet effects. Here we present, theoretically and experimentally, the concept of a Lissajous rocking ratchet based on breaking TRS. Our system is a semiconductor quantum dot with periodically modulated dot-lead tunnel barriers. Broken TRS gives rise to single electron tunneling current. Its direction is fully controlled by exploring frequency and phase relations between the two barrier modulations. The concept of Lissajous ratchets can be realized in a large variety of different systems, including nanoelectrical, nanoelectromechanical, or superconducting circuits. It promises applications based on a detailed on-chip comparison of radio-frequency signals.

  13. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications

    NASA Astrophysics Data System (ADS)

    Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming

    2013-06-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.

  14. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications

    PubMed Central

    Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming

    2013-01-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547

  15. Semiconductor quantum dots for bioimaging and biodiagnostic applications.

    PubMed

    Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H; Wang, May D; Young, Andrew N; Nie, Shuming

    2013-01-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.

  16. Quantum nonlinear resonance and quantum chaos in Aharonov-Bohm oscillations in mesoscopic semiconductor rings

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Campbell, D.K.; Krive, I.V.

    1997-10-01

    We consider Aharonov-Bohm oscillations in a mesoscopic semiconductor ring threaded by both a constant magnetic flux and a time-dependent, resonant magnetic field with one or two frequencies. Working in the ballistic regime, we establish that the theory of {open_quotes}quantum nonlinear resonance{close_quotes} applies, and thus that this system represents a possible solid-state realization of {open_quotes}quantum nonlinear resonance{close_quotes} and {open_quotes}quantum chaos.{close_quotes} In particular, we investigate the behavior of the time-averaged electron energy at zero temperature in the regimes of (i) an isolated quantum nonlinear resonance and (ii) the transition to quantum chaos, when two quantum nonlinear resonances overlap. The time-averaged energy exhibits sharp resonant behavior as a function of the applied constant magnetic flux, and has a staircase dependence on the amplitude of the external time-dependent field. In the chaotic regime, the resonant behavior exhibits complex structure as a function of flux and frequency. We compare and contrast the quantum chaos expected in these mesoscopic {open_quotes}solid-state atoms{close_quotes} with that observed in Rydberg atoms in microwave fields, and discuss the prospects for experimental observation of the effects we predict. {copyright} {ital 1997} {ital The American Physical Society}

  17. III-V Semiconductor Quantum Well Lasers and Related Optoelectronic Devices on Silicon (Abstracts)

    DTIC Science & Technology

    1990-06-01

    REPORT DATE 3. R E PO R T T Y P E A N D DATES COVERED TITLE AND SUBTITLE S. FUNDING NUMBERS N III-V Semiconductor Quantum Well Lasers and Related T...continued on reverse side) 14. SUtJECT TERMS 15. NUMBER OF PAGES Semiconductor Conductor Quantum Well Lasers, Optoelectronic Devices, Silicon...Further work, which is to appear later, is listed as Refs. 11-15. I * * II | | *, | I .. . . 3 III-V SEMICONDUCTOR QUANTUM WELL LASERS AND RELATED

  18. Nonequilibrium thermal effects on exciton time correlations in coupled semiconductor quantum dots

    SciTech Connect

    Castillo, J. C.; Rodríguez, F. J.; Quiroga, L.

    2013-12-04

    Theoretical guides to test 'macroscopic realism' in solid-state systems under quantum control are highly desirable. Here, we report on the evolution of a Leggett-Garg inequality (LGI), a combination of two-time correlations, in an out-of-equilibrium set up consisting of two interacting excitons confined in separate semiconductor quantum dots which are coupled to independent baths at different temperatures (T{sub 1} ≠ T{sub 2}). In a Markovian steady-state situation we found a rich variety of dynamical behaviors in different sectors of the average temperature (T{sub M} = (T{sub 1}+T{sub 2})/2) vs. coupling strength to the reservoirs (Γ) space parameter. For high T{sub M} and Γ values the LGI is not violated, as expected. However, by decreasing T{sub M} or Γ a sector of parameters appears where the LGI is violated at thermal equilibrium (T{sub 1} = T{sub 2}) and the violation starts decreasing when the system is moved out of the equilibrium. Surprisingly, at even lower T{sub M} values, for any Γ, there is an enhancement of the LGI violation by exposing the system to a temperature gradient, i.e. quantum correlations increase in a nonequilibrium thermal situation. Results on LGI violations in a steady-state regime are compared with other non-locality-dominated quantum correlation measurements, such as concurrence and quantum discord, between the two excitons under similar temperature gradients.

  19. Theory of photovoltaic characteristics of semiconductor quantum dot solar cells

    SciTech Connect

    Wu, Yuchang; Asryan, Levon V.

    2016-08-28

    We develop a comprehensive rate equations model for semiconductor quantum dot solar cells (QDSCs). The model is based on the continuity equations with a proper account for quantum dots (QDs). A general analytical expression for the total current density is obtained, and the current-voltage characteristic is studied for several specific situations. The degradation in the open circuit voltage of the QDSC is shown to be due to strong spontaneous radiative recombination in QDs. Due to small absorption coefficient of the QD ensemble, the improvement in the short circuit current density is negligible if only one QD layer is used. If spontaneous radiative recombination would be suppressed in QDs, a QDSC with multiple QD layers would have significantly higher short circuit current density and power conversion efficiency than its conventional counterpart. The effects of photoexcitation of carriers from discrete-energy states in QDs to continuum-energy states are discussed. An extended model, which includes excited states in QDs, is also introduced.

  20. Interaction Induced Electron Self-Interference in a Semiconductor: The Phonon Staircase Effect

    NASA Astrophysics Data System (ADS)

    Kenrow, J. A.; El Sayed, K.; Stanton, C. J.

    1997-06-01

    The exact quantum mechanics of a model semiconductor system of an electron with a discrete and equidistant energy spectrum interacting with a single phonon mode is presented. An electron initially excited into a coherent superposition of states interacts with phonons thereby creating a self-interference in time which reduces the emission of phonons to isolated bursts. This self-interference effect gives rise to steplike behavior in the relaxation kinetics of the electron and phonons. We show that this ``phonon staircase'' effect is a consequence of a correlated initial electron distribution and the violation of energy conservation in the electron-phonon interaction on short time scales.

  1. Hidden Vacuum Rabi Oscillations: Dynamical Quantum Superpositions of On/Off Interaction between a Single Quantum Dot and a Microcavity

    NASA Astrophysics Data System (ADS)

    Ridolfo, A.; Stassi, R.; Di Stefano, O.

    2017-06-01

    We show that it is possible to realize quantum superpositions of switched-on and -off strong light-matter interaction in a single quantum dot- semiconductor microcavity system. Such superpositions enable the observation of counterintuitive quantum conditional dynamics effects. Situations are possible where cavity photons as well as the emitter luminescence display exponential decay but their joint detection probability exhibits vacuum Rabi oscillations. Remarkably, these quantum correlations are also present in the nonequilibrium steady state spectra of such coherently driven dissipative quantum systems.

  2. Excimer laser induced diffusion in magnetic semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Howari, H.; Sands, D.; Nicholls, J. E.; Hogg, J. H. C.; Stirner, T.; Hagston, W. E.

    2000-08-01

    Studies of pulsed laser annealing (PLA) of CdTe/CdMnTe quantum well structures are made in order to examine depth dependent effects in laser irradiated semiconductors. Since diffusion coefficients are strongly dependent on the temperature, depth resolution is achieved because the diffusion of Mn from the barriers into the quantum wells is depth dependent. Multiple quantum well (MQW) structures of CdTe/CdMnTe were annealed with single pulses from an XeCl laser at 308 nm. At a threshold of 90 mJ cm-2 two new emission bands are observed that are attributed to the diffusion of Mn from barrier layers to QWs. The diffusion associated with these bands, measured as the integrated product of the diffusion constant and time, is found to be 300 and 30 Å2. Calculations of the temperature, reached within the surface following PLA, using an analytical solution of the heat diffusion equation coupled with known high temperature diffusion coefficients predict the diffusion to decrease by one order of magnitude within one period at the top of the MQW stack. It is suggested that at the threshold surface melting occurs and that these emission bands arise from the QWs immediately beneath the melt front. The diffusion of Mn ions into the QWs is confirmed by magneto-optical data. A further emission band occurs at this same threshold with a Mn concentration above that of the concentration in the barrier layers of the MQW stack. This emission is attributed tentatively to the segregation of the Mn ion within the molten region following recrystallization.

  3. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    SciTech Connect

    Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  4. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    SciTech Connect

    Bouchard, A.M.

    1994-07-27

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices.

  5. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    SciTech Connect

    Chemla, D.S.

    1993-06-30

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells.

  6. Electrostatic Surface Waves on Semi-Bounded Quantum Electron-Hole Semiconductor Plasmas

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2017-03-01

    The electrostatic surface waves on semi-bounded quantum electron-hole semiconductor plasmas are studied within the framework of the quantum hydrodynamic model, including the electrons and holes quantum recoil effects, quantum statistical pressures of the plasma species, as well as exchange and correlation effects. The dispersion characteristics of surface electrostatic oscillations are investigated by using the typical values of GaAs, GaSb and GaN semiconductors. Numerical results show the existence of one low-frequency branch due to the mass difference between the electrons and holes in addition to one high-frequency branch due to charge-separation effects.

  7. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.

    PubMed

    Mokkapati, Sudha; Saxena, Dhruv; Tan, Hark Hoe; Jagadish, Chennupati

    2013-12-09

    The optimal geometries for reducing the radiative recombination lifetime and thus enhancing the quantum efficiency of III-V semiconductor nanowires by coupling them to plasmonic nanoparticles are established. The quantum efficiency enhancement factor due to coupling to plasmonic nanoparticles reduces as the initial quality of the nanowire increases. Significant quantum efficiency enhancement is observed for semiconductors only within about 15 nm from the nanoparticle. It is also identified that the modes responsible for resonant enhancement in the quantum efficiency of an emitter in the nanowire are geometric resonances of surface plasmon polariton modes supported at the nanowire/nanoparticle interface.

  8. An NMR quantum computer of the semiconductor CdTe

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Goto, A.; Hashi, K.; Ohki, S.

    2002-12-01

    We propose a method to implement a quantum computer by solid-state NMR. We can use the J-coupling for the quantum gate in CdTe. Both Cd and Te have two isotopes with spin 1/2, then we can have 4-qubits. The decoherence by dipole interaction may be minimized by preparing the isotope superlattice grown in the order of— 111Cd- 123Te- 113Cd- 125Te—in the [111] direction and by applying the magnetic field in the direction of [100], the magic angle of the dipole interaction. The optical pumping technique can be used in CdTe to make the initialization of the qubits.

  9. An impedance analysis of double-stream interaction in semiconductors

    NASA Technical Reports Server (NTRS)

    Chen, P. W.; Durney, C. H.

    1972-01-01

    The electromagnetic waves propagating through a drifting semiconductor plasma are studied from a macroscopic point of view in terms of double-stream interaction. The possible existing waves (helicon waves, longitudinal waves, ordinary waves, and pseudolongitudinal waves) which depend upon the orientation of the dc external magnetic field are derived. A powerful impedance concept is introduced to investigate the wave behavior of longitudinal (space charge) waves or pseudolongitudinal waves in a semiconductor plasma. The impedances due to one- and two-carrier stream interactions were calculated theoretically.

  10. Coherent quantum depletion of an interacting atom condensate.

    PubMed

    Kira, M

    2015-03-13

    Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose-Einstein condensates (BECs), strong atom-atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom-atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies.

  11. Coherent quantum depletion of an interacting atom condensate

    PubMed Central

    Kira, M.

    2015-01-01

    Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044

  12. Fabrication and optical studies of semiconductor quantum well structures

    NASA Astrophysics Data System (ADS)

    Chang, Huicheng

    In an effort to investigate modulation doping and 2-dimensional electron gas in wide gap semiconductors and diluted magnetic semiconductors, we carried out systematic studies of n-type modulation doped ZnSe/Zn0.86Cd0.14Se and ZnSe/Zn0.825Cd 0.14Mn0.035Se single quantum well structures. The roles of spacers between doped barriers and undoped wells, as well as doping levels with regard to screening of excitons, were investigated. Low temperature photoluminescence studies were performed under magnetic fields up to 30 tesla. In the presence of a magnetic field, distinct features evolved from the broad luminescence band. These are attributed to interband transitions between electrons occupying Landau levels to photoexcited holes. An analysis of the Landau-level occupation as a function of magnetic field yields the electron sheet density. Modulation doping was also studied in the context of lasing characteristics, such as doping the barriers in the active region of ZnSe/ZnCdSe quantum well laser structures. With the aid of n-type modulation doping, the optical gain (∝ (fc - fv)) enhanced by the modifications of the Fermi-Dirac distribution functions for electrons and holes in the conduction and valence bands. Resulting threshold conditions were obtained to be 1/2 ˜ 1/3 of those without modulation doping in the active regions. The biexcitonic stimulated emission, ˜10 meV below the main excitonic emission, was also observed in undoped samples, but not in the modulation doped structures due to the instability of excitons caused by the two dimensional electron gas in the well. We also studied the lasing modes in broad-area, equilateral triangular laser cavities, which take advantage of total internal reflection at the cleaved facets of the cavity for circulating modes. A new approach is proposed to study optical modes in equilateral triangular cavities in an analytical form. The modes were obtained by examining the simplest optical paths inside the cavity, which yields

  13. Semiconductor quantum dot intermixing for monolithic photonic integration

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    Monolithic photonic integration and semiconductor quantum dot (QD) are two key technologies for the development of future fiber optic networks. This PhD work explores the possibilities for joining of these two ideas to create next generation photonic integrated circuits through the modeling, process development and characterization, and device demonstration of QD intermixing technique. The one-dimensional quantum well (QW) and three-dimensional QD intermixing model are developed. The calculations of multiple cations intermixing in InGaAsSb/AlGaAsSb QW structure suggest that a large tuning range of 2.4 mum to 1.7 mum can be obtained using intermixing technique. The theoretical analysis of quantum-confined Stark effect in the as-grown and interdiffused QD structures shows that the nonzero built-in dipole moment exists in the as-grown non-symmetrical QDs and we found that the uniform Fick's type intermixing will reduce the built-in dipole significantly. The enhanced Stark shifts have also been predicted for QD structures after intermixing. Impurity-free vacancy induced disordering (IFVD) and N ion-implantation induced disordering (N-IID) have been performed to promote the efficient group-III intermixing in InP-based quantum dash (QDash) laser structure. Selective intermixing can be achieved using SixNy as intermixing source and SiO2 as intermixing mask with a differential wavelength shift of 76 nm. A model has been proposed to explain the selective intermixing behavior and we postulate that the enhanced intermixing under SixNy capping layer is related to the dominant In diffusion with respect to other group-III atoms. More efficient intermixing which requires a lower activation than the IFVD was observed in N-IID) process. Differential bandgap shift of 112 nm has been observed after N implantation at 5 x 1012 ions/cm2 and subsequent annealing at 700°C. High quality bandgap tuned QDash lasers have been fabricated with over 120 nm wavelength blueshift showing the well

  14. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    SciTech Connect

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; Murat, Pavel

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 1015 cm-3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductor scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.

  15. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    SciTech Connect

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-06-21

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  16. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots.

    PubMed

    Tang, Jau; Marcus, R A

    2005-08-01

    The light-induced spectral diffusion and fluorescence intermittency (blinking) of semiconductor nanocrystal quantum dots are investigated theoretically using a diffusion-controlled electron-transfer (DCET) model, where a light-induced one-dimensional diffusion process in energy space is considered. Unlike the conventional electron-transfer reactions with simple exponential kinetics, the model naturally leads to a power-law statistics for the intermittency. We formulate a possible explanation for the spectral broadening and its proportionality to the light energy density, the -32 power law for the blinking statistics of the fluorescence intermittency, the breakdown of the power-law behavior with a bending tail for the "light" periods, a lack of bending tail for the "dark" periods (but would eventually appear at later times), and the dependence of the bending tail on light intensity and temperature. This DCET model predicts a critical time t(c) (a function of the electronic coupling strength and other quantities), such that for times shorter than t(c) the exponent for the power law is -12 instead of -32. Quantitative analyses are made of the experimental data on spectral diffusion and on the asymmetric blinking statistics for the "on" and "off" events. Causes for deviation of the exponent from the ideal value of -32 are also discussed. Several fundamental properties are determined from the present experimental data, the diffusion correlation time, the Stokes shift, and a combination of other molecular-based quantities. Specific experiments are suggested to test the model further, extract other molecular properties, and elucidate more details of the light-induced charge-transfer dynamics in quantum dots.

  17. Antiferromagnetic order in a semiconductor quantum well with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Marinescu, D. C.

    2015-05-01

    An argument is made on the existence of a low-temperature itinerant antiferromagnetic (AF) spin alignment, rather than persistent helical (PH), in the ground state of a two dimensional electron gas in a semiconductor quantum well with linear spin-orbit Rashba-Dresselhaus interaction at equal coupling strengths, α. This result is obtained on account of the opposite-spin single-particle state degeneracy at k = 0 that makes the spin instability possible. A theory of the resulting magnetic phase is formulated within the Hartree-Fock approximation of the Coulomb interaction. In the AF state the direction of the fractional polarization is obtained to be aligned along the displacement vector of the single-particle states.

  18. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    NASA Astrophysics Data System (ADS)

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D.

    2017-05-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120+/-32 nm, which may be improved with further optimization of the nanopillar dimensions.

  19. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    PubMed Central

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D

    2017-01-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219

  20. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    SciTech Connect

    Baart, T. A.; Vandersypen, L. M. K.; Eendebak, P. T.; Reichl, C.; Wegscheider, W.

    2016-05-23

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  1. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots

    PubMed Central

    Breger, Joyce; Delehanty, James B; Medintz, Igor L

    2015-01-01

    The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future. PMID:25154379

  2. Assembly and separation of semiconductor quantum dot dimers and trimers.

    PubMed

    Xu, Xiangxing; Stöttinger, Sven; Battagliarin, Glauco; Hinze, Gerald; Mugnaioli, Enrico; Li, Chen; Müllen, Klaus; Basché, Thomas

    2011-11-16

    Repeated precipitation of colloidal semiconductor quantum dots (QD) from a good solvent by adding a poor solvent leads to an increasing number of QD oligomers after redispersion in the good solvent. By using density gradient ultracentrifugation we have been able to separate QD monomer, dimer, and trimer fractions from higher oligomers in such solutions. In the corresponding fractions QD dimers and trimers have been enriched up to 90% and 64%, respectively. Besides directly coupled oligomers, QD dimers and trimers were also assembled by linkage with a rigid terrylene diimide dye (TDI) and separated again by ultracentrifugation. High-resolution transmission electron micrographs show that the interparticle distances are clearly larger than those for directly coupled dots proving that the QDs indeed are cross-linked by the dye. Moreover, energy transfer from the QDs to the TDI "bridge" has been observed. Individual oligomers (directly coupled or dye-linked) can be readily deposited on a substrate and studied simultaneously by scanning force and optical microscopy. Our simple and effective scheme is applicable to a wide range of ligand stabilized colloidal nanoparticles and opens the way to a detailed study of electronic coupling in, e.g., QD molecules.

  3. Quantum correlation between the junction-voltage fluctuation and the photon-number fluctuation in a semiconductor laser

    NASA Technical Reports Server (NTRS)

    Richardson, W. H.; Yamamoto, Y.

    1991-01-01

    The photon-number fluctuation of the external field from a semiconductor laser - which was reduced to below the standard quantum limit - is shown to be correlated with the measured junction-voltage noise. The spectral density of the sum of the photon-number fluctuation and junction-voltage fluctuation falls below the squeezed photon-number fluctuation. This confirms the theoretical predictions that this correlation, which originates in the dipole interaction between the internal field and electron-hole pairs, extends into the quantum regime.

  4. Controlled exchange interaction for quantum logic operations with spin qubits in coupled quantum dots

    SciTech Connect

    Moskal, S.; Bednarek, S.; Adamowski, J.

    2007-09-15

    A two-electron system confined in two coupled semiconductor quantum dots is investigated as a candidate for performing quantum logic operations with spin qubits. We study different processes of swapping the electron spins by a controlled switching on and off of the exchange interaction. The resulting spin swap corresponds to an elementary operation in quantum-information processing. We perform direct simulations of the time evolution of the two-electron system. Our results show that, in order to obtain the full interchange of spins, the exchange interaction should change smoothly in time. The presence of jumps and spikes in the time characteristics of the confinement potential leads to a considerable increase of the spin-swap time. We propose several mechanisms to modify the exchange interaction by changing the confinement potential profile and discuss their advantages and disadvantages.

  5. II-VI semiconductor quantum dot quantum wells: a tight-binding study

    NASA Astrophysics Data System (ADS)

    Pérez-Conde, J.; Bhattacharjee, A. K.

    2006-05-01

    We have studied the electronic structure, exciton states and optical spectra of spherical semiconductor quantum dot quantum wells (QDQW's) by means of a symmetry-adapted tight-binding (TB) method. We have investigated two classes of QDQW's: CdS/HgS/CdS, based on a CdS core which acts as a barrier, with a thin HgS well layer intercalated between the core and a clad layer of CdS. The second class of QDQW's is based on ZnS cores covered with CdS layers which act in this case as a well. The calculated values of the absorption onset show a good agreement with the experimental data. Large photoluminescence Stokes shifts are also predicted.

  6. Quantum memory node based on a semiconductor double quantum dot in a laser-controlled optical resonator

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. V.; Kateev, I. Yu

    2017-08-01

    The concept of a quantum node consisting of a memory qubit and a frequency convertor is proposed and analysed. The memory qubit is presented by a semiconductor four-level double quantum dot (DQD) placed in an optical microresonator (MR). The DQD contains an electron in the quantised part of the conduction band and the MR can be populated by a certain number of photons. The DQD and MR states are controlled be applying the laser and electrostatic fields. The difference between the telecommunication frequency of the photon (transport qubit) supplied to the system through a waveguide and the frequency of the electronic transition in the DQD is compensated for using an auxiliary element, i.e. a frequency convertor based on a single quantum dot (QD). This design allows the electron – photon state of the hybrid system to be controlled by an appropriate variation of the field parameters and the switching between resonance and nonresonance DQD and MR interaction regimes. As an example, a GaAs DQD placed in a microdisk MR is studied. A numerical technique for modelling an optical spectrum of a microdisk MR with an additional layer (AL) deposited on its surface is developed. Using this technique, the effect of the AL on the MR eigenmode properties is investigated and the possibility of tuning its frequency to the QD electronic transition frequency by depositing an AL on the disk surface is demonstrated.

  7. Multiple excitons and the electron phonon bottleneck in semiconductor quantum dots: An ab initio perspective

    NASA Astrophysics Data System (ADS)

    Prezhdo, Oleg V.

    2008-07-01

    The article presents the current perspective on the nature of photoexcited states in semiconductor quantum dots (QDs). The focus is on multiple excitons and photo-induced electron-phonon dynamics in PbSe and CdSe QDs, and the advocated view is rooted in the results of ab initio studies in both energy and time domains. As a new type of material, semiconductor QDs represent the borderline between chemistry and physics, exhibiting both molecular and bulk-like properties. Similar to atoms and molecules, the electronic spectra of QD show discrete bands. Just as bulk semiconductors, QDs comprise multiple copies of the elementary unit cell, and are characterized by valence and conduction bands. The electron-phonon coupling in QDs is weaker than in molecules, but stronger than in bulk semiconductors. Unlike either material, the QD properties can be tuned continuously by changing QD size and shape. The molecular and bulk points of view often lead to contradicting conclusions. For example, the molecular view suggests that the excitations in QDs should exhibit strong electron-correlation (excitonic) effects, and that the electron-phonon relaxation should be slow due to the discrete nature of the optical bands and the mismatch of the electronic energy gaps with vibrational frequencies. In contrast, a finite-size limit of bulk properties indicates that the kinetic energy of quantum confinement should be significantly greater than excitonic effects and that the electron-phonon relaxation inside the quasi-continuous bands should be efficient. Such qualitative differences have generated heated discussions in the literature. The great potential of QDs for a variety of applications, including photovoltaics, spintronics, lasers, light-emitting diodes, and field-effect transistors makes it crutual to settle the debates. By synthesizing different viewpoints and presenting a unified atomistic picture of the excited state processes, our ab initio analysis clarifies the controversies

  8. An interacting adiabatic quantum motor

    NASA Astrophysics Data System (ADS)

    Viola Kusminskiy, Silvia; Bruch, Anton; von Oppen, Felix

    We consider the effect of electron-electron interactions on the performance of an adiabatic quantum motor based on a Thouless pump operating in reverse. We model such a device by electrons in a 1d wire coupled to a slowly moving periodic potential associated with the classical mechanical degree of freedom of the motor. This periodic degree of freedom is set into motion by a bias voltage applied to the 1d electron channel. We investigate the Thouless motor with interacting leads modeled as Luttinger liquids. We show that interactions enhance the energy gap opened by the periodic potential and thus the robustness of the Thouless motor against variations in the chemical potential. We show that the motor degree of freedom can be described as a mobile impurity in a Luttinger liquid obeying Langevin dynamics with renormalized coefficients due to interactions, for which we give explicit expressions.

  9. Anomalous optical diffraction by a phase grating induced by a local field effect in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mitsumori, Yasuyoshi; Watanuki, Tetsuya; Sato, Yuki; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2017-04-01

    We demonstrate the use of laser-induced phase gratings to control the emission characteristics of self-assembled semiconductor quantum dots. The microscopic Coulomb interaction between the photoinduced charge densities in a dot, referred to as the local field effect, affects the macroscopic optical properties of a dot ensemble even with inhomogeneous broadening, and forms a phase grating by spatially modulating the exciton resonant frequency. In the low excitation regime, the diffracted light intensity (observed using photon echoes) gradually rose with time delay—a result very different from the conventional instantaneous response to pulse excitation. With increasing excitation intensity, the response of the diffracted signal became more immediate and exhibited a biexponential decay. The change in the temporal profile can be systematically explained by analyzing the dynamics of the phase grating. Our findings suggest an optical switching mechanism using this intrinsic property of semiconductor quantum dots.

  10. The effect of exchange-correlation coefficient in quantum semiconductor plasma in presence of electron-phonon collision frequency

    SciTech Connect

    Choudhury, Sourav; Das, Tushar Kanti; Chatterjee, Prasanta; Ghorui, Malay Kr.

    2016-06-15

    The influence of exchange-correlation potential, quantum Bohm term, and degenerate pressure on the nature of solitary waves in a quantum semiconductor plasma is investigated. It is found that an amplitude and a width of the solitary waves change with variation of different parameters for different semiconductors. A deformed Korteweg-de Vries equation is obtained for propagation of nonlinear waves in a quantum semiconductor plasma, and the effects of different plasma parameters on the solution of the equation are also presented.

  11. On exchange interaction between shallow impurity centers in diluted semiconductors.

    NASA Astrophysics Data System (ADS)

    Krotkov, Pavel; Gor'kov, Lev

    2003-03-01

    We generalize the method developed in [1,2] to obtain asymptotically exact expressions for the exchange splitting in semiconductors of the levels of carriers localized on shallow impurities at small impurity concentrations (large inter-center separations). Our approach takes into account degeneracy inherent to shallow centers in most semiconductors. We also consider the effects of spin-orbital interaction and of an external magnetic field. [1] L.P. Gor'kov and L.P. Pitaevskii, Dokl. Akad. Nauk SSSR 151, 822 (1963) [Sov. Phys. Dokl. 8, 788 (1964)]. [2] C. Herring and M. Flicker, Phys. Rev. 134, A362 (1964)].

  12. Nonradiative resonance energy transfer between semiconductor quantum dots

    SciTech Connect

    Samosvat, D. M. Chikalova-Luzina, O. P.; Zegrya, G. G.

    2015-07-15

    A microscopic analysis of the mechanisms of nonradiative energy transfer in a system of two semiconductor QDs caused by Coulomb interaction of donor and acceptor electrons is performed. The energy transfer rate is calculated for QDs based on III–V compounds using the Kane model. Conditions are analyzed under which energy transfer from a donor to an acceptor is possible. The mixing in of the p states of the valence band to the s states of the conduction band is found to give rise to additional contributions to the matrix element of energy transfer. It is shown that these additional contributions play a considerable role in the energy transfer process at distances between QDs close to contact distances or much greater. The influence of the exchange interaction on the energy transfer mechanism is analyzed, and it is shown that this interaction should be taken into account for a quantitative description of the energy transfer when QDs are separated by a distance close to the contact distance.

  13. Continuous-time quantum walk of two interacting fermions on a cycle graph

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2016-12-01

    We study a continuous-time quantum walk of interacting fermions on a cycle graph. By finding analytical solutions and simulating the dynamics of two fermions we observe a diverse structure of entangled states of indistinguishable fermions. The relation between entanglement of distinguishable qutrits and indistinguishable electrons is observed. Restrictions imposed by the symmetry of a cycle graph are derived. Possible realization of a quantum walk in an array of semiconductor quantum dots is discussed.

  14. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    PubMed Central

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  15. Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system

    NASA Astrophysics Data System (ADS)

    Paspalakis, Emmanuel; Evangelou, Sofia; Terzis, Andreas F.

    2013-06-01

    We study the potential for controlled population inversion in a coupled system comprised of a semiconductor quantum dot and a metal nanoparticle. We show that the widely used method of population inversion by a π pulse can be modified for small interparticle distances. This modification depends strongly on the pulse duration. We also present analytical solutions of the nonlinear density matrix equations, for specific pulse envelopes, which lead to efficient excitonic population inversion in the quantum dot for several distances between the semiconductor quantum dot and the metal nanoparticle.

  16. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen T.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-07-01

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ , bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  17. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.

    PubMed

    Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro

    2016-07-15

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  18. Hybrid em wave - polar semiconductor interaction: A polaronic study

    SciTech Connect

    Paliwal, Ayushi Dubey, Swati; Ghosh, S.

    2015-07-31

    Present paper considers incidence of a most realistic hybrid pump wave on a weakly polar semiconductor having a very small coupling constant. Possibility of optical parametric interaction has been explored in the presence of an external transverse magnetic field. The effect of doping concentrations and transverse magnetostatic field on threshold characteristics of optical parametric interaction in polar semiconductor plasma has been studied, using hydrodynamic model of semiconductors, in the far infrared regime. Numerical estimations have been carried out by using data of weakly polar III-V GaAs semiconductor and influence of control parameters on electron-LO phonon interaction has been analyzed. A particular range of physical parameters is found to be suitable for minimum threshold. The choice of nonlinear medium and favorable range of operating parameters are crucial aspects in design and fabrication of parametric amplifiers and oscillators. The hybrid mode of the pump is found to be favorable for the onset of the said process and realization of a low cost amplifier.

  19. Quantum control study of ultrafast optical responses in semiconductor quantum dot devices.

    PubMed

    Huang, Jung Y; Lin, Chien Y; Liu, Wei-Sheng; Chyi, Jen-Inn

    2014-12-15

    Two quantum control spectroscopic techniques were applied to study InAs quantum dot (QD) devices, which contain different strain-reducing layers. By adaptively control light matter interaction, a delayed resonant response from the InAs QDs was found to be encoded into the optimal phase profile of ultrafast optical pulse used. We verified the delayed resonant response to originate from excitons coupled to acoustic phonons of InAs QDs with two-dimensional coherent spectroscopy. Our study yields valuable dynamical information that can deepen our understanding of the coherent coupling process of exciton in the quantum-confined systems.

  20. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  1. III-V Semiconductor Quantum Well Lasers and Related Optoelectronic Devices on Silicon

    DTIC Science & Technology

    1989-12-01

    GaIxAs-GaAs Quantum Well Heterostructure Laser Structures Grown by MOCVD on TI MBE GaAs-on-Si "Substrates." Crystal Growth Buffer Layers Photopumped...Research Triangle Park, NC 27709-2211 ELEMENT NO. NO. NO. ACCESSIN NO. 11. TITLE (include Security Oas filcation) III-V Semiconductor Quantum Well ...further develop quantum well heterostructure (QWH) lasers and to realize reliable Al Ga, As-GaAs QWH lasers on Si. In spite of the significant lattice

  2. III-V Semiconductor Quantum Well Lasers and Related Optoelectronic Devices (On Silicon)

    DTIC Science & Technology

    1992-06-01

    heterostructure (QWH) lasers. Silicon IILD is used to intermix the quantum well and waveguide regions with the surrounding confining layers (beyond the laser...SUBTITLE S. FUNDING NUMBERS III-V Semiconductor Quantum Well Lasers and Related Optoelectronic Devices (On Silicon) DAAL03-89-K-0008 6 AUTHOR(S) N. Holonyak...Maximum 200 words) Since the beginning of this project (10+ years ago) we have been concerned with quantum well heterostructures (QWHs) and their use in

  3. Modeling of Quantum Transport in Semiconductor Devices (The Physics and Operation of Ultra-Submicron Length Semiconductor Devices).

    DTIC Science & Technology

    1994-05-01

    folded into Landau orbits, in which the essentially one-dimensional transport along the orbit hinders the scattering process." Only those trajectories...tunneling, which can also occur in semiconductors under very high electric fields (where it is often referred to as Zener tunneling) has been worked out over...quantum mechanical effect is the dynamic change of the den- sity of states, such as in Landau quantization, and this can be incorporated within (1) by

  4. Quantum model of electron accumulation at charged boundaries of heavily doped semiconductor films

    SciTech Connect

    Gergel, V. A. Verhovtseva, A. V.

    2010-10-15

    A new quantum model of electron accumulation at positively charged boundaries of semiconductor films has been developed. It is based on the well-known concepts of quantum confinement of transverse electron motion in a uniform electric field, the role of which is played by the effective field of attraction to positive surface donor centers. Electrons with a surface density equal to the donor concentration occupy the corresponding quasi-discrete states according to the Fermi statistics. At reasonable concentrations all the electrons of the accumulation layer are mainly concentrated at the first quantum-confinement level. Ultra-high built-in fields on the order of the atomic level (10{sup 8} V/cm) correspond to the onset of filling the third level. The potential profile, which describes the interaction of the accumulation-layer electrons with other charged particles (including holes) is calculated by double integration of the Poisson equation with the electron density in the form of squares of the corresponding segments of the Airy function. Its boundary value-the surface potential-describes the effect of the electron-accumulation layer on the external electric circuit. The obtained dependence of the surface potential on the resulting boundary electric field (including that induced by the built-in charge) is easily transformed into the corresponding capacitance-voltage characteristics.

  5. Diode-Laser Pumped Far-Infrared Local Oscillator Based on Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Kolokolov, K.; Li, J.; Ning, C. Z.; Larrabee, D. C.; Tang, J.; Khodaparast, G.; Kono, J.; Sasa, S.; Inoue, M.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The contents include: 1) Tetrahertz Field: A Technology Gap; 2) Existing THZ Sources and Shortcomings; 3) Applications of A THZ Laser; 4) Previous Optical Pumped LW Generations; 5) Optically Pumped Sb based Intersubband Generation Whys; 6) InGaAs/InP/AlAsSb QWs; 7) Raman Enhanced Optical Gain; 8) Pump Intensity Dependence of THZ Gain; 9) Pump-Probe Interaction Induced Raman Shift; 10) THZ Laser Gain in InGaAs/InP/AlAsSb QWs; 11) Diode-Laser Pumped Difference Frequency Generation (InGaAs/InP/AlAsSb QWs); 12) 6.1 Angstrom Semiconductor Quantum Wells; 13) InAs/GaSb/AlSb Nanostructures; 14) InAs/AlSb Double QWs: DFG Scheme; 15) Sb-Based Triple QWs: Laser Scheme; and 16) Exciton State Pumped THZ Generation. This paper is presented in viewgraph form.

  6. An intrinsically fluorescent recognition ligand scaffold based on chaperonin protein and semiconductor quantum-dot conjugates.

    PubMed

    Xie, Hongzhi; Li, Yi-Fen; Kagawa, Hiromi K; Trent, Jonathan D; Mudalige, Kumara; Cotlet, Mircea; Swanson, Basil I

    2009-05-01

    Genetic engineering of a novel protein-nanoparticle hybrid system with great potential for biosensing applications and for patterning of various types of nanoparticles is described. The hybrid system is based on a genetically modified chaperonin protein from the hyperthermophilic archaeon Sulfolobus shibatae. This chaperonin is an 18-subunit double ring, which self-assembles in the presence of Mg ions and ATP. Described here is a mutant chaperonin (His-beta-loopless, HBLL) with increased access to the central cavity and His-tags on each subunit extending into the central cavity. This mutant binds water-soluble semiconductor quantum dots, creating a protein-encapsulated fluorescent nanoparticle. The new bioconjugate has high affinity, in the order of strong antibody-antigen interactions, a one-to-one protein-nanoparticle stoichiometry, and high stability. By adding selective binding sites to the solvent-exposed regions of the chaperonin, this protein-nanoparticle bioconjugate becomes a sensor for specific targets.

  7. Nonlinear optics response of semiconductor quantum wells under high magnetic fields

    SciTech Connect

    Chemla, D.S.

    1993-07-01

    Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW`s as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H {yields} {infinity}. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed.

  8. Valence electronic structure of semiconductor quantum dot and wide band gap oxide interfaces by ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Timp, Brooke Andrea

    Energy level alignment is an important factor in efficient charge transfer at an interface between two semiconductors. This topic is explored in model systems that are relevant to quantum dot-sensitized solar cells, inorganic semiconductor nanoparticles adsorbed on single crystal wide band gap oxide substrates, using ultraviolet photoelectron spectroscopy. Cadmium selenide quantum dots are assembled on a ZnO (10 1¯ 0) surface using 3-mercaptopropionic acid linkers. The valence band maximum of the CdSe quantum dots is found to be located at 1.1 +/- 0.1 eV above the valence band maximum of ZnO, nearly independent of the size of the quantum dots (2.1-4.2 nm). This finding suggests that, upon adsorption, there is strong electronic interaction between CdSe quantum dots and the ZnO surface. As a result, varying the quantum dot size mainly tunes the alignment of the conduction band minimum of CdSe with respect to that of the ZnO surface. Sub-monolayer films of PbSe quantum dots are prepared on single crystal substrates, ZnO (10 1 0 ) and TiO2 (110), and exposed to ligand solutions, either hydrazine or 1,2-ethanedithiol (EDT) in acetonitrile. Interfacial energy alignment is measured as a function of quantum dot size, substrate and ligand treatment. The affect of the ligand treatments on the energy alignment is substrate-dependent. The valence band maximum of the dots is size-independent on ZnO due to strong electronic interactions with the substrate; in particular, EDT-treated films show significant enhancement of quantum dot valence band intensity due to electronic coupling with the ZnO surface. In contrast, the quantum dot valence band maximum is size-dependent and shows a smaller shift between ligand treatments for films on TiO2, suggesting weaker quantum dot-substrate interactions. In most cases the measured alignment predicts that electron injection from a photoexcited PbSe quantum dot to either ZnO or TiO2 will necessitate the involvement of higher-lying levels

  9. Investigation of superconducting interactions and amorphous semiconductors

    NASA Technical Reports Server (NTRS)

    Janocko, M. A.; Jones, C. K.; Gavaler, J. R.; Deis, D. W.; Ashkin, M.; Mathur, M. P.; Bauerle, J. E.

    1972-01-01

    Research papers on superconducting interactions and properties and on amorphous materials are presented. The search for new superconductors with improved properties was largely concentrated on the study of properties of thin films. An experimental investigation of interaction mechanisms revealed no new superconductivity mechanism. The properties of high transition temperature, type 2 materials prepared in thin film form were studied. A pulsed field solenoid capable of providing fields in excess of 300 k0e was developed. Preliminary X-ray measurements were made of V3Si to determine the behavior of cell constant deformation versus pressure up to 98 kilobars. The electrical properties of amorphous semiconducting materials and bulk and thin film devices, and of amorphous magnetic materials were investigated for developing radiation hard, inexpensive switches and memory elements.

  10. Hyperfine interaction and magnetoresistance in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Nguyen, T. D.; Veeraraghavan, G.; Mermer, Ö.; Wohlgenannt, M.; Qiu, S.; Scherf, U.

    2006-07-01

    We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. We deduce a simple fitting formula from the hyperfine Hamiltonian that relates the saturation field of the OMAR traces to the hyperfine coupling constant. We compare the fitting results to literature values for this parameter. Furthermore, we apply an excitonic pair mechanism model based on hyperfine interaction, previously suggested by others to explain various magnetic-field effects in organics, to the OMAR data. Whereas this model can explain a few key aspects of the experimental data, we uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.

  11. Million Atom Pseudopotential Manybody Theory of Electronic Structure and Spectroscopy of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2003-03-01

    Semiconductor Quantum Dots that are of sufficient structural quality (good crystallinity, surface passivation, size uniformity) to produce ultra sharp spectroscopic lines worthy of a detailed theoretical effort tend to be rather BIG, containing thousands to million atoms. Yet, in this size regime, the only theoretical methods available are effective-mass based, particle-in-a-box approaches, that neglect multi-band and inter-valley coupling, leading to significant qualitative errors.(A. Zunger,Phys. Stat. Sol. (a) 190), 467 (2002). While LDA-based methods are capable of solving the Single-Particle problem even for ˜1,000 atom dots, the all important many-body problem can be currently addressed only for considerably smaller dots. I will present here a computational alternative which addresses both the single-particle and the Manybody parts of the problem for 10^3 to 10^6 atom dots .The method is applicable both to ``free Standing" (e.g. colloidal) dots of CdSe, InP, InAs and Si, as well as to the strained, ``self-assembled" epitaxial dots of, e.g., InGaAs/GaAs. It is based on a ``Linear Combination of Bulk Bands" (LCBB) approach that expands the dot states in terms of plane wave based (pseudopotential) Bloch states throughout the Brillouin zone. The manybody part is treated via Configuration Interaction. I will illustrate how this method addresses some of the recent striking experimental observations on semiconductor quantum dots:(i) Scaling laws for band gaps and exchange interactions (ii) Rapid Auger transitions in colloidal dots (iii) Coulomb Blocade and Spin Blockade in colloidal dots (iv) Charged Excitons (e.g. Trions) in Self-assembled dots, and (v) excitonic Fine-Structure in self assembled dots.

  12. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    NASA Astrophysics Data System (ADS)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  13. Interaction of cochlear nucleus explants with semiconductor materials.

    PubMed

    Mlynski, Robert; Volkenstein, Stefan; Hansen, Stefan; Brors, Dominik; Ebmeyer, Joerg; Dazert, Stefan

    2007-07-01

    Implantable hearing devices such as cochlear implants and auditory brainstem implants deliver auditory information through electrical stimulation of auditory neurons. The combination of microelectronic electrodes with auditory nerve cells may lead to further improvement of the hearing quality with these devices. Whereas several kinds of neurons are known to grow on semiconductor substrates, interactions of cochlear nucleus (CN) neurons with such materials have yet to be described. To investigate survival and growth behavior of CN neurons on different semiconductor materials. CN explants from postnatal day 10 Sprague-Dawley rats were cultured for 96 hours in Neurobasal medium on polished and unpolished silicon wafers (p-type Si [100] and p-type Si3N4[100]) as well as plastic surface. These surfaces had been coated with poly-L-lysine and laminin. Neuronal outgrowth was examined using image analysis software after immunohistologic staining for neurofilament. Neurite length and directional changes were quantified. Additionally, neurite morphology and adhesion to the semiconductor material was evaluated by scanning electron microscopy. Although proper adhesion of CN explants was seen, no neurite growth could be detected on unpolished silicon wafers (Si and Si3N4). Compared with the other test conditions, polished, laminin-coated Si3N4 wafers showed best biocompatibility regarding neurite length and number per explant. CN explants developed a mean of eight neurons with an average length of 236 mum in 96 hours of culture on these wafers. The results of this study demonstrate the general possibility of CN neuron growth in culture on semiconductors in vitro. The differences in neuron length and number per explant indicate that the growth of CN neurons is influenced by the semiconductor substrate as well as extracellular matrix proteins, with laminin-coated p-type Si3N4[100] being a preferable material for future hybrid experiments on auditory-neuron semiconductor chips.

  14. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    DOE PAGES

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; ...

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 1015 cm-3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductormore » scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less

  15. Quantum kinetic theory of optically injected electrical and spin currents in bulk semiconductors

    NASA Astrophysics Data System (ADS)

    Prepelita, Oleg; Sipe, J. E.

    2002-03-01

    We consider the relaxation of coherently controlled currents and spin currents in bulk semiconductors. The currents are injected by simultaneous irradiation with two laser beams; the magnitude of both currents is controlled by the relative phases of these two fields [1,2]. At low injected carrier densities the relaxation of the currents occurs because of the interaction of carriers with the equilibrium optical phonons. Using a quantum master equation approach, Boltzmann type microscopic equations for the averages of the electron-hole subsystem were obtained. From these microscopic equations a simple system of linear differential equations for the evolution of the macroscopic electrical current and spin current in semiconductors can be obtained and easily solved, thus vastly simplifying the calculation of current and spin current relaxation. The developed theory was applied to bulk GaAs. 1.A. Hache, Y. Kostoulas, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 78, 306 (1997). 2.R. D. R. Bhat and J. E. Sipe, Phys. Rev. Lett. 85, 5432 (2000).

  16. Quantum plasmon model for the terahertz photoconductivity in intrinsic semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Yan, Jie-Yun

    2017-10-01

    A quantum plasmon model for the terahertz photoconductivity in intrinsic semiconductor nanowires is developed. The classical plasmon model assumes the excited electron in semiconductors feels a restoring force generated by a harmonic-oscillator potential. Although it is successfully applied to explain the terahertz photoconductivity in semiconductor nanowires, the classical treatment of the potential weakens accurate theoretical analysis. Here I treat the potential in a full quantum way and present an exact analytical formula for photoconductivity. The formula not only gives more reasonable photoconductivity, but also has the same conciseness when compared with that of the classical plasmon model. The validity of the quantum plasmon model is proved independently by numerical calculations in real space.

  17. Quantum plasmon model for the terahertz photoconductivity in intrinsic semiconductor nanowires.

    PubMed

    Yan, Jie-Yun

    2017-10-18

    A quantum plasmon model for the terahertz photoconductivity in intrinsic semiconductor nanowires is developed. The classical plasmon model assumes the excited electron in semiconductors feels a restoring force generated by a harmonic-oscillator potential. Although it is successfully applied to explain the terahertz photoconductivity in semiconductor nanowires, the classical treatment of the potential weakens accurate theoretical analysis. Here I treat the potential in a full quantum way and present an exact analytical formula for photoconductivity. The formula not only gives more reasonable photoconductivity, but also has the same conciseness when compared with that of the classical plasmon model. The validity of the quantum plasmon model is proved independently by numerical calculations in real space.

  18. Absorption of light by colloidal semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Pokutnyi, Sergey I.; Ovchinnikov, Oleg V.; Kondratenko, Tamara S.

    2016-07-01

    UV-Vis absorption of colloidal cadmium sulfide quantum dots (QDs) synthesized by an aqueous synthesis in a gelatin matrix was investigated. Using the dipole approximation, taking into account the Coulomb interaction between the electron and hole in a QD and the polarization effects on the spherical boundary of QD and matrix, it was found the change of selection rules for optical transitions. It is shown that the optical absorption edge of QDs is formed by two optical transitions of electron between low-excited levels of size quantization of heavy hole (1S and 2S), located in QDs valence band and fundamental size-quantized states 1Se of conduction band. These transitions are identical in intensity. Estimations of average values of CdS QDs radius were realized using the developed formalism for UV-Vis absorption spectra. These data were compared with experimental values of this parameter, obtained using transmission electron microscope.

  19. Manipulations of a Qubit in a Semiconductor Quantum Dot

    NASA Astrophysics Data System (ADS)

    Zrenner, Artur; Stufler, Stefan; Ester, Patrick; Bichler, Max

    In a single self-assembled InGaAs quantum dot, the one exciton ground state transition defines a two-level system, which appears as an extremely narrow resonance of only a few μeV width. The resonant interaction of this two-level system with cw laser fields can be studied in detail by photocurrent spectroscopy, revealing the fine structure of the excitonic ground state as well as the effects of nonlinear absorption and power broadening. For the case of pulsed laser fields and in the absence of decoherence, the two-level system represents a qubit. Excitations with ps laser pulses result in qubit rotations, which appear as Rabi oscillations in photocurrent experiments. Double pulse experiments further allow us to infer the decoherence time and to perform coherent control on a two-level system.

  20. Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

    SciTech Connect

    Sinclair, Michael B.; Fan, Hongyou; Brener, Igal; Liu, Sheng; Luk, Ting S.; Li, Binsong

    2015-09-01

    QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.

  1. Quantum Interactive Proofs with Short Messages

    DTIC Science & Technology

    2011-06-22

    state tomography, quantumde Finetti theorem, quantum computation Salman Beigi, Peter Shor, John Watrousw Massachusetts Institute of Technology (MIT...through the use of quantum state tomography, along with the finite quantum de Finetti theorem for the first variant. Note: this appeard in the...along with the finite quantum de Finetti theorem for the first variant. 1 Introduction The interactive proof system model extends the notion of

  2. Terahertz quantum transport in semiconductor nanostructures with the UCSB free electron lasers

    SciTech Connect

    Allen, S.J.

    1995-12-31

    Quantum transport in semiconductor nanostructures takes on new dimensions in the presence of intense terahertz electric fields. Terahertz frequencies lift us into the regime where the scattering and relaxation is not so important and strong terahertz electric fields provided by the UCSB FEL`s explore non-linear dynamics far from the perturbative limit. New quantum transport channels that are assisted by the absorption or emission of a photon appear in current voltage characteristics. We will describe some of these experiments, the new phenomena they expose and the potential impact on future terahertz semiconductor electronics.

  3. Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma

    SciTech Connect

    Tolba, R. E. El-Bedwehy, N. A.; Moslem, W. M.; El-Labany, S. K.; Yahia, M. E.

    2016-01-15

    Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.

  4. Dynamic phase response and amplitude-phase coupling of self-assembled semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Lingnau, Benjamin; Herzog, Bastian; Kolarczik, Mirco; Woggon, Ulrike; Lüdge, Kathy; Owschimikow, Nina

    2017-06-01

    The optical excitation of semiconductor gain media introduces both gain and refractive index changes, commonly referred to as amplitude-phase coupling. Quantum-confined structures with an energetically well separated carrier reservoir usually exhibit a decreased amplitude-phase coupling compared to bulk materials. However, its magnitude and definition is still controversially discussed. We investigate the fundamental processes influencing the amplitude-phase coupling in semiconductor quantum-dot media using a coupled-carrier rate-equation model. We are able to analyze the dependence on the electronic structure and suggest routes towards an optimization of the dynamic phase response of the gain material.

  5. Quantum effect on parametric dispersion in presence of nonuniform size colloids in semiconductors

    NASA Astrophysics Data System (ADS)

    Vanshpal, R.; Dubey, S.; Ghosh, S.

    2012-05-01

    Quantum effect on parametric dispersion characteristics in ion implanted semiconductors in presence of nonuniform size colloids is analytically investigated in the present report. Nonuniform size colloids are managed through polynomial distribution function in the analysis. Here the used quantum hydrodynamic model is described by a set of hydrodynamic equations (typically continuity and momentum transfer) that include quantum effects via Bohm potential. Bohm potential modified second order optical susceptibility is obtained through nonlinear induced current density in presence of electrons and negatively charged nonuniform size colloids. It is found that parametric dispersion characteristics are greatly influenced by the quantum modifications. The parametric dispersion of the generated signal mode reduces due to the presence of Bohm potential. The required pump intensity at which one achieves maximum dispersion shifts towards higher value in presence of quantum term. Moreover present study also establishes that quantum effect on colloids is inversely proportional to their size; smaller colloids induce more quantum modifications.

  6. Spin-Orbit Interaction in Metals, Elementary Semiconductors, and Semisonductor Compounds

    NASA Astrophysics Data System (ADS)

    Mašović, D. R.; Vukajilović, F. R.

    1983-06-01

    The general analytic formulas for matrix elements of spin-orbit interaction in metals, elementary semiconductors, and binary semiconductor compounds which belongs to cubic crystal systems are obtained on the basis of Roothaan-Hartree-Fock atomic orbitals.

  7. Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture

    SciTech Connect

    Basset, J.; Stockklauser, A.; Jarausch, D.-D.; Frey, T.; Reichl, C.; Wegscheider, W.; Wallraff, A.; Ensslin, K.; Ihn, T.

    2014-08-11

    We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10{sup −5} e/√(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10{sup −6} e{sup 2}/Hz above 1 Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope of the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.

  8. Quantum filter of spin polarized states: Metal–dielectric–ferromagnetic/semiconductor device

    SciTech Connect

    Makarov, Vladimir I.; Khmelinskii, Igor

    2014-02-01

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Recently we proposed a model for the Quantum Spin-Polarized State Filter (QSPSF). The magnetic moments are transported selectively in this model, detached from the electric charge carriers. Thus, transfer of a spin-polarized state between two conductors was predicted in a system of two levels coupled by exchange interaction. The strength of the exchange interaction between the two conductive layers depends on the thickness of the dielectric layer separating them. External magnetic fields modulate spin-polarized state transfer, due to Zeeman level shift. Therefore, a linearly growing magnetic field generates a series of current peaks in a nearby coil. Thus, our spin-state filter should contain as least three nanolayers: (1) conductive or ferromagnetic; (2) dielectric; and (3) conductive or semiconductive. The spectrum of spin-polarized states generated by the filter device consists of a series of resonance peaks. In a simple case the number of lines equals S, the total spin angular momentum of discrete states in one of the coupled nanolayers. Presently we report spin-polarized state transport in metal–dielectric–ferromagnetic (MDF) and metal–dielectric–semiconductor (MDS) three-layer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-layer devices. The theoretical model is used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment averaged over the surface of the device was carried out. The model predicts the resonance structure of the signal, although at its present accuracy it cannot predict the positions of the spectral peaks.

  9. Anomalous spin precession and spin Hall effect in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Bi, Xintao; He, Peiru; Hankiewicz, E. M.; Winkler, R.; Vignale, Giovanni; Culcer, Dimitrie

    2013-07-01

    Spin-orbit (SO) interactions give a spin-dependent correction r̂so to the position operator, referred to as the anomalous position operator. We study the contributions of r̂so to the spin Hall effect (SHE) in quasi-two-dimensional (2D) semiconductor quantum wells with strong band-structure SO interactions that cause spin precession. The skew scattering and side-jump scattering terms in the SHE vanish, but we identify two additional terms in the SHE, due to r̂so, which have not been considered in the literature so far. One term reflects the modification of spin precession due to the action of the external electric field (the field drives the current in the quantum well), which produces, via r̂so, an effective magnetic field perpendicular to the plane of the quantum well. The other term reflects a similar modification of spin precession due to the action of the electric field created by random impurities, and appears in a careful formulation of the Born approximation. We refer to these two effects collectively as anomalous spin precession and we note that they contribute to the SHE to the first order in the SO coupling constant even though they formally appear to be of second order. In electron systems with weak momentum scattering, the contribution of the anomalous spin precession due to the external electric field equals 1/2 the usual side-jump SHE, while the additional impurity-dependent contribution depends on the form of the band-structure SO coupling. For band-structure SO coupling linear in wave vector, the two anomalous spin precession contributions cancel. For band-structure SO coupling cubic in wave vector, however, they do not cancel, and the anomalous spin precession contribution to the SHE can be detected in a high-mobility 2D electron gas with strong SO coupling. In 2D hole systems, both anomalous spin precession contributions vanish identically.

  10. Wake potential with exchange-correlation effects in semiconductor quantum plasmas

    SciTech Connect

    Khan, Arroj A.; Jamil, M.; Hussain, A.

    2015-09-15

    Using the non-relativistic quantum hydrodynamic model, wake potential has been studied in a magnetized semiconductor quantum plasma in the presence of upper hybrid wave which is excited via externally injected electron beam. The quantum effect contains electron exchange and correlation potential, Fermi degenerate pressure, and Bohm potential. It is found that the contribution of quantum mechanical electron exchange and correlation potential significantly modifies the amplitude and the effective length of the oscillatory wake potential. In the electron-hole plasma systems, electron exchange-correlation effects tend to increase the magnitude of the wake potential and are much effective at the distances of the order of Debye-length. The application of the work in context of the semiconductor plasmas have also been analyzed graphically.

  11. Quantum effect on modulational instability of laser radiation in a semiconductor plasma

    SciTech Connect

    Amin, M. R.

    2010-01-15

    Modulational instability of a high power laser radiation in a homogeneous unmagnetized piezoelectric semiconductor plasma has been investigated analytically. The fluid equations of quantum hydrodynamics coupled with the Maxwell's equations have been employed to find the nonlinear response of electrons in the piezoelectric semiconductor. The analysis is carried out through the derivation of the nonlinear dispersion relation for the four-wave modulational instability. An expression for the growth rate of the instability including the quantum effect due to Bohm potential has been obtained from the nonlinear dispersion relation. The quantum effect is observed to play a vital role in the four-wave scattering process. For a particular set of parameters, the quantum effect enhances the growth rate of the modulational instability by 37% compared to the growth rate predicted by the classical theory.

  12. Repeated interactions in open quantum systems

    SciTech Connect

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  13. Interaction Induced Electron Self-Interference in a Semiconductor: The Phonon Staircase Effect

    SciTech Connect

    Kenrow, J.A.; El Sayed, K.; Stanton, C.J.

    1997-06-01

    The exact quantum mechanics of a model semiconductor system of an electron with a discrete and equidistant energy spectrum interacting with a single phonon mode is presented. An electron initially excited into a coherent superposition of states interacts with phonons thereby creating a self-interference {ital in time} which reduces the emission of phonons to isolated bursts. This self-interference effect gives rise to steplike behavior in the relaxation kinetics of the electron and phonons. We show that this {open_quotes}phonon staircase{close_quotes} effect is a consequence of a correlated initial electron distribution and the violation of energy conservation in the electron-phonon interaction on short time scales. {copyright} {ital 1997} {ital The American Physical Society}

  14. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    SciTech Connect

    Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David

    2011-08-24

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba ({alpha}) and linear Dresselhaus ({beta}{sub 1}), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term ({beta}{sub 3}) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as {alpha} {yields} {beta}{sub 1}. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning {alpha} and {beta}{sub 1}. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying {beta}{sub 3} as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.

  15. Quantum dot-metallic nanorod sensors via exciton-plasmon interaction

    NASA Astrophysics Data System (ADS)

    Hatef, Ali; Sadeghi, Seyed M.; Boulais, Étienne; Meunier, Michel

    2013-01-01

    We investigate quantum nanosensors based on hybrid systems consisting of semiconductor quantum dots and metallic nanorods in the near-infrared regime. These sensors can detect biological and chemical substances based on their impact on the coherent exciton-plasmon coupling and molecular resonances supported by such systems when they interact with a laser field. We demonstrate that the ultrahigh sensitivity of such molecular resonances on environmental conditions allows dramatic and nearly instantaneous changes in the total field experienced by the semiconductor quantum dot via minuscule variations of the local refractive indices of the quantum dot or nanorod. The proposed nanosensors can utilize quantum effects to control the sense (or direction) of the changes in the quantum dot emission, allowing us to have bistable switching from dark to bright states or vice versa via adsorption (or detachment) of biomolecules. These sensors can also offer detection of ultra-small variations in the local dielectric constant of the quantum dots or metallic nanorods via coherent induction of time delays in the effective field experienced by the quantum dots when the hybrid systems interact with time-dependent laser fields. This leads to unprecedented bulk refractive index sensitivities. Our results show that one can utilize quantum phase to control the coherent exciton-plasmon dynamics in these sensors such that introduction of a biomolecule can increase or decrease the time delay. These results offer novel ways to detect single biomolecules via application of quantum coherence to convert their impact into spectacular optical events.

  16. Quantum dot-metallic nanorod sensors via exciton-plasmon interaction.

    PubMed

    Hatef, Ali; Sadeghi, Seyed M; Boulais, Étienne; Meunier, Michel

    2013-01-11

    We investigate quantum nanosensors based on hybrid systems consisting of semiconductor quantum dots and metallic nanorods in the near-infrared regime. These sensors can detect biological and chemical substances based on their impact on the coherent exciton-plasmon coupling and molecular resonances supported by such systems when they interact with a laser field. We demonstrate that the ultrahigh sensitivity of such molecular resonances on environmental conditions allows dramatic and nearly instantaneous changes in the total field experienced by the semiconductor quantum dot via minuscule variations of the local refractive indices of the quantum dot or nanorod. The proposed nanosensors can utilize quantum effects to control the sense (or direction) of the changes in the quantum dot emission, allowing us to have bistable switching from dark to bright states or vice versa via adsorption (or detachment) of biomolecules. These sensors can also offer detection of ultra-small variations in the local dielectric constant of the quantum dots or metallic nanorods via coherent induction of time delays in the effective field experienced by the quantum dots when the hybrid systems interact with time-dependent laser fields. This leads to unprecedented bulk refractive index sensitivities. Our results show that one can utilize quantum phase to control the coherent exciton-plasmon dynamics in these sensors such that introduction of a biomolecule can increase or decrease the time delay. These results offer novel ways to detect single biomolecules via application of quantum coherence to convert their impact into spectacular optical events.

  17. Implications of mercury interactions with band-gap semiconductor oxides

    SciTech Connect

    Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W.

    2008-09-01

    Titanium dioxide is a well-known photooxidation catalyst. It will oxidize mercury in the presence of ultraviolet light from the sun and oxygen and/or moisture to form mercuric oxide. Several companies manufacture self-cleaning windows. These windows have a transparent coating of titanium dioxide. The titanium dioxide is capable of destroying organic contaminants in air in the presence of ultraviolet light from the sun, thereby keeping the windows clean. The commercially available self-cleaning windows were used to sequester mercury from oxygen–nitrogen mixtures. Samples of the self-cleaning glass were placed into specially designed photo-reactors in order to study the removal of elemental mercury from oxygen–nitrogen mixtures resembling air. The possibility of removing mercury from ambient air with a self-cleaning glass apparatus is examined. The intensity of 365-nm ultraviolet light was similar to the natural intensity from sunlight in the Pittsburgh region. Passive removal of mercury from the air may represent an option in lieu of, or in addition to, point source clean-up at combustion facilities. There are several common band-gap semiconductor oxide photocatalysts. Sunlight (both the ultraviolet and visible light components) and band-gap semiconductor particles may have a small impact on the global cycle of mercury in the environment. The potential environmental consequences of mercury interactions with band-gap semiconductor oxides are discussed. Heterogeneous photooxidation might impact the global transport of elemental mercury emanating from flue gases.

  18. Electron-hole correlations in semiconductor quantum dots with tight-binding wave fuctions

    NASA Technical Reports Server (NTRS)

    Seungwon, L.; Jonsson, L.; Wilkins, J.; Bryant, G.; Klimeck, G.

    2001-01-01

    The electron-hole states of semiconductor quantum dots are investigated within the framework of empirical tight-binding descriptions for Si, as an example of an indirect-gap material, and InAs and CdSe as examples of typical III-V and II-VI direct-gap materials.

  19. Experimental investigation of chirp properties induced by signal amplification in quantum-dot semiconductor optical amplifiers.

    PubMed

    Matsuura, Motoharu; Ohta, Hiroaki; Seki, Ryota

    2015-03-15

    We experimentally show the dynamic frequency chirp properties induced by signal amplification in a quantum-dot semiconductor optical amplifier (QD-SOA) for the first time. We also compare the red and blue chirp peak values and temporal chirp changes while changing the gain and injected signal powers of the QD-SOA with those of a common SOA.

  20. Nanoassemblies Based on Semiconductor Quantum Dots and Dye Molecules:. Single Objects Detection and Related Interface Dynamics

    NASA Astrophysics Data System (ADS)

    Zenkevich, E.; von Borczyskowski, C.; Kowerko, D.

    2013-05-01

    Single molecule spectroscopy of QD-dye nanoassemblies is shown that single functionalized dye molecules (perylene-bisimides and meso-pyridyl porphyrins) can be considered as extremely sensitive probes for studying exciton and relaxation processes in semiconductor CdSe/ZnS quantum dots.

  1. Electron-hole correlations in semiconductor quantum dots with tight-binding wave fuctions

    NASA Technical Reports Server (NTRS)

    Seungwon, L.; Jonsson, L.; Wilkins, J.; Bryant, G.; Klimeck, G.

    2001-01-01

    The electron-hole states of semiconductor quantum dots are investigated within the framework of empirical tight-binding descriptions for Si, as an example of an indirect-gap material, and InAs and CdSe as examples of typical III-V and II-VI direct-gap materials.

  2. Direct photonic coupling of a semiconductor quantum dot and a trapped ion.

    PubMed

    Meyer, H M; Stockill, R; Steiner, M; Le Gall, C; Matthiesen, C; Clarke, E; Ludwig, A; Reichel, J; Atatüre, M; Köhl, M

    2015-03-27

    Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.

  3. Optical Control of One and Two Hole Spins in Interacting Quantum Dots

    DTIC Science & Technology

    2011-11-01

    extended the delay by one and then two laser rep - etition periods of 12.3 ns to measure the decay of the phase oscillations. Figure 3d shows the...fast, single-qubit gates using a sequence of short laser pulses. We then take the important next step towards scalability of quantum information by...optically controlling two interacting hole spins in separate dots. A semiconductor qubit offers powerful advantages for quantum information, including

  4. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires.

    PubMed

    Chen, R S; Wang, W C; Lu, M L; Chen, Y F; Lin, H C; Chen, K H; Chen, L C

    2013-08-07

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.

  5. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

    PubMed

    Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A

    2010-06-07

    We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.

  6. Andreev molecules in semiconductor nanowire double quantum dots.

    PubMed

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  7. Observation of quantum oscillation of work function in ultrathin-metal/semiconductor junctions

    SciTech Connect

    Takhar, Kuldeep; Meer, Mudassar; Khachariya, Dolar; Ganguly, Swaroop; Saha, Dipankar

    2015-09-15

    Quantization in energy level due to confinement is generally observed for semiconductors. This property is used for various quantum devices, and it helps to improve the characteristics of conventional devices. Here, the authors have demonstrated the quantum size effects in ultrathin metal (Ni) layers sandwiched between two large band-gap materials. The metal work function is found to oscillate as a function of its thickness. The thermionic emission current bears the signature of the oscillating work function, which has a linear relationship with barrier heights. This methodology allows direct observation of quantum oscillations in metals at room temperature using a Schottky diode and electrical measurements using source-measure-units. The observed phenomena can provide additional mechanism to tune the barrier height of metal/semiconductor junctions, which are used for various electronic devices.

  8. Anisotropy of the electron g factor in quantum wells based on cubic semiconductors

    SciTech Connect

    Alekseev, P. S.

    2013-09-15

    A new mechanism for the spin splitting of electron levels in asymmetric quantum wells based on GaAs-type semiconductors relative to rotations of the magnetic field in the well plane is suggested. It is demonstrated that the anisotropy of the Zeeman splitting (linear in a magnetic field) arises in asymmetric quantum wells due to the interface spin-orbit terms in the electron Hamiltonian. In the case of symmetric quantum wells, it is shown that the anisotropy of the Zeeman splitting is a cubic function of the magnitude of the magnetic field, depends on the direction of the magnetic field in the interface plane as the fourth-order harmonic, and is governed by the spin-orbit term of the fourth order by the kinematic momentum in the electron Hamiltonian of a bulk semiconductor.

  9. Semiconductor Quantum Dot Structures for Integrated Optic Switches

    DTIC Science & Technology

    2008-12-23

    structures have been produced by etching pillars in GaAs/AlGaAs multiple quantum well structures. The pillars as tall as 1?m and with diameter as small as...etching pillars in GaAs/AlGaAs multiple quantum well structures. The pillars as tall as 1?m and with diameter as small as 40nm were defined using direct...radiative efficiency is essentially similar to their multiple quantum well counterpart. However the additional dimensional confinement leads of improved

  10. Coherently driven semiconductor quantum dot at a telecommunication wavelength.

    PubMed

    Takagi, Hiroyuki; Nakaoka, Toshihiro; Watanabe, Katsuyuki; Kumagai, Naoto; Arakawa, Yasuhiko

    2008-09-01

    We proposed and demonstrate use of optical driving pulses at a telecommunication wavelength for exciton-based quantum gate operation. The exciton in a self-assembled quantum dot is coherently manipulated at 1.3 microm through Rabi oscillation. The telecom-band exciton-qubit system incorporates standard optical fibers and fiber optic devices. The coherent manipulation of the two-level system compatible with flexible and stable fiber network paves the way toward practical optical implementation of quantum information processing devices.

  11. Effect of doping on amplitude modulation of space-charge wave in semiconductor quantum plasma

    NASA Astrophysics Data System (ADS)

    Banerjee, Sreyasi; Ghosh, Basudev

    2017-04-01

    To describe the modulational instability of space-charge waves in an n-type compensated semiconductor plasma, a nonlinear Schrödinger equation has been derived by using quantum hydrodynamical model and standard multiple scale perturbation technique. It has been shown that compensation factor (i.e. relative proportion of donor, acceptor and intrinsic carrier concentrations) and quantum diffraction parameter play important role in generating bright and dark envelope solitons within the semiconductor. Instability growth rate is also found to depend sensitively on the compensation factor and quantum diffraction parameter. From the linear dispersion relation it has been found that inclusion of quantum parameter gives rise to two new wave modes of purely quantum origin. Further the effect of compensation factor and quantum diffraction parameter on the linear dispersion characteristics has been analyzed. It has also been found that due to parabolicity of conduction band the group velocity of space-charge wave becomes dependent on compensation factor and quantum diffraction parameter.

  12. Photoinduced 2-way electron transfer in composites of metal nanoclusters and semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mondal, Navendu; Paul, Sneha; Samanta, Anunay

    2016-07-01

    In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously.In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation

  13. Nanobubble induced formation of quantum emitters in monolayer semiconductors

    NASA Astrophysics Data System (ADS)

    Shepard, Gabriella D.; Ajayi, Obafunso A.; Li, Xiangzhi; Zhu, X.-Y.; Hone, James; Strauf, Stefan

    2017-06-01

    The recent discovery of exciton quantum emitters in transition metal dichalcogenides (TMDCs) has triggered renewed interest of localized excitons in low-dimensional systems. Open questions remain about the microscopic origin previously attributed to dopants and/or defects as well as strain potentials. Here we show that the quantum emitters can be deliberately induced by nanobubble formation in WSe2 and BN/WSe2 heterostructures. Correlations of atomic-force microscope and hyperspectral photoluminescence images reveal that the origin of quantum emitters and trion disorder is extrinsic and related to 10 nm tall nanobubbles and 70 nm tall wrinkles, respectively. We further demonstrate that ‘hot stamping’ results in the absence of 0D quantum emitters and trion disorder. The demonstrated technique is useful for advances in nanolasers and deterministic formation of cavity-QED systems in monolayer materials.

  14. Quantum Mechanical Balance Equation Approach to Semiconductor Device Simulation

    DTIC Science & Technology

    2007-11-02

    inexpensive way to analyze and design the semiconductor devices before expensive device processing. Since traditional equivalent circuit models and...are described, along with representative simulation results for various devices, such as Si- MESFET , Si-MOSFET and GaAs- MESFET . ^CQTJM^1^^0^ 8... determined by how accurately carrier transport is described. Generally, the more sophisticated the approach, the heavier the computational burden

  15. Nonresonant Transient Refractive Index Spectroscopy in Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zharkov, D. K.; Leontyev, A. V.; Shmelev, A. G.; Nikiforov, V. G.; Lobkov, V. S.

    2015-09-01

    We report transient refractive index change in semiconductor nanoparticles dispersed in polymethylmethacrylate matrix via pump-probe experiment. At lower pump intensities the detected signal consists of the pulse autocorrelation-shaped part and another part delayed by 300 fs. The latter's relative intensity depends on the pump level. However in CdS monocrystal the detected signal was found to lack this second feature completely.

  16. Toxicological studies of semiconductor quantum dots on immune cells.

    SciTech Connect

    Ricken, James Bryce; Rios, Lynette; Poschet, Jens Fredrich; Bachand, Marlene; Bachand, George David; Greene, Adrienne Celeste; Carroll-Portillo, Amanda

    2008-11-01

    Nanoengineered materials hold a vast promise of enabling revolutionary technologies, but also pose an emerging and potentially serious threat to human and environmental health. While there is increasing knowledge concerning the risks posed by engineered nanomaterials, significant inconsistencies exist within the current data based on the high degree of variability in the materials (e.g., synthesis method, coatings, etc) and biological test systems (e.g., cell lines, whole organism, etc). In this project, we evaluated the uptake and response of two immune cell lines (RAW macrophage and RBL mast cells) to nanocrystal quantum dots (Qdots) with different sizes and surface chemistries, and at different concentrations. The basic experimental design followed a 2 x 2 x 3 factorial model: two Qdot sizes (Qdot 520 and 620), two surface chemistries (amine 'NH{sub 2}' and carboxylic acid 'COOH'), and three concentrations (0, 1 nM, and 1 {micro}M). Based on this design, the following Qdots from Evident Technologies were used for all experiments: Qdot 520-COOH, Qdot 520-NH{sub 2}, Qdot 620-COOH, and Qdot 620-NH{sub 2}. Fluorescence and confocal imaging demonstrated that Qdot 620-COOH and Qdot 620-NH{sub 2} nanoparticles had a greater level of internalization and cell membrane association in RAW and RBL cells, respectively. From these data, a two-way interaction between Qdot size and concentration was observed in relation to the level of cellular uptake in RAW cells, and association with RBL cell membranes. Toxicity of both RBL and RAW cells was also significantly dependent on the interaction of Qdot size and concentration; the 1 {micro}M concentrations of the larger, Qdot 620 nanoparticles induced a greater toxic effect on both cell lines. The RBL data also demonstrate that Qdot exposure can induce significant toxicity independent of cellular uptake. A significant increase in TNF-{alpha} and decrease in IL-10 release was observed in RAW cells, and suggested that Qdot exposure

  17. Advantages of an indirect semiconductor quantum well system for infrared detection

    NASA Technical Reports Server (NTRS)

    Yang, Chan-Lon; Somoano, Robert; Pan, Dee-Son

    1989-01-01

    The infrared intersubband absorption process in quantum well systems with anisotropic bulk effective masses, which usually occurs in indirect semiconductors was analyzed. It is found that the anisotropic effective mass can be utilized to provide allowed intersubband transitions at normal incidence to the quantum well growth direction. This transition is known to be forbidden for cases of isotropic effective mass. This property can be exploited for infrared sensor application of quantum well structures by allowing direct illumination of large surface areas without using special waveguide structures. The 10-micron intersubband absorption in quantum wells made of the silicon-based system Si/Si(1-x)Ge(x) was calculated. It is found that it is readily possible to achieve an absorption constant of the order of 10,000/cm in these Si quantum wells with current doping technology.

  18. Categorical quantum mechanics II: Classical-quantum interaction

    NASA Astrophysics Data System (ADS)

    Coecke, Bob; Kissinger, Aleks

    2016-08-01

    This is the second part of a three-part overview, in which we derive the category-theoretic backbone of quantum theory from a process ontology, treating quantum theory as a theory of systems, processes and their interactions. In this part, we focus on classical-quantum interaction. Classical and quantum systems are treated as distinct types, of which the respective behavioral properties are specified in terms of processes and their compositions. In particular, classicality is witnessed by ‘spiders’ which fuse together whenever they connect. We define mixedness and show that pure processes are extremal in the space of all processes, and we define entanglement and show that quantum theory indeed exhibits entanglement. We discuss the classification of tripartite qubit entanglement and show that both the GHZ-state and the W-state come from spider-like families of processes, which differ only in how they behave when they are connected by two or more wires. We define measurements and provide fully comprehensive descriptions of several quantum protocols involving classical data flow. Finally, we give a notion of ‘genuine quantumness’, from which special processes called ‘phase spiders’ arise, and get a first glimpse of quantum nonlocality.

  19. Quantum physics: Interactions propel a magnetic dance

    NASA Astrophysics Data System (ADS)

    Leblanc, Lindsay J.

    2017-06-01

    A combination of leading-edge techniques has enabled interaction-induced magnetic motion to be observed for pairs of ultracold atoms -- a breakthrough in the development of models of complex quantum behaviour. See Letter p.519

  20. Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers.

    PubMed

    Chusseau, Laurent; Philippe, Fabrice; Disanto, Filippo

    2014-03-10

    Monte Carlo markovian models of a dual-mode semiconductor laser with quantum well (QW) or quantum dot (QD) active regions are proposed. Accounting for carriers and photons as particles that may exchange energy in the course of time allows an ab initio description of laser dynamics such as the mode competition and intrinsic laser noise. We used these models to evaluate the stability of the dual-mode regime when laser characteristics are varied: mode gains and losses, non-radiative recombination rates, intraband relaxation time, capture time in QD, transfer of excitation between QD via the wetting layer... As a major result, a possible steady-state dual-mode regime is predicted for specially designed QD semiconductor lasers thereby acting as a CW microwave or terahertz-beating source whereas it does not occur for QW lasers.

  1. Magnetic Semiconductor Quantum Wells in High Fields to 60 Tesla: Photoluminescence Linewidth Annealing at Magnetization Steps

    SciTech Connect

    Awschalom, D.D.; Crooker, S.A.; Lyo, S.K.; Rickel, D.G.; Samarth, N.

    1999-05-24

    Magnetic semiconductors offer a unique possibility for strongly tuning the intrinsic alloy disorder potential with applied magnetic field. We report the direct observation of a series of step-like reductions in the magnetic alloy disorder potential in single ZnSe/Zn(Cd,Mn)Se quantum wells between O and 60 Tesla. This disorder, measured through the linewidth of low temperature photoluminescence spectra drops abruptly at -19, 36, and 53 Tesla, in concert with observed magnetization steps. Conventional models of alloy disorder (developed for nonmagnetic semiconductors) reproduce the general shape of the data, but markedly underestimate the size of the linewidth reduction.

  2. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    PubMed

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  3. All quantum dot mode-locked semiconductor disk laser emitting at 655 nm

    SciTech Connect

    Bek, R. Kersteen, G.; Kahle, H.; Schwarzbäck, T.; Jetter, M.; Michler, P.

    2014-08-25

    We present a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM) with emission in the red spectral range. Both the gain and the absorber structure are fabricated by metal-organic vapor-phase epitaxy in an anti-resonant design using quantum dots as active material. A v-shaped cavity is used to tightly focus onto the SESAM, producing pulses with a duration of about 1 ps at a repetition rate of 852 MHz.

  4. Bioinspired photoelectric conversion system based on carbon-quantum-dot-doped dye-semiconductor complex.

    PubMed

    Ma, Zheng; Zhang, Yong-Lai; Wang, Lei; Ming, Hai; Li, Haitao; Zhang, Xing; Wang, Fang; Liu, Yang; Kang, Zhenhui; Lee, Shuit-Tong

    2013-06-12

    Compared to nature's photoelectric conversion processes, artificial devices are still far inferior in efficiency and stability. Inspired by light absorption and resonance energy transfer processes of chlorophyll, we developed a highly efficient photoelectric conversion system by introducing Carbon quantum dots (CQDs) as an electron transfer intermediary. Compared with conventional dye-sensitized semiconductor systems, the present CQD-doped system showed significantly higher photoelectric conversion efficiency, as much as 7 times that without CQDs. The CQD-doped dye/semiconductor system may provide a powerful approach to the development of highly efficient photoelectric devices.

  5. Theory of fine structure of correlated exciton states in self-assembled semiconductor quantum dots in a magnetic field

    NASA Astrophysics Data System (ADS)

    Trojnar, Anna H.; Kadantsev, Eugene S.; Korkusiński, Marek; Hawrylak, Pawel

    2011-12-01

    A theory of the fine structure of correlated exciton states in self-assembled parabolic semiconductor quantum dots in a magnetic field perpendicular to the quantum dot plane is presented. The correlated exciton wave function is expanded in configurations consisting of products of electron and heavy-hole 2D harmonic oscillator states (HO) in a magnetic field and the electron spin Sz=±1/2 and a heavy-hole spin τz=±3/2 states. Analytical expressions for the short- and long-range electron-hole exchange Coulomb interaction matrix elements are derived in the HO and spin basis for arbitrary magnetic field. This allows the incorporation of short- and long-range electron-hole exchange, direct electron-hole interaction, and quantum dot anisotropy in the exact diagonalization of the exciton Hamiltonian. The fine structure of ground and excited correlated exciton states as a function of a number of confined shells, quantum dot anisotropy, and magnetic field is obtained using exact diagonalization of the many-body Hamiltonian. The effects of correlations are shown to significantly affect the energy splitting of the two bright exciton states.

  6. Nanomembrane-based materials for Group IV semiconductor quantum electronics

    PubMed Central

    Paskiewicz, D. M.; Savage, D. E.; Holt, M. V.; Evans, P. G.; Lagally, M. G.

    2014-01-01

    Strained-silicon/relaxed-silicon-germanium alloy (strained-Si/SiGe) heterostructures are the foundation of Group IV-element quantum electronics and quantum computation, but current materials quality limits the reliability and thus the achievable performance of devices. In comparison to conventional approaches, single-crystal SiGe nanomembranes are a promising alternative as substrates for the epitaxial growth of these heterostructures. Because the nanomembrane is truly a single crystal, in contrast to the conventional SiGe substrate made by compositionally grading SiGe grown on bulk Si, significant improvements in quantum electronic-device reliability may be expected with nanomembrane substrates. We compare lateral strain inhomogeneities and the local mosaic structure (crystalline tilt) in strained-Si/SiGe heterostructures that we grow on SiGe nanomembranes and on compositionally graded SiGe substrates, with micro-Raman mapping and nanodiffraction, respectively. Significant structural improvements are found using SiGe nanomembranes. PMID:24573089

  7. Nanomembrane-based materials for Group IV semiconductor quantum electronics.

    PubMed

    Paskiewicz, D M; Savage, D E; Holt, M V; Evans, P G; Lagally, M G

    2014-02-27

    Strained-silicon/relaxed-silicon-germanium alloy (strained-Si/SiGe) heterostructures are the foundation of Group IV-element quantum electronics and quantum computation, but current materials quality limits the reliability and thus the achievable performance of devices. In comparison to conventional approaches, single-crystal SiGe nanomembranes are a promising alternative as substrates for the epitaxial growth of these heterostructures. Because the nanomembrane is truly a single crystal, in contrast to the conventional SiGe substrate made by compositionally grading SiGe grown on bulk Si, significant improvements in quantum electronic-device reliability may be expected with nanomembrane substrates. We compare lateral strain inhomogeneities and the local mosaic structure (crystalline tilt) in strained-Si/SiGe heterostructures that we grow on SiGe nanomembranes and on compositionally graded SiGe substrates, with micro-Raman mapping and nanodiffraction, respectively. Significant structural improvements are found using SiGe nanomembranes.

  8. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Wang, W. C.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C.

    2013-07-01

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01635h

  9. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    NASA Astrophysics Data System (ADS)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton

  10. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.

    PubMed

    Kim, Jeongho; Wong, Cathy Y; Scholes, Gregory D

    2009-08-18

    Quantum dots (QDs) have discrete quantum states isolated from the environment, making QDs well suited for quantum information processing. In semiconductor QDs, the electron spins can be coherently oriented by photoexcitation using circularly polarized light, creating optical orientation. The optically induced spin orientation could serve as a unit for data storage and processing. Carrier spin orientation is also envisioned to be a key component in a related, though parallel, field of semiconductor spintronics. However, the oriented spin population rapidly loses its coherence by interaction with the environment, thereby erasing the prepared information. Since long-lasting spin orientation is desirable in both areas of investigation, spin relaxation is the central focus of investigation for optimization of device performance. In this Account, we discuss a topic peripherally related to these emerging areas of investigation: exciton fine structure relaxation (EFSR). The radiationless transition occurring in the exciton fine structure not only highlights a novel aspect of QD exciton relaxation but also has implications for carrier spin relaxation in QDs. We focus on examining the EFSR in connection with optical spin orientation and subsequent ultrafast relaxation of electron and hole spin densities in the framework of the exciton fine structure basis. Despite its significance, the study of exciton fine structure in colloidal QDs has been hampered by the experimental challenge arising from inhomogeneous line broadening that obscures the details of closely spaced fine structure states in the frequency domain. In this Account, we show that spin relaxation occurring in the fine structure of CdSe QDs can be probed by a time-domain nonlinear polarization spectroscopy, circumventing the obstacles confronted in the frequency-domain spectroscopy. In particular, by combining polarization sequences of multiple optical pulses with the unique optical selection rules of

  11. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    SciTech Connect

    Nevedomskiy, V. N. Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-12-15

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.

  12. Theory of Electron Spectroscopies in Strongly Correlated Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo

    2006-09-01

    Quantum dots may display fascinating features of strong correlation such as finite-size Wigner crystallization. We here review a few electron spectroscopies and predict that both inelastic light scattering and tunneling imaging experiments are able to capture clear signatures of crystallization.

  13. Theory of Electron Spectroscopies in Strongly Correlated Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo

    Quantum dots may display fascinating features of strong correlation such as finite-size Wigner crystallization. We here review a few electron spectroscopies and predict that both inelastic light scattering and tunneling imaging experiments are able to capture clear signatures of crystallization.

  14. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.

    PubMed

    Beard, Matthew C; Luther, Joseph M; Semonin, Octavi E; Nozik, Arthur J

    2013-06-18

    Improving the primary photoconversion process in a photovoltaiccell by utilizing the excess energy that is otherwise lost as heat can lead to an increase in the overall power conversion efficiency (PCE). Semiconductor nanocrystals (NCs) with at least one dimension small enough to produce quantum confinement effects provide new ways of controlling energy flow not achievable in thin film or bulk semiconductors. Researchers have developed various strategies to incorporate these novel structures into suitable solar conversion systems. Some of these methods could increase the PCE past the Shockley-Queisser (SQ) limit of ∼33%, making them viable "third generation photovoltaic" (TGPV) cell architectures. Surpassing the SQ limit for single junction solar cells presents both a scientific and a technological challenge, and the use of semiconductor NCs to enhance the primary photoconversion process offers a promising potential solution. The NCs are synthesized via solution phase chemical reactions producing stable colloidal solutions, where the reaction conditions can be modified to produce a variety of shapes, compositions, and structures. The confinement of the semiconductor NC in one dimension produces quantum films, wells, or discs. Two-dimensional confinement leads to quantum wires or rods (QRs), and quantum dots (QDs) are three-dimensionally confined NCs. The process of multiple exciton generation (MEG) converts a high-energy photon into multiple electron-hole pairs. Although many studies have demonstrated that MEG is enhanced in QDs compared with bulk semiconductors, these studies have either used ultrafast spectroscopy to measure the photon-to-exciton quantum yields (QYs) or theoretical calculations. Implementing MEG in a working solar cell has been an ongoing challenge. In this Account, we discuss the status of MEG research and strategies towards implementing MEG in working solar cells. Recently we showed an external quantum efficiency for photocurrent of greater

  15. Magnetization studies of II-VI semiconductor columnar quantum dots with type-II band alignment

    NASA Astrophysics Data System (ADS)

    Eginligil, M.; Sellers, I. R.; McCombe, B. D.; Chou, W.-C.; Kuskovsky, I. L.

    2009-03-01

    We report SQUID magnetization measurements of MBE-grown type-II, II-VI semiconductor quantum dot (QD) samples, with and without Mn incorporation. In all samples, the easy axis is out-of-plane, possibly due to columnar QD formation that arises from strain interaction between adjacent thin dot-containing layers. In addition, both types of QDs display a non-zero spontaneous magnetic ordering at 300 K. One set of samples consists of five-layers of (Zn,Mn)Te/ZnSe with a nominal (Zn,Mn)Te thickness of 3 nm, and ZnSe spacer thickness of 5 nm and 20 nm. These magnetic QD samples show magnetization vs. temperature behavior that can be interpreted in terms of two independent FM phases characterized by transition temperatures TC1 < TC2. A sample containing no Mn consists of 130 ZnTe/ZnSe layers, which forms Zn(Se,Te) QD layers separated by ZnSe spacers. Evidence of ferromagnetism is also seen in this structure, but the spontaneous magnetization is much weaker. For this sample only one phase is seen with TC above 300 K. Results will be discussed in terms of magneto-polaronic effects and defect-level induced ferromagnetism.

  16. Quantum Generation Dynamics of Coherent Phonon in Semiconductors: Transient and Nonlinear Fano Resonance

    NASA Astrophysics Data System (ADS)

    Watanabe, Yohei; Hino, Ken-Ichi; Hase, Muneaki; Maeshima, Nobuya

    The coherent phonon (CP) generation is one of the representative phenomena induced by ultrashort pulsed laser. In particular, in the initial stage of the CP generation in lightly n-doped Si, the vestige of Fano resonance (FR) manifested in a flash was observed in time-resolved spectroscopy experiments, in which it was speculated that this phenomenon results from the birth of transient polaronic quasiparticles composed of electrons and phonons strongly interacting each other. This study is aimed at constructing a fully-quantum-mechanical model for the CP generation and tracking the origin of the transient FR. We calculate two physical quantities in both of polar and non-polar semiconductors such as GaAs and undoped Si. One is a retarded longitudinal susceptibility which allows one to calculate a transient induced photoemission spectrum. The other is the Fourier-transform of LO-phonon displacement into frequency domain. We have succeeded in showing that the transient FR is exclusively caused in Si in harmony with the experiments, though, not observed in GaAs.

  17. Circular dichroism spectroscopy of complexes based on semiconductor quantum dots and chlorin e6 molecules

    NASA Astrophysics Data System (ADS)

    Kundelev, Evgeny V.; Orlova, Anna O.; Maslov, Vladimir G.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2017-04-01

    Circular dichroism (CD) spectra of complexes based on ZnS:Mn/ZnS and CdSe/ZnS quantum dots (QDs) and chlorin e6 (Ce6) molecules in dimethyl sulfoxide (DMSO) and in aqueous solutions at different pH levels were investigated. The changes in CD spectra of Ce6 upon its bonding in complex with semiconductor QDs were analyzed. CD spectroscopy allowed us to obtain the CD spectrum of a luminescent Ce6 dimer and to identify a nonluminescent Ce6 aggregate, which is thought to be a tetramer. The dissymmetry factor of the tetramer is 40 times larger than that of the Ce6 monomer. The analysis of the obtained data showed that in complexes with QDs Ce6 can be either in the monomer form or in the form of a nonluminescent tetramer. The interaction of the relatively unstable luminescent Ce6 dimer with QDs leads to its partial monomerization and the formation of complexes with Ce6 in the monomer form. On the basis of time-dependent density functional theory calculations, we performed a geometry model of Ce6 dimer form with corresponding calculated absorption and CD spectra, which are in a qualitative agreement with the experimental data.

  18. Aharonov-Bohm-type quantum interference effects in narrow gap semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Lillianfeld, R. B.; Kallaher, R. L.; Heremans, J. J.; Chen, Hong; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.

    2009-03-01

    We present experiments on quantum interference phenomena in semiconductors with strong spin-orbit interaction, using mesoscopic parallel ring arrays fabricated on InSb/InAlSb and InAs/AlGaSb heterostructures. Both external electric field effects and temperature dependence of the ring magnetoresistance are examined. Top-gate voltage-dependent oscillations in ring resistance in the absence of an external magnetic field are suggestive of Aharonov-Casher interference. At low magnetic fields the ring magnetoresistance is dominated by oscillations with h/2e periodicity characteristic of Altshuler-Aronov-Spivak (AAS) oscillations, whereas the h/e periodicity characteristic of Aharonov-Bohm (AB) oscillations persists to high magnetic fields. Fourier spectra (FS) reveal AB amplitudes on the same order as AAS amplitudes at low fields, and in some samples reveal a splitting of the AB peaks, which has been interpreted as a signature of Berry's phase. The FS are also used to quantify the temperature dependence of the oscillation amplitudes (NSF DMR-0618235, DOE DE-FG02-08ER46532, NSF DMR-0520550).

  19. TOPICAL REVIEW A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Ramsay, A. J.

    2010-10-01

    The spin of a carrier trapped in a self-assembled quantum dot has the potential to be a robust optically active qubit that is compatible with existing III-V semiconductor device technology. A key requirement for building a quantum processor is the ability to dynamically prepare, control and detect single quantum states. Here, experimental progress in the coherent optical control of single semiconductor quantum dots over the past decade is reviewed, alongside an introductory discussion of the basic principles of coherent control.

  20. Magnetic detection of photogenerated currents in semiconductor wafers using superconducting quantum interference devices

    NASA Astrophysics Data System (ADS)

    Beyer, J.; Matz, H.; Drung, D.; Schurig, Th.

    1999-05-01

    A completely noninvasive method is presented for the investigation of semiconductor wafers with high spatial resolution utilizing a superconducting quantum interference device (SQUID) magnetometer system. The method is based on the detection of the magnetic field caused by photocurrents generated in the semiconductor sample using a sensitive SQUID magnetometer. The photocurrents arise when laser light with a photon energy exceeding the band gap of the semiconductor is focused onto the sample surface in a region of a doping gradient. The spatial resolution of this detection method is mainly determined by the size of the excitation focus of about 20 μm. We report on measurements of silicon wafers with small growth-related doping fluctuations.

  1. Design and synthesis of organic semiconductors with strong noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Tucker, Neil Maxwell

    2008-10-01

    The development of organic molecules as active components of electronic and optoelectronic devices has seen unprecedented progress in the past decade. This attention is primarily due to the potential impact on large-area and low-cost fabrication of devices, integrated circuits, flexible displays, and in particular, organic field-effect transistors (OFETs). Organic semiconductors that pack face-to-face in the solid state are of particular interest since they are known to self-assemble into 1-D nanostructures due to strong pi-pi interactions. Engineering linear/planar molecules to pack face-to-face is challenging because the interacting forces between organic molecules are relatively weak. Three approaches were used to induce face-to-face packing in organic semiconductors: (1) several derivatives of hexaazatrinaphthylene, (HATNA), were designed which vary in their degree of hydrogen bonding, rigidity, and electron deficiency. Hydrogen bonded moieties induced strong interaction between cores that formed robust nanowires when subjected to nonpolar solvents. While no device data was measured for these materials, substituents location was found to have a profound effect on the electronic properties; (2) Inspired by S···S interactions found in tetrathiafulvalene (TTF) and electrostatic interactions found in 1,2,5-thiadiazole derivatives, a hybrid of these two molecules was developed (BT-TTF-1). Short intermolecular S···S, S···N, and S···C contacts define the solid state structure of BT-TTF-1 single crystals which pi-stack along the [100]. Theoretical insight into the nature of the interactions revealed that the close contacts are electrostatic in origin rather than the result of London dispersion forces. Thermal evaporation yields a network of poorly connected crystals which significantly limits the mobility. Solvent-cast single-crystal nanowire transistors showed mobilities as large as 0.36 cm2/Vs with excellent device characteristics underscoring the

  2. Photoinduced electron donor/acceptor processes in colloidal II-VI semiconductor quantum dots and nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Dutta, Poulami

    Electron transfer (ET) processes are one of the most researched topics for applications ranging from energy conversion to catalysis. An exciting variation is utilizing colloidal semiconductor nanostructures to explore such processes. Semiconductor quantum dots (QDs) are emerging as a novel class of light harvesting, emitting and charge-separation materials for applications such as solar energy conversion. Detailed knowledge of the quantitative dissociation of the photogenerated excitons and the interfacial charge- (electron/hole) transfer is essential for optimization of the overall efficiency of many such applications. Organic free radicals are the attractive counterparts for studying ET to/from QDs because these undergo single-electron transfer steps in reversible fashion. Nitroxides are an exciting class of stable organic free radicals, which have recently been demonstrated to be efficient as redox mediators in dye-sensitized solar cells, making them even more interesting for the aforementioned studies. This dissertation investigates the interaction between nitroxide free radicals TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 4-amino-TEMPO (4-amino- 2,2,6,6-tetramethylpiperidine-1-oxyl) and II-VI semiconductor (CdSe and CdTe) QDs. The nature of interaction in these hybrids has been examined through ground-state UV-Vis absorbance, steady state and time-resolved photoluminescence (PL) spectroscopy, transient absorbance, upconversion photoluminescence spectroscopy and electron paramagnetic resonance (EPR). The detailed analysis of the PL quenching indicates that the intrinsic charge transfer is ultrafast however, the overall quenching is still limited by the lower binding capacities and slower diffusion related kinetics. Careful analysis of the time resolved PL decay kinetics reveal that the decay rate constants are distributed and that the trap states are involved in the overall quenching process. The ultrafast hole transfer from CdSe QDs to 4-Amino TEMPO observed

  3. Magnetic Exchange Interactions in Long Range Ordered Diluted Organometallic Semiconductors

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Manning, Lane; Furis, Madalina

    2015-03-01

    Exchange Interactions in diluted organometallic crystalline thin films of Phthalocyanines made of a mixture of organo-soluble derivatives of metal-free (H2Pc) molecule and MnPc is investigated. The tuning of optical and magnetic properties in organometallics is driven by their emergence in optoelectronic applications involving flexible electronics. Thin films with metal to metal-free Pc ratios ranging from 1: 1 to 1:10 were fabricated using solution processing that produces macroscopic grains. In the case of Mn-Pc, our previos measurements showed enhanced hybridization of ligand π-electronic states with the Mn d-orbitals as well as indirect exchange interaction similar to that of RKKY type exchange. The evolution of Zeeman splitting of specific MCD-active states resulted in enhanced effective π-electrons g-factors, analogous to diluted magnetic semiconductors (DMS) systems. Recent Variable temperature Magnetic Circular Dichroism (VTVH-MCD) measurements has now revealed that the exchange interaction is Antiferromagnetic. Recent MCD data for mixed derivatives will be presented along with their temperature dependance that further probes this exchange interaction. NSF award 1056589

  4. Device Applications of Spin-Orbit Interaction in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Ting, David Z.-Y.; Cartoixà, Xavier; Chang, Yia-Chung

    2005-03-01

    We report recent progress in theoretical development of two classes of non-magnetic semiconductor heterostructure spin devices that exploit spin-orbit interaction in the presence of structural inversion asymmetry (SIA) or bulk inversion asymmetry (BIA). The first uses resonant tunneling to filter spins, and can be used to create a source of spin polarized current. We will provide an analysis on the origin of spin-dependent tunneling in these structures and discuss their applications. The second exploits the interplay between BIA and SIA to control spin lifetimes for device applications. We show that the D'yakonov-Perel' spin relaxation can be suppressed to first order in k for one out three spin components in [001] and [011] heterostructures, and for all three spin components in [111] heterostructures. Our results suggest the use of [111] heterostructures as preferred channels for spin transport, as active regions in spin-LEDs, for spin lifetime transistor, and for spin storage.

  5. Single-sideband photonic microwave generation with an optically injected quantum-dot semiconductor laser.

    PubMed

    Chen, Chih-Ying; Cheng, Chih-Hao; Lin, Fan-Yi

    2016-12-26

    We studied single-sideband (SSB) photonic microwave generation with a high sideband rejection ratio (SRR) based on the period-one dynamical states of an optically injected quantum-dot (QD) semiconductor laser and demonstrated that the SSB signals have SRRs of approximately 15 dB higher than those generated with a conventional quantum-well semiconductor laser under conditions of optimal microwave power. The enhancement of SRR in the QD laser, which is important in mitigating the power penalty effect in applications such as radio-over-fiber optical communications, could be primarily attributed to a lower carrier decay rate in the dots, smaller linewidth enhancement factor, and reduced photon decay rate.

  6. Energy scaling for multi-exciton complexes in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Ipatov, Andrey; Gerchikov, Leonid; Christiano, Jordan

    2017-08-01

    The ground state properties of an multi-exciton (ME) complex localized in a nanoscale semiconductor quantum dot (QD) have been studied. The calculations have been performed using the envelope function approximation for electron and hole motion in the QD. The many-body quantum mechanical treatment of the electron-hole dynamics was done within the Density Functional Theory approach. The ground state energy dependencies upon QD radius, number of electron-hole pairs, QD dielectric function and effective masses of electron and holes have been analyzed. It is demonstrated that when multi-exciton complex is strongly localized within the QD, the physical properties of the system are determined by a single parameter, the ratio of QD and free exciton radii, and its binding energy is given by the function of this parameter multiplied by the binding energy of an isolated exciton in bulk semiconductor.

  7. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    SciTech Connect

    Thorbeck, Ted; Zimmerman, Neil M.

    2015-08-15

    A long-standing mystery in the field of semiconductor quantum dots (QDs) is: Why are there so many unintentional dots (also known as disorder dots) which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  8. Alloyed Mn-Cu-In-S nanocrystals: a new type of diluted magnetic semiconductor quantum dots.

    PubMed

    Liu, Qinghui; Deng, Ruiping; Ji, Xiangling; Pan, Daocheng

    2012-06-29

    A new type of Mn-Cu-In-S diluted magnetic semiconductor quantum dots was synthesized and reported for the first time. The quantum dots, with no highly toxic elements, not only show the same classic diluted magnetic behavior as Mn-doped CdSe, but also exhibit tunable luminescent properties in a relatively large window from 542 to 648 nm. An absolute photoluminescence quantum yield up to 20% was obtained after the shell growth of ZnS. This kind of magnetic/luminescent bi-functional Mn-Cu-In-S/ZnS core/shell quantum dot might serve as promising nanoprobes for use in dual-mode optical and magnetic resonance imaging techniques.

  9. Alloyed Mn-Cu-In-S nanocrystals: a new type of diluted magnetic semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Qinghui; Deng, Ruiping; Ji, Xiangling; Pan, Daocheng

    2012-06-01

    A new type of Mn-Cu-In-S diluted magnetic semiconductor quantum dots was synthesized and reported for the first time. The quantum dots, with no highly toxic elements, not only show the same classic diluted magnetic behavior as Mn-doped CdSe, but also exhibit tunable luminescent properties in a relatively large window from 542 to 648 nm. An absolute photoluminescence quantum yield up to 20% was obtained after the shell growth of ZnS. This kind of magnetic/luminescent bi-functional Mn-Cu-In-S/ZnS core/shell quantum dot might serve as promising nanoprobes for use in dual-mode optical and magnetic resonance imaging techniques.

  10. Charge transport through a semiconductor quantum dot-ring nanostructure.

    PubMed

    Kurpas, Marcin; Kędzierska, Barbara; Janus-Zygmunt, Iwona; Gorczyca-Goraj, Anna; Wach, Elżbieta; Zipper, Elżbieta; Maśka, Maciej M

    2015-07-08

    Transport properties of a gated nanostructure depend crucially on the coupling of its states to the states of electrodes. In the case of a single quantum dot the coupling, for a given quantum state, is constant or can be slightly modified by additional gating. In this paper we consider a concentric dot-ring nanostructure (DRN) and show that its transport properties can be drastically modified due to the unique geometry. We calculate the dc current through a DRN in the Coulomb blockade regime and show that it can efficiently work as a single-electron transistor (SET) or a current rectifier. In both cases the transport characteristics strongly depend on the details of the confinement potential. The calculations are carried out for low and high bias regime, the latter being especially interesting in the context of current rectification due to fast relaxation processes.

  11. Global optimization of semiconductor quantum well profile for maximal optical rectification by variational calculus

    NASA Astrophysics Data System (ADS)

    Radovanovic, Jelena; Milanovic, Vitomir; Ikonic, Zoran; Indjin, Dragan

    2002-07-01

    A procedure is proposed for finding the optimal profile of a semiconductor quantum well to obtain maximal value of the optical rectification coefficient. It relies on the variational calculus, i.e. the optimal control theory, combined with the method of simulated annealing, and should deliver a globally optimized profile, unconstrained to any particular class of functional forms. For the purpose of illustration, the procedure is applied to the optimized design of AlxGa1-xAs based quantum wells, for rectification of ℎω = 116 meV (CO2 laser) radiation. The optimal smooth profile may eventually be discretized to make the structure fabrication easier.

  12. Nonlinear photonic diode behavior in energy-graded core-shell quantum well semiconductor rod.

    PubMed

    Ko, Suk-Min; Gong, Su-Hyun; Cho, Yong-Hoon

    2014-09-10

    Future technologies require faster data transfer and processing with lower loss. A photonic diode could be an attractive alternative to the present Si-based electronic diode for rapid optical signal processing and communication. Here, we report highly asymmetric photonic diode behavior with low scattering loss, from tapered core-shell quantum well semiconductor rods that were fabricated to have a large gradient in their bandgap energy along their growth direction. Local laser illumination of the core-shell quantum well rods yielded a huge contrast in light output intensities from opposite ends of the rod.

  13. Effect of charge imbalance parameter on LEKW in ion-implanted quantum semiconductor plasmas

    SciTech Connect

    Chaudhary, Sandhya; Yadav, Nishchhal; Ghosh, S.

    2015-07-31

    In this study we present an analytical investigation on the propagation characteristics of electro-kinetic wave modified through quantum correction term and charge imbalance parameter using quantum hydrodynamic model for an ion-implanted semiconductor plasma. The dispersion relation has been analyzed in two distinct velocity regimes. We found that as the number of negative charges resides on the colloids increases, their role become increasing effective. The present investigation is important for understanding of wave and instability phenomena and can be put to various interesting applications.

  14. Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot.

    PubMed

    Zhang, Qiang; Dang, Cuong; Urabe, Hayato; Wang, Jing; Sun, Shouheng; Nurmikko, Arto

    2008-11-24

    In this paper, we developed a novel and efficient method of deterministically organizing colloidal particles on structured surfaces over macroscopic areas. Our approach utilizes integrated solution-based processes of dielectric encapsulation and electrostatic-force-mediated self-assembly, which allow precisely controlled placement of sub-10nm sized particles at single particle resolution. As a specific demonstration, motivated by application to single photon sources, highly ordered 2D arrays of single II-VI semiconductor colloidal quantum dots (QDs) were created by this method. Individually, the QDs display triggered single photon emission at room temperature with characteristic photon antibunching statistics, suggesting a pathway to scalable quantum optical radiative systems.

  15. Quantum dot semiconductor disk laser at 1.3  μm.

    PubMed

    Rantamäki, Antti; Sokolovskii, Grigorii S; Blokhin, Sergey A; Dudelev, Vladislav V; Soboleva, Ksenia K; Bobrov, Mikhail A; Kuzmenkov, Alexander G; Vasil'ev, Alexey P; Gladyshev, Andrey G; Maleev, Nikolai A; Ustinov, Victor M; Okhotnikov, Oleg

    2015-07-15

    We present a semiconductor disk laser (SDL) emitting at the wavelength of 1.3 μm. The active region of the SDL comprises InAs quantum dots (QDs) that are embedded into InGaAs quantum wells (QWs). An output power over 200 mW is obtained at 15°C, which represents the highest output power reported from QD-based SDLs in this wavelength range. The results demonstrate the feasibility of QD-based gain media for fabricating SDLs emitting at 1.3 μm.

  16. Four-wave parametric amplification in semiconductor quantum dot-metallic nanoparticle hybrid molecules.

    PubMed

    Li, Jian-Bo; He, Meng-Dong; Chen, Li-Qun

    2014-10-06

    We study theoretically four-wave parametric amplification arising from the nonlinear optical response of hybrid molecules composed of semiconductor quantum dots and metallic nanoparticles. It is shown that highly efficient four-wave parametric amplification can be achieved by adjusting the frequency and intensity of the pump field and the distance between the quantum dot and the metallic nanoparticle. Specifically, the induced probe-wave gain is tunable in a large range from 1 to 1.43 × 10⁵. This gain reaches its maximum at the position of three-photon resonance. Our findings hold great promise for developing four-wave parametric oscillators.

  17. All-optical depletion of dark excitons from a semiconductor quantum dot

    SciTech Connect

    Schmidgall, E. R.; Schwartz, I.; Cogan, D.; Gershoni, D.; Gantz, L.; Heindel, T.; Reitzenstein, S.

    2015-05-11

    Semiconductor quantum dots are considered to be the leading venue for fabricating on-demand sources of single photons. However, the generation of long-lived dark excitons imposes significant limits on the efficiency of these sources. We demonstrate a technique that optically pumps the dark exciton population and converts it to a bright exciton population, using intermediate excited biexciton states. We show experimentally that our method considerably reduces the dark exciton population while doubling the triggered bright exciton emission, approaching thereby near-unit fidelity of quantum dot depletion.

  18. Advanced semiconductor quantum well devices for infrared applications

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir V.

    High performance mid-wavelength infrared (MWIR) light emitting diodes (LEDs) are needed for chemical sensing, analysis and medical imaging. Efficient long wavelength infrared (LWIR) photodetectors are highly desirable for remote sensing and space exploration. The goal of this work is to investigate new mid-infrared LEDs and to optimize existing LWIR quantum well infrared photodetectors (QWIPs). Type-II "W" InAs/InGaSb/AlGaAsSb quantum wells were incorporated as optically active layers in MWIR LEDs. Influence of MBE crystal growth conditions on the density of Shockley-Read-Hall centers in the "W" quantum wells was studied and the optimal growth conditions were identified. A qualitative physical model was developed to describe relative importance of the radiative and non-radiative processes for various temperature ranges. MWIR LED structures lattice-matched to InAs and GaSb substrates were grown. Devices on InAs substrates were found to be at least twice as efficient as devices grown on GaSb. LEDs on InAs had 4.5 mum emission wavelength and 26.5 muW/A external efficiency. Possibility to operate GaAs/AIGaAs QWIP under normal-to-surface light incidence was studied. Metal nano-particle surface coating was developed and processes responsible for, light coupling into the QWIP were investigated. QWIP structure itself was optimized to eliminate Si-diffusion-assisted dark current enhancement by employing a new doping profile in the quantum wells. Devices with the new doping profile had an order of magnitude lower dark current and 20% higher photoresponse than commercially available QWIPs.

  19. Voltage controlled optics of a monolayer semiconductor quantum emitter

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chitraleema; Goodfellow, Kenneth; Kinnischtzke, Laura; Vamivakas, Nick; University of Rochester Team

    2015-03-01

    Two-dimensional atomically thin materials are being actively investigated for next generation optoelectronic devices. Particularly exciting are transition metal dichalcogenides (TMDC) since these materials exhibit a band gap, and support valley specific exciton mediated optical transitions. In this work we report the observation of single photon emission in the TMDC tungsten diselenide. We present magneto-optical spectroscopy results and demonstrate voltage controlled photoluminescence of these localized quantum emitters.

  20. Control of spin defects in wide-bandgap semiconductors for quantum technologies

    DOE PAGES

    Heremans, F. Joseph; Yale, Christopher G.; Awschalom, David D.

    2016-05-24

    Deep-level defects are usually considered undesirable in semiconductors as they typically interfere with the performance of present-day electronic and optoelectronic devices. However, the electronic spin states of certain atomic-scale defects have recently been shown to be promising quantum bits for quantum information processing as well as exquisite nanoscale sensors due to their local environmental sensitivity. In this review, we will discuss recent advances in quantum control protocols of several of these spin defects, the negatively charged nitrogen-vacancy (NV-) center in diamond and a variety of forms of the neutral divacancy (VV0) complex in silicon carbide (SiC). These defects exhibit amore » spin-triplet ground state that can be controlled through a variety of techniques, several of which allow for room temperature operation. Microwave control has enabled sophisticated decoupling schemes to extend coherence times as well as nanoscale sensing of temperature along with magnetic and electric fields. On the other hand, photonic control of these spin states has provided initial steps toward integration into quantum networks, including entanglement, quantum state teleportation, and all-optical control. Electrical and mechanical control also suggest pathways to develop quantum transducers and quantum hybrid systems. In conclusion, the versatility of the control mechanisms demonstrated should facilitate the development of quantum technologies based on these spin defects.« less

  1. Control of spin defects in wide-bandgap semiconductors for quantum technologies

    SciTech Connect

    Heremans, F. Joseph; Yale, Christopher G.; Awschalom, David D.

    2016-05-24

    Deep-level defects are usually considered undesirable in semiconductors as they typically interfere with the performance of present-day electronic and optoelectronic devices. However, the electronic spin states of certain atomic-scale defects have recently been shown to be promising quantum bits for quantum information processing as well as exquisite nanoscale sensors due to their local environmental sensitivity. In this review, we will discuss recent advances in quantum control protocols of several of these spin defects, the negatively charged nitrogen-vacancy (NV-) center in diamond and a variety of forms of the neutral divacancy (VV0) complex in silicon carbide (SiC). These defects exhibit a spin-triplet ground state that can be controlled through a variety of techniques, several of which allow for room temperature operation. Microwave control has enabled sophisticated decoupling schemes to extend coherence times as well as nanoscale sensing of temperature along with magnetic and electric fields. On the other hand, photonic control of these spin states has provided initial steps toward integration into quantum networks, including entanglement, quantum state teleportation, and all-optical control. Electrical and mechanical control also suggest pathways to develop quantum transducers and quantum hybrid systems. In conclusion, the versatility of the control mechanisms demonstrated should facilitate the development of quantum technologies based on these spin defects.

  2. Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot.

    PubMed

    Rukhlenko, Ivan D; Leonov, Mikhail Yu; Turkov, Vadim K; Litvin, Aleksandr P; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V

    2012-12-03

    Optical methods, which allow the determination of the dominant channels of energy and phase relaxation, are the most universal techniques for the investigation of semiconductor quantum dots. In this paper, we employ the kinetic Pauli equation to develop the first generalized model of the pulse-induced photoluminescence from the lowest-energy eigenstates of a semiconductor quantum dot. Without specifying the shape of the excitation pulse and by assuming that the energy and phase relaxation in the quantum dot may be characterized by a set of phenomenological rates, we derive an expression for the observable photoluminescence cross section, valid for an arbitrary number of the quantum dot's states decaying with the emission of secondary photons. Our treatment allows for thermal transitions occurring with both decrease and increase in energy between all the relevant eigenstates at room or higher temperature. We show that in the general case of N states coupled to each other through a bath, the photoluminescence kinetics from any of them is determined by the sum of N exponential functions, whose exponents are proportional to the respective decay rates. We illustrate the application of the developed model by considering the processes of resonant luminescence and thermalized luminescence from the quantum dot with two radiating eigenstates, and by assuming that the secondary emission is excited with either a Gaussian or exponential pulse. Analytic expressions describing the signals of secondary emission are analyzed, in order to elucidate experimental situations in which the relaxation constants may be reliably extracted from the photoluminescence spectra.

  3. Optical absorption in semiconductor quantum dots coupling to dispersive phonons of infinite modes

    NASA Astrophysics Data System (ADS)

    Ding, Zhiwen; Wang, Qin; Zheng, Hang

    2012-10-01

    Optical absorption spectrum of semiconductor quantum dot is investigated by means of an analytical approach based on the Green's function for different forms of coupling strength in an unified method by using the standard model with valence and conduction band levels coupled to dispersive quantum phonons of infinite modes. The analytical expression of the optical absorption coefficient in semiconductor quantum dots is obtained and by this expression the line shape and the peak position of the absorption spectrum are procured. The relation between the properties of absorption spectrum and the forms of coupling strength is clarified, which can be referenced for choosing the proper form of the coupling strength or spectral density to control the features of absorption spectrum of quantum dot. The coupling and confinement induced energy shift and intensity decrease in the absorption spectrum are determined precisely for a wide range of parameters. The results show that the activation energy of the optical absorption is reduced by the effect of exciton-phonon coupling and photons with lower frequencies could also be absorbed in absorption process. With increase of the coupling constant, the line shape of optical absorption spectrum broadens and the peak position moves to lower photon energy with a rapid decrease in intensity at the same time. Both the coupling induced red shift and the confinement induced blue shift conduce to decrease in the intensity of absorption spectrum. Furthermore, this method may have application potential to other confined quantum systems.

  4. Monte-Carlo simulations of photoinduced fluorescence enhancement in semiconductor quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Maenosono, Shinya

    2005-03-01

    Photoinduced fluorescence enhancement (PFE) in semiconductor quantum dot (QD) arrays is simulated by a Monte-Carlo method based on the distributed tunneling model. PFE, a property of a QD ensemble, is directly related to the blinking behavior of single QDs. The origin of PFE is attributed not to an increase in the emission intensity during the 'on' period, but to the prolongation of average 'on' time.

  5. Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier.

    PubMed

    Vallaitis, T; Koos, C; Bonk, R; Freude, W; Laemmlin, M; Meuer, C; Bimberg, D; Leuthold, J

    2008-01-07

    Gain and phase dynamics in InAs/GaAs quantum dot semiconductor optical amplifiers are investigated. It is shown that gain recovery is dominated by fast processes, whereas phase recovery is dominated by slow processes. Relative strengths and time constants of the underlying processes are measured. We find that operation at high bias currents optimizes the performance for nonlinear cross-gain signal processing if a low chirp is required.

  6. Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity.

    PubMed

    Majumdar, Arka; Kaer, Per; Bajcsy, Michal; Kim, Erik D; Lagoudakis, Konstantinos G; Rundquist, Armand; Vučković, Jelena

    2013-07-12

    We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable in bulk semiconductors. Moreover, the presence of the cavity speeds up the spin initialization process beyond the GHz range.

  7. Clamping of the Linewidth Enhancement Factor in Narrow Quantum-Well GRINSCH Semiconductor Lasers

    SciTech Connect

    Bossert, D.; Chow, W.W.; Hader, J.; Koch, S.W.; Moloney, J.V.; Stohls, J.

    1999-01-20

    The linewidth enhancement factor in single quantum-well GRINSCH semiconductor lasers is investigated theoretically and experimentally. For thin wells a small linewidth enhancement factor is obtained which clamps with increasing carrier density, in contrast to the monotonous increase observed for thicker wells. Microscopic many-body calculations reproduce the experimental observations attributing the clamping to a subtle interplay between excitation dependent gain shifts and carrier population distributions.

  8. Unusual quantum confined Stark effect and Aharonov-Bohm oscillations in semiconductor quantum rings with anisotropic effective masses

    NASA Astrophysics Data System (ADS)

    de Sousa, G. O.; da Costa, D. R.; Chaves, Andrey; Farias, G. A.; Peeters, F. M.

    2017-05-01

    The effects of external electric and magnetic fields on the energy spectrum of quantum rings made out of a bidimensional semiconductor material with anisotropic band structures are investigated within the effective-mass model. The interplay between the effective-mass anisotropy and the radial confinement leads to wave functions that are strongly localized at two diametrically opposite regions where the kinetic energy is lowest due to the highest effective mass. We show that this quantum phenomenon has clear consequences on the behavior of the energy states in the presence of applied in-plane electric fields and out-of-plane magnetic fields. In the former, the quantum confined Stark effect is observed with either linear or quadratic shifts, depending on the direction of the applied field. As for the latter, the usual Aharonov-Bohm oscillations are not observed for a circularly symmetric confining potential, however they can be reinstated if an elliptic ring with an appropriate aspect ratio is chosen.

  9. Theory of electron g-tensor in bulk and quantum-well semiconductors

    NASA Astrophysics Data System (ADS)

    Lau, Wayne H.; Flatte', Michael E.

    2004-03-01

    We present quantitative calculations for the electron g-tensors in bulk and quantum-well semiconductors based on a generalized P.p envelope function theory solved in a fourteen-band restricted basis set. The dependences of g-tensor on structure, magnetic field, carrier density, temperature, and spin polarization have been explored and will be described. It is found that at temperatures of a few Kelvin and fields of a few Tesla, the g-tensors for bulk semiconductors develop quasi-steplike dependences on carrier density or magnetic field due to magnetic quantization, and this effect is even more pronounced in quantum-well semiconductors due to the additional electric quantization along the growth direction. The influence of quantum confinement on the electron g-tensors in QWs is studied by examining the dependence of electron g-tensors on well width. Excellent agreement between these calculated electron g-tensors and measurements [1-2] is found for GaAs/AlGaAs QWs. This work was supported by DARPA/ARO. [1] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000);[2] Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997).

  10. Nonlinear wave interactions in quantum magnetoplasmas

    SciTech Connect

    Shukla, P. K.; Ali, S.; Stenflo, L.; Marklund, M.

    2006-11-15

    Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.

  11. Quantum Confined Semiconductors - In-House Interim Research

    DTIC Science & Technology

    2013-04-01

    such as field-effect transistors [1-3], photodetectors [4-7], light-emitting diodes [8-10], metamaterials [11- 13], and solar cells [14,15]. As a...D., Bartnik, A C., Hyun, B. R , Malliaras, G. G., Hanrath, T. and Wise, F. W., "Bright infrared quantum-dot light-emitting diodes through inter-dot...Klabunde, K. J., "Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates," J. Phys. Chern. B 105, 3353-3357 (2001

  12. Calculation of the Free Carrier Magneto-Optical Response for Semiconductors in the Quantum Limit

    NASA Astrophysics Data System (ADS)

    van Royen, Jozef

    1984-06-01

    For almost two decades there has been interest in the quantum limit free carrier cyclotron resonance linewidth in semiconductors. In spite of this, the theoretical situation remains unclear. In particular for the case of ionized impurity scattering, there exists a large variety of contradictory calculations. This situation is due to the introduction of various sophisticated approximations, the validity of which is hard to judge. In view of these problems we have made a thorough investigation of the magneto-optical absorption spectrum in the simplest possible approach, the lowest order Born approximation. Starting from the Kubo formula, the elements of the frequency dependent conductivity tensor are calculated, in linear response theory, for scattered parabolic band electrons in a magnetic field, in the low carrier concentration limit. It is shown that the introduction of a memory function leads to physically reasonable results. The calculations are applied explicitly to electron -L.O. phonon interaction (Frohlich polaron Hamiltonian) and to electron-ionized impurity scattering. The numerical results are compared with different experiments in InSb. For the case of electron-L.O. phonon interaction the "pinning" region is discussed. Far from the "pinning" region, the temperature dependence of the cyclotron resonance linewidth is investigated. At low temperatures, ionized impurity scattering is found to be dominant. At higher temperatures, L.O. phonon scattering becomes important. Excellent agreement with experiment is obtained, both qualitatively and quantitatively. It should be noted that no adjustable parameters have been introduced. Finally, cyclotron harmonics and phonon assisted harmonics are also discussed.

  13. Theoretical study of excitons in semiconductor quantum wires and related systems

    NASA Astrophysics Data System (ADS)

    Sidor, Yosyp

    The main goal of this thesis is a theoretical study of the excitonic properties in semiconductor quantum wires. Excitons dominate the optical properties of these one-dimensional structures, producing broad or sharp absorption and photoluminescence lines. The confinement of the electron and the hole is responsible for the properties of the exciton in a quantum wire. Confinement of the particles can be controlled through the size and shape of the quantum wire as well as through the selection of structure and barrier materials to produce various band offsets. The application of a magnetic field can give important information about the exciton confinement. Therefore, theoretical investigations of excitons in quantum wires is a strong theoretical tool to provide valuable information about quantum wire characteristics, as size uniformity, dimensions and photoluminescence spectrum. In the present thesis self-assembled InAs/InP and GaAs/AlGaAs V-shaped quantum wires are considered. The calculated photoluminescence transition energies in these structures are compared with available experimental data in order to deduce the dimensions of the wires. Both wires are investigated theoretically in the presence of an external magnetic field applied along different directions of the quantum wires. The computed exciton diamagnetic shift for both V-shaped and self-assembled quantum wires are reported and a detailed comparison is obtained with available magneto-photoluminescence experimental data. Since strain is important for the formation of the self-assembled quantum wires, results on the influence of strain on the electron and hole confinement will also be presented. Further, exciton coupling in self-assembled InAs/InP coupled quantum wires is considered. The charge confinement in InAs/InP based quantum wells and self-assembled quantum wires is examined, where for the narrow quantum well a local circular width fluctuation is included in order to describe the localization of the

  14. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices.

    PubMed

    Trotta, Rinaldo; Wildmann, Johannes S; Zallo, Eugenio; Schmidt, Oliver G; Rastelli, Armando

    2014-06-11

    Entanglement resources are key ingredients of future quantum technologies. If they could be efficiently integrated into a semiconductor platform, a new generation of devices could be envisioned, whose quantum-mechanical functionalities are controlled via the mature semiconductor technology. Epitaxial quantum dots (QDs) embedded in diodes would embody such ideal quantum devices, but a fine-structure splitting (FSS) between the bright exciton states lowers dramatically the degree of entanglement of the sources and hampers severely their real exploitation in the foreseen applications. In this work, we overcome this hurdle using strain-tunable optoelectronic devices, where any QD can be tuned for the emission of photon pairs featuring the highest degree of entanglement ever reported for QDs, with concurrence as high as 0.75 ± 0.02. Furthermore, we study the evolution of Bell's parameters as a function of FSS and demonstrate for the first time that filtering-free violation of Bell's inequalities requires the FSS to be smaller than 1 μeV. This upper limit for the FSS also sets the tuning range of exciton energies (∼1 meV) over which our device operates as an energy-tunable source of highly entangled photons. A moderate temporal filtering further increases the concurrence and the tunability of exciton energies up to 0.82 and 2 meV, respectively, though at the expense of 60% reduction of count rate.

  15. Profiling the local carrier concentration across a semiconductor quantum dot

    SciTech Connect

    Walrath, J. C.; Lin, Yen-Hsiang; Huang, S.; Goldman, R. S.

    2015-05-11

    We profile the local carrier concentration, n, across epitaxial InAs/GaAs quantum dots (QDs) consisting of 3D islands on top of a 2D alloy layer. We use scanning thermoelectric microscopy to measure a profile of the temperature gradient-induced voltage, which is converted to a profile of the local Seebeck coefficient, S. The S profile is then converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. Our combined computational-experimental approach suggests a reduced carrier concentration in the QD center in comparison to that of the 2D alloy layer. The relative roles of free carrier trapping and/or dopant expulsion are discussed.

  16. Interaction picture density matrix quantum Monte Carlo

    SciTech Connect

    Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.

    2015-07-28

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.

  17. Interaction of Semiconductor Obstacle with Electromagnetic Wave Propagating in Circular Waveguide

    DTIC Science & Technology

    2008-02-08

    Report 3. DATES COVERED (From – To) 1 February 2007 - 01-Feb-08 4. TITLE AND SUBTITLE Interaction of Semiconductor Obstacle with Electromagnetic...goals, the modeling of the circular waveguide section containing semiconductor obstacle will be performed. To calculate the average electric field in...the semiconductor obstacle the finite difference time domain method will be used. Although, the lowest critical frequency in the circular waveguide

  18. Spin-Photon Entanglement in Semiconductor Quantum Dots: Towards Solid-State-Based Quantum Repeaters

    NASA Astrophysics Data System (ADS)

    De Greve, Kristiaan; Yamamoto, Yoshihisa

    `In this chapter, we introduced and analyze techniques that allow truly secure secret key sharing over long distances, using public, open channels, where the laws of quantum mechanics ensure the security of the long distance key sharing - an idea generally referred to as the essence of a quantum repeater. We describe several proof-of-principle experiments where technology based on self-assembled quantum dots is used as the backbone of a future quantum repeater.'

  19. Optical Absorption, Emission, and Modulation in Iii-V Semiconductor Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Shank, Steven Marc

    An experimental study of topics relating to optical absorption, emission, and modulation in III-V semiconductor GaAs/AlGaAs quantum well structures is presented. Several novel quantum well structures are examined and evaluated for use in electrooptic modulators, laser diodes, and monolithically integrated laser diodes and passive waveguides. The design of the epitaxial structures, the molecular beam epitaxy growth, the optical characterization of the wafers, the fabrication of the wafers into basic optoelectronic devices (electrooptic waveguides, laser diodes, and segmented laser diodes), and the characterization of these devices are described. The quantum confined Stark effect and its influence on the electrooptic properties of quantum wells are described. In particular, electroabsorption and electrobirefringence in (111)B quantum wells are investigated. This quantum well system is chosen due to the larger heavy hole effective mass compared to standard (100) quantum wells. It is demonstrated that electroabsorption and electrobirefringence are enhanced in (111)B quantum wells, which agrees with theoretical predictions based on the heavy hole mass anisotropy. Computer simulations of the quantum confined Stark effect in asymmetric quantum well structures are described. It is demonstrated that asymmetric quantum wells can exhibit enhanced red shifts of the absorption edge, and blue shifts of the absorption edge under an applied reverse bias. An experimental investigation of laser diodes with asymmetric quantum well active regions is described. An evaluation of the blue shift effect on the interband absorption at the laser wavelength is made and related to the efficiency of these structures for monolithic integration with passive waveguides. The optical properties of n-type modulation doped quantum wells are described. It is shown that the interband absorption at the spontaneous emission peak can be greatly reduced compared to undoped quantum wells. N-type modulation

  20. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    SciTech Connect

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo . E-mail: riccardo.sacco@mate.polimi.it

    2005-04-10

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions.

  1. Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system

    PubMed Central

    2012-01-01

    We theoretically investigate coherent optical spectroscopy of a biological semiconductor quantum dot (QD) coupled to DNA molecules. Coupling with DNAs, the linear optical responses of the peptide QDs will be enhanced significantly in the simultaneous presence of two optical fields. Based on this technique, we propose a scheme to measure the vibrational frequency of DNA and the coupling strength between peptide QD and DNA in all-optical domain. Distinct with metallic quantum dot, biological QD is non-toxic and pollution-free to environment, which will contribute to clinical medicine experiments. This article leads people to know more about the optical behaviors of DNAs-quantum dot system, with the currently popular pump-probe technique. PMID:22340277

  2. Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system

    NASA Astrophysics Data System (ADS)

    Li, Jin-Jin; Zhu, Ka-Di

    2012-02-01

    We theoretically investigate coherent optical spectroscopy of a biological semiconductor quantum dot (QD) coupled to DNA molecules. Coupling with DNAs, the linear optical responses of the peptide QDs will be enhanced significantly in the simultaneous presence of two optical fields. Based on this technique, we propose a scheme to measure the vibrational frequency of DNA and the coupling strength between peptide QD and DNA in all-optical domain. Distinct with metallic quantum dot, biological QD is non-toxic and pollution-free to environment, which will contribute to clinical medicine experiments. This article leads people to know more about the optical behaviors of DNAs-quantum dot system, with the currently popular pump-probe technique.

  3. Electric field control of spin splitting in III-V semiconductor quantum dots without magnetic field

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick

    2015-10-01

    We provide an alternative means of electric field control for spin manipulation in the absence of magnetic fields by transporting quantum dots adiabatically in the plane of two-dimensional electron gas. We show that the spin splitting energy of moving quantum dots is possible due to the presence of quasi-Hamiltonian that might be implemented to make the next generation spintronic devices of post CMOS technology. Such spin splitting energy is highly dependent on the material properties of semiconductor. It turns out that this energy is in the range of meV and can be further enhanced with increasing pulse frequency. In particular, we show that quantum oscillations in phonon mediated spin-flip behaviors can be observed. We also confirm that no oscillations in spin-flip behaviors can be observed for the pure Rashba or pure Dresselhaus cases.

  4. Density functional theory studies of core-shell semiconductor nanoparticle quantum dots

    NASA Astrophysics Data System (ADS)

    Walker, Brent; Hendy, Shaun; Tilley, Richard

    2008-03-01

    In going from the macroscale to the nanoscale, quantum-mechanical effects become increasingly important and may mean that nanostructures of a material exhibit very different properties from the corresponding bulk. This is especially noticeable in the case of the optical properties of semiconductor nanoparticles (or quantum dots), which display a number of remarkable features (including very distinct peaks, and tunability across a broad range of wavelengths), due to quantum confinement. Our work involves modeling Si-Ge core-shell nanoparticles using large-scale computer simulations based on the density functional and time-dependent density functional theories. These simulations in particular provide us with predictions of the geometric structures and optical absorption spectra of nanoparticles in an accurate and computationally efficient way, and allow us to study the systematic trends in these properties as the composition and size of the nanoparticle change.

  5. Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2012-02-16

    We theoretically investigate coherent optical spectroscopy of a biological semiconductor quantum dot (QD) coupled to DNA molecules. Coupling with DNAs, the linear optical responses of the peptide QDs will be enhanced significantly in the simultaneous presence of two optical fields. Based on this technique, we propose a scheme to measure the vibrational frequency of DNA and the coupling strength between peptide QD and DNA in all-optical domain. Distinct with metallic quantum dot, biological QD is non-toxic and pollution-free to environment, which will contribute to clinical medicine experiments. This article leads people to know more about the optical behaviors of DNAs-quantum dot system, with the currently popular pump-probe technique.

  6. Quantum centipedes: collective dynamics of interacting quantum walkers

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.; Luck, J. M.; Mallick, K.

    2016-08-01

    We consider the quantum centipede made of N fermionic quantum walkers on the one-dimensional lattice interacting by means of the simplest of all hard-bound constraints: the distance between two consecutive fermions is either one or two lattice spacings. This composite quantum walker spreads ballistically, just as the simple quantum walk. However, because of the interactions between the internal degrees of freedom, the distribution of its center-of-mass velocity displays numerous ballistic fronts in the long-time limit, corresponding to singularities in the empirical velocity distribution. The spectrum of the centipede and the corresponding group velocities are analyzed by direct means for the first few values of N. Some analytical results are obtained for arbitrary N by exploiting an exact mapping of the problem onto a free-fermion system. We thus derive the maximal velocity describing the ballistic spreading of the two extremal fronts of the centipede wavefunction, including its non-trivial value in the large-N limit.

  7. Fundamental interaction between Au quantum dots and DNA

    NASA Astrophysics Data System (ADS)

    Karna, Molleshree; Mallick, Govind; Karna, Shashi

    2010-03-01

    Semiconductor quantum dots (QDs) and metal nanoparticles (NPs) have attracted a great deal of attention in biology community due to their application as fluorescent labels and sensors. The optical properties of QDs and NPs allow them to be effective imaging agents. However, QDs have the potential to be used as more than just sensors and labels. Their biological sensing abilities include identifying target DNA through a linker followed by color change and electrical signaling. If this property can be combined with the direct binding of QDs with DNA, many other applications in bio-nanotechnological field are possible. In this paper, we investigate the interaction between colloidal Au QDs and 30-base sequence single strand DNA. Our preliminary results indicate that the DNA strand tend to form different structures in the presence of Au QDs. Furthermore, small as well as large agglomerated Au particles appear to be linked along the DNA strand.

  8. Control of the spin geometric phase in semiconductor quantum rings

    NASA Astrophysics Data System (ADS)

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-09-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  9. Control of the spin geometric phase in semiconductor quantum rings

    PubMed Central

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov–Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations. PMID:24067870

  10. Control of the spin geometric phase in semiconductor quantum rings.

    PubMed

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  11. Peptide mediated intracellular delivery of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Kapur, Anshika; Safi, Malak; Domitrovic, Tatiana; Medina, Scott; Palui, Goutam; Johnson, John E.; Schneider, Joel; Mattoussi, Hedi

    2017-02-01

    As control over the growth, stabilization and functionalization of inorganic nanoparticles continue to advance, interest in integrating these materials with biological systems has steadily grown in the past decade. Much attention has been directed towards identifying effective approaches to promote cytosolic internalization of the nanoparticles while avoiding endocytosis. We describe the use of NωV virus derived gamma peptide and a chemically synthesized anticancer peptide, SVS-1 peptide, as vehicles to promote the non-endocytic uptake of luminescent quantum dots (QDs) inside live cells. The gamma peptide is expressed in E. coli as a fusion protein with poly-his tagged MBP (His-MBP-γ) to allow self-assembly onto QDs via metal-histidine conjugation. Conversely, the N-terminal cysteine residue of the SVS-1 peptide is attached to the functionalized QDs via covalent coupling chemistry. Epi-fluorescence microscopy images show that the QD-conjugate staining is distributed throughout the cytoplasm of cell cultures. Additionally, the QD staining does not show co-localization with transferrin-dye-labelled endosomes or DAPI stained nuclei. The QD uptake observed in the presence of physical and pharmacological endocytosis inhibitors further suggest that a physical translocation of QDs through the cell membrane is the driving mechanism for the uptake.

  12. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping

    PubMed Central

    Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.

    2015-01-01

    As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215

  13. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping.

    PubMed

    Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S

    2015-06-03

    As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization.

  14. Ultrafast carrier dynamics in semiconductor self-assembled quantum dots in the low carrier density regime

    NASA Astrophysics Data System (ADS)

    Urayama, Junji

    2002-09-01

    Self-assembled quantum dots are nanoscopic clusters of semiconductor atoms that exhibit atom-like properties because of their three dimensional quantum confining potentials. The quantum confinement offered by quantum dots is expected to reap benefits for many optoelectronic applications. In fact, high performance lasers and detectors based on quantum dots are already being developed. For these applications as well as for those with new functionalities, one of the most critical factors affecting performance will be relaxation processes of the carriers. Thus in order to fully exploit the benefits of self-assembled quantum dots, one must have a clear understanding of the physical mechanisms that govern carrier dynamics. Ultrafast carrier dynamics which occur on the time scales of femtoseconds and picoseconds among the quantum dots at low densities are the topics of this thesis. A femtosecond differential transmission pump-probe technique is employed to time-resolve directly the carrier distribution among an ensemble of multilayer self-assembled quantum dots. Measurements show that in multilayer structures where the barrier region is very thin, electronic coupling occurs in a time scale of hundreds of femtoseconds among the confined excited states. In a slightly longer time scale on the order of just a few picoseconds, electrons and holes relax from the high-lying states down to the low-lying dot states. When electrons and holes are captured non-geminately or separately into the excited states of different dots, the electrons experience a phonon bottleneck or the suppression of the interlevel relaxation. This bottleneck signal decays with a time constant of approximately 750 picoseconds and is attributed to thermal excitation. Temperature-dependent measurements analyzed with an ensemble Monte Carlo simulation indicate that thermal reemission and non-radiative recombination play a strong role in the carrier dynamics above 100 Kelvin. Collectively these results

  15. Epitaxial superconductor-semiconductor two-dimensional systems: platforms for quantum circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shabani, Javad

    2016-10-01

    Theory suggests that the interface between a one-dimensional semiconductor (Sm) with strong spin-orbit coupling and a superconductor (S) hosts Majorana modes with nontrivial topological properties. A key challenge in fabrication of such hybrid devices is forming highly transparent contacts between the active electrons in the semiconductor and the superconducting metal. Recently, it has been shown that a near perfect interface and a highly transparent contact can be achieved using epitaxial growth of aluminum on InAs nanowires. In this work, we present the first two-dimensional epitaxial superconductor-semiconductor material system that can serve as a platform for topological superconductivity. We show that our material system, Al-InAs, satisfies all the requirements necessary to reach into the topological superconducting regime by individual characterization of the semiconductor two dimensional electron system, superconductivity of Al and performance of S-Sm-S junctions. This exciting development might lead to a number of useful applications ranging from spintronics to quantum computing.

  16. Multiclustered chimeras in large semiconductor laser arrays with nonlocal interactions

    NASA Astrophysics Data System (ADS)

    Shena, J.; Hizanidis, J.; Hövel, P.; Tsironis, G. P.

    2017-09-01

    The dynamics of a large array of coupled semiconductor lasers is studied numerically for a nonlocal coupling scheme. Our focus is on chimera states, a self-organized spatiotemporal pattern of coexisting coherence and incoherence. In laser systems, such states have been previously found for global and nearest-neighbor coupling, mainly in small networks. The technological advantage of large arrays has motivated us to study a system of 200 nonlocally coupled lasers with respect to the emerging collective dynamics. Moreover, the nonlocal nature of the coupling allows us to obtain robust chimera states with multiple (in)coherent domains. The crucial parameters are the coupling strength, the coupling phase and the range of the nonlocal interaction. We find that multiclustered chimera states exist in a wide region of the parameter space and we provide quantitative characterization for the obtained spatiotemporal patterns. By proposing two different experimental setups for the realization of the nonlocal coupling scheme, we are confident that our results can be confirmed in the laboratory.

  17. Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles

    DTIC Science & Technology

    2014-11-07

    FORM TO THE ABOVE ADDRESS. Hampton University 100 E. Queen Street Hampton, VA 23668 -0108 ABSTRACT Final Report: Optical Spectroscopy of Hybrid...when excitons and plasmons coherently interact via the Coulomb force . The changes in PL enhancement and quenching are closely related to the coupling...deposition images on the quartz plate were analyzed with an atomic force microscope (AFM, Agilent, 5500AFM). The image indicated that the Au nanoparticles

  18. Monte Carlo Analysis of Quantum Transport and Fluctuations in Semiconductors.

    DTIC Science & Technology

    1986-02-18

    a set of algebric .. equations...................................... 58 3.3 Generalisation of the procedure to an integro-differential equation...time, is given by: Ttt (h) (2.2) The density matrix obeys the Liouville von Neumann equation: %’-" L(2.3) L = [ (square brackets denote commutator ...right hand side represents a generalized collision integral: the commutators describe the kinetic effects of the interaction (renormalization of the

  19. Irregular Aharonov-Bohm effect for interacting electrons in a ZnO quantum ring.

    PubMed

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-02-22

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov-Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number.

  20. Irregular Aharonov-Bohm effect for interacting electrons in a ZnO quantum ring

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-02-01

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov-Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number.

  1. Phase Recovery Acceleration of Quantum-Dot Semiconductor Optical Amplifiers by Optical Pumping to Quantum-Well Wetting Layer

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-11-01

    We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.

  2. Nonequilibrium Quantum Systems: Fluctuations and Interactions

    NASA Astrophysics Data System (ADS)

    Subasi, Yigit

    We explore some aspects of nonequilibrium statistical mechanics of classical and quantum systems. Two chapters are devoted to fluctuation theorems which were originally derived for classical systems. The main challenge in formulating them in quantum mechanics is the fact that fundamental quantities of interest, like work, are defined via the classical concept of a phase space trajectory. We utilize the decoherent histories conceptual framework, in which classical trajectories emerge in quantum mechanics as a result of coarse graining, and provide a first-principles analysis of the nonequilibrium work relation of Jarzynski and Crooks's fluctuation theorem for a quantum system interacting with a general environment based on the quantum Brownian motion (QBM) model. We indicate a parameter range at low temperatures where the theorems might fail in their original form. Fluctuation theorems of Jarzynski and Crooks for systems obeying classical Hamiltonian dynamics are derived under the assumption that the initial conditions are sampled from a canonical ensemble, even though the equilibrium state of an isolated system is typically associated with the microcanonical ensemble. We address this issue through an exact analysis of the classical Brownian motion model. We argue that a stronger form of ensemble equivalence than usually discussed in equilibrium statistical mechanics is required for these theorems to hold in the infinite environment limit irrespective of the ensemble used, and proceed to prove it for this model. An exact expression for the probability distribution of work is obtained for finite environments. Intuitively one expects a system to relax to an equilibrium state when brought into contact with a thermal environment. Yet it is important to have rigorous results that provide conditions for equilibration and characterize the equilibrium state. We consider the dynamics of open quantum systems using the Langevin and master equations and rigorously show that

  3. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    PubMed

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  4. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field

    NASA Astrophysics Data System (ADS)

    Kosionis, Spyridon G.; Terzis, Andreas F.; Sadeghi, Seyed M.; Paspalakis, Emmanuel

    2013-01-01

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  5. Control over hysteresis curves and thresholds of optical bistability in different semiconductor double quantum wells

    NASA Astrophysics Data System (ADS)

    H, R. Hamedi; M, R. Mehmannavaz; Hadi, Afshari

    2015-08-01

    The effects of optical field on the phenomenon of optical bistability (OB) are investigated in a K-type semiconductor double quantum well (SDQW) under various parametric conditions. It is shown that the OB threshold can be manipulated by increasing the intensity of coupling field. The dependence of the shift of OB hysteresis curve on probe wavelength detuning is then explored. In order to demonstrate controllability of the OB in this SDQW, we compare the OB features of three different configurations which could arise in this SDQW scheme, i.e., K-type, Y-type, and inverted Y-type systems. The controllability of this semiconductor nanostructure medium makes the presented OB scheme more valuable for applications in all-optical switches, information storage, and logic circuits of all optical information processing. Project supported by the Lithuanian Research Council (Grant No. VP1-3.1-ŠM-01-V-03-001).

  6. Hidden quantum mirage by negative refraction in semiconductor P-N junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Hui; Zhu, Jia-Ji; Yang, Wen; Lin, Hai-Qing; Chang, Kai

    2016-08-01

    We predict a robust quantum interference phenomenon in a semiconductor P-N junction: with a local pump on one side of the junction, the response of a local probe on the other side behaves as if the disturbance emanates not from the pump but instead from its mirror image about the junction. This phenomenon follows from the matching of Fermi surfaces of the constituent materials, thus it is robust against the details of the junction (e.g., width, potential profile, and even disorder), in contrast to the widely studied anomalous focusing caused by negative refraction. The recently fabricated P-N junctions in 2D semiconductors provide ideal platforms to explore this phenomenon and its applications to dramatically enhance charge and spin transport as well as carrier-mediated long-range correlation.

  7. Photoemission and Masing in a Cavity-Coupled Semiconductor Double Quantum Dot

    NASA Astrophysics Data System (ADS)

    Petta, Jason

    2015-05-01

    Semiconductor circuit QED devices are exciting platforms for studying the coupled dynamics of single charges, photons, and phonons. I will describe a newly discovered maser, which is driven by single electron tunneling events that result in gigahertz frequency photon emission. Semiconductor double quantum dots, sometimes referred to as electrically tunable ``artificial molecules,'' serve as the gain medium and are placed inside of a high quality factor microwave cavity. Maser action is verified by comparing the statistics of the emitted microwave field above and below the maser threshold. Furthermore, by driving the cavity with a seed tone, it is possible to injection lock the maser, greatly reducing the emission linewidth. The frequency range over which the maser can be injection locked closely follows predictions from Adler's equation. Research was performed in collaboration with Yinyu Liu, Jiri Stehlik, Christopher Eichler, Michael Gullans, and Jacob Taylor. We acknowledge support from the Sloan and Packard Foundations, ARO, DARPA, and the NSF.

  8. Quantum state tomography of large nuclear spins in a semiconductor quantum well: Optimal robustness against errors as quantified by condition numbers

    NASA Astrophysics Data System (ADS)

    Miranowicz, Adam; Ã-zdemir, Şahin K.; Bajer, Jiří; Yusa, Go; Imoto, Nobuyuki; Hirayama, Yoshiro; Nori, Franco

    2015-08-01

    We discuss methods of quantum state tomography for solid-state systems with a large nuclear spin I =3 /2 in nanometer-scale semiconductors devices based on a quantum well. Due to quadrupolar interactions, the Zeeman levels of these nuclear-spin devices become nonequidistant, forming a controllable four-level quantum system (known as quartit or ququart). The occupation of these levels can be selectively and coherently manipulated by multiphoton transitions using the techniques of nuclear magnetic resonance (NMR) [Yusa et al., Nature (London) 434, 1001 (2005), 10.1038/nature03456]. These methods are based on an unconventional approach to NMR, where the longitudinal magnetization Mz is directly measured. This is in contrast to the standard NMR experiments and tomographic methods, where the transverse magnetization Mx y is detected. The robustness against errors in the measured data is analyzed by using the condition number based on the spectral norm. We propose several methods with optimized sets of rotations yielding the highest robustness against errors, as described by the condition number equal to 1, assuming an ideal experimental detection. This robustness is only slightly deteriorated, as given by the condition number equal to 1.05, for a more realistic "noisy" Mz detection based on the standard cyclically ordered phase sequence (CYCLOPS) method.

  9. Threshold characteristics of semiconductor lasers under conditions of violation of electroneutrality in quantum wells

    SciTech Connect

    Sokolova, Z N; Tarasov, I S; Asryan, L V

    2013-05-31

    The threshold characteristics of semiconductor lasers are studied theoretically when the electroneutrality in quantum wells is violated. It is shown that even with the infinitely large threshold concentration of the charge carriers of one sign in the wells, the minimum threshold concentration of the carriers of the opposite sign is nonzero. It is found that in InGaAs/GaAs/AlGaAs heterostructures emitting near the wavelength 1.044 {mu}m, in a wide range of values of the electron concentration in the wells the threshold concentrations of free electrons and holes in the waveguide region are small, the contribution of the recombination current in the waveguide region to the total threshold current is negligible and in the case of a single quantum well, the threshold current density is virtually constant, i.e., the violation of electroneutrality in the InGaAs/GaAs/AlGaAs structures with a single quantum well has almost no effect on the threshold current. In the structures with two or three wells the violation of electroneutrality manifests itself much stronger and can lead to either a decrease or an increase in the threshold current. (semiconductor lasers. physics and technology)

  10. Quantum confinement in semiconductor nanofilms: Optical spectra and multiple exciton generation

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir I.

    2016-04-01

    We report optical absorption and photoluminescence (PL) spectra of Si and SnO2 nanocrystalline films in the UV-vis-NIR range, featuring discrete bands resulting from transverse quantum confinement, observed in the optical spectra of nanofilms for the first time ever. The film thickness ranged from 3.9 to 12.2 nm, depending on the material. The results are interpreted within the particle-in-a-box model, with infinite walls. The calculated values of the effective electron mass are independent on the film thickness and equal to 0.17mo (Si) and 0.21mo (SnO2), with mo the mass of the free electron. The second calculated model parameter, the quantum number n of the HOMO (valence band), was also thickness-independent: 8.00 (Si) and 7.00 (SnO2). The transitions observed in absorption all start at the level n and correspond to Δn = 1, 2, 3, …. The photoluminescence bands exhibit large Stokes shifts, shifting to higher energies with increased excitation energy. In effect, nanolayers of Si, an indirect-gap semiconductor, behave as a direct-gap semiconductor, as regards the transverse-quantized level system. A prototype Si-SnO2 nanofilm photovoltaic cell demonstrated photoelectron quantum yields achieving 2.5, showing clear evidence of multiple exciton generation, for the first time ever in a working nanofilm device.

  11. Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers

    NASA Astrophysics Data System (ADS)

    Piccardo, Marco; Li, Chi-Kang; Wu, Yuh-Renn; Speck, James S.; Bonef, Bastien; Farrell, Robert M.; Filoche, Marcel; Martinelli, Lucio; Peretti, Jacques; Weisbuch, Claude

    2017-04-01

    Urbach tails in semiconductors are often associated to effects of compositional disorder. The Urbach tail observed in InGaN alloy quantum wells of solar cells and LEDs by biased photocurrent spectroscopy is shown to be characteristic of the ternary alloy disorder. The broadening of the absorption edge observed for quantum wells emitting from violet to green (indium content ranging from 0% to 28%) corresponds to a typical Urbach energy of 20 meV. A three-dimensional absorption model is developed based on a recent theory of disorder-induced localization which provides the effective potential seen by the localized carriers without having to resort to the solution of the Schrödinger equation in a disordered potential. This model incorporating compositional disorder accounts well for the experimental broadening of the Urbach tail of the absorption edge. For energies below the Urbach tail of the InGaN quantum wells, type-II well-to-barrier transitions are observed and modeled. This contribution to the below-band-gap absorption is particularly efficient in near-ultraviolet emitting quantum wells. When reverse biasing the device, the well-to-barrier below-band-gap absorption exhibits a red-shift, while the Urbach tail corresponding to the absorption within the quantum wells is blue-shifted, due to the partial compensation of the internal piezoelectric fields by the external bias. The good agreement between the measured Urbach tail and its modeling by the localization theory demonstrates the applicability of the latter to compositional disorder effects in nitride semiconductors.

  12. Constraint algebra for interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Fubini, S.; Roncadelli, M.

    1988-04-01

    We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.

  13. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.

    PubMed

    Hughes, Stephen; Agarwal, Girish S

    2017-02-10

    We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.

  14. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen; Agarwal, Girish S.

    2017-02-01

    We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.

  15. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    NASA Astrophysics Data System (ADS)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  16. Time-domain model of quantum-dot semiconductor optical amplifiers for wideband optical signals.

    PubMed

    Puris, D; Schmidt-Langhorst, C; Lüdge, K; Majer, N; Schöll, E; Petermann, K

    2012-11-19

    We present a novel theoretical time-domain model for a quantum dot semiconductor optical amplifier, that allows to simulate subpicosecond pulse propagation including power-based and phase-based effects. Static results including amplified spontaneous emission spectra, continuous wave amplification, and four-wave mixing experiments in addition to dynamic pump-probe simulations are presented for different injection currents. The model uses digital filters to describe the frequency dependent gain and microscopically calculated carrier-carrier scattering rates for the interband carrier dynamics. It can be used to calculate the propagation of multiple signals with different wavelengths or one wideband signal with high bitrate.

  17. ZnCdSe/ZnSe quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Al-Mossawi, Muwaffaq Abdullah

    2017-02-01

    Gain of CdZnSe quantum dot (QD) semiconductor optical amplifiers (SOAs) is studied theoretically using non-Markovian gain model including many-body effects. The calculations are done at three mole fractions. Spontaneous emission and noise figure of the amplifier are studied. The effect of shot noise is included. High gain, polarization independence, and low noise figure are characterize these QD-SOAs. A multi-mode gain appears for Zn0.69Cd0.31Se structure while the structure Zn0.6Cd0.4Se give a low noise.

  18. Liquid-crystal composites with controlled photoluminescence of CdSe/ZnS semiconductor quantum rods

    NASA Astrophysics Data System (ADS)

    Danilov, V. V.; Artem'ev, M. V.; Baranov, A. V.; Orlova, A. O.; Mukhina, M. V.; Khrebtov, A. I.

    2011-06-01

    Liquid-crystal (LC) composites based on a combination of different acrylates and pentylcyanobiphenyl and containing CdSe/ZnS semiconductor quantum nanorods have been investigated. Samples of electro-optical cells with planar or homeotropic structures (depending on the acrylate type) have been obtained. The morphology of LC composite formation has been studied using luminescence techniques. It is shown that these composites are gel-like LC media, where the formation of dispersed and network structures in the cells plays a stabilizing role. The role of the electron transfer reactions during polymerization and the features of the kinetics of the Freedericksz effect (reorientation in an electric field) are discussed.

  19. Large-signal coherent control of normal modes in quantum-well semiconductor microcavity

    SciTech Connect

    Lee, Y.-S.; Norris, T. B.; Maslov, A.; Citrin, D. S.; Prineas, J.; Khitrova, G.; Gibbs, H. M.

    2001-06-18

    We demonstrate coherent control of the cavity-polariton modes of a quantum-well semiconductor microcavity in a two-color scheme. The cavity enhancement of the excitonic nonlinearity gives rise to a large signal; modulating the relative phase of the excitation pulses between zero and {pi} produces a differential reflectivity ({Delta}R/R) of up to 20%. The maximum nonlinear signal is obtained for cocircular pump and probe polarization. Excitation-induced dephasing is responsible for the incoherent nonlinear response, and limits the contrast ratio of the optical switching. {copyright} 2001 American Institute of Physics.

  20. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot-micelles.

    SciTech Connect

    Brinker, C. Jeffrey; Bunge, Scott D.; Gabaldon, John; Fan, Hongyou; Scullin, Chessa; Leve, Erik W.; Wilson, Michael C.; Tallant, David Robert; Boyle, Timothy J.

    2005-04-01

    We report a simple, rapid approach to synthesize water-soluble and biocompatible fluorescent quantum dot (QD) micelles by encapsulation of monodisperse, hydrophobic QDs within surfactant/lipid micelles. Analyses of UV-vis and photo luminescence spectra, along with transmission electron microscopy, indicate that the water-soluble semiconductor QD micelles are monodisperse and retain the optical properties of the original hydrophobic QDs. The QD micelles were shown to be biocompatible and exhibited little or no aggregation when taken up by cultured rat hippocampal neurons.

  1. Degenerate four-wave mixing from layered semiconductor clusters in the quantum size regime

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Rhee, Bum Ku; McGinnis, Brian P.; Sandroff, Claude J.

    1986-11-01

    We report the first measurement of the third-order nonlinear susceptibility χ(3) in layered semiconductor clusters exhibiting pronounced quantum size effects at room temperature. BiI3 clusters prepared in colloidal form in acetonitrile had a thickness of ≂7 Å and lateral dimensions between 60 and 90 Å. Using degenerate four-wave mixing, we observed that the conjugate pulses from the small and the large gratings had comparable intensities, verifying the electronic origin of the nonlinearity. The nonlinear susceptibility was found to be 2.3×10-11 esu for a colloid with a cluster volume fraction of 10-5.

  2. Photo- and electroluminescence from semiconductor colloidal quantum dots in organic matrices: QD-OLED

    SciTech Connect

    Vitukhnovskii, A. G. Vaschenko, A. A.; Bychkovskii, D. N.; Dirin, D. N.; Tananaev, P. N.; Vakshtein, M. S.; Korzhonov, D. A.

    2013-12-15

    The results are reported of an experimental study of samples of organic light-emitting diodes (OLEDs) with luminescent layers fabricated on the basis of two types of CdSe/CdS/ZnS semiconductor quantum dots (QDs) with average CdSe core diameters of 3.2 and 4.1 nm and the same overall diameters of 6.5 nm. The dependences of the LED efficiency on the applied voltage are determined. Assumptions are made about ways of optimizing the design of high-efficiency LEDs.

  3. Large and tunable negative refractive index via electromagnetically induced chirality in a semiconductor quantum well nanostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Sh.-C.; Zhang, Sh.-Y.; Xu, Y.-Y.

    2014-11-01

    Large and tunable negative refractive index (NRI) via electromagnetically induced chirality is demonstrated in a semiconductor quantum wells (SQWs) nanostructure by using the reported experimental parameters in J.F. Dynes et al., Phys. Rev. Lett. 94, 157403 (2005). It is found: the large and controllable NRI with alterable frequency regions is obtained when the coupling laser field and the relative phase are modulated, which will increase the flexibility and possibility of implementing NRI in the SQWs nanostructure. The scheme rooted in the experimental results may lead a new avenue to NRI material in solid-state nanostructure.

  4. Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers

    SciTech Connect

    Mezzapesa, F. P. Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Vitiello, M. S.

    2014-01-27

    To monitor the density of photo-generated charge carriers on a semiconductor surface, we demonstrate a detectorless imaging system based on the analysis of the optical feedback in terahertz quantum cascade lasers. Photo-excited free electron carriers are created in high resistivity n-type silicon wafers via low power (≅40 mW/cm{sup 2}) continuous wave pump laser in the near infrared spectral range. A spatial light modulator allows to directly reconfigure and control the photo-patterned intensity and the associated free-carrier density distribution. The experimental results are in good agreement with the numerical simulations.

  5. Effect of quantum parameter – H on space-charge wave spectra in n-type semiconductor plasmas

    SciTech Connect

    Ghosh, S. Muley, Apurva

    2015-07-31

    The present paper deals with the propagation characteristics of very fundamental wave i.e. space – charge wave while propagating through quantum semiconductor plasma. We have used quantum hydrodynamic model to derive the most general dispersion relation in terms of quantum parameter – H. We have found that in presence of an external electrostatic field, the wave spectra (dispersion as well as gain characteristics) not only modified due to presence of quantum effect but also two novel modes of propagation are introduced due to this effect. Hence it may be concluded that to miniaturize the opto-electronic devices, one should use highly doped semiconductor medium at comparatively lower temperature so that the quantum effects predominate.

  6. Interactive simulations for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje; Rizzoli, Aluna

    2017-05-01

    Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels.

  7. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron Gas

    PubMed

    Huard; Cox; Saminadayar; Arnoult; Tatarenko

    2000-01-03

    The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects.

  8. Manipulating coherence resonance in a quantum dot semiconductor laser via electrical pumping.

    PubMed

    Otto, Christian; Lingnau, Benjamin; Schöll, Eckehard; Lüdge, Kathy

    2014-06-02

    Excitability and coherence resonance are studied in a semiconductor quantum dot laser under short optical self-feedback. For low pump levels, these are observed close to a homoclinic bifurcation, which is in correspondence with earlier observations in quantum well lasers. However, for high pump levels, we find excitability close to a boundary crisis of a chaotic attractor. We demonstrate that in contrast to the homoclinic bifurcation the crisis and thus the excitable regime is highly sensitive to the pump current. The excitability threshold increases with the pump current, which permits to adjust the sensitivity of the excitable unit to noise as well as to shift the optimal noise strength, at which maximum coherence is observed. The shift adds up to more than one order of magnitude, which strongly facilitates experimental realizations.

  9. Charge Sensed Pauli Blockade in a Metal–Oxide–Semiconductor Lateral Double Quantum Dot

    SciTech Connect

    Nguyen, Khoi T.; Lilly, Michael P.; Nielsen, Erik; Bishop, Nathan; Rahman, Rajib; Young, Ralph; Wendt, Joel; Dominguez, Jason; Pluym, Tammy; Stevens, Jeffery; Lu, Tzu-Ming; Muller, Richard; Carroll, Malcolm S.

    2013-12-11

    We report Pauli blockade in a multielectron silicon metal–oxide–semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet–triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing and shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement.

  10. Investigation of red blood cell antigens with highly fluorescent and stable semiconductor quantum dots.

    PubMed

    de Farias, Patrícia Maria Albuquerque; Santos, Beate Saegesser; de Menezes, Frederico Duarte; de Carvalho Ferreira, Ricardo; Barjas-Castro, Maria Lourdes; Castro, Vagner; Lima, Paulo Roberto Moura; Fontes, Adriana; Cesar, Carlos Lenz

    2005-01-01

    We report a new methodology for red blood cell antigen expression determination by a simple labeling procedure employing luminescent semiconductor quantum dots. Highly luminescent and stable core shell cadmium sulfide/cadmium hydroxide colloidal particles are obtained, with a predominant size of 9 nm. The core-shell quantum dots are functionalized with glutaraldehyde and conjugated to a monoclonal anti-A antibody to target antigen-A in red blood cell membranes. Erythrocyte samples of blood groups A+, A2+, and O+ are used for this purpose. Confocal microscopy images show that after 30 min of conjugation time, type A+ and A2+ erythrocytes present bright emission, whereas the O+ group cells show no emission. Fluorescence intensity maps show different antigen expressions for the distinct erythrocyte types. The results obtained strongly suggest that this simple labeling procedure may be employed as an efficient tool to investigate quantitatively the distribution and expression of antigens in red blood cell membranes.

  11. The Role of Ligands in Determining the Exciton Relaxation Dynamics in Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Peterson, Mark D.; Cass, Laura C.; Harris, Rachel D.; Edme, Kedy; Sung, Kimberly; Weiss, Emily A.

    2014-04-01

    This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.

  12. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Mingyang; Wang, Kun; Wang, Linxi; Han, Shuo; Fan, Hongsong; Rowell, Nelson; Ripmeester, John A.; Renoud, Romain; Bian, Fenggang; Zeng, Jianrong; Yu, Kui

    2017-06-01

    Little is known about the induction period before the nucleation and growth of colloidal semiconductor quantum dots. Here, we introduce an approach that allows us to probe intermediates present in the induction period. We show that this induction period itself exhibits distinct stages with the evolution of the intermediates, first without and then with the formation of covalent bonds between metal cations and chalcogenide anions. The intermediates are optically invisible in toluene, while the covalent-bonded intermediates become visible as magic-size clusters when a primary amine is added. Such evolution of magic-size clusters provides indirect but compelling evidence for the presence of the intermediates in the induction period and supports the multi-step nucleation model. Our study reveals that magic-size clusters could be readily engineered in a single-size form, and suggests that the existence of the intermediates during the growth of conventional quantum dots results in low product yield.

  13. Lossless propagation in metal-semiconductor-metal plasmonic waveguides using quantum dot active medium.

    PubMed

    Sheikhi, K; Granpayeh, N; Ahmadi, V; Pahlavan, S

    2015-04-01

    In this paper, we analyze and simulate the lossless propagation of lightwaves in the active metal-semiconductor-metal plasmonic waveguides (MSMPWs) at the wavelength range of 1540-1560 nm using a quantum dot (QD) active medium. The Maxwell's equations are solved in the waveguide, and the required gains for achieving lossless propagation are derived. On the other hand, the rate equations in quantum dot active regions are solved by using the Runge-Kutta method, and the achievable optical gain is derived. The analyses results show that the required optical gain for lossless propagation in MSMPWs is achievable using the QD active medium. Also, by adjusting the active medium parameters, the MSMPWs loss can be eliminated in a specific bandwidth, and the propagation length increases obviously.

  14. Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature

    PubMed Central

    2012-01-01

    We measured the quantum-confined Stark effect (QCSE) of several types of fluorescent colloidal semiconductor quantum dots and nanorods at the single molecule level at room temperature. These measurements demonstrate the possible utility of these nanoparticles for local electric field (voltage) sensing on the nanoscale. Here we show that charge separation across one (or more) heterostructure interface(s) with type-II band alignment (and the associated induced dipole) is crucial for an enhanced QCSE. To further gain insight into the experimental results, we numerically solved the Schrödinger and Poisson equations under self-consistent field approximation, including dielectric inhomogeneities. Both calculations and experiments suggest that the degree of initial charge separation (and the associated exciton binding energy) determines the magnitude of the QCSE in these structures. PMID:23075136

  15. Self-Assembly of Quantum Dots and Rings on Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Heyn, Christian; Stemmann, Andrea; Hansen, Wolfgang

    Self-assembled semiconductor quantum dots provide almost ideal zero-dimensional quantum confinement for charge carriers. Employing self-assembly mechanisms during epitaxial growth, we are able to fabricate impurity and defect free barriers in all three spatial dimensions with nanometer precision and without the need of lithographic steps. The homogeneity, composition, and geometry of self-assembled nanostructures crucially depend on details of the expitaxial growth process. We illuminate this dependency on the basis of results of three self-assembly methods, the Stranski-Krastanov growth mode, the droplet epitaxy, and the novel technique of local droplet etching. Central aspects are experimental and theoretical studies on the underlying self-assembling process and its influence on the nanostructures structural, optical, and electronic properties. We also discuss the relevance for device applications.

  16. Photon antibunching and nonlinear effects for a quantum dot coupled to a semiconductor cavity

    NASA Astrophysics Data System (ADS)

    Bello, F.; Whittaker, D. M.

    2010-09-01

    The models presented simulate pumping techniques that can be used on modern semiconductor devices which are capable of coupling a quantum dot and cavity mode in order to determine a more efficient method of producing a single-photon emitter while taking into consideration typical parameters which are achievable given today’s standards of coupling strength. Cavity quantum electrodynamics are incorporated in the calculations as we compare various pumping schemes for the system that either use on-resonant laser excitation or nonresonant excitation due to a wetting layer. In particular, we look to study how antibunching effects change for each method as the cavity finesse is increased toward the strong coupling regime. Experimentally these studies are equivalent to nonlinear pump-probe measurements, where a strong pump, either resonant or nonresonant, is used to excite the coupled system, and the resulting state is characterized using a weak, resonant probe beam.

  17. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots

    PubMed Central

    Liu, Mingyang; Wang, Kun; Wang, Linxi; Han, Shuo; Fan, Hongsong; Rowell, Nelson; Ripmeester, John A.; Renoud, Romain; Bian, Fenggang; Zeng, Jianrong; Yu, Kui

    2017-01-01

    Little is known about the induction period before the nucleation and growth of colloidal semiconductor quantum dots. Here, we introduce an approach that allows us to probe intermediates present in the induction period. We show that this induction period itself exhibits distinct stages with the evolution of the intermediates, first without and then with the formation of covalent bonds between metal cations and chalcogenide anions. The intermediates are optically invisible in toluene, while the covalent-bonded intermediates become visible as magic-size clusters when a primary amine is added. Such evolution of magic-size clusters provides indirect but compelling evidence for the presence of the intermediates in the induction period and supports the multi-step nucleation model. Our study reveals that magic-size clusters could be readily engineered in a single-size form, and suggests that the existence of the intermediates during the growth of conventional quantum dots results in low product yield. PMID:28580962

  18. Charge sensed Pauli blockade in a metal-oxide-semiconductor lateral double quantum dot.

    PubMed

    Nguyen, Khoi T; Lilly, Michael P; Nielsen, Erik; Bishop, Nathan; Rahman, Rajib; Young, Ralph; Wendt, Joel; Dominguez, Jason; Pluym, Tammy; Stevens, Jeffery; Lu, Tzu-Ming; Muller, Richard; Carroll, Malcolm S

    2013-01-01

    We report Pauli blockade in a multielectron silicon metal-oxide-semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet-triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing and shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement.

  19. Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Alcalde, A. M.; Romano, C. L.; Marques, G. E.

    2008-11-01

    We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.

  20. Interaction of electrons with optical phonons localized in a quantum well

    SciTech Connect

    Pozela, J. Pozela, K.; Juciene, V.; Suziedelis, A.; Shkolnik, A. S.; Mikhrin, S. S.; Mikhrin, V. S.

    2009-12-15

    The scattering rate of electrons in a quantum well by localized polar optical and interface phonons is considered. The dependence of the force of the electron-phonon interaction on the frequency of optical phonons in materials of the heterostructure forming the electron and phonon quantum wells is determined. It is shown that, by varying the composition of semiconductors forming the quantum well and its barriers, it is possible to vary the scattering rates of electrons by a factor of several times. The scattering rates of electrons by polar optical phonons are calculated depending on the fractions In{sub x} and In{sub y} in the composition of semiconductors forming the In{sub x}Al{sub 1-x}As/In{sub y}Ga{sub 1-y}As quantum wells. Dependences of the mobility and saturated drift velocity of electrons in high electric fields and quantum wells In{sub y}Ga{sub 1-y}As on the composition of the In{sub x}Al{sub 1-x}As barriers introduced into quantum wells are determined experimentally. The electron mobility increases, while the saturated drift velocity decreases as the fraction of In{sub x} in the composition of barriers is increased.

  1. Noncovalent Interactions by Quantum Monte Carlo.

    PubMed

    Dubecký, Matúš; Mitas, Lubos; Jurečka, Petr

    2016-05-11

    Quantum Monte Carlo (QMC) is a family of stochastic methods for solving quantum many-body problems such as the stationary Schrödinger equation. The review introduces basic notions of electronic structure QMC based on random walks in real space as well as its advances and adaptations to systems with noncovalent interactions. Specific issues such as fixed-node error cancellation, construction of trial wave functions, and efficiency considerations that allow for benchmark quality QMC energy differences are described in detail. Comprehensive overview of articles covers QMC applications to systems with noncovalent interactions over the last three decades. The current status of QMC with regard to efficiency, applicability, and usability by nonexperts together with further considerations about QMC developments, limitations, and unsolved challenges are discussed as well.

  2. Synthesis and enhanced fluorescence of Ag doped CdTe semiconductor quantum dots.

    PubMed

    Ding, Si-Jing; Liang, Shan; Nan, Fan; Liu, Xiao-Li; Wang, Jia-Hong; Zhou, Li; Yu, Xue-Feng; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-02-07

    Doping with intentional impurities is an intriguing way to tune the properties of semiconductor nanocrystals. However, the synthesis of some specific doped semiconductor nanocrystals remains a challenge and the doping mechanism in this strongly confined system is still not clearly understood. In this work, we report, for the first time, the synthesis of stable and water-soluble Ag-doped CdTe semiconductor quantum dots (SQDs) via a facile aqueous approach. Experimental characterization demonstrated the efficient doping of the Ag impurities into the CdTe SQDs with an appropriate reaction time. By doping 0.3% Ag impurities, the Stokes shift is decreased by 120 meV, the fluorescence intensity is enhanced more than 3 times, the radiative rate is enhanced 4.2 times, and the non-radiative rate is efficiently suppressed. These observations reveal that the fluorescence enhancement in Ag-doped CdTe SQDs is mainly attributed to the minimization of surface defects, filling of the trap states, and the enhancement of the radiative rate by the silver dopants. Our results suggest that the silver doping is an efficient method for tuning the optical properties of the CdTe SQDs.

  3. Pitfalls in the theory of carrier dynamics in semiconductor quantum dots: Single-particle basis versus the many-particle configuration basis

    NASA Astrophysics Data System (ADS)

    Lettau, T.; Leymann, H. A. M.; Wiersig, J.

    2017-02-01

    We analyze quantum dot models used in current research for misconceptions that arise from the choice of basis states for the carriers. The examined models originate from semiconductor quantum optics, but the illustrated conceptional problems are not limited to this field. We demonstrate how the choice of basis states can imply a factorization scheme that leads to an artificial dependency between two, actually independent, quantities. Furthermore, we consider an open quantum dot-cavity system and show how the dephasing, generated by the dissipator in the von Neumann Lindblad equation, depends on the choice of basis states that are used to construct the collapse operators. We find that the Rabi oscillations of the s -shell exciton are either dephased by the dissipative decay of the p -shell exciton or remain unaffected, depending on the choice of basis states. In a last step we resolve this discrepancy by taking the full system-reservoir interaction Hamiltonian into account.

  4. Operator quantum Zeno effect: protecting quantum information with noisy two-qubit interactions.

    PubMed

    Wang, Shu-Chao; Li, Ying; Wang, Xiang-Bin; Kwek, Leong Chuan

    2013-03-08

    The time evolution of some quantum states can be slowed down or even stopped under frequent measurements. This is the usual quantum Zeno effect. Here, we report an operator quantum Zeno effect, in which the evolution of some physical observables is slowed down through measurements even though the quantum state changes randomly with time. Based on the operator quantum Zeno effect, we show how we can protect quantum information from decoherence with two-qubit measurements, realizable with noisy two-qubit interactions.

  5. Mapping the effective mass of electrons in III-V semiconductor quantum confined structures

    NASA Astrophysics Data System (ADS)

    Gass, M. H.; Papworth, A. J.; Beanland, R.; Bullough, T. J.; Chalker, P. R.

    2006-01-01

    The electron effective mass me* can be calculated from the Kramers-Kronig transformation of electron energy loss spectra (EELS) for III-V semiconductor materials. The mapping capabilities of a scanning transmission electron microscope, equipped with a GatanEnfina™ EELS system are exploited to produce maps showing the variation of me* with nanometer scale resolution for a range of semiconductors. The analysis was carried out on three material systems: a GaInNAs quantum well in a GaAs matrix; InAs quantum dots in a GaAs matrix, and bulk wurzitic GaN. Values of me* were measured as ˜0.07m0 for GaAs and 0.183m0 for GaN, both in excellent agreement with the literature. It has also been shown that the high frequency dielectric constant can be calculated using the Kramers-Kronig methodology. When the high frequency dielectric constant is incorporated into the calculations a much more accurate visual representation of me* is displayed in the maps.

  6. Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators.

    PubMed

    Sharma, Manoj; Gungor, Kivanc; Yeltik, Aydan; Olutas, Murat; Guzelturk, Burak; Kelestemur, Yusuf; Erdem, Talha; Delikanli, Savas; McBride, James R; Demir, Hilmi Volkan

    2017-08-01

    Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnetic field induced optical gain in a dilute nitride quaternary semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo

    2016-10-01

    Effects of magnetic field strength on the electronic and optical properties are brought out in a Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot for the applications of desired wavelength in opto-electronic devices. The band alignment is obtained using band anticrossing model and the model solid theory. The magnetic field dependent electron-heavy hole transition energies with the dot radius in a GaInNAs/GaAs quantum dot are investigated. The magnetic field induced oscillator strength as a function of dot radius is studied. The resonant peak values of optical absorption coefficients and the changes of refractive index with the application of magnetic field strength in a GaInNAs/GaAs quantum dot are obtained. The magnetic field induced threshold current density and the maximum optical gain are found in a GaInNAs/GaAs quantum dot. The results show that the optimum wavelength for fibre optical communication networks can be obtained with the variation of applied magnetic field strength and the outcomes may be useful for the design of efficient lasers based on the group III-N-V semiconductors.

  8. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    PubMed

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  9. Scaling of subgap excitations in a superconductor-semiconductor nanowire quantum dot

    NASA Astrophysics Data System (ADS)

    Lee, Eduardo J. H.; Jiang, Xiaocheng; Žitko, Rok; Aguado, Ramón; Lieber, Charles M.; De Franceschi, Silvano

    2017-05-01

    A quantum dot coupled to a superconducting contact provides a tunable artificial analog of a magnetic atom in a superconductor, a paradigmatic quantum impurity problem. We realize such a system with an InAs semiconductor nanowire contacted by an Al-based superconducting electrode. We use an additional normal-type contact as a weakly coupled tunnel probe to perform tunneling spectroscopy measurements of the elementary subgap excitations, known as Andreev bound states or Yu-Shiba-Rusinov states. We demonstrate that the energy of these states ζ scales with the ratio between the Kondo temperature TK and the superconducting gap Δ . ζ vanishes for TK/Δ ≈0.6 , denoting a quantum phase transition between the spin singlet and doublet ground states. By further leveraging the gate control over the quantum dot parameters, we determine the singlet-doublet phase boundary in the stability diagram of the system. Our experimental results show remarkable quantitative agreement with numerical renormalization group calculations.

  10. Instabilities in the optical response of a semiconductor quantum dot—metal nanoparticle heterodimer: self-oscillations and chaos

    NASA Astrophysics Data System (ADS)

    Nugroho, Bintoro S.; Iskandar, Alexander A.; Malyshev, Victor A.; Knoester, Jasper

    2017-01-01

    We theoretically investigate the nonlinear optical response of a heterodimer comprising a semiconductor quantum dot strongly coupled to a metal nanoparticle. The quantum dot is considered as a three-level ladder system with ground, one-exciton, and bi-exction states. As compared to the case of a two-level quantum dot model, adding the third (bi-exciton) state produces fascinating effects in the optical response of the hybrid system. Specifically, we demonstrate that the system may exhibit picosecond and sub-picosecond self-oscillations and quasi-chaotic behaviour under single-frequency continuous wave excitation. An isolated semiconductor quantum dot does not show such features. The effects originate from competing one-exciton and bi-exciton transitions in the semiconductor quantum dot, triggered by the self-action of the quantum dot via the metal nanoparticle. The key parameter that governs the phenomena mentioned is the ratio of the self-action strength and the bi-exciton shift. The self-oscillation regime can be achieved in practice, in particular, in a heterodimer comprised of a closely spaced ZnS/ZnSe core-shell quantum dot and a spherical silver nanoparticle. The results may have applications in nanodevices for generating trains of ultrashort optical pulses.

  11. Semiconductor quantum dots affect fluidity of purple membrane from Halobacterium salinarum through disruption of bacteriorhodopsin trimer organization

    NASA Astrophysics Data System (ADS)

    Bouchonville, Nicolas; Molinari, Michael; Le Cigne, Anthony; Troyon, Michel; Sukhanova, Alyona; Nabiev, Igor R.

    2012-10-01

    Bacteriorhodopsin (bR) is a unique protein of purple membranes (PMs) of the bacterium Halobacterium salinarum. Tight trimers of this integral photochromic protein form a highly ordered 2D hexagonal crystalline lattice within the PMs. Due to strong excitonic interactions between the bR chromophores (retinals) in the protein trimers, PMs exhibit a strong circular dichroism (CD) activity in the region of the retinal absorption band, which allows monitoring the regularity and stability of the bR trimer organization within the membrane. In this study, the effects of semiconductor quantum dots (QDs) on the bR intramembrane organization and the time course of bR monomerization caused by detergents have been analyzed. The results show that the interaction with QDs does not influence the bR structural organization but considerably accelerates the monomerization of the protein by detergents. These data have been confirmed by the results of atomic force microscopy (AFM) followed by Fourier transform analysis, which have shown that interactions with QDs cause an eightfold acceleration of bR monomerization with Triton. The data show that interactions of nanoparticles with biological membranes may modulate the membrane fluidity and the structural organization and function of integral proteins embedded in these membranes.

  12. Investigation of II-VI Semiconductor Quantum Dots for Sensitized Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Horoz, Sabit

    Semiconductor nanocrystals, also referred to as quantum dots (QDs) which have advantages of low-cost, photostability, high molar extinction coefficients and size-dependent optical properties, have been the focus of great scientific and technological efforts in solar cells development. Due to the multi-electron generation effect, the theoretical maximum efficiency of quantum dots sensitized solar cells (QDSSCs) is much higher than that of dye sensitized solar cells (DSSCs). Thus QDSSCs have a clear potential to overtake the efficiency of other kinds of solar cells. Doped semiconductor QDs can not only retain nearly all advantages of intrinsic QDs, but also have additional absorption bands for improved efficiency. This approach is particularly important for wide band gap semiconductors, for example, zinc based QDs. Zinc based are desirable candidates as they are inexpensive, earth abundant and nontoxic. When doped, they can cover a broad range of visible spectrum. In my project, I aim at developing novel methods for the preparation of II-VI QDs and investigating the effects of doping on the properties and performances of QDSSCs. Cadmium selenide (CdSe), manganese doped cadmium selenide (Mn:CdSe), and manganese doped zinc sulfide (Mn:ZnS) QDs have been synthesized by laser ablation in water. The structural and luminescent properties of the QDs have been investigated. In addition, QDSSC performances of the samples have been measured using nanowire electrode made of ZnO and Zn2SnO 4. I have also successfully synthesized europium doped zinc sulfide (Eu:ZnS) and manganese doped cadmium sulfide (Mn:CdS) nanoparticles by wet chemical method, and analyzed structural, optical, and magnetic properties as well as the device performance of the nanoparticles.

  13. Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction

    PubMed Central

    2011-01-01

    We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE) in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d PMID:21711500

  14. Disordered Interactions and Fractional Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Degottardi, Wade; Hafezi, Mohammad

    The possibility that topological ordered states may be realized in photonic systems has recently attracted a great deal of attention. Given the rich phenomenology of the fractional quantum Hall effect, the bosonic Laughlin states have been of particular focus in this context. These states are known to arise in strongly nonlinear photonic lattices with artificial gauge fields, where nonlinearities associated with the resonators mimic on-site interactions. These effective interaction strengths are not universal and are subject to spatial disorder. We present a detailed study of the stability of these states and what implications they have for experiments.

  15. Pump-probe quantum state tomography in a semiconductor optical amplifier.

    PubMed

    Grosse, N B; Owschimikow, N; Aust, R; Lingnau, B; Koltchanov, A; Kolarczik, M; Lüdge, K; Woggon, U

    2014-12-29

    Pump-probe quantum state tomography was applied to the transmission of a coherent state through an In(Ga)As based quantum dot optical amplifier during the interaction with an optical pump pulse. The Wigner function and the statistical moments of the field were extracted and used to determine the degree of population inversion and the signal-to-noise ratio in a sub-picosecond time window.

  16. Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots

    SciTech Connect

    Khaetskii, Alexander V.; Nazarov, Yuli V.

    2001-09-15

    We have studied spin-flip transitions between Zeeman sublevels in GaAs electron quantum dots. Several different mechanisms which originate from spin-orbit coupling are shown to be responsible for such processes. It is shown that spin-lattice relaxation for the electron localized in a quantum dot is much less effective than for the free electron. The spin-flip rates due to several other mechanisms not related to the spin-orbit interaction are also estimated.

  17. Controlling the interaction of light with polymer semiconductors.

    PubMed

    Hellmann, Christoph; Paquin, Francis; Treat, Neil D; Bruno, Annalisa; Reynolds, Luke X; Haque, Saif A; Stavrinou, Paul N; Silva, Carlos; Stingelin, Natalie

    2013-09-20

    In this study, a generally applicable strategy is described to manipulate the optical properties of a wide range of polymer semiconductors in the solid state. Blending these materials with a non-conjugated, polar polymer matrix is found to be the processing key to a drastic change and red-shift of the absorption characteristics.

  18. Organic analogues of diluted magnetic semiconductors: bridging quantum chemistry to condensed matter physics

    NASA Astrophysics Data System (ADS)

    Furis, Madalina; Rawat, Naveen; Cherian, Judy G.; Wetherby, Anthony; Waterman, Rory; McGill, Stephen

    2015-09-01

    The selective coupling between polarized photons and electronic states in materials enables polarization-resolved spectroscopy studies of exchange interactions, spin dynamics, and collective magnetic behavior of conduction electrons in semiconductors. Here we report on Magnetic Circular Dichroism (MCD) studies of magnetic properties of electrons in crystalline thin films of small molecule organic semiconductors. Specifically, the focus was on the magnetic exchange interaction properties of d-shell ions (Cu2+, Co2+ and Mn2+) metal phthalocyanine (Pc) thin films that one may think of as organic analogues of diluted magnetic semiconductors (DMS). These films were deposited in-house using a recently developed pen-writing method that results in crystalline films with macroscopic long range ordering and improved electronic properties, ideally suited for spectroscopy techniques. Our experiments reveal that, in analogy to DMS, the extended π-orbitals of the Pc molecule mediate the spin exchange between highly localized d-like unpaired spins. We established that exchange mechanisms involve different electronic states in each species and/or hybridization between d-like orbitals and certain delocalized π-orbitals. Unprecedented 25T MCD and PL conducted in the unique 25T Split Florida HELIX magnet at the National High Magnetic Field Laboratory (NHMFL) will prove useful in probing these exchange interactions.

  19. Quantum efficiency of a single microwave photon detector based on a semiconductor double quantum dot

    NASA Astrophysics Data System (ADS)

    Wong, Clement H.; Vavilov, Maxim G.

    2017-01-01

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we consider a double quantum dot (DQD) capacitively coupled to a superconducting resonator that is driven by the microwave field of a superconducting transmission line. We analyze the DQD current response using input-output theory and show that the resonator-coupled DQD is a sensitive microwave single photon detector. Using currently available experimental parameters of DQD-resonator coupling and dissipation, including the effects of 1 /f charge noise and phonon noise, we determine the parameter regime for which incident photons are completely absorbed and near-unit ≳98 % efficiency can be achieved. We show that this regime can be reached by using very high quality resonators with quality factor Q ≃105 .

  20. Decay and Dissociation of Excitons in Colloidal Semiconductor Quantum Dots in the Presence of Small Molecules

    NASA Astrophysics Data System (ADS)

    Knowles, Kathryn Eileen

    This dissertation describes interactions between colloidal semiconductor quantum dots (QDs) and small organic molecules that affect the electronic structure of the surfaces of the QDs and influence the decay and dissociation pathways available to excitonic charge carriers (electrons and holes) in the QDs. Pathways by which electrons and holes in QDs leave conduction and valence band-edge states, respectively, include charge trapping to a state localized in the QD core or on the surface, charge transfer to a redox partner, and radiative recombination. Analysis of transient absorption and time-resolved photoluminescence (PL) spectroscopies enabled the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of colloidal CdSe QDs. This map reveals three different populations of CdSe QDs that differ in the timescales of available hole and electron-trapping processes. The mechanism by which a p-substituted aniline quenches the PL of CdSe QDs upon displacing native hexadecylamine ligands depends on the electronic nature of its para substituent. Anilines with electron withdrawing substituents quench PL through incomplete passivation of Cd2+ surface sites, and anilines with electron donating substituents quench PL through photoinduced hole transfer. Transient absorption measurements on both the picosecond and microsecond timescales reveal that a series of alkyl-substituted p-benzoquinone (s-BQ) molecules participate in both static and collisional photoinduced electron transfer (PET) with PbS QDs. The efficiencies of both static and collisional PET are limited by the presence of the oleate ligand shell, and depend on the size and shape of the (s-BQ) molecule. A model for the dependence of the collisional quenching efficiency on the volume of the s-BQ molecule produces a parameter that provides a quantitative measure of the permeability of the organic ligand shell of the QDs. Thermodynamically spontaneous electron transfer occurs

  1. Optical injection of quantum dash semiconductor lasers at 1550nm for tunable photonic oscillators

    NASA Astrophysics Data System (ADS)

    Pochet, M.; Naderi, N. A.; Kovanis, V.; Lester, L. F.

    2011-02-01

    In this manuscript, we will theoretically compute and experimentally investigate the dynamics of an optically injected nanostructure laser as a function of the injection strength and the optical detuning frequency. A model describing the optically-injected semiconductor laser is derived in dimensionless format that accounts for the large nonlinear gain component associated with nanostructure semiconductor lasers through the gain coefficient's derivative with respect to perturbations in the carrier and photon density. The nonlinear gain (carrier) relaxation rate and gain compression coefficient account for the perturbation in the slave laser's photon density, and are theoretically shown to have a strong impact on the level of stability exhibited by the optically-injected laser. The theoretical model is experimentally verified through the optical-injection of a quantum-dash Fabry-Perot laser at an operating wavelength of 1550 nm. The quantum-dash laser's large damping rate and sufficiently small linewidth enhancement factor are observed to inhibit period-doubling and chaotic operation under zero frequency-detuning conditions. Additionally, the optically injected quantum-dash laser is found to exhibit a large period-one operational state as the injection strength and the detuning frequency are varied, resulting in a highly tunable microwave frequency in the coupled system's equilibrium state. The enhanced and undamped relaxation oscillations of the period-one state are discussed as a building block for tunable photonic oscillators in various RF photonics applications. Finally a path towards realizing an optically-injected diode laser with a THz resonance frequency will be reviewed.

  2. Quantum states of charge carriers and longitudinal conductivity in double periodic n-type semiconductor lattice structures in electric field

    SciTech Connect

    Perov, A. A. Penyagin, I. V.

    2015-07-15

    Quantum states of charge carriers in double periodic semiconductor superlattices of n-type quantum dots with Rashba spin–orbit coupling in an electron gas have been calculated in the one-electron approximation in the presence of mutually perpendicular electric and magnetic fields. For these structures in weak constant electric field, the solution to the quasi-classical kinetic Boltzmann equation shows that the states of carriers in magnetic Landau minibands with negative differential conductivity are possible.

  3. Spin-orbit interaction induced current dip in a single quantum dot coupled to a spin

    NASA Astrophysics Data System (ADS)

    Giavaras, G.

    2017-03-01

    Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet-triplet anticrossing point which appears due to the spin-orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin-orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.

  4. Time domain terahertz spectroscopy of semiconductor bulk and multiple quantum wells structures

    NASA Astrophysics Data System (ADS)

    Chen, Yue

    A time-domain terahertz spectroscopic system with high source power (average power > 10 nW) and high signal-to- noise ratio (>104) was developed and used to study ultrafast electronic processes in semiconductor structures. The physics of the spectroscopy, the theoretical basis of the interferometry, the model of the electron-electromagnetic field interaction, and the principle of experimental data processing are presented. The first direct measurement of the intervalley scattering time in In 0.53Ga0.47As was performed. The intervalley scattering time constants obtained were τLΓ = 35 fs and τLΓ = 450 fs. The spectroscopic data showed that at low carrier density the carrier- carrier scattering is unimportant. The intervalley deformation potential was obtained from the measured intervalley scattering time constant τ LΓ. The transient conductivity was obtained using time-domain terahertz spectroscopy. The frequency dependent terahertz spectroscopy enabled us to uniquely determine the transient mobility and density. The transient electron mobility is ~5200 cm2/Vs, which is less than the Hall mobility. For large photocarrier densities, this discrepancy is attributed to the additional momentum relaxation associated with electron-hole scattering. Using pump pulses with wavelength of 810 run, the electron trapping time in low-temperature-grown GaAs was accurately determined. The measured trapping time is slightly larger than that observed from a band-edge pump- probe measurements. We argue that the terahertz technique provides the most reliable measure of carrier lifetime due to the unique interaction. The carrier dynamics of low-temperature-grown InGaAs bulk and InGaAs/InAlAs multiple quantum wells were investigated. We were able to differentiate the two dominant mechanisms in the electron decay process, trapping and recombination. A trapping time as fast as 1.3-2.6 ps was observed for photo-excited electrons. The effects of Be-doping and growth temperature on the

  5. III-V semiconductor Quantum Well systems: Physics of Gallium Arsenide two-dimensional hole systems and engineering of mid-infrared Quantum Cascade lasers

    NASA Astrophysics Data System (ADS)

    Chiu, YenTing

    This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further

  6. Tuning intermolecular non-covalent interactions for nanowires of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Jiang, Lang; Gao, Jianhua; Fu, Yanyan; Dong, Huanli; Zhao, Huaping; Li, Hongxiang; Tang, Qingxin; Chen, Keqiu; Hu, Wenping

    2010-12-01

    Anthracene and its derivatives are used to demonstrate a simple way to cast assemble nanowires of organic semiconductors with tuning of intermolecular non-covalent interactions by molecular design. The tuning of intermolecular interactions could be achieved by (i) decreasing intermolecular hydrophobic interactions by linking hydrophilic side chains to anthracene rings, (ii) increasing intermolecular interaction for self-assembly with the assistance of hydrogen bonds, and (iii) enhancing molecular π-π interaction by increasing the conjugated dimension of the compounds.

  7. Tuning intermolecular non-covalent interactions for nanowires of organic semiconductors.

    PubMed

    Jiang, Lang; Gao, Jianhua; Fu, Yanyan; Dong, Huanli; Zhao, Huaping; Li, Hongxiang; Tang, Qingxin; Chen, Keqiu; Hu, Wenping

    2010-12-01

    Anthracene and its derivatives are used to demonstrate a simple way to cast assemble nanowires of organic semiconductors with tuning of intermolecular non-covalent interactions by molecular design. The tuning of intermolecular interactions could be achieved by (i) decreasing intermolecular hydrophobic interactions by linking hydrophilic side chains to anthracene rings, (ii) increasing intermolecular interaction for self-assembly with the assistance of hydrogen bonds, and (iii) enhancing molecular π-π interaction by increasing the conjugated dimension of the compounds.

  8. Braiding errors in interacting Majorana quantum wires

    NASA Astrophysics Data System (ADS)

    Sekania, Michael; Plugge, Stephan; Greiter, Martin; Thomale, Ronny; Schmitteckert, Peter

    2017-09-01

    Avenues of Majorana bound states (MBSs) have become one of the primary directions towards a possible realization of topological quantum computation. For a Y junction of Kitaev quantum wires, we numerically investigate the braiding of MBSs while considering the full quasiparticle background. The two central sources of braiding errors are found to be the fidelity loss due to the incomplete adiabaticity of the braiding operation as well as the finite hybridization of the MBSs. The explicit extraction of the braiding phase from the full many-particle states allows us to analyze the breakdown of the independent-particle picture of Majorana braiding. Furthermore, we find nearest-neighbor interactions to significantly affect the braiding performance for better or worse, depending on the sign and magnitude of the coupling.

  9. Exotic quantum phase transitions of strongly interacting topological insulators

    NASA Astrophysics Data System (ADS)

    Slagle, Kevin; You, Yi-Zhuang; Xu, Cenke

    2015-03-01

    Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum phase transitions. The first is a quantum phase transition between the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial phase, which cannot be described by the standard Gross-Neveu model. The second is a quantum critical point between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting fully gapped phase. At the latter quantum critical point the single-particle excitations remain gapped, while spin and charge gaps both close. We argue that the first quantum phase transition is related to the Z16 classification of the topological superconductor 3He-B phase with interactions, while the second quantum phase transition is a topological phase transition described by a bosonic O (4 ) nonlinear sigma model field theory with a Θ term.

  10. Spin-orbit interaction in multiple quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  11. Charge Carrier Dynamics of Quantum Confined Semiconductor Nanoparticles Analyzed via Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thibert, Arthur Joseph, III

    Semiconductor nanoparticles are tiny crystalline structures (typically range from 1 - 100 nm) whose shape in many cases can be dictated through tailored chemical synthesis with atomic scale precision. The small size of these nanoparticles often results in quantum confinement (spatial confinement of wave functions), which imparts the ability to manipulate band-gap energies thus allowing them to be optimally engineered for different applications (i.e., photovoltaics, photocatalysis, imaging). However, charge carriers excited within these nanoparticles are often involved in many different processes: trapping, trap migration, Auger recombination, non-radiative relaxation, radiative relaxation, oxidation / reduction, or multiple exciton generation. Broadband ultrafast transient absorption laser spectroscopy is used to spectrally resolve the fate of excited charge carriers in both wavelength and time, providing insight as to what synthetic developments or operating conditions will be necessary to optimize their efficiency for certain applications. This thesis outlines the effort of resolving the dynamics of excited charge carriers for several Cd and Si based nanoparticle systems using this experimental technique. The thesis is organized into five chapters and two appendices as indicated below. Chapter 1 provides a brief introduction to the photophysics of semiconductor nanoparticles. It begins by defining what nanoparticles, semiconductors, charge carriers, and quantum confinement are. From there it details how the study of charge carrier dynamics within nanoparticles can lead to increased efficiency in applications such as photocatalysis. Finally, the experimental methodology associated with ultrafast transient absorption spectroscopy is introduced and its power in mapping charge carrier dynamics is established. Chapter 2 (JPCC, 19647, 2011) introduces the first of the studied samples: water-solubilized 2D CdSe nanoribbons (NRs), which were synthesized in the Osterloh

  12. Properties of II-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic Systems. Materials Research Society Symposium Proceedings. Volume 161

    DTIC Science & Technology

    1990-11-21

    quantum well (MQW) structures, which can confine electrons and holes in a two-dimensional well , fabricated by MBE [2] and MOCVD [3]. Despite the...N Pie MA’ FERIA -LS - RESEAR(--’H -)CIFFY VOLUME 161 Properties of 11-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures...Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnet;-- Systems :1ity CodeS JLECTE0 Nov 15 1990 SDISTRI:7UTICN SAT EM~

  13. High Intensity Laser Interactions with Narrow Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Hasselback, Michael Peter

    1995-01-01

    Two-photon absorption in solids is a well known and thoroughly characterized nonlinear optical process. Higher order multi-photon absorption however, has received comparatively little study. In this dissertation, results of experiments with bulk, narrow gap semiconductors InSb and InAs are reported. By performing Z-scans and pump-probe measurements at different laser wavelengths and sample temperatures, various nonlinear optical processes are identified. Data obtained with InAs is consistent with photocarrier generation by three and four-photon absorption. It is believed this is the first direct evidence of four-photon absorption in a semiconductor. Leakage two-photon is observed with InSb at 15K. This novel effect arises from dynamic band un-blocking caused by laser heating of conduction electrons. All phenomena are excited with picosecond CO_2 laser pulses at irradiances below the material damage threshold. Physical models describing the observations are presented.

  14. Controlling Photon Echo in a Quantum-Dot Semiconductor Optical Amplifier Using Shaped Excitation

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Karni, O.; Khanonkin, I.; Eisenstein, G.

    2017-05-01

    Two-pulse photon-echo-based quantum-memory applications require a precise control over the echo strength and appearance time. We describe a numerical investigation of observation and control of photon echo in a room-temperature InAs /InP -based quantum-dot (QD) semiconductor optical amplifier (SOA). We address an important case where the spectral excitation is narrower than the inhomogeneous broadening of the SOA. It is revealed that, in such a QD SOA, the amplitude of the echo pulse depends not only on the excitation-to-rephasing pulse temporal separation but also on the interference among the rephrasing pulse and the echo pulses generated during the propagation along the amplifier. More importantly, the appearance time and amplitude of the echo pulse can be precisely controlled by shaping the first (excitation) pulse. We also assert that deviations in the echo pulse stemming from the SOA gain inhomogeneity can be compensated for so as to be utilized in quantum coherent information processing.

  15. Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface

    PubMed Central

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Li, Ping; Liu, Feng

    2014-01-01

    Formation of topological quantum phase on a conventional semiconductor surface is of both scientific and technological interest. Here, we demonstrate epitaxial growth of 2D topological insulator, i.e., quantum spin Hall state, on Si(111) surface with a large energy gap, based on first-principles calculations. We show that the Si(111) surface functionalized with one-third monolayer of halogen atoms [Si(111)-3×3-X (X = Cl, Br, I)] exhibiting a trigonal superstructure provides an ideal template for epitaxial growth of heavy metals, such as Bi, which self-assemble into a hexagonal lattice with high kinetic and thermodynamic stability. Most remarkably, the Bi overlayer is atomically bonded to but electronically decoupled from the underlying Si substrate, exhibiting isolated quantum spin Hall state with an energy gap as large as ∼0.8 eV. This surprising phenomenon originates from an intriguing substrate-orbital-filtering effect, which critically selects the orbital composition around the Fermi level, leading to different topological phases. In particular, the substrate-orbital-filtering effect converts the otherwise topologically trivial freestanding Bi lattice into a nontrivial phase; and the reverse is true for Au lattice. The underlying physical mechanism is generally applicable, opening a new and exciting avenue for exploration of large-gap topological surface/interface states. PMID:25246584

  16. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells.

    PubMed

    Concina, Isabella; Vomiero, Alberto

    2015-04-17

    This Review provides a brief summary of the most recent research developments in the synthesis and application of nanostructured metal oxide semiconductors for dye sensitized and quantum dot sensitized solar cells. In these devices, the wide bandgap semiconducting oxide acts as the photoanode, which provides the scaffold for light harvesters (either dye molecules or quantum dots) and electron collection. For this reason, proper tailoring of the optical and electronic properties of the photoanode can significantly boost the functionalities of the operating device. Optimization of the functional properties relies with modulation of the shape and structure of the photoanode, as well as on application of different materials (TiO2, ZnO, SnO2) and/or composite systems, which allow fine tuning of electronic band structure. This aspect is critical because it determines exciton and charge dynamics in the photoelectrochemical system and is strictly connected to the photoconversion efficiency of the solar cell. The different strategies for increasing light harvesting and charge collection, inhibiting charge losses due to recombination phenomena, are reviewed thoroughly, highlighting the benefits of proper photoanode preparation, and its crucial role in the development of high efficiency dye sensitized and quantum dot sensitized solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2.

    PubMed

    Song, Xiang-Xiang; Liu, Di; Mosallanejad, Vahid; You, Jie; Han, Tian-Yi; Chen, Dian-Teng; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2015-10-28

    Two-dimensional layered materials, such as transition metal dichalcogenides (TMDCs), are promising materials for future electronics owing to their unique electronic properties. With the presence of a band gap, atomically thin gate defined quantum dots (QDs) can be achieved on TMDCs. Herein, standard semiconductor fabrication techniques are used to demonstrate quantum confined structures on WSe2 with tunnel barriers defined by electric fields, therefore eliminating the edge states induced by etching steps, which commonly appear in gapless graphene QDs. Over 40 consecutive Coulomb diamonds with a charging energy of approximately 2 meV were observed, showing the formation of a QD, which is consistent with the simulations. The size of the QD could be tuned over a factor of 2 by changing the voltages applied to the top gates. These results shed light on a way to obtain smaller quantum dots on TMDCs with the same top gate geometry compared to traditional GaAs/AlGaAs heterostructures with further research.

  18. Effect of electron-electron interaction on the magnetic moment and susceptibility of a parabolic GaAs quantum dot

    NASA Astrophysics Data System (ADS)

    Boda, Aalu; Kumar, D. Sanjeev; Sankar, I. V.; Chatterjee, Ashok

    2016-11-01

    The problem of a parabolically confined two-dimensional semiconductor GaAs quantum dot with two interacting electrons in the presence of an external magnetic field and the spin-Zeeman interaction is studied using a method of numerical diagonalization. The energy spectrum is calculated as a function of the magnetic field. The magnetic moment (M) and the magnetic susceptibility (χ) show zero temperature diamagnetic peaks due to the exchange induced singlet-triplet transitions. The position and the number of these peaks depend both on the confinement strength of the quantum dot and the strength of the electron-electron interaction (β) .

  19. Density functional theory and beyond-opportunities for quantum methods in materials modeling semiconductor technology.

    PubMed

    Shankar, Sadasivan; Simka, Harsono; Haverty, Michael

    2008-02-13

    In the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models. Density functional theory is the most widely used ab initio technique that was successfully extended to several applications. This paper illustrates applications of density functional theory to semiconductor processes and proposes further opportunities for use of such techniques in process development.

  20. Proposed Rabi-Kondo correlated state in a laser-driven semiconductor quantum dot.

    PubMed

    Sbierski, B; Hanl, M; Weichselbaum, A; Türeci, H E; Goldstein, M; Glazman, L I; von Delft, J; Imamoğlu, A

    2013-10-11

    Spin exchange between a single-electron charged quantum dot and itinerant electrons leads to an emergence of Kondo correlations. When the quantum dot is driven resonantly by weak laser light, the resulting emission spectrum allows for a direct probe of these correlations. In the opposite limit of vanishing exchange interaction and strong laser drive, the quantum dot exhibits coherent oscillations between the single-spin and optically excited states. Here, we show that the interplay between strong exchange and nonperturbative laser coupling leads to the formation of a new nonequilibrium quantum-correlated state, characterized by the emergence of a laser-induced secondary spin screening cloud, and examine the implications for the emission spectrum.

  1. Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot - metal nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Fu, Ming; Wang, Kai; Long, Hua; Yang, Guang; Lu, Peixiang; Hetsch, Frederik; Susha, Andrei S.; Rogach, Andrey L.

    2012-02-01

    The optical nonlinearity of hybrid structures composed of CdTe quantum dots and periodical particle array of gold is studied using Z-scan method. The optical nonlinearity is dramatically affected by the interaction between exciton in CdTe quantum dots and surface plasmons in Au periodical particle array. When the Au surface plasmon is tuned to be in resonance with the exciton transition in CdTe quantum dots, the largest nonlinear refractive index and the smallest two-photon absorption coefficient, n2 = -0.53 cm2/GW and β = 25 cm/GW, which are about 8 times larger and 50 times smaller than that of bare CdTe quantum dots, can be achieved.

  2. Optical properties of semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Son, Joong-Kon

    Thanks to the difference in energy gap between two semiconductors and to their different indices of refraction, semiconductor heterostructures can confine electrons as well as photons. This property makes it possible to build semiconductor-based optical resonators (microcavities) with a radiation dipole (a quantum well) in its midst to investigate the coupling between the optical modes of the microcavity with the exciton modes of the quantum well. Such an interaction, besides its intrinsic interest, is relevant to vertically-emitting semiconductor lasers, based on the quantum well- microcavity system. In this thesis, we will present experimental evidence of temperature and electric-field dependent exciton-cavity coupling in GaAs-GaAlAs microcavities.

  3. Spin torque and interactions in ferromagnetic semiconductor domain walls

    NASA Astrophysics Data System (ADS)

    Golovatski, Elizabeth Ann

    The motion of domain walls due to the spin torque generated by coherent carrier transport is of considerable interest for the development of spintronic devices. We model the charge and spin transport through domain walls in ferromagnetic semiconductors for various systems. With an appropriate model Hamiltonian for the spin-dependent potential, we calculate wavefunctions inside the domain walls which are then used to calculate transmission and reflection coefficients, which are then in turn used to calculate current and spin torque. Starting with a simple approximation for the change in magnetization inside the domain wall, and ending with a sophisticated transfer matrix method, we model the common pi wall, the less-studied 2pi wall, and a system of two pi walls separated by a variable distance. We uncover an interesting width dependence on the transport properties of the domain wall. 2pi walls in particular, have definitive maximums in resistance and spin torque for certain domain wall widths that can be seen as a function of the spin mistracking in the system---when the spins are either passing straight through the domain wall (narrow walls) or adiabatically following the magnetization (wide walls), the resistance is low as transmission is high. In the intermediate region, there is room for the spins to rotate their magnetization, but not necessarily all the way through a 360 degree rotation, leading to reflection and resistance. We also calculate that there are widths for which the total velocity of a 2pi wall is greater than that of a same-sized pi wall. In the double-wall system, we model how the system reacts to changes in the separation of the domain walls. When the domain walls are far apart, they act as a spin-selective resonant double barrier, with sharp resonance peaks in the transmission profile. Brought closer and closer together, the number and sharpness of the peaks decrease, the spectrum smooths out, and the domain walls brought together have a

  4. Quantum transformation limits in multiwave parametric interactions

    NASA Astrophysics Data System (ADS)

    Saygin, M. Yu

    2016-10-01

    The possibility to realize multiple nonlinear optical processes in a single crystal as means to produce multicolor quantum states favours stability and compactness of optical settings. Hence, this approach can be advantageous compared to the traditional one based on cascaded arrangement of optical elements. However, it comes with an obstacle—the class of accessible quantum states is narrower than that of the cascade counterpart. In this letter, we study this task using an example of three coupled nonlinear optical processes, namely, one parametric down-conversion and two of sum-frequency generation. To this end, the singular value decomposition has been applied to find the cascade representation of the compound field evolution. We have found the link between the parameters of the multiwave processes and the relevant cascade parameters—beam-splitting and squeezing parameters, by means of which the generated quantum states have been characterized. The relation between the squeezing parameters that has been found in the course of this work shows that the squeezing resource, produced in the parametric down-conversion, is shared among the modes involved in the compound interactions. Moreover, we have shown that the degree of two-mode entanglement carried by the up-converted frequencies cannot exceed that of the down-converted frequencies.

  5. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  6. Two-Color Coherent Control of Optical Bistability in Asymmetric Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Li, Jia-Hua; Hao, Xiang-Ying

    We investigate optical bistability in intersubband transitions of an asymmetric semiconductor quantum well structure that has equidistant transitions between three subbands of the system and is placed in a unidirectional cavity. The system is simultaneously coupled by a fundamental field and its second harmonic. The second harmonic field acts as a control field and significantly influences the optical bistability. In addition, the two-color coherent control of optical bistability by the relative phase of the fundamental and the second harmonic fields is shown. The influence of the electronic cooperation parameter on the OB behavior is also discussed. This investigation may be used for optimizing and controlling the optical switching process in the SQW solid-state system, which is much more practical than that in the atomic system because of its flexible design and the controllable interference strength.

  7. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker.

    PubMed

    Hanaki, Ken-ichi; Momo, Asami; Oku, Taisuke; Komoto, Atsushi; Maenosono, Shinya; Yamaguchi, Yukio; Yamamoto, Kenji

    2003-03-14

    For the purpose of selecting the efficient dispersion condition of hydrophilic semiconductor quantum dots (QDs) in biological buffers, the dispersion of the QDs mixed with a serum albumin from 9 different species or an ovalbumin was compared by a fluorescence intensity analysis. The QDs mixed with sheep serum albumin (SSA) showed the highest fluorescence of all when the mixtures were dissolved in Dulbecco's MEM. QD/SSA complexes were accumulated in the endosome/lysosome of Vero cells and the fluorescence could be detected over a 5-day post-incubation period. The photostability of QD/SSA complexes associated with the endosomes was detectable, at least, 30 times as long as that of fluorescein-labeled dextran involved in endosomes. QD/SSA complex, therefore, can be used as a long-life and highly photostable endosome marker.

  8. Control of Spin Helix Symmetry in Semiconductor Quantum Wells by Crystal Orientation

    NASA Astrophysics Data System (ADS)

    Kammermeier, Michael; Wenk, Paul; Schliemann, John

    2016-12-01

    We investigate the possibility of spin-preserving symmetries due to the interplay of Rashba and Dresselhaus spin-orbit coupling in n -doped zinc-blende semiconductor quantum wells of general crystal orientation. It is shown that a conserved spin operator can be realized if and only if at least two growth direction Miller indices agree in modulus. The according spin-orbit field has in general both in-plane and out-of-plane components and is always perpendicular to the shift vector of the corresponding persistent spin helix. We also analyze higher-order effects arising from the Dresselhaus term, and the impact of our results on weak (anti)localization corrections.

  9. Suppressing the Fluorescence Blinking of Single Quantum Dots Encased in N-type Semiconductor Nanoparticles

    PubMed Central

    Li, Bin; Zhang, Guofeng; Wang, Zao; Li, Zhijie; Chen, Ruiyun; Qin, Chengbing; Gao, Yan; Xiao, Liantuan; Jia, Suotang

    2016-01-01

    N-type semiconductor indium tin oxide (ITO) nanoparticles are used to effectively suppress the fluorescence blinking of single near-infrared-emitting CdSeTe/ZnS core/shell quantum dots (QDs), where the ITO could block the electron transfer from excited QDs to trap states and facilitate more rapid regeneration of neutral QDs by back electron transfer. The average blinking rate of QDs is significantly reduced by more than an order of magnitude and the largest proportion of on-state is 98%, while the lifetime is not considerably reduced. Furthermore, an external electron transfer model is proposed to analyze the possible effect of radiative, nonradiative, and electron transfer pathways on fluorescence blinking. Theoretical analysis based on the model combined with measured results gives a quantitative insight into the blinking mechanism. PMID:27605471

  10. Phonon-Induced Dephasing of Excitons in Semiconductor Quantum Dots: Multiple Exciton Generation, Fission, and Luminescence

    NASA Astrophysics Data System (ADS)

    Madrid, Angeline; Kim, Hyeon-Deuk; Habenicht, Bradley; Prezhdo, Oleg

    2010-03-01

    Phonon-induced dephasing processes that govern optical line widths, multiple exciton (ME) generation (MEG), and ME fission (MEF) in semiconductor quantum dots (QDs) are investigated by ab initio molecular dynamics simulation. Using Si QDs as an example, we propose that MEF occurs by phonon-induced dephasing and, for the first time, estimate its time scale to be 100 fs. In contrast, luminescence and MEG dephasing times are all sub-10 fs. Generally, dephasing is faster for higher-energy and higher-order excitons and increased temperatures. MEF is slow because it is facilitated only by low-frequency acoustic modes. Luminescence and MEG couple to both acoustic and optical modes of the QD, as well as ligand vibrations. The detailed atomistic simulation of the dephasing processes advances understanding of exciton dynamics in QDs and other nanoscale materials.

  11. Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system

    NASA Astrophysics Data System (ADS)

    Paspalakis, Emmanuel; Evangelou, Sofia; Kosionis, Spyridon G.; Terzis, Andreas F.

    2014-02-01

    We study the four-wave mixing effect in a coupled semiconductor quantum dot-spherical metal nanoparticle structure. Depending on the values of the pump field intensity and frequency, we find that there is a critical distance that changes the form of the spectrum. Above this distance, the four-wave mixing spectrum shows an ordinary three-peaked form and the effect of controlling its magnitude by changing the interparticle distance can be obtained. Below this critical distance, the four-wave mixing spectrum becomes single-peaked; and as the interparticle distance decreases, the spectrum is strongly suppressed. The behavior of the system is explained using the effective Rabi frequency that creates plasmonic metaresonances in the hybrid structure. In addition, the behavior of the effective Rabi frequency is explained via an analytical solution of the density matrix equations.

  12. Suppressing the Fluorescence Blinking of Single Quantum Dots Encased in N-type Semiconductor Nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Guofeng; Wang, Zao; Li, Zhijie; Chen, Ruiyun; Qin, Chengbing; Gao, Yan; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    N-type semiconductor indium tin oxide (ITO) nanoparticles are used to effectively suppress the fluorescence blinking of single near-infrared-emitting CdSeTe/ZnS core/shell quantum dots (QDs), where the ITO could block the electron transfer from excited QDs to trap states and facilitate more rapid regeneration of neutral QDs by back electron transfer. The average blinking rate of QDs is significantly reduced by more than an order of magnitude and the largest proportion of on-state is 98%, while the lifetime is not considerably reduced. Furthermore, an external electron transfer model is proposed to analyze the possible effect of radiative, nonradiative, and electron transfer pathways on fluorescence blinking. Theoretical analysis based on the model combined with measured results gives a quantitative insight into the blinking mechanism.

  13. Direct self-assembling and patterning of semiconductor quantum dots on transferable elastomer layer

    NASA Astrophysics Data System (ADS)

    Coppola, Sara; Vespini, Veronica; Olivieri, Federico; Nasti, Giuseppe; Todino, Michele; Mandracchia, Biagio; Pagliarulo, Vito; Ferraro, Pietro

    2017-03-01

    Functionalization of thin and stretchable polymer layers by nano- and micro-patterning of nanoparticles is a very promising field of research that can lead to many different applications in biology and nanotechnology. In this work, we present a new procedure to self-assemble semiconductor quantum dots (QDs) nanoparticles by a simple fabrication process on a freestanding flexible PolyDiMethylSiloxane (PDMS) membrane. We used a Periodically Poled Lithium Niobate (PPLN) crystal to imprint a micrometrical pattern on the PDMS membrane that drives the QDs self-structuring on its surface. This process allows patterning QDs with different wavelength emissions in a single step in order to tune the overall emission spectrum of the composite, tuning the QDs mixing ratio.

  14. Time-resolved photoluminescence and photostability of single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Chae, Weon-Sik; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2013-12-01

    Time-resolved photoluminescence (TRPL) and photostability were studied for several core/shell-type semiconductor quantum dots (QDs) of CdTe/CdS, In(Zn)P/ZnS and CdZnS/ZnS using a TRPL microscopy at a single QD level, of which results were compared to that of CdSe/ZnS QD. The CdTe/CdS and In(Zn)P/ZnS QDs show unstable PL at a single QD level on both bare and polymer-coated glass coverslips, so that they mostly lose emissions within a few seconds. The CdZnS/ZnS QD shows better emission stability than those of the former two QDs, but still less stable than the case of the CdSe/ZnS.

  15. Quasiparticle parity lifetime of bound states in a hybrid superconductor-semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Higginbotham, Andrew; Albrecht, Sven; Kirsanskas, Gediminas; Chang, Willy; Kuemmeth, Ferdinand; Krogstrup, Peter; Jespersen, Thomas; Nygård, Jesper; Flensberg, Karsten; Marcus, Charles

    2015-03-01

    We measure quasiparticle transport in an InAs nanowire that is half-covered with epitaxial superconducting aluminum, then locally gated to form a quantum dot. We observe negative differential conductance at finite source-drain bias, and temperature dependent even-odd alternations in the Coulomb blockade peak spacings at zero bias. These observations can be understood in terms of a mid-gap semiconductor discrete state and a continuum of BCS quasiparticle states. Comparing with simple models, we bound the discrete state's parity lifetime and the quasiparticle temperature. These results indicate that parity fluctuations are slow, and imply Majorana qubit poisoning times on the order of a millisecond. Additional results indicate that the bound states move to zero energy in a magnetic field, qualitatively consistent with expectations for Majorana fermions in a finite system. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  16. CdS/Cyclohexylamine inorganic-organic hybrid semiconductor nanofibers with strong quantum confinement effect.

    PubMed

    Fan, Libo; Song, Hongwei; Zhao, Haifeng; Pan, Guohui; Liu, Lina; Dong, Biao; Wang, Fang; Bai, Xue; Qin, Ruifei; Kong, Xianggui; Ren, Xinguang

    2008-08-01

    Inorganic-organic hybrid semiconductor nanofibers of CdS/CHA (CHA = cyclohexylamine) were successfully synthesized by a simple solvothermal method. The fibers obtained had average diameter of 20 nm and length of several micrometers. In these fibers, periodic layer-like sub-nanometer structures with thickness of approximately 3 nm were identified by high-resolution transmission electron microscope (HR-TEM). The absorption of the hybrids exhibited a large blue-shift in contrast to the bulk, which was attributed to strong quantum confinement effect (QCE) induced by internal sub-nanometer structures. Pure hexagonal wurtzite CdS (H-CdS) nanorods were also obtained by extracting the CdS/CHA hybrids with dimethyl formamide (DMF). The rods obtained had average diameter of 20 nm and length of 200 nm. A CdS/CHA/polyvinyl alcohol (PVA) composite film emitting white light was prepared by spin coating.

  17. Photoelectrochemical competitive DNA hybridization assay using semiconductor quantum dot conjugated oligonucleotides.

    PubMed

    Baş, Deniz; Boyaci, Ismail Hakki

    2011-05-01

    A competitive DNA hybridization assay based on the photoelectrochemistry of the semiconductor quantum dot-single stranded DNA conjugates (QD-ssDNA) was developed. Hybridization of QD-ssDNA with the capture probe DNA immobilized on the indium-tin oxide electrodes enables photocurrent generation when the electrochemical cell was illuminated with a light source. Upon the competition between QD-ssDNA and single-stranded target DNA, the photocurrent response decreased with the increase in the target DNA concentration. A linear relationship between the photocurrent and the target DNA concentration was obtained (R(2) = 0.991). The selectivity of system towards the target DNA was also demonstrated using non-complementary sample.

  18. Numerical characterization of InP-based quantum dot semiconductor optical amplifier.

    PubMed

    Nawwar, Omnia M; Emara, Ahmed; Aly, Moustafa H; Okaz, Ali M

    2016-12-10

    This paper is devoted to the development of a steady-state behavior of a quantum dot-semiconductor optical amplifier (QD-SOA). The investigated performance characteristics cover a wide range that includes material gain coefficient, spatial distribution of the occupation probabilities, fiber to fiber gain, gain spectrum as a function of the bias current, relaxation time, and capture time. A set of traveling-wave equations is used to model the signal and spontaneous photons along the device active region. The obtained results indicate a high gain that reaches 34 dB for an InAs/InGaAsP/InP-based QD-SOA, with a corresponding device length of 4 mm. The obtained signal-to-noise ratio is larger than 75 dB for all input powers without using an output filter.

  19. Influence of quantum Hall effect on wave refraction in ferrite-semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Tarkhanyan, Roland H.; Niarchos, Dimitris G.

    2008-12-01

    Peculiarities of wave refraction are investigated in periodic structures consisting of alternating layers of ferromagnetic insulator and GaAs-AlGaAs-type semiconductor bilayers. It is shown that in quantum Hall effect conditions, the refractive indices and consequently the refraction angles of the propagating waves are quantized.Two different geometries of the refracting plane are considered: (I) parallel and (II) perpendicular to the quantizing magnetic field. It is shown that in the first case, negative refraction through the lateral surface of the structure is possible. A frequency region is found where the refraction is negative for all angles of incidence and regardless of the sign of permittivity tensor components. Analytical expressions for both phase and group refractive indices are obtained.In the second case, one of the propagating waves (in the birefringent regime) is backward. Despite this, and unlike in the case of non-quantizing magnetic fields, negative refraction is impossible.

  20. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    NASA Astrophysics Data System (ADS)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-06-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process.

  1. Electron states and electron Raman scattering in a semiconductor step-quantum well wire

    NASA Astrophysics Data System (ADS)

    Betancourt-Riera, Ri.; Betancourt-Riera, Re.; Munguía-Rodríguez, M.

    2017-06-01

    The differential cross-section for an electron Raman scattering process in a semiconductor GaAs / AlGaAs step-quantum well wire is calculated and expressions for the electron states are presented. The system is modeled by considering T = 0 K and also by a single parabolic conduction band, which is split into a sub-band system due to confinement. The net Raman gain for an electron Raman scattering process is obtained. Also, the emission spectra for several scattering configurations are discussed, and the interpretation of the singularities found in the spectra is given. The results obtained in this study are compared with those obtained for other structures, and so it has been demonstrated that the wire shows greater efficiency.

  2. Optical Properties of Planar Nanostructures Based on Semiconductor Quantum Dots and Plasmonic Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bakanov, A. G.; Toropov, N. A.; Vartanyan, T. A.

    2016-03-01

    The optical properties of a composite material consisting of a thin polymer film, which is activated by semiconductor CdSe/ZnS quantum dots (QDs) and silver nanoparticles, on a transparent dielectric substrate have been investigated. It is revealed that the presence of silver nanoparticles leads to an increase in the QD absorption (by a factor of 4) and in the fluorescence intensity (by a factor of 10), whereas the fluorescence time drops by a factor of about 10. Excitation of the composite medium by a pulsed laser is found to result in narrowing of the fluorescence band and a sublinear dependence of its intensity on the pulse energy. In the absence of silver nanoparticles, the fluorescence spectrum of QDs is independent of the excitation-pulse energy density, and the fluorescence intensity depends linearly on the pulse energy in the entire range of energy densities, up to 75 mJ/cm2.

  3. High-order sideband generation in a semiconductor quantum well driven by two orthogonal terahertz fields

    NASA Astrophysics Data System (ADS)

    Yan, Jie-Yun

    2017-08-01

    The theory of excitonic high-order sideband generation (HSG) in a semiconductor quantum well irradiated by two orthogonal terahertz (THz) fields (one frequency is an integral multiple of the other) is presented. The exact analytical solution to the sideband spectrum is given with the help of the generalized Bessel functions. As a special case, the HSG when the frequencies of these two THz fields are the same is derived and its dependence on the ellipticity of the THz field is discussed. The theory could explain the experiments, especially concerning the sensitive dependence of HSG signals on the ellipticity of the THz field: the signals are strong when the THz field has a linear polarization and totally vanish in case of a circular polarization. More interestingly, it was found that the strongest signal is not produced in the case of linear polarization for some sidebands. The theory is supported by numerical calculations.

  4. Four-wave mixing analysis on injection-locked quantum dot semiconductor lasers.

    PubMed

    Lin, Chih-Hao; Lin, Fan-Yi

    2013-09-09

    We derive a simplified rate equation model for the four-wave mixing (FWM) analysis on quantum dot (QD) semiconductor lasers subject to optical injection. The regenerative and the amplitude modulation spectra of the FWM signals with different intrinsic laser parameters and external injection conditions are investigated. By curve fitting the regenerative and the amplitude modulation spectra obtained experimentally, the intrinsic parameters of a commercial single-mode QD laser under different injection conditions are extracted. The linewidth enhancement factor α at different injection levels and detunings are shown, where a reduction of up to 39% from its free-running value is demonstrated. By increasing the injection strength, the α can be further reduced to minimized the chirp in optical communications.

  5. Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.

  6. All-optical sampling based on quantum-dot semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Wang, Yongjun; Wang, Lina

    2016-11-01

    In recent years, the all-optical signal processing system has become a hot research field of optical communication. This paper focused on the basic research of quantum-dot (QD) semiconductor optical amplifier (SOA) and studied its practical application to all-optical sampling. A multi-level dynamic physical model of QD-SOA is established, and its ultrafast dynamic characteristics are studied through theoretical and simulation research. For further study, an all-optical sampling scheme based on the nonlinear polarization rotation (NPR) effect of QD-SOA is also proposed. This paper analyzed the characteristics of optical switch window and investigated the influence of different control light pulses on switch performance. The presented optical sampling method has an important role in promoting the improvement of all-optical signal processing technology.

  7. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit

    SciTech Connect

    Kim, Dohun; Ward, D. R.; Simmons, C. B.; Gamble, John King; Blume-Kohout, Robin; Nielsen, Erik; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.

    2015-02-16

    An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. The qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. But, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the ‘sweet spot’. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving we achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X–Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Moreover, both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.

  8. Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.

  9. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit

    DOE PAGES

    Kim, Dohun; Ward, D. R.; Simmons, C. B.; ...

    2015-02-16

    An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. The qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. But, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the ‘sweet spot’. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving wemore » achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X–Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Moreover, both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.« less

  10. Boosting photoresponse in silicon metal-semiconductor-metal photodetector using semiconducting quantum dots

    NASA Astrophysics Data System (ADS)

    Biswas, Chandan; Kim, Yonghwan; Lee, Young Hee

    2016-11-01

    Silicon based metal-semiconductor-metal (MSM) photodetectors have faster photogeneration and carrier collection across the metal-semiconductor Schottky contacts, and CMOS integratibility compared to conventional p-n junction photodetectors. However, its operations are limited by low photogeneration, inefficient carrier-separation, and low mobility. Here, we show a simple and highly effective approach for boosting Si MSM photodetector efficiency by uniformly decorating semiconducting CdSe quantum dots on Si channel (Si-QD). Significantly higher photocurrent on/off ratio was achieved up to over 500 compared to conventional Si MSM photodetector (on/off ratio ~5) by increasing photogeneration and improving carrier separation. Furthermore, a substrate-biasing technique invoked wide range of tunable photocurrent on/off ratio in Si-QD photodetector (ranging from 2.7 to 562) by applying suitable combinations of source-drain and substrate biasing conditions. Strong photogeneration and carrier separation were achieved by employing Stark effect into the Si-QD hybrid system. These results highlight a promising method for enhancing Si MSM photodetector efficiency more than 100 times and simultaneously compatible with current silicon technologies.

  11. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  12. Design of cadmium-free colloidal II-VI semiconductor quantum dots exhibiting RGB emission

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi; Omata, Takahisa

    2017-04-01

    The size and composition dependence of the optical gap of colloidal alloyed quantum dots (QDs) of Zn(Te1-xSex) and Zn(Te1-xSx) were calculated by the finite-depth-well effective mass approximation method. QDs that exhibited red, green and blue emission were explored to develop cadmium-free II-VI chalcogenide-based QD-phosphors. We considered that highly monodisperse colloidal QDs with diameters of 3-6 nm are easy to synthesize and II-VI semiconductor QDs usually exhibit a Stokes shift ranging between 50 and 150 meV. We showed that Zn(Te1-xSex) QDs with 0.02≤x≤0.68, and 0≤x≤0.06, and 0.66≤x≤0.9 may be expected to exhibit green, and blue emission, respectively. Zn(Te1-xSx) QDs with 0.26≤x≤0.37, 0.01≤x≤0.2 and 0.45≤x≤0.61, 0≤x≤0.02, and 0.63≤x≤0.72, should give red, green and blue emission respectively. On the basis of our calculations, we showed that Zn(Te,Se) and Zn(Te,S) QDs are very promising cadmium-free II-VI chalcogenide semiconductor QD phosphors.

  13. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit.

    PubMed

    Kim, Dohun; Ward, D R; Simmons, C B; Gamble, John King; Blume-Kohout, Robin; Nielsen, Erik; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A

    2015-03-01

    An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. This qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. However, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the 'sweet spot'. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving we achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X-Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.

  14. Boosting photoresponse in silicon metal-semiconductor-metal photodetector using semiconducting quantum dots

    PubMed Central

    Biswas, Chandan; Kim, Yonghwan; Lee, Young Hee

    2016-01-01

    Silicon based metal-semiconductor-metal (MSM) photodetectors have faster photogeneration and carrier collection across the metal-semiconductor Schottky contacts, and CMOS integratibility compared to conventional p-n junction photodetectors. However, its operations are limited by low photogeneration, inefficient carrier-separation, and low mobility. Here, we show a simple and highly effective approach for boosting Si MSM photodetector efficiency by uniformly decorating semiconducting CdSe quantum dots on Si channel (Si-QD). Significantly higher photocurrent on/off ratio was achieved up to over 500 compared to conventional Si MSM photodetector (on/off ratio ~5) by increasing photogeneration and improving carrier separation. Furthermore, a substrate-biasing technique invoked wide range of tunable photocurrent on/off ratio in Si-QD photodetector (ranging from 2.7 to 562) by applying suitable combinations of source-drain and substrate biasing conditions. Strong photogeneration and carrier separation were achieved by employing Stark effect into the Si-QD hybrid system. These results highlight a promising method for enhancing Si MSM photodetector efficiency more than 100 times and simultaneously compatible with current silicon technologies. PMID:27886274

  15. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors.

    PubMed

    Liu, Yuanfeng; Sahoo, Pranati; Makongo, Julien P A; Zhou, Xiaoyuan; Kim, Sung-Joo; Chi, Hang; Uher, Ctirad; Pan, Xiaoqing; Poudeu, Pierre F P

    2013-05-22

    The thermopower (S) and electrical conductivity (σ) in conventional semiconductors are coupled adversely through the carriers' density (n) making it difficult to achieve meaningful simultaneous improvements in both electronic properties through doping and/or substitutional chemistry. Here, we demonstrate the effectiveness of coherently embedded full-Heusler (FH) quantum dots (QDs) in tailoring the density, mobility, and effective mass of charge carriers in the n-type Ti(0.1)Zr(0.9)NiSn half-Heusler matrix. We propose that the embedded FH QD forms a potential barrier at the interface with the matrix due to the offset of their conduction band minima. This potential barrier discriminates existing charge carriers from the conduction band of the matrix with respect to their relative energy leading to simultaneous large enhancements of the thermopower (up to 200%) and carrier mobility (up to 43%) of the resulting Ti(0.1)Zr(0.9)Ni(1+x)Sn nanocomposites. The improvement in S with increasing mole fraction of the FH-QDs arises from a drastic reduction (up to 250%) in the effective carrier density coupled with an increase in the carrier's effective mass (m*), whereas the surprising enhancement in the mobility (μ) is attributed to an increase in the carrier's relaxation time (τ). This strategy to manipulate the transport behavior of existing ensembles of charge carriers within a bulk semiconductor using QDs is very promising and could pave the way to a new generation of high figure of merit thermoelectric materials.

  16. Efficient Light-driven Long Distance Charge Separation and H2 Generation in Semiconductor Quantum Rods and Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Lian, Tianquan

    Quantum confined semiconductor nanocrystals (0D quantum dots, 1D quantum rods and 2D quantum platlets) have been intensively investigated as light harvesting and charge separation materials for photovoltaic and photocatalytic applications. The efficiency of these semiconductor nanocrystal-based devices depends on many fundamental processes, including light harvesting, carrier relaxation, exciton localization and transport, charge separation and charge recombination. The competition between these processes determines the overall solar energy conversion (solar to electricity or fuel) efficiency. Semiconductor nano-heterostructures, combining two or more material components, offer unique opportunities to control their charge separation properties by tailoring their compositions, dimensions and spatial arrangement. Further integration of catalysts (heterogeneous or homogeneous) to these materials form multifunctional nano-heterostructures. Using 0D, 1D and 2D CdSe/CdS/Pt heterostructures as model systems, we directly probe the above-mentioned fundamental exciton and carrier processes by transient absorption and time-resolved fluorescence spectroscopy. We are examining how to control these fundamental processes through the design of heterostructures to achieve long-lived charge separation and efficient H2 generation. In this talk, we will discuss a new model for exciton dissociation by charge transfer in quantum dots (i.e. Auger assisted electron transfer), mechanism of 1D and 2D exciton transport and dissociation in nanorods, and key factors limiting H2 generation efficiency in CdSe/CdS/Pt nanorod heterostructures.

  17. Photoelectrochemical Conversion from Graphitic C3N4 Quantum Dot Decorated Semiconductor Nanowires.

    PubMed

    An, Tiance; Tang, Jing; Zhang, Yueyu; Quan, Yingzhou; Gong, Xingao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zhang, Lijuan; Zheng, Gengfeng

    2016-05-25

    Despite the recent progress of developing graphitic carbon nitride (g-C3N4) as a metal-free photocatalyst, the synthesis of nanostructured g-C3N4 has still remained a complicated and time-consuming approach from its bulk powder, which substantially limits its photoelectrochemical (PEC) applications as well as the potential to form composites with other semiconductors. Different from the labor-intensive methods used before, such as exfoliation or assistant templates, herein, we developed a facile method to synthesize graphitic C3N4 quantum dots (g-CNQDs) directly grown on TiO2 nanowire arrays via a one-step quasi-chemical vapor deposition (CVD) process in a homemade system. The as-synthesized g-CNQDs uniformly covered over the surface of TiO2 nanowires and exhibited attractive photoluminescence (PL) properties. In addition, compared to pristine TiO2, the heterojunction of g-CNQD-decorated TiO2 nanowires showed a substantially enhanced PEC photocurrent density of 3.40 mA/cm(2) at 0 V of applied potential vs Ag/AgCl under simulated solar light (300 mW/cm(2)) and excellent stability with ∼82% of the photocurrent retained after over 10 h of continuous testing, attributed to the quantum and sensitization effects of g-CNQDs. Density functional theory calculations were further carried out to illustrate the synergistic effect of TiO2 and g-CNQD. Our method suggests that a variety of g-CNQD-based composites with other semiconductor nanowires can be synthesized for energy applications.

  18. Intraband Auger processes and simple models of the ionization balance in semiconductor quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Pan, Janet L.

    1994-04-01

    The importance of intraband Auger processes in determining the ionization balance in quantum dots is reported. The numerically inexpensive binary-encounter model for a Coulomb collision between identical particles is found to be a good estimator of the intraband Auger rates out of a quantum dot. Intraband and the conventional interband Auger processes differ in that the former involve only intraband transitions whereas the latter always involve a radiationless interband transition. As such, intraband Auger rates do not involve the evaluation of the very small overlap integral of a conduction band with a valence band Bloch wave function and are thus much larger than interband Auger rates, especially for large-band-gap semiconductors like GaAs. Though intraband Auger processes are not strong enough to establish a quasiequilibrium within the entire conduction band at the room-temperature free-carrier concentrations (1016 cm-3) and bound energy separations (greater than an LO phonon energy) commonly assumed in the quantum-dot literature, they are capable of placing almost as many bound carriers in states near the band edge as would be predicted erroneously by a quasiequilibrium Fermi-Dirac distribution. Such large bound state occupations are important for quantum-dot laser design. A sufficient condition for a quasiequilibrium to exist within all of an energy (conduction or valence) band is found to be the existence of many inverse Auger processes faster than interband spontaneous emission, which occurs for total (bound plus free) electron concentrations greater than 5×1017 cm-3 at room temperature in 100 Å radius GaAs/Al0.3Ga0.7As quantum dots whose centers are separated by 400 Å. The nonlocal thermodynamic equilibrium populations in quantum dots can be understood from a simple model in which states connected by fast Auger or phonon processes are in Saha-Boltzmann equilibrium. All other states have occupation factors which are determined by the ratio of intraband

  19. Modified transverse phonon-helicon interaction in colloids laden semiconductor plasmas due to Bohm potential and Fermi degenerate pressure

    SciTech Connect

    Sharma, Aartee Yadav, N.; Ghosh, S.

    2015-07-31

    A detailed study of the quantum modification of acousto-helicon wave spectra due to Bohm potential and Fermi degenerate pressure in colloids laden semiconductor plasma has been presented. We have used quantum hydrodynamic model of plasmas to arrive at most general dispersion relation in presence of magnetic field. This dispersion relation has been analyzed in three different velocity regimes and the expressions for gain constants have been obtained. From the present study it has been concluded that the quantum effect and the magnetic field significantly modify the wave characteristics particularly in high doping regime in semiconductor plasma medium in presence of colloids in it.

  20. A compact quantum correction model for symmetric double gate metal-oxide-semiconductor field-effect transistor

    SciTech Connect

    Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu

    2014-11-07

    A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulation results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.