Sample records for interaction network implications

  1. Public/Private Sector Interactions: The Implications for Networking. A Discussion Report Prepared by the Network Advisory Committee.

    ERIC Educational Resources Information Center

    Network Planning Paper, 1983

    1983-01-01

    At a 2-day meeting in October 1982, the Library of Congress Network Advisory Committee (NAC) members discussed the complex issues involved in public and private sector interactions and their relationship to networking activities. The report, "Public Sector/Private Sector Interaction in Providing Information Services," prepared by the…

  2. Interaction Control to Synchronize Non-synchronizable Networks.

    PubMed

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-11-17

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.

  3. Interaction Control to Synchronize Non-synchronizable Networks

    PubMed Central

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-01-01

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks’ exact interaction topology and consequently have implications for biological and self-organizing technical systems. PMID:27853266

  4. Functional Alignment of Metabolic Networks.

    PubMed

    Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded

    2016-05-01

    Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.

  5. Games network and application to PAs system.

    PubMed

    Chettaoui, C; Delaplace, F; Manceny, M; Malo, M

    2007-02-01

    In this article, we present a game theory based framework, named games network, for modeling biological interactions. After introducing the theory, we more precisely describe the methodology to model biological interactions. Then we apply it to the plasminogen activator system (PAs) which is a signal transduction pathway involved in cancer cell migration. The games network theory extends game theory by including the locality of interactions. Each game in a games network represents local interactions between biological agents. The PAs system is implicated in cytoskeleton modifications via regulation of actin and microtubules, which in turn favors cell migration. The games network model has enabled us a better understanding of the regulation involved in the PAs system.

  6. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human.

    PubMed

    Vo, Tommy V; Das, Jishnu; Meyer, Michael J; Cordero, Nicolas A; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J; Degatano, Andrew G; Fragoza, Robert; Liu, Lisa G; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P; Pleiss, Jeffrey A; Xia, Yu; Yu, Haiyuan

    2016-01-14

    Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ∼ 50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Ramifying feedback networks, cross-scale interactions, and emergent quasi individuals in Conway's game of Life.

    PubMed

    Gotts, Nicholas M

    2009-01-01

    Small patterns of state 1 cells on an infinite, otherwise empty array of Conway's game of Life can produce sets of growing structures resembling in significant ways a population of spatially situated individuals in a nonuniform, highly structured environment. Ramifying feedback networks and cross-scale interactions play a central role in the emergence and subsequent dynamics of the quasi population. The implications are discussed: It is proposed that analogous networks and interactions may have been precursors to natural selection in the real world.

  8. Emergent Complexity in Conway's Game of Life

    NASA Astrophysics Data System (ADS)

    Gotts, Nick

    It is shown that both small, finite patterns and random infinite very low density ("sparse") arrays of the Game of Life can produce emergent structures and processes of great complexity, through ramifying feedback networks and cross-scale interactions. The implications are discussed: it is proposed that analogous networks and interactions may have been precursors to natural selection in the real world.

  9. Emerging directions in the study of the ecology and evolution of plant-animal mutualistic networks: a review.

    PubMed

    Gu, Hao; Goodale, Eben; Chen, Jin

    2015-03-18

    The study of mutualistic plant and animal networks is an emerging field of ecological research. We reviewed progress in this field over the past 30 years. While earlier studies mostly focused on network structure, stability, and biodiversity maintenance, recent studies have investigated the conservation implications of mutualistic networks, specifically the influence of invasive species and how networks respond to habitat loss. Current research has also focused on evolutionary questions including phylogenetic signal in networks, impact of networks on the coevolution of interacting partners, and network influences on the evolution of interacting species. We outline some directions for future research, particularly the evolution of specialization in mutualistic networks, and provide concrete recommendations for environmental managers.

  10. Neutral Community Dynamics and the Evolution of Species Interactions.

    PubMed

    Coelho, Marco Túlio P; Rangel, Thiago F

    2018-04-01

    A contemporary goal in ecology is to determine the ecological and evolutionary processes that generate recurring structural patterns in mutualistic networks. One of the great challenges is testing the capacity of neutral processes to replicate observed patterns in ecological networks, since the original formulation of the neutral theory lacks trophic interactions. Here, we develop a stochastic-simulation neutral model adding trophic interactions to the neutral theory of biodiversity. Without invoking ecological differences among individuals of different species, and assuming that ecological interactions emerge randomly, we demonstrate that a spatially explicit multitrophic neutral model is able to capture the recurrent structural patterns of mutualistic networks (i.e., degree distribution, connectance, nestedness, and phylogenetic signal of species interactions). Nonrandom species distribution, caused by probabilistic events of migration and speciation, create nonrandom network patterns. These findings have broad implications for the interpretation of niche-based processes as drivers of ecological networks, as well as for the integration of network structures with demographic stochasticity.

  11. Elastic and thermal expansion asymmetry in dense molecular materials.

    PubMed

    Burg, Joseph A; Dauskardt, Reinhold H

    2016-09-01

    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  12. Posting Behaviour Patterns in an Online Smoking Cessation Social Network: Implications for Intervention Design and Development

    PubMed Central

    Healey, Benjamin; Hoek, Janet; Edwards, Richard

    2014-01-01

    Objectives Online Cessation Support Networks (OCSNs) are associated with increased quit success rates, but few studies have examined their use over time. We identified usage patterns in New Zealand's largest OCSN over two years and explored implications for OCSN intervention design and evaluation. Methods We analysed metadata relating to 133,096 OCSN interactions during 2011 and 2012. Metrics covered aggregate network activity, user posting activity and longevity, and between-user commenting. Binary logistic regression models were estimated to investigate the feasibility of predicting low user engagement using early interaction data. Results Repeating periodic peaks and troughs in aggregate activity related not only to seasonality (e.g., New Year), but also to day of the week. Out of 2,062 unique users, 69 Highly Engaged Users (180+ interactions each) contributed 69% of all OCSN interactions in 2012 compared to 1.3% contributed by 864 Minimally Engaged Users (< = 2 items each). The proportion of Highly Engaged Users increased with network growth between 2011 and 2012 (with marginal significance), but the proportion of Minimally Engaged Users did not decline substantively. First week interaction data enabled identification of Minimally Engaged Users with high specificity and sensitivity (AUROC  = 0.94). Implications Results suggest future research should develop and test interventions that promote activity, and hence cessation support, amongst specific user groups or at key time points. For example, early usage information could help identify Minimally Engaged Users for tests of targeted messaging designed to improve their integration into, or re-engagement with, the OCSN. Furthermore, although we observed strong growth over time on varied metrics including posts and comments, this change did not coincide with large gains in first-time user persistence. Researchers assessing intervention effects should therefore examine multiple measures when evaluating changes in network dynamics over time. PMID:25192174

  13. Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder

    PubMed Central

    Kucyi, Aaron; Hove, Michael J.; Biederman, Joseph; Van Dijk, Koene R.A.; Valera, Eve M.

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain-network interactions. The default mode network (DMN), implicated in ADHD-linked behaviors including mind-wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within-network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age-, IQ-, and sex-matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole-brain between-group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between-group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of the cerebro-cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. PMID:26109476

  14. Origin and implications of zero degeneracy in networks spectra.

    PubMed

    Yadav, Alok; Jalan, Sarika

    2015-04-01

    The spectra of many real world networks exhibit properties which are different from those of random networks generated using various models. One such property is the existence of a very high degeneracy at the zero eigenvalue. In this work, we provide all the possible reasons behind the occurrence of the zero degeneracy in the network spectra, namely, the complete and partial duplications, as well as their implications. The power-law degree sequence and the preferential attachment are the properties which enhances the occurrence of such duplications and hence leading to the zero degeneracy. A comparison of the zero degeneracy in protein-protein interaction networks of six different species and in their corresponding model networks indicates importance of the degree sequences and the power-law exponent for the occurrence of zero degeneracy.

  15. Network topologies and convergent aetiologies arising from deletions and duplications observed in individuals with autism.

    PubMed

    Noh, Hyun Ji; Ponting, Chris P; Boulding, Hannah C; Meader, Stephen; Betancur, Catalina; Buxbaum, Joseph D; Pinto, Dalila; Marshall, Christian R; Lionel, Anath C; Scherer, Stephen W; Webber, Caleb

    2013-06-01

    Autism Spectrum Disorders (ASD) are highly heritable and characterised by impairments in social interaction and communication, and restricted and repetitive behaviours. Considering four sets of de novo copy number variants (CNVs) identified in 181 individuals with autism and exploiting mouse functional genomics and known protein-protein interactions, we identified a large and significantly interconnected interaction network. This network contains 187 genes affected by CNVs drawn from 45% of the patients we considered and 22 genes previously implicated in ASD, of which 192 form a single interconnected cluster. On average, those patients with copy number changed genes from this network possess changes in 3 network genes, suggesting that epistasis mediated through the network is extensive. Correspondingly, genes that are highly connected within the network, and thus whose copy number change is predicted by the network to be more phenotypically consequential, are significantly enriched among patients that possess only a single ASD-associated network copy number changed gene (p = 0.002). Strikingly, deleted or disrupted genes from the network are significantly enriched in GO-annotated positive regulators (2.3-fold enrichment, corrected p = 2×10(-5)), whereas duplicated genes are significantly enriched in GO-annotated negative regulators (2.2-fold enrichment, corrected p = 0.005). The direction of copy change is highly informative in the context of the network, providing the means through which perturbations arising from distinct deletions or duplications can yield a common outcome. These findings reveal an extensive ASD-associated molecular network, whose topology indicates ASD-relevant mutational deleteriousness and that mechanistically details how convergent aetiologies can result extensively from CNVs affecting pathways causally implicated in ASD.

  16. The BioPlex Network: A Systematic Exploration of the Human Interactome.

    PubMed

    Huttlin, Edward L; Ting, Lily; Bruckner, Raphael J; Gebreab, Fana; Gygi, Melanie P; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E; De Camilli, Pietro; Paulo, Joao A; Harper, J Wade; Gygi, Steven P

    2015-07-16

    Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The BioPlex Network: A Systematic Exploration of the Human Interactome

    PubMed Central

    Huttlin, Edward L.; Ting, Lily; Bruckner, Raphael J.; Gebreab, Fana; Gygi, Melanie P.; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K.; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A.; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E.; DeCamilli, Pietro; Paulo, Joao A.; Harper, J. Wade; Gygi, Steven P.

    2015-01-01

    SUMMARY Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally-related proteins. Finally, BioPlex, in combination with other approaches can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial Amyotrophic Lateral Sclerosis perturb a defined community of interactors. PMID:26186194

  18. Content-specific network analysis of peer-to-peer communication in an online community for smoking cessation.

    PubMed

    Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor

    2016-01-01

    Analysis of user interactions in online communities could improve our understanding of health-related behaviors and inform the design of technological solutions that support behavior change. However, to achieve this we would need methods that provide granular perspective, yet are scalable. In this paper, we present a methodology for high-throughput semantic and network analysis of large social media datasets, combining semi-automated text categorization with social network analytics. We apply this method to derive content-specific network visualizations of 16,492 user interactions in an online community for smoking cessation. Performance of the categorization system was reasonable (average F-measure of 0.74, with system-rater reliability approaching rater-rater reliability). The resulting semantically specific network analysis of user interactions reveals content- and behavior-specific network topologies. Implications for socio-behavioral health and wellness platforms are also discussed.

  19. A Computational Model of Major Depression: the Role of Glutamate Dysfunction on Cingulo-Frontal Network Dynamics

    PubMed Central

    Ramirez-Mahaluf, Juan P.; Roxin, Alexander; Mayberg, Helen S.; Compte, Albert

    2017-01-01

    Abstract Major depression disease (MDD) is associated with the dysfunction of multinode brain networks. However, converging evidence implicates the reciprocal interaction between midline limbic regions (typified by the ventral anterior cingulate cortex, vACC) and the dorso-lateral prefrontal cortex (dlPFC), reflecting interactions between emotions and cognition. Furthermore, growing evidence suggests a role for abnormal glutamate metabolism in the vACC, while serotonergic treatments (selective serotonin reuptake inhibitor, SSRI) effective for many patients implicate the serotonin system. Currently, no mechanistic framework describes how network dynamics, glutamate, and serotonin interact to explain MDD symptoms and treatments. Here, we built a biophysical computational model of 2 areas (vACC and dlPFC) that can switch between emotional and cognitive processing. MDD networks were simulated by slowing glutamate decay in vACC and demonstrated sustained vACC activation. This hyperactivity was not suppressed by concurrent dlPFC activation and interfered with expected dlPFC responses to cognitive signals, mimicking cognitive dysfunction seen in MDD. Simulation of clinical treatments (SSRI or deep brain stimulation) counteracted this aberrant vACC activity. Theta and beta/gamma oscillations correlated with network function, representing markers of switch-like operation in the network. The model shows how glutamate dysregulation can cause aberrant brain dynamics, respond to treatments, and be reflected in EEG rhythms as biomarkers of MDD. PMID:26514163

  20. Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties.

    PubMed

    Ouma, Wilberforce Zachary; Pogacar, Katja; Grotewold, Erich

    2018-04-01

    Understanding complexity in physical, biological, social and information systems is predicated on describing interactions amongst different components. Advances in genomics are facilitating the high-throughput identification of molecular interactions, and graphs are emerging as indispensable tools in explaining how the connections in the network drive organismal phenotypic plasticity. Here, we describe the architectural organization and associated emergent topological properties of gene regulatory networks (GRNs) that describe protein-DNA interactions (PDIs) in several model eukaryotes. By analyzing GRN connectivity, our results show that the anticipated scale-free network architectures are characterized by organism-specific power law scaling exponents. These exponents are independent of the fraction of the GRN experimentally sampled, enabling prediction of properties of the complete GRN for an organism. We further demonstrate that the exponents describe inequalities in transcription factor (TF)-target gene recognition across GRNs. These observations have the important biological implication that they predict the existence of an intrinsic organism-specific trans and/or cis regulatory landscape that constrains GRN topologies. Consequently, architectural GRN organization drives not only phenotypic plasticity within a species, but is also likely implicated in species-specific phenotype.

  1. Frequency and Quality of Social Networking Among Young Adults: Associations With Depressive Symptoms, Rumination, and Corumination.

    PubMed

    Davila, Joanne; Hershenberg, Rachel; Feinstein, Brian A; Gorman, Kaitlyn; Bhatia, Vickie; Starr, Lisa R

    2012-04-01

    Two studies examined associations between social networking and depressive symptoms among youth. In Study 1, 384 participants (68% female; mean age = 20.22 years, SD = 2.90) were surveyed. In Study 2, 334 participants (62% female; M age = 19.44 years, SD = 2.05) were surveyed initially and 3 weeks later. Results indicated that depressive symptoms were associated with quality of social networking interactions, not quantity. There was some evidence that depressive rumination moderated associations, and both depressive rumination and corumination were associated with aspects of social networking usage and quality. Implications for understanding circumstances that increase social networking, as well as resulting negative interactions and negative affect are discussed.

  2. Mourning and Grief on Facebook: An Examination of Motivations for Interacting With the Deceased.

    PubMed

    Willis, Erin; Ferrucci, Patrick

    2017-12-01

    Facebook not only changed the way we communicate but also the way we mourn and express grief. The social networking site allows users to interact with deceased users' walls after death. This study utilized textual analysis to categorize Facebook posts ( N = 122) on 30 deceased users' walls according to uses and gratifications theory. Most posts were found to be motivated by entertainment, followed by integration and social interaction. Facebook users posted memories, condolences, and interacted with friends and family members in the deceased user's network. Implications and potential future research are discussed.

  3. Salience network engagement with the detection of morally laden information

    PubMed Central

    Gurvit, Hakan; Spreng, R. Nathan

    2017-01-01

    Abstract Moral cognition is associated with activation of the default network, regions implicated in mentalizing about one’s own actions or the intentions of others. Yet little is known about the initial detection of moral information. We examined the neural correlates of moral processing during a narrative completion task, which included an implicit moral salience manipulation. During fMRI scanning, participants read a brief vignette and selected the most semantically congruent sentence from two options to complete the narrative. The options were immoral, moral or neutral statements. RT was fastest for the selection of neutral statements and slowest for immoral statements. Neuroimaging analyses revealed that responses involving morally laden content engaged default and executive control network brain regions including medial and rostral prefrontal cortex, and core regions of the salience network, including anterior insula and dorsal anterior cingulate. Immoral vs moral conditions additionally engaged the salience network. These results implicate the salience network in the detection of moral information, which may modulate downstream default and frontal control network interactions in the service of complex moral reasoning and decision-making processes. These findings suggest that moral cognition involves both bottom-up and top-down attentional processes, mediated by discrete large-scale brain networks and their interactions. PMID:28338944

  4. Implications of Network Structure on Public Health Collaboratives

    ERIC Educational Resources Information Center

    Retrum, Jessica H.; Chapman, Carrie L.; Varda, Danielle M.

    2013-01-01

    Interorganizational collaboration is an essential function of public health agencies. These partnerships form social networks that involve diverse types of partners and varying levels of interaction. Such collaborations are widely accepted and encouraged, yet very little comparative research exists on how public health partnerships develop and…

  5. An exploration of alternative visualisations of the basic helix-loop-helix protein interaction network

    PubMed Central

    Holden, Brian J; Pinney, John W; Lovell, Simon C; Amoutzias, Grigoris D; Robertson, David L

    2007-01-01

    Background Alternative representations of biochemical networks emphasise different aspects of the data and contribute to the understanding of complex biological systems. In this study we present a variety of automated methods for visualisation of a protein-protein interaction network, using the basic helix-loop-helix (bHLH) family of transcription factors as an example. Results Network representations that arrange nodes (proteins) according to either continuous or discrete information are investigated, revealing the existence of protein sub-families and the retention of interactions following gene duplication events. Methods of network visualisation in conjunction with a phylogenetic tree are presented, highlighting the evolutionary relationships between proteins, and clarifying the context of network hubs and interaction clusters. Finally, an optimisation technique is used to create a three-dimensional layout of the phylogenetic tree upon which the protein-protein interactions may be projected. Conclusion We show that by incorporating secondary genomic, functional or phylogenetic information into network visualisation, it is possible to move beyond simple layout algorithms based on network topology towards more biologically meaningful representations. These new visualisations can give structure to complex networks and will greatly help in interpreting their evolutionary origins and functional implications. Three open source software packages (InterView, TVi and OptiMage) implementing our methods are available. PMID:17683601

  6. Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder.

    PubMed

    Kucyi, Aaron; Hove, Michael J; Biederman, Joseph; Van Dijk, Koene R A; Valera, Eve M

    2015-09-01

    Attention-deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain-network interactions. The default mode network (DMN), implicated in ADHD-linked behaviors including mind-wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within-network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age-, IQ-, and sex-matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole-brain between-group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between-group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of cerebro-cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. © 2015 Wiley Periodicals, Inc.

  7. A Systems Biology Methodology Combining Transcriptome and Interactome Datasets to Assess the Implications of Cytokinin Signaling for Plant Immune Networks.

    PubMed

    Kunz, Meik; Dandekar, Thomas; Naseem, Muhammad

    2017-01-01

    Cytokinins (CKs) play an important role in plant growth and development. Also, several studies highlight the modulatory implications of CKs for plant-pathogen interaction. However, the underlying mechanisms of CK mediating immune networks in plants are still not fully understood. A detailed analysis of high-throughput transcriptome (RNA-Seq and microarrays) datasets under modulated conditions of plant CKs and its mergence with cellular interactome (large-scale protein-protein interaction data) has the potential to unlock the contribution of CKs to plant defense. Here, we specifically describe a detailed systems biology methodology pertinent to the acquisition and analysis of various omics datasets that delineate the role of plant CKs in impacting immune pathways in Arabidopsis.

  8. Frequency and Quality of Social Networking Among Young Adults: Associations With Depressive Symptoms, Rumination, and Corumination

    PubMed Central

    Davila, Joanne; Hershenberg, Rachel; Feinstein, Brian A.; Gorman, Kaitlyn; Bhatia, Vickie; Starr, Lisa R.

    2012-01-01

    Two studies examined associations between social networking and depressive symptoms among youth. In Study 1, 384 participants (68% female; mean age = 20.22 years, SD = 2.90) were surveyed. In Study 2, 334 participants (62% female; M age = 19.44 years, SD = 2.05) were surveyed initially and 3 weeks later. Results indicated that depressive symptoms were associated with quality of social networking interactions, not quantity. There was some evidence that depressive rumination moderated associations, and both depressive rumination and corumination were associated with aspects of social networking usage and quality. Implications for understanding circumstances that increase social networking, as well as resulting negative interactions and negative affect are discussed. PMID:24490122

  9. Differential network entropy reveals cancer system hallmarks

    PubMed Central

    West, James; Bianconi, Ginestra; Severini, Simone; Teschendorff, Andrew E.

    2012-01-01

    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network we here demonstrate that cancer cells are characterised by an increase in network entropy. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local network entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local correlation patterns. In particular, we find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in network entropy. These findings may have potential implications for identifying novel drug targets. PMID:23150773

  10. Posting behaviour patterns in an online smoking cessation social network: implications for intervention design and development.

    PubMed

    Healey, Benjamin; Hoek, Janet; Edwards, Richard

    2014-01-01

    Online Cessation Support Networks (OCSNs) are associated with increased quit success rates, but few studies have examined their use over time. We identified usage patterns in New Zealand's largest OCSN over two years and explored implications for OCSN intervention design and evaluation. We analysed metadata relating to 133,096 OCSN interactions during 2011 and 2012. Metrics covered aggregate network activity, user posting activity and longevity, and between-user commenting. Binary logistic regression models were estimated to investigate the feasibility of predicting low user engagement using early interaction data. Repeating periodic peaks and troughs in aggregate activity related not only to seasonality (e.g., New Year), but also to day of the week. Out of 2,062 unique users, 69 Highly Engaged Users (180+ interactions each) contributed 69% of all OCSN interactions in 2012 compared to 1.3% contributed by 864 Minimally Engaged Users (< = 2 items each). The proportion of Highly Engaged Users increased with network growth between 2011 and 2012 (with marginal significance), but the proportion of Minimally Engaged Users did not decline substantively. First week interaction data enabled identification of Minimally Engaged Users with high specificity and sensitivity (AUROC= 0.94). Results suggest future research should develop and test interventions that promote activity, and hence cessation support, amongst specific user groups or at key time points. For example, early usage information could help identify Minimally Engaged Users for tests of targeted messaging designed to improve their integration into, or re-engagement with, the OCSN. Furthermore, although we observed strong growth over time on varied metrics including posts and comments, this change did not coincide with large gains in first-time user persistence. Researchers assessing intervention effects should therefore examine multiple measures when evaluating changes in network dynamics over time.

  11. Using Social Network Measures in Wildlife Disease Ecology, Epidemiology, and Management

    PubMed Central

    Silk, Matthew J.; Croft, Darren P.; Delahay, Richard J.; Hodgson, David J.; Boots, Mike; Weber, Nicola; McDonald, Robbie A.

    2017-01-01

    Abstract Contact networks, behavioral interactions, and shared use of space can all have important implications for the spread of disease in animals. Social networks enable the quantification of complex patterns of interactions; therefore, network analysis is becoming increasingly widespread in the study of infectious disease in animals, including wildlife. We present an introductory guide to using social-network-analytical approaches in wildlife disease ecology, epidemiology, and management. We focus on providing detailed practical guidance for the use of basic descriptive network measures by suggesting the research questions to which each technique is best suited and detailing the software available for each. We also discuss how using network approaches can be used beyond the study of social contacts and across a range of spatial and temporal scales. Finally, we integrate these approaches to examine how network analysis can be used to inform the implementation and monitoring of effective disease management strategies. PMID:28596616

  12. Correlated miR-mRNA expression signatures of mouse hematopoietic stem and progenitor cell subsets predict "Stemness" and "Myeloid" interaction networks.

    PubMed

    Heiser, Diane; Tan, Yee Sun; Kaplan, Ian; Godsey, Brian; Morisot, Sebastien; Cheng, Wen-Chih; Small, Donald; Civin, Curt I

    2014-01-01

    Several individual miRNAs (miRs) have been implicated as potent regulators of important processes during normal and malignant hematopoiesis. In addition, many miRs have been shown to fine-tune intricate molecular networks, in concert with other regulatory elements. In order to study hematopoietic networks as a whole, we first created a map of global miR expression during early murine hematopoiesis. Next, we determined the copy number per cell for each miR in each of the examined stem and progenitor cell types. As data is emerging indicating that miRs function robustly mainly when they are expressed above a certain threshold (∼100 copies per cell), our database provides a resource for determining which miRs are expressed at a potentially functional level in each cell type. Finally, we combine our miR expression map with matched mRNA expression data and external prediction algorithms, using a Bayesian modeling approach to create a global landscape of predicted miR-mRNA interactions within each of these hematopoietic stem and progenitor cell subsets. This approach implicates several interaction networks comprising a "stemness" signature in the most primitive hematopoietic stem cell (HSC) populations, as well as "myeloid" patterns associated with two branches of myeloid development.

  13. Redesigning metabolism based on orthogonality principles

    PubMed Central

    Pandit, Aditya Vikram; Srinivasan, Shyam; Mahadevan, Radhakrishnan

    2017-01-01

    Modifications made during metabolic engineering for overproduction of chemicals have network-wide effects on cellular function due to ubiquitous metabolic interactions. These interactions, that make metabolic network structures robust and optimized for cell growth, act to constrain the capability of the cell factory. To overcome these challenges, we explore the idea of an orthogonal network structure that is designed to operate with minimal interaction between chemical production pathways and the components of the network that produce biomass. We show that this orthogonal pathway design approach has significant advantages over contemporary growth-coupled approaches using a case study on succinate production. We find that natural pathways, fundamentally linked to biomass synthesis, are less orthogonal in comparison to synthetic pathways. We suggest that the use of such orthogonal pathways can be highly amenable for dynamic control of metabolism and have other implications for metabolic engineering. PMID:28555623

  14. The Influence of Gender, Age, Matriline and Hierarchical Rank on Individual Social Position, Role and Interactional Patterns in Macaca sylvanus at ‘La Forêt des Singes’: A Multilevel Social Network Approach

    PubMed Central

    Sosa, Sebastian

    2016-01-01

    A society is a complex system composed of individuals that can be characterized by their own attributes that influence their behaviors. In this study, a specific analytical protocol based on social network analysis was adopted to investigate the influence of four attributes (gender, age, matriline, and hierarchical rank) on affiliative (allogrooming) and agonistic networks in a non-human primate species, Macaca sylvanus, at the park La Forêt des Singes in France. The results show significant differences with respect to the position (i.e., centric, peripheral) and role (i.e., implication in the network cohesiveness) of an individual within a social network and hence interactional patterns. Females are more central, more active, and have a denser ego network in the affiliative social network tan males; thus, they contribute in a greater way to the cohesive structure of the network. High-ranking individuals are likely to receive fewer agonistic behaviors than low-ranking individuals, and high-ranking females receive more allogrooming. I also observe homophily for affiliative interactions regarding all attributes and homophily for agonistic interactions regarding gender and age. Revealing the positions, the roles, and the interactional behavioral patterns of individuals can help understand the mechanisms that shape the overall structure of a social network. PMID:27148137

  15. The Influence of Gender, Age, Matriline and Hierarchical Rank on Individual Social Position, Role and Interactional Patterns in Macaca sylvanus at 'La Forêt des Singes': A Multilevel Social Network Approach.

    PubMed

    Sosa, Sebastian

    2016-01-01

    A society is a complex system composed of individuals that can be characterized by their own attributes that influence their behaviors. In this study, a specific analytical protocol based on social network analysis was adopted to investigate the influence of four attributes (gender, age, matriline, and hierarchical rank) on affiliative (allogrooming) and agonistic networks in a non-human primate species, Macaca sylvanus, at the park La Forêt des Singes in France. The results show significant differences with respect to the position (i.e., centric, peripheral) and role (i.e., implication in the network cohesiveness) of an individual within a social network and hence interactional patterns. Females are more central, more active, and have a denser ego network in the affiliative social network tan males; thus, they contribute in a greater way to the cohesive structure of the network. High-ranking individuals are likely to receive fewer agonistic behaviors than low-ranking individuals, and high-ranking females receive more allogrooming. I also observe homophily for affiliative interactions regarding all attributes and homophily for agonistic interactions regarding gender and age. Revealing the positions, the roles, and the interactional behavioral patterns of individuals can help understand the mechanisms that shape the overall structure of a social network.

  16. Instructional Context and Student Motivation, Learning, and Development: Commentary and Implications for School Psychologists

    ERIC Educational Resources Information Center

    Pendergast, Laura L.; Kaplan, Avi

    2015-01-01

    From an ecological perspective, learning and development in childhood and throughout the lifespan occur in the context of interactions within complex social networks. Collectively, the articles in this special issue illuminate three important themes related to teacher-student interactions within instructional contexts: relationships, competence,…

  17. The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness

    PubMed Central

    Mangus, J Michael; Turner, Benjamin O

    2017-01-01

    Abstract While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. PMID:29140500

  18. Evidence for social working memory from a parametric functional MRI study.

    PubMed

    Meyer, Meghan L; Spunt, Robert P; Berkman, Elliot T; Taylor, Shelley E; Lieberman, Matthew D

    2012-02-07

    Keeping track of various amounts of social cognitive information, including people's mental states, traits, and relationships, is fundamental to navigating social interactions. However, to date, no research has examined which brain regions support variable amounts of social information processing ("social load"). We developed a social working memory paradigm to examine the brain networks sensitive to social load. Two networks showed linear increases in activation as a function of increasing social load: the medial frontoparietal regions implicated in social cognition and the lateral frontoparietal system implicated in nonsocial forms of working memory. Of these networks, only load-dependent medial frontoparietal activity was associated with individual differences in social cognitive ability (trait perspective-taking). Although past studies of nonsocial load have uniformly found medial frontoparietal activity decreases with increasing task demands, the current study demonstrates these regions do support increasing mental effort when such effort engages social cognition. Implications for the etiology of clinical disorders that implicate social functioning and potential interventions are discussed.

  19. Coexistence and specialization of pathogen strains on contact networks.

    PubMed

    Eames, Ken T D; Keeling, Matt J

    2006-08-01

    The coexistence of different pathogen strains has implications for pathogen variability and disease control and has been explained in a number of different ways. We use contact networks, which represent interactions between individuals through which infection could be transmitted, to investigate strain coexistence. For sexually transmitted diseases the structure of contact networks has received detailed study and has been shown to be a vital determinant of the epidemiological dynamics. By using analytical pairwise models and stochastic simulations, we demonstrate that network structure also has a profound influence on the interaction between pathogen strains. In particular, when the population is serially monogamous, fully cross-reactive strains can coexist, with different strains dominating in network regions with different characteristics. Furthermore, we observe specialization of different strains in different risk groups within the network, suggesting the existence of diverging evolutionary pressures.

  20. The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism

    PubMed Central

    Hadley, Dexter; Wu, Zhi-liang; Kao, Charlly; Kini, Akshata; Mohamed-Hadley, Alisha; Thomas, Kelly; Vazquez, Lyam; Qiu, Haijun; Mentch, Frank; Pellegrino, Renata; Kim, Cecilia; Connolly, John; Pinto, Dalila; Merikangas, Alison; Klei, Lambertus; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pagnamenta, Alistair T.; Oliveira, Bárbara; Magalhaes, Tiago R.; Gilbert, John; Duketis, Eftichia; De Jonge, Maretha V.; Cuccaro, Michael; Correia, Catarina T.; Conroy, Judith; Conceição, Inês C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wallace, Simon; Engeland, Herman van; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Jacob, Suma; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F.; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Almeida, Joana; Café, Cátia; Mouga, Susana; Correia, Catarina; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.; Glessner, Joseph; Hakonarson, Hakon

    2014-01-01

    Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E−09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E−23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E−04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions. PMID:24927284

  1. Crucial role of strategy updating for coexistence of strategies in interaction networks.

    PubMed

    Zhang, Jianlei; Zhang, Chunyan; Cao, Ming; Weissing, Franz J

    2015-04-01

    Network models are useful tools for studying the dynamics of social interactions in a structured population. After a round of interactions with the players in their local neighborhood, players update their strategy based on the comparison of their own payoff with the payoff of one of their neighbors. Here we show that the assumptions made on strategy updating are of crucial importance for the strategy dynamics. In the first step, we demonstrate that seemingly small deviations from the standard assumptions on updating have major implications for the evolutionary outcome of two cooperation games: cooperation can more easily persist in a Prisoner's Dilemma game, while it can go more easily extinct in a Snowdrift game. To explain these outcomes, we develop a general model for the updating of states in a network that allows us to derive conditions for the steady-state coexistence of states (or strategies). The analysis reveals that coexistence crucially depends on the number of agents consulted for updating. We conclude that updating rules are as important for evolution on a network as network structure and the nature of the interaction.

  2. Crucial role of strategy updating for coexistence of strategies in interaction networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Zhang, Chunyan; Cao, Ming; Weissing, Franz J.

    2015-04-01

    Network models are useful tools for studying the dynamics of social interactions in a structured population. After a round of interactions with the players in their local neighborhood, players update their strategy based on the comparison of their own payoff with the payoff of one of their neighbors. Here we show that the assumptions made on strategy updating are of crucial importance for the strategy dynamics. In the first step, we demonstrate that seemingly small deviations from the standard assumptions on updating have major implications for the evolutionary outcome of two cooperation games: cooperation can more easily persist in a Prisoner's Dilemma game, while it can go more easily extinct in a Snowdrift game. To explain these outcomes, we develop a general model for the updating of states in a network that allows us to derive conditions for the steady-state coexistence of states (or strategies). The analysis reveals that coexistence crucially depends on the number of agents consulted for updating. We conclude that updating rules are as important for evolution on a network as network structure and the nature of the interaction.

  3. Drug targets in the cytokine universe for autoimmune disease.

    PubMed

    Liu, Xuebin; Fang, Lei; Guo, Taylor B; Mei, Hongkang; Zhang, Jingwu Z

    2013-03-01

    In autoimmune disease, a network of diverse cytokines is produced in association with disease susceptibility to constitute the 'cytokine milieu' that drives chronic inflammation. It remains elusive how cytokines interact in such a complex network to sustain inflammation in autoimmune disease. This has presented huge challenges for successful drug discovery because it has been difficult to predict how individual cytokine-targeted therapy would work. Here, we combine the principles of Chinese Taoism philosophy and modern bioinformatics tools to dissect multiple layers of arbitrary cytokine interactions into discernible interfaces and connectivity maps to predict movements in the cytokine network. The key principles presented here have important implications in our understanding of cytokine interactions and development of effective cytokine-targeted therapies for autoimmune disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The default network and self-generated thought: component processes, dynamic control, and clinical relevance

    PubMed Central

    Andrews-Hanna, Jessica R.; Smallwood, Jonathan; Spreng, R. Nathan

    2014-01-01

    Though only a decade has elapsed since the default network was first emphasized as being a large-scale brain system, recent years have brought great insight into the network’s adaptive functions. A growing theme highlights the default network as playing a key role in internally-directed—or self-generated—thought. Here, we synthesize recent findings from cognitive science, neuroscience, and clinical psychology to focus attention on two emerging topics as current and future directions surrounding the default network. First, we present evidence that self-generated thought is a multi-faceted construct whose component processes are supported by different subsystems within the network. Second, we highlight the dynamic nature of the default network, emphasizing its interaction with executive control systems when regulating aspects of internal thought. We conclude by discussing clinical implications of disruptions to the integrity of the network, and consider disorders when thought content becomes polarized or network interactions become disrupted or imbalanced. PMID:24502540

  5. The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness.

    PubMed

    Huskey, Richard; Mangus, J Michael; Turner, Benjamin O; Weber, René

    2017-12-01

    While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. © The Author (2017). Published by Oxford University Press.

  6. Nestedness across biological scales

    PubMed Central

    Marquitti, Flavia M. D.; Raimundo, Rafael L. G.; Sebastián-González, Esther; Coltri, Patricia P.; Perez, S. Ivan; Brandt, Débora Y. C.; Nunes, Kelly; Daura-Jorge, Fábio G.; Floeter, Sergio R.; Guimarães, Paulo R.

    2017-01-01

    Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general compromise between two features: specificity (the number of interactions the elements of the system can have) and affinity (how these elements can be connected to each other). Our findings suggesting occurrence of nestedness throughout biological scales can stimulate the debate on how pervasive nestedness may be in nature, while the theoretical emergent principles can aid further research on commonalities of biological networks. PMID:28166284

  7. Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks

    PubMed Central

    Beckett, Stephen J.; Williams, Hywel T. P.

    2013-01-01

    Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage–bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively. A qualitatively different multi-scale structure is seen at larger phylogenetic scales; a natural assemblage sampled from the Atlantic Ocean displays large-scale modularity and local nestedness within each module. Here, we show that such ‘nested-modular’ interaction networks can be produced by a simple model of host–phage coevolution in which infection depends on genetic matching. Negative frequency-dependent selection causes diversification of hosts (to escape phages) and phages (to track their evolving hosts). This creates a diverse community of bacteria and phage, maintained by kill-the-winner ecological dynamics. When the resulting communities are visualized as bipartite networks of who infects whom, they show the nested-modular structure characteristic of the Atlantic sample. The statistical significance and strength of this observation varies depending on whether the interaction networks take into account the density of the interacting strains, with implications for interpretation of interaction networks constructed by different methods. Our results suggest that the apparently complex community structures associated with marine bacteria and phage may arise from relatively simple coevolutionary origins. PMID:24516719

  8. Neural Systems Underlying Individual Differences in Intertemporal Decision-making.

    PubMed

    Elton, Amanda; Smith, Christopher T; Parrish, Michael H; Boettiger, Charlotte A

    2017-03-01

    Excessively choosing immediate over larger future rewards, or delay discounting (DD), associates with multiple clinical conditions. Individual differences in DD likely depend on variations in the activation of and functional interactions between networks, representing possible endophenotypes for associated disorders, including alcohol use disorders (AUDs). Numerous fMRI studies have probed the neural bases of DD, but investigations of large-scale networks remain scant. We addressed this gap by testing whether activation within large-scale networks during Now/Later decision-making predicts individual differences in DD. To do so, we scanned 95 social drinkers (18-40 years old; 50 women) using fMRI during hypothetical choices between small monetary amounts available "today" or larger amounts available later. We identified neural networks engaged during Now/Later choice using independent component analysis and tested the relationship between component activation and degree of DD. The activity of two components during Now/Later choice correlated with individual DD rates: A temporal lobe network positively correlated with DD, whereas a frontoparietal-striatal network negatively correlated with DD. Activation differences between these networks predicted individual differences in DD, and their negative correlation during Now/Later choice suggests functional competition. A generalized psychophysiological interactions analysis confirmed a decrease in their functional connectivity during decision-making. The functional connectivity of these two networks negatively correlates with alcohol-related harm, potentially implicating these networks in AUDs. These findings provide novel insight into the neural underpinnings of individual differences in impulsive decision-making with potential implications for addiction and related disorders in which impulsivity is a defining feature.

  9. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.

  10. Transformational leadership and group interaction as climate antecedents: a social network analysis.

    PubMed

    Zohar, Dov; Tenne-Gazit, Orly

    2008-07-01

    In order to test the social mechanisms through which organizational climate emerges, this article introduces a model that combines transformational leadership and social interaction as antecedents of climate strength (i.e., the degree of within-unit agreement about climate perceptions). Despite their longstanding status as primary variables, both antecedents have received limited empirical research. The sample consisted of 45 platoons of infantry soldiers from 5 different brigades, using safety climate as the exemplar. Results indicate a partially mediated model between transformational leadership and climate strength, with density of group communication network as the mediating variable. In addition, the results showed independent effects for group centralization of the communication and friendship networks, which exerted incremental effects on climate strength over transformational leadership. Whereas centralization of the communication network was found to be negatively related to climate strength, centralization of the friendship network was positively related to it. Theoretical and practical implications are discussed.

  11. Interactome of Obesity: Obesidome : Genetic Obesity, Stress Induced Obesity, Pathogenic Obesity Interaction.

    PubMed

    Geronikolou, Styliani A; Pavlopoulou, Athanasia; Cokkinos, Dennis; Chrousos, George

    2017-01-01

    Obesity is a chronic disease of increasing prevalence reaching epidemic proportions. Genetic defects as well as epigenetic effects contribute to the obesity phenotype. Investigating gene (e.g. MC4R defects)-environment (behavior, infectious agents, stress) interactions is a relative new field of great research interest. In this study, we have made an effort to create an interactome (henceforth referred to as "obesidome"), where extrinsic stressors response, intrinsic predisposition, immunity response to inflammation and autonomous nervous system implications are integrated. These pathways are presented in one interactome network for the first time. In our study, obesity-related genes/gene products were found to form a complex interactions network.

  12. Geometric control of capillary architecture via cell-matrix mechanical interactions.

    PubMed

    Sun, Jian; Jamilpour, Nima; Wang, Fei-Yue; Wong, Pak Kin

    2014-03-01

    Capillary morphogenesis is a multistage, multicellular activity that plays a pivotal role in various developmental and pathological situations. In-depth understanding of the regulatory mechanism along with the capability of controlling the morphogenic process will have direct implications on tissue engineering and therapeutic angiogenesis. Extensive research has been devoted to elucidate the biochemical factors that regulate capillary morphogenesis. The roles of geometric confinement and cell-matrix mechanical interactions on the capillary architecture, nevertheless, remain largely unknown. Here, we show geometric control of endothelial network topology by creating physical confinements with microfabricated fences and wells. Decreasing the thickness of the matrix also results in comparable modulation of the network architecture, supporting the boundary effect is mediated mechanically. The regulatory role of cell-matrix mechanical interaction on the network topology is further supported by alternating the matrix stiffness by a cell-inert PEG-dextran hydrogel. Furthermore, reducing the cell traction force with a Rho-associated protein kinase inhibitor diminishes the boundary effect. Computational biomechanical analysis delineates the relationship between geometric confinement and cell-matrix mechanical interaction. Collectively, these results reveal a mechanoregulation scheme of endothelial cells to regulate the capillary network architecture via cell-matrix mechanical interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Social interaction in management group meetings: a case study of Finnish hospital.

    PubMed

    Laapotti, Tomi; Mikkola, Leena

    2016-06-20

    Purpose - The purpose of this paper is to understand the role of management group meetings (MGMs) in hospital organization by examining the social interaction in these meetings. Design/methodology/approach - This case study approaches social interaction from a structuration point of view. Social network analysis and qualitative content analysis are applied. Findings - The findings show that MGMs are mainly forums for information sharing. Meetings are not held for problem solving or decision making, and operational coordinating is limited. Meeting interaction is very much focused on the chair, and most of the discussion takes place between the chair and one other member, not between members. The organizational structures are maintained and reproduced in the meeting interaction, and they appear to limit discussion. Meetings appear to fulfil their goals as a part of the organization's information structure and to some extent as an instrument for management. The significance of the relational side of MGMs was recognized. Research limitations/implications - The results of this study provide a basis for future research on hospital MGMs with wider datasets and other methodologies. Especially the relational role of MGMs needs more attention. Practical implications - The goals of MGMs should be reviewed and MG members should be made aware of meeting interaction structures. Originality/value - The paper provides new knowledge about interaction networks in hospital MGMs, and describes the complexity of the importance of MGMs for hospitals.

  14. Prioritization of Epilepsy Associated Candidate Genes by Convergent Analysis

    PubMed Central

    Jia, Peilin; Ewers, Jeffrey M.; Zhao, Zhongming

    2011-01-01

    Background Epilepsy is a severe neurological disorder affecting a large number of individuals, yet the underlying genetic risk factors for epilepsy remain unclear. Recent studies have revealed several recurrent copy number variations (CNVs) that are more likely to be associated with epilepsy. The responsible gene(s) within these regions have yet to be definitively linked to the disorder, and the implications of their interactions are not fully understood. Identification of these genes may contribute to a better pathological understanding of epilepsy, and serve to implicate novel therapeutic targets for further research. Methodology/Principal Findings In this study, we examined genes within heterozygous deletion regions identified in a recent large-scale study, encompassing a diverse spectrum of epileptic syndromes. By integrating additional protein-protein interaction data, we constructed subnetworks for these CNV-region genes and also those previously studied for epilepsy. We observed 20 genes common to both networks, primarily concentrated within a small molecular network populated by GABA receptor, BDNF/MAPK signaling, and estrogen receptor genes. From among the hundreds of genes in the initial networks, these were designated by convergent evidence for their likely association with epilepsy. Importantly, the identified molecular network was found to contain complex interrelationships, providing further insight into epilepsy's underlying pathology. We further performed pathway enrichment and crosstalk analysis and revealed a functional map which indicates the significant enrichment of closely related neurological, immune, and kinase regulatory pathways. Conclusions/Significance The convergent framework we proposed here provides a unique and powerful approach to screening and identifying promising disease genes out of typically hundreds to thousands of genes in disease-related CNV-regions. Our network and pathway analysis provides important implications for the underlying molecular mechanisms for epilepsy. The strategy can be applied for the study of other complex diseases. PMID:21390307

  15. Prioritization of epilepsy associated candidate genes by convergent analysis.

    PubMed

    Jia, Peilin; Ewers, Jeffrey M; Zhao, Zhongming

    2011-02-24

    Epilepsy is a severe neurological disorder affecting a large number of individuals, yet the underlying genetic risk factors for epilepsy remain unclear. Recent studies have revealed several recurrent copy number variations (CNVs) that are more likely to be associated with epilepsy. The responsible gene(s) within these regions have yet to be definitively linked to the disorder, and the implications of their interactions are not fully understood. Identification of these genes may contribute to a better pathological understanding of epilepsy, and serve to implicate novel therapeutic targets for further research. In this study, we examined genes within heterozygous deletion regions identified in a recent large-scale study, encompassing a diverse spectrum of epileptic syndromes. By integrating additional protein-protein interaction data, we constructed subnetworks for these CNV-region genes and also those previously studied for epilepsy. We observed 20 genes common to both networks, primarily concentrated within a small molecular network populated by GABA receptor, BDNF/MAPK signaling, and estrogen receptor genes. From among the hundreds of genes in the initial networks, these were designated by convergent evidence for their likely association with epilepsy. Importantly, the identified molecular network was found to contain complex interrelationships, providing further insight into epilepsy's underlying pathology. We further performed pathway enrichment and crosstalk analysis and revealed a functional map which indicates the significant enrichment of closely related neurological, immune, and kinase regulatory pathways. The convergent framework we proposed here provides a unique and powerful approach to screening and identifying promising disease genes out of typically hundreds to thousands of genes in disease-related CNV-regions. Our network and pathway analysis provides important implications for the underlying molecular mechanisms for epilepsy. The strategy can be applied for the study of other complex diseases.

  16. Prediction of Oncogenic Interactions and Cancer-Related Signaling Networks Based on Network Topology

    PubMed Central

    Acencio, Marcio Luis; Bovolenta, Luiz Augusto; Camilo, Esther; Lemke, Ney

    2013-01-01

    Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI). This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved in cancer research interested in detecting signaling networks most prone to contribute with the emergence of malignant phenotype. PMID:24204854

  17. Creative benefits from well-connected leaders: leader social network ties as facilitators of employee radical creativity.

    PubMed

    Venkataramani, Vijaya; Richter, Andreas W; Clarke, Ronald

    2014-09-01

    Employee radical creativity critically depends on substantive informational resources from others across the wider organization. We propose that the social network ties of employees' immediate leaders assume a central role in garnering these resources, thereby fostering their employees' radical creativity both independent of and interactively with employees' own network ties. Drawing on data from 214 employees working in 30 teams of a public technology and environmental services organization, we find that team leaders' betweenness centrality in the idea network within their teams as well as among their peer leaders provides creative benefits beyond employees' own internal and external ties. Further, employees' and leaders' ties within and external to the team interactively predict employee radical creativity. Implications for theory and practice are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Creative Cognition and Brain Network Dynamics

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Silvia, Paul J.; Schacter, Daniel L.

    2015-01-01

    Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relationship, actually cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. PMID:26553223

  19. Topological entropy of catalytic sets: Hypercycles revisited

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno

    2012-02-01

    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

  20. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks

    PubMed Central

    Albrecht, Matthias; Padrón, Benigno; Bartomeus, Ignasi; Traveset, Anna

    2014-01-01

    Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes. PMID:24943368

  1. African American Extended Family and Church-Based Social Network Typologies.

    PubMed

    Nguyen, Ann W; Chatters, Linda M; Taylor, Robert Joseph

    2016-12-01

    We examined social network typologies among African American adults and their sociodemographic correlates. Network types were derived from indicators of the family and church networks. Latent class analysis was based on a nationally representative sample of African Americans from the National Survey of American Life. Results indicated four distinct network types: ambivalent, optimal, family centered, and strained. These four types were distinguished by (a) degree of social integration, (b) network composition, and (c) level of negative interactions. In a departure from previous work, a network type composed solely of nonkin was not identified, which may reflect racial differences in social network typologies. Further, the analysis indicated that network types varied by sociodemographic characteristics. Social network typologies have several promising practice implications, as they can inform the development of prevention and intervention programs.

  2. Integrating network ecology with applied conservation: a synthesis and guide to implementation.

    PubMed

    Kaiser-Bunbury, Christopher N; Blüthgen, Nico

    2015-07-10

    Ecological networks are a useful tool to study the complexity of biotic interactions at a community level. Advances in the understanding of network patterns encourage the application of a network approach in other disciplines than theoretical ecology, such as biodiversity conservation. So far, however, practical applications have been meagre. Here we present a framework for network analysis to be harnessed to advance conservation management by using plant-pollinator networks and islands as model systems. Conservation practitioners require indicators to monitor and assess management effectiveness and validate overall conservation goals. By distinguishing between two network attributes, the 'diversity' and 'distribution' of interactions, on three hierarchical levels (species, guild/group and network) we identify seven quantitative metrics to describe changes in network patterns that have implications for conservation. Diversity metrics are partner diversity, vulnerability/generality, interaction diversity and interaction evenness, and distribution metrics are the specialization indices d' and [Formula: see text] and modularity. Distribution metrics account for sampling bias and may therefore be suitable indicators to detect human-induced changes to plant-pollinator communities, thus indirectly assessing the structural and functional robustness and integrity of ecosystems. We propose an implementation pathway that outlines the stages that are required to successfully embed a network approach in biodiversity conservation. Most importantly, only if conservation action and study design are aligned by practitioners and ecologists through joint experiments, are the findings of a conservation network approach equally beneficial for advancing adaptive management and ecological network theory. We list potential obstacles to the framework, highlight the shortfall in empirical, mostly experimental, network data and discuss possible solutions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Fundamental Principles of Network Formation among Preschool Children1

    PubMed Central

    Schaefer, David R.; Light, John M.; Fabes, Richard A.; Hanish, Laura D.; Martin, Carol Lynn

    2009-01-01

    The goal of this research was to investigate the origins of social networks by examining the formation of children’s peer relationships in 11 preschool classes throughout the school year. We investigated whether several fundamental processes of relationship formation were evident at this age, including reciprocity, popularity, and triadic closure effects. We expected these mechanisms to change in importance over time as the network crystallizes, allowing more complex structures to evolve from simpler ones in a process we refer to as structural cascading. We analyzed intensive longitudinal observational data of children’s interactions using the SIENA actor-based model. We found evidence that reciprocity, popularity, and triadic closure all shaped the formation of preschool children’s networks. The influence of reciprocity remained consistent, whereas popularity and triadic closure became increasingly important over the course of the school year. Interactions between age and endogenous network effects were nonsignificant, suggesting that these network formation processes were not moderated by age in this sample of young children. We discuss the implications of our longitudinal network approach and findings for the study of early network developmental processes. PMID:20161606

  4. Living in the branches: population dynamics and ecological processes in dendritic networks

    USGS Publications Warehouse

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  5. Similarity or dissimilarity in the relations between human service organizations.

    PubMed

    Bruynooghe, Kevin; Verhaeghe, Mieke; Bracke, Piet

    2008-01-01

    Exchange theory and homophily theory give rise to counteracting expectations for the interaction between human service organizations. Based on arguments of exchange theory, more interaction is expected between dissimilar organizations having complementary resources. Based on arguments of homophily theory, organizations having similar characteristics are expected to interact more. Interorganizational relations between human service organizations in two regional networks in Flanders are examined in this study. Results indicate that human service organizations tend to cooperate more with similar organizations as several homophily effects but not one effect of dissimilarity were found to be significant. The results of this study contribute to the understanding of interorganizational networks of human service organizations and have implications for the development of integrated care.

  6. Epidemics on interconnected networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark; Havlin, S.; Stanley, H. E.

    2012-06-01

    Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  7. Genetic background effects in quantitative genetics: gene-by-system interactions.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2018-04-11

    Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.

  8. "FORCE" learning in recurrent neural networks as data assimilation

    NASA Astrophysics Data System (ADS)

    Duane, Gregory S.

    2017-12-01

    It is shown that the "FORCE" algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.

  9. Social Transmission of False Memory in Small Groups and Large Networks.

    PubMed

    Maswood, Raeya; Rajaram, Suparna

    2018-05-21

    Sharing information and memories is a key feature of social interactions, making social contexts important for developing and transmitting accurate memories and also false memories. False memory transmission can have wide-ranging effects, including shaping personal memories of individuals as well as collective memories of a network of people. This paper reviews a collection of key findings and explanations in cognitive research on the transmission of false memories in small groups. It also reviews the emerging experimental work on larger networks and collective false memories. Given the reconstructive nature of memory, the abundance of misinformation in everyday life, and the variety of social structures in which people interact, an understanding of transmission of false memories has both scientific and societal implications. © 2018 Cognitive Science Society, Inc.

  10. Creative Cognition and Brain Network Dynamics.

    PubMed

    Beaty, Roger E; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L

    2016-02-01

    Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relation, tend to cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network

    NASA Technical Reports Server (NTRS)

    Kuhn, D. Richard; Kacker, Raghu; Lei, Yu

    2010-01-01

    This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.

  12. Depressive Symptoms and Their Interactions With Emotions and Personality Traits Over Time: Interaction Networks in a Psychiatric Clinic.

    PubMed

    Semino, Laura N; Marksteiner, Josef; Brauchle, Gernot; Danay, Erik

    2017-04-13

    Associations between depression, personality traits, and emotions are complex and reciprocal. The aim of this study is to explore these interactions in dynamical networks and in a linear way over time depending on the severity of depression. Participants included 110 patients with depressive symptoms (DSM-5 criteria) who were recruited between October 2015 and February 2016 during their inpatient stay in a general psychiatric hospital in Hall in Tyrol, Austria. The patients filled out the Beck Depression Inventory-II, a German emotional competence questionnaire (Emotionale Kompetenz Fragebogen), Positive and Negative Affect Schedule, and the German versions of the Big Five Inventory-short form and State-Trait-Anxiety-Depression Inventory regarding symptoms, emotions, and personality during their inpatient stay and at a 3-month follow-up by mail. Network and regression analyses were performed to explore interactions both in a linear and a dynamical way at baseline and 3 months later. Regression analyses showed that emotions and personality traits gain importance for the prediction of depressive symptoms with decreasing symptomatology at follow-up (personality: baseline, adjusted R2 = 0.24, P < .001; follow-up, adjusted R2 = 0.65, P < .001). Network analyses additionally showed that the interaction network of depression, emotions, and personality traits is significantly denser and more interconnected (network comparison test: P = .03) at follow-up than at baseline, meaning that with decreased symptoms interconnections get stronger. During depression, personality traits and emotions are walled off and not strongly interconnected with depressive symptoms in networks. With decreasing depressive symptomatology, interfusing of these areas begins and interconnections become stronger. This finding has practical implications for interventions in an acute depressive state and with decreased symptoms. The network approach offers a new perspective on interactions and is a way to make the complexity of these interactions more tangible. © Copyright 2017 Physicians Postgraduate Press, Inc.

  13. Dynamics of hate based Internet user networks

    NASA Astrophysics Data System (ADS)

    Sobkowicz, P.; Sobkowicz, A.

    2010-02-01

    We present a study of the properties of network of political discussions on one of the most popular Polish Internet forums. This provides the opportunity to study the computer mediated human interactions in strongly bipolar environment. The comments of the participants are found to be mostly disagreements, with strong percentage of invective and provocative ones. Binary exchanges (quarrels) play significant role in the network growth and topology. Statistical analysis shows that the growth of the discussions depends on the degree of controversy of the subject and the intensity of personal conflict between the participants. This is in contrast to most previously studied social networks, for example networks of scientific citations, where the nature of the links is much more positive and based on similarity and collaboration rather than opposition and abuse. The work discusses also the implications of the findings for more general studies of consensus formation, where our observations of increased conflict contradict the usual assumptions that interactions between people lead to averaging of opinions and agreement.

  14. Quantifying randomness in real networks

    NASA Astrophysics Data System (ADS)

    Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri

    2015-10-01

    Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.

  15. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    PubMed Central

    Brorsson, C.; Hansen, N. T.; Lage, K.; Bergholdt, R.; Brunak, S.; Pociot, F.

    2009-01-01

    Aim To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1 genes. Methods We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein–protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein modules were statistically evaluated using permutation. Results A total of 151 genes could be mapped to nodes within the protein interaction network and their interaction partners were identified. Five protein interaction modules reached statistical significance using this approach. The identified proteins are well known in the pathogenesis of T1D, but the modules also contain additional candidates that have been implicated in β-cell development and diabetic complications. Conclusions The extensive LD within the MHC region makes it important to develop new methods for analysing genotyping data for identification of additional risk genes for T1D. Combining genetic data with knowledge about functional pathways provides new insight into mechanisms underlying T1D. PMID:19143816

  16. Temporal stability in human interaction networks

    NASA Astrophysics Data System (ADS)

    Fabbri, Renato; Fabbri, Ricardo; Antunes, Deborah Christina; Pisani, Marilia Mello; de Oliveira, Osvaldo Novais

    2017-11-01

    This paper reports on stable (or invariant) properties of human interaction networks, with benchmarks derived from public email lists. Activity, recognized through messages sent, along time and topology were observed in snapshots in a timeline, and at different scales. Our analysis shows that activity is practically the same for all networks across timescales ranging from seconds to months. The principal components of the participants in the topological metrics space remain practically unchanged as different sets of messages are considered. The activity of participants follows the expected scale-free trace, thus yielding the hub, intermediary and peripheral classes of vertices by comparison against the Erdös-Rényi model. The relative sizes of these three sectors are essentially the same for all email lists and the same along time. Typically, < 15% of the vertices are hubs, 15%-45% are intermediary and > 45% are peripheral vertices. Similar results for the distribution of participants in the three sectors and for the relative importance of the topological metrics were obtained for 12 additional networks from Facebook, Twitter and ParticipaBR. These properties are consistent with the literature and may be general for human interaction networks, which has important implications for establishing a typology of participants based on quantitative criteria.

  17. Disease implications of animal social network structure: A synthesis across social systems.

    PubMed

    Sah, Pratha; Mann, Janet; Bansal, Shweta

    2018-05-01

    The disease costs of sociality have largely been understood through the link between group size and transmission. However, infectious disease spread is driven primarily by the social organization of interactions in a group and not its size. We used statistical models to review the social network organization of 47 species, including mammals, birds, reptiles, fish and insects by categorizing each species into one of three social systems, relatively solitary, gregarious and socially hierarchical. Additionally, using computational experiments of infection spread, we determined the disease costs of each social system. We find that relatively solitary species have large variation in number of social partners, that socially hierarchical species are the least clustered in their interactions, and that social networks of gregarious species tend to be the most fragmented. However, these structural differences are primarily driven by weak connections, which suggest that different social systems have evolved unique strategies to organize weak ties. Our synthetic disease experiments reveal that social network organization can mitigate the disease costs of group living for socially hierarchical species when the pathogen is highly transmissible. In contrast, highly transmissible pathogens cause frequent and prolonged epidemic outbreaks in gregarious species. We evaluate the implications of network organization across social systems despite methodological challenges, and our findings offer new perspective on the debate about the disease costs of group living. Additionally, our study demonstrates the potential of meta-analytic methods in social network analysis to test ecological and evolutionary hypotheses on cooperation, group living, communication and resilience to extrinsic pressures. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  18. Biological invasions as disruptors of plant reproductive mutualisms.

    PubMed

    Traveset, Anna; Richardson, David M

    2006-04-01

    Invasive alien species affect the composition and functioning of invaded ecosystems in many ways, altering ecological interactions that have arisen over evolutionary timescales. Specifically, disruptions to pollination and seed-dispersal mutualistic interactions are often documented, although the profound implications of such impacts are not widely recognized. Such disruptions can occur via the introduction of alien pollinators, seed dispersers, herbivores, predators or plants, and we define here the many potential outcomes of each situation. The frequency and circumstances under which each category of mechanisms operates are also poorly known. Most evidence is from population-level studies, and the implications for global biodiversity are difficult to predict. Further insights are needed on the degree of resilience in interaction networks, but the preliminary picture suggests that invasive species frequently cause profound disruptions to plant reproductive mutualisms.

  19. Development of viable TAP-tagged dengue virus for investigation of host-virus interactions in viral replication.

    PubMed

    Poyomtip, Teera; Hodge, Kenneth; Matangkasombut, Ponpan; Sakuntabhai, Anavaj; Pisitkun, Trairak; Jirawatnotai, Siwanon; Chimnaronk, Sarin

    2016-03-01

    Dengue virus (DENV) is a mosquito-borne flavivirus responsible for life-threatening dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). The viral replication machinery containing the core non-structural protein 5 (NS5) is implicated in severe dengue symptoms but molecular details remain obscure. To date, studies seeking to catalogue and characterize interaction networks between viral NS5 and host proteins have been limited to the yeast two-hybrid system, computational prediction and co-immunoprecipitation (IP) of ectopically expressed NS5. However, these traditional approaches do not reproduce a natural course of infection in which a number of DENV NS proteins colocalize and tightly associate during the replication process. Here, we demonstrate the development of a recombinant DENV that harbours a TAP tag in NS5 to study host-virus interactions in vivo. We show that our engineered DENV was infective in several human cell lines and that the tags were stable over multiple viral passages, suggesting negligible structural and functional disturbance of NS5. We further provide proof-of-concept for the use of rationally tagged virus by revealing a high confidence NS5 interaction network in human hepatic cells. Our analysis uncovered previously unrecognized hnRNP complexes and several low-abundance fatty acid metabolism genes, which have been implicated in the viral life cycle. This study sets a new standard for investigation of host-flavivirus interactions.

  20. Taking sociality seriously: the structure of multi-dimensional social networks as a source of information for individuals

    PubMed Central

    Barrett, Louise; Henzi, S. Peter; Lusseau, David

    2012-01-01

    Understanding human cognitive evolution, and that of the other primates, means taking sociality very seriously. For humans, this requires the recognition of the sociocultural and historical means by which human minds and selves are constructed, and how this gives rise to the reflexivity and ability to respond to novelty that characterize our species. For other, non-linguistic, primates we can answer some interesting questions by viewing social life as a feedback process, drawing on cybernetics and systems approaches and using social network neo-theory to test these ideas. Specifically, we show how social networks can be formalized as multi-dimensional objects, and use entropy measures to assess how networks respond to perturbation. We use simulations and natural ‘knock-outs’ in a free-ranging baboon troop to demonstrate that changes in interactions after social perturbations lead to a more certain social network, in which the outcomes of interactions are easier for members to predict. This new formalization of social networks provides a framework within which to predict network dynamics and evolution, helps us highlight how human and non-human social networks differ and has implications for theories of cognitive evolution. PMID:22734054

  1. Quantum-holographic and classical Hopfield-like associative nnets: implications for modeling two cognitive modes of consciousness

    NASA Astrophysics Data System (ADS)

    Rakovic, D.; Dugic, M.

    2005-05-01

    Quantum bases of consciousness are considered with psychosomatic implications of three front lines of psychosomatic medicine (hesychastic spirituality, holistic Eastern medicine, and symptomatic Western medicine), as well as cognitive implications of two modes of individual consciousness (quantum-coherent transitional and altered states, and classically reduced normal states) alongside with conditions of transformations of one mode into another (considering consciousness quantum-coherence/classical-decoherence acupuncture system/nervous system interaction, direct and reverse, with and without threshold limits, respectively) - by using theoretical methods of associative neural networks and quantum neural holography combined with quantum decoherence theory.

  2. The role of interactions along the flood process chain and implications for risk assessment

    NASA Astrophysics Data System (ADS)

    Vorogushyn, Sergiy; Apel, Heiko; Viet Nguyen, Dung; Guse, Björn; Kreibich, Heidi; Lüdtke, Stefan; Schröter, Kai; Merz, Bruno

    2017-04-01

    Floods with their manifold characteristics are shaped by various processes along the flood process chain - from triggering meteorological extremes through catchment and river network process down to impacts on societies. In flood risk systems numerous interactions and feedbacks along the process chain may occur which finally shape spatio-temporal flood patterns and determine the ultimate risk. In this talk, we review some important interactions in the atmosphere-catchment, river-dike-floodplain and vulnerability compartments of the flood risk system. We highlight the importance of spatial interactions for flood hazard and risk assessment. For instance, the role of spatial rainfall structure or wave superposition in river networks is elucidated with selected case studies. In conclusion, we show the limits of current methods in assessment of large-scale flooding and outline the approach to more comprehensive risk assessment based on our regional flood risk model (RFM) for Germany.

  3. New perspectives in tracing vector-borne interaction networks.

    PubMed

    Gómez-Díaz, Elena; Figuerola, Jordi

    2010-10-01

    Disentangling trophic interaction networks in vector-borne systems has important implications in epidemiological and evolutionary studies. Molecular methods based on bloodmeal typing in vectors have been increasingly used to identify hosts. Although most molecular approaches benefit from good specificity and sensitivity, their temporal resolution is limited by the often rapid digestion of blood, and mixed bloodmeals still remain a challenge for bloodmeal identification in multi-host vector systems. Stable isotope analyses represent a novel complementary tool that can overcome some of these problems. The utility of these methods using examples from different vector-borne systems are discussed and the extents to which they are complementary and versatile are highlighted. There are excellent opportunities for progress in the study of vector-borne transmission networks resulting from the integration of both molecular and stable isotope approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Randomizing Genome-Scale Metabolic Networks

    PubMed Central

    Samal, Areejit; Martin, Olivier C.

    2011-01-01

    Networks coming from protein-protein interactions, transcriptional regulation, signaling, or metabolism may appear to have “unusual” properties. To quantify this, it is appropriate to randomize the network and test the hypothesis that the network is not statistically different from expected in a motivated ensemble. However, when dealing with metabolic networks, the randomization of the network using edge exchange generates fictitious reactions that are biochemically meaningless. Here we provide several natural ensembles of randomized metabolic networks. A first constraint is to use valid biochemical reactions. Further constraints correspond to imposing appropriate functional constraints. We explain how to perform these randomizations with the help of Markov Chain Monte Carlo (MCMC) and show that they allow one to approach the properties of biological metabolic networks. The implication of the present work is that the observed global structural properties of real metabolic networks are likely to be the consequence of simple biochemical and functional constraints. PMID:21779409

  5. The brain's default network: origins and implications for the study of psychosis.

    PubMed

    Buckner, Randy L

    2013-09-01

    The brain's default network is a set of regions that is spontaneously active during passive moments. The network is also active during directed tasks that require participants to remember past events or imagine upcoming events. One hypothesis is that the network facilitates construction of mental models (simulations) that can be used adaptively in many contexts. Extensive research has considered whether disruption of the default network may contribute to disease. While an intriguing possibility, a specific challenge to this notion is the fact that it is difficult to accurately measure the default network in patients where confounds of head motion and compliance are prominent. Nonetheless, some intriguing recent findings suggest that dysfunctional interactions between front-oparietal control systems and the default network contribute to psychosis. Psychosis may be a network disturbance that manifests as disordered thought partly because it disrupts the fragile balance between the default network and competing brain systems.

  6. The brain's default network: origins and implications for the study of psychosis

    PubMed Central

    Buckner, Randy L.

    2013-01-01

    The brain's default network is a set of regions that is spontaneously active during passive moments. The network is also active during directed tasks that require participants to remember past events or imagine upcoming events. One hypothesis is that the network facilitates construction of mental models (simulations) that can be used adaptively in many contexts. Extensive research has considered whether disruption of the default network may contribute to disease. While an intriguing possibility, a specific challenge to this notion is the fact that it is difficult to accurately measure the default network in patients where confounds of head motion and compliance are prominent. Nonetheless, some intriguing recent findings suggest that dysfunctional interactions between front-oparietal control systems and the default network contribute to psychosis. Psychosis may be a network disturbance that manifests as disordered thought partly because it disrupts the fragile balance between the default network and competing brain systems. PMID:24174906

  7. Social Networks and Participation with Others for Youth with Learning, Attention and Autism Spectrum Disorders

    PubMed Central

    Kreider, Consuelo M.; Bendixen, Roxanna M.; Young, Mary Ellen; Prudencio, Stephanie M.; McCarty, Christopher; Mann, William C.

    2015-01-01

    Background Social participation involves activities and roles providing interactions with others, including those within their social networks. Purpose Characterize social networks and participation with others for 36 adolescents, ages 11-16 years, with (n = 19) and without (n = 17) learning disability, attention disorder or high-functioning autism. Methods Social networks were measured using methods of personal network analysis. The Children's Assessment of Participation and Enjoyment With Whom dimension scores was used to measure participation with others. Youth from the clinical group were interviewed regarding their experiences within their social networks. Findings Group differences were observed for six social network variables and in the proportion of overall, physical, recreational, social and informal activities engaged with family and/or friends. Qualitative findings explicated strategies used in building, shaping and maintaining their social networks. Implications Social network factors should be considered when seeking to understand social participation. PMID:26755040

  8. Ambivalent versus Problematic Social Ties: Implications for Psychological Health, Functional Health, and Interpersonal Coping

    PubMed Central

    Rook, Karen S.; Luong, Gloria; Sorkin, Dara H.; Newsom, Jason T.; Krause, Neal

    2013-01-01

    Older adults often seek to manage their social networks to foster positive interactions, but they nonetheless sometimes experience negative interactions that detract from their health and well-being. Negative interactions may occur with ambivalent social partners (i.e., partners involved in both positive and negative exchanges) or exclusively problematic social partners (i.e., partners involved negative exchanges only), but conflicting views exist in the literature regarding which type of social partner is likely to be more detrimental to older adults’ physical and emotional health. This study examined the implications of the two kinds of network members for physical and psychological health and interpersonal coping responses in a representative sample of 916 older adults. Within this elderly sample, older age was associated with fewer ambivalent kin ties and fewer exclusively problematic kin ties. Analyses revealed that ambivalent social ties were more strongly related to functional health limitations than were exclusively problematic social ties, whereas problematic ties were more consistently related to psychological health than were ambivalent ties. Furthermore, negative exchanges that occurred with exclusively problematic social ties, as compared to those that occurred with ambivalent social ties, were associated with more avoidant and fewer conciliatory coping responses, stronger and longer-lasting negative emotions, and lower perceived coping effectiveness. A comprehensive understanding of the significance of social network ties in older adults’ lives may benefit not only from attention to sources of social support but also from efforts to distinguish between different sources of conflict and disappointment. PMID:22775360

  9. Drivers' social-work relationships as antecedents of unsafe driving: A social network perspective.

    PubMed

    Arizon Peretz, Renana; Luria, Gil

    2017-09-01

    In order to reduce road accidents rates, studies around the globe have attempted to shed light on the antecedents for unsafe road behaviors. The aim of the current research is to contribute to this literature by offering a new organizational antecedent of driver's unsafe behavior: The driver's relationships with his or her peers, as reflected in three types of social networks: negative relationships network, friendship networks and advice networks (safety consulting). We hypothesized that a driver's position in negative relationship networks, friendship networks, and advice networks will predict unsafe driving. Additionally, we hypothesized the existence of mutual influences among the driver's positions in these various networks, and suggested that the driver's positions interact to predict unsafe driving behaviors. The research included 83 professional drivers from four different organizations. Driving behavior data were gathered via the IVDR (In-Vehicle Data Recorder) system, installed in every truck to measure and record the driver's behavior. The findings indicated that the drivers' position in the team networks predicts safe driving behavior: Centrality in negative relationship networks is positively related to unsafe driving, and centrality in friendship networks is negatively related to unsafe driving, while centrality in advice networks is not related to unsafe driving. Furthermore, we found an interaction effect between negative network centrality and centrality in friendship networks. The relation between negative networks and unsafe behavior is weaker when high levels of friendship network centrality exist. The implications will be presented in the Discussion section. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Antagonistic Phenomena in Network Dynamics

    NASA Astrophysics Data System (ADS)

    Motter, Adilson E.; Timme, Marc

    2018-03-01

    Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

  11. Dynamics of Disagreement: Large-Scale Temporal Network Analysis Reveals Negative Interactions in Online Collaboration

    NASA Astrophysics Data System (ADS)

    Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha

    2016-11-01

    Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes.

  12. Deconstructing the brain’s moral network: dissociable functionality between the temporoparietal junction and ventro-medial prefrontal cortex

    PubMed Central

    Mobbs, Dean; Dalgleish, Tim

    2014-01-01

    Research has illustrated that the brain regions implicated in moral cognition comprise a robust and broadly distributed network. However, understanding how these brain regions interact and give rise to the complex interplay of cognitive processes underpinning human moral cognition is still in its infancy. We used functional magnetic resonance imaging to examine patterns of activation for ‘difficult’ and ‘easy’ moral decisions relative to matched non-moral comparators. This revealed an activation pattern consistent with a relative functional double dissociation between the temporoparietal junction (TPJ) and ventro-medial prefrontal cortex (vmPFC). Difficult moral decisions activated bilateral TPJ and deactivated the vmPFC and OFC. In contrast, easy moral decisions revealed patterns of activation in the vmPFC and deactivation in bilateral TPJ and dorsolateral PFC. Together these results suggest that moral cognition is a dynamic process implemented by a distributed network that involves interacting, yet functionally dissociable networks. PMID:23322890

  13. Evolution of regulatory networks towards adaptability and stability in a changing environment

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  14. Emergent structure-function relations in emphysema and asthma.

    PubMed

    Winkler, Tilo; Suki, Béla

    2011-01-01

    Structure-function relationships in the respiratory system are often a result of the emergence of self-organized patterns or behaviors that are characteristic of certain respiratory diseases. Proper description of such self-organized behavior requires network models that include nonlinear interactions among different parts of the system. This review focuses on 2 models that exhibit self-organized behavior: a network model of the lung parenchyma during the progression of emphysema that is driven by mechanical force-induced breakdown, and an integrative model of bronchoconstriction in asthma that describes interactions among airways within the bronchial tree. Both models suggest that the transition from normal to pathologic states is a nonlinear process that includes a tipping point beyond which interactions among the system components are reinforced by positive feedback, further promoting the progression of pathologic changes. In emphysema, the progressive destruction of tissue is irreversible, while in asthma, it is possible to recover from a severe bronchoconstriction. These concepts may have implications for pulmonary medicine. Specifically, we suggest that structure-function relationships emerging from network behavior across multiple scales should be taken into account when the efficacy of novel treatments or drug therapy is evaluated. Multiscale, computational, network models will play a major role in this endeavor.

  15. A Dynamic Network Model to Explain the Development of Excellent Human Performance

    PubMed Central

    Den Hartigh, Ruud J. R.; Van Dijk, Marijn W. G.; Steenbeek, Henderien W.; Van Geert, Paul L. C.

    2016-01-01

    Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research. PMID:27148140

  16. Comparison of Modules of Wild Type and Mutant Huntingtin and TP53 Protein Interaction Networks: Implications in Biological Processes and Functions

    PubMed Central

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, Pradeep K.

    2013-01-01

    Disease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington's disease (HD) and mutations to TP53 which is associated with different cancers are studied as two example cases. We construct the PPIN of wild type and mutant proteins separately and identify the structural modules of each of the networks. The functional role of these modules are then assessed by Gene Ontology (GO) enrichment analysis for biological processes (BPs). We find that a large number of significantly enriched () GO terms in mutant PPIN were absent in the wild type PPIN indicating the gain of BPs due to mutation. Similarly some of the GO terms enriched in wild type PPIN cease to exist in the modules of mutant PPIN, representing the loss. GO terms common in modules of mutant and wild type networks indicate both loss and gain of BPs. We further assign relevant biological function(s) to each module by classifying the enriched GO terms associated with it. It turns out that most of these biological functions in HTT networks are already known to be altered in HD and those of TP53 networks are altered in cancers. We argue that gain of BPs, and the corresponding biological functions, are due to new interacting partners acquired by mutant proteins. The methodology we adopt here could be applied to genetic diseases where mutations alter the ability of the protein to interact with other proteins. PMID:23741403

  17. Lipopolysaccharide-induced early response genes in bovine peripheral blood mononuclear cells implicate GLG1/E-selectin as a key ligand–receptor interaction

    USDA-ARS?s Scientific Manuscript database

    This study uses a systems biology approach, integrating global gene expression information and knowledge of the regulatory events in cells to identify transcription networks controlling peripheral blood mononuclear cells’ (PBMCs) immune response to lipopolysaccharide (LPS) and to identify the molecu...

  18. Resting-State Functional Connectivity Underlying Costly Punishment: A Machine-Learning Approach.

    PubMed

    Feng, Chunliang; Zhu, Zhiyuan; Gu, Ruolei; Wu, Xia; Luo, Yue-Jia; Krueger, Frank

    2018-06-08

    A large number of studies have demonstrated costly punishment to unfair events across human societies. However, individuals exhibit a large heterogeneity in costly punishment decisions, whereas the neuropsychological substrates underlying the heterogeneity remain poorly understood. Here, we addressed this issue by applying a multivariate machine-learning approach to compare topological properties of resting-state brain networks as a potential neuromarker between individuals exhibiting different punishment propensities. A linear support vector machine classifier obtained an accuracy of 74.19% employing the features derived from resting-state brain networks to distinguish two groups of individuals with different punishment tendencies. Importantly, the most discriminative features that contributed to the classification were those regions frequently implicated in costly punishment decisions, including dorsal anterior cingulate cortex (dACC) and putamen (salience network), dorsomedial prefrontal cortex (dmPFC) and temporoparietal junction (mentalizing network), and lateral prefrontal cortex (central-executive network). These networks are previously implicated in encoding norm violation and intentions of others and integrating this information for punishment decisions. Our findings thus demonstrated that resting-state functional connectivity (RSFC) provides a promising neuromarker of social preferences, and bolster the assertion that human costly punishment behaviors emerge from interactions among multiple neural systems. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Odyssey of a community psychologist practitioner.

    PubMed

    Swift, Carolyn F

    2008-01-01

    Carolyn Swift has pioneered new professional roles in unconventional settings, including a Midwestern city hall and an interactive TV network. Her career-long interest in the prevention of rape began when she learned of the sexual abuse of adolescent males in the city's jail, and projected the long-term implications of such abuse for reducing its incidence in future generations. She explored the use of QUBE, an experimental interactive TV network, as a platform for teaching prosocial behavior to children-a preliminary step in violence prevention. Empowering women and men in relationships was a theme throughout her career. Her life path reflects her challenge as an early feminist-to combine a devotion to family with a passion to build a more just world.

  20. A network of networks.

    PubMed

    Iedema, Rick; Verma, Raj; Wutzke, Sonia; Lyons, Nigel; McCaughan, Brian

    2017-04-10

    Purpose To further our insight into the role of networks in health system reform, the purpose of this paper is to investigate how one agency, the NSW Agency for Clinical Innovation (ACI), and the multiple networks and enabling resources that it encompasses, govern, manage and extend the potential of networks for healthcare practice improvement. Design/methodology/approach This is a case study investigation which took place over ten months through the first author's participation in network activities and discussions with the agency's staff about their main objectives, challenges and achievements, and with selected services around the state of New South Wales to understand the agency's implementation and large system transformation activities. Findings The paper demonstrates that ACI accommodates multiple networks whose oversight structures, self-organisation and systems change approaches combined in dynamic ways, effectively yield a diversity of network governances. Further, ACI bears out a paradox of "centralised decentralisation", co-locating agents of innovation with networks of implementation and evaluation expertise. This arrangement strengthens and legitimates the role of the strategic hybrid - the healthcare professional in pursuit of change and improvement, and enhances their influence and impact on the wider system. Research limitations/implications While focussing the case study on one agency only, this study is unique as it highlights inter-network connections. Contributing to the literature on network governance, this paper identifies ACI as a "network of networks" through which resources, expectations and stakeholder dynamics are dynamically and flexibly mediated and enhanced. Practical implications The co-location of and dynamic interaction among clinical networks may create synergies among networks, nurture "strategic hybrids", and enhance the impact of network activities on health system reform. Social implications Network governance requires more from network members than participation in a single network, as it involves health service professionals and consumers in a multi-network dynamic. This dynamic requires deliberations and collaborations to be flexible, and it increasingly positions members as "strategic hybrids" - people who have moved on from singular taken-as-given stances and identities, towards hybrid positionings and flexible perspectives. Originality/value This paper is novel in that it identifies a critical feature of health service reform and large system transformation: network governance is empowered through the dynamic co-location of and collaboration among healthcare networks, particularly when complemented with "enabler" teams of people specialising in programme implementation and evaluation.

  1. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    PubMed Central

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches. PMID:22645556

  2. PACAP Interactions in the Mouse Brain: Implications for Behavioral and Other Disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acquaah-Mensah, George; Taylor, Ronald C.; Bhave, Sanjiv V.

    2012-01-10

    As an activator of adenylate cyclase, the neuropeptide Pituitary Adenylate Cyclase Activating Peptide (PACAP) impacts levels of cyclic AMP, a key second messenger available in brain cells. PACAP is involved in certain adult behaviors. To elucidate PACAP interactions, a compendium of microarrays representing mRNA expression in the adult mouse whole brain was pooled from the Phenogen database for analysis. A regulatory network was computed based on mutual information between gene pairs using gene expression data across the compendium. Clusters among genes directly linked to PACAP, and probable interactions between corresponding proteins were computed. Database 'experts' affirmed some of the inferredmore » relationships. The findings suggest ADCY7 is probably the adenylate cyclase isoform most relevant to PACAP's action. They also support intervening roles for kinases including GSK3B, PI 3-kinase, SGK3 and AMPK. Other high-confidence interactions are hypothesized for future testing. This new information has implications for certain behavioral and other disorders.« less

  3. Viral Disease Networks?

    NASA Astrophysics Data System (ADS)

    Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo

    2010-03-01

    Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.

  4. Ecological network analysis on global virtual water trade.

    PubMed

    Yang, Zhifeng; Mao, Xufeng; Zhao, Xu; Chen, Bin

    2012-02-07

    Global water interdependencies are likely to increase with growing virtual water trade. To address the issues of the indirect effects of water trade through the global economic circulation, we use ecological network analysis (ENA) to shed insight into the complicated system interactions. A global model of virtual water flow among agriculture and livestock production trade in 1995-1999 is also built as the basis for network analysis. Control analysis is used to identify the quantitative control or dependency relations. The utility analysis provides more indicators for describing the mutual relationship between two regions/countries by imitating the interactions in the ecosystem and distinguishes the beneficiary and the contributor of virtual water trade system. Results show control and utility relations can well depict the mutual relation in trade system, and direct observable relations differ from integral ones with indirect interactions considered. This paper offers a new way to depict the interrelations between trade components and can serve as a meaningful start as we continue to use ENA in providing more valuable implications for freshwater study on a global scale.

  5. Noncoding RNA:RNA Regulatory Networks in Cancer

    PubMed Central

    Chan, Jia Jia; Tay, Yvonne

    2018-01-01

    Noncoding RNAs (ncRNAs) constitute the majority of the human transcribed genome. This largest class of RNA transcripts plays diverse roles in a multitude of cellular processes, and has been implicated in many pathological conditions, especially cancer. The different subclasses of ncRNAs include microRNAs, a class of short ncRNAs; and a variety of long ncRNAs (lncRNAs), such as lincRNAs, antisense RNAs, pseudogenes, and circular RNAs. Many studies have demonstrated the involvement of these ncRNAs in competitive regulatory interactions, known as competing endogenous RNA (ceRNA) networks, whereby lncRNAs can act as microRNA decoys to modulate gene expression. These interactions are often interconnected, thus aberrant expression of any network component could derail the complex regulatory circuitry, culminating in cancer development and progression. Recent integrative analyses have provided evidence that new computational platforms and experimental approaches can be harnessed together to distinguish key ceRNA interactions in specific cancers, which could facilitate the identification of robust biomarkers and therapeutic targets, and hence, more effective cancer therapies and better patient outcome and survival. PMID:29702599

  6. Untangling the web: Mechanisms underlying ER network formation

    PubMed Central

    Goyal, Uma; Blackstone, Craig

    2013-01-01

    The ER is a continuous membrane system consisting of the nuclear envelope, flat sheets often studded with ribosomes, and a polygonal network of highly-curved tubules extending throughout the cell. Although protein and lipid biosynthesis, protein modification, vesicular transport, Ca2+dynamics, and protein quality control have been investigated in great detail, mechanisms that generate the distinctive architecture of the ER have been uncovered only recently. Several protein families including the reticulons and REEPs/DP1/Yop1p harbor hydrophobic hairpin domains that shape high-curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1p family of dynamin-related GTPases interact with the ER-shaping proteins and mediate the formation of three-way junctions responsible for the polygonal structure of the tubular ER network, with Lunapark proteins acting antagonistically. Additional classes of tubular ER proteins including some REEPs and the M1 spastin ATPase interact with the microtubule cytoskeleton. Flat ER sheets possess a different complement of proteins such as p180, CLIMP-63 and kinectin implicated in shaping, cisternal stacking and cytoskeletal interactions. The ER is also in constant motion, and numerous signaling pathways as well as interactions among cytoskeletal elements, the plasma membrane, and organelles cooperate to position and shape the ER dynamically. Finally, many proteins involved in shaping the ER network are mutated in the most common forms of hereditary spastic paraplegia, indicating a particular importance for proper ER morphology and distribution in large, highly-polarized cells such as neurons. PMID:23602970

  7. Ants at Plant Wounds: A Little-Known Trophic Interaction with Evolutionary Implications for Ant-Plant Interactions.

    PubMed

    Staab, Michael; Fornoff, Felix; Klein, Alexandra-Maria; Blüthgen, Nico

    2017-09-01

    Extrafloral nectaries (EFNs) allow plants to engage in mutualisms with ants, preventing herbivory in exchange for food. EFNs occur scattered throughout the plant phylogeny and likely evolved independent from herbivore-created wounds subsequently visited by ants collecting leaked sap. Records of wound-feeding ants are, however, anecdotal. By surveying 38,000 trees from 40 species, we conducted the first quantitative ecological study of this overlooked behavior. Ant-wound interactions were widespread (0.5% of tree individuals) and occurred on 23 tree species. Interaction networks were opportunistic, closely resembling ant-EFN networks. Fagaceae, a family lacking EFNs, was strongly overrepresented. For Fagaceae, ant occurrence at wounds correlated with species-level leaf damage, potentially indicating that wounds may attract mutualistic ants, which supports the hypothesis of ant-tended wounds as precursors of ant-EFN mutualisms. Given that herbivore wounds are common, wound sap as a steadily available food source might further help to explain the overwhelming abundance of ants in (sub)tropical forest canopies.

  8. Greed and Fear in Network Reciprocity: Implications for Cooperation among Organizations.

    PubMed

    Kitts, James A; Leal, Diego F; Felps, Will; Jones, Thomas M; Berman, Shawn L

    2016-01-01

    Extensive interdisciplinary literatures have built on the seminal spatial dilemmas model, which depicts the evolution of cooperation on regular lattices, with strategies propagating locally by relative fitness. In this model agents may cooperate with neighbors, paying an individual cost to enhance their collective welfare, or they may exploit cooperative neighbors and diminish collective welfare. Recent research has extended the model in numerous ways, incorporating behavioral noise, implementing other network topologies or adaptive networks, and employing alternative dynamics of replication. Although the underlying dilemma arises from two distinct dimensions-the gains for exploiting cooperative partners (Greed) and the cost of cooperating with exploitative partners (Fear)-most work following from the spatial dilemmas model has argued or assumed that the dilemma can be represented with a single parameter: This research has typically examined Greed or Fear in isolation, or a composite such as the K-index of Cooperation or the ratio of the benefit to cost of cooperation. We challenge this claim on theoretical grounds-showing that embedding interaction in networks generally leads Greed and Fear to have divergent, interactive, and highly nonlinear effects on cooperation at the macro level, even when individuals respond identically to Greed and Fear. Using computational experiments, we characterize both dynamic local behavior and long run outcomes across regions of this space. We also simulate interventions to investigate changes of Greed and Fear over time, showing how model behavior changes asymmetrically as boundaries in payoff space are crossed, leading some interventions to have irreversible effects on cooperation. We then replicate our experiments on inter-organizational network data derived from links through shared directors among 2,400 large US corporations, thus demonstrating our findings for Greed and Fear on a naturally-occurring network. In closing, we discuss implications of our main findings regarding Greed and Fear for the problem of cooperation on inter-organizational networks.

  9. Greed and Fear in Network Reciprocity: Implications for Cooperation among Organizations

    PubMed Central

    Kitts, James A.; Leal, Diego F.; Felps, Will; Jones, Thomas M.; Berman, Shawn L.

    2016-01-01

    Extensive interdisciplinary literatures have built on the seminal spatial dilemmas model, which depicts the evolution of cooperation on regular lattices, with strategies propagating locally by relative fitness. In this model agents may cooperate with neighbors, paying an individual cost to enhance their collective welfare, or they may exploit cooperative neighbors and diminish collective welfare. Recent research has extended the model in numerous ways, incorporating behavioral noise, implementing other network topologies or adaptive networks, and employing alternative dynamics of replication. Although the underlying dilemma arises from two distinct dimensions—the gains for exploiting cooperative partners (Greed) and the cost of cooperating with exploitative partners (Fear)–most work following from the spatial dilemmas model has argued or assumed that the dilemma can be represented with a single parameter: This research has typically examined Greed or Fear in isolation, or a composite such as the K-index of Cooperation or the ratio of the benefit to cost of cooperation. We challenge this claim on theoretical grounds—showing that embedding interaction in networks generally leads Greed and Fear to have divergent, interactive, and highly nonlinear effects on cooperation at the macro level, even when individuals respond identically to Greed and Fear. Using computational experiments, we characterize both dynamic local behavior and long run outcomes across regions of this space. We also simulate interventions to investigate changes of Greed and Fear over time, showing how model behavior changes asymmetrically as boundaries in payoff space are crossed, leading some interventions to have irreversible effects on cooperation. We then replicate our experiments on inter-organizational network data derived from links through shared directors among 2,400 large US corporations, thus demonstrating our findings for Greed and Fear on a naturally-occurring network. In closing, we discuss implications of our main findings regarding Greed and Fear for the problem of cooperation on inter-organizational networks. PMID:26863540

  10. Case Designs for Ill-Structured Problems: Analysis and Implications for Practice

    ERIC Educational Resources Information Center

    Dabbagh, Nada; Blijd, Cecily Williams

    2009-01-01

    This study is a third in a series of studies that examined students' information seeking and problem solving behaviors while interacting with one of two types of web-based representations of an ill-structured instructional design case: hierarchical (tree-like) and heterarchical (network-like). A Java program was used to track students' hypermedia…

  11. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    PubMed Central

    Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183

  12. Brain network dysregulation, emotion, and complaints after mild traumatic brain injury.

    PubMed

    van der Horn, Harm J; Liemburg, Edith J; Scheenen, Myrthe E; de Koning, Myrthe E; Marsman, Jan-Bernard C; Spikman, Jacoba M; van der Naalt, Joukje

    2016-04-01

    To assess the role of brain networks in emotion regulation and post-traumatic complaints in the sub-acute phase after non-complicated mild traumatic brain injury (mTBI). Fifty-four patients with mTBI (34 with and 20 without complaints) and 20 healthy controls (group-matched for age, sex, education, and handedness) were included. Resting-state fMRI was performed at four weeks post-injury. Static and dynamic functional connectivity were studied within and between the default mode, executive (frontoparietal and bilateral frontal network), and salience network. The hospital anxiety and depression scale (HADS) was used to measure anxiety (HADS-A) and depression (HADS-D). Regarding within-network functional connectivity, none of the selected brain networks were different between groups. Regarding between-network interactions, patients with complaints exhibited lower functional connectivity between the bilateral frontal and salience network compared to patients without complaints. In the total patient group, higher HADS-D scores were related to lower functional connectivity between the bilateral frontal network and both the right frontoparietal and salience network, and to higher connectivity between the right frontoparietal and salience network. Furthermore, whereas higher HADS-D scores were associated with lower connectivity within the parietal midline areas of the bilateral frontal network, higher HADS-A scores were related to lower connectivity within medial prefrontal areas of the bilateral frontal network. Functional interactions of the executive and salience networks were related to emotion regulation and complaints after mTBI, with a key role for the bilateral frontal network. These findings may have implications for future studies on the effect of psychological interventions. © 2016 Wiley Periodicals, Inc.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caly, Leon; Kassouf, Vicki T.; Moseley, Gregory W.

    Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72Lmore » mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications. - Highlights: • HIV-1 Vpr utilizes the microtubule network to traffic towards the nucleus. • Mechanism relies on interaction between Vpr and dynein light chain protein DYNLT1. • Long-term non-progressor derived mutation (F72L) impairs this interaction. • Key residues in the vicinity of F72 contribute to interaction with DYNLT1.« less

  14. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis

    PubMed Central

    Fan, Yannan; Siklenka, Keith; Arora, Simran K.; Ribeiro, Paula; Kimmins, Sarah; Xia, Jianguo

    2016-01-01

    MicroRNAs (miRNAs) can regulate nearly all biological processes and their dysregulation is implicated in various complex diseases and pathological conditions. Recent years have seen a growing number of functional studies of miRNAs using high-throughput experimental technologies, which have produced a large amount of high-quality data regarding miRNA target genes and their interactions with small molecules, long non-coding RNAs, epigenetic modifiers, disease associations, etc. These rich sets of information have enabled the creation of comprehensive networks linking miRNAs with various biologically important entities to shed light on their collective functions and regulatory mechanisms. Here, we introduce miRNet, an easy-to-use web-based tool that offers statistical, visual and network-based approaches to help researchers understand miRNAs functions and regulatory mechanisms. The key features of miRNet include: (i) a comprehensive knowledge base integrating high-quality miRNA-target interaction data from 11 databases; (ii) support for differential expression analysis of data from microarray, RNA-seq and quantitative PCR; (iii) implementation of a flexible interface for data filtering, refinement and customization during network creation; (iv) a powerful fully featured network visualization system coupled with enrichment analysis. miRNet offers a comprehensive tool suite to enable statistical analysis and functional interpretation of various data generated from current miRNA studies. miRNet is freely available at http://www.mirnet.ca. PMID:27105848

  15. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    PubMed Central

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  16. Multiple interactions amongst floral homeotic MADS box proteins.

    PubMed Central

    Davies, B; Egea-Cortines, M; de Andrade Silva, E; Saedler, H; Sommer, H

    1996-01-01

    Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity. Images PMID:8861961

  17. Networks’ Characteristics Matter for Systems Biology

    PubMed Central

    Rider, Andrew K.; Milenković, Tijana; Siwo, Geoffrey H.; Pinapati, Richard S.; Emrich, Scott J.; Ferdig, Michael T.; Chawla, Nitesh V.

    2015-01-01

    A fundamental goal of systems biology is to create models that describe relationships between biological components. Networks are an increasingly popular approach to this problem. However, a scientist interested in modeling biological (e.g., gene expression) data as a network is quickly confounded by the fundamental problem: how to construct the network? It is fairly easy to construct a network, but is it the network for the problem being considered? This is an important problem with three fundamental issues: How to weight edges in the network in order to capture actual biological interactions? What is the effect of the type of biological experiment used to collect the data from which the network is constructed? How to prune the weighted edges (or what cut-off to apply)? Differences in the construction of networks could lead to different biological interpretations. Indeed, we find that there are statistically significant dissimilarities in the functional content and topology between gene co-expression networks constructed using different edge weighting methods, data types, and edge cut-offs. We show that different types of known interactions, such as those found through Affinity Capture-Luminescence or Synthetic Lethality experiments, appear in significantly varying amounts in networks constructed in different ways. Hence, we demonstrate that different biological questions may be answered by the different networks. Consequently, we posit that the approach taken to build a network can be matched to biological questions to get targeted answers. More study is required to understand the implications of different network inference approaches and to draw reliable conclusions from networks used in the field of systems biology. PMID:26500772

  18. “Theory of Food” as a Neurocognitive Adaptation

    PubMed Central

    Allen, John S.

    2011-01-01

    Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and socio-cultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a “theory of food” (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. PMID:22262561

  19. Understanding cancer complexome using networks, spectral graph theory and multilayer framework

    NASA Astrophysics Data System (ADS)

    Rai, Aparna; Pradhan, Priodyuti; Nagraj, Jyothi; Lohitesh, K.; Chowdhury, Rajdeep; Jalan, Sarika

    2017-02-01

    Cancer complexome comprises a heterogeneous and multifactorial milieu that varies in cytology, physiology, signaling mechanisms and response to therapy. The combined framework of network theory and spectral graph theory along with the multilayer analysis provides a comprehensive approach to analyze the proteomic data of seven different cancers, namely, breast, oral, ovarian, cervical, lung, colon and prostate. Our analysis demonstrates that the protein-protein interaction networks of the normal and the cancerous tissues associated with the seven cancers have overall similar structural and spectral properties. However, few of these properties implicate unsystematic changes from the normal to the disease networks depicting difference in the interactions and highlighting changes in the complexity of different cancers. Importantly, analysis of common proteins of all the cancer networks reveals few proteins namely the sensors, which not only occupy significant position in all the layers but also have direct involvement in causing cancer. The prediction and analysis of miRNAs targeting these sensor proteins hint towards the possible role of these proteins in tumorigenesis. This novel approach helps in understanding cancer at the fundamental level and provides a clue to develop promising and nascent concept of single drug therapy for multiple diseases as well as personalized medicine.

  20. "Theory of food" as a neurocognitive adaptation.

    PubMed

    Allen, John S

    2012-01-01

    Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and sociocultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a "theory of food" (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. Copyright © 2012 Wiley Periodicals, Inc.

  1. Network analysis of a regional fishery: Implications for management of natural resources, and recruitment and retention of anglers

    USGS Publications Warehouse

    Martin, Dustin R.; Shizuka, Daizaburo; Chizinski, Christopher J.; Pope, Kevin L.

    2017-01-01

    Angler groups and water-body types interact to create a complex social-ecological system. Network analysis could inform detailed mechanistic models on, and provide managers better information about, basic patterns of fishing activity. Differences in behavior and reservoir selection among angler groups in a regional fishery, the Salt Valley fishery in southeastern Nebraska, USA, were assessed using a combination of cluster and network analyses. The four angler groups assessed ranged from less active, unskilled anglers (group One) to highly active, very skilled anglers (group Four). Reservoir use patterns and the resulting network communities of these four angler groups differed; the number of reservoir communities for these groups ranged from two to three and appeared to be driven by reservoir location (group One), reservoir size and its associated attributes (groups Two and Four), or an interaction between reservoir size and location (group Three). Network analysis is a useful tool to describe differences in participation among angler groups within a regional fishery, and provides new insights about possible recruitment of anglers. For example, group One anglers fished reservoirs closer to home and had a greater probability of dropping out if local reservoir access were restricted.

  2. Understanding cancer complexome using networks, spectral graph theory and multilayer framework.

    PubMed

    Rai, Aparna; Pradhan, Priodyuti; Nagraj, Jyothi; Lohitesh, K; Chowdhury, Rajdeep; Jalan, Sarika

    2017-02-03

    Cancer complexome comprises a heterogeneous and multifactorial milieu that varies in cytology, physiology, signaling mechanisms and response to therapy. The combined framework of network theory and spectral graph theory along with the multilayer analysis provides a comprehensive approach to analyze the proteomic data of seven different cancers, namely, breast, oral, ovarian, cervical, lung, colon and prostate. Our analysis demonstrates that the protein-protein interaction networks of the normal and the cancerous tissues associated with the seven cancers have overall similar structural and spectral properties. However, few of these properties implicate unsystematic changes from the normal to the disease networks depicting difference in the interactions and highlighting changes in the complexity of different cancers. Importantly, analysis of common proteins of all the cancer networks reveals few proteins namely the sensors, which not only occupy significant position in all the layers but also have direct involvement in causing cancer. The prediction and analysis of miRNAs targeting these sensor proteins hint towards the possible role of these proteins in tumorigenesis. This novel approach helps in understanding cancer at the fundamental level and provides a clue to develop promising and nascent concept of single drug therapy for multiple diseases as well as personalized medicine.

  3. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics

    PubMed Central

    Rimbach, Rebecca; Bisanzio, Donal; Galvis, Nelson; Link, Andrés; Di Fiore, Anthony; Gillespie, Thomas R.

    2015-01-01

    Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission–fusion subgrouping. We used daily subgroup composition records to create a ‘proximity’ network, and built a separate ‘contact’ network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual's age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact. PMID:25870396

  4. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics.

    PubMed

    Rimbach, Rebecca; Bisanzio, Donal; Galvis, Nelson; Link, Andrés; Di Fiore, Anthony; Gillespie, Thomas R

    2015-05-26

    Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission-fusion subgrouping. We used daily subgroup composition records to create a 'proximity' network, and built a separate 'contact' network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual's age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Phase Transitions in Living Neural Networks

    NASA Astrophysics Data System (ADS)

    Williams-Garcia, Rashid Vladimir

    Our nervous systems are composed of intricate webs of interconnected neurons interacting in complex ways. These complex interactions result in a wide range of collective behaviors with implications for features of brain function, e.g., information processing. Under certain conditions, such interactions can drive neural network dynamics towards critical phase transitions, where power-law scaling is conjectured to allow optimal behavior. Recent experimental evidence is consistent with this idea and it seems plausible that healthy neural networks would tend towards optimality. This hypothesis, however, is based on two problematic assumptions, which I describe and for which I present alternatives in this thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a sensory stimulus, and so living neural networks may be incapable of achieving "critical" optimality. I develop a framework known as quasicriticality, in which a relative optimality can be achieved depending on the strength of the environmental influence. Second, the power-law scaling supporting this hypothesis is based on statistical analysis of cascades of activity known as neuronal avalanches, which conflate causal and non-causal activity, thus confounding important dynamical information. In this thesis, I present a new method to unveil causal links, known as causal webs, between neuronal activations, thus allowing for experimental tests of the quasicriticality hypothesis and other practical applications.

  6. Network-Based Methods for Identifying Key Active Proteins in the Extracellular Electron Transfer Process in Shewanella oneidensis MR-1.

    PubMed

    Ding, Dewu; Sun, Xiao

    2018-01-16

    Shewanella oneidensis MR-1 can transfer electrons from the intracellular environment to the extracellular space of the cells to reduce the extracellular insoluble electron acceptors (Extracellular Electron Transfer, EET). Benefiting from this EET capability, Shewanella has been widely used in different areas, such as energy production, wastewater treatment, and bioremediation. Genome-wide proteomics data was used to determine the active proteins involved in activating the EET process. We identified 1012 proteins with decreased expression and 811 proteins with increased expression when the EET process changed from inactivation to activation. We then networked these proteins to construct the active protein networks, and identified the top 20 key active proteins by network centralization analysis, including metabolism- and energy-related proteins, signal and transcriptional regulatory proteins, translation-related proteins, and the EET-related proteins. We also constructed the integrated protein interaction and transcriptional regulatory networks for the active proteins, then found three exclusive active network motifs involved in activating the EET process-Bi-feedforward Loop, Regulatory Cascade with a Feedback, and Feedback with a Protein-Protein Interaction (PPI)-and identified the active proteins involved in these motifs. Both enrichment analysis and comparative analysis to the whole-genome data implicated the multiheme c -type cytochromes and multiple signal processing proteins involved in the process. Furthermore, the interactions of these motif-guided active proteins and the involved functional modules were discussed. Collectively, by using network-based methods, this work reported a proteome-wide search for the key active proteins that potentially activate the EET process.

  7. Least-cost transportation networks predict spatial interaction of invasion vectors.

    PubMed

    Drake, D Andrew R; Mandrak, Nicholas E

    2010-12-01

    Human-mediated dispersal among aquatic ecosystems often results in biotic transfer between drainage basins. Such activities may circumvent biogeographic factors, with considerable ecological, evolutionary, and economic implications. However, the efficacy of predictions concerning community changes following inter-basin movements are limited, often because the dispersal mechanism is poorly understood (e.g., quantified only partially). To date, spatial-interaction models that predict the movement of humans as vectors of biotic transfer have not incorporated patterns of human movement through transportation networks. As a necessary first step to determine the role of anglers as invasion vectors across a land-lake ecosystem, we investigate their movement potential within Ontario, Canada. To determine possible model improvements resulting from inclusion of network travel, spatial-interaction models were constructed using standard Euclidean (e.g., straight-line) distance measures and also with distances derived from least-cost routing of human transportation networks. Model comparisons determined that least-cost routing both provided the most parsimonious model and also excelled at forecasting spatial interactions, with a proportion of 0.477 total movement deviance explained. The distribution of movements was characterized by many relatively short to medium travel distances (median = 292.6 km) with fewer lengthier distances (75th percentile = 484.6 km, 95th percentile = 775.2 km); however, even the shortest movements were sufficient to overcome drainage-basin boundaries. Ranking of variables in order of their contribution within the most parsimonious model determined that distance traveled, origin outflow, lake attractiveness, and sportfish richness significantly influence movement patterns. Model improvements associated with least-cost routing of human transportation networks imply that patterns of human-mediated invasion are fundamentally linked to the spatial configuration and relative impedance of human transportation networks, placing increased importance on understanding their contribution to the invasion process.

  8. Interactions between the PDZ domains of Bazooka (Par-3) and phosphatidic acid: in vitro characterization and role in epithelial development.

    PubMed

    Yu, Cao Guo; Harris, Tony J C

    2012-09-01

    Bazooka (Par-3) is a conserved polarity regulator that organizes molecular networks in a wide range of cell types. In epithelia, it functions as a plasma membrane landmark to organize the apical domain. Bazooka is a scaffold protein that interacts with proteins through its three PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains and other regions. In addition, Bazooka has been shown to interact with phosphoinositides. Here we show that the Bazooka PDZ domains interact with the negatively charged phospholipid phosphatidic acid immobilized on solid substrates or in liposomes. The interaction requires multiple PDZ domains, and conserved patches of positively charged amino acid residues appear to mediate the interaction. Increasing or decreasing levels of diacylglycerol kinase or phospholipase D-enzymes that produce phosphatidic acid-reveal a role for phosphatidic acid in Bazooka embryonic epithelial activity but not its localization. Mutating residues implicated in phosphatidic acid binding revealed a possible role in Bazooka localization and function. These data implicate a closer connection between Bazooka and membrane lipids than previously recognized. Bazooka polarity landmarks may be conglomerates of proteins and plasma membrane lipids that modify each other's activities for an integrated effect on cell polarity.

  9. Human Computer Interaction (HCI) and Internet Residency: Implications for Both Personal Life and Teaching/Learning

    ERIC Educational Resources Information Center

    Crearie, Linda

    2016-01-01

    Technological advances over the last decade have had a significant impact on the teaching and learning experiences students encounter today. We now take technologies such as Web 2.0, mobile devices, cloud computing, podcasts, social networking, super-fast broadband, and connectedness for granted. So what about the student use of these types of…

  10. The Ethical and Practical Implications of Systems Architecture on Identity in Networked Learning: A Constructionist Perspective

    ERIC Educational Resources Information Center

    Koole, Marguerite L.; Parchoma, Gale

    2012-01-01

    Through relational dialogue, learners shape their identities by sharing information about the world and how they see themselves in it. As learners interact, they receive feedback from both the environment and other learners which, in turn, helps them assess and adjust their self-presentations. Although learners retain choice and personal agency,…

  11. Actor Diversity and Interactions in the Development of Banana Hybrid Varieties in Uganda: Implications for Technology Uptake

    ERIC Educational Resources Information Center

    Sanya, Losira Nasirumbi; Sseguya, Haroon; Kyazze, Florence Birungi; Baguma, Yona; Kibwika, Paul

    2018-01-01

    Purpose: We examine the nature of networks through which new hybrid banana varieties (HBVs) in Uganda are developed, and how different actors engage in the technology development process. Design/methodology/approach: We collected the data through 20 key informant interviews and 5 focus group discussions with actors involved in the process. We…

  12. Process Challenges and Learning-Based Interactions in Stage 2 of Doctoral Education: Implications from Two Applied Social Science Fields

    ERIC Educational Resources Information Center

    Baker, Vicki L.; Pifer, Meghan J.; Flemion, Blair

    2013-01-01

    This article reports on an exploratory study that examined the transition to independence in Stage 2 of the doctoral student experience in two applied social science fields. We rely on an interdisciplinary framework that integrates developmental networks and sociocultural perspectives of learning to better understand the connection between the…

  13. The Alignment of the Informal and Formal Organizational Supports for Reform: Implications for Improving Teaching in Schools

    ERIC Educational Resources Information Center

    Penuel, William R.; Riel, Margaret; Joshi, Aasha; Pearlman, Leslie; Kim, Chong Min; Frank, Kenneth A.

    2010-01-01

    Previous qualitative studies show that when the formal organization of a school and patterns of informal interaction are aligned, faculty and leaders in a school are better able to coordinate instructional change. This article combines social network analysis with interview data to analyze how well the formal and informal aspects of a school's…

  14. The Complex Nature of Family Support across the Life Span: Implications for Psychological Well-Being

    ERIC Educational Resources Information Center

    Fuller-Iglesias, Heather R.; Webster, Noah J.; Antonucci, Toni C.

    2015-01-01

    This study examines the complex role of family networks in shaping adult psychological well-being over time. We examine the unique and interactive longitudinal influences of family structure (i.e., composition and size) and negative family relationship quality on psychological well-being among young (ages 18-34), middle-aged (ages 35-49), and…

  15. A review of online social networking profiles by adolescents: implications for future research and intervention.

    PubMed

    Williams, Amanda L; Merten, Michael J

    2008-01-01

    This study explored content posted and interactions taking place on adolescent online social networking profiles. Although "blogging" continues to soar in popularity, with over half of teenagers online participating in some form, little research has comprehensively explored blog communication within the context of adolescent development. Content was qualitatively coded from 100 randomly selected profiles authored by adolescents between the ages of 16 and 18. Rich thematic elements were identified including family and social issues, risk behaviors, disclosure of personally identifiable information, and frequent peer interaction. Results indicate adolescent blogs frequently contain appropriate images, positive comments about parents and peers, athletics, a variety of risk behaviors, and sexual and profane language. In addition, school type was examined (public versus private, religious) as a potential factor in understanding the differences in content posted by adolescents; however, no significant differences were found. Implications for parental monitoring and intervention are discussed as well as direction for future research. Adolescents' online profiles contain a wealth of intimate, candid, and publicly available information on a wide range of social issues pertinent to adolescence that contribute to the understanding of adolescent development and well-being.

  16. An experimental analysis of granivory in a desert ecosystem: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.H.

    1987-03-01

    Controlled, replicated experiments are revealing the network of interactions that determine structure, dynamics, and energy transfer in a desert community that is functionally interconnected by the consumption of seeds (granivory). This community includes seed-eating rodents, ants, and birds, seed-producing annual and perennial plants, and other kinds of organisms that interact with these. The experiments entail removal of important species or functional groups of granivores or plants and supplementation of seed resources. The results demonstrate a large number of direct and indirect interactions that have important effects on the abundance of species and functional groups, the structure of the community, andmore » the dynamics of energy flow. The results suggest that networks of interaction are structured with sufficient overlap in resource requirements and interconnections through indirect pathways that community- and ecosystem-level processes, such as energy flow, are relatively insensitive to major perturbations in the abundance of particular species or functional groups. This preliminary finding has important implications for understanding the response of ecosystems to natural and human-caused perturbations, for the management of agricultural and other human-modified ecosystems, and for the design of perturbation-resistant networks for acquisition and distribution of human resources such energy and information. 44 refs.« less

  17. Implications of network structure on public health collaboratives.

    PubMed

    Retrum, Jessica H; Chapman, Carrie L; Varda, Danielle M

    2013-10-01

    Interorganizational collaboration is an essential function of public health agencies. These partnerships form social networks that involve diverse types of partners and varying levels of interaction. Such collaborations are widely accepted and encouraged, yet very little comparative research exists on how public health partnerships develop and evolve, specifically in terms of how subsequent network structures are linked to outcomes. A systems science approach, that is, one that considers the interdependencies and nested features of networks, provides the appropriate methods to examine the complex nature of these networks. Applying Mays and Scutchfields's categorization of "structural signatures" (breadth, density, and centralization), this research examines how network structure influences the outcomes of public health collaboratives. Secondary data from the Program to Analyze, Record, and Track Networks to Enhance Relationships (www.partnertool.net) data set are analyzed. This data set consists of dyadic (N = 12,355), organizational (N = 2,486), and whole network (N = 99) data from public health collaborations around the United States. Network data are used to calculate structural signatures and weighted least squares regression is used to examine how network structures can predict selected intermediary outcomes (resource contributions, overall value and trust rankings, and outcomes) in public health collaboratives. Our findings suggest that network structure may have an influence on collaborative-related outcomes. The structural signature that had the most significant relationship to outcomes was density, with higher density indicating more positive outcomes. Also significant was the finding that more breadth creates new challenges such as difficulty in reaching consensus and creating ties with other members. However, assumptions that these structural components lead to improved outcomes for public health collaboratives may be slightly premature. Implications of these findings for research and practice are discussed.

  18. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles

    PubMed Central

    Darbro, Benjamin W.; Mahajan, Vinit B.; Gakhar, Lokesh; Skeie, Jessica M.; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J.; Dobyns, William B.; Kessler, John A.; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J. Robert; Aldinger, Kimerbly A.; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M.; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J.; Bassuk, Alexander G.

    2013-01-01

    We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles (ADDWOC) and detected a mutation in the extracellular matrix protein encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1 binding partner. Structural modeling the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the extracellular matrix in the pathogenesis of Dandy-Walker spectrum disorders. PMID:23674478

  19. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model

    PubMed Central

    2011-01-01

    Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs), microRNAs (miRNAs) and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs). Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL). In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT), an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http://mironton.uni.lu which will be updated on a regular basis. PMID:21375730

  20. Workplace injuries, safety climate and behaviors: application of an artificial neural network.

    PubMed

    Abubakar, A Mohammed; Karadal, Himmet; Bayighomog, Steven W; Merdan, Ethem

    2018-05-09

    This article proposes and tests a model for the interaction effect of the organizational safety climate and behaviors on workplace injuries. Using artificial neural network and survey data from 306 metal casting industry employees in central Anatolia, we found that an organizational safety climate mitigates workplace injuries, and safety behaviors enforce the strength of the negative impact of the safety climate on workplace injuries. The results suggest a complex relationship between the organizational safety climate, safety behavior and workplace injuries. Theoretical and practical implications are discussed in light of decreasing workplace injuries in the Anatolian metal casting industry.

  1. Narcissism and social networking Web sites.

    PubMed

    Buffardi, Laura E; Campbell, W Keith

    2008-10-01

    The present research examined how narcissism is manifested on a social networking Web site (i.e., Facebook.com). Narcissistic personality self-reports were collected from social networking Web page owners. Then their Web pages were coded for both objective and subjective content features. Finally, strangers viewed the Web pages and rated their impression of the owner on agentic traits, communal traits, and narcissism. Narcissism predicted (a) higher levels of social activity in the online community and (b) more self-promoting content in several aspects of the social networking Web pages. Strangers who viewed the Web pages judged more narcissistic Web page owners to be more narcissistic. Finally, mediational analyses revealed several Web page content features that were influential in raters' narcissistic impressions of the owners, including quantity of social interaction, main photo self-promotion, and main photo attractiveness. Implications of the expression of narcissism in social networking communities are discussed.

  2. An opinion-driven behavioral dynamics model for addictive behaviors

    NASA Astrophysics Data System (ADS)

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.

    2015-04-01

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.

  3. Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies

    PubMed Central

    Bueno, Anibal; Morilla, Ian; Diez, Diego; Moya-Garcia, Aurelio A.; Lozano, José; Ranea, Juan A.G.

    2016-01-01

    RAS proteins are the founding members of the RAS superfamily of GTPases. They are involved in key signaling pathways regulating essential cellular functions such as cell growth and differentiation. As a result, their deregulation by inactivating mutations often results in aberrant cell proliferation and cancer. With the exception of the relatively well-known KRAS, HRAS and NRAS proteins, little is known about how the interactions of the other RAS human paralogs affect cancer evolution and response to treatment. In this study we performed a comprehensive analysis of the relationship between the phylogeny of RAS proteins and their location in the protein interaction network. This analysis was integrated with the structural analysis of conserved positions in available 3D structures of RAS complexes. Our results show that many RAS proteins with divergent sequences are found close together in the human interactome. We found specific conserved amino acid positions in this group that map to the binding sites of RAS with many of their signaling effectors, suggesting that these pairs could share interacting partners. These results underscore the potential relevance of cross-talking in the RAS signaling network, which should be taken into account when considering the inhibitory activity of drugs targeting specific RAS oncoproteins. This study broadens our understanding of the human RAS signaling network and stresses the importance of considering its potential cross-talk in future therapies. PMID:27713118

  4. The amyloid interactome: Exploring protein aggregation

    PubMed Central

    Mastrokalou, Chara V.; Hamodrakas, Stavros J.

    2017-01-01

    Protein-protein interactions are the quintessence of physiological activities, but also participate in pathological conditions. Amyloid formation, an abnormal protein-protein interaction process, is a widespread phenomenon in divergent proteins and peptides, resulting in a variety of aggregation disorders. The complexity of the mechanisms underlying amyloid formation/amyloidogenicity is a matter of great scientific interest, since their revelation will provide important insight on principles governing protein misfolding, self-assembly and aggregation. The implication of more than one protein in the progression of different aggregation disorders, together with the cited synergistic occurrence between amyloidogenic proteins, highlights the necessity for a more universal approach, during the study of these proteins. In an attempt to address this pivotal need we constructed and analyzed the human amyloid interactome, a protein-protein interaction network of amyloidogenic proteins and their experimentally verified interactors. This network assembled known interconnections between well-characterized amyloidogenic proteins and proteins related to amyloid fibril formation. The consecutive extended computational analysis revealed significant topological characteristics and unraveled the functional roles of all constituent elements. This study introduces a detailed protein map of amyloidogenicity that will aid immensely towards separate intervention strategies, specifically targeting sub-networks of significant nodes, in an attempt to design possible novel therapeutics for aggregation disorders. PMID:28249044

  5. Social Networks Across Common Cancer Types: The Evidence, Gaps, and Areas of Potential Impact.

    PubMed

    Rice, L J; Halbert, C H

    2017-01-01

    Although the association between social context and health has been demonstrated previously, much less is known about network interactions by gender, race/ethnicity, and sociodemographic characteristics. Given the variability in cancer outcomes among groups, research on these relationships may have important implications for addressing cancer health disparities. We examined the literature on social networks and cancer across the cancer continuum among adults. Relevant studies (N=16) were identified using two common databases: PubMed and Google Scholar. Most studies used a prospective cohort study design (n=9), included women only (n=11), and were located in the United States (n=14). Seventy-five percent of the studies reviewed used a validated scale or validated items to measure social networks (n=12). Only one study examined social network differences by race, 57.1% (n=8) focused on breast cancer alone, 14.3% (n=2) explored colorectal cancer or multiple cancers simultaneously, and 7.1% (n=1) only prostate cancer. More than half of the studies included multiple ethnicities in the sample, while one study included only low-income subjects. Despite findings of associations between social networks and cancer survival, risk, and screening, none of the studies utilized social networks as a mechanism for reducing health disparities; however, such an approach has been utilized for infectious disease control. Social networks and the support provided within these networks have important implications for health behaviors and ultimately cancer disparities. This review serves as the first step toward dialog on social networks as a missing component in the social determinants of cancer disparities literature that could move the needle upstream to target adverse cancer outcomes among vulnerable populations. © 2017 Elsevier Inc. All rights reserved.

  6. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  7. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.

    PubMed

    Rezza, Amélie; Wang, Zichen; Sennett, Rachel; Qiao, Wenlian; Wang, Dongmei; Heitman, Nicholas; Mok, Ka Wai; Clavel, Carlos; Yi, Rui; Zandstra, Peter; Ma'ayan, Avi; Rendl, Michael

    2016-03-29

    The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Interactions between Visual Attention and Episodic Retrieval: Dissociable Contributions of Parietal Regions during Gist-Based False Recognition

    PubMed Central

    Guerin, Scott A.; Robbins, Clifford A.; Gilmore, Adrian W.; Schacter, Daniel L.

    2012-01-01

    SUMMARY The interaction between episodic retrieval and visual attention is relatively unexplored. Given that systems mediating attention and episodic memory appear to be segregated, and perhaps even in competition, it is unclear how visual attention is recruited during episodic retrieval. We investigated the recruitment of visual attention during the suppression of gist-based false recognition, the tendency to falsely recognize items that are similar to previously encountered items. Recruitment of visual attention was associated with activity in the dorsal attention network. The inferior parietal lobule, often implicated in episodic retrieval, tracked veridical retrieval of perceptual detail and showed reduced activity during the engagement of visual attention, consistent with a competitive relationship with the dorsal attention network. These findings suggest that the contribution of the parietal cortex to interactions between visual attention and episodic retrieval entails distinct systems that contribute to different components of the task while also suppressing each other. PMID:22998879

  9. Cingulate, Frontal and Parietal Cortical Dysfunction in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Bush, George

    2011-01-01

    Functional and structural neuroimaging have identified abnormalities of the brain that are likely to contribute to the neuropathophysiology of attention-deficit/hyperactivity disorder (ADHD). In particular, hypofunction of the brain regions comprising the cingulo-frontal-parietal (CFP) cognitive-attention network have been consistently observed across studies. These are major components of neural systems that are relevant to ADHD, including cognitive/attention networks, motor systems and reward/feedback-based processing systems. Moreover, these areas interact with other brain circuits that have been implicated in ADHD, such as the “default mode” resting state network. ADHD imaging data related to CFP network dysfunction will be selectively highlighted here to help facilitate its integration with the other information presented in this special issue. Together, these reviews will help shed light on the neurobiology of ADHD. PMID:21489409

  10. Generic Information Can Retrieve Known Biological Associations: Implications for Biomedical Knowledge Discovery

    PubMed Central

    van Haagen, Herman H. H. B. M.; 't Hoen, Peter A. C.; Mons, Barend; Schultes, Erik A.

    2013-01-01

    Motivation Weighted semantic networks built from text-mined literature can be used to retrieve known protein-protein or gene-disease associations, and have been shown to anticipate associations years before they are explicitly stated in the literature. Our text-mining system recognizes over 640,000 biomedical concepts: some are specific (i.e., names of genes or proteins) others generic (e.g., ‘Homo sapiens’). Generic concepts may play important roles in automated information retrieval, extraction, and inference but may also result in concept overload and confound retrieval and reasoning with low-relevance or even spurious links. Here, we attempted to optimize the retrieval performance for protein-protein interactions (PPI) by filtering generic concepts (node filtering) or links to generic concepts (edge filtering) from a weighted semantic network. First, we defined metrics based on network properties that quantify the specificity of concepts. Then using these metrics, we systematically filtered generic information from the network while monitoring retrieval performance of known protein-protein interactions. We also systematically filtered specific information from the network (inverse filtering), and assessed the retrieval performance of networks composed of generic information alone. Results Filtering generic or specific information induced a two-phase response in retrieval performance: initially the effects of filtering were minimal but beyond a critical threshold network performance suddenly drops. Contrary to expectations, networks composed exclusively of generic information demonstrated retrieval performance comparable to unfiltered networks that also contain specific concepts. Furthermore, an analysis using individual generic concepts demonstrated that they can effectively support the retrieval of known protein-protein interactions. For instance the concept “binding” is indicative for PPI retrieval and the concept “mutation abnormality” is indicative for gene-disease associations. Conclusion Generic concepts are important for information retrieval and cannot be removed from semantic networks without negative impact on retrieval performance. PMID:24260124

  11. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  12. The Social Neuroscience of Interpersonal Emotions.

    PubMed

    Müller-Pinzler, Laura; Krach, Sören; Krämer, Ulrike M; Paulus, Frieder M

    In our daily lives, we constantly engage in reciprocal interactions with other individuals and represent ourselves in the context of our surrounding social world. Within social interactions, humans often experience interpersonal emotions such as embarrassment, shame, guilt, or pride. How interpersonal emotions are processed on the neural systems level is of major interest for social neuroscience research. While the configuration of laboratory settings in general is constraining for emotion research, recent neuroimaging investigations came up with new approaches to implement socially interactive and immersive scenarios for the real-life investigation of interpersonal emotions. These studies could show that among other brain regions the so-called mentalizing network, which is typically involved when we represent and make sense of others' states of mind, is associated with interpersonal emotions. The anterior insula/anterior cingulate cortex network at the same time processes one's own bodily arousal during such interpersonal emotional experiences. Current research aimed to explore how we make sense of others' emotional states during social interactions and investigates the modulating factors of our emotional experiences during social interactions. Understanding how interpersonal emotions are processed on the neural systems level may yield significant implications for neuropsychiatric disorders that affect social behavior such as social anxiety disorders or autism.

  13. Binding of small molecules at interface of protein-protein complex - A newer approach to rational drug design.

    PubMed

    Gurung, A B; Bhattacharjee, A; Ajmal Ali, M; Al-Hemaid, F; Lee, Joongku

    2017-02-01

    Protein-protein interaction is a vital process which drives many important physiological processes in the cell and has also been implicated in several diseases. Though the protein-protein interaction network is quite complex but understanding its interacting partners using both in silico as well as molecular biology techniques can provide better insights for targeting such interactions. Targeting protein-protein interaction with small molecules is a challenging task because of druggability issues. Nevertheless, several studies on the kinetics as well as thermodynamic properties of protein-protein interactions have immensely contributed toward better understanding of the affinity of these complexes. But, more recent studies on hot spots and interface residues have opened up new avenues in the drug discovery process. This approach has been used in the design of hot spot based modulators targeting protein-protein interaction with the objective of normalizing such interactions.

  14. Abnormal neural activities of directional brain networks in patients with long-term bilateral hearing loss.

    PubMed

    Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu

    2017-10-13

    The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.

  15. Redistribution of neural phase coherence reflects establishment of feedforward map in speech motor adaptation

    PubMed Central

    Sengupta, Ranit

    2015-01-01

    Despite recent progress in our understanding of sensorimotor integration in speech learning, a comprehensive framework to investigate its neural basis is lacking at behaviorally relevant timescales. Structural and functional imaging studies in humans have helped us identify brain networks that support speech but fail to capture the precise spatiotemporal coordination within the networks that takes place during speech learning. Here we use neuronal oscillations to investigate interactions within speech motor networks in a paradigm of speech motor adaptation under altered feedback with continuous recording of EEG in which subjects adapted to the real-time auditory perturbation of a target vowel sound. As subjects adapted to the task, concurrent changes were observed in the theta-gamma phase coherence during speech planning at several distinct scalp regions that is consistent with the establishment of a feedforward map. In particular, there was an increase in coherence over the central region and a decrease over the fronto-temporal regions, revealing a redistribution of coherence over an interacting network of brain regions that could be a general feature of error-based motor learning in general. Our findings have implications for understanding the neural basis of speech motor learning and could elucidate how transient breakdown of neuronal communication within speech networks relates to speech disorders. PMID:25632078

  16. Contagion of Cooperation in Static and Fluid Social Networks.

    PubMed

    Jordan, Jillian J; Rand, David G; Arbesman, Samuel; Fowler, James H; Christakis, Nicholas A

    2013-01-01

    Cooperation is essential for successful human societies. Thus, understanding how cooperative and selfish behaviors spread from person to person is a topic of theoretical and practical importance. Previous laboratory experiments provide clear evidence of social contagion in the domain of cooperation, both in fixed networks and in randomly shuffled networks, but leave open the possibility of asymmetries in the spread of cooperative and selfish behaviors. Additionally, many real human interaction structures are dynamic: we often have control over whom we interact with. Dynamic networks may differ importantly in the goals and strategic considerations they promote, and thus the question of how cooperative and selfish behaviors spread in dynamic networks remains open. Here, we address these questions with data from a social dilemma laboratory experiment. We measure the contagion of both cooperative and selfish behavior over time across three different network structures that vary in the extent to which they afford individuals control over their network ties. We find that in relatively fixed networks, both cooperative and selfish behaviors are contagious. In contrast, in more dynamic networks, selfish behavior is contagious, but cooperative behavior is not: subjects are fairly likely to switch to cooperation regardless of the behavior of their neighbors. We hypothesize that this insensitivity to the behavior of neighbors in dynamic networks is the result of subjects' desire to attract new cooperative partners: even if many of one's current neighbors are defectors, it may still make sense to switch to cooperation. We further hypothesize that selfishness remains contagious in dynamic networks because of the well-documented willingness of cooperators to retaliate against selfishness, even when doing so is costly. These results shed light on the contagion of cooperative behavior in fixed and fluid networks, and have implications for influence-based interventions aiming at increasing cooperative behavior.

  17. TPPII, MYBBP1A and CDK2 form a protein-protein interaction network.

    PubMed

    Nahálková, Jarmila; Tomkinson, Birgitta

    2014-12-15

    Tripeptidyl-peptidase II (TPPII) is an aminopeptidase with suggested regulatory effects on cell cycle, apoptosis and senescence. A protein-protein interaction study revealed that TPPII physically interacts with the tumor suppressor MYBBP1A and the cell cycle regulator protein CDK2. Mutual protein-protein interaction was detected between MYBBP1A and CDK2 as well. In situ Proximity Ligation Assay (PLA) using HEK293 cells overexpressing TPPII forming highly enzymatically active oligomeric complexes showed that the cytoplasmic interaction frequency of TPPII with MYBBP1A increased with the protein expression of TPPII and using serum-free cell growth conditions. A specific reversible inhibitor of TPPII, butabindide, suppressed the cytoplasmic interactions of TPPII and MYBBP1A both in control HEK293 and the cells overexpressing murine TPPII. The interaction of MYBBP1A with CDK2 was confirmed by in situ PLA in two different mammalian cell lines. Functional link between TPPII and MYBBP1A has been verified by gene expression study during anoikis, where overexpression of TPP II decreased mRNA expression level of MYBBP1A at the cell detachment conditions. All three interacting proteins TPPII, MYBBP1A and CDK2 have been previously implicated in the research for development of tumor-suppressing agents. This is the first report presenting mutual protein-protein interaction network of these proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Signal or noise: brain network interactions underlying the experience and training of mindfulness.

    PubMed

    Mooneyham, Benjamin W; Mrazek, Michael D; Mrazek, Alissa J; Schooler, Jonathan W

    2016-04-01

    A broad set of brain regions has been associated with the experience and training of mindfulness. Many of these regions lie within key intrinsic brain networks, including the executive control, salience, and default networks. In this paper, we review the existing literature on the cognitive neuroscience of mindfulness through the lens of network science. We describe the characteristics of the intrinsic brain networks implicated in mindfulness and summarize the relevant findings pertaining to changes in functional connectivity (FC) within and between these networks. Convergence across these findings suggests that mindfulness may be associated with increased FC between two regions within the default network: the posterior cingulate cortex and the ventromedial prefrontal cortex. Additionally, extensive meditation experience may be associated with increased FC between the insula and the dorsolateral prefrontal cortex. However, little consensus has emerged within the existing literature owing to the diversity of operational definitions of mindfulness, neuroimaging methods, and network characterizations. We describe several challenges to develop a coherent cognitive neuroscience of mindfulness and to provide detailed recommendations for future research. © 2016 New York Academy of Sciences.

  19. Implications of the Dynamics of the New Networked Economy for E-Business Start-Ups: The Case of Philips' Access Point.

    ERIC Educational Resources Information Center

    Tovstiga, George; Fantner, Ernest J.

    2000-01-01

    Examines implications of the networked economy for e-commerce business start-ups. Revisits the notion of "value" and "value creation" in a network context. Examines "value" relative to technological innovation. Looks at implications of the network environment for the organization and transformation of the enterprise's…

  20. Interactions between the PDZ domains of Bazooka (Par-3) and phosphatidic acid: in vitro characterization and role in epithelial development

    PubMed Central

    Yu, Cao Guo; Harris, Tony J. C.

    2012-01-01

    Bazooka (Par-3) is a conserved polarity regulator that organizes molecular networks in a wide range of cell types. In epithelia, it functions as a plasma membrane landmark to organize the apical domain. Bazooka is a scaffold protein that interacts with proteins through its three PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains and other regions. In addition, Bazooka has been shown to interact with phosphoinositides. Here we show that the Bazooka PDZ domains interact with the negatively charged phospholipid phosphatidic acid immobilized on solid substrates or in liposomes. The interaction requires multiple PDZ domains, and conserved patches of positively charged amino acid residues appear to mediate the interaction. Increasing or decreasing levels of diacylglycerol kinase or phospholipase D—enzymes that produce phosphatidic acid—reveal a role for phosphatidic acid in Bazooka embryonic epithelial activity but not its localization. Mutating residues implicated in phosphatidic acid binding revealed a possible role in Bazooka localization and function. These data implicate a closer connection between Bazooka and membrane lipids than previously recognized. Bazooka polarity landmarks may be conglomerates of proteins and plasma membrane lipids that modify each other's activities for an integrated effect on cell polarity. PMID:22833561

  1. Intranasal oxytocin modulates neural functional connectivity during human social interaction.

    PubMed

    Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim

    2018-02-10

    Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.

  2. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles.

    PubMed

    Darbro, Benjamin W; Mahajan, Vinit B; Gakhar, Lokesh; Skeie, Jessica M; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J; Dobyns, William B; Kessler, John A; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J Robert; Aldinger, Kimerbly A; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J; Bassuk, Alexander G

    2013-08-01

    We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles and detected a mutation in the extracellular matrix (ECM) protein-encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1-binding partner. Structural modeling of the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the ECM in the pathogenesis of Dandy-Walker spectrum disorders. © 2013 WILEY PERIODICALS, INC.

  3. The brain's default network: anatomy, function, and relevance to disease.

    PubMed

    Buckner, Randy L; Andrews-Hanna, Jessica R; Schacter, Daniel L

    2008-03-01

    Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.

  4. Contrasting Views of Complexity and Their Implications For Network-Centric Infrastructures

    DTIC Science & Technology

    2010-07-04

    problem) can be undecidable. While two gravitationally interacting bodies yield simple orbits, Poincare showed that the motion of even three...statistical me- chanics are valid only when the [billiard] balls are distributed, in their positions and motions , in a helter-skelter, i.e., a disorga- nized...Rube Goldberg, whose famous cartoons depict “ comically involved complicated invention[s], laboriously contrived to perform a simple operation” [68

  5. In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs

    PubMed Central

    Röck, Ruth; Bachmann, Verena; Bhang, Hyo-eun C; Malleshaiah, Mohan; Raffeiner, Philipp; Mayrhofer, Johanna E; Tschaikner, Philipp M; Bister, Klaus; Aanstad, Pia; Pomper, Martin G; Michnick, Stephen W; Stefan, Eduard

    2015-01-01

    Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems. PMID:26099953

  6. Social Networking Sites: An Adjunctive Treatment Modality for Psychological Problems

    PubMed Central

    Menon, Indu S.; Sharma, Manoj Kumar; Chandra, Prabha S.; Thennarasu, K.

    2014-01-01

    Background: Social networking is seen as a way to enhance social support and feeling of well-being. The present work explores the potentials of social networking sites as an adjunctive treatment modality for initiating treatment contact as well as for managing psychological problems. Materials and Methods: Interview schedule, Facebook intensity questionnaire were administered on 28 subjects with a combination of 18 males and 10 females. They were taken from the in-patient and out-patient psychiatry setting of the hospital. Results: Facebook was the most popular sites and used to seek emotional support on the basis of the frequent updates of emotional content that users put in their profile; reconciliations, escape from the problems or to manage the loneliness; getting information about illness and its treatment and interaction with experts and also manifested as problematic use. Conclusions: It has implications for developing social networking based adjunctive treatment modality for psychological problems. PMID:25035548

  7. Social networking sites: an adjunctive treatment modality for psychological problems.

    PubMed

    Menon, Indu S; Sharma, Manoj Kumar; Chandra, Prabha S; Thennarasu, K

    2014-07-01

    Social networking is seen as a way to enhance social support and feeling of well-being. The present work explores the potentials of social networking sites as an adjunctive treatment modality for initiating treatment contact as well as for managing psychological problems. Interview schedule, Facebook intensity questionnaire were administered on 28 subjects with a combination of 18 males and 10 females. They were taken from the in-patient and out-patient psychiatry setting of the hospital. Facebook was the most popular sites and used to seek emotional support on the basis of the frequent updates of emotional content that users put in their profile; reconciliations, escape from the problems or to manage the loneliness; getting information about illness and its treatment and interaction with experts and also manifested as problematic use. It has implications for developing social networking based adjunctive treatment modality for psychological problems.

  8. Role of Hydrophobic Clusters and Long-Range Contact Networks in the Folding of (α/β)8 Barrel Proteins

    PubMed Central

    Selvaraj, S.; Gromiha, M. Michael

    2003-01-01

    Analysis on the three dimensional structures of (α/β)8 barrel proteins provides ample light to understand the factors that are responsible for directing and maintaining their common fold. In this work, the hydrophobically enriched clusters are identified in 92% of the considered (α/β)8 barrel proteins. The residue segments with hydrophobic clusters have high thermal stability. Further, these clusters are formed and stabilized through long-range interactions. Specifically, a network of long-range contacts connects adjacent β-strands of the (α/β)8 barrel domain and the hydrophobic clusters. The implications of hydrophobic clusters and long-range networks in providing a feasible common mechanism for the folding of (α/β)8 barrel proteins are proposed. PMID:12609894

  9. Clustering of worry appraisals among college students.

    PubMed

    Schwab, Nicholas G; Cullum, Jerry C; Harton, Helen C

    2016-01-01

    The present study investigated the potential clustering of worry appraisals within college social networks. Participants living in campus residence buildings responded to online surveys across the course of several months. Worry appraisals were measured 10 weeks into the fall semester and again approximately 6 months later. Analysis of sociometric data suggests that the majority of participants' social interactions occurred within their respective residence building floors, indicating that proximity strongly influenced the development of social network ties and sources of social influence. Further, significant clustering of worry appraisals occurred across time, and more importantly, within residence building floors. The present findings compliment previous work suggesting that several physical and psychological states appear to spread and cluster within social networks. Implications for the study of emotional appraisals and future research are discussed.

  10. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    PubMed

    Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe

    2015-01-01

    Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and the implications for landscape planning in agricultural areas.

  11. Spatial Heterogeneity Regulates Plant-Pollinator Networks across Multiple Landscape Scales

    PubMed Central

    Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe

    2015-01-01

    Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and the implications for landscape planning in agricultural areas. PMID:25856293

  12. Promoting cooperation by preventing exploitation: The role of network structure

    NASA Astrophysics Data System (ADS)

    Utkovski, Zoran; Stojkoski, Viktor; Basnarkov, Lasko; Kocarev, Ljupco

    2017-08-01

    A growing body of empirical evidence indicates that social and cooperative behavior can be affected by cognitive and neurological factors, suggesting the existence of state-based decision-making mechanisms that may have emerged by evolution. Motivated by these observations, we propose a simple mechanism of anonymous network interactions identified as a form of generalized reciprocity—a concept organized around the premise "help anyone if helped by someone'—and study its dynamics on random graphs. In the presence of such a mechanism, the evolution of cooperation is related to the dynamics of the levels of investments (i.e., probabilities of cooperation) of the individual nodes engaging in interactions. We demonstrate that the propensity for cooperation is determined by a network centrality measure here referred to as neighborhood importance index and discuss relevant implications to natural and artificial systems. To address the robustness of the state-based strategies to an invasion of defectors, we additionally provide an analysis which redefines the results for the case when a fraction of the nodes behave as unconditional defectors.

  13. EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

    PubMed Central

    Courellis, Hristos; Mullen, Tim; Poizner, Howard; Cauwenberghs, Gert; Iversen, John R.

    2017-01-01

    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI. PMID:28566997

  14. Protein Interaction Networks Reveal Novel Autism Risk Genes within GWAS Statistical Noise

    PubMed Central

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M.

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical “noise” that warrant further analysis for causal variants. PMID:25409314

  15. Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.

    PubMed

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical "noise" that warrant further analysis for causal variants.

  16. A social network analysis of social cohesion in a constructed pride: implications for ex situ reintroduction of the African lion (Panthera leo).

    PubMed

    Abell, Jackie; Kirzinger, Morgan W B; Gordon, Yvonne; Kirk, Jacqui; Kokeŝ, Rae; Lynas, Kirsty; Mandinyenya, Bob; Youldon, David

    2013-01-01

    Animal conservation practices include the grouping of captive related and unrelated individuals to form a social structure which is characteristic of that species in the wild. In response to the rapid decline of wild African lion (Panthera leo) populations, an array of conservational strategies have been adopted. Ex situ reintroduction of the African lion requires the construction of socially cohesive pride structures prior to wild release. This pilot study adopted a social network theory approach to quantitatively assess a captive pride's social structure and the relationships between individuals within them. Group composition (who is present in a group) and social interaction data (social licking, greeting, play) was observed and recorded to assess social cohesion within a released semi-wild pride. UCINET and SOCPROG software was utilised to represent and analyse these social networks. Results indicate that the pride is socially cohesive, does not exhibit random associations, and the role of socially influential keystone individuals is important for maintaining social bondedness within a lion pride. These results are potentially informative for the structure of lion prides, in captivity and in the wild, and could have implications for captive and wild-founder reintroductions.

  17. An opinion-driven behavioral dynamics model for addictive behaviors

    DOE PAGES

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; ...

    2015-04-08

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual’s behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Additionally, individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters providemore » targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. Furthermore, this has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.« less

  18. Actor-network theory: a tool to support ethical analysis of commercial genetic testing.

    PubMed

    Williams-Jones, Bryn; Graham, Janice E

    2003-12-01

    Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.

  19. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network

    PubMed Central

    Chasman, Deborah; Ho, Yi-Hsuan; Berry, David B; Nemec, Corey M; MacGilvray, Matthew E; Hose, James; Merrill, Anna E; Lee, M Violet; Will, Jessica L; Coon, Joshua J; Ansari, Aseem Z; Craven, Mark; Gasch, Audrey P

    2014-01-01

    Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. PMID:25411400

  20. Implications of Network Topology on Stability

    PubMed Central

    Kinkhabwala, Ali

    2015-01-01

    In analogy to chemical reaction networks, I demonstrate the utility of expressing the governing equations of an arbitrary dynamical system (interaction network) as sums of real functions (generalized reactions) multiplied by real scalars (generalized stoichiometries) for analysis of its stability. The reaction stoichiometries and first derivatives define the network’s “influence topology”, a signed directed bipartite graph. Parameter reduction of the influence topology permits simplified expression of the principal minors (sums of products of non-overlapping bipartite cycles) and Hurwitz determinants (sums of products of the principal minors or the bipartite cycles directly) for assessing the network’s steady state stability. Visualization of the Hurwitz determinants over the reduced parameters defines the network’s stability phase space, delimiting the range of its dynamics (specifically, the possible numbers of unstable roots at each steady state solution). Any further explicit algebraic specification of the network will project onto this stability phase space. Stability analysis via this hierarchical approach is demonstrated on classical networks from multiple fields. PMID:25826219

  1. Molecular mechanisms governing differential robustness of development and environmental responses in plants

    PubMed Central

    Lachowiec, Jennifer; Queitsch, Christine; Kliebenstein, Daniel J.

    2016-01-01

    Background Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. Scope and Conclusions This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied. PMID:26473020

  2. Can multilayer brain networks be a real step forward?. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    NASA Astrophysics Data System (ADS)

    Buldú, Javier M.; Papo, David

    2018-03-01

    Over the last two decades Network Science has become one of the most active fields in science, whose growth has been supported by four fundamental pillars: statistical physics, nonlinear dynamics, graph theory and Big Data [1]. Initially concerned with analyzing the structure of networks, Network Science rapidly turned its attention, focused on the implications of network topology, on the dynamics of and processes unfolding on networked systems, greatly improving our understanding of diffusion, synchronization, epidemics and information transmission in complex systems [2]. The network approach typically considered complex systems as evolving in a vacuum; however real networks are generally not isolated systems, but are in continuous and evolving contact with other networks, with which they interact in multiple qualitative different and typically time-varying ways. These systems can then be represented as a collection of subsystems with connectivity layers, which are simply collapsed when considering the traditional monolayer representation. Surprisingly, such an "unpacking" of layers has proven to bear profound consequences on the structural and dynamical properties of networks, leading for instance to counter-intuitive synchronization phenomena, where maximization synchronization is achieved through strategies opposite of those maximizing synchronization in isolated networks [3].

  3. The Implications of Pervasive Computing on Network Design

    NASA Astrophysics Data System (ADS)

    Briscoe, R.

    Mark Weiser's late-1980s vision of an age of calm technology with pervasive computing disappearing into the fabric of the world [1] has been tempered by an industry-driven vision with more of a feel of conspicuous consumption. In the modified version, everyone carries around consumer electronics to provide natural, seamless interactions both with other people and with the information world, particularly for eCommerce, but still through a pervasive computing fabric.

  4. Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran.

    NASA Astrophysics Data System (ADS)

    Collignon, Marine; Yamato, Philippe; Castelltort, Sébastien; Kaus, Boris

    2016-04-01

    Mountain building and landscape evolution are controlled by the interactions between river dynamics and tectonic forces. Such interactions have been largely studied but a quantitative evaluation of tectonic/geomorphic feedbacks remains required for understanding sediments routing within orogens and fold-and-thrust belts. Here, we employ numerical simulations to assess the conditions of uplift and river incision necessary to deflect an antecedent drainage network during the growth of one or several folds. We propose that a partitioning of the river network into internal (endorheic) and longitudinal drainage arises as a result of lithological differences within the deforming crustal sedimentary cover. We show with examples from the Zagros Fold Belt (ZFB) that drainage patterns can be linked to the incision ratio R between successive lithological layers, corresponding to the ratio between their relative erodibilities or incision coefficients. Transverse drainage networks develop for uplift rates smaller than 0.8 mm.yr-1 and -10 < R < 10. Intermediate drainage network are obtained for uplift rates up to 2 mm.yr-1 and incision ratios of 20. Parallel drainage networks and formation of sedimentary basins occur for large values of incision ratio (R >20) and uplift rates between 1 and 2 mm.yr-1. These results have implications for predicting the distribution of sediment depocenters in fold-and-thrust belts, which can be of direct economic interest for hydrocarbon exploration.

  5. Reconfiguration of Intrinsic Functional Coupling Patterns Following Circumscribed Network Lesions.

    PubMed

    Eldaief, Mark C; McMains, Stephanie; Hutchison, R Matthew; Halko, Mark A; Pascual-Leone, Alvaro

    2017-05-01

    Communication between cortical regions is necessary for optimal cognitive processing. Functional relationships between cortical regions can be inferred through measurements of temporal synchrony in spontaneous activity patterns. These relationships can be further elaborated by surveying effects of cortical lesions upon inter-regional connectivity. Lesions to cortical hubs and heteromodal association regions are expected to induce distributed connectivity changes and higher-order cognitive deficits, yet their functional consequences remain relatively unexplored. Here, we used resting-state fMRI to investigate intrinsic functional connectivity (FC) and graph theoretical metrics in 12 patients with circumscribed lesions of the medial prefrontal cortex (mPFC) portion of the Default Network (DN), and compared these metrics with those observed in healthy matched comparison participants and a sample of 1139 healthy individuals. Despite significant mPFC destruction, patients did not demonstrate weakened intrinsic FC among undamaged DN nodes. Instead, network-specific changes were manifested as weaker negative correlations between the DN and attentional and somatomotor networks. These findings conflict with the DN being a homogenous system functionally anchored at mPFC. Rather, they implicate a role for mPFC in mediating cross-network functional interactions. More broadly, our data suggest that lesions to association cortical hubs might induce clinical deficits by disrupting communication between interacting large-scale systems. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. A “Spike-Based” Grammar Underlies Directional Modification in Network Connectivity: Effect on Bursting Activity and Implications for Bio-Hybrids Systems

    PubMed Central

    Zullo, Letizia; Chiappalone, Michela; Martinoia, Sergio; Benfenati, Fabio

    2012-01-01

    Developed biological systems are endowed with the ability of interacting with the environment; they sense the external state and react to it by changing their own internal state. Many attempts have been made to build ‘hybrids’ with the ability of perceiving, modifying and reacting to external modifications. Investigation of the rules that govern network changes in a hybrid system may lead to finding effective methods for ‘programming’ the neural tissue toward a desired task. Here we show a new perspective in the use of cortical neuronal cultures from embryonic mouse as a working platform to study targeted synaptic modifications. Differently from the common timing-based methods applied in bio-hybrids robotics, here we evaluated the importance of endogenous spike timing in the information processing. We characterized the influence of a spike-patterned stimulus in determining changes in neuronal synchronization (connectivity strength and precision) of the evoked spiking and bursting activity in the network. We show that tailoring the stimulation pattern upon a neuronal spike timing induces the network to respond stronger and more precisely to the stimulation. Interestingly, the induced modifications are conveyed more consistently in the burst timing. This increase in strength and precision may be a key in the interaction of the network with the external world and may be used to induce directional changes in bio-hybrid systems. PMID:23145147

  7. Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model.

    PubMed

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van den Berg, Helma; Conner, Mark; van der Maas, Han L J

    2016-01-01

    This article introduces the Causal Attitude Network (CAN) model, which conceptualizes attitudes as networks consisting of evaluative reactions and interactions between these reactions. Relevant evaluative reactions include beliefs, feelings, and behaviors toward the attitude object. Interactions between these reactions arise through direct causal influences (e.g., the belief that snakes are dangerous causes fear of snakes) and mechanisms that support evaluative consistency between related contents of evaluative reactions (e.g., people tend to align their belief that snakes are useful with their belief that snakes help maintain ecological balance). In the CAN model, the structure of attitude networks conforms to a small-world structure: evaluative reactions that are similar to each other form tight clusters, which are connected by a sparser set of "shortcuts" between them. We argue that the CAN model provides a realistic formalized measurement model of attitudes and therefore fills a crucial gap in the attitude literature. Furthermore, the CAN model provides testable predictions for the structure of attitudes and how they develop, remain stable, and change over time. Attitude strength is conceptualized in terms of the connectivity of attitude networks and we show that this provides a parsimonious account of the differences between strong and weak attitudes. We discuss the CAN model in relation to possible extensions, implication for the assessment of attitudes, and possibilities for further study. (c) 2015 APA, all rights reserved).

  8. Smart social adaptation prevents catastrophic ecological regime shifts in networks of myopic harvesters

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan; Lucht, Wolfgang; Wiedermann, Marc; Heitzig, Jobst; Kurths, Jürgen

    2015-04-01

    In the anthropocene, the rise of global social and economic networks with ever increasing connectivity and speed of interactions, e.g., the internet or global financial markets, is a key challenge for sustainable development. The spread of opinions, values or technologies on these networks, in conjunction with the coevolution of the network structures themselves, underlies nexuses of current concern such as anthropogenic climate change, biodiversity loss or global land use change. To isolate and quantitatively study the effects and implications of network dynamics for sustainable development, we propose an agent-based model of information flow on adaptive networks between myopic harvesters that exploit private renewable resources. In this conceptual model of a network of socio-ecological systems, information on management practices flows between agents via boundedly rational imitation depending on the state of the resource stocks involved in an interaction. Agents can also adapt the structure of their social network locally by preferentially connecting to culturally similar agents with identical management practices and, at the same time, disconnecting from culturally dissimilar agents. Investigating in detail the statistical mechanics of this model, we find that an increasing rate of information flow through faster imitation dynamics or growing density of network connectivity leads to a marked increase in the likelihood of environmental resource collapse. However, we show that an optimal rate of social network adaptation can mitigate this negative effect without loss of social cohesion through network fragmentation. Our results highlight that seemingly immaterial network dynamics of spreading opinions or values can be of large relevance for the sustainable management of socio-ecological systems and suggest smartly conservative network adaptation as a strategy for mitigating environmental collapse. Hence, facing the great acceleration, these network dynamics should be more routinely incorporated in standard models of economic development or integrated assessment models used for evaluating anthropogenic climate change.

  9. Role of Interfacial Water Molecules in Proline-rich Ligand Recognition by the Src Homology 3 Domain of Abl*

    PubMed Central

    Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M. Teresa; Martinez, Jose C.; Luque, Irene

    2010-01-01

    The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design. PMID:19906645

  10. Role of interfacial water molecules in proline-rich ligand recognition by the Src homology 3 domain of Abl.

    PubMed

    Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M Teresa; Martinez, Jose C; Luque, Irene

    2010-01-22

    The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design.

  11. Do online gossipers promote brands?

    PubMed

    Okazaki, Shintaro; Rubio, Natalia; Campo, Sara

    2013-02-01

    Online gossip has been recognized as small talk on social networking sites (SNSs) that influences consumer behavior, but little attention has been paid to its role. This study makes three theoretical predictions: (a) propensity to gossip online leads to greater information value, entertainment value, and friendship value; (b) upon exposure to a high-involvement product, online gossipers are more willing to spread such information through electronic word-of-mouth (eWOM) in search of prestige or fame as a knowledge expert; and (c) this tendency will be more pronounced when they are connected with strong ties (rather than weak ties) and belong to a large network (rather than a small network). An experimental survey was conducted with a scenario method. In total, 818 general consumers participated in the survey. A multivariate analysis of variance (ANOVA) provides empirical support for prediction (1). With regard to predictions (2) and (3), a series of three-way and two-way between-subjective ANOVAs were performed. When a high-involvement product is promoted, gossipers, rather than nongossipers, are more willing to participate in eWOM on an SNS. Furthermore, a significant interaction effect indicates that online gossipers' willingness to particiapte in eWOM would be more pronounced if they belonged to a large network rather than a small network. However, when a low-involvement product is promoted, no interaction effect is found between online gossip and network size. In closing, theoretical and managerial implications are discussed, while important limitations are recognized.

  12. Do Online Gossipers Promote Brands?

    PubMed Central

    Rubio, Natalia; Campo, Sara

    2013-01-01

    Abstract Online gossip has been recognized as small talk on social networking sites (SNSs) that influences consumer behavior, but little attention has been paid to its role. This study makes three theoretical predictions: (a) propensity to gossip online leads to greater information value, entertainment value, and friendship value; (b) upon exposure to a high-involvement product, online gossipers are more willing to spread such information through electronic word-of-mouth (eWOM) in search of prestige or fame as a knowledge expert; and (c) this tendency will be more pronounced when they are connected with strong ties (rather than weak ties) and belong to a large network (rather than a small network). An experimental survey was conducted with a scenario method. In total, 818 general consumers participated in the survey. A multivariate analysis of variance (ANOVA) provides empirical support for prediction (1). With regard to predictions (2) and (3), a series of three-way and two-way between-subjective ANOVAs were performed. When a high-involvement product is promoted, gossipers, rather than nongossipers, are more willing to participate in eWOM on an SNS. Furthermore, a significant interaction effect indicates that online gossipers' willingness to particiapte in eWOM would be more pronounced if they belonged to a large network rather than a small network. However, when a low-involvement product is promoted, no interaction effect is found between online gossip and network size. In closing, theoretical and managerial implications are discussed, while important limitations are recognized. PMID:23276259

  13. Stochastic analysis of epidemics on adaptive time varying networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2013-06-01

    Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

  14. Estimation of effective connectivity using multi-layer perceptron artificial neural network.

    PubMed

    Talebi, Nasibeh; Nasrabadi, Ali Motie; Mohammad-Rezazadeh, Iman

    2018-02-01

    Studies on interactions between brain regions estimate effective connectivity, (usually) based on the causality inferences made on the basis of temporal precedence. In this study, the causal relationship is modeled by a multi-layer perceptron feed-forward artificial neural network, because of the ANN's ability to generate appropriate input-output mapping and to learn from training examples without the need of detailed knowledge of the underlying system. At any time instant, the past samples of data are placed in the network input, and the subsequent values are predicted at its output. To estimate the strength of interactions, the measure of " Causality coefficient " is defined based on the network structure, the connecting weights and the parameters of hidden layer activation function. Simulation analysis demonstrates that the method, called "CREANN" (Causal Relationship Estimation by Artificial Neural Network), can estimate time-invariant and time-varying effective connectivity in terms of MVAR coefficients. The method shows robustness with respect to noise level of data. Furthermore, the estimations are not significantly influenced by the model order (considered time-lag), and the different initial conditions (initial random weights and parameters of the network). CREANN is also applied to EEG data collected during a memory recognition task. The results implicate that it can show changes in the information flow between brain regions, involving in the episodic memory retrieval process. These convincing results emphasize that CREANN can be used as an appropriate method to estimate the causal relationship among brain signals.

  15. Dynamic reconfiguration of frontal brain networks during executive cognition in humans

    PubMed Central

    Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.

    2015-01-01

    The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898

  16. The Relationship Between Online Social Networking and Depression: A Systematic Review of Quantitative Studies.

    PubMed

    Baker, David A; Algorta, Guillermo Perez

    2016-11-01

    Online social networking sites (SNSs) such as Facebook, Twitter, and MySpace are used by billions of people every day to communicate and interact with others. There has been increasing interest in the potential impact of online social networking on wellbeing, with a broadening body of new research into factors associated with both positive and negative mental health outcomes such as depression. This systematic review of empirical studies (n = 30) adds to existing research in this field by examining current quantitative studies focused on the relationship between online social networking and symptoms of depression. The academic databases PsycINFO, Web of Science, CINAHL, MEDLINE, and EMBASE were searched systematically using terms related to online social networking and depression. Reporting quality was critically appraised and the findings discussed with reference to their wider implications. The findings suggest that the relationship between online social networking and symptoms of depression may be complex and associated with multiple psychological, social, behavioral, and individual factors. Furthermore, the impact of online social networking on wellbeing may be both positive and negative, highlighting the need for future research to determine the impact of candidate mediators and moderators underlying these heterogeneous outcomes across evolving networks.

  17. The Interactions of Relationships, Interest, and Self-Efficacy in Undergraduate Physics

    NASA Astrophysics Data System (ADS)

    Dou, Remy

    This collected papers dissertation explores students' academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology, engineering, and mathematics (STEM) careers. Self-efficacy and interest are factors that play prominent roles in popular, evidence-based, career theories, including the Social cognitive career theory (SCCT) and the identity framework. Understanding how these constructs develop in light of the most pervasive characteristic of the active learning introductory physics classroom (i.e., peer-to-peer interactions) has implications on how students learn in a variety of introductory STEM classrooms and settings structured after constructivist and sociocultural learning theories. I collected data related to students' in-class interactions using the tools of social network analysis (SNA). Social network analysis has recently been shown to be an effective and useful way to examine the structure of student relationships that develop in and out of STEM classrooms. This set of studies furthers the implementation of SNA as a tool to examine self-efficacy and interest formation in the active learning physics classroom. Here I represent a variety of statistical applications of SNA, including bootstrapped linear regression (Chapter 2), structural equation modeling (Chapter 3), and hierarchical linear modeling for longitudinal analyses (Chapter 4). Self-efficacy data were collected using the Sources of Self-Efficacy for Science Courses - Physics survey (SOSESC-P), and interest data were collected using the physics identity survey. Data for these studies came from the Modeling Instruction sections of Introductory Physics with Calculus offered at Florida International University in the fall of 2014 and 2015. Analyses support the idea that students' perceptions of one another impact the development of their social network centrality, which in turn affects their self-efficacy building experiences and their overall self-efficacy. It was shown that unlike career theories that emphasize causal relationships between the development of self-efficacy and the subsequent growth of student interest, in this context student interest takes precedence before the development of student self-efficacy. This outcome also has various implications for career theories.

  18. Conceptualizing, Designing, and Investigating Locative Media Use in Urban Space

    NASA Astrophysics Data System (ADS)

    Diamantaki, Katerina; Rizopoulos, Charalampos; Charitos, Dimitris; Kaimakamis, Nikos

    This chapter investigates the social implications of locative media (LM) use and attempts to outline a theoretical framework that may support the design and implementation of location-based applications. Furthermore, it stresses the significance of physical space and location awareness as important factors that influence both human-computer interaction and computer-mediated communication. The chapter documents part of the theoretical aspect of the research undertaken as part of LOcation-based Communication Urban NETwork (LOCUNET), a project that aims to investigate the way users interact with one another (human-computer-human interaction aspect) and with the location-based system itself (human-computer interaction aspect). A number of relevant theoretical approaches are discussed in an attempt to provide a holistic theoretical background for LM use. Additionally, the actual implementation of the LOCUNET system is described and some of the findings are discussed.

  19. On Being Liked on the Web and in the “Real World”: Consistency in First Impressions across Personal Webpages and Spontaneous Behavior

    PubMed Central

    Weisbuch, Max; Ivcevic, Zorana; Ambady, Nalini

    2009-01-01

    With recent growth in the use of personal webpages and online social networking, people are changing the way that they meet and form impressions of each other. The current research examines the correspondence in impressions formed from face-to-face interaction and personal webpages. As expected, people liked by interaction partners were also liked on the basis of their Facebook® pages. Across the two social mediums, social perceivers utilized analogous criteria in forming impressions: interaction partners and webpage viewers liked people who were socially expressive in face-to-face interaction and personal webpages, respectively. Finally, webpage expressivity and webpage self-disclosure were independent constructs, predictive of face-to-face counterparts: nonverbal expressivity and verbal self-disclosure. Implications for the changing landscape of social perception are discussed. PMID:20161314

  20. Loss of functional diversity and network modularity in introduced plant–fungal symbioses

    PubMed Central

    Cooper, Jerry A.; Bufford, Jennifer L.; Hulme, Philip E.; Bates, Scott T.

    2017-01-01

    The introduction of alien plants into a new range can result in the loss of co-evolved symbiotic organisms, such as mycorrhizal fungi, that are essential for normal plant physiological functions. Prior studies of mycorrhizal associations in alien plants have tended to focus on individual plant species on a case-by-case basis. This approach limits broad scale understanding of functional shifts and changes in interaction network structure that may occur following introduction. Here we use two extensive datasets of plant–fungal interactions derived from fungal sporocarp observations and recorded plant hosts in two island archipelago nations: New Zealand (NZ) and the United Kingdom (UK). We found that the NZ dataset shows a lower functional diversity of fungal hyphal foraging strategies in mycorrhiza of alien when compared with native trees. Across species this resulted in fungal foraging strategies associated with alien trees being much more variable in functional composition compared with native trees, which had a strikingly similar functional composition. The UK data showed no functional difference in fungal associates of alien and native plant genera. Notwithstanding this, both the NZ and UK data showed a substantial difference in interaction network structure of alien trees compared with native trees. In both cases, fungal associates of native trees showed strong modularity, while fungal associates of alien trees generally integrated into a single large module. The results suggest a lower functional diversity (in one dataset) and a simplification of network structure (in both) as a result of introduction, potentially driven by either limited symbiont co-introductions or disruption of habitat as a driver of specificity due to nursery conditions, planting, or plant edaphic-niche expansion. Recognizing these shifts in function and network structure has important implications for plant invasions and facilitation of secondary invasions via shared mutualist populations. PMID:28039116

  1. A Framework for Network Visualisation (Un Cadre Pour la Visualisation des Reseaux)

    DTIC Science & Technology

    2010-02-01

    Business, Communities, and Government” (online), http://www.orgnet.com/inflow3.html (Access Date: 13 June 2008). [32] Batagelj , V., Mrvar , A. and...and NATO Workshops 1996 – 2008 1-7 Table 2-1 Perceptual Modes and Probable Display and Interaction Consequences 2-18 Table 2-2 Informational...RSG) was created in 1996 with the aim of developing methods for presenting to human users the implications of the contents of large, complex and

  2. Topographical maps as complex networks

    NASA Astrophysics Data System (ADS)

    da Fontoura Costa, Luciano; Diambra, Luis

    2005-02-01

    The neuronal networks in the mammalian cortex are characterized by the coexistence of hierarchy, modularity, short and long range interactions, spatial correlations, and topographical connections. Particularly interesting, the latter type of organization implies special demands on developing systems in order to achieve precise maps preserving spatial adjacencies, even at the expense of isometry. Although the object of intensive biological research, the elucidation of the main anatomic-functional purposes of the ubiquitous topographical connections in the mammalian brain remains an elusive issue. The present work reports on how recent results from complex network formalism can be used to quantify and model the effect of topographical connections between neuronal cells over the connectivity of the network. While the topographical mapping between two cortical modules is achieved by connecting nearest cells from each module, four kinds of network models are adopted for implementing intramodular connections, including random, preferential-attachment, short-range, and long-range networks. It is shown that, though spatially uniform and simple, topographical connections between modules can lead to major changes in the network properties in some specific cases, depending on intramodular connections schemes, fostering more effective intercommunication between the involved neuronal cells and modules. The possible implications of such effects on cortical operation are discussed.

  3. Distinct hippocampal versus frontoparietal-network contributions to retrieval and memory-guided exploration

    PubMed Central

    Bridge, Donna J.; Cohen, Neal J.; Voss, Joel L.

    2017-01-01

    Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. Following retrieval of one object in a multi-object array, viewing was strategically directed away from the retrieved object toward non-retrieved objects, such that exploration was directed towards to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval whereas frontoparietal activity varied with strategic viewing patterns deployed following retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations. PMID:28471729

  4. Distinct Hippocampal versus Frontoparietal Network Contributions to Retrieval and Memory-guided Exploration.

    PubMed

    Bridge, Donna J; Cohen, Neal J; Voss, Joel L

    2017-08-01

    Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. After retrieval of one object in a multiobject array, viewing was strategically directed away from the retrieved object toward nonretrieved objects, such that exploration was directed toward to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval, whereas frontoparietal activity varied with strategic viewing patterns deployed after retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration occurred than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations.

  5. Social Networking Technology Use and Engagement in HIV-Related Risk and Protective Behaviors Among Homeless Youth.

    PubMed

    Barman-Adhikari, Anamika; Rice, Eric; Bender, Kimberly; Lengnick-Hall, Rebecca; Yoshioka-Maxwell, Amanda; Rhoades, Harmony

    2016-07-01

    Preliminary studies with homeless youth have found surprisingly pervasive social media use and suggest that youth's online interactions may be associated with their HIV-related risk and protective behaviors. As homeless youth are transient and difficult to engage in place-based services, social media may represent a novel venue for intervention. A critical 1st step in intervention development is gaining greater understanding of how homeless youth use social media, especially as it relates to who they connect to and around what topics. Given the salience of social networking sites in the lives of these otherwise difficult-to-reach adolescents, and their potential to disseminate prevention interventions, this study assessed associations between online social networking technology use and HIV risk behaviors among homeless youth in Los Angeles, California. Homeless youth ages 13 through 24 (N = 1,046) were recruited through 3 drop-in centers and surveyed about their social media use and self-reported HIV-related risk behaviors. Results suggest that social media use is widely prevalent among this population, and the content of these online interactions is associated with whether youth engage in risk or protective behaviors. Implications for interventions and further research are discussed.

  6. Disruption of a Regulatory Network Consisting of Neutrophils and Platelets Fosters Persisting Inflammation in Rheumatic Diseases.

    PubMed

    Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A

    2016-01-01

    A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions.

  7. Social Networking Technology Use and Engagement in HIV Related Risk and Protective Behaviors among Homeless Youth

    PubMed Central

    Barman-Adhikari, Anamika; Rice, Eric; Bender, Kimberly; Lengnick-Hall, Rebecca; Yoshioka-Maxwell, Amanda; Rhoades, Harmony

    2016-01-01

    Preliminary studies with homeless youth find surprisingly pervasive social media use and suggest youths’ online interactions may be associated with their HIV-related risk and protective behaviors. As homeless youth are transient and difficult to engage in place-based services, social media may represent a novel venue for intervention. A critical first step in intervention development is gaining greater understanding of how homeless youth use social media especially as it relates to whom they connect to and around what topics. Given the salience of Social Networking Sites in the lives of these otherwise difficult to reach adolescents, and their potential to disseminate prevention interventions, this study assessed associations between online social networking technology use and HIV risk behaviors among homeless youth in Los Angeles, California. Homeless youth ages 13 through 24 (N=1046) were recruited through three drop-in centers and surveyed about their social media use and self-reported HIV-related risk behaviors. Results suggest that social media use is widely prevalent among this population, and the content of these online interactions is associated with whether or not they engage in risk or protective behaviors. Implications for interventions and further research are discussed. PMID:27337044

  8. Perturbed connectivity of the amygdala and its subregions with the central executive and default mode networks in chronic pain.

    PubMed

    Jiang, Ying; Oathes, Desmond; Hush, Julia; Darnall, Beth; Charvat, Mylea; Mackey, Sean; Etkin, Amit

    2016-09-01

    Maladaptive responses to pain-related distress, such as pain catastrophizing, amplify the impairments associated with chronic pain. Many of these aspects of chronic pain are similar to affective distress in clinical anxiety disorders. In light of the role of the amygdala in pain and affective distress, disruption of amygdalar functional connectivity in anxiety states, and its implication in the response to noxious stimuli, we investigated amygdala functional connectivity in 17 patients with chronic low back pain and 17 healthy comparison subjects, with respect to normal targets of amygdala subregions (basolateral vs centromedial nuclei), and connectivity to large-scale cognitive-emotional networks, including the default mode network, central executive network, and salience network. We found that patients with chronic pain had exaggerated and abnormal amygdala connectivity with central executive network, which was most exaggerated in patients with the greatest pain catastrophizing. We also found that the normally basolateral-predominant amygdala connectivity to the default mode network was blunted in patients with chronic pain. Our results therefore highlight the importance of the amygdala and its network-level interaction with large-scale cognitive/affective cortical networks in chronic pain, and help link the neurobiological mechanisms of cognitive theories for pain with other clinical states of affective distress.

  9. Social Networks and Adaptation to Environmental Change: The Case of Central Oregon's Fire-Prone Forest Landscape

    NASA Astrophysics Data System (ADS)

    Fischer, A.

    2012-12-01

    Social networks are the patterned interactions among individuals and organizations through which people refine their beliefs and values, negotiate meanings for things and develop behavioral intentions. The structure of social networks has bearing on how people communicate information, generate and retain knowledge, make decisions and act collectively. Thus, social network structure is important for how people perceive, shape and adapt to the environment. We investigated the relationship between social network structure and human adaptation to wildfire risk in the fire-prone forested landscape of Central Oregon. We conducted descriptive and non-parametric social network analysis on data gathered through interviews to 1) characterize the structure of the network of organizations involved in forest and wildfire issues and 2) determine whether network structure is associated with organizations' beliefs, values and behaviors regarding fire and forest management. Preliminary findings indicate that fire protection and forest-related organizations do not frequently communicate or cooperate, suggesting that opportunities for joint problem-solving, innovation and collective action are limited. Preliminary findings also suggest that organizations with diverse partners are more likely to hold adaptive beliefs about wildfire and work cooperatively. We discuss the implications of social network structure for adaptation to changing environmental conditions such as wildfire risk.

  10. Increased entropy of signal transduction in the cancer metastasis phenotype.

    PubMed

    Teschendorff, Andrew E; Severini, Simone

    2010-07-30

    The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may predispose the tumour to metastasize. These results demonstrate that a metastatic cancer phenotype is characterised by an increase in the randomness of the local information flux patterns. Measures of local randomness in integrated protein interaction mRNA expression networks may therefore be useful for identifying genes and signalling pathways disrupted in one phenotype relative to another. Further exploration of the statistical properties of such integrated cancer expression and protein interaction networks will be a fruitful endeavour.

  11. Design principles for robust oscillatory behavior.

    PubMed

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  12. Promoting evaluation capacity building in a complex adaptive system.

    PubMed

    Lawrenz, Frances; Kollmann, Elizabeth Kunz; King, Jean A; Bequette, Marjorie; Pattison, Scott; Nelson, Amy Grack; Cohn, Sarah; Cardiel, Christopher L B; Iacovelli, Stephanie; Eliou, Gayra Ostgaard; Goss, Juli; Causey, Lauren; Sinkey, Anne; Beyer, Marta; Francisco, Melanie

    2018-04-10

    This study provides results from an NSF funded, four year, case study about evaluation capacity building in a complex adaptive system, the Nanoscale Informal Science Education Network (NISE Net). The results of the Complex Adaptive Systems as a Model for Network Evaluations (CASNET) project indicate that complex adaptive system concepts help to explain evaluation capacity building in a network. The NISE Network was found to be a complex learning system that was supportive of evaluation capacity building through feedback loops that provided for information sharing and interaction. Participants in the system had different levels of and sources of evaluation knowledge. To be successful at building capacity, the system needed to have a balance between both centralized and decentralized control, coherence, redundancy, and diversity. Embeddedness of individuals within the system also provided support and moved the capacity of the system forward. Finally, success depended on attention being paid to the control of resources. Implications of these findings are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Converging models of schizophrenia - Network alterations of prefrontal cortex underlying cognitive impairments

    PubMed Central

    Sakurai, Takeshi; Gamo, Nao J; Hikida, Takatoshi; Kim, Sun-Hong; Murai, Toshiya; Tomoda, Toshifumi; Sawa, Akira

    2015-01-01

    The prefrontal cortex (PFC) and its connections with other brain areas are crucial for cognitive function. Cognitive impairments are one of the core symptoms associated with schizophrenia, and manifest even before the onset of the disorder. Altered neural networks involving PFC contribute to cognitive impairments in schizophrenia. Both genetic and environmental risk factors affect the development of the local circuitry within PFC as well as development of broader brain networks, and make the system vulnerable to further insults during adolescence, leading to the onset of the disorder in young adulthood. Since spared cognitive functions correlate with functional outcome and prognosis, a better understanding of the mechanisms underlying cognitive impairments will have important implications for novel therapeutics for schizophrenia focusing on cognitive functions. Multidisciplinary approaches, from basic neuroscience to clinical studies, are required to link molecules, circuitry, networks, and behavioral phenotypes. Close interactions among such fields by sharing a common language on connectomes, behavioral readouts, and other concepts are crucial for this goal. PMID:26408506

  14. Influence of anesthesia on cerebral blood flow, cerebral metabolic rate, and brain functional connectivity.

    PubMed

    Bonhomme, Vincent; Boveroux, Pierre; Hans, Pol; Brichant, Jean François; Vanhaudenhuyse, Audrey; Boly, Melanie; Laureys, Steven

    2011-10-01

    To describe recent studies exploring brain function under the influence of hypnotic anesthetic agents, and their implications on the understanding of consciousness physiology and anesthesia-induced alteration of consciousness. Cerebral cortex is the primary target of the hypnotic effect of anesthetic agents, and higher-order association areas are more sensitive to this effect than lower-order processing regions. Increasing concentration of anesthetic agents progressively attenuates connectivity in the consciousness networks, while connectivity in lower-order sensory and motor networks is preserved. Alteration of thalamic sub-cortical regulation could compromise the cortical integration of information despite preserved thalamic activation by external stimuli. At concentrations producing unresponsiveness, the activity of consciousness networks becomes anticorrelated with thalamic activity, while connectivity in lower-order sensory networks persists, although with cross-modal interaction alterations. Accumulating evidence suggests that hypnotic anesthetic agents disrupt large-scale cerebral connectivity. This would result in an inability of the brain to generate and integrate information, while external sensory information is still processed at a lower order of complexity.

  15. Actin-membrane interactions mediated by NETWORKED2 in Arabidopsis pollen tubes through associations with Pollen Receptor-Like Kinase 4 and 5.

    PubMed

    Duckney, Patrick; Deeks, Michael J; Dixon, Martin R; Kroon, Johan; Hawkins, Timothy J; Hussey, Patrick J

    2017-12-01

    During fertilization, Pollen Receptor-Like Kinases (PRKs) control pollen tube growth through the pistil in response to extracellular signals, and regulate the actin cytoskeleton at the tube apex to drive tip growth. We investigated a novel link between membrane-integral PRKs and the actin cytoskeleton, mediated through interactions between PRKs and NET2A; a pollen-specific member of the NETWORKED superfamily of actin-binding proteins. We characterize NET2A as a novel actin-associated protein that localizes to punctae at the plasma membrane of the pollen tube shank, which are stably associated with cortical longitudinal actin cables. NET2A was demonstrated to interact specifically with PRK4 and PRK5 in Nicotiana benthamiana transient expression assays, and associated at discreet foci at the shank membrane of Arabidopsis pollen tubes. Our data indicate that NET2A is recruited to the plasma membrane by PRK4 and PRK5, and that PRK kinase activity is important in facilitating its interaction with NET2A. We conclude that NET2A-PRK interactions mediate discreet sites of stable interactions between the cortical longitudinal actin cables and plasma membrane in the shank region of growing pollen tubes, which we have termed Actin-Membrane Contact Sites (AMCSs). Interactions between PRKs and NET2A implicate a role for NET2A in signal transduction to the actin cytoskeleton during fertilization. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Computational prediction of host-pathogen protein-protein interactions.

    PubMed

    Dyer, Matthew D; Murali, T M; Sobral, Bruno W

    2007-07-01

    Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins. Developing computational methods that identify which PPIs enable a pathogen to infect a host has great implications in identifying potential targets for therapeutics. We present a method that integrates known intra-species PPIs with protein-domain profiles to predict PPIs between host and pathogen proteins. Given a set of intra-species PPIs, we identify the functional domains in each of the interacting proteins. For every pair of functional domains, we use Bayesian statistics to assess the probability that two proteins with that pair of domains will interact. We apply our method to the Homo sapiens-Plasmodium falciparum host-pathogen system. Our system predicts 516 PPIs between proteins from these two organisms. We show that pairs of human proteins we predict to interact with the same Plasmodium protein are close to each other in the human PPI network and that Plasmodium pairs predicted to interact with same human protein are co-expressed in DNA microarray datasets measured during various stages of the Plasmodium life cycle. Finally, we identify functionally enriched sub-networks spanned by the predicted interactions and discuss the plausibility of our predictions. Supplementary data are available at http://staff.vbi.vt.edu/dyermd/publications/dyer2007a.html. Supplementary data are available at Bioinformatics online.

  17. Patterns of interactions of a large fish-parasite network in a tropical floodplain.

    PubMed

    Lima, Dilermando P; Giacomini, Henrique C; Takemoto, Ricardo M; Agostinho, Angelo A; Bini, Luis M

    2012-07-01

    1. Describing and explaining the structure of species interaction networks is of paramount importance for community ecology. Yet much has to be learned about the mechanisms responsible for major patterns, such as nestedness and modularity in different kinds of systems, of which large and diverse networks are a still underrepresented and scarcely studied fraction. 2. We assembled information on fishes and their parasites living in a large floodplain of key ecological importance for freshwater ecosystems in the Paraná River basin in South America. The resulting fish-parasite network containing 72 and 324 species of fishes and parasites, respectively, was analysed to investigate the patterns of nestedness and modularity as related to fish and parasite features. 3. Nestedness was found in the entire network and among endoparasites, multiple-host life cycle parasites and native hosts, but not in networks of ectoparasites, single-host life cycle parasites and non-native fishes. All networks were significantly modular. Taxonomy was the major host's attribute influencing both nestedness and modularity: more closely related host species tended to be associated with more nested parasite compositions and had greater chance of belonging to the same network module. Nevertheless, host abundance had a positive relationship with nestedness when only native host species pairs of the same network module were considered for analysis. 4. These results highlight the importance of evolutionary history of hosts in linking patterns of nestedness and formation of modules in the network. They also show that functional attributes of parasites (i.e. parasitism mode and life cycle) and origin of host populations (i.e. natives versus non-natives) are crucial to define the relative contribution of these two network properties and their dependence on other ecological factors (e.g. host abundance), with potential implications for community dynamics and stability. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  18. DE NOVO MUTATIONS IN AUTISM IMPLICATE THE SYNAPTIC ELIMINATION NETWORK.

    PubMed

    Ram Venkataraman, Guhan; O'Connell, Chloe; Egawa, Fumiko; Kashef-Haghighi, Dorna; Wall, Dennis P

    2017-01-01

    Autism has been shown to have a major genetic risk component; the architecture of documented autism in families has been over and again shown to be passed down for generations. While inherited risk plays an important role in the autistic nature of children, de novo (germline) mutations have also been implicated in autism risk. Here we find that autism de novo variants verified and published in the literature are Bonferroni-significantly enriched in a gene set implicated in synaptic elimination. Additionally, several of the genes in this synaptic elimination set that were enriched in protein-protein interactions (CACNA1C, SHANK2, SYNGAP1, NLGN3, NRXN1, and PTEN) have been previously confirmed as genes that confer risk for the disorder. The results demonstrate that autism-associated de novos are linked to proper synaptic pruning and density, hinting at the etiology of autism and suggesting pathophysiology for downstream correction and treatment.

  19. A Social Network Analysis of Social Cohesion in a Constructed Pride: Implications for Ex Situ Reintroduction of the African Lion (Panthera leo)

    PubMed Central

    Abell, Jackie; Kirzinger, Morgan W. B.; Gordon, Yvonne; Kirk, Jacqui; Kokeŝ, Rae; Lynas, Kirsty; Mandinyenya, Bob; Youldon, David

    2013-01-01

    Animal conservation practices include the grouping of captive related and unrelated individuals to form a social structure which is characteristic of that species in the wild. In response to the rapid decline of wild African lion (Panthera leo) populations, an array of conservational strategies have been adopted. Ex situ reintroduction of the African lion requires the construction of socially cohesive pride structures prior to wild release. This pilot study adopted a social network theory approach to quantitatively assess a captive pride’s social structure and the relationships between individuals within them. Group composition (who is present in a group) and social interaction data (social licking, greeting, play) was observed and recorded to assess social cohesion within a released semi-wild pride. UCINET and SOCPROG software was utilised to represent and analyse these social networks. Results indicate that the pride is socially cohesive, does not exhibit random associations, and the role of socially influential keystone individuals is important for maintaining social bondedness within a lion pride. These results are potentially informative for the structure of lion prides, in captivity and in the wild, and could have implications for captive and wild-founder reintroductions. PMID:24376544

  20. Functional connectivity correlates of response inhibition impairment in anorexia nervosa.

    PubMed

    Collantoni, Enrico; Michelon, Silvia; Tenconi, Elena; Degortes, Daniela; Titton, Francesca; Manara, Renzo; Clementi, Maurizio; Pinato, Claudia; Forzan, Monica; Cassina, Matteo; Santonastaso, Paolo; Favaro, Angela

    2016-01-30

    Anorexia nervosa (AN) is a disorder characterized by high levels of cognitive control and behavioral perseveration. The present study aims at exploring inhibitory control abilities and their functional connectivity correlates in patients with AN. Inhibitory control - an executive function that allows the realization of adaptive behavior according to environmental contingencies - has been assessed by means of the Stop-Signal paradigm. The study involved 155 patients with lifetime AN and 102 healthy women. A subsample underwent resting-state functional magnetic resonance imaging and was genotyped for COMT and 5-HTTLPR polymorphisms. AN patients showed an impaired response inhibition and a disruption of the functional connectivity of the ventral attention circuit, a neural network implicated in behavioral response when a stimulus occurs unexpected. The 5-HTTLPR genotype appears to significantly interact with the functional connectivity of ventral attention network in explaining task performance in both patients and controls, suggesting a role of the serotoninergic system in mechanisms of response selection. The disruption of the ventral attention network in patients with AN suggests lower efficiency of bottom-up signal filtering, which might be involved in difficulties to adapt behavioral responses to environmental needs. Our findings deserve further research to confirm their scientific and therapeutic implications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Blurred Lines: Ethical Implications of Social Media for Behavior Analysts.

    PubMed

    O'Leary, Patrick N; Miller, Megan M; Olive, Melissa L; Kelly, Amanda N

    2017-03-01

    Social networking has a long list of advantages: it enables access to a large group of people that would otherwise not be geographically convenient or possible to connect with; it reaches several different generations, particularly younger ones, which are not typically involved in discussion of current events; and these sites allow a cost effective, immediate, and interactive way to engage with others. With the vast number of individuals who use social media sites as a way to connect with others, it may not be possible to completely abstain from discussions and interactions on social media that pertain to our professional practice. This is all the more reason that behavior analysts attend to the contingencies specific to these tools. This paper discusses potential ethical situations that may arise and offers a review of the Behavior Analysis Certification Board (BACB) guidelines pertaining to social networking, as well as provides suggestions for avoiding or resolving potential violations relating to online social behavior.

  2. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

    PubMed

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  3. Ovarian Cancer Differential Interactome and Network Entropy Analysis Reveal New Candidate Biomarkers.

    PubMed

    Ayyildiz, Dilara; Gov, Esra; Sinha, Raghu; Arga, Kazim Yalcin

    2017-05-01

    Ovarian cancer is one of the most common cancers and has a high mortality rate due to insidious symptoms and lack of robust diagnostics. A hitherto understudied concept in cancer pathogenesis may offer new avenues for innovation in ovarian cancer biomarker development. Cancer cells are characterized by an increase in network entropy, and several studies have exploited this concept to identify disease-associated gene and protein modules. We report in this study the changes in protein-protein interactions (PPIs) in ovarian cancer within a differential network (interactome) analysis framework utilizing the entropy concept and gene expression data. A compendium of six transcriptome datasets that included 140 samples from laser microdissected epithelial cells of ovarian cancer patients and 51 samples from healthy population was obtained from Gene Expression Omnibus, and the high confidence human protein interactome (31,465 interactions among 10,681 proteins) was used. The uncertainties of the up- or downregulation of PPIs in ovarian cancer were estimated through an entropy formulation utilizing combined expression levels of genes, and the interacting protein pairs with minimum uncertainty were identified. We identified 105 proteins with differential PPI patterns scattered in 11 modules, each indicating significantly affected biological pathways in ovarian cancer such as DNA repair, cell proliferation-related mechanisms, nucleoplasmic translocation of estrogen receptor, extracellular matrix degradation, and inflammation response. In conclusion, we suggest several PPIs as biomarker candidates for ovarian cancer and discuss their future biological implications as potential molecular targets for pharmaceutical development as well. In addition, network entropy analysis is a concept that deserves greater research attention for diagnostic innovation in oncology and tumor pathogenesis.

  4. The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions

    PubMed Central

    Von Der Heide, Rebecca; Vyas, Govinda

    2014-01-01

    The social brain hypothesis proposes that the large size of the primate neocortex evolved to support complex and demanding social interactions. Accordingly, recent studies have reported correlations between the size of an individual’s social network and the density of gray matter (GM) in regions of the brain implicated in social cognition. However, the reported relationships between GM density and social group size are somewhat inconsistent with studies reporting correlations in different brain regions. One factor that might account for these discrepancies is the use of different measures of social network size (SNS). This study used several measures of SNS to assess the relationships SNS and GM density. The second goal of this study was to test the relationship between social network measures and functional brain activity. Participants performed a social closeness task using photos of their friends and unknown people. Across the VBM and functional magnetic resonance imaging analyses, individual differences in SNS were consistently related to structural and functional differences in three regions: the left amygdala, right amygdala and the right entorhinal/ventral anterior temporal cortex. PMID:24493846

  5. Network analysis of online bidding activity

    NASA Astrophysics Data System (ADS)

    Yang, I.; Oh, E.; Kahng, B.

    2006-07-01

    With the advent of digital media, people are increasingly resorting to online channels for commercial transactions. The online auction is a prototypical example. In such online transactions, the pattern of bidding activity is more complex than traditional offline transactions; this is because the number of bidders participating in a given transaction is not bounded and the bidders can also easily respond to the bidding instantaneously. By using the recently developed network theory, we study the interaction patterns between bidders (items) who (that) are connected when they bid for the same item (if the item is bid by the same bidder). The resulting network is analyzed by using the hierarchical clustering algorithm, which is used for clustering analysis for expression data from DNA microarrays. A dendrogram is constructed for the item subcategories; this dendrogram is compared to a traditional classification scheme. The implication of the difference between the two is discussed.

  6. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  7. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  8. Predicting perturbation patterns from the topology of biological networks.

    PubMed

    Santolini, Marc; Barabási, Albert-László

    2018-06-20

    High-throughput technologies, offering an unprecedented wealth of quantitative data underlying the makeup of living systems, are changing biology. Notably, the systematic mapping of the relationships between biochemical entities has fueled the rapid development of network biology, offering a suitable framework to describe disease phenotypes and predict potential drug targets. However, our ability to develop accurate dynamical models remains limited, due in part to the limited knowledge of the kinetic parameters underlying these interactions. Here, we explore the degree to which we can make reasonably accurate predictions in the absence of the kinetic parameters. We find that simple dynamically agnostic models are sufficient to recover the strength and sign of the biochemical perturbation patterns observed in 87 biological models for which the underlying kinetics are known. Surprisingly, a simple distance-based model achieves 65% accuracy. We show that this predictive power is robust to topological and kinetic parameter perturbations, and we identify key network properties that can increase up to 80% the recovery rate of the true perturbation patterns. We validate our approach using experimental data on the chemotactic pathway in bacteria, finding that a network model of perturbation spreading predicts with ∼80% accuracy the directionality of gene expression and phenotype changes in knock-out and overproduction experiments. These findings show that the steady advances in mapping out the topology of biochemical interaction networks opens avenues for accurate perturbation spread modeling, with direct implications for medicine and drug development.

  9. Computational Analyses of Synergism in Small Molecular Network Motifs

    PubMed Central

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2014-01-01

    Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically) to alter the responses of the motifs to stimuli. Synergism (or antagonism) was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions. PMID:24651495

  10. Myosin II–interacting guanine nucleotide exchange factor promotes bleb retraction via stimulating cortex reassembly at the bleb membrane

    PubMed Central

    Jiao, Meng; Wu, Di; Wei, Qize

    2018-01-01

    Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II–interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction. PMID:29321250

  11. CD4-gp120 interaction interface - a gateway for HIV-1 infection in human: molecular network, modeling and docking studies.

    PubMed

    Pandey, Deeksha; Podder, Avijit; Pandit, Mansi; Latha, Narayanan

    2017-09-01

    The major causative agent for Acquired Immune Deficiency Syndrome (AIDS) is Human Immunodeficiency Virus-1 (HIV-1). HIV-1 is a predominant subtype of HIV which counts on human cellular mechanism virtually in every aspect of its life cycle. Binding of viral envelope glycoprotein-gp120 with human cell surface CD4 receptor triggers the early infection stage of HIV-1. This study focuses on the interaction interface between these two proteins that play a crucial role for viral infectivity. The CD4-gp120 interaction interface has been studied through a comprehensive protein-protein interaction network (PPIN) analysis and highlighted as a useful step towards identifying potential therapeutic drug targets against HIV-1 infection. We prioritized gp41, Nef and Tat proteins of HIV-1 as valuable drug targets at early stage of viral infection. Lack of crystal structure has made it difficult to understand the biological implication of these proteins during disease progression. Here, computational protein modeling techniques and molecular dynamics simulations were performed to generate three-dimensional models of these targets. Besides, molecular docking was initiated to determine the desirability of these target proteins for already available HIV-1 specific drugs which indicates the usefulness of these protein structures to identify an effective drug combination therapy against AIDS.

  12. Online Network Influences on Emerging Adults’ Alcohol and Drug Use

    PubMed Central

    Cook, Stephanie H.; Gordon-Messer, Deborah; Zimmerman, Marc A.

    2012-01-01

    Researchers have reported that network characteristics are associated with substance use behavior. Considering that social interactions within online networks are increasingly common, we examined the relationship between online network characteristics and substance use in a sample of emerging adults (ages 18–24) from across the United States (N = 2,153; M = 21 years old; 47 % female; 70 % White). We used regression analyses to examine the relationship between online ego network characteristics (i.e., characteristics of individuals directly related to the focal participant plus the relationships shared among individuals within the online network) and alcohol use and substance use, respectively. Alcohol use was associated with network density (i.e., interconnectedness between individuals in a network), total number of peer ties, and a greater proportion of emotionally close ties. In sex-stratified models, density was related to alcohol use for males but not females. Drug use was associated with an increased number of peer ties, and the increased proportion of network members’ discussion and acceptance of drug use, respectively. We also found that online network density and total numbers of ties were associated with more personal drug use for males but not females. Conversely, we noted that social norms were related to increased drug use and this relationship was stronger for females than males. We discuss the implications of our findings for substance use and online network research. PMID:23212348

  13. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbur, Jeremy D., E-mail: jwilbur@msg.ucsf.edu; Hwang, Peter K.; Brodsky, Frances M.

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coilmore » domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.« less

  14. Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes.

    PubMed

    Wang, Ning; Xu, Zhi-Wen; Wang, Kun-Hao

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.

  15. Inference of Transmission Network Structure from HIV Phylogenetic Trees

    DOE PAGES

    Giardina, Federica; Romero-Severson, Ethan Obie; Albert, Jan; ...

    2017-01-13

    Phylogenetic inference is an attractive means to reconstruct transmission histories and epidemics. However, there is not a perfect correspondence between transmission history and virus phylogeny. Both node height and topological differences may occur, depending on the interaction between within-host evolutionary dynamics and between-host transmission patterns. To investigate these interactions, we added a within-host evolutionary model in epidemiological simulations and examined if the resulting phylogeny could recover different types of contact networks. To further improve realism, we also introduced patient-specific differences in infectivity across disease stages, and on the epidemic level we considered incomplete sampling and the age of the epidemic.more » Second, we implemented an inference method based on approximate Bayesian computation (ABC) to discriminate among three well-studied network models and jointly estimate both network parameters and key epidemiological quantities such as the infection rate. Our ABC framework used both topological and distance-based tree statistics for comparison between simulated and observed trees. Overall, our simulations showed that a virus time-scaled phylogeny (genealogy) may be substantially different from the between-host transmission tree. This has important implications for the interpretation of what a phylogeny reveals about the underlying epidemic contact network. In particular, we found that while the within-host evolutionary process obscures the transmission tree, the diversification process and infectivity dynamics also add discriminatory power to differentiate between different types of contact networks. We also found that the possibility to differentiate contact networks depends on how far an epidemic has progressed, where distance-based tree statistics have more power early in an epidemic. Finally, we applied our ABC inference on two different outbreaks from the Swedish HIV-1 epidemic.« less

  16. A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks

    PubMed Central

    Khammash, Mustafa

    2014-01-01

    Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed. PMID:24968191

  17. Inference of Transmission Network Structure from HIV Phylogenetic Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giardina, Federica; Romero-Severson, Ethan Obie; Albert, Jan

    Phylogenetic inference is an attractive means to reconstruct transmission histories and epidemics. However, there is not a perfect correspondence between transmission history and virus phylogeny. Both node height and topological differences may occur, depending on the interaction between within-host evolutionary dynamics and between-host transmission patterns. To investigate these interactions, we added a within-host evolutionary model in epidemiological simulations and examined if the resulting phylogeny could recover different types of contact networks. To further improve realism, we also introduced patient-specific differences in infectivity across disease stages, and on the epidemic level we considered incomplete sampling and the age of the epidemic.more » Second, we implemented an inference method based on approximate Bayesian computation (ABC) to discriminate among three well-studied network models and jointly estimate both network parameters and key epidemiological quantities such as the infection rate. Our ABC framework used both topological and distance-based tree statistics for comparison between simulated and observed trees. Overall, our simulations showed that a virus time-scaled phylogeny (genealogy) may be substantially different from the between-host transmission tree. This has important implications for the interpretation of what a phylogeny reveals about the underlying epidemic contact network. In particular, we found that while the within-host evolutionary process obscures the transmission tree, the diversification process and infectivity dynamics also add discriminatory power to differentiate between different types of contact networks. We also found that the possibility to differentiate contact networks depends on how far an epidemic has progressed, where distance-based tree statistics have more power early in an epidemic. Finally, we applied our ABC inference on two different outbreaks from the Swedish HIV-1 epidemic.« less

  18. Systems biology approach to bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potentialmore » for making bioremediation breakthroughs and illuminating the ‘black box’.« less

  19. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain.

    PubMed

    Wilbur, Jeremy D; Hwang, Peter K; Brodsky, Frances M; Fletterick, Robert J

    2010-03-01

    Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington's disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  20. Angular default mode network connectivity across working memory load.

    PubMed

    Vatansever, D; Manktelow, A E; Sahakian, B J; Menon, D K; Stamatakis, E A

    2017-01-01

    Initially identified during no-task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large-scale brain networks. Nevertheless, its contribution to whole-brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI-based n-back paradigm with parametric increases in difficulty. Using a voxel-wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n-back task load. Subsequent seed-based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large-scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n-back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Dynamic connectivity in the Southern California Bight and Georges Bank: Identifying ecosystem interactions using chaotic time series analysis

    NASA Astrophysics Data System (ADS)

    Ye, H.; Deyle, E. R.; Hsieh, C.; Sugihara, G.

    2012-12-01

    We used convergent cross mapping (CCM), a method grounded in nonlinear dynamical systems theory to analyze long-term time series of fish species from the California Cooperative Oceanic Fisheries Investigations ichthyoplankton (isolated to the Southern California Bight [SCB]) and NOAA National Marine Fisheries Service Northeast Fisheries Science Center trawl survey (isolated to the Georges Bank [GB] region) data sets. CCM gives a nonparametric indicator of the realized dynamic influence that one species has on another (i.e. how much the abundance of X at a particular time is dependent on the historical abundance of Y). We found there are more interactions between species in SCB compared to GB. An analysis of the interaction matrix showed that there is also more structure in the connectivity network of SCB compared to GB. We attribute this difference in connectivity to historical overexploitation of fish stocks in the North Atlantic, and reproduce this effect in simple multi-species fishery models. We discuss the implications of these results for ecosystem-based management and for restoration efforts.; Connectivity Networks for Fishes in the Southern California Bight (SCB) and Georges Bank (GB) as determined using cross-mapping.

  2. A protein interaction map for cell polarity development

    PubMed Central

    Drees, Becky L.; Sundin, Bryan; Brazeau, Elizabeth; Caviston, Juliane P.; Chen, Guang-Chao; Guo, Wei; Kozminski, Keith G.; Lau, Michelle W.; Moskow, John J.; Tong, Amy; Schenkman, Laura R.; McKenzie, Amos; Brennwald, Patrick; Longtine, Mark; Bi, Erfei; Chan, Clarence; Novick, Peter; Boone, Charles; Pringle, John R.; Davis, Trisha N.; Fields, Stanley; Drubin, David G.

    2001-01-01

    Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein–protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express ∼90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein–protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed. PMID:11489916

  3. Men’s Migration, Women’s Personal Networks, and Responses to HIV/AIDS in Mozambique

    PubMed Central

    Avogo, Winfred; Agadjanian, Victor

    2013-01-01

    This study brings together the literature on social network approaches to social capital and health and on migration and HIV risks to examine how non-migrating wives of labor migrants use their personal networks to cope with perceived risks of HIV infection in rural southern Mozambique. Using data from a 2006 survey of 1,680 women and their dyadic interactions, we compare the composition of personal networks, HIV/AIDS communication, and preventive behavior of women married to migrants and those married to non-migrants. Results show that migrants’ wives were more likely than non-migrants’ wives to have other migrants’ wives as personal network members, to engage in HIV/AIDS communication, and to discuss HIV prevention. However, they were no more likely to talk about HIV/AIDS with migrants’ wives than with non-migrants’ wives. They were also no more likely to talk about AIDS and its prevention than non-migrants’ wives who express worry about HIV infection from their spouses. Finally, we detect that network members’ prevention behavior was similar to respondents’, although this did not depend on migration. We contextualize these findings within the literature and discuss their policy implications. PMID:23466827

  4. Individual and social network predictors of physical bullying: a longitudinal study of Taiwanese early adolescents.

    PubMed

    Wei, Hsi-Sheng; Lee, Wonjae

    2014-01-01

    This study followed 125 7th-grade students in Taiwan for the entire school year and analyzed the individual and social network factors predicting their involvement in physical bullying over 5 waves of data. Using self-reports of bullying experiences, 20 classroom-level networks of bullying and friendship were constructed for 4 classrooms and 5 temporal points, from which 4 individual-level network measures were calculated. They included bully and victim centrality, popularity, and embeddedness in friendship networks. A series of mixed models for repeated measures were constructed to predict students' bully and victim centrality in bullying network at time t + 1. Compared to girls, boys were more likely to be both the bullies and victims. Lower self-esteem and higher family economic status contributed to victim centrality. Having parents married and living together predicted lower bully centrality. Higher educational level of parents predicted lower victim and bully centrality. Regarding the social network factors, students' bully centrality at t positively predicted their bully centrality at t + 1, whereas victim centrality predicted their subsequent victim centrality. Interaction effects between friendship network and bullying network were observed. Embeddedness in friendship network reduced victim centrality at t + 1 except for those students with low victim centrality at t. For those with high victim centrality at t, popularity increased their risk of physical victimization over time. Implications for research and practice are discussed.

  5. Consume, Modify, Share (CMS): The Interplay between Individual Decisions and Structural Network Properties in the Diffusion of Information

    PubMed Central

    Koren, Hila; Kaminer, Ido

    2016-01-01

    Widely used information diffusion models such as Independent Cascade Model, Susceptible Infected Recovered (SIR) and others fail to acknowledge that information is constantly subject to modification. Some aspects of information diffusion are best explained by network structural characteristics while in some cases strong influence comes from individual decisions. We introduce reinvention, the ability to modify information, as an individual level decision that affects the diffusion process as a whole. Based on a combination of constructs from the Diffusion of Innovations and the Critical Mass Theories, the present study advances the CMS (consume, modify, share) model which accounts for the interplay between network structure and human behavior and interactions. The model's building blocks include processes leading up to and following the formation of a critical mass of information adopters and disseminators. We examine the formation of an inflection point, information reach, sustainability of the diffusion process and collective value creation. The CMS model is tested on two directed networks and one undirected network, assuming weak or strong ties and applying constant and relative modification schemes. While all three networks are designed for disseminating new knowledge they differ in structural properties. Our findings suggest that modification enhances the diffusion of information in networks that support undirected connections and carries the biggest effect when information is shared via weak ties. Rogers' diffusion model and traditional information contagion models are fine tuned. Our results show that modifications not only contribute to a sustainable diffusion process, but also aid information in reaching remote areas of the network. The results point to the importance of cultivating weak ties, allowing reciprocal interaction among nodes and supporting the modification of information in promoting diffusion processes. These results have theoretical and practical implications for designing networks aimed at accelerating the creation and diffusion of information. PMID:27798636

  6. Consume, Modify, Share (CMS): The Interplay between Individual Decisions and Structural Network Properties in the Diffusion of Information.

    PubMed

    Koren, Hila; Kaminer, Ido; Raban, Daphne Ruth

    2016-01-01

    Widely used information diffusion models such as Independent Cascade Model, Susceptible Infected Recovered (SIR) and others fail to acknowledge that information is constantly subject to modification. Some aspects of information diffusion are best explained by network structural characteristics while in some cases strong influence comes from individual decisions. We introduce reinvention, the ability to modify information, as an individual level decision that affects the diffusion process as a whole. Based on a combination of constructs from the Diffusion of Innovations and the Critical Mass Theories, the present study advances the CMS (consume, modify, share) model which accounts for the interplay between network structure and human behavior and interactions. The model's building blocks include processes leading up to and following the formation of a critical mass of information adopters and disseminators. We examine the formation of an inflection point, information reach, sustainability of the diffusion process and collective value creation. The CMS model is tested on two directed networks and one undirected network, assuming weak or strong ties and applying constant and relative modification schemes. While all three networks are designed for disseminating new knowledge they differ in structural properties. Our findings suggest that modification enhances the diffusion of information in networks that support undirected connections and carries the biggest effect when information is shared via weak ties. Rogers' diffusion model and traditional information contagion models are fine tuned. Our results show that modifications not only contribute to a sustainable diffusion process, but also aid information in reaching remote areas of the network. The results point to the importance of cultivating weak ties, allowing reciprocal interaction among nodes and supporting the modification of information in promoting diffusion processes. These results have theoretical and practical implications for designing networks aimed at accelerating the creation and diffusion of information.

  7. Statistical Mechanics of Temporal and Interacting Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.

  8. A network analysis of DSM-5 posttraumatic stress disorder and functional impairment in UK treatment-seeking veterans.

    PubMed

    Ross, Jana; Murphy, Dominic; Armour, Cherie

    2018-05-28

    Network analysis is a relatively new methodology for studying psychological disorders. It focuses on the associations between individual symptoms which are hypothesized to mutually interact with each other. The current study represents the first network analysis conducted with treatment-seeking military veterans in UK. The study aimed to examine the network structure of posttraumatic stress disorder (PTSD) symptoms and four domains of functional impairment by identifying the most central (i.e., important) symptoms of PTSD and by identifying those symptoms of PTSD that are related to functional impairment. Participants were 331 military veterans with probable PTSD. In the first step, a network of PTSD symptoms based on the PTSD Checklist for DSM-5 was estimated. In the second step, functional impairment items were added to the network. The most central symptoms of PTSD were recurrent thoughts, nightmares, negative emotional state, detachment and exaggerated startle response. Functional impairment was related to a number of different PTSD symptoms. Impairments in close relationships were associated primarily with the negative alterations in cognitions and mood symptoms and impairments in home management were associated primarily with the reexperiencing symptoms. The results are discussed in relation to previous PTSD network studies and include implications for clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice

    PubMed Central

    Snijders, Tom A.B.; Lomi, Alessandro; Torló, Vanina Jasmine

    2012-01-01

    We propose a new stochastic actor-oriented model for the co-evolution of two-mode and one-mode networks. The model posits that activities of a set of actors, represented in the two-mode network, co-evolve with exchanges and interactions between the actors, as represented in the one-mode network. The model assumes that the actors, not the activities, have agency. The empirical value of the model is demonstrated by examining how employment preferences co-evolve with friendship and advice relations in a group of seventy-five MBA students. The analysis shows that activity in the two-mode network, as expressed by number of employment preferences, is related to activity in the friendship network, as expressed by outdegrees. Further, advice ties between students lead to agreement with respect to employment preferences. In addition, considering the multiplexity of advice and friendship ties yields a better understanding of the dynamics of the advice relation: tendencies to reciprocation and homophily in advice relations are mediated to an important extent by friendship relations. The discussion pays attention to the implications of this study in the broader context of current efforts to model the co-evolutionary dynamics of social networks and individual behavior. PMID:23690653

  10. Social networks and future direction for obesity research: A scoping review.

    PubMed

    Nam, Soohyun; Redeker, Nancy; Whittemore, Robin

    2015-01-01

    Despite significant efforts to decrease obesity rates, the prevalence of obesity continues to increase in the United States. Obesity risk behaviors including physical inactivity, unhealthy eating, and sleep deprivation are intertwined during daily life and are difficult to improve in the current social environment. Studies show that social networks-the thick webs of social relations and interactions-influence various health outcomes, such as HIV risk behaviors, alcohol consumption, smoking, depression, and cardiovascular mortality; however, there is limited information on the influences of social networks on obesity and obesity risk behaviors. Given the complexities of the biobehavioral pathology of obesity and the lack of clear evidence of effectiveness and sustainability of existing interventions that are usually focused on an individual approach, targeting change in an individual's health behaviors or attitude may not take sociocontextual factors into account; there is a pressing need for a new perspective on this problem. In this review, we evaluate the literature on social networks as a potential approach for obesity prevention and treatment (i.e., how social networks affect various health outcomes), present two major social network data analyses (i.e., egocentric and sociometric analysis), and discuss implications and the future direction for obesity research using social networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse

    PubMed Central

    Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L.; Coba, Marcelo P.; Levitt, Pat

    2016-01-01

    Background Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Methods Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays (PLA) in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Results Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1 and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism, but not schizophrenia, bipolar disorder, major depressive disorder or attentional deficit hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices, but not with highly expressed genes that are not in the interactome. PLA and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. Conclusions The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. PMID:27086544

  12. A Physical Interaction Network of Dengue Virus and Human Proteins*

    PubMed Central

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  13. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways

    PubMed Central

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets. PMID:27872612

  14. The association between social relationships and depression: a systematic review.

    PubMed

    Santini, Ziggi Ivan; Koyanagi, Ai; Tyrovolas, Stefanos; Mason, Catherine; Haro, Josep Maria

    2015-04-01

    Depression is one of the most prevalent mental disorders globally and has implications for various aspects of everyday-life. To date, studies assessing the association between social relationships and depression have provided conflicting results. The aim of this paper was to review the evidence on associations between social relationships and depression in the general population. Studies investigating the association of social support, social networks, or social connectedness with depression were retrieved and summarized (searches using Pubmed, ScienceDirect, PsycNet were conducted in May 2014). Fifty-one studies were included in this review. The strongest and most consistent findings were significant protective effects of perceived emotional support, perceived instrumental support, and large, diverse social networks. Little evidence was found on whether social connectedness is related to depression, as was also the case for negative interactions. Due to the strict inclusion criteria relating to study quality and the availability of papers in the domain of interest, the review did not capture 'gray literature' and qualitative studies. Future research is warranted to account for potential bias introduced by the use of subjective measures as compared to objective measures of received support and actual networks. Due to the heterogeneity between available studies on the measure of social relationships, the inclusion of comparable measures across studies would allow for more valid comparisons. In addition, well-designed prospective studies will provide more insight into causality. Future research should address how social support and networks interact and together affect risks for depression. Social connectedness and negative interactions appear to be underutilized as measures in population-based studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Stochastic Geomorphology: A Framework for Creating General Principles on Erosion and Sedimentation in River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Benda, L. E.

    2009-12-01

    Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.

  16. The social phenotype of Williams syndrome.

    PubMed

    Järvinen, Anna; Korenberg, Julie R; Bellugi, Ursula

    2013-06-01

    Williams syndrome (WS) offers an exciting model for social neuroscience because its genetic basis is well-defined, and the unique phenotype reflects dimensions of prosocial behaviors. WS is associated with a strong drive to approach strangers, a gregarious personality, heightened social engagement yet difficult peer interactions, high nonsocial anxiety, unusual bias toward positive affect, and diminished sensitivity to fear. New neurobiological evidence points toward alterations in structure, function, and connectivity of the social brain (amygdala, fusiform face area, orbital-frontal regions). Recent genetic studies implicate gene networks in the WS region with the dysregulation of prosocial neuropeptides. The study of WS has implications for understanding human social development, and may provide insight for translating genetic and neuroendocrine evidence into treatments for disorders of social behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Novel integrative genomic tool for interrogating lithium response in bipolar disorder

    PubMed Central

    Hunsberger, J G; Chibane, F L; Elkahloun, A G; Henderson, R; Singh, R; Lawson, J; Cruceanu, C; Nagarajan, V; Turecki, G; Squassina, A; Medeiros, C D; Del Zompo, M; Rouleau, G A; Alda, M; Chuang, D-M

    2015-01-01

    We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery. PMID:25646593

  18. Novel integrative genomic tool for interrogating lithium response in bipolar disorder.

    PubMed

    Hunsberger, J G; Chibane, F L; Elkahloun, A G; Henderson, R; Singh, R; Lawson, J; Cruceanu, C; Nagarajan, V; Turecki, G; Squassina, A; Medeiros, C D; Del Zompo, M; Rouleau, G A; Alda, M; Chuang, D-M

    2015-02-03

    We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery.

  19. Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

    PubMed Central

    2011-01-01

    Background The spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups. Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level, and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. Methods We considered high-resolution data about face-to-face interactions between the attendees at a conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID) devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered) model, using both the dynamic network of contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the data temporal aspects. Results We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation that retains only the topology of the contact network fails to reproduce the size of the epidemic. Conclusions These results have important implications for understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics. Please see related article BMC Medicine, 2011, 9:88 PMID:21771290

  20. Disruption of a Regulatory Network Consisting of Neutrophils and Platelets Fosters Persisting Inflammation in Rheumatic Diseases

    PubMed Central

    Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A.

    2016-01-01

    A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions. PMID:27242789

  1. Episodic memory in aspects of large-scale brain networks

    PubMed Central

    Jeong, Woorim; Chung, Chun Kee; Kim, June Sic

    2015-01-01

    Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL) structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network (DMN). Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network (RSN). Altered patterns of functional connectivity (FC) among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment. PMID:26321939

  2. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart.

    PubMed

    Martins-Marques, Tania; Anjo, Sandra Isabel; Pereira, Paulo; Manadas, Bruno; Girão, Henrique

    2015-11-01

    The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Eukaryotic Chemotaxis: A Network of Signaling Pathways Controls Motility, Directional Sensing, and Polarity

    PubMed Central

    Swaney, Kristen F.; Huang, Chuan-Hsiang; Devreotes, Peter N.

    2015-01-01

    Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity. PMID:20192768

  4. Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.

    PubMed

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

  5. Peer Effects on Head Start Children’s Preschool Competency

    PubMed Central

    DeLay, Dawn; Hanish, Laura D.; Martin, Carol Lynn; Fabes, Richard A.

    2015-01-01

    The goals of the present study were to investigate whether young children attending Head Start (N=292; Mage=4.3 years) selected peers based on their preschool competency and whether children’s levels of preschool competency were influenced by their peers’ levels of preschool competency. Children’s peer interaction partners were intensively observed several times a week over one academic year. Social network analyses revealed that children selected peer interaction partners with similar levels of preschool competency and were influenced over time by their partners’ levels of preschool competency. These effects held even after controlling for several child (e.g., sex and language) and family factors (e.g., financial strain and parent education). Implications for promoting preschool competency among Head Start children are discussed. PMID:26479545

  6. Rooting Theories of Plant Community Ecology in Microbial Interactions

    PubMed Central

    Bever, James D.; Dickie, Ian A.; Facelli, Evelina; Facelli, Jose M.; Klironomos, John; Moora, Mari; Rillig, Matthias C.; Stock, William D.; Tibbett, Mark; Zobel, Martin

    2010-01-01

    Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and suggest these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance, and invasion ecology. PMID:20557974

  7. A Heterogeneous Network Based Method for Identifying GBM-Related Genes by Integrating Multi-Dimensional Data.

    PubMed

    Chen Peng; Ao Li

    2017-01-01

    The emergence of multi-dimensional data offers opportunities for more comprehensive analysis of the molecular characteristics of human diseases and therefore improving diagnosis, treatment, and prevention. In this study, we proposed a heterogeneous network based method by integrating multi-dimensional data (HNMD) to identify GBM-related genes. The novelty of the method lies in that the multi-dimensional data of GBM from TCGA dataset that provide comprehensive information of genes, are combined with protein-protein interactions to construct a weighted heterogeneous network, which reflects both the general and disease-specific relationships between genes. In addition, a propagation algorithm with resistance is introduced to precisely score and rank GBM-related genes. The results of comprehensive performance evaluation show that the proposed method significantly outperforms the network based methods with single-dimensional data and other existing approaches. Subsequent analysis of the top ranked genes suggests they may be functionally implicated in GBM, which further corroborates the superiority of the proposed method. The source code and the results of HNMD can be downloaded from the following URL: http://bioinformatics.ustc.edu.cn/hnmd/ .

  8. Becoming popular: interpersonal emotion regulation predicts relationship formation in real life social networks.

    PubMed

    Niven, Karen; Garcia, David; van der Löwe, Ilmo; Holman, David; Mansell, Warren

    2015-01-01

    Building relationships is crucial for satisfaction and success, especially when entering new social contexts. In the present paper, we investigate whether attempting to improve others' feelings helps people to make connections in new networks. In Study 1, a social network study following new networks of people for a 12-week period indicated that use of interpersonal emotion regulation (IER) strategies predicted growth in popularity, as indicated by other network members' reports of spending time with the person, in work and non-work interactions. In Study 2, linguistic analysis of the tweets from over 8000 Twitter users from formation of their accounts revealed that use of IER predicted greater popularity in terms of the number of followers gained. However, not all types of IER had positive effects. Behavioral IER strategies (which use behavior to reassure or comfort in order to regulate affect) were associated with greater popularity, while cognitive strategies (which change a person's thoughts about his or her situation or feelings in order to regulate affect) were negatively associated with popularity. Our findings have implications for our understanding of how new relationships are formed, highlighting the important the role played by intentional emotion regulatory processes.

  9. Becoming popular: interpersonal emotion regulation predicts relationship formation in real life social networks

    PubMed Central

    Niven, Karen; Garcia, David; van der Löwe, Ilmo; Holman, David; Mansell, Warren

    2015-01-01

    Building relationships is crucial for satisfaction and success, especially when entering new social contexts. In the present paper, we investigate whether attempting to improve others’ feelings helps people to make connections in new networks. In Study 1, a social network study following new networks of people for a 12-week period indicated that use of interpersonal emotion regulation (IER) strategies predicted growth in popularity, as indicated by other network members’ reports of spending time with the person, in work and non-work interactions. In Study 2, linguistic analysis of the tweets from over 8000 Twitter users from formation of their accounts revealed that use of IER predicted greater popularity in terms of the number of followers gained. However, not all types of IER had positive effects. Behavioral IER strategies (which use behavior to reassure or comfort in order to regulate affect) were associated with greater popularity, while cognitive strategies (which change a person’s thoughts about his or her situation or feelings in order to regulate affect) were negatively associated with popularity. Our findings have implications for our understanding of how new relationships are formed, highlighting the important the role played by intentional emotion regulatory processes. PMID:26483718

  10. Interactogeneous: Disease Gene Prioritization Using Heterogeneous Networks and Full Topology Scores

    PubMed Central

    Gonçalves, Joana P.; Francisco, Alexandre P.; Moreau, Yves; Madeira, Sara C.

    2012-01-01

    Disease gene prioritization aims to suggest potential implications of genes in disease susceptibility. Often accomplished in a guilt-by-association scheme, promising candidates are sorted according to their relatedness to known disease genes. Network-based methods have been successfully exploiting this concept by capturing the interaction of genes or proteins into a score. Nonetheless, most current approaches yield at least some of the following limitations: (1) networks comprise only curated physical interactions leading to poor genome coverage and density, and bias toward a particular source; (2) scores focus on adjacencies (direct links) or the most direct paths (shortest paths) within a constrained neighborhood around the disease genes, ignoring potentially informative indirect paths; (3) global clustering is widely applied to partition the network in an unsupervised manner, attributing little importance to prior knowledge; (4) confidence weights and their contribution to edge differentiation and ranking reliability are often disregarded. We hypothesize that network-based prioritization related to local clustering on graphs and considering full topology of weighted gene association networks integrating heterogeneous sources should overcome the above challenges. We term such a strategy Interactogeneous. We conducted cross-validation tests to assess the impact of network sources, alternative path inclusion and confidence weights on the prioritization of putative genes for 29 diseases. Heat diffusion ranking proved the best prioritization method overall, increasing the gap to neighborhood and shortest paths scores mostly on single source networks. Heterogeneous associations consistently delivered superior performance over single source data across the majority of methods. Results on the contribution of confidence weights were inconclusive. Finally, the best Interactogeneous strategy, heat diffusion ranking and associations from the STRING database, was used to prioritize genes for Parkinson’s disease. This method effectively recovered known genes and uncovered interesting candidates which could be linked to pathogenic mechanisms of the disease. PMID:23185389

  11. Sensible organizations: technology and methodology for automatically measuring organizational behavior.

    PubMed

    Olguin Olguin, Daniel; Waber, Benjamin N; Kim, Taemie; Mohan, Akshay; Ara, Koji; Pentland, Alex

    2009-02-01

    We present the design, implementation, and deployment of a wearable computing platform for measuring and analyzing human behavior in organizational settings. We propose the use of wearable electronic badges capable of automatically measuring the amount of face-to-face interaction, conversational time, physical proximity to other people, and physical activity levels in order to capture individual and collective patterns of behavior. Our goal is to be able to understand how patterns of behavior shape individuals and organizations. By using on-body sensors in large groups of people for extended periods of time in naturalistic settings, we have been able to identify, measure, and quantify social interactions, group behavior, and organizational dynamics. We deployed this wearable computing platform in a group of 22 employees working in a real organization over a period of one month. Using these automatic measurements, we were able to predict employees' self-assessments of job satisfaction and their own perceptions of group interaction quality by combining data collected with our platform and e-mail communication data. In particular, the total amount of communication was predictive of both of these assessments, and betweenness in the social network exhibited a high negative correlation with group interaction satisfaction. We also found that physical proximity and e-mail exchange had a negative correlation of r = -0.55 (p 0.01), which has far-reaching implications for past and future research on social networks.

  12. Unravelling networks in local public health policymaking in three European countries - a systems analysis.

    PubMed

    Spitters, Hilde P E M; Lau, Cathrine J; Sandu, Petru; Quanjel, Marcel; Dulf, Diana; Glümer, Charlotte; van Oers, Hans A M; van de Goor, Ien A M

    2017-02-03

    Facilitating and enhancing interaction between stakeholders involved in the policymaking process to stimulate collaboration and use of evidence, is important to foster the development of effective Health Enhancing Physical Activity (HEPA) policies. Performing an analysis of real-world policymaking processes will help reveal the complexity of a network of stakeholders. Therefore, the main objectives were to unravel the stakeholder network in the policy process by conducting three systems analyses, and to increase insight into the similarities and differences in the policy processes of these European country cases. A systems analysis of the local HEPA policymaking process was performed in three European countries involved in the 'REsearch into POlicy to enhance Physical Activity' (REPOPA) project, resulting in three schematic models showing the main stakeholders and their relationships. The models were used to compare the systems, focusing on implications with respect to collaboration and use of evidence in local HEPA policymaking. Policy documents and relevant webpages were examined and main stakeholders were interviewed. The systems analysis in each country identified the main stakeholders involved and their position and relations in the policymaking process. The Netherlands and Denmark were the most similar and both differed most from Romania, especially at the level of accountability of the local public authorities for local HEPA policymaking. The categories of driving forces underlying the relations between stakeholders were formal relations, informal interaction and knowledge exchange. A systems analysis providing detailed descriptions of positions and relations in the stakeholder network in local level HEPA policymaking is rather unique in this area. The analyses are useful when a need arises for increased interaction, collaboration and use of knowledge between stakeholders in the local HEPA network, as they provide an overview of the stakeholders involved and their mutual relations. This information can be an important starting point to enhance the uptake of evidence and build more effective public health policies.

  13. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps

    PubMed Central

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-01-01

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless ‘geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses. ACSN may also support patient stratification, prediction of treatment response and resistance to cancer drugs, as well as design of novel treatment strategies. PMID:26192618

  14. Cognitive control, attention, and the other race effect in memory.

    PubMed

    Brown, Thackery I; Uncapher, Melina R; Chow, Tiffany E; Eberhardt, Jennifer L; Wagner, Anthony D

    2017-01-01

    People are better at remembering faces from their own race than other races-a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an "old/new" recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces.

  15. Cognitive control, attention, and the other race effect in memory

    PubMed Central

    Uncapher, Melina R.; Chow, Tiffany E.; Eberhardt, Jennifer L.; Wagner, Anthony D.

    2017-01-01

    People are better at remembering faces from their own race than other races–a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an “old/new” recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces. PMID:28282414

  16. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.

    PubMed

    Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.

  17. Expression Patterns and Identified Protein-Protein Interactions Suggest That Cassava CBL-CIPK Signal Networks Function in Responses to Abiotic Stresses.

    PubMed

    Mo, Chunyan; Wan, Shumin; Xia, Youquan; Ren, Ning; Zhou, Yang; Jiang, Xingyu

    2018-01-01

    Cassava is an energy crop that is tolerant of multiple abiotic stresses. It has been reported that the interaction between Calcineurin B-like (CBL) protein and CBL-interacting protein kinase (CIPK) is implicated in plant development and responses to various stresses. However, little is known about their functions in cassava. Herein, 8 CBL ( MeCBL ) and 26 CIPK ( MeCIPK ) genes were isolated from cassava by genome searching and cloning of cDNA sequences of Arabidopsis CBL s and CIPK s. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression levels of MeCBL and MeCIPK genes were different in different tissues throughout the life cycle. The expression patterns of 7 CBL and 26 CIPK genes in response to NaCl, PEG, heat and cold stresses were analyzed by quantitative real-time PCR (qRT-PCR), and it was found that the expression of each was induced by multiple stimuli. Furthermore, we found that many pairs of CBLs and CIPKs could interact with each other via investigating the interactions between 8 CBL and 25 CIPK proteins using a yeast two-hybrid system. Yeast cells co-transformed with cassava MeCIPK24, MeCBL10 , and Na + /H + antiporter MeSOS1 genes exhibited higher salt tolerance compared to those with one or two genes. These results suggest that the cassava CBL-CIPK signal network might play key roles in response to abiotic stresses.

  18. Expression Patterns and Identified Protein-Protein Interactions Suggest That Cassava CBL-CIPK Signal Networks Function in Responses to Abiotic Stresses

    PubMed Central

    Mo, Chunyan; Wan, Shumin; Xia, Youquan; Ren, Ning; Zhou, Yang; Jiang, Xingyu

    2018-01-01

    Cassava is an energy crop that is tolerant of multiple abiotic stresses. It has been reported that the interaction between Calcineurin B-like (CBL) protein and CBL-interacting protein kinase (CIPK) is implicated in plant development and responses to various stresses. However, little is known about their functions in cassava. Herein, 8 CBL (MeCBL) and 26 CIPK (MeCIPK) genes were isolated from cassava by genome searching and cloning of cDNA sequences of Arabidopsis CBLs and CIPKs. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression levels of MeCBL and MeCIPK genes were different in different tissues throughout the life cycle. The expression patterns of 7 CBL and 26 CIPK genes in response to NaCl, PEG, heat and cold stresses were analyzed by quantitative real-time PCR (qRT-PCR), and it was found that the expression of each was induced by multiple stimuli. Furthermore, we found that many pairs of CBLs and CIPKs could interact with each other via investigating the interactions between 8 CBL and 25 CIPK proteins using a yeast two-hybrid system. Yeast cells co-transformed with cassava MeCIPK24, MeCBL10, and Na+/H+ antiporter MeSOS1 genes exhibited higher salt tolerance compared to those with one or two genes. These results suggest that the cassava CBL-CIPK signal network might play key roles in response to abiotic stresses. PMID:29552024

  19. Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks

    PubMed Central

    Roy, Sushmita; Lagree, Stephen; Hou, Zhonggang; Thomson, James A.; Stewart, Ron; Gasch, Audrey P.

    2013-01-01

    Regulatory networks that control gene expression are important in diverse biological contexts including stress response and development. Each gene's regulatory program is determined by module-level regulation (e.g. co-regulation via the same signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach, Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-, regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-module methods to reveal new insights into transcriptional regulation in stress and development. PMID:24146602

  20. Social capital and health – implications for health promotion

    PubMed Central

    Eriksson, Malin

    2011-01-01

    This article is a review of the PhD Thesis of Malin Eriksson, entitled ‘Social capital, health and community action – implications for health promotion.’ The article presents a theoretical overview of social capital and its relation to health, reviews empirical findings of the links between social capital and (self-rated) health, and discusses the usefulness of social capital in health promotion interventions at individual and community levels. Social capital, conceptualized as an individual characteristic, can contribute to the field of health promotion by adding new knowledge on how social network interventions may best be designed to meet the needs of the target group. The distinction of different forms of social capital, i.e. bonding, bridging, and linking, can be useful in mapping the kinds of networks that are available and health-enhancing (or damaging) and for whom. Further, social capital can advance social network interventions by acknowledging the risk for unequal distribution of investments and returns from social network involvement. Social capital, conceptualized as characterizing whole communities, provides a useful framework for what constitutes health-supporting environments and guidance on how to achieve them. Mapping and mobilization of social capital in local communities may be one way of achieving community action for health promotion. Social capital is context-bound by necessity. Thus, from a global perspective, it cannot be used as a ‘cookbook’ on how to achieve supportive environments and community action smoothly. However, social capital can provide new ideas on the processes that influence human interactions, cooperation, and community action for health promotion in various contexts. PMID:21311607

  1. Social capital and health--implications for health promotion.

    PubMed

    Eriksson, Malin

    2011-02-08

    This article is a review of the PhD Thesis of Malin Eriksson, entitled 'Social capital, health and community action - implications for health promotion.' The article presents a theoretical overview of social capital and its relation to health, reviews empirical findings of the links between social capital and (self-rated) health, and discusses the usefulness of social capital in health promotion interventions at individual and community levels. Social capital, conceptualized as an individual characteristic, can contribute to the field of health promotion by adding new knowledge on how social network interventions may best be designed to meet the needs of the target group. The distinction of different forms of social capital, i.e. bonding, bridging, and linking, can be useful in mapping the kinds of networks that are available and health-enhancing (or damaging) and for whom. Further, social capital can advance social network interventions by acknowledging the risk for unequal distribution of investments and returns from social network involvement. Social capital, conceptualized as characterizing whole communities, provides a useful framework for what constitutes health-supporting environments and guidance on how to achieve them. Mapping and mobilization of social capital in local communities may be one way of achieving community action for health promotion. Social capital is context-bound by necessity. Thus, from a global perspective, it cannot be used as a 'cookbook' on how to achieve supportive environments and community action smoothly. However, social capital can provide new ideas on the processes that influence human interactions, cooperation, and community action for health promotion in various contexts. © 2011 Malin Eriksson.

  2. The adoption of Firm-Hosted Online Communities: an empirical investigation into the role of service quality and social interactions

    NASA Astrophysics Data System (ADS)

    Corkindale, David; Ram, Jiwat; Chen, Howard

    2018-02-01

    Online communities are a powerful device for collaborative creativity and innovation. Developments in Web 2.0 technologies have given rise to such interactions through firm-hosted online communities (FHOCs) - firm-run online information services that also provide self-help to a community. We devise a model that seeks to explain the factors that encourage people to become members of a FHOC and test the model using structural equation modelling based on data collected from 511 users of a FHOC. The study finds that: (a) an understanding of Perceived Usefulness (PU) plays a mediating role between Behavioural Intention (BI) to adopt FHOC and Trust, as well as Interface design; b) Networking among users has an indirect effect on BI; and c) design of the Interface has a direct influence on BI. A managerial implication is that Networking plays a role in the way supplementary services, including blogs and discussion forums, are perceived. Theoretically, when service quality is decomposed into components such as core services and supplementary services, it also positively influences PU.

  3. Emotion regulation in bereavement: searching for and finding emotional support in social network sites

    NASA Astrophysics Data System (ADS)

    Döveling, Katrin

    2015-04-01

    In an age of rising impact of online communication in social network sites (SNS), emotional interaction is neither limited nor restricted by time or space. Bereavement extends to the anonymity of cyberspace. What role does virtual interaction play in SNS in dealing with the basic human emotion of grief caused by the loss of a beloved person? The analysis laid out in this article provides answers in light of an interdisciplinary perspective on online bereavement. Relevant lines of research are scrutinized. After laying out the theoretical spectrum for the study, hypotheses based on a prior in-depth qualitative content analysis of 179 postings in three different German online bereavement platforms are proposed and scrutinized in a quantitative content analysis (2127 postings from 318 users). Emotion regulation patterns in SNS and similarities as well as differences in online bereavement of children, adolescents and adults are revealed. Large-scale quantitative findings into central motives, patterns, and restorative effects of online shared bereavement in regulating distress, fostering personal empowerment, and engendering meaning are presented. The article closes with implications for further analysis in memorialization practices.

  4. Mechanical Cell-Cell Communication in Fibrous Networks: The Importance of Network Geometry.

    PubMed

    Humphries, D L; Grogan, J A; Gaffney, E A

    2017-03-01

    Cells contracting in extracellular matrix (ECM) can transmit stress over long distances, communicating their position and orientation to cells many tens of micrometres away. Such phenomena are not observed when cells are seeded on substrates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for fibrous substrates to support far reaching stress and strain fields has implications for many physiological processes, while the mechanical properties of ECM are central to several pathological processes, including tumour invasion and fibrosis. Theoretical models have investigated the properties of ECM in a variety of network geometries. However, the effects of network architecture on mechanical cell-cell communication have received little attention. This work investigates the effects of geometry on network mechanics, and thus the ability for cells to communicate mechanically through different networks. Cell-derived displacement fields are quantified for various network geometries while controlling for network topology, cross-link density and micromechanical properties. We find that the heterogeneity of response, fibre alignment, and substrate displacement fields are sensitive to network choice. Further, we show that certain geometries support mechanical communication over longer distances than others. As such, we predict that the choice of network geometry is important in fundamental modelling of cell-cell interactions in fibrous substrates, as well as in experimental settings, where mechanical signalling at the cellular scale plays an important role. This work thus informs the construction of theoretical models for substrate mechanics and experimental explorations of mechanical cell-cell communication.

  5. Excessive coupling of the salience network with intrinsic neurocognitive brain networks during rectal distension in adolescents with irritable bowel syndrome: a preliminary report

    PubMed Central

    Liu, Xiaolin; Silverman, Alan; Kern, Mark; Ward, B. Douglas; Li, Shi-Jiang; Shaker, Reza; Sood, Manu R.

    2015-01-01

    Background The neural network mechanisms underlying visceral hypersensitivity in irritable bowel syndrome (IBS) are incompletely understood. It has been proposed that an intrinsic salience network plays an important role in chronic pain and IBS symptoms. Using neuroimaging, we examined brain responses to rectal distension in adolescent IBS patients, focusing on determining the alteration of salience network integrity in IBS and its functional implications in current theoretical frameworks. We hypothesized that (1) brain responses to visceral stimulation in adolescents are similar to those in adults, and (2) IBS is associated with an altered salience network interaction with other neurocognitive networks, particularly the default mode network (DMN) and executive control network (ECN), as predicted by the theoretical models. Methods IBS patients and controls received subliminal and liminal rectal distension during imaging. Stimulus-induced brain activations were determined. Salience network integrity was evaluated by functional connectivity of its seed regions activated by rectal distension in the insular and cingulate cortices. Key Results Compared with controls, IBS patients demonstrated greater activation to rectal distension in neural structures of the homeostatic afferent and emotional arousal networks, especially the anterior cingulate and insular cortices. Greater brain responses to liminal vs. subliminal distension were observed in both groups. Particularly, IBS is uniquely associated with an excessive coupling of the salience network with the DMN and ECN in their key frontal and parietal node areas. Conclusions & Inferences Our study provided consistent evidence supporting the theoretical predictions of altered salience network functioning as a neuropathological mechanism of IBS symptoms. PMID:26467966

  6. Protein interaction networks from literature mining

    NASA Astrophysics Data System (ADS)

    Ihara, Sigeo

    2005-03-01

    The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.

  7. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks

    PubMed Central

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long – range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions. PMID:27857564

  8. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks.

    PubMed

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long - range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions.

  9. Lis1 controls dynamics of neuronal filopodia and spines to impact synaptogenesis and social behaviour

    PubMed Central

    Sudarov, Anamaria; Gooden, Frank; Tseng, Debbie; Gan, Wen-Biao; Ross, Margaret Elizabeth

    2013-01-01

    LIS1 (PAFAH1B1) mutation can impair neuronal migration, causing lissencephaly in humans. LIS1 loss is associated with dynein protein motor dysfunction, and disrupts the actin cytoskeleton through disregulated RhoGTPases. Recently, LIS1 was implicated as an important protein-network interaction node with high-risk autism spectrum disorder genes expressed in the synapse. How LIS1 might participate in this disorder has not been investigated. We examined the role of LIS1 in synaptogenesis of post-migrational neurons and social behaviour in mice. Two-photon imaging of actin-rich dendritic filopodia and spines in vivo showed significant reductions in elimination and turnover rates of dendritic protrusions of layer V pyramidal neurons in adolescent Lis1+/− mice. Lis1+/− filopodia on immature hippocampal neurons in vitro exhibited reduced density, length and RhoA dependent impaired dynamics compared to Lis1+/+. Moreover, Lis1+/− adolescent mice exhibited deficits in social interaction. Lis1 inactivation restricted to the postnatal hippocampus resulted in similar deficits in dendritic protrusion density and social interactions. Thus, LIS1 plays prominently in dendritic filopodia dynamics and spine turnover implicating reduced dendritic spine plasticity as contributing to developmental autistic-like behaviour. PMID:23483716

  10. Virtual water trade and country vulnerability: A network perspective

    NASA Astrophysics Data System (ADS)

    Sartori, Martina; Schiavo, Stefano

    2015-04-01

    This work investigates the relationship between countries' participation in virtual water trade and their vulnerability to external shocks from a network perspective. In particular, we investigate whether (i) possible sources of local national crises may interact with the system, propagating through the network and affecting the other countries involved; (ii) the topological characteristics of the international agricultural trade network, translated into virtual water-equivalent flows, may favor countries' vulnerability to external crises. Our work contributes to the debate on the potential merits and risks associated with openness to trade in agricultural and food products. On the one hand, trade helps to ensure that even countries with limited water (and other relevant) resources have access to sufficient food and contribute to the global saving of water. On the other hand, there are fears that openness may increase the vulnerability to external shocks and thus make countries worse off. Here we abstract from political considerations about food sovereignty and independence from imports and focus instead on investigating whether the increased participation in global trade that the world has witnessed in the last 30 years has made the system more susceptible to large shocks. Our analysis reveals that: (i) the probability of larger supply shocks has not increased over time; (ii) the topological characteristics of the VW network are not such as to favor the systemic risk associated with shock propagation; and (iii) higher-order interconnections may reveal further important information about the structure of a network. Regarding the first result, fluctuations in output volumes, among the sources of shock analyzed here, are more likely to generate some instability. The first implication is that, on one side, past national or regional economic crises were not necessarily brought about or strengthened by global trade. The second, more remarkable, implication is that, on the other side, supporting a national policy of self-sufficiency in food production while progressively reducing the participation in international agricultural trade does not necessarily protect a country from economic instability. Moreover, it is well established in the literature that, over time, international food trade has favored more efficient use of water resources, at the global level. This fact, together with our conclusions, highlights the important role of international trade in driving the efficient allocation of water resources. To sum up, our evidence reveals that the increased globalization witnessed in the last 30 years is not associated with an increased frequency of adverse shocks (in either precipitation or food production). Furthermore, building on recent advances in network analysis that connect the stability of a complex system to the interaction between the distribution of shocks and the network topology, we find that the world is more interconnected, but not necessarily less stable.

  11. Intention to continue using Facebook fan pages from the perspective of social capital theory.

    PubMed

    Lin, Kuan-Yu; Lu, Hsi-Peng

    2011-10-01

    Social network sites enable users to express themselves, establish ties, and develop and maintain social relationships. Recently, many companies have begun using social media identity (e.g., Facebook fan pages) to enhance brand attractiveness, and social network sites have evolved into social utility networks, thereby creating a number of promising business opportunities. To this end, the operators of fan pages need to be aware of the factors motivating users to continue their patronization of such pages. This study set out to identify these motivating factors from the point of view of social capital. This study employed structural equation modeling to investigate a research model based on a survey of 327 fan pages users. This study discovered that ties related to social interaction (structural dimension), shared values (cognitive dimension), and trust (relational dimension) play important roles in users' continued intention to use Facebook fan pages. Finally, this study discusses the implications of these findings and offers directions for future research.

  12. Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance.

    PubMed

    Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi

    2018-06-18

    Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.

  13. Critical tipping point distinguishing two types of transitions in modular network structures

    NASA Astrophysics Data System (ADS)

    Shai, Saray; Kenett, Dror Y.; Kenett, Yoed N.; Faust, Miriam; Dobson, Simon; Havlin, Shlomo

    2015-12-01

    Modularity is a key organizing principle in real-world large-scale complex networks. The relatively sparse interactions between modules are critical to the functionality of the system and are often the first to fail. We model such failures as site percolation targeting interconnected nodes, those connecting between modules. We find, using percolation theory and simulations, that they lead to a "tipping point" between two distinct regimes. In one regime, removal of interconnected nodes fragments the modules internally and causes the system to collapse. In contrast, in the other regime, while only attacking a small fraction of nodes, the modules remain but become disconnected, breaking the entire system. We show that networks with broader degree distribution might be highly vulnerable to such attacks since only few nodes are needed to interconnect the modules, consequently putting the entire system at high risk. Our model has the potential to shed light on many real-world phenomena, and we briefly consider its implications on recent advances in the understanding of several neurocognitive processes and diseases.

  14. The ‘Friendship Dynamics of Religion,’ or the ‘Religious Dynamics of Friendship’? A Social Network Analysis of Adolescents Who Attend Small Schools*

    PubMed Central

    Cheadle, Jacob E.; Schwadel, Philip

    2012-01-01

    Longitudinal social network data on adolescents in seven schools are analyzed to reach a new understanding about how the personal and interpersonal social dimensions of adolescent religion intertwine together in small school settings. We primarily address two issues relevant to the sociology of religion and sociology in general: (1) social selection as a source of religious homophily and (2) friend socialization of religion. Analysis results are consistent with Collins’ interaction ritual chain theory, which stresses the social dimensions of religion, since network-religion autocorrelations are relatively substantial in magnitude and both selection and socialization mechanisms play key roles in generating them. Results suggest that socialization plays a stronger role than social selection in four of six religious outcomes, and that more religious youth are more cliquish. Implications for our understanding of the social context of religion, religious homophily, and the ways we model religious influence, as well as limitations and considerations for future research, are discussed. PMID:23017927

  15. Prefrontal mediation of the reading network predicts intervention response in dyslexia.

    PubMed

    Aboud, Katherine S; Barquero, Laura A; Cutting, Laurie E

    2018-04-01

    A primary challenge facing the development of interventions for dyslexia is identifying effective predictors of intervention response. While behavioral literature has identified core cognitive characteristics of response, the distinction of reading versus executive cognitive contributions to response profiles remains unclear, due in part to the difficulty of segregating these constructs using behavioral outputs. In the current study we used functional neuroimaging to piece apart the mechanisms of how/whether executive and reading network relationships are predictive of intervention response. We found that readers who are responsive to intervention have more typical pre-intervention functional interactions between executive and reading systems compared to nonresponsive readers. These findings suggest that intervention response in dyslexia is influenced not only by domain-specific reading regions, but also by contributions from intervening domain-general networks. Our results make a significant gain in identifying predictive bio-markers of outcomes in dyslexia, and have important implications for the development of personalized clinical interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Noise-induced polarization switching in complex networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Díaz-Guilera, Albert; Serrano, M. Ángeles

    2017-04-01

    The combination of bistability and noise is ubiquitous in complex systems, from biology to social interactions, and has important implications for their functioning and resilience. Here we use a simple three-state dynamical process, in which nodes go from one pole to another through an intermediate state, to show that noise can induce polarization switching in bistable systems if dynamical correlations are significant. In large, fully connected networks, where dynamical correlations can be neglected, increasing noise yields a collapse of bistability to an unpolarized configuration where the three possible states of the nodes are equally likely. In contrast, increased noise induces abrupt and irreversible polarization switching in sparsely connected networks. In multiplexes, where each layer can have a different polarization tendency, one layer is dominant and progressively imposes its polarization state on the other, offsetting or promoting the ability of noise to switch its polarization. Overall, we show that the interplay of noise and dynamical correlations can yield discontinuous transitions between extremes, which cannot be explained by a simple mean-field description.

  17. Coevolution of dynamical states and interactions in dynamic networks

    NASA Astrophysics Data System (ADS)

    Zimmermann, Martín G.; Eguíluz, Víctor M.; San Miguel, Maxi

    2004-06-01

    We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.

  18. Oligomerization of coronin: Implication on actin filament length in Leishmania.

    PubMed

    Srivastava, Rashmi; Prasadareddy Kajuluri, Lova; Pathak, Neelam; Gupta, Chhitar M; Sahasrabuddhe, Amogh A

    2015-12-01

    Coronin proteins bind with actin filaments and participate in regulation of actin-dependent processes. These proteins contain a coiled-coil domain at their C-terminus, which is responsible for their dimeric or trimeric forms. However, the functional significance of these oligomeric configurations in organizing the actin cytoskeleton is obscure. Here, we report that the Leishmania coronin exists in a higher oligomeric form through its coiled-coil domain, the truncation of which ablates the ability of Leishmania coronin to assist actin-filament formation. F-actin co-sedimentation assay using purified proteins shows that the coiled-coil domain does not interact with actin-filaments and its absence does not abrogate actin-coronin interaction. Furthermore, it was shown that unlike other coronins, Leishmania coronin interacts with actin-filaments through its unique region. These results provided important insights into the role of coronin oligomerization in modulating actin-network. © 2015 Wiley Periodicals, Inc.

  19. Structure and effect of sarcosine on water and urea by using molecular dynamics simulations: Implications in protein stabilization.

    PubMed

    Kumar, Narendra; Kishore, Nand

    2013-01-01

    Sarcosine is one of the most important protecting osmolytes which is also known to counteract the denaturing effect of urea. We used molecular dynamics simulation methods to investigate the mechanism of protein stabilization and counteraction of urea by sarcosine. We found that sarcosine enhanced the tetrahedral structure of water and strengthened its hydrogen bonding network. We also found that sarcosine did not form clusters unlike glycine. Our results show strong interaction between sarcosine and urea molecules. Addition of sarcosine enhanced the urea-water structure and urea-water lifetime indicated an increase in the solvation of urea. These findings suggest that sarcosine indirectly stabilizes protein by enhancing water-water structure thus decreasing the hydrophobic effect and counteracts the effect of urea by increasing the solvation of urea and directly interacting with it leaving urea less available to interact with protein. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children.

    PubMed

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-11-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.

  1. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children

    PubMed Central

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-01-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene–environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene–environment interactions in children treated with r-hGH. PMID:26503811

  2. Where there is a goal, there is a way: what, why and how the parieto-frontal mirror network can mediate imitative behaviours.

    PubMed

    Casartelli, Luca; Molteni, Massimo

    2014-11-01

    The relationships between mirror neurons (MNs) and motor imitation, and its clinical implications in autism spectrum disorder (ASD) have been widely investigated; however, the literature remains—at least partially—controversial. In this review we support a multi-level action understanding model focusing on the mirror-based understanding. We review the functional role of the parieto-frontal MNs (PFMN) network claiming that PFMNs function cannot be limited to imitation nor can imitation be explained solely by the activity of PFMNs. The distinction between movement, motor act and motor action is useful to characterize deeply both act(ion) understanding and imitation of act(ion). A more abstract representation of act(ion) may be crucial for clarifying what, why and how an imitator is imitating. What counts in social interactions is achieving goals: it does not matter which effector or string of motor acts you eventually use for achieving (proximal and distal) goals. Similarly, what counts is the ability to recognize/imitate the style of act(ion) regardless of the way in which it is expressed. We address this crucial point referring to its potential implications in ASD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Recurrent interactions between the input and output of a songbird cortico-basal ganglia pathway are implicated in vocal sequence variability

    PubMed Central

    Hamaguchi, Kosuke; Mooney, Richard

    2012-01-01

    Complex brain functions, such as the capacity to learn and modulate vocal sequences, depend on activity propagation in highly distributed neural networks. To explore the synaptic basis of activity propagation in such networks, we made dual in vivo intracellular recordings in anesthetized zebra finches from the input (nucleus HVC) and output (lateral magnocellular nucleus of the anterior nidopallium (LMAN)) neurons of a songbird cortico-basal ganglia (BG) pathway necessary to the learning and modulation of vocal motor sequences. These recordings reveal evidence of bidirectional interactions, rather than only feedforward propagation of activity from HVC to LMAN, as had been previously supposed. A combination of dual and triple recording configurations and pharmacological manipulations was used to map out circuitry by which activity propagates from LMAN to HVC. These experiments indicate that activity travels to HVC through at least two independent ipsilateral pathways, one of which involves fast signaling through a midbrain dopaminergic cell group, reminiscent of recurrent mesocortical loops described in mammals. We then used in vivo pharmacological manipulations to establish that augmented LMAN activity is sufficient to restore high levels of sequence variability in adult birds, suggesting that recurrent interactions through highly distributed forebrain – midbrain pathways can modulate learned vocal sequences. PMID:22915110

  4. Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.

    PubMed

    Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong

    2015-01-01

    Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant.

  5. Global Mapping of the Yeast Genetic Interaction Network

    NASA Astrophysics Data System (ADS)

    Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles

    2004-02-01

    A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

  6. A framework to find the logic backbone of a biological network.

    PubMed

    Maheshwari, Parul; Albert, Réka

    2017-12-06

    Cellular behaviors are governed by interaction networks among biomolecules, for example gene regulatory and signal transduction networks. An often used dynamic modeling framework for these networks, Boolean modeling, can obtain their attractors (which correspond to cell types and behaviors) and their trajectories from an initial state (e.g. a resting state) to the attractors, for example in response to an external signal. The existing methods however do not elucidate the causal relationships between distant nodes in the network. In this work, we propose a simple logic framework, based on categorizing causal relationships as sufficient or necessary, as a complement to Boolean networks. We identify and explore the properties of complex subnetworks that are distillable into a single logic relationship. We also identify cyclic subnetworks that ensure the stabilization of the state of participating nodes regardless of the rest of the network. We identify the logic backbone of biomolecular networks, consisting of external signals, self-sustaining cyclic subnetworks (stable motifs), and output nodes. Furthermore, we use the logic framework to identify crucial nodes whose override can drive the system from one steady state to another. We apply these techniques to two biological networks: the epithelial-to-mesenchymal transition network corresponding to a developmental process exploited in tumor invasion, and the network of abscisic acid induced stomatal closure in plants. We find interesting subnetworks with logical implications in these networks. Using these subgraphs and motifs, we efficiently reduce both networks to succinct backbone structures. The logic representation identifies the causal relationships between distant nodes and subnetworks. This knowledge can form the basis of network control or used in the reverse engineering of networks.

  7. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse.

    PubMed

    Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L; Coba, Marcelo P; Levitt, Pat

    2016-12-15

    Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high-confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1, and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High-confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism but not schizophrenia, bipolar disorder, major depressive disorder, or attention-deficit/hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices but not with highly expressed genes that are not in the interactome. Proximity ligation assays and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Let's chat: developmental neural bases of social motivation during real-time peer interaction.

    PubMed

    Warnell, Katherine Rice; Sadikova, Eleonora; Redcay, Elizabeth

    2018-05-01

    Humans are motivated to interact with each other, but the neural bases of social motivation have been predominantly examined in non-interactive contexts. Understanding real-world social motivation is of special importance during middle childhood (ages 8-12), a period when social skills improve, social networks grow, and social brain networks specialize. To assess interactive social motivation, the current study used a novel fMRI paradigm in which children believed they were chatting with a peer. The design targeted two phases of interaction: (1) Initiation, in which children engaged in a social bid via sharing a like or hobby, and (2) Reply, in which children received either an engaged ("Me too") or non-engaged ("I'm away") reply from the peer. On control trials, children were told that their answers were not shared and that they would receive either engaged ("Matched") or non-engaged ("Disconnected") replies from the computer. Results indicated that during Initiation and Reply, key components of reward circuitry (e.g., ventral striatum) were more active for the peer than the computer trials. In addition, during Reply, social cognitive regions were more activated by the peer, and this social cognitive specialization increased with age. Finally, the effect of engagement type on reward circuitry activation was larger for social than non-social trials, indicating developmental sensitivity to social contingency. These findings demonstrate that both reward and social cognitive brain systems support real-time social interaction in middle childhood. An interactive approach to understanding social reward has implications for clinical disorders, where social motivation is more affected in real-world contexts. © 2017 John Wiley & Sons Ltd.

  9. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome

    PubMed Central

    Merico, Daniele; Costain, Gregory; Butcher, Nancy J.; Warnica, William; Ogura, Lucas; Alfred, Simon E.; Brzustowicz, Linda M.; Bassett, Anne S.

    2014-01-01

    The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes, and those implicated by DGCR8, to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region encompasses seven validated or putative miRNA genes. Employing two standard prediction tools, we generated sets of predicted target genes. Functional enrichment profiles of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and broader developmental pathways. We then constructed a protein interaction network of schizophrenia candidate genes and interaction partners relevant to brain function, independent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophrenia network. The findings provide new insights into the pathway from 22q11.2 deletion to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may have downstream effects implicating genes elsewhere in the genome that are relevant to the general schizophrenia population. These data also provide further support for the notion that robust genetic findings in schizophrenia may converge on a reasonable number of final pathways. PMID:25484875

  10. Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.

    PubMed

    Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan

    2016-12-01

    Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.

  11. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining

    PubMed Central

    2012-01-01

    Background Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Results Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction network. Since multiple TLRs were found in the generic fever network, it is reasonable to hypothesize that vaccine-TLR interactions may play an important role in inducing fever response, which deserves a further investigation. Conclusions This study demonstrated that ontology-based literature mining is a powerful method for analyzing gene interaction networks and generating new scientific hypotheses. PMID:23256563

  12. The ‘who’ and ‘what’ of #diabetes on Twitter

    PubMed Central

    Beguerisse-Díaz, Mariano; McLennan, Amy K.; Garduño-Hernández, Guillermo; Barahona, Mauricio; Ulijaszek, Stanley J.

    2017-01-01

    Social media are being increasingly used for health promotion, yet the landscape of users, messages and interactions in such fora is poorly understood. Studies of social media and diabetes have focused mostly on patients, or public agencies addressing it, but have not looked broadly at all of the participants or the diversity of content they contribute. We study Twitter conversations about diabetes through the systematic analysis of 2.5 million tweets collected over 8 months and the interactions between their authors. We address three questions. (1) What themes arise in these tweets? (2) Who are the most influential users? (3) Which type of users contribute to which themes? We answer these questions using a mixed-methods approach, integrating techniques from anthropology, network science and information retrieval such as thematic coding, temporal network analysis and community and topic detection. Diabetes-related tweets fall within broad thematic groups: health information, news, social interaction and commercial. At the same time, humorous messages and references to popular culture appear consistently, more than any other type of tweet. We classify authors according to their temporal ‘hub’ and ‘authority’ scores. Whereas the hub landscape is diffuse and fluid over time, top authorities are highly persistent across time and comprise bloggers, advocacy groups and NGOs related to diabetes, as well as for-profit entities without specific diabetes expertise. Top authorities fall into seven interest communities as derived from their Twitter follower network. Our findings have implications for public health professionals and policy makers who seek to use social media as an engagement tool and to inform policy design. PMID:29942579

  13. A Graphical Model of Smoking-Induced Global Instability in Lung Cancer.

    PubMed

    Wang, Yanbo; Qian, Weikang; Yuan, Bo

    2018-01-01

    Smoking is the major cause of lung cancer and the leading cause of cancer-related death in the world. The most current view about lung cancer is no longer limited to individual genes being mutated by any carcinogenic insults from smoking. Instead, tumorigenesis is a phenotype conferred by many systematic and global alterations, leading to extensive heterogeneity and variation for both the genotypes and phenotypes of individual cancer cells. Thus, strategically it is foremost important to develop a methodology to capture any consistent and global alterations presumably shared by most of the cancerous cells for a given population. This is particularly true that almost all of the data collected from solid cancers (including lung cancers) are usually distant apart over a large span of temporal or even spatial contexts. Here, we report a multiple non-Gaussian graphical model to reconstruct the gene interaction network using two previously published gene expression datasets. Our graphical model aims to selectively detect gross structural changes at the level of gene interaction networks. Our methodology is extensively validated, demonstrating good robustness, as well as the selectivity and specificity expected based on our biological insights. In summary, gene regulatory networks are still relatively stable during presumably the early stage of neoplastic transformation. But drastic structural differences can be found between lung cancer and its normal control, including the gain of functional modules for cellular proliferations such as EGFR and PDGFRA, as well as the lost of the important IL6 module, supporting their roles as potential drug targets. Interestingly, our method can also detect early modular changes, with the ALDH3A1 and its associated interactions being strongly implicated as a potential early marker, whose activations appear to alter LCN2 module as well as its interactions with the important TP53-MDM2 circuitry. Our strategy using the graphical model to reconstruct gene interaction work with biologically-inspired constraints exemplifies the importance and beauty of biology in developing any bio-computational approach.

  14. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci

    PubMed Central

    Zhao, Yuqi; Chen, Jing; Freudenberg, Johannes M.; Meng, Qingying; Rajpal, Deepak K.; Yang, Xia

    2017-01-01

    Objective Recent genome-wide association studies of coronary artery disease (CAD) have revealed 58 genome-wide significant and 148 suggestive genetic loci. However, the molecular mechanisms through which they contribute to CAD and the clinical implications of these findings remain largely unknown. We aim to retrieve gene subnetworks of the 206 CAD loci and identify and prioritize candidate regulators to better understand the biological mechanisms underlying the genetic associations. Approach and Results We devised a new integrative genomics approach that incorporated (1) candidate genes from the top CAD loci, (2) the complete genetic association results from the 1000 genomes-based CAD genome-wide association studies from the Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus the Coronary Artery Disease consortium, (3) tissue-specific gene regulatory networks that depict the potential relationship and interactions between genes, and (4) tissue-specific gene expression patterns between CAD patients and controls. The networks and top-ranked regulators according to these data-driven criteria were further queried against literature, experimental evidence, and drug information to evaluate their disease relevance and potential as drug targets. Our analysis uncovered several potential novel regulators of CAD such as LUM and STAT3, which possess properties suitable as drug targets. We also revealed molecular relations and potential mechanisms through which the top CAD loci operate. Furthermore, we found that multiple CAD-relevant biological processes such as extracellular matrix, inflammatory and immune pathways, complement and coagulation cascades, and lipid metabolism interact in the CAD networks. Conclusions Our data-driven integrative genomics framework unraveled tissue-specific relations among the candidate genes of the CAD genome-wide association studies loci and prioritized novel network regulatory genes orchestrating biological processes relevant to CAD. PMID:26966275

  15. In the company of wolves: the physical, social, and psychological benefits of dog ownership.

    PubMed

    Knight, Sarah; Edwards, Victoria

    2008-06-01

    The increase in aging populations has implications for the provision of health and social services. A preventative approach is taken to address this problem by examining a mechanism that can enhance physical health and reduce minor ailments. Participants in 10 focus groups discussed physical, psychological, and social benefits associated with human-dog interactions. Interaction between humans and dogs is a mechanism that can enhance the physical and psychological health of elderly citizens and promote a social support network between dog owners. In turn, dependence and impact on health and social services are alleviated. The social and community consequences of promoting dog ownership in the elderly are addressed, and it is concluded that the benefits of dog ownership should be promoted among the elderly and acknowledged by relevant agencies.

  16. Analysing Health Professionals' Learning Interactions in an Online Social Network: A Longitudinal Study.

    PubMed

    Li, Xin; Verspoor, Karin; Gray, Kathleen; Barnett, Stephen

    2016-01-01

    This paper summarises a longitudinal analysis of learning interactions occurring over three years among health professionals in an online social network. The study employs the techniques of Social Network Analysis (SNA) and statistical modeling to identify the changes in patterns of interaction over time and test associated structural network effects. SNA results indicate overall low participation in the network, although some participants became active over time and even led discussions. In particular, the analysis has shown that a change of lead contributor results in a change in learning interaction and network structure. The analysis of structural network effects demonstrates that the interaction dynamics slow down over time, indicating that interactions in the network are more stable. The health professionals may be reluctant to share knowledge and collaborate in groups but were interested in building personal learning networks or simply seeking information.

  17. Revealing hidden insect-fungus interactions; moderately specialized, modular and anti-nested detritivore networks.

    PubMed

    Jacobsen, Rannveig M; Sverdrup-Thygeson, Anne; Kauserud, Håvard; Birkemoe, Tone

    2018-04-11

    Ecological networks are composed of interacting communities that influence ecosystem structure and function. Fungi are the driving force for ecosystem processes such as decomposition and carbon sequestration in terrestrial habitats, and are strongly influenced by interactions with invertebrates. Yet, interactions in detritivore communities have rarely been considered from a network perspective. In the present study, we analyse the interaction networks between three functional guilds of fungi and insects sampled from dead wood. Using DNA metabarcoding to identify fungi, we reveal a diversity of interactions differing in specificity in the detritivore networks, involving three guilds of fungi. Plant pathogenic fungi were relatively unspecialized in their interactions with insects inhabiting dead wood, while interactions between the insects and wood-decay fungi exhibited the highest degree of specialization, which was similar to estimates for animal-mediated seed dispersal networks in previous studies. The low degree of specialization for insect symbiont fungi was unexpected. In general, the pooled insect-fungus networks were significantly more specialized, more modular and less nested than randomized networks. Thus, the detritivore networks had an unusual anti-nested structure. Future studies might corroborate whether this is a common aspect of networks based on interactions with fungi, possibly owing to their often intense competition for substrate. © 2018 The Author(s).

  18. Network Physiology: How Organ Systems Dynamically Interact

    PubMed Central

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  19. Specific non-monotonous interactions increase persistence of ecological networks.

    PubMed

    Yan, Chuan; Zhang, Zhibin

    2014-03-22

    The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.

  20. Cognitive neuroscience of social emotions and implications for psychopathology: examining embarrassment, guilt, envy, and schadenfreude.

    PubMed

    Jankowski, Kathryn F; Takahashi, Hidehiko

    2014-05-01

    Social emotions are affective states elicited during social interactions and integral for promoting socially appropriate behaviors and discouraging socially inappropriate ones. Social emotion-processing deficits significantly impair interpersonal relationships, and play distinct roles in the manifestation and maintenance of clinical symptomatology. Elucidating the neural correlates of discrete social emotions can serve as a window to better understanding and treating neuropsychiatric disorders. Moral cognition and social emotion-processing broadly recruit a fronto-temporo-subcortical network, supporting empathy, perspective-taking, self-processing, and reward-processing. The present review specifically examines the neural correlates of embarrassment, guilt, envy, and schadenfreude. Embarrassment and guilt are self-conscious emotions, evoked during negative evaluation following norm violations and supported by a fronto-temporo-posterior network. Embarrassment is evoked by social transgressions and recruits greater anterior temporal regions, representing conceptual social knowledge. Guilt is evoked by moral transgressions and recruits greater prefrontal regions, representing perspective-taking and behavioral change demands. Envy and schadenfreude are fortune-of-other emotions, evoked during social comparison and supported by a prefronto-striatal network. Envy represents displeasure in others' fortunes, and recruits increased dorsal anterior cingulate cortex, representing cognitive dissonance, and decreased reward-related striatal regions. Schadenfreude represents pleasure in others' misfortunes, and recruits reduced empathy-related insular regions and increased reward-related striatal regions. Implications for psychopathology and treatment design are discussed. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  1. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.

    PubMed

    Engin, H Billur; Kreisberg, Jason F; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10(-4)) and oncogenes (Odds Ratio 1.17, P-value < 10(-3)). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10(-8)). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer genes that encode proteins participating in interactions that are perturbed recurrently across tumors. In summary, mutation of specific protein interactions is an important contributor to tumor heterogeneity and may have important implications for clinical outcomes.

  2. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    PubMed

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  3. Nonlinear model of epidemic spreading in a complex social network.

    PubMed

    Kosiński, Robert A; Grabowski, A

    2007-10-01

    The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.

  4. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    NASA Astrophysics Data System (ADS)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  5. Amoebae, Giant Viruses, and Virophages Make Up a Complex, Multilayered Threesome

    PubMed Central

    Diesend, Jan; Kruse, Janis; Hagedorn, Monica; Hammann, Christian

    2018-01-01

    Viral infection had not been observed for amoebae, until the Acanthamoeba polyphaga mimivirus (APMV) was discovered in 2003. APMV belongs to the nucleocytoplasmatic large DNA virus (NCLDV) family and infects not only A. polyphaga, but also other professional phagocytes. Here, we review the Megavirales to give an overview of the current members of the Mimi- and Marseilleviridae families and their structural features during amoebal infection. We summarize the different steps of their infection cycle in A. polyphaga and Acanthamoeba castellani. Furthermore, we dive into the emerging field of virophages, which parasitize upon viral factories of the Megavirales family. The discovery of virophages in 2008 and research in recent years revealed an increasingly complex network of interactions between cell, giant virus, and virophage. Virophages seem to be highly abundant in the environment and occupy the same niches as the Mimiviridae and their hosts. Establishment of metagenomic and co-culture approaches rapidly increased the number of detected virophages over the recent years. Genetic interaction of cell and virophage might constitute a potent defense machinery against giant viruses and seems to be important for survival of the infected cell during mimivirus infections. Nonetheless, the molecular events during co-infection and the interactions of cell, giant virus, and virophage have not been elucidated, yet. However, the genetic interactions of these three, suggest an intricate, multilayered network during amoebal (co-)infections. Understanding these interactions could elucidate molecular events essential for proper viral factory activity and could implicate new ways of treating viruses that form viral factories. PMID:29376032

  6. Comprehensive neural networks for guilty feelings in young adults.

    PubMed

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-01-15

    Feelings of guilt are associated with widespread self and social cognitions, e.g., empathy, moral reasoning, and punishment. Neural correlates directly related to the degree of feelings of guilt have not been detected, probably due to the small numbers of subjects, whereas there are growing numbers of neuroimaging studies of feelings of guilt. We hypothesized that the neural networks for guilty feelings are widespread and include the insula, inferior parietal lobule (IPL), amygdala, subgenual cingulate cortex (SCC), and ventromedial prefrontal cortex (vmPFC), which are essential for cognitions of guilt. We investigated the association between regional gray matter density (rGMD) and feelings of guilt in 764 healthy young students (422 males, 342 females; 20.7 ± 1.8 years) using magnetic resonance imaging and the guilty feeling scale (GFS) for the younger generation which comprises interpersonal situation (IPS) and rule-breaking situation (RBS) scores. Both the IPS and RBS were negatively related to the rGMD in the right posterior insula (PI). The IPS scores were negatively correlated with rGMD in the left anterior insula (AI), right IPL, and vmPFC using small volume correction. A post hoc analysis performed on the significant clusters identified through these analyses revealed that rGMD activity in the right IPL showed a significant negative association with the empathy quotient. These findings at the whole-brain level are the widespread comprehensive neural network regions for guilty feelings. Interestingly, the novel finding in this study is that the PI was implicated as a common region for feelings of guilt with interaction between the IPS and RBS. Additionally, the neural networks including the IPL were associated with empathy and with regions implicated in moral reasoning (AI and vmPFC), and punishment (AI). Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Weighted projected networks: mapping hypergraphs to networks.

    PubMed

    López, Eduardo

    2013-05-01

    Many natural, technological, and social systems incorporate multiway interactions, yet are characterized and measured on the basis of weighted pairwise interactions. In this article, I propose a family of models in which pairwise interactions originate from multiway interactions, by starting from ensembles of hypergraphs and applying projections that generate ensembles of weighted projected networks. I calculate analytically the statistical properties of weighted projected networks, and suggest ways these could be used beyond theoretical studies. Weighted projected networks typically exhibit weight disorder along links even for very simple generating hypergraph ensembles. Also, as the size of a hypergraph changes, a signature of multiway interaction emerges on the link weights of weighted projected networks that distinguishes them from fundamentally weighted pairwise networks. This signature could be used to search for hidden multiway interactions in weighted network data. I find the percolation threshold and size of the largest component for hypergraphs of arbitrary uniform rank, translate the results into projected networks, and show that the transition is second order. This general approach to network formation has the potential to shed new light on our understanding of weighted networks.

  8. Decoding Network Structure in On-Chip Integrated Flow Cells with Synchronization of Electrochemical Oscillators

    NASA Astrophysics Data System (ADS)

    Jia, Yanxin; Kiss, István Z.

    2017-04-01

    The analysis of network interactions among dynamical units and the impact of the coupling on self-organized structures is a challenging task with implications in many biological and engineered systems. We explore the coupling topology that arises through the potential drops in a flow channel in a lab-on-chip device that accommodates chemical reactions on electrode arrays. The networks are revealed by analysis of the synchronization patterns with the use of an oscillatory chemical reaction (nickel electrodissolution) and are further confirmed by direct decoding using phase model analysis. In dual electrode configuration, a variety coupling schemes, (uni- or bidirectional positive or negative) were identified depending on the relative placement of the reference and counter electrodes (e.g., placed at the same or the opposite ends of the flow channel). With three electrodes, the network consists of a superposition of a localized (upstream) and global (all-to-all) coupling. With six electrodes, the unique, position dependent coupling topology resulted spatially organized partial synchronization such that there was a synchrony gradient along the quasi-one-dimensional spatial coordinate. The networked, electrode potential (current) spike generating electrochemical reactions hold potential for construction of an in-situ information processing unit to be used in electrochemical devices in sensors and batteries.

  9. Social networks and bronchial asthma.

    PubMed

    D'Amato, Gennaro; Cecchi, Lorenzo; Liccardi, Gennaro; D'Amato, Maria; Stanghellini, Giovanni

    2013-02-01

    To focus on both positive and negative aspects of the interaction between asthmatic patients and the social networks, and to highlight the need of a psychological approach in some individuals to integrate pharmacological treatment is the purpose of review. There is evidence that in some asthmatic patients, the excessive use of social networks can induce depression and stress triggering bronchial obstruction, whereas in others their rational use can induce beneficial effects in terms of asthma management. The increasing asthma prevalence in developed countries seen at the end of last century has raised concern for the considerable burden of this disease on society as well as individuals. Bronchial asthma is a disease in which psychological implications play a role in increasing or in reducing the severity of bronchial obstruction. Internet and, in particular, social media are increasingly a part of daily life of both young and adult people, thus allowing virtual relationships with peers sharing similar interests and goals. Although social network users often disclose more about themselves online than they do in person, there might be a risk for adolescents and for sensitive individuals, who can be negatively influenced by an incorrect use. However, although some studies show an increased risk of depression, other observations suggest beneficial effects of social networks by enhancing communication, social connection and self-esteem.

  10. Two Distinct Scene-Processing Networks Connecting Vision and Memory.

    PubMed

    Baldassano, Christopher; Esteva, Andre; Fei-Fei, Li; Beck, Diane M

    2016-01-01

    A number of regions in the human brain are known to be involved in processing natural scenes, but the field has lacked a unifying framework for understanding how these different regions are organized and interact. We provide evidence from functional connectivity and meta-analyses for a new organizational principle, in which scene processing relies upon two distinct networks that split the classically defined parahippocampal place area (PPA). The first network of strongly connected regions consists of the occipital place area/transverse occipital sulcus and posterior PPA, which contain retinotopic maps and are not strongly coupled to the hippocampus at rest. The second network consists of the caudal inferior parietal lobule, retrosplenial complex, and anterior PPA, which connect to the hippocampus (especially anterior hippocampus), and are implicated in both visual and nonvisual tasks, including episodic memory and navigation. We propose that these two distinct networks capture the primary functional division among scene-processing regions, between those that process visual features from the current view of a scene and those that connect information from a current scene view with a much broader temporal and spatial context. This new framework for understanding the neural substrates of scene-processing bridges results from many lines of research, and makes specific functional predictions.

  11. Priming mortality salience: supraliminal, subliminal and "double-death" priming techniques.

    PubMed

    Mahoney, Melissa B; Saunders, Benjamin A; Cain, Nicole M

    2014-01-01

    The study examined whether successively presented subliminal and supraliminal morality salience primes ("double death" prime) would have a stronger influence on death thought accessibility than subliminal or supraliminal primes alone. A between-subjects 2 (subliminal prime/control) × 2 (supraliminal prime/control) design was used. The supraliminal prime prompted participants to answer questions about death. For the subliminal prime, the word death was presented outside of awareness. Both priming techniques differed significantly from a control in ability to elicit mortality salience. There was an interactive influence of both primes. Implications for unconscious neutral networks relating to death are discussed.

  12. Knowledge management: implications for human service organizations.

    PubMed

    Austin, Michael J; Claassen, Jennette; Vu, Catherine M; Mizrahi, Paola

    2008-01-01

    Knowledge management has recently taken a more prominent role in the management of organizations as worker knowledge and intellectual capital are recognized as critical to organizational success. This analysis explores the literature of knowledge management including the individual level of tacit and explicit knowledge, the networks and social interactions utilized by workers to create and share new knowledge, and the multiple organizational and managerial factors associated with effective knowledge management systems. Based on the role of organizational culture, structure, leadership, and reward systems, six strategies are identified to assist human service organizations with implementing new knowledge management systems.

  13. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment

    PubMed Central

    Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves

    2016-01-01

    ABSTRACT Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. PMID:27803188

  14. Gene regulatory networks in lactation: identification of global principles using bioinformatics.

    PubMed

    Lemay, Danielle G; Neville, Margaret C; Rudolph, Michael C; Pollard, Katherine S; German, J Bruce

    2007-11-27

    The molecular events underlying mammary development during pregnancy, lactation, and involution are incompletely understood. Mammary gland microarray data, cellular localization data, protein-protein interactions, and literature-mined genes were integrated and analyzed using statistics, principal component analysis, gene ontology analysis, pathway analysis, and network analysis to identify global biological principles that govern molecular events during pregnancy, lactation, and involution. Several key principles were derived: (1) nearly a third of the transcriptome fluctuates to build, run, and disassemble the lactation apparatus; (2) genes encoding the secretory machinery are transcribed prior to lactation; (3) the diversity of the endogenous portion of the milk proteome is derived from fewer than 100 transcripts; (4) while some genes are differentially transcribed near the onset of lactation, the lactation switch is primarily post-transcriptionally mediated; (5) the secretion of materials during lactation occurs not by up-regulation of novel genomic functions, but by widespread transcriptional suppression of functions such as protein degradation and cell-environment communication; (6) the involution switch is primarily transcriptionally mediated; and (7) during early involution, the transcriptional state is partially reverted to the pre-lactation state. A new hypothesis for secretory diminution is suggested - milk production gradually declines because the secretory machinery is not transcriptionally replenished. A comprehensive network of protein interactions during lactation is assembled and new regulatory gene targets are identified. Less than one fifth of the transcriptionally regulated nodes in this lactation network have been previously explored in the context of lactation. Implications for future research in mammary and cancer biology are discussed.

  15. How children explore the phonological network in child-directed speech: A survival analysis of children’s first word productions

    PubMed Central

    Carlson, Matthew T.; Sonderegger, Morgan; Bane, Max

    2014-01-01

    We explored how phonological network structure influences the age of words’ first appearance in children’s (14–50 months) speech, using a large, longitudinal corpus of spontaneous child-caregiver interactions. We represent the caregiver lexicon as a network in which each word is connected to all of its phonological neighbors, and consider both words’ local neighborhood density (degree), and also their embeddedness among interconnected neighborhoods (clustering coefficient and coreness). The larger-scale structure reflected in the latter two measures is implicated in current theories of lexical development and processing, but its role in lexical development has not yet been explored. Multilevel discrete-time survival analysis revealed that children are more likely to produce new words whose network properties support lexical access for production: high degree, but low clustering coefficient and coreness. These effects appear to be strongest at earlier ages and largely absent from 30 months on. These results suggest that both a word’s local connectivity in the lexicon and its position in the lexicon as a whole influences when it is learned, and they underscore how general lexical processing mechanisms contribute to productive vocabulary development. PMID:25089073

  16. Social network analysis of children with autism spectrum disorder: Predictors of fragmentation and connectivity in elementary school classrooms

    PubMed Central

    Anderson, Ariana; Locke, Jill; Kretzmann, Mark; Kasari, Connie

    2016-01-01

    Although children with autism spectrum disorder are frequently included in mainstream classrooms, it is not known how their social networks change compared to typically developing children and whether the factors predictive of this change may be unique. This study identified and compared predictors of social connectivity of children with and without autism spectrum disorder using a social network analysis. Participants included 182 children with autism spectrum disorder and 152 children without autism spectrum disorder, aged 5–12 years in 152 general education K-5 classrooms. General linear models were used to compare how age, classroom size, gender, baseline connectivity, diagnosis, and intelligence quotient predicted changes in social connectivity (closeness). Gender and classroom size had a unique interaction in predicting final social connectivity and the change in connectivity for children with autism spectrum disorder; boys who were placed in larger classrooms showed increased social network fragmentation. This increased fragmentation for boys when placed in larger classrooms was not seen in typically developing boys. These results have implications regarding placement, intervention objectives, and ongoing school support that aimed to increase the social success of children with autism spectrum disorder in public schools. PMID:26567264

  17. The GPS Topex/Poseidon precise orbit determination experiment - Implications for design of GPS global networks

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.; Lichten, Stephen M.; Davis, Edgar S.; Theiss, Harold L.

    1993-01-01

    Topex/Poseidon, a cooperative satellite mission between United States and France, aims to determine global ocean circulation patterns and to study their influence on world climate through precise measurements of sea surface height above the geoid with an on-board altimeter. To achieve the mission science aims, a goal of 13-cm orbit altitude accuracy was set. Topex/Poseidon includes a Global Positioning System (GPS) precise orbit determination (POD) system that has now demonstrated altitude accuracy better than 5 cm. The GPS POD system includes an on-board GPS receiver and a 6-station GPS global tracking network. This paper reviews early GPS results and discusses multi-mission capabilities available from a future enhanced global GPS network, which would provide ground-based geodetic and atmospheric calibrations needed for NASA deep space missions while also supplying tracking data for future low Earth orbiters. Benefits of the enhanced global GPS network include lower operations costs for deep space tracking and many scientific and societal benefits from the low Earth orbiter missions, including improved understanding of ocean circulation, ocean-weather interactions, the El Nino effect, the Earth thermal balance, and weather forecasting.

  18. Adaptive Plasticity in the Healthy Language Network: Implications for Language Recovery after Stroke

    PubMed Central

    2016-01-01

    Across the last three decades, the application of noninvasive brain stimulation (NIBS) has substantially increased the current knowledge of the brain's potential to undergo rapid short-term reorganization on the systems level. A large number of studies applied transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in the healthy brain to probe the functional relevance and interaction of specific areas for different cognitive processes. NIBS is also increasingly being used to induce adaptive plasticity in motor and cognitive networks and shape cognitive functions. Recently, NIBS has been combined with electrophysiological techniques to modulate neural oscillations of specific cortical networks. In this review, we will discuss recent advances in the use of NIBS to modulate neural activity and effective connectivity in the healthy language network, with a special focus on the combination of NIBS and neuroimaging or electrophysiological approaches. Moreover, we outline how these results can be transferred to the lesioned brain to unravel the dynamics of reorganization processes in poststroke aphasia. We conclude with a critical discussion on the potential of NIBS to facilitate language recovery after stroke and propose a phase-specific model for the application of NIBS in language rehabilitation. PMID:27830094

  19. The hub of a wheel: a neighborhood support network.

    PubMed

    Rosel, N

    1983-01-01

    In a neighborhood where elderly residents have known each other for years, a closely-knit network of mutual assistance and support has developed among a few of the oldest residents. The network and its functions are described in detail, and two features are discussed as being unusual. First, the "old old" people help each other on a daily basis, and second, the routine nature of the assistance is taken for granted by all concerned, except for the author, who observed the evolution of this network over a period of several years. The network's theoretical implications for social integration and its practical implications for the maintenance of independent living are summarized.

  20. Modeling and simulating networks of interdependent protein interactions.

    PubMed

    Stöcker, Bianca K; Köster, Johannes; Zamir, Eli; Rahmann, Sven

    2018-05-21

    Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, as generated by allosteric effects or mutual exclusion due to steric hindrance. Therefore, formal models for integrating and utilizing information about interaction dependencies are of high interest. Here, we describe an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks ("constrained networks"). The construction of these networks is based on public interaction databases as well as text-mined information about interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows fast simulation and facilitates the analysis of many proteins in large networks. In addition, this approach enables the simulation of perturbation effects, such as knockout of single or multiple proteins and changes of protein concentrations. We illustrate how our model can be used to analyze a constrained human adhesome protein network, which is responsible for the formation of diverse and dynamic cell-matrix adhesion sites. By comparing protein complex formation under known interaction dependencies versus without dependencies, we investigate how these dependencies shape the resulting repertoire of protein complexes. Furthermore, our model enables investigating how the interplay of network topology with interaction dependencies influences the propagation of perturbation effects across a large biochemical system. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsim and as a Bioconda package (https://bioconda.github.io).

  1. Fluid shear stress activates YAP1 to promote cancer cell motility

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Jung; Diaz, Miguel F.; Price, Katherine M.; Ozuna, Joyce A.; Zhang, Songlin; Sevick-Muraca, Eva M.; Hagan, John P.; Wenzel, Pamela L.

    2017-01-01

    Mechanical stress is pervasive in egress routes of malignancy, yet the intrinsic effects of force on tumour cells remain poorly understood. Here, we demonstrate that frictional force characteristic of flow in the lymphatics stimulates YAP1 to drive cancer cell migration; whereas intensities of fluid wall shear stress (WSS) typical of venous or arterial flow inhibit taxis. YAP1, but not TAZ, is strictly required for WSS-enhanced cell movement, as blockade of YAP1, TEAD1-4 or the YAP1-TEAD interaction reduces cellular velocity to levels observed without flow. Silencing of TEAD phenocopies loss of YAP1, implicating transcriptional transactivation function in mediating force-enhanced cell migration. WSS dictates expression of a network of YAP1 effectors with executive roles in invasion, chemotaxis and adhesion downstream of the ROCK-LIMK-cofilin signalling axis. Altogether, these data implicate YAP1 as a fluid mechanosensor that functions to regulate genes that promote metastasis.

  2. Deciphering microbial interactions and detecting keystone species with co-occurrence networks

    PubMed Central

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets. PMID:24904535

  3. Understanding Networking in China and the Arab World: Lessons for International Managers

    ERIC Educational Resources Information Center

    Hutchings, Kate; Weir, David

    2006-01-01

    Purpose: To explore the implications of internationalisation for "guanxi" and "wasta" and the role of trust, family and favours in underpinning these traditional models of networking. The paper also draws some implications for management development professionals and trainers. Design/methodology/approach: The argument is based…

  4. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    NASA Astrophysics Data System (ADS)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain-stiffening behavior and compare this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory to account for coordination number inhomogeneities and predict a breakdown of universal scaling near the critical point at sufficiently high disorder, and discuss the utility for this type of model in describing biopolymer networks.

  5. Sequence patterns mediating functions of disordered proteins.

    PubMed

    Exarchos, Konstantinos P; Kourou, Konstantina; Exarchos, Themis P; Papaloukas, Costas; Karamouzis, Michalis V; Fotiadis, Dimitrios I

    2015-01-01

    Disordered proteins lack specific 3D structure in their native state and have been implicated with numerous cellular functions as well as with the induction of severe diseases, e.g., cardiovascular and neurodegenerative diseases as well as diabetes. Due to their conformational flexibility they are often found to interact with a multitude of protein molecules; this one-to-many interaction which is vital for their versatile functioning involves short consensus protein sequences, which are normally detected using slow and cumbersome experimental procedures. In this work we exploit information from disorder-oriented protein interaction networks focused specifically on humans, in order to assemble, by means of overrepresentation, a set of sequence patterns that mediate the functioning of disordered proteins; hence, we are able to identify how a single protein achieves such functional promiscuity. Next, we study the sequential characteristics of the extracted patterns, which exhibit a striking preference towards a very limited subset of amino acids; specifically, residues leucine, glutamic acid, and serine are particularly frequent among the extracted patterns, and we also observe a nontrivial propensity towards alanine and glycine. Furthermore, based on the extracted patterns we set off to infer potential functional implications in order to verify our findings and potentially further extrapolate our knowledge regarding the functioning of disordered proteins. We observe that the extracted patterns are primarily involved with regulation, binding and posttranslational modifications, which constitute the most prominent functions of disordered proteins.

  6. Instagram Use, Loneliness, and Social Comparison Orientation: Interact and Browse on Social Media, But Don't Compare.

    PubMed

    Yang, Chia-Chen

    2016-12-01

    Ever since the emergence of social networking sites (SNSs), it has remained a question without a conclusive answer whether SNSs make people more or less lonely. To achieve a better understanding, researchers need to move beyond studying overall SNS usage. In addition, it is necessary to attend to personal attributes as potential moderators. Given that SNSs provide rich opportunities for social comparison, one highly relevant personality trait would be social comparison orientation (SCO), and yet this personal attribute has been understudied in social media research. Drawing on literature of psychosocial implications of social media use and SCO, this study explored associations between loneliness and various Instagram activities and the role of SCO in this context. A total of 208 undergraduate students attending a U.S. mid-southern university completed a self-report survey (M age  = 19.43, SD = 1.35; 78 percent female; 57 percent White). Findings showed that Instagram interaction and Instagram browsing were both related to lower loneliness, whereas Instagram broadcasting was associated with higher loneliness. SCO moderated the relationship between Instagram use and loneliness such that Instagram interaction was related to lower loneliness only for low SCO users. The results revealed implications for healthy SNS use and the importance of including personality traits and specific SNS use patterns to disentangle the role of SNS use in psychological well-being.

  7. Identification of Major Signaling Pathways in Prion Disease Progression Using Network Analysis

    PubMed Central

    Newaz, Khalique; Sriram, K.; Bera, Debajyoti

    2015-01-01

    Prion diseases are transmissible neurodegenerative diseases that arise due to conformational change of normal, cellular prion protein (PrPC) to protease-resistant isofrom (rPrPSc). Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways that includes immunological and apoptotic pathways. As a result, this culminates in the dysfunction and death of neuronal cells. Earlier works on transcriptomic studies have revealed some affected pathways, but it is not clear which is (are) the prime network pathway(s) that change during the disease progression and how these pathways are involved in crosstalks with each other from the time of incubation to clinical death. We perform network analysis on large-scale transcriptomic data of differentially expressed genes obtained from whole brain in six different mouse strain-prion strain combination models to determine the pathways involved in prion diseases, and to understand the role of crosstalks in disease propagation. We employ a notion of differential network centrality measures on protein interaction networks to identify the potential biological pathways involved. We also propose a crosstalk ranking method based on dynamic protein interaction networks to identify the core network elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially expressed genes) potentially related to the prion disease progression. Functional association of the identified genes implicates a strong involvement of immunological pathways. We extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose an ODE model for the bow-tie network. Predictions related to diseased condition suggests the downregulation of the core signaling elements (PI3Ks and AKTs) of the bow-tie network. In this work, we show using transcriptomic data that the neuronal dysfunction in prion disease is strongly related to the immunological pathways. We conclude that these immunological pathways occupy influential positions in the PFNs (protein functional networks) that are related to prion disease. Importantly, this functional network involvement is prevalent in all the five different mouse strain-prion strain combinations that we studied. We also conclude that the dysregulation of the core elements of the bow-tie structure, which belongs to PI3K-Akt signaling pathway, leads to dysregulation of the downstream components corresponding to other biological pathways. PMID:26646948

  8. Qualitative Discovery in Medical Databases

    NASA Technical Reports Server (NTRS)

    Maluf, David A.

    2000-01-01

    Implication rules have been used in uncertainty reasoning systems to confirm and draw hypotheses or conclusions. However a major bottleneck in developing such systems lies in the elicitation of these rules. This paper empirically examines the performance of evidential inferencing with implication networks generated using a rule induction tool called KAT. KAT utilizes an algorithm for the statistical analysis of empirical case data, and hence reduces the knowledge engineering efforts and biases in subjective implication certainty assignment. The paper describes several experiments in which real-world diagnostic problems were investigated; namely, medical diagnostics. In particular, it attempts to show that: (1) with a limited number of case samples, KAT is capable of inducing implication networks useful for making evidential inferences based on partial observations, and (2) observation driven by a network entropy optimization mechanism is effective in reducing the uncertainty of predicted events.

  9. Redox theory of aging: implications for health and disease

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2017-01-01

    Genetics ultimately defines an individual, yet the phenotype of an adult is extensively determined by the sequence of lifelong exposures, termed the exposome. The redox theory of aging recognizes that animals evolved within an oxygen-rich environment, which created a critical redox interface between an organism and its environment. Advances in redox biology show that redox elements are present throughout metabolic and structural systems and operate as functional networks to support the genome in adaptation to environmental resources and challenges during lifespan. These principles emphasize that physical and functional phenotypes of an adult are determined by gene–environment interactions from early life onward. The principles highlight the critical nature of cumulative exposure memories in defining changes in resilience progressively during life. Both plasma glutathione and cysteine systems become oxidized with aging, and the recent finding that cystine to glutathione ratio in human plasma predicts death in coronary artery disease (CAD) patients suggests this could provide a way to measure resilience of redox networks in aging and disease. The emerging concepts of cumulative gene–environment interactions warrant focused efforts to elucidate central mechanisms by which exposure memory governs health and etiology, onset and progression of disease. PMID:28667066

  10. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    PubMed

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5 , and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  11. Functional Interaction between the Scaffold Protein Kidins220/ARMS and Neuronal Voltage-Gated Na+ Channels.

    PubMed

    Cesca, Fabrizia; Satapathy, Annyesha; Ferrea, Enrico; Nieus, Thierry; Benfenati, Fabio; Scholz-Starke, Joachim

    2015-07-17

    Kidins220 (kinase D-interacting substrate of 220 kDa)/ankyrin repeat-rich membrane spanning (ARMS) acts as a signaling platform at the plasma membrane and is implicated in a multitude of neuronal functions, including the control of neuronal activity. Here, we used the Kidins220(-/-) mouse model to study the effects of Kidins220 ablation on neuronal excitability. Multielectrode array recordings showed reduced evoked spiking activity in Kidins220(-/-) hippocampal networks, which was compatible with the increased excitability of GABAergic neurons determined by current-clamp recordings. Spike waveform analysis further indicated an increased sodium conductance in this neuronal subpopulation. Kidins220 association with brain voltage-gated sodium channels was shown by co-immunoprecipitation experiments and Na(+) current recordings in transfected HEK293 cells, which revealed dramatic alterations of kinetics and voltage dependence. Finally, an in silico interneuronal model incorporating the Kidins220-induced Na(+) current alterations reproduced the firing phenotype observed in Kidins220(-/-) neurons. These results identify Kidins220 as a novel modulator of Nav channel activity, broadening our understanding of the molecular mechanisms regulating network excitability. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Exploring the cross talk between ER stress and inflammation in age-related macular degeneration.

    PubMed

    Kheitan, Samira; Minuchehr, Zarrin; Soheili, Zahra-Soheila

    2017-01-01

    Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments.

  13. Exploring the cross talk between ER stress and inflammation in age-related macular degeneration

    PubMed Central

    Kheitan, Samira; Soheili, Zahra-Soheila

    2017-01-01

    Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments. PMID:28742151

  14. Examining Self-Disclosure on Social Networking Sites: A Flow Theory and Privacy Perspective.

    PubMed

    Ampong, George Oppong Appiagyei; Mensah, Aseda; Adu, Adolph Sedem Yaw; Addae, John Agyekum; Omoregie, Osaretin Kayode; Ofori, Kwame Simpe

    2018-06-06

    Social media and other web 2.0 tools have provided users with the platform to interact with and also disclose personal information to not only their friends and acquaintances but also relative strangers with unprecedented ease. This has enhanced the ability of people to share more about themselves, their families, and their friends through a variety of media including text, photo, and video, thus developing and sustaining social and business relationships. The purpose of the paper is to identify the factors that predict self-disclosure on social networking sites from the perspective of privacy and flow. Data was collected from 452 students in three leading universities in Ghana and analyzed with Partial Least Square-Structural Equation Modeling. Results from the study revealed that privacy risk was the most significant predictor. We also found privacy awareness, privacy concerns, and privacy invasion experience to be significant predictors of self-disclosure. Interaction and perceived control were found to have significant effect on self-disclosure. In all, the model accounted for 54.6 percent of the variance in self-disclosure. The implications and limitations of the current study are discussed, and directions for future research proposed.

  15. Enzyme localization, crowding, and buffers collectively modulate diffusion-influenced signal transduction: Insights from continuum diffusion modeling

    PubMed Central

    Kekenes-Huskey, Peter M.; Eun, Changsun; McCammon, J. A.

    2015-01-01

    Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion “barriers” arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, the spatial organization of diffusion barriers arising from intracellular structures, non-specific crowders, and specific-binders (buffers) strongly controls the temporal and spatial reaction kinetics. In this study, we use two prototypical biochemical reactions, a Goodwin oscillator, and a reaction with a periodic source/sink term to examine how a diffusion barrier that partitions substrates controls reaction behavior. Namely, we examine how conditions representative of a densely packed cytosol, including reduced accessible volume fraction, non-specific interactions, and buffers, impede diffusion over nanometer length-scales. We find that diffusion barriers can modulate the frequencies and amplitudes of coupled diffusion-influenced reaction networks, as well as give rise to “compartments” of decoupled reactant populations. These effects appear to be intensified in the presence of buffers localized to the diffusion barrier. These findings have strong implications for the role of the cellular environment in tuning the dynamics of signaling pathways. PMID:26342355

  16. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease.

    PubMed Central

    Buzsáki, György; Watson, Brendon O.

    2012-01-01

    The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or “chunk” neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms. PMID:23393413

  17. Fracture related-fold patterns analysis and hydrogeological implications: Insight from fault-propagation fold in Northwestern of Tunisia

    NASA Astrophysics Data System (ADS)

    Sanai, L.; Chenini, I.; Ben Mammou, A.; Mercier, E.

    2015-01-01

    The spatial distribution of fracturing in hard rocks is extremely related to the structural profile and traduces the kinematic evolution. The quantitative and qualitative analysis of fracturing combined to GIS techniques seem to be primordial and efficient in geometric characterization of lineament's network and to reconstruct the relative timing and interaction of the folding and fracturing histories. Also a detailed study of the area geology, lithology, tectonics, is primordial for any hydrogeological study. For that purpose we used a structural approach that consist in comparison between fracture sets before and after unfolding completed by aerospace data and DEM generated from topographic map. The above methodology applied in this study carried out in J. Rebia located in Northwestern of Tunisia demonstrated the heterogeneity of fracturing network and his relation with the fold growth throught time and his importance on groundwater flow.

  18. A neural network for intermale aggression to establish social hierarchy.

    PubMed

    Stagkourakis, Stefanos; Spigolon, Giada; Williams, Paul; Protzmann, Jil; Fisone, Gilberto; Broberger, Christian

    2018-06-01

    Intermale aggression is used to establish social rank. Several neuronal populations have been implicated in aggression, but the circuit mechanisms that shape this innate behavior and coordinate its different components (including attack execution and reward) remain elusive. We show that dopamine transporter-expressing neurons in the hypothalamic ventral premammillary nucleus (PMv DAT neurons) organize goal-oriented aggression in male mice. Activation of PMv DAT neurons triggers attack behavior; silencing these neurons interrupts attacks. Regenerative PMv DAT membrane conductances interacting with recurrent and reciprocal excitation explain how a brief trigger can elicit a long-lasting response (hysteresis). PMv DAT projections to the ventrolateral part of the ventromedial hypothalamic and the supramammillary nuclei control attack execution and aggression reward, respectively. Brief manipulation of PMv DAT activity switched the dominance relationship between males, an effect persisting for weeks. These results identify a network structure anchored in PMv DAT neurons that organizes aggressive behavior and, as a consequence, determines intermale hierarchy.

  19. Generalized rules for the optimization of elastic network models

    NASA Astrophysics Data System (ADS)

    Lezon, Timothy; Eyal, Eran; Bahar, Ivet

    2009-03-01

    Elastic network models (ENMs) are widely employed for approximating the coarse-grained equilibrium dynamics of proteins using only a few parameters. An area of current focus is improving the predictive accuracy of ENMs by fine-tuning their force constants to fit specific systems. Here we introduce a set of general rules for assigning ENM force constants to residue pairs. Using a novel method, we construct ENMs that optimally reproduce experimental residue covariances from NMR models of 68 proteins. We analyze the optimal interactions in terms of amino acid types, pair distances and local protein structures to identify key factors in determining the effective spring constants. When applied to several unrelated globular proteins, our method shows an improved correlation with experiment over a standard ENM. We discuss the physical interpretation of our findings as well as its implications in the fields of protein folding and dynamics.

  20. The Role of Sex of Peers and Gender-Typed Activities in Young Children’s Peer Affiliative Networks: A Longitudinal Analysis of Selection and Influence

    PubMed Central

    Martin, Carol Lynn; Kornienko, Olga; Schaefer, David R.; Hanish, Laura D.; Fabes, Richard A.; Goble, Priscilla

    2012-01-01

    A stochastic actor-based model was used to investigate the origins of sex segregation by examining how similarity in sex and time spent in gender-typed activities affected affiliation network selection and how peers influenced children’s (N = 292; M age = 4.3 years) activity involvement. Gender had powerful effects on interactions through direct and indirect pathways. Children selected playmates of the same-sex and with similar levels of gender-typed activities. Selection based on gender-typed activities partially mediated selection based on sex. Children influenced one another’s engagement in gender-typed activities. When mechanisms producing sex segregation were compared, the largest contributor was selection based on sex; less was due to activity-based selection and peer influence. Implications for sex segregation and gender development are discussed. PMID:23252713

  1. History as narrative: the nature and quality of historical understanding for students with LD.

    PubMed

    Espin, Christine A; Cevasco, Jazmin; van den Broek, Paul; Baker, Scott; Gersten, Russell

    2007-01-01

    In this study, we examine the nature and quality of students' comprehension of history. Specifically, we explore whether cognitive-psychological theories developed to capture the comprehension of narrative text can be used to capture the comprehension of history. Participants were 36 students with learning disabilities who had taken part in an earlier study designed to investigate the effects of an interactive instructional intervention in history. The results of the original study supported the effectiveness of the intervention in terms of amount recalled. The results of the present study reveal that historical understanding can be characterized as the construction of meaning through the creation of a causal network of events. The study of history within a causal network framework has implications for understanding the nature and quality of students' learning of history, and for potentially identifying sources of failure in learning.

  2. Nonlinear Dynamics on Interconnected Networks

    NASA Astrophysics Data System (ADS)

    Arenas, Alex; De Domenico, Manlio

    2016-06-01

    Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).

  3. Neural substrates of spontaneous narrative production in focal neurodegenerative disease.

    PubMed

    Gola, Kelly A; Thorne, Avril; Veldhuisen, Lisa D; Felix, Cordula M; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P; Stanley, Christine M; Glenn, Shenly; Miller, Bruce L; Rankin, Katherine P

    2015-12-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups. Storytelling patterns may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls (NC)) were analyzed for storytelling frequency and characteristics, and videos of the interactions were rated for patients' level of social attentiveness. Compared to controls, svPPAs told more stories and autobiographical stories, and perseverated on aspects of self during the interaction, whereas ADs told fewer autobiographical stories than NCs. svPPAs and bvFTDs were rated as less attentive to social cues. Aspects of storytelling were related to diverse cognitive and socio-emotional functions, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, narrative evaluations patterns, and social attentiveness correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa

    PubMed Central

    Corton, M.; Avila-Fernández, A.; Campello, L.; Sánchez, M.; Benavides, B.; López-Molina, M. I.; Fernández-Sánchez, L.; Sánchez-Alcudia, R.; da Silva, L. R. J.; Reyes, N.; Martín-Garrido, E.; Zurita, O.; Fernández-San José, P.; Pérez-Carro, R.; García-García, F.; Dopazo, J.; García-Sandoval, B.; Cuenca, N.; Ayuso, C.

    2016-01-01

    Retinitis pigmentosa (RP), the most frequent form of inherited retinal dystrophy is characterized by progressive photoreceptor degeneration. Many genes have been implicated in RP development, but several others remain to be identified. Using a combination of homozygosity mapping, whole-exome and targeted next-generation sequencing, we found a novel homozygous nonsense mutation in SAMD11 in five individuals diagnosed with adult-onset RP from two unrelated consanguineous Spanish families. SAMD11 is ortholog to the mouse major retinal SAM domain (mr-s) protein that is implicated in CRX-mediated transcriptional regulation in the retina. Accordingly, protein-protein network analysis revealed a significant interaction of SAMD11 with CRX. Immunoblotting analysis confirmed strong expression of SAMD11 in human retina. Immunolocalization studies revealed SAMD11 was detected in the three nuclear layers of the human retina and interestingly differential expression between cone and rod photoreceptors was observed. Our study strongly implicates SAMD11 as novel cause of RP playing an important role in the pathogenesis of human degeneration of photoreceptors. PMID:27734943

  5. Applications of Social Network Analysis

    NASA Astrophysics Data System (ADS)

    Thilagam, P. Santhi

    A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.

  6. Characterizing the topology of probabilistic biological networks.

    PubMed

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/projects/probNet/.

  7. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    PubMed

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Ant-Plant Interaction in a Tropical Savanna: May the Network Structure Vary over Time and Influence on the Outcomes of Associations?

    PubMed Central

    Lange, Denise; Del-Claro, Kleber

    2014-01-01

    Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system. PMID:25141007

  9. A Multirelational Social Network Analysis of an Online Health Community for Smoking Cessation.

    PubMed

    Zhao, Kang; Wang, Xi; Cha, Sarah; Cohn, Amy M; Papandonatos, George D; Amato, Michael S; Pearson, Jennifer L; Graham, Amanda L

    2016-08-25

    Online health communities (OHCs) provide a convenient and commonly used way for people to connect around shared health experiences, exchange information, and receive social support. Users often interact with peers via multiple communication methods, forming a multirelational social network. Use of OHCs is common among smokers, but to date, there have been no studies on users' online interactions via different means of online communications and how such interactions are related to smoking cessation. Such information can be retrieved in multirelational social networks and could be useful in the design and management of OHCs. To examine the social network structure of an OHC for smoking cessation using a multirelational approach, and to explore links between subnetwork position (ie, centrality) and smoking abstinence. We used NetworkX to construct 4 subnetworks based on users' interactions via blogs, group discussions, message boards, and private messages. We illustrated topological properties of each subnetwork, including its degree distribution, density, and connectedness, and compared similarities among these subnetworks by correlating node centrality and measuring edge overlap. We also investigated coevolution dynamics of this multirelational network by analyzing tie formation sequences across subnetworks. In a subset of users who participated in a randomized, smoking cessation treatment trial, we conducted user profiling based on users' centralities in the 4 subnetworks and identified user groups using clustering techniques. We further examined 30-day smoking abstinence at 3 months postenrollment in relation to users' centralities in the 4 subnetworks. The 4 subnetworks have different topological characteristics, with message board having the most nodes (36,536) and group discussion having the highest network density (4.35×10(-3)). Blog and message board subnetworks had the most similar structures with an in-degree correlation of .45, out-degree correlation of .55, and Jaccard coefficient of .23 for edge overlap. A new tie in the group discussion subnetwork had the lowest probability of triggering subsequent ties among the same two users in other subnetworks: 6.33% (54,142/855,893) for 2-tie sequences and 2.13% (18,207/855,893) for 3-tie sequences. Users' centralities varied across the 4 subnetworks. Among a subset of users enrolled in a randomized trial, those with higher centralities across subnetworks generally had higher abstinence rates, although high centrality in the group discussion subnetwork was not associated with higher abstinence rates. A multirelational approach revealed insights that could not be obtained by analyzing the aggregated network alone, such as the ineffectiveness of group discussions in triggering social ties of other types, the advantage of blogs, message boards, and private messages in leading to subsequent social ties of other types, and the weak connection between one's centrality in the group discussion subnetwork and smoking abstinence. These insights have implications for the design and management of online social networks for smoking cessation.

  10. A Multirelational Social Network Analysis of an Online Health Community for Smoking Cessation

    PubMed Central

    Wang, Xi; Cha, Sarah; Cohn, Amy M; Papandonatos, George D; Amato, Michael S; Pearson, Jennifer L; Graham, Amanda L

    2016-01-01

    Background Online health communities (OHCs) provide a convenient and commonly used way for people to connect around shared health experiences, exchange information, and receive social support. Users often interact with peers via multiple communication methods, forming a multirelational social network. Use of OHCs is common among smokers, but to date, there have been no studies on users’ online interactions via different means of online communications and how such interactions are related to smoking cessation. Such information can be retrieved in multirelational social networks and could be useful in the design and management of OHCs. Objective To examine the social network structure of an OHC for smoking cessation using a multirelational approach, and to explore links between subnetwork position (ie, centrality) and smoking abstinence. Methods We used NetworkX to construct 4 subnetworks based on users’ interactions via blogs, group discussions, message boards, and private messages. We illustrated topological properties of each subnetwork, including its degree distribution, density, and connectedness, and compared similarities among these subnetworks by correlating node centrality and measuring edge overlap. We also investigated coevolution dynamics of this multirelational network by analyzing tie formation sequences across subnetworks. In a subset of users who participated in a randomized, smoking cessation treatment trial, we conducted user profiling based on users’ centralities in the 4 subnetworks and identified user groups using clustering techniques. We further examined 30-day smoking abstinence at 3 months postenrollment in relation to users’ centralities in the 4 subnetworks. Results The 4 subnetworks have different topological characteristics, with message board having the most nodes (36,536) and group discussion having the highest network density (4.35×10−3). Blog and message board subnetworks had the most similar structures with an in-degree correlation of .45, out-degree correlation of .55, and Jaccard coefficient of .23 for edge overlap. A new tie in the group discussion subnetwork had the lowest probability of triggering subsequent ties among the same two users in other subnetworks: 6.33% (54,142/855,893) for 2-tie sequences and 2.13% (18,207/855,893) for 3-tie sequences. Users’ centralities varied across the 4 subnetworks. Among a subset of users enrolled in a randomized trial, those with higher centralities across subnetworks generally had higher abstinence rates, although high centrality in the group discussion subnetwork was not associated with higher abstinence rates. Conclusions A multirelational approach revealed insights that could not be obtained by analyzing the aggregated network alone, such as the ineffectiveness of group discussions in triggering social ties of other types, the advantage of blogs, message boards, and private messages in leading to subsequent social ties of other types, and the weak connection between one’s centrality in the group discussion subnetwork and smoking abstinence. These insights have implications for the design and management of online social networks for smoking cessation. PMID:27562640

  11. What Role Does "Elongation" Play in "Tool-Specific" Activation and Connectivity in the Dorsal and Ventral Visual Streams?

    PubMed

    Chen, Juan; Snow, Jacqueline C; Culham, Jody C; Goodale, Melvyn A

    2018-04-01

    Images of tools induce stronger activation than images of nontools in a left-lateralized network that includes ventral-stream areas implicated in tool identification and dorsal-stream areas implicated in tool manipulation. Importantly, however, graspable tools tend to be elongated rather than stubby, and so the tool-selective responses in some of these areas may, to some extent, reflect sensitivity to elongation rather than "toolness" per se. Using functional magnetic resonance imaging, we investigated the role of elongation in driving tool-specific activation in the 2 streams and their interconnections. We showed that in some "tool-selective" areas, the coding of toolness and elongation coexisted, but in others, elongation and toolness were coded independently. Psychophysiological interaction analysis revealed that toolness, but not elongation, had a strong modulation of the connectivity between the ventral and dorsal streams. Dynamic causal modeling revealed that viewing tools (either elongated or stubby) increased the connectivity from the ventral- to the dorsal-stream tool-selective areas, but only viewing elongated tools increased the reciprocal connectivity between these areas. Overall, these data disentangle how toolness and elongation affect the activation and connectivity of the tool network and help to resolve recent controversies regarding the relative contribution of "toolness" versus elongation in driving dorsal-stream "tool-selective" areas.

  12. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.

    PubMed

    Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C

    2016-05-01

    Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.

  13. Limitation of degree information for analyzing the interaction evolution in online social networks

    NASA Astrophysics Data System (ADS)

    Shang, Ke-Ke; Yan, Wei-Sheng; Xu, Xiao-Ke

    2014-04-01

    Previously many studies on online social networks simply analyze the static topology in which the friend relationship once established, then the links and nodes will not disappear, but this kind of static topology may not accurately reflect temporal interactions on online social services. In this study, we define four types of users and interactions in the interaction (dynamic) network. We found that active, disappeared, new and super nodes (users) have obviously different strength distribution properties and this result also can be revealed by the degree characteristics of the unweighted interaction and friendship (static) networks. However, the active, disappeared, new and super links (interactions) only can be reflected by the strength distribution in the weighted interaction network. This result indicates the limitation of the static topology data on analyzing social network evolutions. In addition, our study uncovers the approximately stable statistics for the dynamic social network in which there are a large variation for users and interaction intensity. Our findings not only verify the correctness of our definitions, but also helped to study the customer churn and evaluate the commercial value of valuable customers in online social networks.

  14. Future Mission Trends and their Implications for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Abraham, Douglas S.

    2006-01-01

    This viewgraph presentation discusses the direction of future missions and it's significance to the Deep Space Network. The topics include: 1) The Deep Space Network (DSN); 2) Past Missions Driving DSN Evolution; 3) The Changing Mission Paradigm; 4) Assessing Future Mission Needs; 5) Link Support Trends; 6) Downlink Rate Trends; 7) Uplink Rate Trends; 8) End-to-End Link Difficulty Trends; 9) Summary: Future Mission Trend Drivers; and 10) Conclusion: Implications for the DSN.

  15. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function

    PubMed Central

    Beaumont, Eric; Salavatian, Siamak; Southerland, E Marie; Vinet, Alain; Jacquemet, Vincent; Armour, J Andrew; Ardell, Jeffrey L

    2013-01-01

    The aims of the study were to determine how aggregates of intrinsic cardiac (IC) neurons transduce the cardiovascular milieu versus responding to changes in central neuronal drive and to determine IC network interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF). Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in eight anaesthetized canines using a 16-channel linear microelectrode array. Induced changes in IC neuronal activity were evaluated in response to: (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular ischaemia, and (5) neurally induced AF. Low level activity (ranging from 0 to 2.7 Hz) generated by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate ganglion alone: 27%; both: 48%). Fifty per cent transduced the cardiac milieu responding to multimodal stressors applied to the great vessels or heart. Fifty per cent of IC neurons exhibited cardiac cycle periodicity, with activity occurring primarily in late diastole into isovolumetric contraction. Cardiac-related activity in IC neurons was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network behaviour preceded and persisted throughout AF. It was concluded that stochastic interactions occur among IC local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local circuit neuronal recruitment may represent a novel approach for the treatment of cardiac disease, including atrial arrhythmias. PMID:23818689

  16. Nonlinear dynamics of emotion-cognition interaction: when emotion does not destroy cognition?

    PubMed

    Afraimovich, Valentin; Young, Todd; Muezzinoglu, Mehmet K; Rabinovich, Mikhail I

    2011-02-01

    Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and cognition (i.e., problem solving by information processing) are essential to how we, as humans, respond to changes in our environment. Recent studies in cognitive science suggest that emotion and cognition are subserved by different, although heavily integrated, neural systems. Understanding the time-varying relationship of emotion and cognition is a challenging goal with important implications for neuroscience. We formulate here the dynamical model of emotion-cognition interaction that is based on the following principles: (1) the temporal evolution of cognitive and emotion modes are captured by the incoming stimuli and competition within and among themselves (competition principle); (2) metastable states exist in the unified emotion-cognition phase space; and (3) the brain processes information with robust and reproducible transients through the sequence of metastable states. Such a model can take advantage of the often ignored temporal structure of the emotion-cognition interaction to provide a robust and generalizable method for understanding the relationship between brain activation and complex human behavior. The mathematical image of the robust and reproducible transient dynamics is a Stable Heteroclinic Sequence (SHS), and the Stable Heteroclinic Channels (SHCs). These have been hypothesized to be possible mechanisms that lead to the sequential transient behavior observed in networks. We investigate the modularity of SHCs, i.e., given a SHS and a SHC that is supported in one part of a network, we study conditions under which the SHC pertaining to the cognition will continue to function in the presence of interfering activity with other parts of the network, i.e., emotion.

  17. First-Principles Study of Charge Diffusion between Proximate Solid-State Qubits and Its Implications on Sensor Applications

    NASA Astrophysics Data System (ADS)

    Chou, Jyh-Pin; Bodrog, Zoltán; Gali, Adam

    2018-03-01

    Solid-state qubits from paramagnetic point defects in solids are promising platforms to realize quantum networks and novel nanoscale sensors. Recent advances in materials engineering make it possible to create proximate qubits in solids that might interact with each other, leading to electron spin or charge fluctuation. Here we develop a method to calculate the tunneling-mediated charge diffusion between point defects from first principles and apply it to nitrogen-vacancy (NV) qubits in diamond. The calculated tunneling rates are in quantitative agreement with previous experimental data. Our results suggest that proximate neutral and negatively charged NV defect pairs can form a NV-NV molecule. A tunneling-mediated model for the source of decoherence of the near-surface NV qubits is developed based on our findings on the interacting qubits in diamond.

  18. Preparation of Gap Junctions in Membrane Microdomains for Immunoprecipitation and Mass Spectrometry Interactome Analysis.

    PubMed

    Fowler, Stephanie; Akins, Mark; Bennett, Steffany A L

    2016-01-01

    Protein interaction networks at gap junction plaques are increasingly implicated in a variety of intracellular signaling cascades. Identifying protein interactions of integral membrane proteins is a valuable tool for determining channel function. However, several technical challenges exist. Subcellular fractionation of the bait protein matrix is usually required to identify less abundant proteins in complex homogenates. Sufficient solvation of the lipid environment without perturbation of the protein interactome must also be achieved. The present chapter describes the flotation of light and heavy liver tissue membrane microdomains to facilitate the identification and analysis of endogenous gap junction proteins and includes technical notes for translation to other integral membrane proteins, tissues, or cell culture models. These procedures are valuable tools for the enrichment of gap junction membrane compartments and for the identification of gap junction signaling interactomes.

  19. Identification of Modules in Protein-Protein Interaction Networks

    NASA Astrophysics Data System (ADS)

    Erten, Sinan; Koyutürk, Mehmet

    In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.

  20. The 'friendship dynamics of religion,' or the 'religious dynamics of friendship'? A social network analysis of adolescents who attend small schools.

    PubMed

    Cheadle, Jacob E; Schwadel, Philip

    2012-09-01

    Longitudinal social network data on adolescents in seven schools are analyzed to reach a new understanding about how the personal and interpersonal social dimensions of adolescent religion intertwine together in small school settings. We primarily address two issues relevant to the sociology of religion and sociology in general: (1) social selection as a source of religious homophily and (2) friend socialization of religion. Analysis results are consistent with Collins' interaction ritual chain theory, which stresses the social dimensions of religion, since network-religion autocorrelations are relatively substantial in magnitude and both selection and socialization mechanisms play key roles in generating them. Results suggest that socialization plays a stronger role than social selection in four of six religious outcomes, and that more religious youth are more cliquish. Implications for our understanding of the social context of religion, religious homophily, and the ways we model religious influence, as well as limitations and considerations for future research, are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Connectivity in river deltas

    NASA Astrophysics Data System (ADS)

    Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.

    2016-12-01

    Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.

  2. Origin of the Giant Honeycomb Network of Quinones on Cu(111)

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Kim, Kwangmoo; Wyrick, Jon; Cheng, Zhihai; Bartels, Ludwig; Berland, Kristian; Hyldgaard, Per

    2011-03-01

    We discuss the factors that lead to the amazing regular giant honeycomb network formed by quinones on Cu(111). Using a related lattice gas model with many characteristic energies, we can reproduce many experimental features. These models require a long-range attraction, which can be attributed to indirect interactions mediated by the Shockley surface state of Cu(111). However, Wyrick's preceding talk gave evidence that the network self-selects for the size of the pore rather than for the periodicity of the superstructure, suggesting that confined states are the key ingredient. We discuss this phenomenon in terms of the magic numbers of 2D quantum dots. We also report calculations of the effects of anthraquinones (AQ) in modifying the surface states by considering a superlattice of AQ chains with various separations. We discuss implications of these results for tuning the electronic states and, thence, superstructures. Supported by (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471, (JW & LB) NSF CHE NSF CHE 07-49949, (KB & PH) Swedish Vetenskapsrådet VR 621-2008-4346.

  3. The role of retinal bipolar cell in early vision: an implication with analogue networks and regularization theory.

    PubMed

    Yagi, T; Ohshima, S; Funahashi, Y

    1997-09-01

    A linear analogue network model is proposed to describe the neuronal circuit of the outer retina consisting of cones, horizontal cells, and bipolar cells. The model reflects previous physiological findings on the spatial response properties of these neurons to dim illumination and is expressed by physiological mechanisms, i.e., membrane conductances, gap-junctional conductances, and strengths of chemical synaptic interactions. Using the model, we characterized the spatial filtering properties of the bipolar cell receptive field with the standard regularization theory, in which the early vision problems are attributed to minimization of a cost function. The cost function accompanying the present characterization is derived from the linear analogue network model, and one can gain intuitive insights on how physiological mechanisms contribute to the spatial filtering properties of the bipolar cell receptive field. We also elucidated a quantitative relation between the Laplacian of Gaussian operator and the bipolar cell receptive field. From the computational point of view, the dopaminergic modulation of the gap-junctional conductance between horizontal cells is inferred to be a suitable neural adaptation mechanism for transition between photopic and mesopic vision.

  4. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae

    PubMed Central

    Reguly, Teresa; Breitkreutz, Ashton; Boucher, Lorrie; Breitkreutz, Bobby-Joe; Hon, Gary C; Myers, Chad L; Parsons, Ainslie; Friesen, Helena; Oughtred, Rose; Tong, Amy; Stark, Chris; Ho, Yuen; Botstein, David; Andrews, Brenda; Boone, Charles; Troyanskya, Olga G; Ideker, Trey; Dolinski, Kara; Batada, Nizar N; Tyers, Mike

    2006-01-01

    Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID () and SGD () databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks. PMID:16762047

  5. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast

    PubMed Central

    Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S

    2005-01-01

    Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two pathways needed). PMID:16283923

  6. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network.

    PubMed

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-04-07

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.

  7. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network

    PubMed Central

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-01-01

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835

  8. Multiple conserved cell adhesion protein interactions mediate neural wiring of a sensory circuit in C. elegans.

    PubMed

    Kim, Byunghyuk; Emmons, Scott W

    2017-09-13

    Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans , we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.

  9. Two spatiotemporally distinct value systems shape reward-based learning in the human brain.

    PubMed

    Fouragnan, Elsa; Retzler, Chris; Mullinger, Karen; Philiastides, Marios G

    2015-09-08

    Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants' switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning.

  10. Towards a network of Urban Forest Eddy Covariance stations: a unique case study in Naples

    NASA Astrophysics Data System (ADS)

    Guidolotti, Gabriele; Pallozzi, Emanuele; Esposito, Raffaela; Mattioni, Michele; Calfapietra, Carlo

    2015-04-01

    Urban forests are by definition integrated in highly human-made areas, and interact with different components of our cities. Thanks to those interactions, urban forests provide to people and to the urban environment a number of ecosystem services, including the absorption of CO2 and air pollutants thus influencing the local air quality. Moreover, in urban areas a relevant role is played by the photochemical pollution which is strongly influenced by the interactions between volatile organic compounds (VOC) and nitrogen oxides (NOx). In several cities, a high percentage of VOC is of biogenic origin mainly emitted from the urban trees. Despite their importance, experimental sites monitoring fluxes of trace gases fluxes in urban forest ecosystems are still scarce. Here we show the preliminary results of an innovative experimental site located in the Royal Park of Capodimonte within the city of Naples (40°51'N-14°15'E, 130 m above sea level). The site is mainly characterised by Quercus ilex with some patches of Pinus pinea and equipped with an eddy-covariance tower measuring the exchange of CO2, H2O, N2O, CH4, O3, PM, VOCs and NOx using state-of-the art instrumentations; it is running since the end of 2014 and it is part of the large infrastructural I-AMICA project. We suggest that the experience gained with research networks such as Fluxnet and ICOS should be duplicated for urban forests. This is crucial for carbon as there is now the ambition to include urban forests in the carbon stocks accounting system. This is even more important to understand the difficult interactions between anthropogenic and biogenic sources that often have negative implications for urban air quality. Urban environment can thus become an extraordinary case study and a network of such kind of stations might represent an important strategy both from the scientific and the applicative point of view.

  11. Mentalizing and motivation neural function during social interactions in autism spectrum disorders☆

    PubMed Central

    Assaf, Michal; Hyatt, Christopher J.; Wong, Christina G.; Johnson, Matthew R.; Schultz, Robert T.; Hendler, Talma; Pearlson, Godfrey D.

    2013-01-01

    Autism Spectrum Disorders (ASDs) are characterized by core deficits in social functions. Two theories have been suggested to explain these deficits: mind-blindness theory posits impaired mentalizing processes (i.e. decreased ability for establishing a representation of others' state of mind), while social motivation theory proposes that diminished reward value for social information leads to reduced social attention, social interactions, and social learning. Mentalizing and motivation are integral to typical social interactions, and neuroimaging evidence points to independent brain networks that support these processes in healthy individuals. However, the simultaneous function of these networks has not been explored in individuals with ASDs. We used a social, interactive fMRI task, the Domino game, to explore mentalizing- and motivation-related brain activation during a well-defined interval where participants respond to rewards or punishments (i.e. motivation) and concurrently process information about their opponent's potential next actions (i.e. mentalizing). Thirteen individuals with high-functioning ASDs, ages 12–24, and 14 healthy controls played fMRI Domino games against a computer-opponent and separately, what they were led to believe was a human-opponent. Results showed that while individuals with ASDs understood the game rules and played similarly to controls, they showed diminished neural activity during the human-opponent runs only (i.e. in a social context) in bilateral middle temporal gyrus (MTG) during mentalizing and right Nucleus Accumbens (NAcc) during reward-related motivation (Pcluster < 0.05 FWE). Importantly, deficits were not observed in these areas when playing against a computer-opponent or in areas related to motor and visual processes. These results demonstrate that while MTG and NAcc, which are critical structures in the mentalizing and motivation networks, respectively, activate normally in a non-social context, they fail to respond in an otherwise identical social context in ASD compared to controls. We discuss implications to both the mind-blindness and social motivation theories of ASD and the importance of social context in research and treatment protocols. PMID:24273716

  12. Receptors rather than signals change in expression in four physiological regulatory networks during evolutionary divergence in threespine stickleback.

    PubMed

    Di Poi, Carole; Bélanger, Dominic; Amyot, Marc; Rogers, Sean; Aubin-Horth, Nadia

    2016-07-01

    The molecular mechanisms underlying behavioural evolution following colonization of novel environments are largely unknown. Molecules that interact to control equilibrium within an organism form physiological regulatory networks. It is essential to determine whether particular components of physiological regulatory networks evolve or if the network as a whole is affected in populations diverging in behavioural responses, as this may affect the nature, amplitude and number of impacted traits. We studied the regulation of four physiological regulatory networks in freshwater and marine populations of threespine stickleback raised in a common environment, which were previously characterized as showing evolutionary divergence in behaviour and stress reactivity. We measured nineteen components of these networks (ligands and receptors) using mRNA and monoamine levels in the brain, pituitary and interrenal gland, as well as hormone levels. Freshwater fish showed higher expression in the brain of adrenergic (adrb2a), serotonergic (htr2a) and dopaminergic (DRD2) receptors, but lower expression of the htr2b receptor. Freshwater fish also showed higher expression of the mc2r receptor of the glucocorticoid axis in the interrenals. Collectively, our results suggest that the inheritance of the regulation of these networks may be implicated in the evolution of behaviour and stress reactivity in association with population divergence. Our results also suggest that evolutionary change in freshwater threespine stickleback may be more associated with the expression of specific receptors rather than with global changes of all the measured constituents of the physiological regulatory networks. © 2016 John Wiley & Sons Ltd.

  13. Differential C3NET reveals disease networks of direct physical interactions

    PubMed Central

    2011-01-01

    Background Genes might have different gene interactions in different cell conditions, which might be mapped into different networks. Differential analysis of gene networks allows spotting condition-specific interactions that, for instance, form disease networks if the conditions are a disease, such as cancer, and normal. This could potentially allow developing better and subtly targeted drugs to cure cancer. Differential network analysis with direct physical gene interactions needs to be explored in this endeavour. Results C3NET is a recently introduced information theory based gene network inference algorithm that infers direct physical gene interactions from expression data, which was shown to give consistently higher inference performances over various networks than its competitors. In this paper, we present, DC3net, an approach to employ C3NET in inferring disease networks. We apply DC3net on a synthetic and real prostate cancer datasets, which show promising results. With loose cutoffs, we predicted 18583 interactions from tumor and normal samples in total. Although there are no reference interactions databases for the specific conditions of our samples in the literature, we found verifications for 54 of our predicted direct physical interactions from only four of the biological interaction databases. As an example, we predicted that RAD50 with TRF2 have prostate cancer specific interaction that turned out to be having validation from the literature. It is known that RAD50 complex associates with TRF2 in the S phase of cell cycle, which suggests that this predicted interaction may promote telomere maintenance in tumor cells in order to allow tumor cells to divide indefinitely. Our enrichment analysis suggests that the identified tumor specific gene interactions may be potentially important in driving the growth in prostate cancer. Additionally, we found that the highest connected subnetwork of our predicted tumor specific network is enriched for all proliferation genes, which further suggests that the genes in this network may serve in the process of oncogenesis. Conclusions Our approach reveals disease specific interactions. It may help to make experimental follow-up studies more cost and time efficient by prioritizing disease relevant parts of the global gene network. PMID:21777411

  14. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  15. Networking Micro-Processors for Effective Computer Utilization in Nursing

    PubMed Central

    Mangaroo, Jewellean; Smith, Bob; Glasser, Jay; Littell, Arthur; Saba, Virginia

    1982-01-01

    Networking as a social entity has important implications for maximizing computer resources for improved utilization in nursing. This paper describes the one process of networking of complementary resources at three institutions. Prairie View A&M University, Texas A&M University and the University of Texas School of Public Health, which has effected greater utilization of computers at the college. The results achieved in this project should have implications for nurses, users, and consumers in the development of computer resources.

  16. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior

    PubMed Central

    Shorter, John; Couch, Charlene; Huang, Wen; Carbone, Mary Anna; Peiffer, Jason; Anholt, Robert R. H.; Mackay, Trudy F. C.

    2015-01-01

    Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics. PMID:26100892

  17. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics.

    PubMed

    Akerman, Simon; Romero-Reyes, Marcela; Holland, Philip R

    2017-04-01

    Migraine headache and its associated symptoms have plagued humans for two millennia. It is manifest throughout the world, and affects more than 1/6 of the global population. It is the most common brain disorder, and is characterized by moderate to severe unilateral headache that is accompanied by vomiting, nausea, photophobia, phonophobia, and other hypersensitive symptoms of the senses. While there is still a clear lack of understanding of its neurophysiology, it is beginning to be understood, and it seems to suggest migraine is a disorder of brain sensory processing, characterized by a generalized neuronal hyperexcitability. The complex symptomatology of migraine indicates that multiple neuronal systems are involved, including brainstem and diencephalic systems, which function abnormally, resulting in premonitory symptoms, ultimately evolving to affect the dural trigeminovascular system, and the pain phase of migraine. The migraineur also seems to be particularly sensitive to fluctuations in homeostasis, such as sleep, feeding and stress, reflecting the abnormality of functioning in these brainstem and diencephalic systems. Implications for therapeutic development have grown out of our understanding of migraine neurophysiology, leading to major drug classes, such as triptans, calcitonin gene-related peptide receptor antagonists, and 5-HT 1F receptor agonists, as well as neuromodulatory approaches, with the promise of more to come. The present review will discuss the current understanding of the neurophysiology of migraine, particularly migraine headache, and novel insights into the complex neural networks responsible for associated neurological symptoms, and how interaction of these networks with migraine pain pathways has implications for the development of novel therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Interactions of the Salience Network and Its Subsystems with the Default-Mode and the Central-Executive Networks in Normal Aging and Mild Cognitive Impairment.

    PubMed

    Chand, Ganesh B; Wu, Junjie; Hajjar, Ihab; Qiu, Deqiang

    2017-09-01

    Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cognition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience network, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-executive network (Mann-Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p < 0.05). Furthermore, the degree of disruption in salience network control correlated significantly with lower overall cognitive performance measured by Montreal Cognitive Assessment (r = 0.295; p < 0.05). This study suggests that a disruption of the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.

  19. Topology association analysis in weighted protein interaction network for gene prioritization

    NASA Astrophysics Data System (ADS)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  20. How plants connect pollination and herbivory networks and their contribution to community stability.

    PubMed

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  1. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  2. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    NASA Astrophysics Data System (ADS)

    Bruun, Jesper; Brewe, Eric

    2013-12-01

    The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (p<0.001) between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with future grades. In the network composed solely of noncontent related social interactions, these patterns of correlation are maintained in the sense that these network measures show the highest correlations and maintain their internal ranking. Using hierarchical linear regression, we find that a linear model that adds the network measures hide and target entropy, calculated on the ICS network, significantly improves a base model that uses only the FCI pretest scores from the beginning of the semester. Though one should not infer causality from these results, they do point to how social interactions in class are intertwined with academic interactions. We interpret this as an integral part of learning, and suggest that physics is a robust example.

  3. Building a glaucoma interaction network using a text mining approach.

    PubMed

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of relations that could not be found in existing interaction databases and that were found to be new, in addition to a smaller subnetwork consisting of interconnected clusters of seven glaucoma genes. Future improvements can be applied towards obtaining a better version of this network.

  4. Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion

    PubMed Central

    Žitnik, Marinka; Zupan, Blaž

    2015-01-01

    Abstract Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions with greater precision. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, in this way completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to missing data values. We introduce a new interaction data imputation method called network-guided matrix completion (NG-MC). The core part of NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge presented as a collection of gene networks. NG-MC assumes that interactions are transitive, such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it propagates latent interaction profiles through each of the networks and updates gene network weights toward improved prediction. In a study with four different E-MAP data assays and considered protein–protein interaction and gene ontology similarity networks, NG-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allowed NG-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches. PMID:25658751

  5. Dynamic Creative Interaction Networks and Team Creativity Evolution: A Longitudinal Study

    ERIC Educational Resources Information Center

    Jiang, Hui; Zhang, Qing-Pu; Zhou, Yang

    2018-01-01

    To assess the dynamical effects of creative interaction networks on team creativity evolution, this paper elaborates a theoretical framework that links the key elements of creative interaction networks, including node, edge and network structure, to creativity in teams. The process of team creativity evolution is divided into four phases,…

  6. Functional Interaction Network Construction and Analysis for Disease Discovery.

    PubMed

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  7. Robustness Elasticity in Complex Networks

    PubMed Central

    Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu

    2012-01-01

    Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060

  8. Students' Participation in Social Networking Sites: Implications for Social Work Education

    ERIC Educational Resources Information Center

    Mukherjee, Dhrubodhi; Clark, Janet

    2012-01-01

    Social work students have few guidelines to help them evaluate the implication of their posted information on Internet-based social networking sites (SNSs). There is a national trend among employers of human services to cross-check publicly available online information on applicants. Based on data from a survey of 105 baccalaureate and master's…

  9. Viral Perturbations of Host Networks Reflect Disease Etiology

    PubMed Central

    Dricot, Amélie; Padi, Megha; Byrdsong, Danielle; Franchi, Rachel; Lee, Deok-Sun; Rozenblatt-Rosen, Orit; Mar, Jessica C.; Calderwood, Michael A.; Baldwin, Amy; Zhao, Bo; Santhanam, Balaji; Braun, Pascal; Simonis, Nicolas; Huh, Kyung-Won; Hellner, Karin; Grace, Miranda; Chen, Alyce; Rubio, Renee; Marto, Jarrod A.; Christakis, Nicholas A.; Kieff, Elliott; Roth, Frederick P.; Roecklein-Canfield, Jennifer; DeCaprio, James A.; Cusick, Michael E.; Quackenbush, John; Hill, David E.; Münger, Karl; Vidal, Marc; Barabási, Albert-László

    2012-01-01

    Many human diseases, arising from mutations of disease susceptibility genes (genetic diseases), are also associated with viral infections (virally implicated diseases), either in a directly causal manner or by indirect associations. Here we examine whether viral perturbations of host interactome may underlie such virally implicated disease relationships. Using as models two different human viruses, Epstein-Barr virus (EBV) and human papillomavirus (HPV), we find that host targets of viral proteins reside in network proximity to products of disease susceptibility genes. Expression changes in virally implicated disease tissues and comorbidity patterns cluster significantly in the network vicinity of viral targets. The topological proximity found between cellular targets of viral proteins and disease genes was exploited to uncover a novel pathway linking HPV to Fanconi anemia. PMID:22761553

  10. Characterizing Topology of Probabilistic Biological Networks.

    PubMed

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-09-06

    Biological interactions are often uncertain events, that may or may not take place with some probability. Existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. Here, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. We develop a method that accurately describes the degree distribution of such networks. We also extend our method to accurately compute the joint degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. It also helps us find an adequate mathematical model using maximum likelihood estimation. Our results demonstrate that power law and log-normal models best describe degree distributions for probabilistic networks. The inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected.

  11. Myosin II-interacting guanine nucleotide exchange factor promotes bleb retraction via stimulating cortex reassembly at the bleb membrane.

    PubMed

    Jiao, Meng; Wu, Di; Wei, Qize

    2018-03-01

    Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II-interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction. © 2018 Jiao et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. The Role of Attachment Style in Facebook Use and Social Capital: Evidence from University Students and a National Sample

    PubMed Central

    2015-01-01

    Abstract Social networking sites (SNSs) can be beneficial tools for users to gain social capital. Although social capital consists of emotional and informational resources accumulated through interactions with strong or weak social network ties, the existing literature largely ignores attachment style in this context. This study employed attachment theory to explore individuals' attachment orientations toward Facebook usage and toward online and offline social capital. A university student sample (study 1) and a representative national sample (study 2) showed consistent results. Secure attachment was positively associated with online bonding and bridging capital and offline bridging capital. Additionally, secure attachment had an indirect effect on all capital through Facebook time. Avoidant attachment was negatively associated with online bonding capital. Anxious–ambivalent attachment had a direct association with online bonding capital and an indirect effect on all capital through Facebook. Interaction frequency with good friends on Facebook positively predicted all online and offline capital, whereas interaction frequency with average friends on Facebook positively predicted online bridging capital. Interaction frequency with acquaintances on Facebook was negatively associated with offline bonding capital. The study concludes that attachment style is a significant factor in guiding social orientation toward Facebook connections with different ties and influences online social capital. The study extends attachment theory among university students to a national sample to provide more generalizable evidence for the current literature. Additionally, this study extends attachment theory to the SNS setting with a nuanced examination of types of Facebook friends after controlling extraversion. Implications for future research are discussed. PMID:25751049

  13. The role of attachment style in Facebook use and social capital: evidence from university students and a national sample.

    PubMed

    Lin, Jih-Hsuan

    2015-03-01

    Social networking sites (SNSs) can be beneficial tools for users to gain social capital. Although social capital consists of emotional and informational resources accumulated through interactions with strong or weak social network ties, the existing literature largely ignores attachment style in this context. This study employed attachment theory to explore individuals' attachment orientations toward Facebook usage and toward online and offline social capital. A university student sample (study 1) and a representative national sample (study 2) showed consistent results. Secure attachment was positively associated with online bonding and bridging capital and offline bridging capital. Additionally, secure attachment had an indirect effect on all capital through Facebook time. Avoidant attachment was negatively associated with online bonding capital. Anxious-ambivalent attachment had a direct association with online bonding capital and an indirect effect on all capital through Facebook. Interaction frequency with good friends on Facebook positively predicted all online and offline capital, whereas interaction frequency with average friends on Facebook positively predicted online bridging capital. Interaction frequency with acquaintances on Facebook was negatively associated with offline bonding capital. The study concludes that attachment style is a significant factor in guiding social orientation toward Facebook connections with different ties and influences online social capital. The study extends attachment theory among university students to a national sample to provide more generalizable evidence for the current literature. Additionally, this study extends attachment theory to the SNS setting with a nuanced examination of types of Facebook friends after controlling extraversion. Implications for future research are discussed.

  14. Movement Patterns, Social Dynamics, and the Evolution of Cooperation

    PubMed Central

    Smaldino, Paul E.; Schank, Jeffrey C.

    2012-01-01

    The structure of social interactions influences many aspects of social life, including the spread of information and behavior, and the evolution of social phenotypes. After dispersal, organisms move around throughout their lives, and the patterns of their movement influence their social encounters over the course of their lifespan. Though both space and mobility are known to influence social evolution, there is little analysis of the influence of specific movement patterns on evolutionary dynamics. We explored the effects of random movement strategies on the evolution of cooperation using an agent-based prisoner’s dilemma model with mobile agents. This is the first systematic analysis of a model in which cooperators and defectors can use different random movement strategies, which we chose to fall on a spectrum between highly exploratory and highly restricted in their search tendencies. Because limited dispersal and restrictions to local neighborhood size are known to influence the ability of cooperators to effectively assort, we also assessed the robustness of our findings with respect to dispersal and local capacity constraints. We show that differences in patterns of movement can dramatically influence the likelihood of cooperator success, and that the effects of different movement patterns are sensitive to environmental assumptions about offspring dispersal and local space constraints. Since local interactions implicitly generate dynamic social interaction networks, we also measured the average number of unique and total interactions over a lifetime and considered how these emergent network dynamics helped explain the results. This work extends what is known about mobility and the evolution of cooperation, and also has general implications for social models with randomly moving agents. PMID:22838026

  15. Local interactions lead to pathogen-driven change to host population dynamics.

    PubMed

    Boots, Michael; Childs, Dylan; Reuman, Daniel C; Mealor, Michael

    2009-10-13

    Individuals tend to interact more strongly with nearby individuals or within particular social groups. Recent theoretical advances have demonstrated that these within-population relationships can have fundamental implications for ecological and evolutionary dynamics. In particular, contact networks are crucial to the spread and evolution of disease. However, the theory remains largely untested experimentally. Here, we manipulate habitat viscosity and thereby the frequency of local interactions in an insect-pathogen model system in which the virus had previously been shown to have little effect on host population dynamics. At high viscosity, the pathogen caused the collapse of dominant and otherwise stable host generation cycles. Modeling shows that this collapse can be explained by an increase in the frequency of intracohort interactions relative to intercohort interactions, leading to more disease transmission. Our work emphasizes that spatial structure can subtly mediate intraspecific competition and the effects of natural enemies. A decrease in dispersal in a population may actually (sometimes rather counterintuitively) intensify the effects of parasites. Broadly, because anthropological and environmental change often cause changes in population mixing, our work highlights the potential for dramatic changes in the effects of parasites on host populations.

  16. Occupational-level interactions between physical hazards and cognitive ability and skill requirements in predicting injury incidence rates.

    PubMed

    Ford, Michael T; Wiggins, Bryan K

    2012-07-01

    Interactions between occupational-level physical hazards and cognitive ability and skill requirements were examined as predictors of injury incidence rates as reported by the U. S. Bureau of Labor Statistics. Based on ratings provided in the Occupational Information Network (O*NET) database, results across 563 occupations indicate that physical hazards at the occupational level were strongly related to injury incidence rates. Also, as expected, the physical hazard-injury rate relationship was stronger among occupations with high cognitive ability and skill requirements. In addition, there was an unexpected main effect such that occupations with high cognitive ability and skill requirements had lower injury rates even after controlling for physical hazards. The main effect of cognitive ability and skill requirements, combined with the interaction with physical hazards, resulted in unexpectedly high injury rates for low-ability and low-skill occupations with low physical hazard levels. Substantive and methodological explanations for these interactions and their theoretical and practical implications are offered. Results suggest that organizations and occupational health and safety researchers and practitioners should consider the occupational level of analysis and interactions between physical hazards and cognitive requirements in future research and practice when attempting to understand and prevent injuries.

  17. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.

    PubMed

    Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor

    2016-11-30

    Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).

  18. Topology of molecular interaction networks.

    PubMed

    Winterbach, Wynand; Van Mieghem, Piet; Reinders, Marcel; Wang, Huijuan; de Ridder, Dick

    2013-09-16

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks.Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs.Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.

  19. Topology of molecular interaction networks

    PubMed Central

    2013-01-01

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks. Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs. Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes. Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further. PMID:24041013

  20. Social networks dynamics revealed by temporal analysis: An example in a non-human primate (Macaca sylvanus) in "La Forêt des Singes".

    PubMed

    Sosa, Sebastian; Zhang, Peng; Cabanes, Guénaël

    2017-06-01

    This study applied a temporal social network analysis model to describe three affiliative social networks (allogrooming, sleep in contact, and triadic interaction) in a non-human primate species, Macaca sylvanus. Three main social mechanisms were examined to determine interactional patterns among group members, namely preferential attachment (i.e., highly connected individuals are more likely to form new connections), triadic closure (new connections occur via previous close connections), and homophily (individuals interact preferably with others with similar attributes). Preferential attachment was only observed for triadic interaction network. Triadic closure was significant in allogrooming and triadic interaction networks. Finally, gender homophily was seasonal for allogrooming and sleep in contact networks, and observed in each period for triadic interaction network. These individual-based behaviors are based on individual reactions, and their analysis can shed light on the formation of the affiliative networks determining ultimate coalition networks, and how these networks may evolve over time. A focus on individual behaviors is necessary for a global interactional approach to understanding social behavior rules and strategies. When combined, these social processes could make animal social networks more resilient, thus enabling them to face drastic environmental changes. This is the first study to pinpoint some of the processes underlying the formation of a social structure in a non-human primate species, and identify common mechanisms with humans. The approach used in this study provides an ideal tool for further research seeking to answer long-standing questions about social network dynamics. © 2017 Wiley Periodicals, Inc.

  1. Methods and utility of EEG-fMRI in epilepsy

    PubMed Central

    Lemieux, Louis; Chaudhary, Umair Javaid

    2015-01-01

    Brain activity data in general and more specifically in epilepsy can be represented as a matrix that includes measures of electrophysiology, anatomy and behaviour. Each of these sub-matrices has a complex interaction depending upon the brain state i.e., rest, cognition, seizures and interictal periods. This interaction presents significant challenges for interpretation but also potential for developing further insights into individual event types. Successful treatments in epilepsy hinge on unravelling these complexities, and also on the sensitivity and specificity of methods that characterize the nature and localization of underlying physiological and pathological networks. Limitations of pharmacological and surgical treatments call for refinement and elaboration of methods to improve our capability to localise the generators of seizure activity and our understanding of the neurobiology of epilepsy. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI), by potentially circumventing some of the limitations of EEG in terms of sensitivity, can allow the mapping of haemodynamic networks over the entire brain related to specific spontaneous and triggered epileptic events in humans, and thereby provide new localising information. In this work we review the published literature, and discuss the methods and utility of EEG-fMRI in localising the generators of epileptic activity. We draw on our experience and that of other groups, to summarise the spectrum of information provided by an increasing number of EEG-fMRI case-series, case studies and group studies in patients with epilepsy, for its potential role to elucidate epileptic generators and networks. We conclude that EEG-fMRI provides a multidimensional view that contributes valuable clinical information to localize the epileptic focus with potential important implications for the surgical treatment of some patients with drug-resistant epilepsy, and insights into the resting state and cognitive network dynamics. PMID:25853087

  2. A neural network investigation of the crucial facets of urban sustainability.

    PubMed

    Buscema, M; Diappi, L; Ottanà, M

    1998-02-01

    This paper focuses on the concept of a sustainable city and its theoretical implications for the Italian urban system. Urban sustainability is based on positive interactions among three different urban subsystems: social, economic and physical, where social well-being coexists with economic development and environmental quality. This utopian scenario does not appear in the existing cities. The aesthetic quality of natural and man-made environment is often associated with marginality and poverty, labor market variety and urban efficiency coexisting with pollution, criminality and high settlement costs. Moreover, since each city differs institutionally, historically, culturally and economically, few attempts have been implemented to build a comparative synthetic vision of the urban sustainability in different cities. The interactions among these selected systems are complex and unpredictable and present the opportunity for a new methodology of scientific investigation: the connectionistic approach. The dual aim of this study is to: investigate the underlying relationships among the three subsystems with a set of social, economic and physical attributes of the chief towns of a Province in Italy and ; verify if this underlying structure could reproduce the heterogeneity of urban realities, allowing one to distinguish groups of cities with different assets or drawbacks in their sustainability. The Data Base (DB), composed of 43 attributes for 95 cities, was processed by Self-Reflexive Neural Networks (SRNN) (Buscema, 1995). These Networks are a useful instrument of investigation and analogic questioning of the Data Base. Once the SRNN has learned the structure of the weights from the DB, by querying the network with the maximization or minimization of specific groups of attributes, it is possible to read the related properties and to rank the cities' urban profile.

  3. Initial Development and Validation of the Mexican Intercultural Competence Scale

    PubMed Central

    Torres, Lucas

    2013-01-01

    The current project sought to develop the Mexican Intercultural Competence Scale (MICS), which assesses group-specific skills and attributes that facilitate effective cultural interactions, among adults of Mexican descent. Study 1 involved an Exploratory Factor Analysis (N = 184) that identified five factors including Ambition/Perseverance, Networking, the Traditional Latino Culture, Family Relationships, and Communication. In Study 2, a Confirmatory Factor Analysis provided evidence for the 5-factor model for adults of Mexican origin living in the Midwest (N = 341) region of the U.S. The general findings are discussed in terms of a competence-based formulation of cultural adaptation and include theoretical and clinical implications. PMID:24058890

  4. Initial Development and Validation of the Mexican Intercultural Competence Scale.

    PubMed

    Torres, Lucas

    2013-01-01

    The current project sought to develop the Mexican Intercultural Competence Scale (MICS), which assesses group-specific skills and attributes that facilitate effective cultural interactions, among adults of Mexican descent. Study 1 involved an Exploratory Factor Analysis ( N = 184) that identified five factors including Ambition/Perseverance, Networking, the Traditional Latino Culture, Family Relationships, and Communication. In Study 2, a Confirmatory Factor Analysis provided evidence for the 5-factor model for adults of Mexican origin living in the Midwest ( N = 341) region of the U.S. The general findings are discussed in terms of a competence-based formulation of cultural adaptation and include theoretical and clinical implications.

  5. Multiple tipping points and optimal repairing in interacting networks

    PubMed Central

    Majdandzic, Antonio; Braunstein, Lidia A.; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Eugene Stanley, H.; Havlin, Shlomo

    2016-01-01

    Systems composed of many interacting dynamical networks—such as the human body with its biological networks or the global economic network consisting of regional clusters—often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two ‘forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model. PMID:26926803

  6. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    PubMed

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.

  7. Linear motif-mediated interactions have contributed to the evolution of modularity in complex protein interaction networks.

    PubMed

    Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk

    2014-10-01

    The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.

  8. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  9. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  10. A network analysis of DSM-5 posttraumatic stress disorder symptoms and correlates in U.S. military veterans.

    PubMed

    Armour, Cherie; Fried, Eiko I; Deserno, Marie K; Tsai, Jack; Pietrzak, Robert H

    2017-01-01

    Recent developments in psychometrics enable the application of network models to analyze psychological disorders, such as PTSD. Instead of understanding symptoms as indicators of an underlying common cause, this approach suggests symptoms co-occur in syndromes due to causal interactions. The current study has two goals: (1) examine the network structure among the 20 DSM-5 PTSD symptoms, and (2) incorporate clinically relevant variables to the network to investigate whether PTSD symptoms exhibit differential relationships with suicidal ideation, depression, anxiety, physical functioning/quality of life (QoL), mental functioning/QoL, age, and sex. We utilized a nationally representative U.S. military veteran's sample; and analyzed the data from a subsample of 221 veterans who reported clinically significant DSM-5 PTSD symptoms. Networks were estimated using state-of-the-art regularized partial correlation models. Data and code are published along with the paper. The 20-item DSM-5 PTSD network revealed that symptoms were positively connected within the network. Especially strong connections emerged between nightmares and flashbacks; blame of self or others and negative trauma-related emotions, detachment and restricted affect; and hypervigilance and exaggerated startle response. The most central symptoms were negative trauma-related emotions, flashbacks, detachment, and physiological cue reactivity. Incorporation of clinically relevant covariates into the network revealed paths between self-destructive behavior and suicidal ideation; concentration difficulties and anxiety, depression, and mental QoL; and depression and restricted affect. These results demonstrate the utility of a network approach in modeling the structure of DSM-5 PTSD symptoms, and suggest differential associations between specific DSM-5 PTSD symptoms and clinical outcomes in trauma survivors. Implications of these results for informing the assessment and treatment of this disorder, are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Functional connectivity mapping of regions associated with self- and other-processing.

    PubMed

    Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B

    2015-04-01

    Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.

  12. Food Web Designer: a flexible tool to visualize interaction networks.

    PubMed

    Sint, Daniela; Traugott, Michael

    Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator-prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.

  13. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  14. Maximally informative pairwise interactions in networks

    PubMed Central

    Fitzgerald, Jeffrey D.; Sharpee, Tatyana O.

    2010-01-01

    Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes. PMID:19905153

  15. Dendritic nonlinearities reduce network size requirements and mediate ON and OFF states of persistent activity in a PFC microcircuit model.

    PubMed

    Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Poirazi, Panayiota

    2014-07-01

    Technological advances have unraveled the existence of small clusters of co-active neurons in the neocortex. The functional implications of these microcircuits are in large part unexplored. Using a heavily constrained biophysical model of a L5 PFC microcircuit, we recently showed that these structures act as tunable modules of persistent activity, the cellular correlate of working memory. Here, we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes. We show that (a) NMDA-mediated dendritic spikes gate the induction of persistent firing in the microcircuit. (b) The minimum network size required for persistent activity induction is inversely proportional to the synaptic drive of each excitatory neuron. (c) Relaxation of connectivity and synaptic delay constraints eliminates the gating effect of NMDA spikes, albeit at a cost of much larger networks. (d) Persistent activity termination by increased inhibition depends on the strength of the synaptic input and is negatively modulated by dADP. (e) Slow synaptic mechanisms and network activity contain predictive information regarding the ability of a given stimulus to turn ON and/or OFF persistent firing in the microcircuit model. Overall, this study zooms out from dendrites to cell assemblies and suggests a tight interaction between dendritic non-linearities and network properties (size/connectivity) that may facilitate the short-memory function of the PFC.

  16. A Network Based Theory of Health Systems and Cycles of Well-being

    PubMed Central

    Rhodes, Michael Grant

    2013-01-01

    There are two dominant approaches to describe and understand the anatomy of complete health and well-being systems internationally. Yet, neither approach has been able to either predict or explain occasional but dramatic crises in health and well-being systems around the world and in developed emerging market or developing country contexts. As the impacts of such events can be measured not simply in terms of their social and economic consequences but also public health crises, there is a clear need to look for and formulate an alternative approach. This paper examines multi-disciplinary theoretical evidence to suggest that health systems exhibit natural and observable systemic and long cycle characteristics that can be modelled. A health and well-being system model of two slowly evolving anthropological network sub-systems is defined. The first network sub-system consists of organised professional networks of exclusive suppliers of health and well-being services. The second network sub-system consists of communities organising themselves to resource those exclusive services. Together these two network sub-systems interact to form the specific (sovereign) health and well-being systems we know today. But the core of a truly ‘complex adaptive system’ can also be identified and a simplified two sub-system model of recurring Lotka-Volterra predator-prey cycles is specified. The implications of such an adaptive and evolving model of system anatomy for effective public health, social security insurance and well-being systems governance could be considerable. PMID:24596831

  17. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  18. Social Networking Sites as Communication, Interaction, and Learning Environments: Perceptions and Preferences of Distance Education Students

    ERIC Educational Resources Information Center

    Bozkurt, Aras; Karadeniz, Abdulkadir; Kocdar, Serpil

    2017-01-01

    The advent of Web 2.0 technologies transformed online networks into interactive spaces in which user-generated content has become the core material. With the possibilities that emerged from Web 2.0, social networking sites became very popular. The capability of social networking sites promises opportunities for communication and interaction,…

  19. Interaction Networks: Generating High Level Hints Based on Network Community Clustering

    ERIC Educational Resources Information Center

    Eagle, Michael; Johnson, Matthew; Barnes, Tiffany

    2012-01-01

    We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…

  20. A global interaction network maps a wiring diagram of cellular function

    PubMed Central

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  1. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  2. Multiple Assembly Rules Drive the Co-occurrence of Orthopteran and Plant Species in Grasslands: Combining Network, Functional and Phylogenetic Approaches

    PubMed Central

    Fournier, Bertrand; Mouly, Arnaud; Gillet, François

    2016-01-01

    Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species assembly. Here, we investigate the general hypothesis that the structure of co-occurrence networks results from multiple assembly rules and its potential implications for grassland ecosystems. We surveyed orthopteran and plant communities in 48 permanent grasslands of the French Jura Mountains and gathered functional and phylogenetic data for all species. We constructed a network of plant and orthopteran species co-occurrences and verified whether its structure was modular or nested. We investigated the role of all species in the structure of the network (modularity and nestedness). We also investigated the assembly rules driving the structure of the plant-orthopteran co-occurrence network by using null models on species functional traits, phylogenetic relatedness and environmental conditions. We finally compared our results to abundance-based approaches. We found that the plant-orthopteran co-occurrence network had a modular organization. Community assembly rules differed among modules for plants while interactions with plants best explained the distribution of orthopterans into modules. Few species had a disproportionately high positive contribution to this modular organization and are likely to have a key importance to modulate future changes. The impact of agricultural practices was restricted to some modules (3 out of 5) suggesting that shifts in agricultural practices might not impact the entire plant-orthopteran co-occurrence network. These findings support our hypothesis that multiple assembly rules drive the modular structure of the plant-orthopteran network. This modular structure is likely to play a key role in the response of grassland ecosystems to future changes by limiting the impact of changes in agricultural practices such as intensification to some modules leaving species from other modules poorly impacted. The next step is to understand the importance of this modular structure for the long-term maintenance of grassland ecosystem structure and functions as well as to develop tools to integrate network structure into models to improve their capacity to predict future changes. PMID:27582754

  3. Enhancing the Functional Content of Eukaryotic Protein Interaction Networks

    PubMed Central

    Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean

    2014-01-01

    Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489

  4. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases

    PubMed Central

    Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H

    2003-01-01

    Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935

  5. Resting connectivity between salience nodes predicts recognition memory.

    PubMed

    Andreano, Joseph M; Touroutoglou, Alexandra; Dickerson, Bradford C; Barrett, Lisa F

    2017-06-01

    The resting connectivity of the brain's salience network, particularly the ventral subsystem of the salience network, has been previously associated with various measures of affective reactivity. Numerous studies have demonstrated that increased affective arousal leads to enhanced consolidation of memory. This suggests that individuals with greater ventral salience network connectivity will exhibit greater responses to affective experience, leading to a greater enhancement of memory by affect. To test this hypothesis, resting ventral salience connectivity was measured in 41 young adults, who were then exposed to neutral and negative affect inductions during a paired associate memory test. Memory performance for material learned under both negative and neutral induction was tested for correlation with resting connectivity between major ventral salience nodes. The results showed a significant interaction between mood induction (negative vs neutral) and connectivity between ventral anterior insula and pregenual anterior cingulate cortex, indicating that salience node connectivity predicted memory for material encoded under negative, but not neutral induction. These findings suggest that the network state of the perceiver, measured prior to affective experience, meaningfully influences the extent to which affect modulates memory. Implications of these findings for individuals with affective disorder, who show alterations in both connectivity and memory, are considered. © The Author (2017). Published by Oxford University Press.

  6. Multi-Dimensional Prioritization of Dental Caries Candidate Genes and Its Enriched Dense Network Modules

    PubMed Central

    Wang, Quan; Jia, Peilin; Cuenco, Karen T.; Feingold, Eleanor; Marazita, Mary L.; Wang, Lily; Zhao, Zhongming

    2013-01-01

    A number of genetic studies have suggested numerous susceptibility genes for dental caries over the past decade with few definite conclusions. The rapid accumulation of relevant information, along with the complex architecture of the disease, provides a challenging but also unique opportunity to review and integrate the heterogeneous data for follow-up validation and exploration. In this study, we collected and curated candidate genes from four major categories: association studies, linkage scans, gene expression analyses, and literature mining. Candidate genes were prioritized according to the magnitude of evidence related to dental caries. We then searched for dense modules enriched with the prioritized candidate genes through their protein-protein interactions (PPIs). We identified 23 modules comprising of 53 genes. Functional analyses of these 53 genes revealed three major clusters: cytokine network relevant genes, matrix metalloproteinases (MMPs) family, and transforming growth factor-beta (TGF-β) family, all of which have been previously implicated to play important roles in tooth development and carious lesions. Through our extensive data collection and an integrative application of gene prioritization and PPI network analyses, we built a dental caries-specific sub-network for the first time. Our study provided insights into the molecular mechanisms underlying dental caries. The framework we proposed in this work can be applied to other complex diseases. PMID:24146904

  7. The gravitational law of social interaction

    NASA Astrophysics Data System (ADS)

    Levy, Moshe; Goldenberg, Jacob

    2014-01-01

    While a great deal is known about the topology of social networks, there is much less agreement about the geographical structure of these networks. The fundamental question in this context is: how does the probability of a social link between two individuals depend on the physical distance between them? While it is clear that the probability decreases with the distance, various studies have found different functional forms for this dependence. The exact form of the distance dependence has crucial implications for network searchability and dynamics: Kleinberg (2000) [15] shows that the small-world property holds if the probability of a social link is a power-law function of the distance with power -2, but not with any other power. We investigate the distance dependence of link probability empirically by analyzing four very different sets of data: Facebook links, data from the electronic version of the Small-World experiment, email messages, and data from detailed personal interviews. All four datasets reveal the same empirical regularity: the probability of a social link is proportional to the inverse of the square of the distance between the two individuals, analogously to the distance dependence of the gravitational force. Thus, it seems that social networks spontaneously converge to the exact unique distance dependence that ensures the Small-World property.

  8. Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming.

    PubMed

    Robinson, J M; Henderson, W A

    2018-01-12

    We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.

  9. Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks.

    PubMed

    Astegiano, Julia; Altermatt, Florian; Massol, François

    2017-11-13

    Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.

  10. Network Sampling and Classification:An Investigation of Network Model Representations

    PubMed Central

    Airoldi, Edoardo M.; Bai, Xue; Carley, Kathleen M.

    2011-01-01

    Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed. PMID:21666773

  11. Top-down network analysis characterizes hidden termite-termite interactions.

    PubMed

    Campbell, Colin; Russo, Laura; Marins, Alessandra; DeSouza, Og; Schönrogge, Karsten; Mortensen, David; Tooker, John; Albert, Réka; Shea, Katriona

    2016-09-01

    The analysis of ecological networks is generally bottom-up, where networks are established by observing interactions between individuals. Emergent network properties have been indicated to reflect the dominant mode of interactions in communities that might be mutualistic (e.g., pollination) or antagonistic (e.g., host-parasitoid communities). Many ecological communities, however, comprise species interactions that are difficult to observe directly. Here, we propose that a comparison of the emergent properties from detail-rich reference communities with known modes of interaction can inform our understanding of detail-sparse focal communities. With this top-down approach, we consider patterns of coexistence between termite species that live as guests in mounds built by other host termite species as a case in point. Termite societies are extremely sensitive to perturbations, which precludes determining the nature of their interactions through direct observations. We perform a literature review to construct two networks representing termite mound cohabitation in a Brazilian savanna and in the tropical forest of Cameroon. We contrast the properties of these cohabitation networks with a total of 197 geographically diverse mutualistic plant-pollinator and antagonistic host-parasitoid networks. We analyze network properties for the networks, perform a principal components analysis (PCA), and compute the Mahalanobis distance of the termite networks to the cloud of mutualistic and antagonistic networks to assess the extent to which the termite networks overlap with the properties of the reference networks. Both termite networks overlap more closely with the mutualistic plant-pollinator communities than the antagonistic host-parasitoid communities, although the Brazilian community overlap with mutualistic communities is stronger. The analysis raises the hypothesis that termite-termite cohabitation networks may be overall mutualistic. More broadly, this work provides support for the argument that cryptic communities may be analyzed via comparison to well-characterized communities.

  12. Influences of brain development and ageing on cortical interactive networks.

    PubMed

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. The network organization of protein interactions in the spliceosome is reproduced by the simple rules of food-web models

    PubMed Central

    Pires, Mathias M.; Cantor, Maurício; Guimarães, Paulo R.; de Aguiar, Marcus A. M.; dos Reis, Sérgio F.; Coltri, Patricia P.

    2015-01-01

    The network structure of biological systems provides information on the underlying processes shaping their organization and dynamics. Here we examined the structure of the network depicting protein interactions within the spliceosome, the macromolecular complex responsible for splicing in eukaryotic cells. We show the interactions of less connected spliceosome proteins are nested subsets of the connections of the highly connected proteins. At the same time, the network has a modular structure with groups of proteins sharing similar interaction patterns. We then investigated the role of affinity and specificity in shaping the spliceosome network by adapting a probabilistic model originally designed to reproduce food webs. This food-web model was as successful in reproducing the structure of protein interactions as it is in reproducing interactions among species. The good performance of the model suggests affinity and specificity, partially determined by protein size and the timing of association to the complex, may be determining network structure. Moreover, because network models allow building ensembles of realistic networks while encompassing uncertainty they can be useful to examine the dynamics and vulnerability of intracelullar processes. Unraveling the mechanisms organizing the spliceosome interactions is important to characterize the role of individual proteins on splicing catalysis and regulation. PMID:26443080

  14. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.

    PubMed

    Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.

  15. Implications of Social Network Sites for Teaching and Learning. Where We Are and Where We Want to Go

    ERIC Educational Resources Information Center

    Manca, Stefania; Ranieri, Maria

    2017-01-01

    This conceptual paper deals with some of the implications that the use of social network sites, though not originally developed and conceived for learning purposes, have for schools and academic activities when they are used as tools able to modify and innovate teaching/learning practices and academic culture. Beside the differences that…

  16. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network

    PubMed Central

    Lázár, Viktória; Nagy, István; Spohn, Réka; Csörgő, Bálint; Györkei, Ádám; Nyerges, Ákos; Horváth, Balázs; Vörös, Andrea; Busa-Fekete, Róbert; Hrtyan, Mónika; Bogos, Balázs; Méhi, Orsolya; Fekete, Gergely; Szappanos, Balázs; Kégl, Balázs; Papp, Balázs; Pál, Csaba

    2014-01-01

    Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies. PMID:25000950

  17. Peer Mediation to Increase Communication and Interaction at Recess for Students with Autism Spectrum Disorders

    PubMed Central

    Mason, Rose; Kamps, Debra; Turcotte, Amy; Cox, Suzanne; Feldmiller, Sarah; Miller, Todd

    2015-01-01

    Recess plays an integral role in the social and emotional development of children given the time provided to engage in interactions with others and practice important social skills. Students with ASD, however, typically fail to achieve even minimal benefit from recess due to social and communication impairments as well as a tendency to withdraw. Implementation of evidence-based interventions such as peer-mediated social skills groups, are necessary to ensure recess is an advantageous learning environment for students with ASD. A multiple-baseline design across participants was used to determine if a functional relationship exists between a social skills instructional program combined with peer networks with school staff as implementers and increases in level of communicative acts for participants with ASD at recess. Results indicate all participants demonstrated an immediate increase in the number of communicative acts with the introduction of the intervention. Implications for practice are discussed. PMID:26180543

  18. Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability.

    PubMed

    Gonsamo, Alemu; Chen, Jing M; Wu, Chaoyang

    2013-01-01

    The timing of crucial events in plant life cycles is shifting in response to climate change. We use phenology records from PlantWatch Canada 'Citizen Science' networks to study recent rapid shifts of flowering phenology and its relationship with climate. The average first flower bloom day of 19 Canadian plant species has advanced by about 9 days during 2001-2012. 73% of the rapid and unprecedented first bloom day advances are explained by changes in mean annual national temperature, allowing the reconstruction of historic flower phenology records starting from 1948. The overall trends show that plant flowering in Canada is advancing by about 9 days per °C. This analysis reveals the strongest biological signal yet of climate warming in Canada. This finding has broad implications for niche differentiation among coexisting species, competitive interactions between species, and the asynchrony between plants and the organisms they interact with.

  19. Seminar: Developmental Dyslexia

    PubMed Central

    Peterson, Robin L.; Pennington, Bruce F.

    2012-01-01

    Summary Dyslexia is a neurodevelopmental disorder that is characterized by slow and inaccurate word recognition. Dyslexia has been found in every culture studied, and mounting evidence underscores cross-linguistic similarity in its neurobiological and neurocognitive bases. There has been considerable progress across levels of analysis in the last five years. At a neuropsychological level, the phonological theory remains the most compelling, though it is increasingly clear that phonological problems interact with other cognitive risk factors. At a neurobiological level, recent research confirms that dyslexia is characterized by dysfunction of the normal left hemisphere language network and also implicates abnormal white matter development. Studies accounting for reading experience demonstrate that many observed neural differences reflect causes rather than effects of dyslexia. At an etiologic risk level, six candidate genes have been identified, and there is evidence for gene by environment interaction. This review includes a focus on these and other recent developments. PMID:22513218

  20. Renal dopaminergic system: Pathophysiological implications and clinical perspectives

    PubMed Central

    Choi, Marcelo Roberto; Kouyoumdzian, Nicolás Martín; Rukavina Mikusic, Natalia Lucía; Kravetz, María Cecilia; Rosón, María Inés; Rodríguez Fermepin, Martín; Fernández, Belisario Enrique

    2015-01-01

    Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent. PMID:25949933

  1. Having the Time of Their Life: College Student Stress, Dating and Satisfaction with Life.

    PubMed

    Coccia, Catherine; Darling, Carol A

    2016-02-01

    A cross-sectional design based on the family ecosystem framework was used to examine how students' time spent engaging in social interactions and personal behaviours was related to dating, stress and satisfaction with life. The data were extracted from the Parental Indulgence of Emerging Adults study and consisted of 534 students at a southeastern university. The findings indicated that the amount of time involved in non-verbal social interactions, such as texting and social networking, along with solitary activities, such as watching TV and studying, was negatively related to students' life satisfaction. In comparison, being in a relationship and talking to people on the phone were positively related to students' life satisfaction. These results have implications for family and health professionals along with university wellness centres that facilitate student health by incorporating preventative measures to help students deal with their stress. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Competitive inhibition can linearize dose-response and generate a linear rectifier

    PubMed Central

    Savir, Yonatan; Tu, Benjamin P.; Springer, Michael

    2015-01-01

    Summary Many biological responses require a dynamic range that is larger than standard bi-molecular interactions allow, yet the also ability to remain off at low input. Here we mathematically show that an enzyme reaction system involving a combination of competitive inhibition, conservation of the total level of substrate and inhibitor, and positive feedback can behave like a linear rectifier—that is, a network motif with an input-output relationship that is linearly sensitive to substrate above a threshold but unresponsive below the threshold. We propose that the evolutionarily conserved yeast SAGA histone acetylation complex may possess the proper physiological response characteristics and molecular interactions needed to perform as a linear rectifier, and we suggest potential experiments to test this hypothesis. One implication of this work is that linear responses and linear rectifiers might be easier to evolve or synthetically construct than is currently appreciated. PMID:26495436

  3. Competitive inhibition can linearize dose-response and generate a linear rectifier.

    PubMed

    Savir, Yonatan; Tu, Benjamin P; Springer, Michael

    2015-09-23

    Many biological responses require a dynamic range that is larger than standard bi-molecular interactions allow, yet the also ability to remain off at low input. Here we mathematically show that an enzyme reaction system involving a combination of competitive inhibition, conservation of the total level of substrate and inhibitor, and positive feedback can behave like a linear rectifier-that is, a network motif with an input-output relationship that is linearly sensitive to substrate above a threshold but unresponsive below the threshold. We propose that the evolutionarily conserved yeast SAGA histone acetylation complex may possess the proper physiological response characteristics and molecular interactions needed to perform as a linear rectifier, and we suggest potential experiments to test this hypothesis. One implication of this work is that linear responses and linear rectifiers might be easier to evolve or synthetically construct than is currently appreciated.

  4. Social Network Analysis of the Irish Biotech Industry: Implications for Digital Ecosystems

    NASA Astrophysics Data System (ADS)

    van Egeraat, Chris; Curran, Declan

    This paper presents an analysis of the socio-spatial structures of innovation, collaboration and knowledge flow among SMEs in the Irish biotech sector. The study applies social network analysis to determine the structure of networks of company directors and inventors in the biotech sector. In addition, the article discusses the implications of the findings for the role and contours of a biotech digital ecosystem. To distil these lessons, the research team organised a seminar which was attended by representatives of biotech actors and experts.

  5. A multivariate analysis of age-related differences in functional networks supporting conflict resolution.

    PubMed

    Salami, Alireza; Rieckmann, Anna; Fischer, Håkan; Bäckman, Lars

    2014-02-01

    Functional neuroimaging studies demonstrate age-related differences in recruitment of a large-scale attentional network during interference resolution, especially within dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). These alterations in functional responses have been frequently observed despite equivalent task performance, suggesting age-related reallocation of neural resources, although direct evidence for a facilitating effect in aging is sparse. We used the multi-source interference task and multivariate partial-least-squares to investigate age-related differences in the neuronal signature of conflict resolution, and their behavioral implications in younger and older adults. There were interference-related increases in activity, involving fronto-parietal and basal ganglia networks that generalized across age. In addition an age-by-task interaction was observed within a distributed network, including DLPFC and ACC, with greater activity during interference in the old. Next, we combined brain-behavior and functional connectivity analyses to investigate whether compensatory brain changes were present in older adults, using DLPFC and ACC as regions of interest (i.e. seed regions). This analysis revealed two networks differentially related to performance across age groups. A structural analysis revealed age-related gray-matter losses in regions facilitating performance in the young, suggesting that functional reorganization may partly reflect structural alterations in aging. Collectively, these findings suggest that age-related structural changes contribute to reductions in the efficient recruitment of a youth-like interference network, which cascades into instantiation of a different network facilitating conflict resolution in elderly people. © 2013. Published by Elsevier Inc. All rights reserved.

  6. ALEPH: Israel's Research Library Network: Background, Evolution, and Implications for Networking in a Small Country.

    ERIC Educational Resources Information Center

    Lazinger, Susan S.

    1991-01-01

    Describes ALEPH, the research library network in Israel, and analyzes the strengths and weaknesses of its decentralized structure. Highlights include comparisons between RLIN and ALEPH; centralized versus decentralized networks; the format of ALEPH; authority control in ALEPH; and non-Roman scripts in both networks. (16 references) (LRW)

  7. Variations in Social Network Type Membership Among Older African Americans, Caribbean Blacks, and Non-Hispanic Whites

    PubMed Central

    2017-01-01

    Abstract Objectives: This study examined race differences in the probability of belonging to a specific social network typology of family, friends, and church members. Method: Samples of African Americans, Caribbean blacks, and non-Hispanic whites aged 55+ were drawn from the National Survey of American Life. Typology indicators related to social integration and negative interactions with family, friendship, and church networks were used. Latent class analysis was used to identify typologies, and latent class multinomial logistic regression was used to assess the influence of race, and interactions between race and age, and race and education on typology membership. Results: Four network typologies were identified: optimal (high social integration, low negative interaction), family-centered (high social integration within primarily the extended family network, low negative interaction), strained (low social integration, high negative interaction), and ambivalent (high social integration and high negative interaction). Findings for race and age and race and education interactions indicated that the effects of education and age on typology membership varied by race. Discussion: Overall, the findings demonstrate how race interacts with age and education to influence the probability of belonging to particular network types. A better understanding of the influence of race, education, and age on social network typologies will inform future research and theoretical developments in this area. PMID:28329871

  8. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design.

    PubMed

    Palencia, Andrés; Cobos, Eva S; Mateo, Pedro L; Martínez, Jose C; Luque, Irene

    2004-02-13

    The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.

  9. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    PubMed

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. User-Centric Secure Cross-Site Interaction Framework for Online Social Networking Services

    ERIC Educational Resources Information Center

    Ko, Moo Nam

    2011-01-01

    Social networking service is one of major technological phenomena on Web 2.0. Hundreds of millions of users are posting message, photos, and videos on their profiles and interacting with other users, but the sharing and interaction are limited within the same social networking site. Although users can share some content on a social networking site…

  11. Genome-wide analysis of protein disorder in Arabidopsis thaliana: implications for plant environmental adaptation.

    PubMed

    Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto; Pazos, Florencio

    2013-01-01

    Intrinsically disordered proteins/regions (IDPs/IDRs) are currently recognized as a widespread phenomenon having key cellular functions. Still, many aspects of the function of these proteins need to be unveiled. IDPs conformational flexibility allows them to recognize and interact with multiple partners, and confers them larger interaction surfaces that may increase interaction speed. For this reason, molecular interactions mediated by IDPs/IDRs are particularly abundant in certain types of protein interactions, such as those of signaling and cell cycle control. We present the first large-scale study of IDPs in Arabidopsis thaliana, the most widely used model organism in plant biology, in order to get insight into the biological roles of these proteins in plants. The work includes a comparative analysis with the human proteome to highlight the differential use of disorder in both species. Results show that while human proteins are in general more disordered, certain functional classes, mainly related to environmental response, are significantly more enriched in disorder in Arabidopsis. We propose that because plants cannot escape from environmental conditions as animals do, they use disorder as a simple and fast mechanism, independent of transcriptional control, for introducing versatility in the interaction networks underlying these biological processes so that they can quickly adapt and respond to challenging environmental conditions.

  12. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    PubMed

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  13. Why people continue to play online games: in search of critical design factors to increase customer loyalty to online contents.

    PubMed

    Choi, Dongseong; Kim, Jinwoo

    2004-02-01

    As people increasingly play online games, numerous new features have been proposed to increase players' log-on time at online gaming sites. However, few studies have investigated why people continue to play certain online games or which design features are most closely related to the amount of time spent by players at particular online gaming sites. This study proposes a theoretical model using the concepts of customer loyalty, flow, personal interaction, and social interaction to explain why people continue to play online network games. The study then conducts a large-scale survey to validate the model. Finally, it analyzes current online games to identify design features that are closely related to the theoretical concepts. The results indicate that people continue to play online games if they have optimal experiences while playing the games. This optimal experience can be attained if the player has effective personal interaction with the system or pleasant social interactions with other people connected to the Internet. Personal interaction can be facilitated by providing appropriate goals, operators and feedback; social interaction can be facilitated through appropriate communication places and tools. This paper ends with the implications of applying the study results to other domains such as e-commerce and cyber communities.

  14. Scale-space measures for graph topology link protein network architecture to function.

    PubMed

    Hulsman, Marc; Dimitrakopoulos, Christos; de Ridder, Jeroen

    2014-06-15

    The network architecture of physical protein interactions is an important determinant for the molecular functions that are carried out within each cell. To study this relation, the network architecture can be characterized by graph topological characteristics such as shortest paths and network hubs. These characteristics have an important shortcoming: they do not take into account that interactions occur across different scales. This is important because some cellular functions may involve a single direct protein interaction (small scale), whereas others require more and/or indirect interactions, such as protein complexes (medium scale) and interactions between large modules of proteins (large scale). In this work, we derive generalized scale-aware versions of known graph topological measures based on diffusion kernels. We apply these to characterize the topology of networks across all scales simultaneously, generating a so-called graph topological scale-space. The comprehensive physical interaction network in yeast is used to show that scale-space based measures consistently give superior performance when distinguishing protein functional categories and three major types of functional interactions-genetic interaction, co-expression and perturbation interactions. Moreover, we demonstrate that graph topological scale spaces capture biologically meaningful features that provide new insights into the link between function and protein network architecture. Matlab(TM) code to calculate the scale-aware topological measures (STMs) is available at http://bioinformatics.tudelft.nl/TSSA © The Author 2014. Published by Oxford University Press.

  15. Group-based strategy diffusion in multiplex networks with weighted values

    NASA Astrophysics Data System (ADS)

    Yu, Jianyong; Jiang, J. C.; Xiang, Leijun

    2017-03-01

    The information diffusion of multiplex social networks has received increasing interests in recent years. Actually, the multiplex networks are made of many communities, and it should be gotten more attention for the influences of community level diffusion, besides of individual level interactions. In view of this, this work explores strategy interactions and diffusion processes in multiplex networks with weighted values from a new perspective. Two different groups consisting of some agents with different influential strength are firstly built in each layer network, the authority and non-authority groups. The strategy interactions between different groups in intralayer and interlayer networks are performed to explore community level diffusion, by playing two classical strategy games, Prisoner's Dilemma and Snowdrift Game. The impact forces from the different groups and the reactive forces from individual agents are simultaneously taken into account in intralayer and interlayer interactions. This paper reveals and explains the evolutions of cooperation diffusion and the influences of interlayer interaction tight degrees in multiplex networks with weighted values. Some thresholds of critical parameters of interaction degrees and games parameters settings are also discussed in group-based strategy diffusion.

  16. Does the Type of Event Influence How User Interactions Evolve on Twitter?

    PubMed Central

    del Val, Elena; Rebollo, Miguel; Botti, Vicente

    2015-01-01

    The number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace that is recorded. Thanks to this fact and the use of network theory, the analysis of messages, user interactions, and the complex structures that emerge is greatly facilitated. In addition, information generated in on-line social networks is labeled temporarily, which makes it possible to go a step further analyzing the dynamics of the interaction patterns. In this article, we present an analysis of the evolution of user interactions that take place in television, socio-political, conference, and keynote events on Twitter. Interactions have been modeled as networks that are annotated with the time markers. We study changes in the structural properties at both the network level and the node level. As a result of this analysis, we have detected patterns of network evolution and common structural features as well as differences among the events. PMID:25961305

  17. Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks.

    PubMed

    Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia

    2012-06-21

    Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.

  18. Structural stability of interaction networks against negative external fields

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.

    2018-04-01

    We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.

  19. Myths on Bi-direction Communication of Web 2.0 Based Social Networks: Is Social Network Truly Interactive?

    DTIC Science & Technology

    2011-03-10

    more and more social interactions are happening on the on-line. Especially recent uptake of the social network sites (SNSs), such as Facebook (http...results give overviews on social interactions on a popular social network site . As each twitter account has different characteristics based on...the public and individuals post their private stories on their blogs and share their interests using social network sites . On the other hand, people

  20. Structural complexity, movement bias, and metapopulation extinction risk in dendritic ecological networks

    USGS Publications Warehouse

    Campbell Grant, Evan H.

    2011-01-01

    Spatial complexity in metacommunities can be separated into 3 main components: size (i.e., number of habitat patches), spatial arrangement of habitat patches (network topology), and diversity of habitat patch types. Much attention has been paid to lattice-type networks, such as patch-based metapopulations, but interest in understanding ecological networks of alternative geometries is building. Dendritic ecological networks (DENs) include some increasingly threatened ecological systems, such as caves and streams. The restrictive architecture of dendritic ecological networks might have overriding implications for species persistence. I used a modeling approach to investigate how number and spatial arrangement of habitat patches influence metapopulation extinction risk in 2 DENs of different size and topology. Metapopulation persistence was higher in larger networks, but this relationship was mediated by network topology and the dispersal pathways used to navigate the network. Larger networks, especially those with greater topological complexity, generally had lower extinction risk than smaller and less-complex networks, but dispersal bias and magnitude affected the shape of this relationship. Applying these general results to real systems will require empirical data on the movement behavior of organisms and will improve our understanding of the implications of network complexity on population and community patterns and processes.

  1. Diversity of multilayer networks and its impact on collaborating epidemics

    NASA Astrophysics Data System (ADS)

    Min, Yong; Hu, Jiaren; Wang, Weihong; Ge, Ying; Chang, Jie; Jin, Xiaogang

    2014-12-01

    Interacting epidemics on diverse multilayer networks are increasingly important in modeling and analyzing the diffusion processes of real complex systems. A viral agent spreading on one layer of a multilayer network can interact with its counterparts by promoting (cooperative interaction), suppressing (competitive interaction), or inducing (collaborating interaction) its diffusion on other layers. Collaborating interaction displays different patterns: (i) random collaboration, where intralayer or interlayer induction has the same probability; (ii) concentrating collaboration, where consecutive intralayer induction is guaranteed with a probability of 1; and (iii) cascading collaboration, where consecutive intralayer induction is banned with a probability of 0. In this paper, we develop a top-bottom framework that uses only two distributions, the overlaid degree distribution and edge-type distribution, to model collaborating epidemics on multilayer networks. We then state the response of three collaborating patterns to structural diversity (evenness and difference of network layers). For viral agents with small transmissibility, we find that random collaboration is more effective in networks with higher diversity (high evenness and difference), while the concentrating pattern is more suitable in uneven networks. Interestingly, the cascading pattern requires a network with moderate difference and high evenness, and the moderately uneven coupling of multiple network layers can effectively increase robustness to resist cascading failure. With large transmissibility, however, we find that all collaborating patterns are more effective in high-diversity networks. Our work provides a systemic analysis of collaborating epidemics on multilayer networks. The results enhance our understanding of biotic and informative diffusion through multiple vectors.

  2. Analysis of complex neural circuits with nonlinear multidimensional hidden state models

    PubMed Central

    Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.

    2016-01-01

    A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584

  3. Evidence for dynamically organized modularity in the yeast protein-protein interaction network

    NASA Astrophysics Data System (ADS)

    Han, Jing-Dong J.; Bertin, Nicolas; Hao, Tong; Goldberg, Debra S.; Berriz, Gabriel F.; Zhang, Lan V.; Dupuy, Denis; Walhout, Albertha J. M.; Cusick, Michael E.; Roth, Frederick P.; Vidal, Marc

    2004-07-01

    In apparently scale-free protein-protein interaction networks, or `interactome' networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the `hubs', interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: `party' hubs, which interact with most of their partners simultaneously, and `date' hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes-or modules -to each other, whereas party hubs function inside modules.

  4. Gene essentiality and the topology of protein interaction networks

    PubMed Central

    Coulomb, Stéphane; Bauer, Michel; Bernard, Denis; Marsolier-Kergoat, Marie-Claude

    2005-01-01

    The mechanistic bases for gene essentiality and for cell mutational resistance have long been disputed. The recent availability of large protein interaction databases has fuelled the analysis of protein interaction networks and several authors have proposed that gene dispensability could be strongly related to some topological parameters of these networks. However, many results were based on protein interaction data whose biases were not taken into account. In this article, we show that the essentiality of a gene in yeast is poorly related to the number of interactants (or degree) of the corresponding protein and that the physiological consequences of gene deletions are unrelated to several other properties of proteins in the interaction networks, such as the average degrees of their nearest neighbours, their clustering coefficients or their relative distances. We also found that yeast protein interaction networks lack degree correlation, i.e. a propensity for their vertices to associate according to their degrees. Gene essentiality and more generally cell resistance against mutations thus seem largely unrelated to many parameters of protein network topology. PMID:16087428

  5. Cytoscape: a software environment for integrated models of biomolecular interaction networks.

    PubMed

    Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey

    2003-11-01

    Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

  6. A surprisingly simple correlation between the classical and quantum structural networks in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Peter; Fanourgakis, George S.; Xantheas, Sotiris S.

    Nuclear quantum effects in liquid water have profound implications for several of its macroscopic properties related to structure, dynamics, spectroscopy and transport. Although several of water’s macroscopic properties can be reproduced by classical descriptions of the nuclei using potentials effectively parameterized for a narrow range of its phase diagram, a proper account of the nuclear quantum effects is required in order to ensure that the underlying molecular interactions are transferable across a wide temperature range covering different regions of that diagram. When performing an analysis of the hydrogen bonded structural networks in liquid water resulting from the classical (class.) andmore » quantum (q.m.) descriptions of the nuclei with the transferable, flexible, polarizable TTM3-F interaction potential, we found that the two results can be superimposed over the temperature range of T=270-350 K using a surprisingly simple, linear scaling of the two temperatures according to T(q.m.)=aT(class)- T , where a=1.2 and T=51 K. The linear scaling and constant shift of the temperature scale can be considered as a generalization of the previously reported temperature shifts (corresponding to structural changes and the melting T) induced by quantum effects in liquid water.« less

  7. Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Malamud, Bruce D.

    2016-04-01

    Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.

  8. Community-level demographic consequences of urbanization: an ecological network approach.

    PubMed

    Rodewald, Amanda D; Rohr, Rudolf P; Fortuna, Miguel A; Bascompte, Jordi

    2014-11-01

    Ecological networks are known to influence ecosystem attributes, but we poorly understand how interspecific network structure affect population demography of multiple species, particularly for vertebrates. Establishing the link between network structure and demography is at the crux of being able to use networks to understand population dynamics and to inform conservation. We addressed the critical but unanswered question, does network structure explain demographic consequences of urbanization? We studied 141 ecological networks representing interactions between plants and nesting birds in forests across an urbanization gradient in Ohio, USA, from 2001 to 2011. Nest predators were identified by video-recording nests and surveyed from 2004 to 2011. As landscapes urbanized, bird-plant networks were more nested, less compartmentalized and dominated by strong interactions between a few species (i.e. low evenness). Evenness of interaction strengths promoted avian nest survival, and evenness explained demography better than urbanization, level of invasion, numbers of predators or other qualitative network metrics. Highly uneven networks had approximately half the nesting success as the most even networks. Thus, nest survival reflected how urbanization altered species interactions, particularly with respect to how nest placement affected search efficiency of predators. The demographic effects of urbanization were not direct, but were filtered through bird-plant networks. This study illustrates how network structure can influence demography at the community level and further, that knowledge of species interactions and a network approach may be requisite to understanding demographic responses to environmental change. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  9. Mapping biological process relationships and disease perturbations within a pathway network.

    PubMed

    Stoney, Ruth; Robertson, David L; Nenadic, Goran; Schwartz, Jean-Marc

    2018-01-01

    Molecular interaction networks are routinely used to map the organization of cellular function. Edges represent interactions between genes, proteins, or metabolites. However, in living cells, molecular interactions are dynamic, necessitating context-dependent models. Contextual information can be integrated into molecular interaction networks through the inclusion of additional molecular data, but there are concerns about completeness and relevance of this data. We developed an approach for representing the organization of human cellular processes using pathways as the nodes in a network. Pathways represent spatial and temporal sets of context-dependent interactions, generating a high-level network when linked together, which incorporates contextual information without the need for molecular interaction data. Analysis of the pathway network revealed linked communities representing functional relationships, comparable to those found in molecular networks, including metabolism, signaling, immunity, and the cell cycle. We mapped a range of diseases onto this network and find that pathways associated with diseases tend to be functionally connected, highlighting the perturbed functions that result in disease phenotypes. We demonstrated that disease pathways cluster within the network. We then examined the distribution of cancer pathways and showed that cancer pathways tend to localize within the signaling, DNA processes and immune modules, although some cancer-associated nodes are found in other network regions. Altogether, we generated a high-confidence functional network, which avoids some of the shortcomings faced by conventional molecular models. Our representation provides an intuitive functional interpretation of cellular organization, which relies only on high-quality pathway and Gene Ontology data. The network is available at https://data.mendeley.com/datasets/3pbwkxjxg9/1.

  10. Agricultural science in the wild: a social network analysis of farmer knowledge exchange.

    PubMed

    Wood, Brennon A; Blair, Hugh T; Gray, David I; Kemp, Peter D; Kenyon, Paul R; Morris, Steve T; Sewell, Alison M

    2014-01-01

    Responding to demands for transformed farming practices requires new forms of knowledge. Given their scale and complexity, agricultural problems can no longer be solved by linear transfers in which technology developed by specialists passes to farmers by way of extension intermediaries. Recent research on alternative approaches has focused on the innovation systems formed by interactions between heterogeneous actors. Rather than linear transfer, systems theory highlights network facilitation as a specialized function. This paper contributes to our understanding of such facilitation by investigating the networks in which farmers discuss science. We report findings based on the study of a pastoral farming experiment collaboratively undertaken by a group of 17 farmers and five scientists. Analysis of prior contact and alter sharing between the group's members indicates strongly tied and decentralized networks. Farmer knowledge exchanges about the experiment have been investigated using a mix of quantitative and qualitative methods. Network surveys identified who the farmers contacted for knowledge before the study began and who they had talked to about the experiment by 18 months later. Open-ended interviews collected farmer statements about their most valuable contacts and these statements have been thematically analysed. The network analysis shows that farmers talked about the experiment with 192 people, most of whom were fellow farmers. Farmers with densely tied and occupationally homogeneous contacts grew their networks more than did farmers with contacts that are loosely tied and diverse. Thematic analysis reveals three general principles: farmers value knowledge delivered by persons rather than roles, privilege farming experience, and develop knowledge with empiricist rather than rationalist techniques. Taken together, these findings suggest that farmers deliberate about science in intensive and durable networks that have significant implications for theorizing agricultural innovation. The paper thus concludes by considering the findings' significance for current efforts to rethink agricultural extension.

  11. Weighted gene co‑expression network analysis in identification of key genes and networks for ischemic‑reperfusion remodeling myocardium.

    PubMed

    Guo, Nan; Zhang, Nan; Yan, Liqiu; Lian, Zheng; Wang, Jiawang; Lv, Fengfeng; Wang, Yunfei; Cao, Xufen

    2018-06-14

    Acute myocardial infarction induces ventricular remodeling, which is implicated in dilated heart and heart failure. The pathogenical mechanism of myocardium remodeling remains to be elucidated. The aim of the present study was to identify key genes and networks for myocardium remodeling following ischemia‑reperfusion (IR). First, the mRNA expression data from the National Center for Biotechnology Information database were downloaded to identify differences in mRNA expression of the IR heart at days 2 and 7. Then, weighted gene co‑expression network analysis, hierarchical clustering, protein‑protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to identify key genes and networks for the heart remodeling process following IR. A total of 3,321 differentially expressed genes were identified during the heart remodeling process. A total of 6 modules were identified through gene co‑expression network analysis. GO and KEGG analysis results suggested that each module represented a different biological function and was associated with different pathways. Finally, hub genes of each module were identified by PPI network construction. The present study revealed that heart remodeling following IR is a complicated process, involving extracellular matrix organization, neural development, apoptosis and energy metabolism. The dysregulated genes, including SRC proto‑oncogene, non‑receptor tyrosine kinase, discs large MAGUK scaffold protein 1, ATP citrate lyase, RAN, member RAS oncogene family, tumor protein p53, and polo like kinase 2, may be essential for heart remodeling following IR and may be used as potential targets for the inhibition of heart remodeling following acute myocardial infarction.

  12. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  13. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.

    PubMed

    Pancaldi, Vera; Carrillo-de-Santa-Pau, Enrique; Javierre, Biola Maria; Juan, David; Fraser, Peter; Spivakov, Mikhail; Valencia, Alfonso; Rico, Daniel

    2016-07-08

    Network analysis is a powerful way of modeling chromatin interactions. Assortativity is a network property used in social sciences to identify factors affecting how people establish social ties. We propose a new approach, using chromatin assortativity, to integrate the epigenomic landscape of a specific cell type with its chromatin interaction network and thus investigate which proteins or chromatin marks mediate genomic contacts. We use high-resolution promoter capture Hi-C and Hi-Cap data as well as ChIA-PET data from mouse embryonic stem cells to investigate promoter-centered chromatin interaction networks and calculate the presence of specific epigenomic features in the chromatin fragments constituting the nodes of the network. We estimate the association of these features with the topology of four chromatin interaction networks and identify features localized in connected areas of the network. Polycomb group proteins and associated histone marks are the features with the highest chromatin assortativity in promoter-centered networks. We then ask which features distinguish contacts amongst promoters from contacts between promoters and other genomic elements. We observe higher chromatin assortativity of the actively elongating form of RNA polymerase 2 (RNAPII) compared with inactive forms only in interactions between promoters and other elements. Contacts among promoters and between promoters and other elements have different characteristic epigenomic features. We identify a possible role for the elongating form of RNAPII in mediating interactions among promoters, enhancers, and transcribed gene bodies. Our approach facilitates the study of multiple genome-wide epigenomic profiles, considering network topology and allowing the comparison of chromatin interaction networks.

  14. Interactions between neural networks: a mechanism for tuning chaos and oscillations.

    PubMed

    Wang, Lipo

    2007-06-01

    We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability.

  15. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks

    PubMed Central

    Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295

  16. Interactivity vs. fairness in networked linux systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenji; Crawford, Matt; /Fermilab

    In general, the Linux 2.6 scheduler can ensure fairness and provide excellent interactive performance at the same time. However, our experiments and mathematical analysis have shown that the current Linux interactivity mechanism tends to incorrectly categorize non-interactive network applications as interactive, which can lead to serious fairness or starvation issues. In the extreme, a single process can unjustifiably obtain up to 95% of the CPU! The root cause is due to the facts that: (1) network packets arrive at the receiver independently and discretely, and the 'relatively fast' non-interactive network process might frequently sleep to wait for packet arrival. Thoughmore » each sleep lasts for a very short period of time, the wait-for-packet sleeps occur so frequently that they lead to interactive status for the process. (2) The current Linux interactivity mechanism provides the possibility that a non-interactive network process could receive a high CPU share, and at the same time be incorrectly categorized as 'interactive.' In this paper, we propose and test a possible solution to address the interactivity vs. fairness problems. Experiment results have proved the effectiveness of the proposed solution.« less

  17. Megacity analysis: a clustering approach to classification

    DTIC Science & Technology

    2017-06-01

    kinetic or non -kinetic urban operations. We develop and implement a methodology to classify megacities into groups. Using 33 variables, we construct a...is interested in these megacity networks and their implications for potential urban operations. We develop a methodology to group like megacities...is interested in these megacity networks and their implications for potential urban operations. We develop a methodology to group like megacities

  18. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.

    PubMed

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2017-03-14

    Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of these gene interaction networks identified top ranked E. coli genes and 6 INO interaction types (e.g., regulation and gene expression). Vaccine-related E. coli gene-gene interaction network was constructed using ontology-based literature mining strategy, which identified important E. coli vaccine genes and their interactions with other genes through specific interaction types.

  19. Network-based study reveals potential infection pathways of hepatitis-C leading to various diseases.

    PubMed

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement.

  20. Network-Based Study Reveals Potential Infection Pathways of Hepatitis-C Leading to Various Diseases

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement. PMID:24743187

Top