Unraveling spurious properties of interaction networks with tailored random networks.
Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus
2011-01-01
We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.
Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks
Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus
2011-01-01
We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis. PMID:21850239
A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities
Vizeacoumar, Franco J; Arnold, Roland; Vizeacoumar, Frederick S; Chandrashekhar, Megha; Buzina, Alla; Young, Jordan T F; Kwan, Julian H M; Sayad, Azin; Mero, Patricia; Lawo, Steffen; Tanaka, Hiromasa; Brown, Kevin R; Baryshnikova, Anastasia; Mak, Anthony B; Fedyshyn, Yaroslav; Wang, Yadong; Brito, Glauber C; Kasimer, Dahlia; Makhnevych, Taras; Ketela, Troy; Datti, Alessandro; Babu, Mohan; Emili, Andrew; Pelletier, Laurence; Wrana, Jeff; Wainberg, Zev; Kim, Philip M; Rottapel, Robert; O'Brien, Catherine A; Andrews, Brenda; Boone, Charles; Moffat, Jason
2013-01-01
Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN−/− DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model. PMID:24104479
Fluxoids behavior in superconducting ladders
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Haham, Noam; Shaulov, Avner; Yeshurun, Yosef
2018-03-01
The nature of the interaction between fluxoids and between them and the external magnetic field is studied in one-dimensional superconducting networks. An Ising like expression is derived for the energy of a network revealing that fluxoids behave as repulsively interacting objects driven towards the network center by the effective applied field. Competition between these two interactions determines the equilibrium arrangement of fluxoids in the network as a function of the applied field. It is demonstrated that the fluxoids configurations are not always commensurate to the network symmetry. Incommensurate, degenerated configurations may be formed even in networks with an odd number of loops.
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Romero-Durán, Francisco J; Alonso, Nerea; Yañez, Matilde; Caamaño, Olga; García-Mera, Xerardo; González-Díaz, Humberto
2016-04-01
The use of Cheminformatics tools is gaining importance in the field of translational research from Medicinal Chemistry to Neuropharmacology. In particular, we need it for the analysis of chemical information on large datasets of bioactive compounds. These compounds form large multi-target complex networks (drug-target interactome network) resulting in a very challenging data analysis problem. Artificial Neural Network (ANN) algorithms may help us predict the interactions of drugs and targets in CNS interactome. In this work, we trained different ANN models able to predict a large number of drug-target interactions. These models predict a dataset of thousands of interactions of central nervous system (CNS) drugs characterized by > 30 different experimental measures in >400 different experimental protocols for >150 molecular and cellular targets present in 11 different organisms (including human). The model was able to classify cases of non-interacting vs. interacting drug-target pairs with satisfactory performance. A second aim focus on two main directions: the synthesis and assay of new derivatives of TVP1022 (S-analogues of rasagiline) and the comparison with other rasagiline derivatives recently reported. Finally, we used the best of our models to predict drug-target interactions for the best new synthesized compound against a large number of CNS protein targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interferometric modulation of quantum cascade interactions
NASA Astrophysics Data System (ADS)
Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio
2018-05-01
We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.
From brain to earth and climate systems: small-world interaction networks or not?
Bialonski, Stephan; Horstmann, Marie-Therese; Lehnertz, Klaus
2010-03-01
We consider recent reports on small-world topologies of interaction networks derived from the dynamics of spatially extended systems that are investigated in diverse scientific fields such as neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experimental situations, we have identified an important constraint when characterizing such networks: indications of a small-world topology can be expected solely due to the spatial sampling of the system along with the commonly used time series analysis based approaches to network characterization.
Deshpande, Gopikrishna; Santhanam, Priya; Hu, Xiaoping
2011-01-15
Most neuroimaging studies of resting state networks have concentrated on functional connectivity (FC) based on instantaneous correlation in a single network. In this study we investigated both FC and effective connectivity (EC) based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data - default mode network (DMN), hippocampal cortical memory network (HCMN), dorsal attention network (DAN) and fronto-parietal control network (FPCN). A method called correlation-purged Granger causality analysis was used, not only enabling the simultaneous evaluation of FC and EC of all networks using a single multivariate model, but also accounting for the interaction between them resulting from the smoothing of neuronal activity by hemodynamics. FC was visualized using a force-directed layout upon which causal interactions were overlaid. FC results revealed that DAN is very tightly coupled compared to the other networks while the DMN forms the backbone around which the other networks amalgamate. The pattern of bidirectional causal interactions indicates that posterior cingulate and posterior inferior parietal lobule of DMN act as major hubs. The pattern of unidirectional causal paths revealed that hippocampus and anterior prefrontal cortex (aPFC) receive major inputs, likely reflecting memory encoding/retrieval and cognitive integration, respectively. Major outputs emanating from anterior insula and middle temporal area, which are directed at aPFC, may carry information about interoceptive awareness and external environment, respectively, into aPFC for integration, supporting the hypothesis that aPFC-seeded FPCN acts as a control network. Our findings indicate the following. First, regions whose activities are not synchronized interact via time-delayed causal influences. Second, the causal interactions are organized such that cingulo-parietal regions act as hubs. Finally, segregation of different resting state networks is not clear cut but only by soft boundaries. Copyright © 2010 Elsevier Inc. All rights reserved.
Architecture of the human interactome defines protein communities and disease networks
Huttlin, Edward L.; Bruckner, Raphael J.; Paulo, Joao A.; Cannon, Joe R.; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P.; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E.; Schweppe, Devin K.; Rad, Ramin; Erickson, Brian K.; Obar, Robert A.; Guruharsha, K.G.; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P.; Harper, J. Wade
2017-01-01
The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidation of how genome variation contributes to disease1–3. Here, we present BioPlex 2.0 (Biophysical Interactions of ORFEOME-derived complexes), which employs robust affinity purification-mass spectrometry (AP-MS) methodology4 to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein coding genes from the human genome, and constitutes the largest such network to date. With >56,000 candidate interactions, BioPlex 2.0 contains >29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering (MCL)5 of interacting proteins identified more than 1300 protein communities representing diverse cellular activities. Genes essential for cell fitness6,7 are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization. PMID:28514442
Pretorius, Etheresia; du Plooy, Jenny; Soma, Prashilla; Gasparyan, Armen Yuri
2014-07-01
The study suggests that patients with systemic lupus erythematosus (SLE) present with distinct inflammatory ultrastructural changes such as platelets blebbing, generation of platelet-derived microparticles, spontaneous formation of massive fibrin network and fusion of the erythrocytes membranes. Lupoid platelets actively interact with other inflammatory cells, particularly with white blood cells (WBCs), and the massive fibrin network facilitates such an interaction. It is possible that the concerted actions of platelets, erythrocytes and WBC, caught in the inflammatory fibrin network, predispose to pro-thrombotic states in patients with SLE.
Soul, Jamie; Hardingham, Timothy E; Boot-Handford, Raymond P; Schwartz, Jean-Marc
2015-01-29
We describe a new method, PhenomeExpress, for the analysis of transcriptomic datasets to identify pathogenic disease mechanisms. Our analysis method includes input from both protein-protein interaction and phenotype similarity networks. This introduces valuable information from disease relevant phenotypes, which aids the identification of sub-networks that are significantly enriched in differentially expressed genes and are related to the disease relevant phenotypes. This contrasts with many active sub-network detection methods, which rely solely on protein-protein interaction networks derived from compounded data of many unrelated biological conditions and which are therefore not specific to the context of the experiment. PhenomeExpress thus exploits readily available animal model and human disease phenotype information. It combines this prior evidence of disease phenotypes with the experimentally derived disease data sets to provide a more targeted analysis. Two case studies, in subchondral bone in osteoarthritis and in Pax5 in acute lymphoblastic leukaemia, demonstrate that PhenomeExpress identifies core disease pathways in both mouse and human disease expression datasets derived from different technologies. We also validate the approach by comparison to state-of-the-art active sub-network detection methods, which reveals how it may enhance the detection of molecular phenotypes and provide a more detailed context to those previously identified as possible candidates.
Predicting protein functions from redundancies in large-scale protein interaction networks
NASA Technical Reports Server (NTRS)
Samanta, Manoj Pratim; Liang, Shoudan
2003-01-01
Interpreting data from large-scale protein interaction experiments has been a challenging task because of the widespread presence of random false positives. Here, we present a network-based statistical algorithm that overcomes this difficulty and allows us to derive functions of unannotated proteins from large-scale interaction data. Our algorithm uses the insight that if two proteins share significantly larger number of common interaction partners than random, they have close functional associations. Analysis of publicly available data from Saccharomyces cerevisiae reveals >2,800 reliable functional associations, 29% of which involve at least one unannotated protein. By further analyzing these associations, we derive tentative functions for 81 unannotated proteins with high certainty. Our method is not overly sensitive to the false positives present in the data. Even after adding 50% randomly generated interactions to the measured data set, we are able to recover almost all (approximately 89%) of the original associations.
From the physics of interacting polymers to optimizing routes on the London Underground
Yeung, Chi Ho; Saad, David; Wong, K. Y. Michael
2013-01-01
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise. PMID:23898198
From the physics of interacting polymers to optimizing routes on the London Underground.
Yeung, Chi Ho; Saad, David; Wong, K Y Michael
2013-08-20
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise.
Ames, Ryan M; Macpherson, Jamie I; Pinney, John W; Lovell, Simon C; Robertson, David L
2013-01-01
Large-scale molecular interaction data sets have the potential to provide a comprehensive, system-wide understanding of biological function. Although individual molecules can be promiscuous in terms of their contribution to function, molecular functions emerge from the specific interactions of molecules giving rise to modular organisation. As functions often derive from a range of mechanisms, we demonstrate that they are best studied using networks derived from different sources. Implementing a graph partitioning algorithm we identify subnetworks in yeast protein-protein interaction (PPI), genetic interaction and gene co-regulation networks. Among these subnetworks we identify cohesive subgraphs that we expect to represent functional modules in the different data types. We demonstrate significant overlap between the subgraphs generated from the different data types and show these overlaps can represent related functions as represented by the Gene Ontology (GO). Next, we investigate the correspondence between our subgraphs and the Gene Ontology. This revealed varying degrees of coverage of the biological process, molecular function and cellular component ontologies, dependent on the data type. For example, subgraphs from the PPI show enrichment for 84%, 58% and 93% of annotated GO terms, respectively. Integrating the interaction data into a combined network increases the coverage of GO. Furthermore, the different annotation types of GO are not predominantly associated with one of the interaction data types. Collectively our results demonstrate that successful capture of functional relationships by network data depends on both the specific biological function being characterised and the type of network data being used. We identify functions that require integrated information to be accurately represented, demonstrating the limitations of individual data types. Combining interaction subnetworks across data types is therefore essential for fully understanding the complex and emergent nature of biological function.
Successful strategies for competing networks
NASA Astrophysics Data System (ADS)
Aguirre, J.; Papo, D.; Buldú, J. M.
2013-04-01
Competitive interactions represent one of the driving forces behind evolution and natural selection in biological and sociological systems. For example, animals in an ecosystem may vie for food or mates; in a market economy, firms may compete over the same group of customers; sensory stimuli may compete for limited neural resources to enter the focus of attention. Here, we derive rules based on the spectral properties of the network governing the competitive interactions between groups of agents organized in networks. In the scenario studied here the winner of the competition, and the time needed to prevail, essentially depend on the way a given network connects to its competitors and on its internal structure. Our results allow assessment of the extent to which real networks optimize the outcome of their interaction, but also provide strategies through which competing networks can improve on their situation. The proposed approach is applicable to a wide range of systems that can be modelled as networks.
Fluctuations in Mass-Action Equilibrium of Protein Binding Networks
NASA Astrophysics Data System (ADS)
Yan, Koon-Kiu; Walker, Dylan; Maslov, Sergei
2008-12-01
We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by slow changes in total concentrations of interacting proteins. The second type (spontaneous) is caused by quickly decaying thermodynamic deviations away from equilibrium. We investigate the effects of network connectivity on fluctuations by comparing them to scenarios in which the interacting pair is isolated from the network and analytically derives bounds on fluctuations. Collective effects are shown to sometimes lead to large amplification of spontaneous fluctuations. The strength of both types of fluctuations is positively correlated with the complex connectivity and negatively correlated with complex concentration. Our general findings are illustrated using a curated network of protein interactions and multiprotein complexes in baker’s yeast, with empirical protein concentrations.
Semantic integration to identify overlapping functional modules in protein interaction networks
Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong
2007-01-01
Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343
Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae
Reguly, Teresa; Breitkreutz, Ashton; Boucher, Lorrie; Breitkreutz, Bobby-Joe; Hon, Gary C; Myers, Chad L; Parsons, Ainslie; Friesen, Helena; Oughtred, Rose; Tong, Amy; Stark, Chris; Ho, Yuen; Botstein, David; Andrews, Brenda; Boone, Charles; Troyanskya, Olga G; Ideker, Trey; Dolinski, Kara; Batada, Nizar N; Tyers, Mike
2006-01-01
Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID () and SGD () databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks. PMID:16762047
Loss, Julika; Weigl, Johannes; Ernstberger, Antonio; Nerlich, Michael; Koller, Michael; Curbach, Janina
2018-02-26
As inter-hospital alliances have become increasingly popular in the healthcare sector, it is important to understand the challenges and benefits that the interaction between representatives of different hospitals entail. A prominent example of inter-hospital alliances are certified 'trauma networks', which consist of 5-30 trauma departments in a given region. Trauma networks are designed to improve trauma care by providing a coordinated response to injury, and have developed across the USA and multiple European countries since the 1960s. Their members need to interact regularly, e.g. develop joint protocols for patient transfer, or discuss patient safety. Social capital is a concept focusing on the development and benefits of relations and interactions within a network. The aim of our study was to explore how social capital is generated and used in a regional German trauma network. In this qualitative study, we performed semi-standardized face-to-face interviews with 23 senior trauma surgeons (2013-14). They were the official representatives of 23 out of 26 member hospitals of the Trauma Network Eastern Bavaria. The interviews covered the structure and functioning of the network, climate and reciprocity within the network, the development of social identity, and different resources and benefits derived from the network (e.g. facilitation of interactions, advocacy, work satisfaction). Transcripts were coded using thematic content analysis. According to the interviews, the studied trauma network became a group of surgeons with substantial bonding social capital. The surgeons perceived that the network's culture of interaction was flat, and they identified with the network due to a climate of mutual respect. They felt that the inclusive leadership helped establish a norm of reciprocity. Among the interviewed surgeons, the gain of technical information was seen as less important than the exchange of information on political aspects. The perceived resources derived from this social capital were smoother interactions, a higher medical credibility, and joint advocacy securing certain privileges. Apart from addressing quality of care, a trauma network may, by way of strengthening social capital among its members, serve as a valuable resource for the participating surgeons. Some member hospitals could exploit the social capital for strategic benefits.
Detection of protein complex from protein-protein interaction network using Markov clustering
NASA Astrophysics Data System (ADS)
Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.
2017-05-01
Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.
Scale-space measures for graph topology link protein network architecture to function.
Hulsman, Marc; Dimitrakopoulos, Christos; de Ridder, Jeroen
2014-06-15
The network architecture of physical protein interactions is an important determinant for the molecular functions that are carried out within each cell. To study this relation, the network architecture can be characterized by graph topological characteristics such as shortest paths and network hubs. These characteristics have an important shortcoming: they do not take into account that interactions occur across different scales. This is important because some cellular functions may involve a single direct protein interaction (small scale), whereas others require more and/or indirect interactions, such as protein complexes (medium scale) and interactions between large modules of proteins (large scale). In this work, we derive generalized scale-aware versions of known graph topological measures based on diffusion kernels. We apply these to characterize the topology of networks across all scales simultaneously, generating a so-called graph topological scale-space. The comprehensive physical interaction network in yeast is used to show that scale-space based measures consistently give superior performance when distinguishing protein functional categories and three major types of functional interactions-genetic interaction, co-expression and perturbation interactions. Moreover, we demonstrate that graph topological scale spaces capture biologically meaningful features that provide new insights into the link between function and protein network architecture. Matlab(TM) code to calculate the scale-aware topological measures (STMs) is available at http://bioinformatics.tudelft.nl/TSSA © The Author 2014. Published by Oxford University Press.
Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor
2016-01-01
Analysis of user interactions in online communities could improve our understanding of health-related behaviors and inform the design of technological solutions that support behavior change. However, to achieve this we would need methods that provide granular perspective, yet are scalable. In this paper, we present a methodology for high-throughput semantic and network analysis of large social media datasets, combining semi-automated text categorization with social network analytics. We apply this method to derive content-specific network visualizations of 16,492 user interactions in an online community for smoking cessation. Performance of the categorization system was reasonable (average F-measure of 0.74, with system-rater reliability approaching rater-rater reliability). The resulting semantically specific network analysis of user interactions reveals content- and behavior-specific network topologies. Implications for socio-behavioral health and wellness platforms are also discussed.
NASA Astrophysics Data System (ADS)
Stahn, Kirsten; Lehnertz, Klaus
2017-12-01
We aim at identifying factors that may affect the characteristics of evolving weighted networks derived from empirical observations. To this end, we employ various chains of analysis that are often used in field studies for a data-driven derivation and characterization of such networks. As an example, we consider fully connected, weighted functional brain networks before, during, and after epileptic seizures that we derive from multichannel electroencephalographic data recorded from epilepsy patients. For these evolving networks, we estimate clustering coefficient and average shortest path length in a time-resolved manner. Lastly, we make use of surrogate concepts that we apply at various levels of the chain of analysis to assess to what extent network characteristics are dominated by properties of the electroencephalographic recordings and/or the evolving weighted networks, which may be accessible more easily. We observe that characteristics are differently affected by the unavoidable referencing of the electroencephalographic recording, by the time-series-analysis technique used to derive the properties of network links, and whether or not networks were normalized. Importantly, for the majority of analysis settings, we observe temporal evolutions of network characteristics to merely reflect the temporal evolutions of mean interaction strengths. Such a property of the data may be accessible more easily, which would render the weighted network approach—as used here—as an overly complicated description of simple aspects of the data.
Alignment and integration of complex networks by hypergraph-based spectral clustering
NASA Astrophysics Data System (ADS)
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Alignment and integration of complex networks by hypergraph-based spectral clustering.
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping
2013-01-01
Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach. Findings from this proof-of-concept study suggest that our approach has a great potential in providing a novel and sensitive tool for threshold setting in chemical risk assessment. In future work, we plan to analyze more time-series datasets with a full spectrum of concentrations and sufficient replications per treatment. The pathway alteration-derived thresholds will also be compared with those derived from apical endpoints such as cell growth rate.
Engineered 3D vascular and neuronal networks in a microfluidic platform.
Osaki, Tatsuya; Sivathanu, Vivek; Kamm, Roger D
2018-03-26
Neurovascular coupling plays a key role in the pathogenesis of neurodegenerative disorders including motor neuron disease (MND). In vitro models provide an opportunity to understand the pathogenesis of MND, and offer the potential for drug screening. Here, we describe a new 3D microvascular and neuronal network model in a microfluidic platform to investigate interactions between these two systems. Both 3D networks were established by co-culturing human embryonic stem (ES)-derived MN spheroids and endothelial cells (ECs) in microfluidic devices. Co-culture with ECs improves neurite elongation and neuronal connectivity as measured by Ca 2+ oscillation. This improvement was regulated not only by paracrine signals such as brain-derived neurotrophic factor secreted by ECs but also through direct cell-cell interactions via the delta-notch pathway, promoting neuron differentiation and neuroprotection. Bi-directional signaling was observed in that the neural networks also affected vascular network formation under perfusion culture. This in vitro model could enable investigations of neuro-vascular coupling, essential to understanding the pathogenesis of neurodegenerative diseases including MNDs such as amyotrophic lateral sclerosis.
Chemical-Gene Interactions from ToxCast Bioactivity Data ...
Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. To evaluate the information gained from the ToxCast project, a ToxCast bioactivity network was created comprising ToxCast chemical-gene interactions based on assay data and compared to a chemical-gene association network from literature. The literature network was compiled from PubMed articles, excluding ToxCast publications, mapped to genes and chemicals. Genes were identified by curated associations available from NCBI while chemicals were identified by PubChem submissions. The frequencies of chemical-gene associations from the literature network were log-scaled and then compared to the ToxCast bioactivity network. In total, 140 times more chemical-gene associations were present in the ToxCast network in comparison to the literature-derived network highlighting the vast increase in chemical-gene interactions putatively elucidated by the ToxCast research program. There were 165 associations found in the literature network that were reproduced by ToxCast bioactivity data, and 336 associations in the literature network were not reproduced by the ToxCast bioactivity network. The literature network relies on the assumption that chemical-gene associations represent a true chemical-gene inte
HU, TING; DARABOS, CHRISTIAN; CRICCO, MARIA E.; KONG, EMILY; MOORE, JASON H.
2014-01-01
The large volume of GWAS data poses great computational challenges for analyzing genetic interactions associated with common human diseases. We propose a computational framework for characterizing epistatic interactions among large sets of genetic attributes in GWAS data. We build the human phenotype network (HPN) and focus around a disease of interest. In this study, we use the GLAUGEN glaucoma GWAS dataset and apply the HPN as a biological knowledge-based filter to prioritize genetic variants. Then, we use the statistical epistasis network (SEN) to identify a significant connected network of pairwise epistatic interactions among the prioritized SNPs. These clearly highlight the complex genetic basis of glaucoma. Furthermore, we identify key SNPs by quantifying structural network characteristics. Through functional annotation of these key SNPs using Biofilter, a software accessing multiple publicly available human genetic data sources, we find supporting biomedical evidences linking glaucoma to an array of genetic diseases, proving our concept. We conclude by suggesting hypotheses for a better understanding of the disease. PMID:25592582
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ba, Qian; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing; Li, Junyang
2015-03-01
Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong tomore » the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.« less
Percolation on shopping and cashback electronic commerce networks
NASA Astrophysics Data System (ADS)
Fu, Tao; Chen, Yini; Qin, Zhen; Guo, Liping
2013-06-01
Many realistic networks live in the form of multiple networks, including interacting networks and interdependent networks. Here we study percolation properties of a special kind of interacting networks, namely Shopping and Cashback Electronic Commerce Networks (SCECNs). We investigate two actual SCECNs to extract their structural properties, and develop a mathematical framework based on generating functions for analyzing directed interacting networks. Then we derive the necessary and sufficient condition for the absence of the system-wide giant in- and out- component, and propose arithmetic to calculate the corresponding structural measures in the sub-critical and supercritical regimes. We apply our mathematical framework and arithmetic to those two actual SCECNs to observe its accuracy, and give some explanations on the discrepancies. We show those structural measures based on our mathematical framework and arithmetic are useful to appraise the status of SCECNs. We also find that the supercritical regime of the whole network is maintained mainly by hyperlinks between different kinds of websites, while those hyperlinks between the same kinds of websites can only enlarge the sizes of in-components and out-components.
Ultrastable cellulosome-adhesion complex tightens under load.
Schoeler, Constantin; Malinowska, Klara H; Bernardi, Rafael C; Milles, Lukas F; Jobst, Markus A; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Schulten, Klaus; Gaub, Hermann E; Nash, Michael A
2014-12-08
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
Simulating Social Networks of Online Communities: Simulation as a Method for Sociability Design
NASA Astrophysics Data System (ADS)
Ang, Chee Siang; Zaphiris, Panayiotis
We propose the use of social simulations to study and support the design of online communities. In this paper, we developed an Agent-Based Model (ABM) to simulate and study the formation of social networks in a Massively Multiplayer Online Role Playing Game (MMORPG) guild community. We first analyzed the activities and the social network (who-interacts-with-whom) of an existing guild community to identify its interaction patterns and characteristics. Then, based on the empirical results, we derived and formalized the interaction rules, which were implemented in our simulation. Using the simulation, we reproduced the observed social network of the guild community as a means of validation. The simulation was then used to examine how various parameters of the community (e.g. the level of activity, the number of neighbors of each agent, etc) could potentially influence the characteristic of the social networks.
Ego Network Analysis of Upper Division Physics Student Survey
NASA Astrophysics Data System (ADS)
Brewe, Eric
2017-01-01
We present the analysis of student networks derived from a survey of upper division physics students. Ego networks focus on the connections that center on one person (the ego). The ego networks in this talk come from a survey that is part of an overall project focused on understanding student retention and persistence. The theory underlying this work is that social and academic integration are essential components to supporting students continued enrollment and ultimately graduation. This work uses network analysis as a way to investigate the role of social and academic interactions in retention and persistence decisions. We focus on student interactions with peers, on mentoring interactions with physics department faculty, and on engagement in physics groups and how they influence persistence. Our results, which are preliminary, will help frame the ongoing research project and identify ways in which departments can support students. This work supported by NSF grant #PHY 1344247.
Exploration of cellular reaction systems.
Kirkilionis, Markus
2010-01-01
We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.
Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna
2018-01-01
The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893
NASA Astrophysics Data System (ADS)
Kengne, E.; Liu, W. M.
2018-05-01
A modified lossless nonlinear Noguchi transmission network with second-neighbor interactions is considered. In the semidiscrete limit, we apply the reductive perturbation method and show that the dynamics of modulated waves propagating through the network are governed by an NLS equation with linear external potential. Classes of exact solitonic solutions of this network equation are derived, proving possible transmission of both bright and dark solitonlike pulses through the network. The effects of both the coupling second-neighbor parameter L3 and the strength λ of the linear potential on the dynamics of modulated waves through the network are investigated. One of the main results of our work is that with the introduction of the second neighbors in the network, two solitary signals, either two bright solitary signals or one bright and one dark solitary signal, may simultaneously propagate at the same frequency through the network.
A pairwise maximum entropy model accurately describes resting-state human brain networks
Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki
2013-01-01
The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410
Building a glaucoma interaction network using a text mining approach.
Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F
2016-01-01
The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of relations that could not be found in existing interaction databases and that were found to be new, in addition to a smaller subnetwork consisting of interconnected clusters of seven glaucoma genes. Future improvements can be applied towards obtaining a better version of this network.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions
NASA Astrophysics Data System (ADS)
Barré, J.; Carrillo, J. A.; Degond, P.; Peurichard, D.; Zatorska, E.
2018-02-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions.
Barré, J; Carrillo, J A; Degond, P; Peurichard, D; Zatorska, E
2018-01-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Two-population dynamics in a growing network model
NASA Astrophysics Data System (ADS)
Ivanova, Kristinka; Iordanov, Ivan
2012-02-01
We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.
Functional brain networks related to individual differences in human intelligence at rest.
Hearne, Luke J; Mattingley, Jason B; Cocchi, Luca
2016-08-26
Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.
Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Castellani, Gastone; Milanesi, Luciano
2016-01-01
A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD. PMID:27731320
Crucial role of strategy updating for coexistence of strategies in interaction networks.
Zhang, Jianlei; Zhang, Chunyan; Cao, Ming; Weissing, Franz J
2015-04-01
Network models are useful tools for studying the dynamics of social interactions in a structured population. After a round of interactions with the players in their local neighborhood, players update their strategy based on the comparison of their own payoff with the payoff of one of their neighbors. Here we show that the assumptions made on strategy updating are of crucial importance for the strategy dynamics. In the first step, we demonstrate that seemingly small deviations from the standard assumptions on updating have major implications for the evolutionary outcome of two cooperation games: cooperation can more easily persist in a Prisoner's Dilemma game, while it can go more easily extinct in a Snowdrift game. To explain these outcomes, we develop a general model for the updating of states in a network that allows us to derive conditions for the steady-state coexistence of states (or strategies). The analysis reveals that coexistence crucially depends on the number of agents consulted for updating. We conclude that updating rules are as important for evolution on a network as network structure and the nature of the interaction.
Crucial role of strategy updating for coexistence of strategies in interaction networks
NASA Astrophysics Data System (ADS)
Zhang, Jianlei; Zhang, Chunyan; Cao, Ming; Weissing, Franz J.
2015-04-01
Network models are useful tools for studying the dynamics of social interactions in a structured population. After a round of interactions with the players in their local neighborhood, players update their strategy based on the comparison of their own payoff with the payoff of one of their neighbors. Here we show that the assumptions made on strategy updating are of crucial importance for the strategy dynamics. In the first step, we demonstrate that seemingly small deviations from the standard assumptions on updating have major implications for the evolutionary outcome of two cooperation games: cooperation can more easily persist in a Prisoner's Dilemma game, while it can go more easily extinct in a Snowdrift game. To explain these outcomes, we develop a general model for the updating of states in a network that allows us to derive conditions for the steady-state coexistence of states (or strategies). The analysis reveals that coexistence crucially depends on the number of agents consulted for updating. We conclude that updating rules are as important for evolution on a network as network structure and the nature of the interaction.
Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang
2014-01-01
Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN.
Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang
2014-01-01
Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN. PMID:25423109
Integrated inference and evaluation of host–fungi interaction networks
Remmele, Christian W.; Luther, Christian H.; Balkenhol, Johannes; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus T.
2015-01-01
Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host–pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host–fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen–host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi–human and fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host–fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host–fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host–fungi transcriptome and proteome data. PMID:26300851
Zhang, P; Tao, L; Zeng, X; Qin, C; Chen, S Y; Zhu, F; Yang, S Y; Li, Z R; Chen, W P; Chen, Y Z
2017-02-03
The studies of biological, disease, and pharmacological networks are facilitated by the systems-level investigations using computational tools. In particular, the network descriptors developed in other disciplines have found increasing applications in the study of the protein, gene regulatory, metabolic, disease, and drug-targeted networks. Facilities are provided by the public web servers for computing network descriptors, but many descriptors are not covered, including those used or useful for biological studies. We upgraded the PROFEAT web server http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi for computing up to 329 network descriptors and protein-protein interaction descriptors. PROFEAT network descriptors comprehensively describe the topological and connectivity characteristics of unweighted (uniform binding constants and molecular levels), edge-weighted (varying binding constants), node-weighted (varying molecular levels), edge-node-weighted (varying binding constants and molecular levels), and directed (oriented processes) networks. The usefulness of the network descriptors is illustrated by the literature-reported studies of the biological networks derived from the genome, interactome, transcriptome, metabolome, and diseasome profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ultrastable cellulosome-adhesion complex tightens under load
Schoeler, Constantin; Malinowska, Klara H.; Bernardi, Rafael C.; Milles, Lukas F.; Jobst, Markus A.; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B.; Bayer, Edward A.; Schulten, Klaus; Gaub, Hermann E.; Nash, Michael A.
2014-01-01
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass. PMID:25482395
An Ecological Network of Polysaccharide Utilization Among Human Intestinal Symbionts
Rakoff-Nahoum, Seth; Coyne, Michael J.; Comstock, Laurie E.
2013-01-01
Summary Background: The human intestine is colonized with trillions of microorganisms important to health and disease. There has been an intensive effort to catalog the species and genetic content of this microbial ecosystem. However, little is known of the ecological interactions between these microbes, a prerequisite to understanding the dynamics and stability of this host-associated microbial community. Here we perform a systematic investigation of public goods-based syntrophic interactions among the abundant human gut bacteria, the Bacteroidales. Results: We find evidence for a rich interaction network based on the breakdown and use of polysaccharides. Species that utilize a particular polysaccharide (producers) liberate polysaccharide breakdown products (PBP) that are consumed by other species unable to grow on the polysaccharide alone (recipients). Cross-species gene addition experiments demonstrate that recipients can grow on a polysaccharide if the producer-derived glycoside hydrolase, responsible for PBP generation, is provided. These producer-derived glycoside hydrolases are public goods transported extracellularly in outer membrane vesicles allowing for the creation of PBP and concomitant recipient growth spatially distant from the producer. Recipients can exploit these ecological interactions and conditionally outgrow producers. Finally, we show that these public good-based interactions occur among Bacteroidales species co-resident within a natural human intestinal community. Conclusions: This study examines public-goods based syntrophic interactions between bacterial members of the critically important gut microbial ecosystem. This polysaccharide-based network likely represents foundational relationships creating organized ecological units within the intestinal microbiota, knowledge of which can be applied to impact human health. PMID:24332541
Rationalizing Tight Ligand Binding through Cooperative Interaction Networks
2011-01-01
Small modifications of the molecular structure of a ligand sometimes cause strong gains in binding affinity to a protein target, rendering a weakly active chemical series suddenly attractive for further optimization. Our goal in this study is to better rationalize and predict the occurrence of such interaction hot-spots in receptor binding sites. To this end, we introduce two new concepts into the computational description of molecular recognition. First, we take a broader view of noncovalent interactions and describe protein–ligand binding with a comprehensive set of favorable and unfavorable contact types, including for example halogen bonding and orthogonal multipolar interactions. Second, we go beyond the commonly used pairwise additive treatment of atomic interactions and use a small world network approach to describe how interactions are modulated by their environment. This approach allows us to capture local cooperativity effects and considerably improves the performance of a newly derived empirical scoring function, ScorpionScore. More importantly, however, we demonstrate how an intuitive visualization of key intermolecular interactions, interaction networks, and binding hot-spots supports the identification and rationalization of tight ligand binding. PMID:22087588
Jiang, Hao; Ehlers, Martin; Hu, Xiao-Yu; Zellermann, Elio; Schmuck, Carsten
2018-05-22
Peptide amphiphiles capable of assembling into multidimensional nanostructures have attracted much attention over the past decade due to their potential applications in materials science. Herein, a novel diacetylene-derived peptide gemini amphiphile with a fluorenylmethyloxycarbonyl (Fmoc) group at the N-terminus is reported to hierarchically assemble into spherical micelles, one-dimensional nanorods, two-dimensional foamlike networks and lamellae. Solvent polarity shows a remarkable effect on the self-assembled structures by changing the balance of four weak noncovalent interactions (hydrogen-bonding, π-π stacking, hydrophobic interaction, and electrostatic repulsion). We also show the time-evolution not only from spherical micelles to helical nanofibers in aqueous solution, but also from branched wormlike micelles to foamlike networks in methanol solution. In this work, the presence of the Fmoc group plays a key role in the self-assembly process. This work provides an efficient strategy for precise morphological control, aiding the future development in materials science.
Empirical Studies on the Network of Social Groups: The Case of Tencent QQ.
You, Zhi-Qiang; Han, Xiao-Pu; Lü, Linyuan; Yeung, Chi Ho
2015-01-01
Participation in social groups are important but the collective behaviors of human as a group are difficult to analyze due to the difficulties to quantify ordinary social relation, group membership, and to collect a comprehensive dataset. Such difficulties can be circumvented by analyzing online social networks. In this paper, we analyze a comprehensive dataset released from Tencent QQ, an instant messenger with the highest market share in China. Specifically, we analyze three derivative networks involving groups and their members-the hypergraph of groups, the network of groups and the user network-to reveal social interactions at microscopic and mesoscopic level. Our results uncover interesting behaviors on the growth of user groups, the interactions between groups, and their relationship with member age and gender. These findings lead to insights which are difficult to obtain in social networks based on personal contacts.
Synchronization invariance under network structural transformations
NASA Astrophysics Data System (ADS)
Arola-Fernández, Lluís; Díaz-Guilera, Albert; Arenas, Alex
2018-06-01
Synchronization processes are ubiquitous despite the many connectivity patterns that complex systems can show. Usually, the emergence of synchrony is a macroscopic observable; however, the microscopic details of the system, as, e.g., the underlying network of interactions, is many times partially or totally unknown. We already know that different interaction structures can give rise to a common functionality, understood as a common macroscopic observable. Building upon this fact, here we propose network transformations that keep the collective behavior of a large system of Kuramoto oscillators invariant. We derive a method based on information theory principles, that allows us to adjust the weights of the structural interactions to map random homogeneous in-degree networks into random heterogeneous networks and vice versa, keeping synchronization values invariant. The results of the proposed transformations reveal an interesting principle; heterogeneous networks can be mapped to homogeneous ones with local information, but the reverse process needs to exploit higher-order information. The formalism provides analytical insight to tackle real complex scenarios when dealing with uncertainty in the measurements of the underlying connectivity structure.
Li, Wenyuan; Dai, Chao; Liu, Chun-Chi
2012-01-01
Abstract Current network analysis methods all focus on one or multiple networks of the same type. However, cells are organized by multi-layer networks (e.g., transcriptional regulatory networks, splicing regulatory networks, protein-protein interaction networks), which interact and influence each other. Elucidating the coupling mechanisms among those different types of networks is essential in understanding the functions and mechanisms of cellular activities. In this article, we developed the first computational method for pattern mining across many two-layered graphs, with the two layers representing different types yet coupled biological networks. We formulated the problem of identifying frequent coupled clusters between the two layers of networks into a tensor-based computation problem, and proposed an efficient solution to solve the problem. We applied the method to 38 two-layered co-transcription and co-splicing networks, derived from 38 RNA-seq datasets. With the identified atlas of coupled transcription-splicing modules, we explored to what extent, for which cellular functions, and by what mechanisms transcription-splicing coupling takes place. PMID:22697243
NASA Astrophysics Data System (ADS)
Ren, Xiaoming; Xie, Jingli; Chen, Youcun; Kremer, Reinhard Karl
2003-11-01
The two ion-pair complexes, [pyH] 2[Zn(mnt) 2] ( 1) and [4,4'-bipyH 2]-[Zn(mnt) 2] ( 2), were synthesized, where mnt 2- denotes maleonitriledithiolate, and [pyH] +, [4,4'-bipyH 2] 2+ represent pyridinium and diprotonated 4,4'-bipyridinium, respectively. Their single crystal structures show that there are strong bifurcated H-bonding interactions between the cations of the pyridinium derivative and the [Zn(mnt) 2] 2- anions in both 1 and 2. The bifurcated H-bonding interactions between the N-H of the pyridiniums and the CN groups of the mnt 2- ligands give rise to a 2D layered H-bonding network, the adjacent layers come together in such way as mutual embrace to give a tight pack, thus 2D hydrogen-bonding sheets further develop into 3D H-bonding networks through weak C-H⋯S and π⋯π stacking interactions in 1. As for 2, the cations and anions connect into several types of H-bonding macrorings ([2+2], [3+3] and [4+4]), these H-bonding macrorings fuse to extend into 2D layered structure, the interpenetration between [3+3] and [4+4] type H-bonding macrorings in the adjacent layers give further rise to novel 3D extended H-bonding networks, in which there are clearly parallel stacks of cations and the chelate rings of anions.
Rohringer, Sabrina; Hofbauer, Pablo; Schneider, Karl H; Husa, Anna-Maria; Feichtinger, Georg; Peterbauer-Scherb, Anja; Redl, Heinz; Holnthoner, Wolfgang
2014-10-01
Vascularization of tissue-engineered constructs is essential to provide sufficient nutrient supply and hemostasis after implantation into target sites. Co-cultures of adipose-derived stem cells (ASC) with outgrowth endothelial cells (OEC) in fibrin gels were shown to provide an effective possibility to induce vasculogenesis in vitro. However, the mechanisms of the interaction between these two cell types remain unclear so far. The aim of this study was to evaluate differences of direct and indirect stimulation of ASC-induced vasculogenesis, the influence of ASC on network stabilization and molecular mechanisms involved in vascular structure formation. Endothelial cells (EC) were embedded in fibrin gels either containing non-coated or ASC-coated microcarrier beads as well as ASC alone. Moreover, EC-seeded constructs incubated with ASC-conditioned medium were used in addition to constructs with ASC seeded on top. Vascular network formation was visualized by green fluorescent protein expressing cells or immunostaining for CD31 and quantified. RT-qPCR of cells derived from co-cultures in fibrin was performed to evaluate changes in the expression of EC marker genes during the first week of culture. Moreover, angiogenesis-related protein levels were measured by performing angiogenesis proteome profiler arrays. The results demonstrate that proximity of endothelial cells and ASC is required for network formation and ASC stabilize EC networks by developing pericyte characteristics. We further showed that ASC induce controlled vessel growth by secreting pro-angiogenic and regulatory proteins. This study reveals angiogenic protein profiles involved in EC/ASC interactions in fibrin matrices and confirms the usability of OEC/ASC co-cultures for autologous vascular tissue engineering.
NASA Astrophysics Data System (ADS)
Gandolfo, Daniel; Rodriguez, Roger; Tuckwell, Henry C.
2017-03-01
We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean-Vlasov-Fokker-Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh-Nagumo model neurons, which are often used to approximate Hodgkin-Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.
NASA Astrophysics Data System (ADS)
Shi, Li; Wu, Lun; Chi, Guanghua; Liu, Yu
2016-10-01
Space and place are two fundamental concepts in geography. Geographical factors have long been known as drivers of many aspects of people's social networks. But whether and how space and place affect social networks differently are still unclear. The widespread use of location-aware devices provides a novel source for distinguishing the mechanisms of their impacts on social networks. Using mobile phone data, this paper explores the effects of space and place on social networks. From the perspective of space, we confirm the distance decay effect in social networks, based on a comparison between synthetic social ties generated by a null model and actual social ties derived from real-world data. From the perspective of place, we introduce several measures to evaluate interactions between individuals and inspect the trio relationship including distance, spatio-temporal co-occurrence, and social ties. We found that people's interaction is a more important factor than spatial proximity, indicating that the spatial factor has a stronger impact on social networks in place compared to that in space. Furthermore, we verify the hypothesis that interactions play an important role in strengthening friendships.
Functional brain networks related to individual differences in human intelligence at rest
Hearne, Luke J.; Mattingley, Jason B.; Cocchi, Luca
2016-01-01
Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics. PMID:27561736
NASA Astrophysics Data System (ADS)
Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito
2018-05-01
Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.
Effect of livestock grazing in the partitions of a semiarid plant-plant spatial signed network
NASA Astrophysics Data System (ADS)
Saiz, Hugo; Alados, Concepción L.
2014-08-01
In recent times, network theory has become a useful tool to study the structure of the interactions in ecological communities. However, typically, these approaches focus on a particular kind of interaction while neglecting other possible interactions present in the ecosystem. Here, we present an ecological network for plant communities that consider simultaneously positive and negative interactions, which were derived from the spatial association and segregation between plant species. We employed this network to study the structure and the association strategies in a semiarid plant community of Cabo de Gata-Níjar Natural Park, SE Spain, and how they changed in 4 sites that differed in stocking rate. Association strategies were obtained from the partitions of the network, built based on a relaxed structural balance criterion. We found that grazing simplified the structure of the plant community. With increasing stocking rate species with no significant associations became dominant and the number of partitions decreased in the plant community. Independently of stocking rate, many species presented an associative strategy in the plant community because they benefit from the association to certain ‘nurse’ plants. These ‘nurses’ together with species that developed a segregating strategy, intervened in most of the interactions in the community. Ecological networks that combine links with different signs provide a new insight to analyze the structure of natural communities and identify the species which play a central role in them.
Integrating In Silico Resources to Map a Signaling Network
Liu, Hanqing; Beck, Tim N.; Golemis, Erica A.; Serebriiskii, Ilya G.
2013-01-01
The abundance of publicly available life science databases offer a wealth of information that can support interpretation of experimentally derived data and greatly enhance hypothesis generation. Protein interaction and functional networks are not simply new renditions of existing data: they provide the opportunity to gain insights into the specific physical and functional role a protein plays as part of the biological system. In this chapter, we describe different in silico tools that can quickly and conveniently retrieve data from existing data repositories and discuss how the available tools are best utilized for different purposes. While emphasizing protein-protein interaction databases (e.g., BioGrid and IntAct), we also introduce metasearch platforms such as STRING and GeneMANIA, pathway databases (e.g., BioCarta and Pathway Commons), text mining approaches (e.g., PubMed and Chilibot), and resources for drug-protein interactions, genetic information for model organisms and gene expression information based on microarray data mining. Furthermore, we provide a simple step-by-step protocol to building customized protein-protein interaction networks in Cytoscape, a powerful network assembly and visualization program, integrating data retrieved from these various databases. As we illustrate, generation of composite interaction networks enables investigators to extract significantly more information about a given biological system than utilization of a single database or sole reliance on primary literature. PMID:24233784
Stochastic availability analysis of operational data systems in the Deep Space Network
NASA Technical Reports Server (NTRS)
Issa, T. N.
1991-01-01
Existing availability models of standby redundant systems consider only an operator's performance and its interaction with the hardware performance. In the case of operational data systems in the Deep Space Network (DSN), in addition to an operator system interface, a controller reconfigures the system and links a standby unit into the network data path upon failure of the operating unit. A stochastic (Markovian) process technique is used to model and analyze the availability performance and occurrence of degradation due to partial failures are quantitatively incorporated into the model. Exact expressions of the steady state availability and proportion degraded performance measures are derived for the systems under study. The interaction among the hardware, operator, and controller performance parameters and that interaction's effect on data availability are evaluated and illustrated for an operational data processing system.
Graph Curvature for Differentiating Cancer Networks
Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen
2015-01-01
Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480
A Diagrammatic Language for Biochemical Networks
NASA Astrophysics Data System (ADS)
Maimon, Ron
2002-03-01
I present a diagrammatic language for representing the structure of biochemical networks. The language is designed to represent modular structure in a computational fasion, with composition of reactions replacing functional composition. This notation is used to represent arbitrarily large networks efficiently. The notation finds its most natural use in representing biological interaction networks, but it is a general computing language appropriate to any naturally occuring computation. Unlike lambda-calculus, or text-derived languages, it does not impose a tree-structure on the diagrams, and so is more effective at representing biological fucntion than competing notations.
MINE: Module Identification in Networks
2011-01-01
Background Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks. Results MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties. Conclusions MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. PMID:21605434
Imbedded-Fracture Formulation of THMC Processes in Fractured Media
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.; Sung, R.
2016-12-01
Fractured media consist of porous materials and fracture networks. There exist four approaches to mathematically formulating THMC (Thermal-Hydrology-Mechanics-Chemistry) processes models in the system: (1) Equivalent Porous Media, (2) Dual Porosity or Dual Continuum, (3) Heterogeneous Media, and (4) Discrete Fracture Network. The first approach cannot explicitly explore the interactions between porous materials and fracture networks. The second approach introduces too many extra parameters (namely, exchange coefficients) between two media. The third approach may make the problems too stiff because the order of material heterogeneity may be too much. The fourth approach ignore the interaction between porous materials and fracture networks. This talk presents an alternative approach in which fracture networks are modeled with a lower dimension than the surrounding porous materials. Theoretical derivation of mathematical formulations will be given. An example will be illustrated to show the feasibility of this approach.
Empirical Studies on the Network of Social Groups: The Case of Tencent QQ
You, Zhi-Qiang; Han, Xiao-Pu; Lü, Linyuan; Yeung, Chi Ho
2015-01-01
Background Participation in social groups are important but the collective behaviors of human as a group are difficult to analyze due to the difficulties to quantify ordinary social relation, group membership, and to collect a comprehensive dataset. Such difficulties can be circumvented by analyzing online social networks. Methodology/Principal Findings In this paper, we analyze a comprehensive dataset released from Tencent QQ, an instant messenger with the highest market share in China. Specifically, we analyze three derivative networks involving groups and their members—the hypergraph of groups, the network of groups and the user network—to reveal social interactions at microscopic and mesoscopic level. Conclusions/Significance Our results uncover interesting behaviors on the growth of user groups, the interactions between groups, and their relationship with member age and gender. These findings lead to insights which are difficult to obtain in social networks based on personal contacts. PMID:26176850
Interaction mining and skill-dependent recommendations for multi-objective team composition
Dorn, Christoph; Skopik, Florian; Schall, Daniel; Dustdar, Schahram
2011-01-01
Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The composition of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity. The underlying interaction structure reflects social behavior and relations of individuals and determines to a large degree how well people can be expected to collaborate. In this paper we address an extended team formation problem that does not only require direct interactions to determine team connectivity but additionally uses implicit recommendations of collaboration partners to support even sparsely connected networks. We provide two heuristics based on Genetic Algorithms and Simulated Annealing for discovering efficient team configurations that yield the best trade-off between skill coverage and team connectivity. Our self-adjusting mechanism aims to discover the best combination of direct interactions and recommendations when deriving connectivity. We evaluate our approach based on multiple configurations of a simulated collaboration network that features close resemblance to real world expert networks. We demonstrate that our algorithm successfully identifies efficient team configurations even when removing up to 40% of experts from various social network configurations. PMID:22298939
2010-01-01
Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw. PMID:20939868
Mello, Marco A. R.; Bronstein, Judith L.; Guerra, Tadeu J.; Muylaert, Renata L.; Leite, Alice C.; Neves, Frederico S.
2016-01-01
Ant-plant associations are an outstanding model to study the entangled ecological interactions that structure communities. However, most studies of plant-animal networks focus on only one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased understanding of community structure. New approaches, however, have made possible to study several interaction types simultaneously through multilayer networks models. Here, we use this approach to ask whether the structural patterns described to date for ant-plant networks hold when multiple interactions with plant-derived food rewards are considered. We tested whether networks characterized by different resource types differ in specialization and resource partitioning among ants, and whether the identity of the core ant species is similar among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant network in which plants offering different resource types are connected by a few central ant species. The multilayer network had low modularity and specialization, but ant specialization and niche overlap differed according to the type of resource used. Beyond detecting structural differences across networks, our study demonstrates empirically that the core of most central ant species is similar across them. We suggest that foraging strategies of ant species, such as massive recruitment, may determine specialization and resource partitioning in ant-plant interactions. As this core of ant species is involved in multiple ecosystem functions, it may drive the diversity and evolution of the entire campo rupestre community. PMID:27911919
Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng
2010-06-21
Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.
Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease
Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.
2015-01-01
The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739
Kumar, Akhil; Srivastava, Gaurava; Srivastava, Swati; Verma, Seema; Negi, Arvind S; Sharma, Ashok
2017-08-01
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
Challenges in Wireless System Integration as Enablers for Indoor Context Aware Environments
Aguirre, Erik
2017-01-01
The advent of fully interactive environments within Smart Cities and Smart Regions requires the use of multiple wireless systems. In the case of user-device interaction, which finds multiple applications such as Ambient Assisted Living, Intelligent Transportation Systems or Smart Grids, among others, large amount of transceivers are employed in order to achieve anytime, anyplace and any device connectivity. The resulting combination of heterogeneous wireless network exhibits fundamental limitations derived from Coverage/Capacity relations, as a function of required Quality of Service parameters, required bit rate, energy restrictions and adaptive modulation and coding schemes. In this context, inherent transceiver density poses challenges in overall system operation, given by multiple node operation which increases overall interference levels. In this work, a deterministic based analysis applied to variable density wireless sensor network operation within complex indoor scenarios is presented, as a function of topological node distribution. The extensive analysis derives interference characterizations, both for conventional transceivers as well as wearables, which provide relevant information in terms of individual node configuration as well as complete network layout. PMID:28704963
Bogart, Laura M; Wagner, Glenn J; Green, Harold D; Mutchler, Matt G; Klein, David J; McDavitt, Bryce
2015-12-01
Stigma may contribute to HIV-related disparities among HIV-positive Black Americans. We examined whether social network characteristics moderate stigma's effects. At baseline and 6 months post-baseline, 147 HIV-positive Black Americans on antiretroviral treatment completed egocentric social network assessments, from which we derived a structural social support capacity measure (i.e., ability to leverage support from the network, represented by the average interaction frequency between the participant and each alter). Stigma was operationalized with an indicator of whether any social network member had expressed stigmatizing attributions of blame or responsibility about HIV. Daily medication adherence was monitored electronically. In a multivariate regression, baseline stigma was significantly related to decreased adherence over time. The association between stigma and non-adherence was attenuated among participants who increased the frequency of their interactions with alters over time. Well-connected social networks have the potential to buffer the effects of stigma.
Riley, Richard D; Ensor, Joie; Jackson, Dan; Burke, Danielle L
2017-01-01
Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions. Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden) contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and utilise a decomposition of Fisher's information matrix to decompose the total variance matrix of parameter estimates into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the magnitude of ecological bias (difference between within-study and across-study associations) and the amount of inconsistency (difference between direct and indirect evidence in a network meta-analysis).
Brela, Mateusz Z; Boczar, Marek; Malec, Leszek M; Wójcik, Marek J; Nakajima, Takahito
2018-05-15
Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers. Copyright © 2018 Elsevier B.V. All rights reserved.
Derived virtual devices: a secure distributed file system mechanism
NASA Technical Reports Server (NTRS)
VanMeter, Rodney; Hotz, Steve; Finn, Gregory
1996-01-01
This paper presents the design of derived virtual devices (DVDs). DVDs are the mechanism used by the Netstation Project to provide secure shared access to network-attached peripherals distributed in an untrusted network environment. DVDs improve Input/Output efficiency by allowing user processes to perform I/O operations directly from devices without intermediate transfer through the controlling operating system kernel. The security enforced at the device through the DVD mechanism includes resource boundary checking, user authentication, and restricted operations, e.g., read-only access. To illustrate the application of DVDs, we present the interactions between a network-attached disk and a file system designed to exploit the DVD abstraction. We further discuss third-party transfer as a mechanism intended to provide for efficient data transfer in a typical NAP environment. We show how DVDs facilitate third-party transfer, and provide the security required in a more open network environment.
Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell.
De Las Rivas, Javier; Fontanillo, Celia
2012-11-01
Mapping and understanding of the protein interaction networks with their key modules and hubs can provide deeper insights into the molecular machinery underlying complex phenotypes. In this article, we present the basic characteristics and definitions of protein networks, starting with a distinction of the different types of associations between proteins. We focus the review on protein-protein interactions (PPIs), a subset of associations defined as physical contacts between proteins that occur by selective molecular docking in a particular biological context. We present such definition as opposed to other types of protein associations derived from regulatory, genetic, structural or functional relations. To determine PPIs, a variety of binary and co-complex methods exist; however, not all the technologies provide the same information and data quality. A way of increasing confidence in a given protein interaction is to integrate orthogonal experimental evidences. The use of several complementary methods testing each single interaction assesses the accuracy of PPI data and tries to minimize the occurrence of false interactions. Following this approach there have been important efforts to unify primary databases of experimentally proven PPIs into integrated databases. These meta-databases provide a measure of the confidence of interactions based on the number of experimental proofs that report them. As a conclusion, we can state that integrated information allows the building of more reliable interaction networks. Identification of communities, cliques, modules and hubs by analysing the topological parameters and graph properties of the protein networks allows the discovery of central/critical nodes, which are candidates to regulate cellular flux and dynamics.
African American Extended Family and Church-Based Social Network Typologies.
Nguyen, Ann W; Chatters, Linda M; Taylor, Robert Joseph
2016-12-01
We examined social network typologies among African American adults and their sociodemographic correlates. Network types were derived from indicators of the family and church networks. Latent class analysis was based on a nationally representative sample of African Americans from the National Survey of American Life. Results indicated four distinct network types: ambivalent, optimal, family centered, and strained. These four types were distinguished by (a) degree of social integration, (b) network composition, and (c) level of negative interactions. In a departure from previous work, a network type composed solely of nonkin was not identified, which may reflect racial differences in social network typologies. Further, the analysis indicated that network types varied by sociodemographic characteristics. Social network typologies have several promising practice implications, as they can inform the development of prevention and intervention programs.
Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M
2014-01-01
The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly 'balkanized' (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above.
Interconnectivity of human cellular metabolism and disease prevalence
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2010-12-01
Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease-gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery.
Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M.
2014-01-01
The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly ‘balkanized’ (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above. PMID:24558409
Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions
Hu, Xintao; Zhu, Dajiang; Lv, Peili; Li, Kaiming; Han, Junwei; Wang, Lihong; Shen, Dinggang; Guo, Lei; Liu, Tianming
2014-01-01
In the human brain, functional activity occurs at multiple spatial scales. Current studies on functional brain networks and their alterations in brain diseases via resting-state functional magnetic resonance imaging (rs-fMRI) are generally either at local scale (regionally confined analysis and inter-regional functional connectivity analysis) or at global scale (graph theoretic analysis). In contrast, inferring functional interaction at fine-granularity sub-network scale has not been adequately explored yet. Here our hypothesis is that functional interaction measured at fine-granularity subnetwork scale can provide new insight into the neural mechanisms of neurological and psychological conditions, thus offering complementary information for healthy and diseased population classification. In this paper, we derived fine-granularity functional interaction (FGFI) signatures in subjects with Mild Cognitive Impairment (MCI) and Schizophrenia by diffusion tensor imaging (DTI) and rsfMRI, and used patient-control classification experiments to evaluate the distinctiveness of the derived FGFI features. Our experimental results have shown that the FGFI features alone can achieve comparable classification performance compared with the commonly used inter-regional connectivity features. However, the classification performance can be substantially improved when FGFI features and inter-regional connectivity features are integrated, suggesting the complementary information achieved from the FGFI signatures. PMID:23319242
A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe
Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja
2016-01-01
Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338
Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.
Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Role of graph architecture in controlling dynamical networks with applications to neural systems
NASA Astrophysics Data System (ADS)
Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Epidemics on interconnected networks
NASA Astrophysics Data System (ADS)
Dickison, Mark; Havlin, S.; Stanley, H. E.
2012-06-01
Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.
Bayesian module identification from multiple noisy networks.
Zamani Dadaneh, Siamak; Qian, Xiaoning
2016-12-01
Module identification has been studied extensively in order to gain deeper understanding of complex systems, such as social networks as well as biological networks. Modules are often defined as groups of vertices in these networks that are topologically cohesive with similar interaction patterns with the rest of the vertices. Most of the existing module identification algorithms assume that the given networks are faithfully measured without errors. However, in many real-world applications, for example, when analyzing protein-protein interaction networks from high-throughput profiling techniques, there is significant noise with both false positive and missing links between vertices. In this paper, we propose a new model for more robust module identification by taking advantage of multiple observed networks with significant noise so that signals in multiple networks can be strengthened and help improve the solution quality by combining information from various sources. We adopt a hierarchical Bayesian model to integrate multiple noisy snapshots that capture the underlying modular structure of the networks under study. By introducing a latent root assignment matrix and its relations to instantaneous module assignments in all the observed networks to capture the underlying modular structure and combine information across multiple networks, an efficient variational Bayes algorithm can be derived to accurately and robustly identify the underlying modules from multiple noisy networks. Experiments on synthetic and protein-protein interaction data sets show that our proposed model enhances both the accuracy and resolution in detecting cohesive modules, and it is less vulnerable to noise in the observed data. In addition, it shows higher power in predicting missing edges compared to individual-network methods.
Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.
Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J
2016-06-03
Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations.
From pull-down data to protein interaction networks and complexes with biological relevance.
Zhang, Bing; Park, Byung-Hoon; Karpinets, Tatiana; Samatova, Nagiza F
2008-04-01
Recent improvements in high-throughput Mass Spectrometry (MS) technology have expedited genome-wide discovery of protein-protein interactions by providing a capability of detecting protein complexes in a physiological setting. Computational inference of protein interaction networks and protein complexes from MS data are challenging. Advances are required in developing robust and seamlessly integrated procedures for assessment of protein-protein interaction affinities, mathematical representation of protein interaction networks, discovery of protein complexes and evaluation of their biological relevance. A multi-step but easy-to-follow framework for identifying protein complexes from MS pull-down data is introduced. It assesses interaction affinity between two proteins based on similarity of their co-purification patterns derived from MS data. It constructs a protein interaction network by adopting a knowledge-guided threshold selection method. Based on the network, it identifies protein complexes and infers their core components using a graph-theoretical approach. It deploys a statistical evaluation procedure to assess biological relevance of each found complex. On Saccharomyces cerevisiae pull-down data, the framework outperformed other more complicated schemes by at least 10% in F(1)-measure and identified 610 protein complexes with high-functional homogeneity based on the enrichment in Gene Ontology (GO) annotation. Manual examination of the complexes brought forward the hypotheses on cause of false identifications. Namely, co-purification of different protein complexes as mediated by a common non-protein molecule, such as DNA, might be a source of false positives. Protein identification bias in pull-down technology, such as the hydrophilic bias could result in false negatives.
Random Evolution of Idiotypic Networks: Dynamics and Architecture
NASA Astrophysics Data System (ADS)
Brede, Markus; Behn, Ulrich
The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.
Oscillations and chaos in neural networks: an exactly solvable model.
Wang, L P; Pichler, E E; Ross, J
1990-01-01
We consider a randomly diluted higher-order network with noise, consisting of McCulloch-Pitts neurons that interact by Hebbian-type connections. For this model, exact dynamical equations are derived and solved for both parallel and random sequential updating algorithms. For parallel dynamics, we find a rich spectrum of different behaviors including static retrieving and oscillatory and chaotic phenomena in different parts of the parameter space. The bifurcation parameters include first- and second-order neuronal interaction coefficients and a rescaled noise level, which represents the combined effects of the random synaptic dilution, interference between stored patterns, and additional background noise. We show that a marked difference in terms of the occurrence of oscillations or chaos exists between neural networks with parallel and random sequential dynamics. Images PMID:2251287
Temporal stability in human interaction networks
NASA Astrophysics Data System (ADS)
Fabbri, Renato; Fabbri, Ricardo; Antunes, Deborah Christina; Pisani, Marilia Mello; de Oliveira, Osvaldo Novais
2017-11-01
This paper reports on stable (or invariant) properties of human interaction networks, with benchmarks derived from public email lists. Activity, recognized through messages sent, along time and topology were observed in snapshots in a timeline, and at different scales. Our analysis shows that activity is practically the same for all networks across timescales ranging from seconds to months. The principal components of the participants in the topological metrics space remain practically unchanged as different sets of messages are considered. The activity of participants follows the expected scale-free trace, thus yielding the hub, intermediary and peripheral classes of vertices by comparison against the Erdös-Rényi model. The relative sizes of these three sectors are essentially the same for all email lists and the same along time. Typically, < 15% of the vertices are hubs, 15%-45% are intermediary and > 45% are peripheral vertices. Similar results for the distribution of participants in the three sectors and for the relative importance of the topological metrics were obtained for 12 additional networks from Facebook, Twitter and ParticipaBR. These properties are consistent with the literature and may be general for human interaction networks, which has important implications for establishing a typology of participants based on quantitative criteria.
Deep graphs—A general framework to represent and analyze heterogeneous complex systems across scales
NASA Astrophysics Data System (ADS)
Traxl, Dominik; Boers, Niklas; Kurths, Jürgen
2016-06-01
Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.
Traxl, Dominik; Boers, Niklas; Kurths, Jürgen
2016-06-01
Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.
NASA Astrophysics Data System (ADS)
Grytskyy, Dmytro; Diesmann, Markus; Helias, Moritz
2016-06-01
Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated.
NASA Astrophysics Data System (ADS)
Griffiths, John D.
2015-12-01
The modern understanding of the brain as a large, complex network of interacting elements is a natural consequence of the Neuron Doctrine [1,2] that has been bolstered in recent years by the tools and concepts of connectomics. In this abstracted, network-centric view, the essence of neural and cognitive function derives from the flows between network elements of activity and information - or, more generally, causal influence. The appropriate characterization of causality in neural systems, therefore, is a question at the very heart of systems neuroscience.
Frenkel-Morgenstern, Milana; Gorohovski, Alessandro; Tagore, Somnath; Sekar, Vaishnovi; Vazquez, Miguel; Valencia, Alfonso
2017-07-07
Fusion proteins, comprising peptides deriving from the translation of two parental genes, are produced in cancer by chromosomal aberrations. The expressed fusion protein incorporates domains of both parental proteins. Using a methodology that treats discrete protein domains as binding sites for specific domains of interacting proteins, we have cataloged the protein interaction networks for 11 528 cancer fusions (ChiTaRS-3.1). Here, we present our novel method, chimeric protein-protein interactions (ChiPPI) that uses the domain-domain co-occurrence scores in order to identify preserved interactors of chimeric proteins. Mapping the influence of fusion proteins on cell metabolism and pathways reveals that ChiPPI networks often lose tumor suppressor proteins and gain oncoproteins. Furthermore, fusions often induce novel connections between non-interactors skewing interaction networks and signaling pathways. We compared fusion protein PPI networks in leukemia/lymphoma, sarcoma and solid tumors finding distinct enrichment patterns for each disease type. While certain pathways are enriched in all three diseases (Wnt, Notch and TGF β), there are distinct patterns for leukemia (EGFR signaling, DNA replication and CCKR signaling), for sarcoma (p53 pathway and CCKR signaling) and solid tumors (FGFR and EGFR signaling). Thus, the ChiPPI method represents a comprehensive tool for studying the anomaly of skewed cellular networks produced by fusion proteins in cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Biologically inspired emotion recognition from speech
NASA Astrophysics Data System (ADS)
Caponetti, Laura; Buscicchio, Cosimo Alessandro; Castellano, Giovanna
2011-12-01
Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM) recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC) and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.
Schmitt, Michael
2004-09-01
We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudodimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types. Constant depth networks are shown to have an almost linear pseudodimension, whereas the pseudodimension of general networks is quadratic. Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M
2017-10-03
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Yang, Shaofu; Guo, Zhenyuan; Wang, Jun
2017-07-01
In this paper, new results on the global synchronization of multiple recurrent neural networks (NNs) with time delays via impulsive interactions are presented. Impulsive interaction means that a number of NNs communicate with each other at impulse instants only, while they are independent at the remaining time. The communication topology among NNs is not required to be always connected and can switch ON and OFF at different impulse instants. By using the concept of sequential connectivity and the properties of stochastic matrices, a set of sufficient conditions depending on time delays is derived to ascertain global synchronization of multiple continuous-time recurrent NNs. In addition, a counterpart on the global synchronization of multiple discrete-time NNs is also discussed. Finally, two examples are presented to illustrate the results.
Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data.
Miannay, Bertrand; Minvielle, Stéphane; Magrangeas, Florence; Guziolowski, Carito
2018-03-21
The integration of gene expression profiles (GEPs) and large-scale biological networks derived from pathways databases is a subject which is being widely explored. Existing methods are based on network distance measures among significantly measured species. Only a small number of them include the directionality and underlying logic existing in biological networks. In this study we approach the GEP-networks integration problem by considering the network logic, however our approach does not require a prior species selection according to their gene expression level. We start by modeling the biological network representing its underlying logic using Logic Programming. This model points to reachable network discrete states that maximize a notion of harmony between the molecular species active or inactive possible states and the directionality of the pathways reactions according to their activator or inhibitor control role. Only then, we confront these network states with the GEP. From this confrontation independent graph components are derived, each of them related to a fixed and optimal assignment of active or inactive states. These components allow us to decompose a large-scale network into subgraphs and their molecular species state assignments have different degrees of similarity when compared to the same GEP. We apply our method to study the set of possible states derived from a subgraph from the NCI-PID Pathway Interaction Database. This graph links Multiple Myeloma (MM) genes to known receptors for this blood cancer. We discover that the NCI-PID MM graph had 15 independent components, and when confronted to 611 MM GEPs, we find 1 component as being more specific to represent the difference between cancer and healthy profiles.
Antagonistic Phenomena in Network Dynamics
NASA Astrophysics Data System (ADS)
Motter, Adilson E.; Timme, Marc
2018-03-01
Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.
NASA Astrophysics Data System (ADS)
Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.
2015-07-01
A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.
omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data.
Müller, Sören; Rycak, Lukas; Winter, Peter; Kahl, Günter; Koch, Ina; Rotter, Björn
2013-10-15
Small RNA deep sequencing is widely used to characterize non-coding RNAs (ncRNAs) differentially expressed between two conditions, e.g. healthy and diseased individuals and to reveal insights into molecular mechanisms underlying condition-specific phenotypic traits. The ncRNAome is composed of a multitude of RNAs, such as transfer RNA, small nucleolar RNA and microRNA (miRNA), to name few. Here we present omiRas, a Web server for the annotation, comparison and visualization of interaction networks of ncRNAs derived from next-generation sequencing experiments of two different conditions. The Web tool allows the user to submit raw sequencing data and results are presented as: (i) static annotation results including length distribution, mapping statistics, alignments and quantification tables for each library as well as lists of differentially expressed ncRNAs between conditions and (ii) an interactive network visualization of user-selected miRNAs and their target genes based on the combination of several miRNA-mRNA interaction databases. The omiRas Web server is implemented in Python, PostgreSQL, R and can be accessed at: http://tools.genxpro.net/omiras/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yongzheng, E-mail: yzsung@gmail.com; Li, Wang; Zhao, Donghua
In this paper, we propose a new consensus model in which the interactions among agents stochastically switch between attraction and repulsion. Such a positive-and-negative mechanism is described by the white-noise-based coupling. Analytic criteria for the consensus and non-consensus in terms of the eigenvalues of the noise intensity matrix are derived, which provide a better understanding of the constructive roles of random interactions. Specifically, we discover a positive role of noise coupling that noise can accelerate the emergence of consensus. We find that the converging speed of the multi-agent network depends on the square of the second smallest eigenvalue of itsmore » graph Laplacian. The influence of network topologies on the consensus time is also investigated.« less
Memory Transmission in Small Groups and Large Networks: An Agent-Based Model.
Luhmann, Christian C; Rajaram, Suparna
2015-12-01
The spread of social influence in large social networks has long been an interest of social scientists. In the domain of memory, collaborative memory experiments have illuminated cognitive mechanisms that allow information to be transmitted between interacting individuals, but these experiments have focused on small-scale social contexts. In the current study, we took a computational approach, circumventing the practical constraints of laboratory paradigms and providing novel results at scales unreachable by laboratory methodologies. Our model embodied theoretical knowledge derived from small-group experiments and replicated foundational results regarding collaborative inhibition and memory convergence in small groups. Ultimately, we investigated large-scale, realistic social networks and found that agents are influenced by the agents with which they interact, but we also found that agents are influenced by nonneighbors (i.e., the neighbors of their neighbors). The similarity between these results and the reports of behavioral transmission in large networks offers a major theoretical insight by linking behavioral transmission to the spread of information. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang; Zou, Jianfeng
To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less
State transfer in highly connected networks and a quantum Babinet principle
NASA Astrophysics Data System (ADS)
Tsomokos, D. I.; Plenio, M. B.; de Vega, I.; Huelga, S. F.
2008-12-01
The transfer of a quantum state between distant nodes in two-dimensional networks is considered. The fidelity of state transfer is calculated as a function of the number of interactions in networks that are described by regular graphs. It is shown that perfect state transfer is achieved in a network of size N , whose structure is that of an (N/2) -cross polytope graph, if N is a multiple of 4 . The result is reminiscent of the Babinet principle of classical optics. A quantum Babinet principle is derived, which allows for the identification of complementary graphs leading to the same fidelity of state transfer, in analogy with complementary screens providing identical diffraction patterns.
Network structure from rich but noisy data
NASA Astrophysics Data System (ADS)
Newman, M. E. J.
2018-06-01
Driven by growing interest across the sciences, a large number of empirical studies have been conducted in recent years of the structure of networks ranging from the Internet and the World Wide Web to biological networks and social networks. The data produced by these experiments are often rich and multimodal, yet at the same time they may contain substantial measurement error1-7. Accurate analysis and understanding of networked systems requires a way of estimating the true structure of networks from such rich but noisy data8-15. Here we describe a technique that allows us to make optimal estimates of network structure from complex data in arbitrary formats, including cases where there may be measurements of many different types, repeated observations, contradictory observations, annotations or metadata, or missing data. We give example applications to two different social networks, one derived from face-to-face interactions and one from self-reported friendships.
Decentralised fixed modes of networked MIMO systems
NASA Astrophysics Data System (ADS)
Hao, Yuqing; Duan, Zhisheng; Chen, Guanrong
2018-04-01
In this paper, decentralised fixed modes (DFMs) of a networked system are studied. The network topology is directed and weighted and the nodes are higher-dimensional linear time-invariant (LTI) dynamical systems. The effects of the network topology, the node-system dynamics, the external control inputs, and the inner interactions on the existence of DFMs for the whole networked system are investigated. A necessary and sufficient condition for networked multi-input/multi-output (MIMO) systems in a general topology to possess no DFMs is derived. For networked single-input/single-output (SISO) LTI systems in general as well as some typical topologies, some specific conditions for having no DFMs are established. It is shown that the existence of DFMs is an integrated result of the aforementioned relevant factors which cannot be decoupled into individual DFMs of the node-systems and the properties solely determined by the network topology.
Random walks on activity-driven networks with attractiveness
NASA Astrophysics Data System (ADS)
Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola
2017-05-01
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.
Novel integrative genomic tool for interrogating lithium response in bipolar disorder
Hunsberger, J G; Chibane, F L; Elkahloun, A G; Henderson, R; Singh, R; Lawson, J; Cruceanu, C; Nagarajan, V; Turecki, G; Squassina, A; Medeiros, C D; Del Zompo, M; Rouleau, G A; Alda, M; Chuang, D-M
2015-01-01
We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery. PMID:25646593
Novel integrative genomic tool for interrogating lithium response in bipolar disorder.
Hunsberger, J G; Chibane, F L; Elkahloun, A G; Henderson, R; Singh, R; Lawson, J; Cruceanu, C; Nagarajan, V; Turecki, G; Squassina, A; Medeiros, C D; Del Zompo, M; Rouleau, G A; Alda, M; Chuang, D-M
2015-02-03
We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery.
Understanding network concepts in modules
2007-01-01
Background Network concepts are increasingly used in biology and genetics. For example, the clustering coefficient has been used to understand network architecture; the connectivity (also known as degree) has been used to screen for cancer targets; and the topological overlap matrix has been used to define modules and to annotate genes. Dozens of potentially useful network concepts are known from graph theory. Results Here we study network concepts in special types of networks, which we refer to as approximately factorizable networks. In these networks, the pairwise connection strength (adjacency) between 2 network nodes can be factored into node specific contributions, named node 'conformity'. The node conformity turns out to be highly related to the connectivity. To provide a formalism for relating network concepts to each other, we define three types of network concepts: fundamental-, conformity-based-, and approximate conformity-based concepts. Fundamental concepts include the standard definitions of connectivity, density, centralization, heterogeneity, clustering coefficient, and topological overlap. The approximate conformity-based analogs of fundamental network concepts have several theoretical advantages. First, they allow one to derive simple relationships between seemingly disparate networks concepts. For example, we derive simple relationships between the clustering coefficient, the heterogeneity, the density, the centralization, and the topological overlap. The second advantage of approximate conformity-based network concepts is that they allow one to show that fundamental network concepts can be approximated by simple functions of the connectivity in module networks. Conclusion Using protein-protein interaction, gene co-expression, and simulated data, we show that a) many networks comprised of module nodes are approximately factorizable and b) in these types of networks, simple relationships exist between seemingly disparate network concepts. Our results are implemented in freely available R software code, which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/ModuleConformity/ModuleNetworks PMID:17547772
Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.
Kapusuz, Derya; Durucan, Caner
2017-07-01
The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.
Three-dimensional aromatic networks.
Toyota, Shinji; Iwanaga, Tetsuo
2014-01-01
Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.
Construct Validation of Wenger's Support Network Typology.
Szabo, Agnes; Stephens, Christine; Allen, Joanne; Alpass, Fiona
2016-10-07
The study aimed to validate Wenger's empirically derived support network typology of responses to the Practitioner Assessment of Network Type (PANT) in an older New Zealander population. The configuration of network types was tested across ethnic groups and in the total sample. Data (N = 872, Mage = 67 years, SDage = 1.56 years) from the 2006 wave of the New Zealand Health, Work and Retirement study were analyzed using latent profile analysis. In addition, demographic differences among the emerging profiles were tested. Competing models were evaluated based on a range of fit criteria, which supported a five-profile solution. The "locally integrated," "community-focused," "local self-contained," "private-restricted," and "friend- and family-dependent" network types were identified as latent profiles underlying the data. There were no differences between Māori and non-Māori in final profile configurations. However, Māori were more likely to report integrated network types. Findings confirm the validity of Wenger's network types. However, the level to which participants endorse accessibility of family, frequency of interactions, and community engagement can be influenced by sample and contextual characteristics. Future research using the PANT items should empirically verify and derive the social support network types, rather than use a predefined scoring system. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification
Li, Yang; Wee, Chong-Yaw; Jie, Biao; Peng, Ziwen
2014-01-01
Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach. PMID:24595922
Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations
Tamamis, Phanourios; Adler-Abramovich, Lihi; Reches, Meital; Marshall, Karen; Sikorski, Pawel; Serpell, Louise; Gazit, Ehud; Archontis, Georgios
2009-01-01
Abstract Studies of peptide-based nanostructures provide general insights into biomolecular self-assembly and can lead material engineering toward technological applications. The diphenylalanine peptide (FF) self-assembles into discrete, hollow, well ordered nanotubes, and its derivatives form nanoassemblies of various morphologies. Here we demonstrate for the first time, to our knowledge, the formation of planar nanostructures with β-sheet content by the triphenylalanine peptide (FFF). We characterize these structures using various microscopy and spectroscopy techniques. We also obtain insights into the interactions and structural properties of the FF and FFF nanostructures by 0.4-μs, implicit-solvent, replica-exchange, molecular-dynamics simulations of aqueous FF and FFF solutions. In the simulations the peptides form aggregates, which often contain open or ring-like peptide networks, as well as elementary and network-containing structures with β-sheet characteristics. The networks are stabilized by polar and nonpolar interactions, and by the surrounding aggregate. In particular, the charged termini of neighbor peptides are involved in hydrogen-bonding interactions and their aromatic side chains form “T-shaped” contacts, as in three-dimensional FF crystals. These interactions may assist the FF and FFF self-assembly at the early stage, and may also stabilize the mature nanostructures. The FFF peptides have higher network propensities and increased aggregate stabilities with respect to FF, which can be interpreted energetically. PMID:19527662
Network-based modeling and intelligent data mining of social media for improving care.
Akay, Altug; Dragomir, Andrei; Erlandsson, Bjorn-Erik
2015-01-01
Intelligently extracting knowledge from social media has recently attracted great interest from the Biomedical and Health Informatics community to simultaneously improve healthcare outcomes and reduce costs using consumer-generated opinion. We propose a two-step analysis framework that focuses on positive and negative sentiment, as well as the side effects of treatment, in users' forum posts, and identifies user communities (modules) and influential users for the purpose of ascertaining user opinion of cancer treatment. We used a self-organizing map to analyze word frequency data derived from users' forum posts. We then introduced a novel network-based approach for modeling users' forum interactions and employed a network partitioning method based on optimizing a stability quality measure. This allowed us to determine consumer opinion and identify influential users within the retrieved modules using information derived from both word-frequency data and network-based properties. Our approach can expand research into intelligently mining social media data for consumer opinion of various treatments to provide rapid, up-to-date information for the pharmaceutical industry, hospitals, and medical staff, on the effectiveness (or ineffectiveness) of future treatments.
Time-varying multiplex network: Intralayer and interlayer synchronization
NASA Astrophysics Data System (ADS)
Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar
2017-12-01
A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.
Time-varying multiplex network: Intralayer and interlayer synchronization.
Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K; Sinha, Sudeshna; Ghosh, Dibakar
2017-12-01
A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.
An opinion formation based binary optimization approach for feature selection
NASA Astrophysics Data System (ADS)
Hamedmoghadam, Homayoun; Jalili, Mahdi; Yu, Xinghuo
2018-02-01
This paper proposed a novel optimization method based on opinion formation in complex network systems. The proposed optimization technique mimics human-human interaction mechanism based on a mathematical model derived from social sciences. Our method encodes a subset of selected features to the opinion of an artificial agent and simulates the opinion formation process among a population of agents to solve the feature selection problem. The agents interact using an underlying interaction network structure and get into consensus in their opinions, while finding better solutions to the problem. A number of mechanisms are employed to avoid getting trapped in local minima. We compare the performance of the proposed method with a number of classical population-based optimization methods and a state-of-the-art opinion formation based method. Our experiments on a number of high dimensional datasets reveal outperformance of the proposed algorithm over others.
Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P
2009-10-06
Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.
Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K
2015-01-01
Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well.
Adaptive-network models of collective dynamics
NASA Astrophysics Data System (ADS)
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous. Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change. Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks' adaptive response to the agents' dynamics is sufficiently fast.
Least-cost transportation networks predict spatial interaction of invasion vectors.
Drake, D Andrew R; Mandrak, Nicholas E
2010-12-01
Human-mediated dispersal among aquatic ecosystems often results in biotic transfer between drainage basins. Such activities may circumvent biogeographic factors, with considerable ecological, evolutionary, and economic implications. However, the efficacy of predictions concerning community changes following inter-basin movements are limited, often because the dispersal mechanism is poorly understood (e.g., quantified only partially). To date, spatial-interaction models that predict the movement of humans as vectors of biotic transfer have not incorporated patterns of human movement through transportation networks. As a necessary first step to determine the role of anglers as invasion vectors across a land-lake ecosystem, we investigate their movement potential within Ontario, Canada. To determine possible model improvements resulting from inclusion of network travel, spatial-interaction models were constructed using standard Euclidean (e.g., straight-line) distance measures and also with distances derived from least-cost routing of human transportation networks. Model comparisons determined that least-cost routing both provided the most parsimonious model and also excelled at forecasting spatial interactions, with a proportion of 0.477 total movement deviance explained. The distribution of movements was characterized by many relatively short to medium travel distances (median = 292.6 km) with fewer lengthier distances (75th percentile = 484.6 km, 95th percentile = 775.2 km); however, even the shortest movements were sufficient to overcome drainage-basin boundaries. Ranking of variables in order of their contribution within the most parsimonious model determined that distance traveled, origin outflow, lake attractiveness, and sportfish richness significantly influence movement patterns. Model improvements associated with least-cost routing of human transportation networks imply that patterns of human-mediated invasion are fundamentally linked to the spatial configuration and relative impedance of human transportation networks, placing increased importance on understanding their contribution to the invasion process.
Regenbogen, Sam; Wilkins, Angela D; Lichtarge, Olivier
2016-01-01
Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses.
REGENBOGEN, SAM; WILKINS, ANGELA D.; LICHTARGE, OLIVIER
2015-01-01
Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses. PMID:26776170
Modeling biological pathway dynamics with timed automata.
Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N
2014-05-01
Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.
He, Yongqun
2016-06-01
Compared with controlled terminologies ( e.g. , MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network ( i.e. , OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.
Leung, Kin K.; Hause, Ronald J.; Barkinge, John L.; Ciaccio, Mark F.; Chuu, Chih-Pin; Jones, Richard B.
2014-01-01
Many human diseases are associated with aberrant regulation of phosphoprotein signaling networks. Src homology 2 (SH2) domains represent the major class of protein domains in metazoans that interact with proteins phosphorylated on the amino acid residue tyrosine. Although current SH2 domain prediction algorithms perform well at predicting the sequences of phosphorylated peptides that are likely to result in the highest possible interaction affinity in the context of random peptide library screens, these algorithms do poorly at predicting the interaction potential of SH2 domains with physiologically derived protein sequences. We employed a high throughput interaction assay system to empirically determine the affinity between 93 human SH2 domains and phosphopeptides abstracted from several receptor tyrosine kinases and signaling proteins. The resulting interaction experiments revealed over 1000 novel peptide-protein interactions and provided a glimpse into the common and specific interaction potentials of c-Met, c-Kit, GAB1, and the human androgen receptor. We used these data to build a permutation-based logistic regression classifier that performed considerably better than existing algorithms for predicting the interaction potential of several SH2 domains. PMID:24728074
Jones, Andrew S; Taktak, Azzam G F; Helliwell, Timothy R; Fenton, John E; Birchall, Martin A; Husband, David J; Fisher, Anthony C
2006-06-01
The accepted method of modelling and predicting failure/survival, Cox's proportional hazards model, is theoretically inferior to neural network derived models for analysing highly complex systems with large datasets. A blinded comparison of the neural network versus the Cox's model in predicting survival utilising data from 873 treated patients with laryngeal cancer. These were divided randomly and equally into a training set and a study set and Cox's and neural network models applied in turn. Data were then divided into seven sets of binary covariates and the analysis repeated. Overall survival was not significantly different on Kaplan-Meier plot, or with either test model. Although the network produced qualitatively similar results to Cox's model it was significantly more sensitive to differences in survival curves for age and N stage. We propose that neural networks are capable of prediction in systems involving complex interactions between variables and non-linearity.
Embedding dynamical networks into distributed models
NASA Astrophysics Data System (ADS)
Innocenti, Giacomo; Paoletti, Paolo
2015-07-01
Large networks of interacting dynamical systems are well-known for the complex behaviours they are able to display, even when each node features a quite simple dynamics. Despite examples of such networks being widespread both in nature and in technological applications, the interplay between the local and the macroscopic behaviour, through the interconnection topology, is still not completely understood. Moreover, traditional analytical methods for dynamical response analysis fail because of the intrinsically large dimension of the phase space of the network which makes the general problem intractable. Therefore, in this paper we develop an approach aiming to condense all the information in a compact description based on partial differential equations. By focusing on propagative phenomena, rigorous conditions under which the original network dynamical properties can be successfully analysed within the proposed framework are derived as well. A network of Fitzhugh-Nagumo systems is finally used to illustrate the effectiveness of the proposed method.
Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction
NASA Astrophysics Data System (ADS)
Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar
2016-07-01
We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.
New Abstraction Networks and a New Visualization Tool in Support of Auditing the SNOMED CT Content
Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan
2012-01-01
Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT. PMID:23304293
New abstraction networks and a new visualization tool in support of auditing the SNOMED CT content.
Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan
2012-01-01
Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT.
Correspondence of the brain's functional architecture during activation and rest.
Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F
2009-08-04
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."
Wu, Chia-Chou; Lin, Che
2015-01-01
The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693
Jones, Adriane Clark; Hambright, K David; Caron, David A
2018-05-01
Microbial communities are comprised of complex assemblages of highly interactive taxa. We employed network analyses to identify and describe microbial interactions and co-occurrence patterns between microbial eukaryotes and bacteria at two locations within a low salinity (0.5-3.5 ppt) lake over an annual cycle. We previously documented that the microbial diversity and community composition within Lake Texoma, southwest USA, were significantly affected by both seasonal forces and a site-specific bloom of the harmful alga, Prymnesium parvum. We used network analyses to answer ecological questions involving both the bacterial and microbial eukaryotic datasets and to infer ecological relationships within the microbial communities. Patterns of connectivity at both locations reflected the seasonality of the lake including a large rain disturbance in May, while a comparison of the communities between locations revealed a localized response to the algal bloom. A network built from shared nodes (microbial operational taxonomic units and environmental variables) and correlations identified conserved associations at both locations within the lake. Using network analyses, we were able to detect disturbance events, characterize the ecological extent of a harmful algal bloom, and infer ecological relationships not apparent from diversity statistics alone.
Animal welfare: a social networks perspective.
Kleinhappel, Tanja K; John, Elizabeth A; Pike, Thomas W; Wilkinson, Anna; Burman, Oliver H P
2016-01-01
Social network theory provides a useful tool to study complex social relationships in animals. The possibility to look beyond dyadic interactions by considering whole networks of social relationships allows researchers the opportunity to study social groups in more natural ways. As such, network-based analyses provide an informative way to investigate the factors influencing the social environment of group-living animals, and so has direct application to animal welfare. For example, animal groups in captivity are frequently disrupted by separations, reintroductions and/or mixing with unfamiliar individuals and this can lead to social stress and associated aggression. Social network analysis ofanimal groups can help identify the underlying causes of these socially-derived animal welfare concerns. In this review we discuss how this approach can be applied, and how it could be used to identify potential interventions and solutions in the area of animal welfare.
Cross-platform method for identifying candidate network biomarkers for prostate cancer.
Jin, G; Zhou, X; Cui, K; Zhang, X-S; Chen, L; Wong, S T C
2009-11-01
Discovering biomarkers using mass spectrometry (MS) and microarray expression profiles is a promising strategy in molecular diagnosis. Here, the authors proposed a new pipeline for biomarker discovery that integrates disease information for proteins and genes, expression profiles in both genomic and proteomic levels, and protein-protein interactions (PPIs) to discover high confidence network biomarkers. Using this pipeline, a total of 474 molecules (genes and proteins) related to prostate cancer were identified and a prostate-cancer-related network (PCRN) was derived from the integrative information. Thus, a set of candidate network biomarkers were identified from multiple expression profiles composed by eight microarray datasets and one proteomics dataset. The network biomarkers with PPIs can accurately distinguish the prostate patients from the normal ones, which potentially provide more reliable hits of biomarker candidates than conventional biomarker discovery methods.
Huang, Yezhou; Li, Shao
2010-01-18
Pathways in biological system often cooperate with each other to function. Changes of interactions among pathways tightly associate with alterations in the properties and functions of the cell and hence alterations in the phenotype. So, the pathway interactions and especially their changes over time corresponding to specific phenotype are critical to understanding cell functions and phenotypic plasticity. With prior-defined pathways and incorporated protein-protein interaction (PPI) data, we counted PPIs between corresponding gene sets of each pair of distinct pathways to construct a comprehensive pathway network. Then we proposed a novel concept, characteristic sub pathway network (CSPN), to realize the phenotype-specific pathway interactions. By adding gene expression data regarding a given phenotype, angiogenesis, active PPIs corresponding to stimulation of interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) on human umbilical vein endothelial cells (HUVECs) respectively were derived. Two kinds of CSPN, namely the static or the dynamic CSPN, were detected by counting active PPIs. A comprehensive pathway network containing 37 signalling pathways as nodes and 263 pathway interactions were obtained. Two phenotype-specific CSPNs for angiogenesis, corresponding to stimulation of IL-1 and TNF-alpha on HUVEC respectively, were addressed. From phenotype-specific CSPNs, a static CSPN involving interactions among B cell receptor, T cell receptor, Toll-like receptor, MAPK, VEGF, and ErbB signalling pathways, and a dynamic CSPN involving interactions among TGF-beta, Wnt, p53 signalling pathways and cell cycle pathway, were detected for angiogenesis on HUVEC after stimulation of IL-1 and TNF-alpha respectively. We inferred that, in certain case, the static CSPN maintains related basic functions of the cells, whereas the dynamic CSPN manifests the cells' plastic responses to stimulus and therefore reflects the cells' phenotypic plasticity. The comprehensive pathway network helps us realize the cooperative behaviours among pathways. Moreover, two kinds of potential CSPNs found in this work, the static CSPN and the dynamic CSPN, are helpful to deeply understand the specific function of HUVEC and its phenotypic plasticity in regard to angiogenesis.
2010-01-01
Background Pathways in biological system often cooperate with each other to function. Changes of interactions among pathways tightly associate with alterations in the properties and functions of the cell and hence alterations in the phenotype. So, the pathway interactions and especially their changes over time corresponding to specific phenotype are critical to understanding cell functions and phenotypic plasticity. Methods With prior-defined pathways and incorporated protein-protein interaction (PPI) data, we counted PPIs between corresponding gene sets of each pair of distinct pathways to construct a comprehensive pathway network. Then we proposed a novel concept, characteristic sub pathway network (CSPN), to realize the phenotype-specific pathway interactions. By adding gene expression data regarding a given phenotype, angiogenesis, active PPIs corresponding to stimulation of interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α) on human umbilical vein endothelial cells (HUVECs) respectively were derived. Two kinds of CSPN, namely the static or the dynamic CSPN, were detected by counting active PPIs. Results A comprehensive pathway network containing 37 signalling pathways as nodes and 263 pathway interactions were obtained. Two phenotype-specific CSPNs for angiogenesis, corresponding to stimulation of IL-1 and TNF-α on HUVEC respectively, were addressed. From phenotype-specific CSPNs, a static CSPN involving interactions among B cell receptor, T cell receptor, Toll-like receptor, MAPK, VEGF, and ErbB signalling pathways, and a dynamic CSPN involving interactions among TGF-β, Wnt, p53 signalling pathways and cell cycle pathway, were detected for angiogenesis on HUVEC after stimulation of IL-1 and TNF-α respectively. We inferred that, in certain case, the static CSPN maintains related basic functions of the cells, whereas the dynamic CSPN manifests the cells' plastic responses to stimulus and therefore reflects the cells' phenotypic plasticity. Conclusion The comprehensive pathway network helps us realize the cooperative behaviours among pathways. Moreover, two kinds of potential CSPNs found in this work, the static CSPN and the dynamic CSPN, are helpful to deeply understand the specific function of HUVEC and its phenotypic plasticity in regard to angiogenesis. PMID:20122205
Analysing ecological networks of species interactions.
Delmas, Eva; Besson, Mathilde; Brice, Marie-Hélène; Burkle, Laura A; Dalla Riva, Giulio V; Fortin, Marie-Josée; Gravel, Dominique; Guimarães, Paulo R; Hembry, David H; Newman, Erica A; Olesen, Jens M; Pires, Mathias M; Yeakel, Justin D; Poisot, Timothée
2018-06-20
Network approaches to ecological questions have been increasingly used, particularly in recent decades. The abstraction of ecological systems - such as communities - through networks of interactions between their components indeed provides a way to summarize this information with single objects. The methodological framework derived from graph theory also provides numerous approaches and measures to analyze these objects and can offer new perspectives on established ecological theories as well as tools to address new challenges. However, prior to using these methods to test ecological hypotheses, it is necessary that we understand, adapt, and use them in ways that both allow us to deliver their full potential and account for their limitations. Here, we attempt to increase the accessibility of network approaches by providing a review of the tools that have been developed so far, with - what we believe to be - their appropriate uses and potential limitations. This is not an exhaustive review of all methods and metrics, but rather, an overview of tools that are robust, informative, and ecologically sound. After providing a brief presentation of species interaction networks and how to build them in order to summarize ecological information of different types, we then classify methods and metrics by the types of ecological questions that they can be used to answer from global to local scales, including methods for hypothesis testing and future perspectives. Specifically, we show how the organization of species interactions in a community yields different network structures (e.g., more or less dense, modular or nested), how different measures can be used to describe and quantify these emerging structures, and how to compare communities based on these differences in structures. Within networks, we illustrate metrics that can be used to describe and compare the functional and dynamic roles of species based on their position in the network and the organization of their interactions as well as associated new methods to test the significance of these results. Lastly, we describe potential fruitful avenues for new methodological developments to address novel ecological questions. © 2018 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Shankar, Chandrashekar
The goal of this research was to gain a fundamental understanding of the properties of networks created by the ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) used in self-healing materials. To this end we used molecular simulation methods to generate realistic structures of DCPD networks, characterize their structures, and determine their mechanical properties. Density functional theory (DFT) calculations, complemented by structural information derived from molecular dynamics simulations were used to reconstruct experimental Raman spectra and differential scanning calorimetry (DSC) data. We performed coarse-grained simulations comparing networks generated via the ROMP reaction process and compared them to those generated via a RANDOM process, which led to the fundamental realization that the polymer topology has a unique influence on the network properties. We carried out fully atomistic simulations of DCPD using a novel algorithm for recreating ROMP reactions of DCPD molecules. Mechanical properties derived from these atomistic networks are in excellent agreement with those obtained from coarse-grained simulations in which interactions between nodes are subject to angular constraints. This comparison provides self-consistent validation of our simulation results and helps to identify the level of detail necessary for the coarse-grained interaction model. Simulations suggest networks can classified into three stages: fluid-like, rubber-like or glass-like delineated by two thresholds in degree of reaction alpha: The onset of finite magnitudes for the Young's modulus, alphaY, and the departure of the Poisson ration from 0.5, alphaP. In each stage the polymer exhibits a different predominant mechanical response to deformation. At low alpha < alphaY it flows. At alpha Y < alpha < alphaP the response is entropic with no change in internal energy. At alpha > alphaP the response is enthalpic change in internal energy. We developed graph theory-based network characterizations to correlate between network topology and the simulated mechanical properties. (1) Eigenvector centrality (2) Graph fractal dimension, (3) Fiedler partitioning, and (4) Cross-link fraction (Q3+Q4). Of these quantities, the Fiedler partition is the best characteristic for the prediction of Young's Modulus. The new computational tools developed in this research are of great fundamental and practical interest.
Characterizing Mobility and Contact Networks in Virtual Worlds
NASA Astrophysics Data System (ADS)
Machado, Felipe; Santos, Matheus; Almeida, Virgílio; Guedes, Dorgival
Virtual worlds have recently gained wide recognition as an important field of study in Computer Science. In this work we present an analysis of the mobility and interactions among characters in World of Warcraft (WoW) and Second Life based on the contact opportunities extracted from actual user data in each of those domains. We analyze character contacts in terms of their spatial and temporal characteristics, as well as the social network derived from such contacts. Our results show that the contacts observed may be more influenced by the nature of the interactions and goals of the users in each situation than by the intrinsic structure of such worlds. In particular, observations from a city in WoW are closer to those of Second Life than to other areas in WoW itself.
Warren, Keith; Craciun, Gheorghe; Anderson-Butcher, Dawn
2005-04-01
This paper develops a simple random network model of peer contagion in aggressive behavior among inner-city elementary school boys during recess periods. The model predicts a distribution of aggressive behaviors per recess period with a power law tail beginning at two aggressive behaviors and having a slope of approximately -1.5. Comparison of these values with values derived from observations of aggressive behaviors during recess at an inner-city elementary school provides empirical support for the model. These results suggest that fluctuations in aggressive behaviors during recess arise from the interactions between students, rather than from variations in the behavior of individual students. The results therefore support those interventions that aim to change the pattern of interaction between students.
Economic Impact of the Metropolitan Community Colleges on the Kansas City Region. Final Report.
ERIC Educational Resources Information Center
Manning, Sherry
This study assesses the economic impact of the Metropolitan Community Colleges (MCC) on the four-county region of metropolitan Kansas City, Missouri. The total economic impact is composed of a network of interactive cash flows between the colleges, business, government, and individuals, and may be derived by adding three distinct components:…
Bipartite consensus for multi-agent systems with antagonistic interactions and communication delays
NASA Astrophysics Data System (ADS)
Guo, Xing; Lu, Jianquan; Alsaedi, Ahmed; Alsaadi, Fuad E.
2018-04-01
This paper studies the consensus problems over signed digraphs with arbitrary finite communication delays. For the considered system, the information flow is directed and only locally delayed information can be used for each node. We derive that bipartite consensus of this system can be realized when the associated signed digraph is strongly connected. Furthermore, for structurally balanced networks, this paper studies the pinning partite consensus for the considered system. we design a pinning scheme to pin any one agent in the signed network, and obtain that the network achieves pinning bipartite consensus with any initial conditions. Finally, two examples are provided to demonstrate the effectiveness of our main results.
Beyond topology: coevolution of structure and flux in metabolic networks.
Morrison, E S; Badyaev, A V
2017-10-01
Interactions between the structure of a metabolic network and its functional properties underlie its evolutionary diversification, but the mechanism by which such interactions arise remains elusive. Particularly unclear is whether metabolic fluxes that determine the concentrations of compounds produced by a metabolic network, are causally linked to a network's structure or emerge independently of it. A direct empirical study of populations where both structural and functional properties vary among individuals' metabolic networks is required to establish whether changes in structure affect the distribution of metabolic flux. In a population of house finches (Haemorhous mexicanus), we reconstructed full carotenoid metabolic networks for 442 individuals and uncovered 11 structural variants of this network with different compounds and reactions. We examined the consequences of this structural diversity for the concentrations of plumage-bound carotenoids produced by flux in these networks. We found that concentrations of metabolically derived, but not dietary carotenoids, depended on network structure. Flux was partitioned similarly among compounds in individuals of the same network structure: within each network, compound concentrations were closely correlated. The highest among-individual variation in flux occurred in networks with the strongest among-compound correlations, suggesting that changes in the magnitude, but not the distribution of flux, underlie individual differences in compound concentrations on a static network structure. These findings indicate that the distribution of flux in carotenoid metabolism closely follows network structure. Thus, evolutionary diversification and local adaptations in carotenoid metabolism may depend more on the gain or loss of enzymatic reactions than on changes in flux within a network structure. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco
2018-06-01
The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks.
Chen, Yuncai; Baram, Tallie Z
2016-01-01
Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational methodologies. Because early-life adversity is a powerful determinant of subsequent vulnerabilities to emotional and cognitive pathologies, understanding the underlying processes will have profound implications for the world's current and future children.
Genomic analysis of regulatory network dynamics reveals large topological changes
NASA Astrophysics Data System (ADS)
Luscombe, Nicholas M.; Madan Babu, M.; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A.; Gerstein, Mark
2004-09-01
Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here-particularly the large-scale topological changes and hub transience-will apply to other biological networks, including complex sub-systems in higher eukaryotes.
Mei, Suyu
2018-05-04
Bacterial protein-protein interaction (PPI) networks are significant to reveal the machinery of signal transduction and drug resistance within bacterial cells. The database STRING has collected a large number of bacterial pathogen PPI networks, but most of the data are of low quality without being experimentally or computationally validated, thus restricting its further biomedical applications. We exploit the experimental data via four solutions to enhance the quality of M. tuberculosis H37Rv (MTB) PPI networks in STRING. Computational results show that the experimental data derived jointly by two-hybrid and copurification approaches are the most reliable to train an L 2 -regularized logistic regression model for MTB PPI network validation. On the basis of the validated MTB PPI networks, we further study the three problems via breadth-first graph search algorithm: (1) discovery of MTB drug-resistance pathways through searching for the paths between known drug-target genes and drug-resistance genes, (2) choosing potential cotarget genes via searching for the critical genes located on multiple pathways, and (3) choosing essential drug-target genes via analysis of network degree distribution. In addition, we further combine the validated MTB PPI networks with human PPI networks to analyze the potential pharmacological risks of known and candidate drug-target genes from the point of view of system pharmacology. The evidence from protein structure alignment demonstrates that the drugs that act on MTB target genes could also adversely act on human signaling pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.
2015-12-28
A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less
Gene regulatory networks in lactation: identification of global principles using bioinformatics.
Lemay, Danielle G; Neville, Margaret C; Rudolph, Michael C; Pollard, Katherine S; German, J Bruce
2007-11-27
The molecular events underlying mammary development during pregnancy, lactation, and involution are incompletely understood. Mammary gland microarray data, cellular localization data, protein-protein interactions, and literature-mined genes were integrated and analyzed using statistics, principal component analysis, gene ontology analysis, pathway analysis, and network analysis to identify global biological principles that govern molecular events during pregnancy, lactation, and involution. Several key principles were derived: (1) nearly a third of the transcriptome fluctuates to build, run, and disassemble the lactation apparatus; (2) genes encoding the secretory machinery are transcribed prior to lactation; (3) the diversity of the endogenous portion of the milk proteome is derived from fewer than 100 transcripts; (4) while some genes are differentially transcribed near the onset of lactation, the lactation switch is primarily post-transcriptionally mediated; (5) the secretion of materials during lactation occurs not by up-regulation of novel genomic functions, but by widespread transcriptional suppression of functions such as protein degradation and cell-environment communication; (6) the involution switch is primarily transcriptionally mediated; and (7) during early involution, the transcriptional state is partially reverted to the pre-lactation state. A new hypothesis for secretory diminution is suggested - milk production gradually declines because the secretory machinery is not transcriptionally replenished. A comprehensive network of protein interactions during lactation is assembled and new regulatory gene targets are identified. Less than one fifth of the transcriptionally regulated nodes in this lactation network have been previously explored in the context of lactation. Implications for future research in mammary and cancer biology are discussed.
Perturbation Biology: Inferring Signaling Networks in Cellular Systems
Miller, Martin L.; Gauthier, Nicholas P.; Jing, Xiaohong; Kaushik, Poorvi; He, Qin; Mills, Gordon; Solit, David B.; Pratilas, Christine A.; Weigt, Martin; Braunstein, Alfredo; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris
2013-01-01
We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology. PMID:24367245
Navigability of multiplex temporal network
NASA Astrophysics Data System (ADS)
Wang, Yan; Song, Qiao-Zhen
2017-01-01
Real world complex systems have multiple levels of relationships and in many cases, they need to be modeled as multiplex networks where the same nodes can interact with each other in different layers, such as social networks. However, social relationships only appear at prescribed times so the temporal structures of edge activations can also affect the dynamical processes located above them. To consider both factors are simultaneously, we introduce multiplex temporal networks and propose three different walk strategies to investigate the concurrent dynamics of random walks and the temporal structure of multiplex networks. Thus, we derive analytical results for the multiplex centrality and coverage function in multiplex temporal networks. By comparing them with the numerical results, we show how the underlying topology of the layers and the walk strategy affect the efficiency when exploring the networks. In particular, the most interesting result is the emergence of a super-diffusion process, where the time scale of the multiplex is faster than that of both layers acting separately.
Supporting virtual enterprise design by a web-based information model
NASA Astrophysics Data System (ADS)
Li, Dong; Barn, Balbir; McKay, Alison; de Pennington, Alan
2001-10-01
Development of IT and its applications have led to significant changes in business processes. To pursue agility, flexibility and best service to customers, enterprises focus on their core competence and dynamically build relationships with partners to form virtual enterprises as customer driven temporary demand chains/networks. Building the networked enterprise needs responsively interactive decisions instead of a single-direction partner selection process. Benefits and risks in the combination should be systematically analysed, and aggregated information about value-adding abilities and risks of networks needs to be derived from interactions of all partners. In this research, a hierarchical information model to assess partnerships for designing virtual enterprises was developed. Internet technique has been applied to the evaluation process so that interactive decisions can be visualised and made responsively during the design process. The assessment is based on the process which allows each partner responds to requirements of the virtual enterprise by planning its operational process as a bidder. The assessment is then produced by making an aggregated value to represent prospect of the combination of partners given current bidding. Final design is a combination of partners with the greatest total value-adding capability and lowest risk.
Effect of Amphiphiles on the Rheology of Triglyceride Networks
NASA Astrophysics Data System (ADS)
Seth, Jyoti
2014-11-01
Networks of aggregated crystallites form the structural backbone of many products from the food, cosmetic and pharmaceutical industries. Such materials are generally formulated by cooling a saturated solution to yield the desired solid fraction. Crystal nucleation and growth followed by aggregation leads to formation of a space percolating fractal-network. It is understood that microstructural hierarchy and particle-particle interactions determine material behavior during processing, storage and use. In this talk, rheology of suspensions of triglycerides (TAG, like tristearin) will be explored. TAGs exhibit a rich assortment of polymorphs and form suspensions that are evidently sensitive to surface modifying additives like surfactants and polymers. Here, a theoretical framework will be presented for suspensions containing TAG crystals interacting via pairwise potentials. The work builds on existing models of fractal aggregates to understand microstructure and its correlation with material rheology. Effect of amphiphilic additives is derived through variation of particle-particle interactions. Theoretical predictions for storage modulus will be compared against experimental observations and data from the literature and micro structural predictions against microscopy. Such a theory may serve as a step towards predicting short and long-term behavior of aggregated suspensions formulated via crystallization.
Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks
NASA Astrophysics Data System (ADS)
Rakshit, Sarbendu; Bera, Bidesh K.; Ghosh, Dibakar; Sinha, Sudeshna
2018-05-01
We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f . We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.
Supramolecular Organization of the α121-α565 Collagen IV Network*
Robertson, Wesley E.; Rose, Kristie L.; Hudson, Billy G.; Vanacore, Roberto M.
2014-01-01
Collagen IV is a family of 6 chains (α1-α6), that form triple-helical protomers that assemble into supramolecular networks. Two distinct networks with chain compositions of α121 and α345 have been established. These oligomerize into separate α121 and α345 networks by a homotypic interaction through their trimeric noncollagenous (NC1) domains, forming α121 and α345 NC1 hexamers, respectively. These are stabilized by novel sulfilimine (SN) cross-links, a covalent cross-link that forms between Met93 and Hyl211 at the trimer-trimer interface. A third network with a composition of α1256 has been proposed, but its supramolecular organization has not been established. In this study we investigated the supramolecular organization of this network by determining the chain identity of sulfilimine-cross-linked NC1 domains derived from the α1256 NC1 hexamer. High resolution mass spectrometry analyses of peptides revealed that sulfilimine bonds specifically cross-link α1 to α5 and α2 to α6 NC1 domains, thus providing the spatial orientation between interacting α121 and α565 trimers. Using this information, we constructed a three-dimensional homology model in which the α565 trimer shows a good chemical and structural complementarity to the α121 trimer. Our studies provide the first chemical evidence for an α565 protomer and its heterotypic interaction with the α121 protomer. Moreover, our findings, in conjunction with our previous studies, establish that the six collagen IV chains are organized into three canonical protomers α121, α345, and α565 forming three distinct networks: α121, α345, and α121-α565, each of which is stabilized by sulfilimine bonds between their C-terminal NC1 domains. PMID:25006246
Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu
2016-01-01
Lentinula edodes-derived polysaccharides are well known for their immunomodulation and antitumor activities. However, the mechanisms of action have not been fully elucidated. This study presents proteomic analysis of the colon and small intestine from mice fed with an immunostimulating heteropolysaccharide L2 from the fruit body of L. edodes. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS were employed to characterize the protein profiles. Twenty nine gel spots representing 20 proteins in colon tissues and 38 gel spots in small intestine tissues representing 23 proteins were identified as showing significant changes in abundance. These differential proteins in abundance are mainly involved in metabolism, binding, structural components, and response to stimulus. Protein-protein interaction network analysis demonstrated mapping of the 20 colon proteins to a 7-protein and a 3-protein sub-network, and mapping of the 23 small intestine proteins to a 9-protein and a 5-protein sub-network. All the 40 altered proteins were integrated into a unified network containing 25 proteins, suggesting the existence of a concerted mechanism, although acting on the colon and small intestine separately. These findings facilitate the understanding of the regulatory mechanism in response to L2 treatment.
Song, Qiang; Liu, Fang; Wen, Guanghui; Cao, Jinde; Yang, Xinsong
2017-04-24
This paper considers the position-based consensus in a network of agents with double-integrator dynamics and directed topology. Two types of distributed observer algorithms are proposed to solve the consensus problem by utilizing continuous and intermittent position measurements, respectively, where each observer does not interact with any other observers. For the case of continuous communication between network agents, some convergence conditions are derived for reaching consensus in the network with a single constant delay or multiple time-varying delays on the basis of the eigenvalue analysis and the descriptor method. When the network agents can only obtain intermittent position data from local neighbors at discrete time instants, the consensus in the network without time delay or with nonuniform delays is investigated by using the Wirtinger's inequality and the delayed-input approach. Numerical examples are given to illustrate the theoretical analysis.
NASA Astrophysics Data System (ADS)
Vogel, Sarah; Arnoldini, Simon; Möller, Stephanie; Schnabelrauch, Matthias; Hempel, Ute
2016-11-01
Extracellular matrix (ECM) composition and structural integrity is one of many factors that influence cellular differentiation. Fibronectin (FN) which is in many tissues the most abundant ECM protein forms a unique fibrillary network. FN homes several binding sites for sulfated glycosaminoglycans (sGAG), such as heparin (Hep), which was previously shown to influence FN conformation and protein binding. Synthetically sulfated hyaluronan derivatives (sHA) can serve as model molecules with a well characterized sulfation pattern to study sGAG-FN interaction. Here is shown that the low-sulfated sHA (sHA1) interacts with FN and influences fibril assembly. The interaction of FN fibrils with sHA1 and Hep, but not with non-sulfated HA was visualized by immunofluorescent co-staining. FRET analysis of FN confirmed the presence of more extended fibrils in human bone marrow stromal cells (hBMSC)-derived ECM in response to sHA1 and Hep. Although both sHA1 and Hep affected FN conformation, exclusively sHA1 increased FN protein level and led to thinner fibrils. Further, only sHA1 had a pro-osteogenic effect and enhanced the activity of tissue non-specific alkaline phosphatase. We hypothesize that the sHA1-triggered change in FN assembly influences the entire ECM network and could be the underlying mechanism for the pro-osteogenic effect of sHA1 on hBMSC.
NASA Astrophysics Data System (ADS)
Ashfaq, Muhammad; Arshad, Muhammad Nadeem; Danish, Muhammad; Asiri, Abdullah M.; Khatoon, Sadia; Mustafa, Ghulam; Zolotarev, Pavel N.; Butt, Rabia Ayub; Şahin, Onur
2016-01-01
Tranexamic acid (4-aminomethyl-cyclohexanecarboxylic acid) was reacted with sulfonyl chlorides to produce structurally related four sulfonamide derivatives using simple and environmental friendly method to check out their three-dimensional behavior and van der Walls interactions. The molecules were crystallized in different possibilities, as it is/after alkylation at its O and N atoms/along with a co-molecule. All molecules were crystallized in monoclinic crystal system with space group P21/n, P21/c and P21/a. X-ray studies reveal that the molecules stabilized themselves by different kinds of hydrogen bonding interactions. The molecules are getting connected through O-H⋯O hydrogen bonds to form inversion dimers which are further connected through N-H⋯O interactions. The molecules in which N and O atoms were alkylated showed non-classical interaction and generated centro-symmetric R22(24) ring motif. The co-crystallized host and guest molecules are connected to each other via O-H⋯O interactions to generate different ring motifs. By means of the ToposPro software an analysis of the topologies of underlying nets that correspond to molecular packings and hydrogen-bonded networks in structures under consideration was carried out.
NASA Astrophysics Data System (ADS)
Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.
1994-08-01
One of the largest available data sets for developing a quantitative structure-activity relationship (QSAR) — the inhibition of dihydrofolate reductase (DHFR) by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazine derivatives — has been used for a sixfold cross-validation trial of neural networks, inductive logic programming (ILP) and linear regression. No statistically significant difference was found between the predictive capabilities of the methods. However, the representation of molecules by attributes, which is integral to the ILP approach, provides understandable rules about drug-receptor interactions.
Identity theory and personality theory: mutual relevance.
Stryker, Sheldon
2007-12-01
Some personality psychologists have found a structural symbolic interactionist frame and identity theory relevant to their work. This frame and theory, developed in sociology, are first reviewed. Emphasized in the review are a multiple identity conception of self, identities as internalized expectations derived from roles embedded in organized networks of social interaction, and a view of social structures as facilitators in bringing people into networks or constraints in keeping them out, subsequently, attention turns to a discussion of the mutual relevance of structural symbolic interactionism/identity theory and personality theory, looking to extensions of the current literature on these topics.
Lee, Da-Som; Kim, Yang; Song, Youngwoon; Lee, Ji-Hye; Lee, Suyong; Yoo, Sang-Ho
2016-02-01
The potential of the protein-polyphenol interaction was applied to crosslinking reinforced protein networks in gluten-free rice noodles. Specifically, inter-component interaction between soy protein isolate and extract of Acanthopanax sessiliflorus fruit (ogaja) was examined with a view to improving its quality. In a components-interacting model system, a mixture of soy protein isolate (SPI) and ogaja extract (OE) induced a drastic increase in absorbance at 660 nm by haze formation, while the major anthocyanin of ogaja, cyanidin-3-O-sambubioside, sparsely interacted with SPI or gelatin. Individual or combined treatment of SPI and OE on rice dough decreased all the viscosity parameters in rapid visco analysis. However, SPI-OE treatment significantly increased all the texture parameters of rice dough derived from Mixolab(®) analysis (P < 0.05). Incorporation of SPI in rice dough significantly reduced endothermic ΔH, and SPI-OE treatment further decreased this value. SPI-OE interaction significantly increased the tensile properties of cooked noodle and decreased 53.7% of cooking loss compared to the untreated rice noodle. SPI-OE treatment caused a considerable reinforcement of the network as shown by reducing cooking loss and suggested the potential for utilizing protein-polyphenol interaction for gluten-free rice noodle production. © 2015 Society of Chemical Industry.
Alonso-López, Diego; Gutiérrez, Miguel A.; Lopes, Katia P.; Prieto, Carlos; Santamaría, Rodrigo; De Las Rivas, Javier
2016-01-01
APID (Agile Protein Interactomes DataServer) is an interactive web server that provides unified generation and delivery of protein interactomes mapped to their respective proteomes. This resource is a new, fully redesigned server that includes a comprehensive collection of protein interactomes for more than 400 organisms (25 of which include more than 500 interactions) produced by the integration of only experimentally validated protein–protein physical interactions. For each protein–protein interaction (PPI) the server includes currently reported information about its experimental validation to allow selection and filtering at different quality levels. As a whole, it provides easy access to the interactomes from specific species and includes a global uniform compendium of 90,379 distinct proteins and 678,441 singular interactions. APID integrates and unifies PPIs from major primary databases of molecular interactions, from other specific repositories and also from experimentally resolved 3D structures of protein complexes where more than two proteins were identified. For this purpose, a collection of 8,388 structures were analyzed to identify specific PPIs. APID also includes a new graph tool (based on Cytoscape.js) for visualization and interactive analyses of PPI networks. The server does not require registration and it is freely available for use at http://apid.dep.usal.es. PMID:27131791
DNA-Based Dynamic Reaction Networks.
Fu, Ting; Lyu, Yifan; Liu, Hui; Peng, Ruizi; Zhang, Xiaobing; Ye, Mao; Tan, Weihong
2018-05-21
Deriving from logical and mechanical interactions between DNA strands and complexes, DNA-based artificial reaction networks (RNs) are attractive for their high programmability, as well as cascading and fan-out ability, which are similar to the basic principles of electronic logic gates. Arising from the dream of creating novel computing mechanisms, researchers have placed high hopes on the development of DNA-based dynamic RNs and have strived to establish the basic theories and operative strategies of these networks. This review starts by looking back on the evolution of DNA dynamic RNs; in particular' the most significant applications in biochemistry occurring in recent years. Finally, we discuss the perspectives of DNA dynamic RNs and give a possible direction for the development of DNA circuits. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bertolazzi, Paola; Bock, Mary Ellen; Guerra, Concettina; Paci, Paola; Santoni, Daniele
2014-06-01
The biological role of proteins has been analyzed from different perspectives, initially by considering proteins as isolated biological entities, then as cooperating entities that perform their function by interacting with other molecules. There are other dimensions that are important for the complete understanding of the biological processes: time and location. However a protein is rarely annotated with temporal and spatial information. Experimental Protein-Proteins Interaction (PPI) data are static; furthermore they generally do not include transient interactions which are a considerable fraction of the interactome of many organisms. One way to incorporate temporal and condition information is to use other sources of information, such as gene expression data and 3D structural data. Here we review work done to understand the insight that can be gained by enriching PPI data with gene expression and 3D structural data. In particular, we address the following questions: Can the dynamics of a single protein or of an interaction be accurately derived from these data? Can the assembly-disassembly of protein complexes be traced over time? What type of topological changes occur in a PPI network architecture over time?
Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.
Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D
2014-01-01
Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.
Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands
Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.
2014-01-01
Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467
Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas
2006-02-14
The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation.
Chan, Ariel W; Neufeld, Ronald J
2009-10-01
Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.
Functional annotation of regulatory pathways.
Pandey, Jayesh; Koyutürk, Mehmet; Kim, Yohan; Szpankowski, Wojciech; Subramaniam, Shankar; Grama, Ananth
2007-07-01
Standardized annotations of biomolecules in interaction networks (e.g. Gene Ontology) provide comprehensive understanding of the function of individual molecules. Extending such annotations to pathways is a critical component of functional characterization of cellular signaling at the systems level. We propose a framework for projecting gene regulatory networks onto the space of functional attributes using multigraph models, with the objective of deriving statistically significant pathway annotations. We first demonstrate that annotations of pairwise interactions do not generalize to indirect relationships between processes. Motivated by this result, we formalize the problem of identifying statistically overrepresented pathways of functional attributes. We establish the hardness of this problem by demonstrating the non-monotonicity of common statistical significance measures. We propose a statistical model that emphasizes the modularity of a pathway, evaluating its significance based on the coupling of its building blocks. We complement the statistical model by an efficient algorithm and software, Narada, for computing significant pathways in large regulatory networks. Comprehensive results from our methods applied to the Escherichia coli transcription network demonstrate that our approach is effective in identifying known, as well as novel biological pathway annotations. Narada is implemented in Java and is available at http://www.cs.purdue.edu/homes/jpandey/narada/.
Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.
Kolwicz, Stephen C; Purohit, Suneet; Tian, Rong
2013-08-16
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
Cardiac Metabolism and Its Interactions with Contraction, Growth, and Survival of the Cardiomyocte
Kolwicz, Stephen C.; Purohit, Suneet; Tian, Rong
2013-01-01
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP producing and non-ATP producing end-points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies employed as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed. PMID:23948585
Kling, Teresia; Johansson, Patrik; Sanchez, José; Marinescu, Voichita D.; Jörnsten, Rebecka; Nelander, Sven
2015-01-01
Statistical network modeling techniques are increasingly important tools to analyze cancer genomics data. However, current tools and resources are not designed to work across multiple diagnoses and technical platforms, thus limiting their applicability to comprehensive pan-cancer datasets such as The Cancer Genome Atlas (TCGA). To address this, we describe a new data driven modeling method, based on generalized Sparse Inverse Covariance Selection (SICS). The method integrates genetic, epigenetic and transcriptional data from multiple cancers, to define links that are present in multiple cancers, a subset of cancers, or a single cancer. It is shown to be statistically robust and effective at detecting direct pathway links in data from TCGA. To facilitate interpretation of the results, we introduce a publicly accessible tool (cancerlandscapes.org), in which the derived networks are explored as interactive web content, linked to several pathway and pharmacological databases. To evaluate the performance of the method, we constructed a model for eight TCGA cancers, using data from 3900 patients. The model rediscovered known mechanisms and contained interesting predictions. Possible applications include prediction of regulatory relationships, comparison of network modules across multiple forms of cancer and identification of drug targets. PMID:25953855
He, Yongqun
2016-01-01
Compared with controlled terminologies (e.g., MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network (i.e., OneNet). A new “OneNet effectiveness” tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research. PMID:27458549
Wu, Jianlan; Cao, Jianshu
2013-07-28
We apply a new formalism to derive the higher-order quantum kinetic expansion (QKE) for studying dissipative dynamics in a general quantum network coupled with an arbitrary thermal bath. The dynamics of system population is described by a time-convoluted kinetic equation, where the time-nonlocal rate kernel is systematically expanded of the order of off-diagonal elements of the system Hamiltonian. In the second order, the rate kernel recovers the expression of the noninteracting-blip approximation method. The higher-order corrections in the rate kernel account for the effects of the multi-site quantum coherence and the bath relaxation. In a quantum harmonic bath, the rate kernels of different orders are analytically derived. As demonstrated by four examples, the higher-order QKE can reliably predict quantum dissipative dynamics, comparing well with the hierarchic equation approach. More importantly, the higher-order rate kernels can distinguish and quantify distinct nontrivial quantum coherent effects, such as long-range energy transfer from quantum tunneling and quantum interference arising from the phase accumulation of interactions.
Community-based faculty: motivation and rewards.
Fulkerson, P K; Wang-Cheng, R
1997-02-01
The reasons why practicing physicians precept students in their offices, and the rewards they wish to receive for this work, have not been clearly elucidated. This study determined the reasons for precepting and the rewards expected among a network of preceptors in Milwaukee. A questionnaire was mailed to 120 community-based physician preceptors in a required, third-year ambulatory care clerkship. Respondents were asked to identify why they volunteered and what they considered appropriate recognition or reward. The personal satisfaction derived from the student-teacher interaction was, by far, the most important motivator for preceptors (84%). The most preferred rewards for teaching included clinical faculty appointment, CME and bookstore discounts, computer networking, and workshops for improving skills in clinical teaching. Community-based private physicians who participate in medical student education programs are primarily motivated by the personal satisfaction that they derive from the teaching encounter. An effective preceptor recognition/reward program can be developed using input from the preceptors themselves.
Correspondence of the brain's functional architecture during activation and rest
Smith, Stephen M.; Fox, Peter T.; Miller, Karla L.; Glahn, David C.; Fox, P. Mickle; Mackay, Clare E.; Filippini, Nicola; Watkins, Kate E.; Toro, Roberto; Laird, Angela R.; Beckmann, Christian F.
2009-01-01
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.” PMID:19620724
Crooks, Richard O; Baxter, Daniel; Panek, Anna S; Lubben, Anneke T; Mason, Jody M
2016-01-29
Interactions between naturally occurring proteins are highly specific, with protein-network imbalances associated with numerous diseases. For designed protein-protein interactions (PPIs), required specificity can be notoriously difficult to engineer. To accelerate this process, we have derived peptides that form heterospecific PPIs when combined. This is achieved using software that generates large virtual libraries of peptide sequences and searches within the resulting interactome for preferentially interacting peptides. To demonstrate feasibility, we have (i) generated 1536 peptide sequences based on the parallel dimeric coiled-coil motif and varied residues known to be important for stability and specificity, (ii) screened the 1,180,416 member interactome for predicted Tm values and (iii) used predicted Tm cutoff points to isolate eight peptides that form four heterospecific PPIs when combined. This required that all 32 hypothetical off-target interactions within the eight-peptide interactome be disfavoured and that the four desired interactions pair correctly. Lastly, we have verified the approach by characterising all 36 pairs within the interactome. In analysing the output, we hypothesised that several sequences are capable of adopting antiparallel orientations. We subsequently improved the software by removing sequences where doing so led to fully complementary electrostatic pairings. Our approach can be used to derive increasingly large and therefore complex sets of heterospecific PPIs with a wide range of potential downstream applications from disease modulation to the design of biomaterials and peptides in synthetic biology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Using an agent-based model to analyze the dynamic communication network of the immune response
2011-01-01
Background The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions. Results Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win) versus persistent infection (loss), due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the loss outcomes. Conclusions An agent-based model capturing several key aspects of complex system dynamics was used to study the emergent properties of the immune response to viral infection. Specific patterns of interactions between leukocyte agents occurring early in the response significantly improved outcome. More interactions at later stages correlated with persistent inflammation and infection. These simulation experiments highlight the importance of commonly overlooked aspects of the immune response and provide insight into these processes at a resolution level exceeding the capabilities of current laboratory technologies. PMID:21247471
Information spreading in complex networks with participation of independent spreaders
NASA Astrophysics Data System (ADS)
Ma, Kun; Li, Weihua; Guo, Quantong; Zheng, Xiaoqi; Zheng, Zhiming; Gao, Chao; Tang, Shaoting
2018-02-01
Information diffusion dynamics in complex networks is often modeled as a contagion process among neighbors which is analogous to epidemic diffusion. The attention of previous literature is mainly focused on epidemic diffusion within one network, which, however neglects the possible interactions between nodes beyond the underlying network. The disease can be transmitted to other nodes by other means without following the links in the focal network. Here we account for this phenomenon by introducing the independent spreaders in a susceptible-infectious-recovered contagion process. We derive the critical epidemic thresholds on Erdős-Rényi and scale-free networks as a function of infectious rate, recovery rate and the activeness of independent spreaders. We also present simulation results on ER and SF networks, as well as on a real-world email network. The result shows that the extent to which a disease can infect might be more far-reaching, than we can explain in terms of link contagion only. Besides, these results also help to explain how activeness of independent spreaders can affect the diffusion process, which can be used to explore many other dynamical processes.
Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network
NASA Technical Reports Server (NTRS)
Wiesenberg, Brent
1999-01-01
Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.
Differential network as an indicator of osteoporosis with network entropy.
Ma, Lili; Du, Hongmei; Chen, Guangdong
2018-07-01
Osteoporosis is a common skeletal disorder characterized by a decrease in bone mass and density. The peak bone mass (PBM) is a significant determinant of osteoporosis. To gain insights into the indicating effect of PBM to osteoporosis, this study focused on characterizing the PBM networks and identifying key genes. One biological data set with 12 monocyte low PBM samples and 11 high PBM samples was derived to construct protein-protein interaction networks (PPINs). Based on clique-merging, module-identification algorithm was used to identify modules from PPINs. The systematic calculation and comparison were performed to test whether the network entropy can discriminate the low PBM network from high PBM network. We constructed 32 destination networks with 66 modules divided from monocyte low and high PBM networks. Among them, network 11 was the only significantly differential one (P<0.05) with 8 nodes and 28 edges. All genes belonged to precursors of osteoclasts, which were related to calcium transport as well as blood monocytes. In conclusion, based on the entropy in PBM PPINs, the differential network appears to be a novel therapeutic indicator for osteoporosis during the bone monocyte progression; these findings are helpful in disclosing the pathogenetic mechanisms of osteoporosis.
A study of interactive control scheduling and economic assessment for robotic systems
NASA Technical Reports Server (NTRS)
1982-01-01
A class of interactive control systems is derived by generalizing interactive manipulator control systems. Tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm simultaneously and asynchronously. The performance benefits of sensor referenced and computer-aided control of manipulators in a complex environment is evaluated. The first phase of the CURV arm control system software development and the basic features of the control algorithms and their software implementation are presented. An optimal solution for a production scheduling problem that will be easy to implement in practical situations is investigated.
NASA Astrophysics Data System (ADS)
Ratnasari, Nila; Dwi Candra, Erika; Herdianta Saputra, Defa; Putra Perdana, Aji
2016-11-01
Urban development in Indonesia significantly incerasing in line with rapid development of infrastructure, utility, and transportation network. Recently, people live depend on lights at night and social media and these two aspects can depicted urban spatial pattern and interaction. This research used nighttime remote sensing data with the VIIRS (Visible Infrared Imaging Radiometer Suite) day-night band detects lights, gas flares, auroras, and wildfires. Geo-social media information derived from twitter data gave big picture on spatial interaction from the geospatial footprint. Combined both data produced comprehensive urban spatial pattern and interaction in general for Indonesian territory. The result is shown as a preliminary study of integrating nighttime remote sensing data and geospatial footprint from twitter data.
Leonhardt, Sara D.; Schmitt, Thomas; Blüthgen, Nico
2011-01-01
The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific “filtering” of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans. PMID:21858119
NASA Astrophysics Data System (ADS)
Czuba, Jonathan A.; Hansen, Amy T.; Foufoula-Georgiou, Efi; Finlay, Jacques C.
2018-02-01
Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network-based model that quantifies nitrate-nitrogen and organic carbon concentrations through a wetland-river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data-rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013-2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed-scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.
Network information improves cancer outcome prediction.
Roy, Janine; Winter, Christof; Isik, Zerrin; Schroeder, Michael
2014-07-01
Disease progression in cancer can vary substantially between patients. Yet, patients often receive the same treatment. Recently, there has been much work on predicting disease progression and patient outcome variables from gene expression in order to personalize treatment options. Despite first diagnostic kits in the market, there are open problems such as the choice of random gene signatures or noisy expression data. One approach to deal with these two problems employs protein-protein interaction networks and ranks genes using the random surfer model of Google's PageRank algorithm. In this work, we created a benchmark dataset collection comprising 25 cancer outcome prediction datasets from literature and systematically evaluated the use of networks and a PageRank derivative, NetRank, for signature identification. We show that the NetRank performs significantly better than classical methods such as fold change or t-test. Despite an order of magnitude difference in network size, a regulatory and protein-protein interaction network perform equally well. Experimental evaluation on cancer outcome prediction in all of the 25 underlying datasets suggests that the network-based methodology identifies highly overlapping signatures over all cancer types, in contrast to classical methods that fail to identify highly common gene sets across the same cancer types. Integration of network information into gene expression analysis allows the identification of more reliable and accurate biomarkers and provides a deeper understanding of processes occurring in cancer development and progression. © The Author 2012. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
From brain topography to brain topology: relevance of graph theory to functional neuroscience.
Minati, Ludovico; Varotto, Giulia; D'Incerti, Ludovico; Panzica, Ferruccio; Chan, Dennis
2013-07-10
Although several brain regions show significant specialization, higher functions such as cross-modal information integration, abstract reasoning and conscious awareness are viewed as emerging from interactions across distributed functional networks. Analytical approaches capable of capturing the properties of such networks can therefore enhance our ability to make inferences from functional MRI, electroencephalography and magnetoencephalography data. Graph theory is a branch of mathematics that focuses on the formal modelling of networks and offers a wide range of theoretical tools to quantify specific features of network architecture (topology) that can provide information complementing the anatomical localization of areas responding to given stimuli or tasks (topography). Explicit modelling of the architecture of axonal connections and interactions among areas can furthermore reveal peculiar topological properties that are conserved across diverse biological networks, and highly sensitive to disease states. The field is evolving rapidly, partly fuelled by computational developments that enable the study of connectivity at fine anatomical detail and the simultaneous interactions among multiple regions. Recent publications in this area have shown that graph-based modelling can enhance our ability to draw causal inferences from functional MRI experiments, and support the early detection of disconnection and the modelling of pathology spread in neurodegenerative disease, particularly Alzheimer's disease. Furthermore, neurophysiological studies have shown that network topology has a profound link to epileptogenesis and that connectivity indices derived from graph models aid in modelling the onset and spread of seizures. Graph-based analyses may therefore significantly help understand the bases of a range of neurological conditions. This review is designed to provide an overview of graph-based analyses of brain connectivity and their relevance to disease aimed principally at general neuroscientists and clinicians.
Structure-function clustering in multiplex brain networks
NASA Astrophysics Data System (ADS)
Crofts, J. J.; Forrester, M.; O'Dea, R. D.
2016-10-01
A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally connected neural populations: elucidating the subtle interactions between evoked “functional connectivity” and the underlying “structural connectivity” has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime.
CHEN, CHEN; SHEN, HONG; ZHANG, LI-GUO; LIU, JIAN; CAO, XIAO-GE; YAO, AN-LIANG; KANG, SHAO-SAN; GAO, WEI-XING; HAN, HUI; CAO, FENG-HONG; LI, ZHI-GUO
2016-01-01
Currently, using human prostate cancer (PCa) tissue samples to conduct proteomics research has generated a large amount of data; however, only a very small amount has been thoroughly investigated. In this study, we manually carried out the mining of the full text of proteomics literature that involved comparisons between PCa and normal or benign tissue and identified 41 differentially expressed proteins verified or reported more than 2 times from different research studies. We regarded these proteins as seed proteins to construct a protein-protein interaction (PPI) network. The extended network included one giant network, which consisted of 1,264 nodes connected via 1,744 edges, and 3 small separate components. The backbone network was then constructed, which was derived from key nodes and the subnetwork consisting of the shortest path between seed proteins. Topological analyses of these networks were conducted to identify proteins essential for the genesis of PCa. Solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4) had the highest closeness centrality located in the center of each network, and the highest betweenness centrality and largest degree in the backbone network. Tubulin, beta 2C (TUBB2C) had the largest degree in the giant network and subnetwork. In addition, using module analysis of the whole PPI network, we obtained a densely connected region. Functional annotation indicated that the Ras protein signal transduction biological process, mitogen-activated protein kinase (MAPK), neurotrophin and the gonadotropin-releasing hormone (GnRH) signaling pathway may play an important role in the genesis and development of PCa. Further investigation of the SLC2A4, TUBB2C proteins, and these biological processes and pathways may therefore provide a potential target for the diagnosis and treatment of PCa. PMID:27121963
Oh, Min; Ahn, Jaegyoon; Yoon, Youngmi
2014-01-01
The growing number and variety of genetic network datasets increases the feasibility of understanding how drugs and diseases are associated at the molecular level. Properly selected features of the network representations of existing drug-disease associations can be used to infer novel indications of existing drugs. To find new drug-disease associations, we generated an integrative genetic network using combinations of interactions, including protein-protein interactions and gene regulatory network datasets. Within this network, network adjacencies of drug-drug and disease-disease were quantified using a scored path between target sets of them. Furthermore, the common topological module of drugs or diseases was extracted, and thereby the distance between topological drug-module and disease (or disease-module and drug) was quantified. These quantified scores were used as features for the prediction of novel drug-disease associations. Our classifiers using Random Forest, Multilayer Perceptron and C4.5 showed a high specificity and sensitivity (AUC score of 0.855, 0.828 and 0.797 respectively) in predicting novel drug indications, and displayed a better performance than other methods with limited drug and disease properties. Our predictions and current clinical trials overlap significantly across the different phases of drug development. We also identified and visualized the topological modules of predicted drug indications for certain types of cancers, and for Alzheimer’s disease. Within the network, those modules show potential pathways that illustrate the mechanisms of new drug indications, including propranolol as a potential anticancer agent and telmisartan as treatment for Alzheimer’s disease. PMID:25356910
Social networks help to infer causality in the tumor microenvironment.
Crespo, Isaac; Doucey, Marie-Agnès; Xenarios, Ioannis
2016-03-15
Networks have become a popular way to conceptualize a system of interacting elements, such as electronic circuits, social communication, metabolism or gene regulation. Network inference, analysis, and modeling techniques have been developed in different areas of science and technology, such as computer science, mathematics, physics, and biology, with an active interdisciplinary exchange of concepts and approaches. However, some concepts seem to belong to a specific field without a clear transferability to other domains. At the same time, it is increasingly recognized that within some biological systems--such as the tumor microenvironment--where different types of resident and infiltrating cells interact to carry out their functions, the complexity of the system demands a theoretical framework, such as statistical inference, graph analysis and dynamical models, in order to asses and study the information derived from high-throughput experimental technologies. In this article we propose to adopt and adapt the concepts of influence and investment from the world of social network analysis to biological problems, and in particular to apply this approach to infer causality in the tumor microenvironment. We showed that constructing a bidirectional network of influence between cell and cell communication molecules allowed us to determine the direction of inferred regulations at the expression level and correctly recapitulate cause-effect relationships described in literature. This work constitutes an example of a transfer of knowledge and concepts from the world of social network analysis to biomedical research, in particular to infer network causality in biological networks. This causality elucidation is essential to model the homeostatic response of biological systems to internal and external factors, such as environmental conditions, pathogens or treatments.
Nie, Xiaobing; Cao, Jinde
2011-11-01
In this paper, second-order interactions are introduced into competitive neural networks (NNs) and the multistability is discussed for second-order competitive NNs (SOCNNs) with nondecreasing saturated activation functions. Firstly, based on decomposition of state space, Cauchy convergence principle, and inequality technique, some sufficient conditions ensuring the local exponential stability of 2N equilibrium points are derived. Secondly, some conditions are obtained for ascertaining equilibrium points to be locally exponentially stable and to be located in any designated region. Thirdly, the theory is extended to more general saturated activation functions with 2r corner points and a sufficient criterion is given under which the SOCNNs can have (r+1)N locally exponentially stable equilibrium points. Even if there is no second-order interactions, the obtained results are less restrictive than those in some recent works. Finally, three examples with their simulations are presented to verify the theoretical analysis.
Real-time community detection in full social networks on a laptop
Chamberlain, Benjamin Paul; Levy-Kramer, Josh; Humby, Clive
2018-01-01
For a broad range of research and practical applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As global social networks (e.g., Facebook and Twitter) are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present an approach for analyzing full social networks on a standard laptop, allowing for interactive exploration of the communities in the locality of a set of user specified query vertices. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates the edge weights between vertices in a derived graph. Local communities can be constructed by selecting vertices that are connected to the query vertices with high edge weights in the derived graph. This compression is robust to noise and allows for interactive queries of local communities in real-time, which we define to be less than the average human reaction time of 0.25s. We achieve single-machine real-time performance by compressing the neighborhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e., communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetize their data, helping them to continue to provide free services that are valued by billions of people globally. PMID:29342158
Graph partitions and cluster synchronization in networks of oscillators
Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio
2017-01-01
Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454
Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling
Shin, Young Shik; Remacle, F.; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R.D.; Heath, James R.
2011-01-01
Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network. PMID:21575571
Disease networks. Uncovering disease-disease relationships through the incomplete interactome.
Menche, Jörg; Sharma, Amitabh; Kitsak, Maksim; Ghiassian, Susan Dina; Vidal, Marc; Loscalzo, Joseph; Barabási, Albert-László
2015-02-20
According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes. Copyright © 2015, American Association for the Advancement of Science.
Biophysical constraints on the computational capacity of biochemical signaling networks
NASA Astrophysics Data System (ADS)
Wang, Ching-Hao; Mehta, Pankaj
Biophysics fundamentally constrains the computations that cells can carry out. Here, we derive fundamental bounds on the computational capacity of biochemical signaling networks that utilize post-translational modifications (e.g. phosphorylation). To do so, we combine ideas from the statistical physics of disordered systems and the observation by Tony Pawson and others that the biochemistry underlying protein-protein interaction networks is combinatorial and modular. Our results indicate that the computational capacity of signaling networks is severely limited by the energetics of binding and the need to achieve specificity. We relate our results to one of the theoretical pillars of statistical learning theory, Cover's theorem, which places bounds on the computational capacity of perceptrons. PM and CHW were supported by a Simons Investigator in the Mathematical Modeling of Living Systems Grant, and NIH Grant No. 1R35GM119461 (both to PM).
NASA Astrophysics Data System (ADS)
Hupe, Patrick; Ceranna, Lars; Pilger, Christoph; Le Pichon, Alexis
2017-04-01
The infrasound network of the International Monitoring System (IMS) has been established for monitoring the atmosphere to detect violations of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The IMS comprises 49 certified infrasound stations which are globally distributed. Each station provides data for up to 16 years. Due to the uniform distribution of the stations, the IMS infrasound network can be used to derive global information on atmospheric dynamics' features. This study focuses on mountain-associated waves (MAWs), i.e. acoustic waves in the frequency range between approximately 0.01 Hz and 0.05 Hz. MAWs can be detected in infrasound data by applying the Progressive Multi-Channel Correlation (PMCC) algorithm. As a result of triangulation, global hotspots of MAWs can be identified. Previous studies on gravity waves indicate that global hotspots of gravity waves are similar to those found for MAWs by using the PMCC algorithm. The objective of our study is an enhanced understanding of the excitation sources and of possible interactions between MAWs and gravity waves. Therefore, spatial and temporal correlation analyses will be performed. As a preceding step, we will present (seasonal) hotspots of MAWs as well as hotspots of gravity waves derived by the IMS infrasound network.
Structure-Templated Predictions of Novel Protein Interactions from Sequence Information
Betel, Doron; Breitkreuz, Kevin E; Isserlin, Ruth; Dewar-Darch, Danielle; Tyers, Mike; Hogue, Christopher W. V
2007-01-01
The multitude of functions performed in the cell are largely controlled by a set of carefully orchestrated protein interactions often facilitated by specific binding of conserved domains in the interacting proteins. Interacting domains commonly exhibit distinct binding specificity to short and conserved recognition peptides called binding profiles. Although many conserved domains are known in nature, only a few have well-characterized binding profiles. Here, we describe a novel predictive method known as domain–motif interactions from structural topology (D-MIST) for elucidating the binding profiles of interacting domains. A set of domains and their corresponding binding profiles were derived from extant protein structures and protein interaction data and then used to predict novel protein interactions in yeast. A number of the predicted interactions were verified experimentally, including new interactions of the mitotic exit network, RNA polymerases, nucleotide metabolism enzymes, and the chaperone complex. These results demonstrate that new protein interactions can be predicted exclusively from sequence information. PMID:17892321
Mohamad, Safa F; Xu, Linlin; Ghosh, Joydeep; Childress, Paul J; Abeysekera, Irushi; Himes, Evan R; Wu, Hao; Alvarez, Marta B; Davis, Korbin M; Aguilar-Perez, Alexandra; Hong, Jung Min; Bruzzaniti, Angela; Kacena, Melissa A; Srour, Edward F
2017-12-12
Networking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)-derived macrophages. OMs, identified as CD45 + F4/80 + cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell-associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase-positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function.
Equivalent model and power flow model for electric railway traction network
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-05-01
An equivalent model of the Cable Traction Network (CTN) considering the distributed capacitance effect of the cable system is proposed. The model can be divided into 110kV side and 27.5kV side two kinds. The 110kV side equivalent model can be used to calculate the power supply capacity of the CTN. The 27.5kV side equivalent model can be used to solve the voltage of the catenary. Based on the equivalent simplified model of CTN, the power flow model of CTN which involves the reactive power compensation coefficient and the interaction of voltage and current, is derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yitan; Xu, Yanxun; Helseth, Donald L.
Background: Genetic interactions play a critical role in cancer development. Existing knowledge about cancer genetic interactions is incomplete, especially lacking evidences derived from large-scale cancer genomics data. The Cancer Genome Atlas (TCGA) produces multimodal measurements across genomics and features of thousands of tumors, which provide an unprecedented opportunity to investigate the interplays of genes in cancer. Methods: We introduce Zodiac, a computational tool and resource to integrate existing knowledge about cancer genetic interactions with new information contained in TCGA data. It is an evolution of existing knowledge by treating it as a prior graph, integrating it with a likelihood modelmore » derived by Bayesian graphical model based on TCGA data, and producing a posterior graph as updated and data-enhanced knowledge. In short, Zodiac realizes “Prior interaction map + TCGA data → Posterior interaction map.” Results: Zodiac provides molecular interactions for about 200 million pairs of genes. All the results are generated from a big-data analysis and organized into a comprehensive database allowing customized search. In addition, Zodiac provides data processing and analysis tools that allow users to customize the prior networks and update the genetic pathways of their interest. Zodiac is publicly available at www.compgenome.org/ZODIAC. Conclusions: Zodiac recapitulates and extends existing knowledge of molecular interactions in cancer. It can be used to explore novel gene-gene interactions, transcriptional regulation, and other types of molecular interplays in cancer.« less
Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas
2006-01-01
Background The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. Description CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. Conclusion CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation. PMID:16478536
Macroscopic description of complex adaptive networks coevolving with dynamic node states
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Reconstruction of a Real World Social Network using the Potts Model and Loopy Belief Propagation.
Bisconti, Cristian; Corallo, Angelo; Fortunato, Laura; Gentile, Antonio A; Massafra, Andrea; Pellè, Piergiuseppe
2015-01-01
The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, for the reconstruction of the structure of a social network. The inverse Potts model, traditionally applied to recursive observations of quantum states in an ensemble of particles, is here addressed to observations of the members' states in an organization and their (anti)correlations, thus inferring interactions as links among the members. Adopting proper (Bethe) approximations, such an inverse problem is showed to be tractable. Within an operational framework, this network-reconstruction method is tested for a small real-world social network, the Italian parliament. In this study case, it is easy to track statuses of the parliament members, using (co)sponsorships of law proposals as the initial dataset. In previous studies of similar activity-based networks, the graph structure was inferred directly from activity co-occurrences: here we compare our statistical reconstruction with such standard methods, outlining discrepancies and advantages.
Reconstruction of a Real World Social Network using the Potts Model and Loopy Belief Propagation
Bisconti, Cristian; Corallo, Angelo; Fortunato, Laura; Gentile, Antonio A.; Massafra, Andrea; Pellè, Piergiuseppe
2015-01-01
The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, for the reconstruction of the structure of a social network. The inverse Potts model, traditionally applied to recursive observations of quantum states in an ensemble of particles, is here addressed to observations of the members' states in an organization and their (anti)correlations, thus inferring interactions as links among the members. Adopting proper (Bethe) approximations, such an inverse problem is showed to be tractable. Within an operational framework, this network-reconstruction method is tested for a small real-world social network, the Italian parliament. In this study case, it is easy to track statuses of the parliament members, using (co)sponsorships of law proposals as the initial dataset. In previous studies of similar activity-based networks, the graph structure was inferred directly from activity co-occurrences: here we compare our statistical reconstruction with such standard methods, outlining discrepancies and advantages. PMID:26617539
Macroscopic description of complex adaptive networks coevolving with dynamic node states.
Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Implications of Network Topology on Stability
Kinkhabwala, Ali
2015-01-01
In analogy to chemical reaction networks, I demonstrate the utility of expressing the governing equations of an arbitrary dynamical system (interaction network) as sums of real functions (generalized reactions) multiplied by real scalars (generalized stoichiometries) for analysis of its stability. The reaction stoichiometries and first derivatives define the network’s “influence topology”, a signed directed bipartite graph. Parameter reduction of the influence topology permits simplified expression of the principal minors (sums of products of non-overlapping bipartite cycles) and Hurwitz determinants (sums of products of the principal minors or the bipartite cycles directly) for assessing the network’s steady state stability. Visualization of the Hurwitz determinants over the reduced parameters defines the network’s stability phase space, delimiting the range of its dynamics (specifically, the possible numbers of unstable roots at each steady state solution). Any further explicit algebraic specification of the network will project onto this stability phase space. Stability analysis via this hierarchical approach is demonstrated on classical networks from multiple fields. PMID:25826219
Weick, Jason P.; Liu, Yan; Zhang, Su-Chun
2011-01-01
Whether hESC-derived neurons can fully integrate with and functionally regulate an existing neural network remains unknown. Here, we demonstrate that hESC-derived neurons receive unitary postsynaptic currents both in vitro and in vivo and adopt the rhythmic firing behavior of mouse cortical networks via synaptic integration. Optical stimulation of hESC-derived neurons expressing Channelrhodopsin-2 elicited both inhibitory and excitatory postsynaptic currents and triggered network bursting in mouse neurons. Furthermore, light stimulation of hESC-derived neurons transplanted to the hippocampus of adult mice triggered postsynaptic currents in host pyramidal neurons in acute slice preparations. Thus, hESC-derived neurons can participate in and modulate neural network activity through functional synaptic integration, suggesting they are capable of contributing to neural network information processing both in vitro and in vivo. PMID:22106298
Parisi, Domenico
2010-01-01
Trying to understand human language by constructing robots that have language necessarily implies an embodied view of language, where the meaning of linguistic expressions is derived from the physical interactions of the organism with the environment. The paper describes a neural model of language according to which the robot's behaviour is controlled by a neural network composed of two sub-networks, one dedicated to the non-linguistic interactions of the robot with the environment and the other one to processing linguistic input and producing linguistic output. We present the results of a number of simulations using the model and we suggest how the model can be used to account for various language-related phenomena such as disambiguation, the metaphorical use of words, the pervasive idiomaticity of multi-word expressions, and mental life as talking to oneself. The model implies a view of the meaning of words and multi-word expressions as a temporal process that takes place in the entire brain and has no clearly defined boundaries. The model can also be extended to emotional words if we assume that an embodied view of language includes not only the interactions of the robot's brain with the external environment but also the interactions of the brain with what is inside the body.
Predicting Protein-Protein Interactions by Combing Various Sequence-Derived.
Zhao, Xiao-Wei; Ma, Zhi-Qiang; Yin, Ming-Hao
2011-09-20
Knowledge of protein-protein interactions (PPIs) plays an important role in constructing protein interaction networks and understanding the general machineries of biological systems. In this study, a new method is proposed to predict PPIs using a comprehensive set of 930 features based only on sequence information, these features measure the interactions between residues a certain distant apart in the protein sequences from different aspects. To achieve better performance, the principal component analysis (PCA) is first employed to obtain an optimized feature subset. Then, the resulting 67-dimensional feature vectors are fed to Support Vector Machine (SVM). Experimental results on Drosophila melanogaster and Helicobater pylori datasets show that our method is very promising to predict PPIs and may at least be a useful supplement tool to existing methods.
A stochastic-field description of finite-size spiking neural networks
Longtin, André
2017-01-01
Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity—the density of active neurons per unit time—is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics. PMID:28787447
Revealing the Strong Functional Association of adipor2 and cdh13 with adipoq: A Gene Network Study.
Bag, Susmita; Anbarasu, Anand
2015-04-01
In the present study, we have analyzed functional gene interactions of adiponectin gene (adipoq). The key role of adipoq is in regulating energy homeostasis and it functions as a novel signaling molecule for adipose tissue. Modules of highly inter-connected genes in disease-specific adipoq network are derived by integrating gene function and protein interaction data. Among twenty genes in adipoq web, adipoq is effectively conjoined with two genes: Adiponectin receptor 2 (adipor2) and cadherin 13 (cdh13). The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with adipoq are adipor2 and cdh13. Interestingly, the ontological aspect of adipor2 and cdh13 in the adipoq network reveal the fact that adipoq and adipor2 are involved mostly in glucose and lipid metabolic processes. The gene cdh13 indulge in cell adhesion process with adipoq and adipor2. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of adipoq, adipor2, and cdh13 with not only with obesity but also with breast cancer, leukemia, renal cancer, lung cancer, and cervical cancer. The current study provides researchers a comprehensible layout of adipoq network, its functional strategies and candidate disease approach associated with adipoq network.
A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development.
Le Berre-Scoul, Catherine; Chevalier, Julien; Oleynikova, Elena; Cossais, François; Talon, Sophie; Neunlist, Michel; Boudin, Hélène
2017-01-15
Unlike astrocytes in the brain, the potential role of enteric glial cells (EGCs) in the formation of the enteric neuronal circuit is currently unknown. To examine the role of EGCs in the formation of the neuronal network, we developed a novel neuron-enriched culture model from embryonic rat intestine grown in indirect coculture with EGCs. We found that EGCs shape axonal complexity and synapse density in enteric neurons, through purinergic- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor regulating neuronal network maturation. In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty in obtaining a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs. We adapted a cell culture method previously developed for CNS neurons to establish a neuron-enriched primary culture from embryonic rat intestine which was cultured in indirect coculture with EGCs. We demonstrated that enteric neurons grown in such conditions showed several structural, phenotypic and functional hallmarks of proper development and maturation. However, when neurons were grown without EGCs, the complexity of the axonal arbour and the density of synapses were markedly reduced, suggesting that glial-derived factors contribute strongly to the formation of the neuronal circuitry. We found that these effects played by EGCs were mediated in part through purinergic P2Y 1 receptor- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor required for neuronal network maturation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
A novel enteric neuron–glia coculture system reveals the role of glia in neuronal development
Le Berre‐Scoul, Catherine; Chevalier, Julien; Oleynikova, Elena; Cossais, François; Talon, Sophie; Neunlist, Michel
2016-01-01
Key points Unlike astrocytes in the brain, the potential role of enteric glial cells (EGCs) in the formation of the enteric neuronal circuit is currently unknown.To examine the role of EGCs in the formation of the neuronal network, we developed a novel neuron‐enriched culture model from embryonic rat intestine grown in indirect coculture with EGCs.We found that EGCs shape axonal complexity and synapse density in enteric neurons, through purinergic‐ and glial cell line‐derived neurotrophic factor‐dependent pathways.Using a novel and valuable culture model to study enteric neuron–glia interactions, our study identified EGCs as a key cellular actor regulating neuronal network maturation. Abstract In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty in obtaining a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs. We adapted a cell culture method previously developed for CNS neurons to establish a neuron‐enriched primary culture from embryonic rat intestine which was cultured in indirect coculture with EGCs. We demonstrated that enteric neurons grown in such conditions showed several structural, phenotypic and functional hallmarks of proper development and maturation. However, when neurons were grown without EGCs, the complexity of the axonal arbour and the density of synapses were markedly reduced, suggesting that glial‐derived factors contribute strongly to the formation of the neuronal circuitry. We found that these effects played by EGCs were mediated in part through purinergic P2Y1 receptor‐ and glial cell line‐derived neurotrophic factor‐dependent pathways. Using a novel and valuable culture model to study enteric neuron–glia interactions, our study identified EGCs as a key cellular actor required for neuronal network maturation. PMID:27436013
Evidence of Rentian Scaling of Functional Modules in Diverse Biological Networks.
How, Javier J; Navlakha, Saket
2018-06-12
Biological networks have long been known to be modular, containing sets of nodes that are highly connected internally. Less emphasis, however, has been placed on understanding how intermodule connections are distributed within a network. Here, we borrow ideas from engineered circuit design and study Rentian scaling, which states that the number of external connections between nodes in different modules is related to the number of nodes inside the modules by a power-law relationship. We tested this property in a broad class of molecular networks, including protein interaction networks for six species and gene regulatory networks for 41 human and 25 mouse cell types. Using evolutionarily defined modules corresponding to known biological processes in the cell, we found that all networks displayed Rentian scaling with a broad range of exponents. We also found evidence for Rentian scaling in functional modules in the Caenorhabditis elegans neural network, but, interestingly, not in three different social networks, suggesting that this property does not inevitably emerge. To understand how such scaling may have arisen evolutionarily, we derived a new graph model that can generate Rentian networks given a target Rent exponent and a module decomposition as inputs. Overall, our work uncovers a new principle shared by engineered circuits and biological networks.
Reveal genes functionally associated with ACADS by a network study.
Chen, Yulong; Su, Zhiguang
2015-09-15
Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network. Copyright © 2015 Elsevier B.V. All rights reserved.
Zanon, Alessandra; Kalvakuri, Sreehari; Rakovic, Aleksandar; Foco, Luisa; Guida, Marianna; Schwienbacher, Christine; Serafin, Alice; Rudolph, Franziska; Trilck, Michaela; Grünewald, Anne; Stanslowsky, Nancy; Wegner, Florian; Giorgio, Valentina; Lavdas, Alexandros A; Bodmer, Rolf; Pramstaller, Peter P; Klein, Christine; Hicks, Andrew A; Pichler, Irene; Seibler, Philip
2017-07-01
Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins. SH-SY5Y cells with a stable knockdown of Parkin or SLP-2, as well as induced pluripotent stem cell-derived neurons from Parkin mutation carriers, showed decreased complex I activity and altered mitochondrial network morphology. Importantly, induced expression of SLP-2 corrected for these mitochondrial alterations caused by reduced Parkin function in these cells. In-vivo Drosophila studies showed a genetic interaction of Parkin and SLP-2, and further, tissue-specific or global overexpression of SLP-2 transgenes rescued parkin mutant phenotypes, in particular loss of dopaminergic neurons, mitochondrial network structure, reduced ATP production, and flight and motor dysfunction. The physical and genetic interaction between Parkin and SLP-2 and the compensatory potential of SLP-2 suggest a functional epistatic relationship to Parkin and a protective role of SLP-2 in neurons. This finding places further emphasis on the significance of Parkin for the maintenance of mitochondrial function in neurons and provides a novel target for therapeutic strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Congestion control strategy on complex network with privilege traffic
NASA Astrophysics Data System (ADS)
Li, Shi-Bao; He, Ya; Liu, Jian-Hang; Zhang, Zhi-Gang; Huang, Jun-Wei
The congestion control of traffic is one of the most important studies in complex networks. In the previous congestion algorithms, all the network traffic is assumed to have the same priority, and the privilege of traffic is ignored. In this paper, a privilege and common traffic congestion control routing strategy (PCR) based on the different priority of traffic is proposed, which can be devised to cope with the different traffic congestion situations. We introduce the concept of privilege traffic in traffic dynamics for the first time and construct a new traffic model which taking into account requirements with different priorities. Besides, a new factor Ui is introduced by the theoretical derivation to characterize the interaction between different traffic routing selection, furthermore, Ui is related to the network throughput. Since the joint optimization among different kinds of traffic is accomplished by PCR, the maximum value of Ui can be significantly reduced and the network performance can be improved observably. The simulation results indicate that the network throughput with PCR has a better performance than the other strategies. Moreover, the network capacity is improved by 25% at least. Additionally, the network throughput is also influenced by privilege traffic number and traffic priority.
Balanced Centrality of Networks.
Debono, Mark; Lauri, Josef; Sciriha, Irene
2014-01-01
There is an age-old question in all branches of network analysis. What makes an actor in a network important, courted, or sought? Both Crossley and Bonacich contend that rather than its intrinsic wealth or value, an actor's status lies in the structures of its interactions with other actors. Since pairwise relation data in a network can be stored in a two-dimensional array or matrix, graph theory and linear algebra lend themselves as great tools to gauge the centrality (interpreted as importance, power, or popularity, depending on the purpose of the network) of each actor. We express known and new centralities in terms of only two matrices associated with the network. We show that derivations of these expressions can be handled exclusively through the main eigenvectors (not orthogonal to the all-one vector) associated with the adjacency matrix. We also propose a centrality vector (SWIPD) which is a linear combination of the square, walk, power, and degree centrality vectors with weightings of the various centralities depending on the purpose of the network. By comparing actors' scores for various weightings, a clear understanding of which actors are most central is obtained. Moreover, for threshold networks, the (SWIPD) measure turns out to be independent of the weightings.
Statistical Mechanics of Temporal and Interacting Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun
In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.
Loss of functional diversity and network modularity in introduced plant–fungal symbioses
Cooper, Jerry A.; Bufford, Jennifer L.; Hulme, Philip E.; Bates, Scott T.
2017-01-01
The introduction of alien plants into a new range can result in the loss of co-evolved symbiotic organisms, such as mycorrhizal fungi, that are essential for normal plant physiological functions. Prior studies of mycorrhizal associations in alien plants have tended to focus on individual plant species on a case-by-case basis. This approach limits broad scale understanding of functional shifts and changes in interaction network structure that may occur following introduction. Here we use two extensive datasets of plant–fungal interactions derived from fungal sporocarp observations and recorded plant hosts in two island archipelago nations: New Zealand (NZ) and the United Kingdom (UK). We found that the NZ dataset shows a lower functional diversity of fungal hyphal foraging strategies in mycorrhiza of alien when compared with native trees. Across species this resulted in fungal foraging strategies associated with alien trees being much more variable in functional composition compared with native trees, which had a strikingly similar functional composition. The UK data showed no functional difference in fungal associates of alien and native plant genera. Notwithstanding this, both the NZ and UK data showed a substantial difference in interaction network structure of alien trees compared with native trees. In both cases, fungal associates of native trees showed strong modularity, while fungal associates of alien trees generally integrated into a single large module. The results suggest a lower functional diversity (in one dataset) and a simplification of network structure (in both) as a result of introduction, potentially driven by either limited symbiont co-introductions or disruption of habitat as a driver of specificity due to nursery conditions, planting, or plant edaphic-niche expansion. Recognizing these shifts in function and network structure has important implications for plant invasions and facilitation of secondary invasions via shared mutualist populations. PMID:28039116
Ben-David, Jonathan; Chipman, Ariel D
2010-10-01
The early embryo of the milkweed bug, Oncopeltus fasciatus, appears as a single cell layer - the embryonic blastoderm - covering the entire egg. It is at this blastoderm stage that morphological domains are first determined, long before the appearance of overt segmentation. Central to the process of patterning the blastoderm into distinct domains are a group of transcription factors known as gap genes. In Drosophila melanogaster these genes form a network of interactions, and maintain sharp expression boundaries through strong mutual repression. Their restricted expression domains define specific areas along the entire body. We have studied the expression domains of the four trunk gap gene homologues in O. fasciatus and have determined their interactions through dsRNA gene knockdown experiments, followed by expression analyses. While the blastoderm in O. fasciatus includes only the first six segments of the embryo, the expression domains of the gap genes within these segments are broadly similar to those in Drosophila where the blastoderm includes all 15 segments. However, the interactions between the gap genes are surprisingly different from those in Drosophila, and mutual repression between the genes seems to play a much less significant role. This suggests that the well-studied interaction pattern in Drosophila is evolutionarily derived, and has evolved from a less strongly interacting network. Copyright © 2010 Elsevier Inc. All rights reserved.
Adverse outcome pathway networks II: Network analytics.
Villeneuve, Daniel L; Angrish, Michelle M; Fortin, Marie C; Katsiadaki, Ioanna; Leonard, Marc; Margiotta-Casaluci, Luigi; Munn, Sharon; O'Brien, Jason M; Pollesch, Nathan L; Smith, L Cody; Zhang, Xiaowei; Knapen, Dries
2018-06-01
Toxicological responses to stressors are more complex than the simple one-biological-perturbation to one-adverse-outcome model portrayed by individual adverse outcome pathways (AOPs). Consequently, the AOP framework was designed to facilitate de facto development of AOP networks that can aid in the understanding and prediction of pleiotropic and interactive effects more common to environmentally realistic, complex exposure scenarios. The present study introduces nascent concepts related to the qualitative analysis of AOP networks. First, graph theory-based approaches for identifying important topological features are illustrated using 2 example AOP networks derived from existing AOP descriptions. Second, considerations for identifying the most significant path(s) through an AOP network from either a biological or risk assessment perspective are described. Finally, approaches for identifying interactions among AOPs that may result in additive, synergistic, or antagonistic responses (or previously undefined emergent patterns of response) are introduced. Along with a companion article (part I), these concepts set the stage for the development of tools and case studies that will facilitate more rigorous analysis of AOP networks, and the utility of AOP network-based predictions, for use in research and regulatory decision-making. The present study addresses one of the major themes identified through a Society of Environmental Toxicology and Chemistry Horizon Scanning effort focused on advancing the AOP framework. Environ Toxicol Chem 2018;37:1734-1748. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Gogoi, Barbi; Gogoi, Dhrubajyoti; Silla, Yumnam; Kakoti, Bibhuti Bhushan; Bhau, Brijmohan Singh
2017-01-31
Plant-derived natural products (NPs) play a vital role in the discovery of new drug molecules and these are used for development of novel therapeutic drugs for a specific disease target. Literature review suggests that natural products possess strong inhibitory efficacy against various types of cancer cells. Clerodendrum indicum and Clerodendrum serratum are reported to have anticancer activity; therefore a study was carried out to identify selective anticancer agents from these plants species. In this report, we employed a docking weighted network pharmacological approach to understand the multi-therapeutics potentiality of C. indicum and C. serratum against various types of cancer. A library of 53 natural products derived from these plants was compiled from the literature and three dimensional space analyses were performed in order to establish the drug-likeness of the NPs library. Further, an NPs-cancer network was built based on docking. We predicted five compounds, namely apigenin 7-glucoside, hispidulin, scutellarein-7-O-beta-d-glucuronate, acteoside and verbascoside, to be potential binding therapeutics for cancer target proteins. Apigenin 7-glucoside and hispidulin were found to have maximum binding interactions (relationship) with 17 cancer drug targets in terms of docking weighted network pharmacological analysis. Hence, we used an integrative approach obtained from network pharmacology for identifying combinatorial drug actions against the cancer targets. We believe that our present study may provide important clues for finding novel drug inhibitors for cancer.
Increased entropy of signal transduction in the cancer metastasis phenotype.
Teschendorff, Andrew E; Severini, Simone
2010-07-30
The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may predispose the tumour to metastasize. These results demonstrate that a metastatic cancer phenotype is characterised by an increase in the randomness of the local information flux patterns. Measures of local randomness in integrated protein interaction mRNA expression networks may therefore be useful for identifying genes and signalling pathways disrupted in one phenotype relative to another. Further exploration of the statistical properties of such integrated cancer expression and protein interaction networks will be a fruitful endeavour.
Scaling and percolation in the small-world network model
NASA Astrophysics Data System (ADS)
Newman, M. E. J.; Watts, D. J.
1999-12-01
In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Padé approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.
Beske, Phillip H.; Scheeler, Stephen M.; Adler, Michael; McNutt, Patrick M.
2015-01-01
Botulinum neurotoxins (BoNTs) are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well-understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs) are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ pre-synaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT. PMID:25954159
Multiple-region directed functional connectivity based on phase delays.
Goelman, Gadi; Dan, Rotem
2017-03-01
Network analysis is increasingly advancing the field of neuroimaging. Neural networks are generally constructed from pairwise interactions with an assumption of linear relations between them. Here, a high-order statistical framework to calculate directed functional connectivity among multiple regions, using wavelet analysis and spectral coherence has been presented. The mathematical expression for 4 regions was derived and used to characterize a quartet of regions as a linear, combined (nonlinear), or disconnected network. Phase delays between regions were used to obtain network's temporal hierarchy and directionality. The validity of the mathematical derivation along with the effects of coupling strength and noise on its outcomes were studied by computer simulations of the Kuramoto model. The simulations demonstrated correct directionality for a large range of coupling strength and low sensitivity to Gaussian noise compared with pairwise coherences. The analysis was applied to resting-state fMRI data of 40 healthy young subjects to characterize the ventral visual system, motor system and default mode network (DMN). It was shown that the ventral visual system was predominantly composed of linear networks while the motor system and the DMN were composed of combined (nonlinear) networks. The ventral visual system exhibits its known temporal hierarchy, the motor system exhibits center ↔ out hierarchy and the DMN has dorsal ↔ ventral and anterior ↔ posterior organizations. The analysis can be applied in different disciplines such as seismology, or economy and in a variety of brain data including stimulus-driven fMRI, electrophysiology, EEG, and MEG, thus open new horizons in brain research. Hum Brain Mapp 38:1374-1386, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane.
Sato, Yoshinori; Hayashi, Kenji; Amano, Yoshiko; Takahashi, Mikiko; Yonemura, Shigenobu; Hayashi, Ikuko; Hirose, Hiroko; Ohno, Shigeo; Suzuki, Atsushi
2014-11-04
Recent studies have revealed the presence of a microtubule subpopulation called Golgi-derived microtubules that support Golgi ribbon formation, which is required for maintaining polarized cell migration. CLASPs and AKAP450/CG-NAP are involved in their formation, but the underlying molecular mechanisms remain unclear. Here, we find that the microtubule-crosslinking protein, MTCL1, is recruited to the Golgi membranes through interactions with CLASPs and AKAP450/CG-NAP, and promotes microtubule growth from the Golgi membrane. Correspondingly, MTCL1 knockdown specifically impairs the formation of the stable perinuclear microtubule network to which the Golgi ribbon tethers and extends. Rescue experiments demonstrate that besides its crosslinking activity mediated by the N-terminal microtubule-binding region, the C-terminal microtubule-binding region plays essential roles in these MTCL1 functions through a novel microtubule-stabilizing activity. These results suggest that MTCL1 cooperates with CLASPs and AKAP450/CG-NAP in the formation of the Golgi-derived microtubules, and mediates their development into a stable microtubule network.
New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization.
Pacelli, Settimio; Paolicelli, Patrizia; Casadei, Maria Antonietta
2015-08-01
A new derivative of dextran grafted with polyethylene glycol methacrylate through a carbonate bond (DEX-PEG-MA) has been synthesized and characterized. The photo-crosslinking reaction of DEX-PEG-MA allowed the obtainment of biodegradable networks tested for their mechanical and release properties. The new hydrogels were compared with those made of dextran methacrylate (DEX-MA), often employed as drug delivery systems of small molecules. The inclusion of PEG as a spacer created additional interactions among the polymeric chains improving the extreme fragility and lack of hardness typical of gels made of DEX-MA. Moreover, the different behavior in terms of swelling and degradability of the networks was able to affect the release of a model macromolecule over time, making DEX-PEG-MA matrices suitable candidates for the delivery of high molecular weight peptides. Interestingly, the combination of the two dextran derivatives showed intermediate ability to modulate the release of high molecular weight macromolecules. Copyright © 2015 Elsevier Ltd. All rights reserved.
Background | Office of Cancer Clinical Proteomics Research
The term "proteomics" refers to a large-scale comprehensive study of a specific proteome resulting from its genome, including abundances of proteins, their variations and modifications, and interacting partners and networks in order to understand cellular processes involved. Similarly, “Cancer proteomics” refers to comprehensive analyses of proteins and their derivatives translated from a specific cancer genome using a human biospecimen or a preclinical model (e.g., cultured cell or animal model).
Identifying and tracking attacks on networks: C3I displays and related technologies
NASA Astrophysics Data System (ADS)
Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.
2003-09-01
Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.
Applications of statistical physics to technology price evolution
NASA Astrophysics Data System (ADS)
McNerney, James
Understanding how changing technology affects the prices of goods is a problem with both rich phenomenology and important policy consequences. Using methods from statistical physics, I model technology-driven price evolution. First, I examine a model for the price evolution of individual technologies. The price of a good often follows a power law equation when plotted against its cumulative production. This observation turns out to have significant consequences for technology policy aimed at mitigating climate change, where technologies are needed that achieve low carbon emissions at low cost. However, no theory adequately explains why technology prices follow power laws. To understand this behavior, I simplify an existing model that treats technologies as machines composed of interacting components. I find that the power law exponent of the price trajectory is inversely related to the number of interactions per component. I extend the model to allow for more realistic component interactions and make a testable prediction. Next, I conduct a case-study on the cost evolution of coal-fired electricity. I derive the cost in terms of various physical and economic components. The results suggest that commodities and technologies fall into distinct classes of price models, with commodities following martingales, and technologies following exponentials in time or power laws in cumulative production. I then examine the network of money flows between industries. This work is a precursor to studying the simultaneous evolution of multiple technologies. Economies resemble large machines, with different industries acting as interacting components with specialized functions. To begin studying the structure of these machines, I examine 20 economies with an emphasis on finding common features to serve as targets for statistical physics models. I find they share the same money flow and industry size distributions. I apply methods from statistical physics to show that industries cluster the same way according to industry type. Finally, I use these industry money flows to model the price evolution of many goods simultaneously, where network effects become important. I derive a prediction for which goods tend to improve most rapidly. The fastest-improving goods are those with the highest mean path lengths in the money flow network.
Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.
2015-01-01
This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich spatio-temporal and oscillatory dynamics can evolve from a relatively small number of interacting local circuits. PMID:26635545
Dynamic and interacting complex networks
NASA Astrophysics Data System (ADS)
Dickison, Mark E.
This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w < wc) where the disease reaches a large fraction of the population from a phase (w > wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes. In the fourth chapter, we study epidemic processes on interconnected network systems, and find two distinct regimes. In strongly-coupled network systems, epidemics occur simultaneously across the entire system at a critical value betac. In contrast, in weakly-coupled network systems, a mixed phase exists below betac where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.
Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process.
Borst, A; Egelhaaf, M
1990-01-01
Direction selectivity of motion-sensitive neurons is generally thought to result from the nonlinear interaction between the signals derived from adjacent image points. Modeling of motion-sensitive networks, however, reveals that such elements may still respond to motion in a rather poor directionally selective way. Direction selectivity can be significantly enhanced if the nonlinear interaction is followed by another processing stage in which the signals of elements with opposite preferred directions are subtracted from each other. Our electrophysiological experiments in the fly visual system suggest that here direction selectivity is acquired in such a two-stage process. Images PMID:2251278
Extreme fluctuations of active Brownian motion
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Kleinbeck, Kevin; Seifert, Udo
2016-05-01
In active Brownian motion, an internal propulsion mechanism interacts with translational and rotational thermal noise and other internal fluctuations to produce directed motion. We derive the distribution of its extreme fluctuations and identify its universal properties using large deviation theory. The limits of slow and fast internal dynamics give rise to a kink-like and parabolic behavior of the corresponding rate functions, respectively. For dipolar Janus particles in two- and three-dimensions interacting with a field, we predict a novel symmetry akin to, but different from, the one related to entropy production. Measurements of these extreme fluctuations could thus be used to infer properties of the underlying, often hidden, network of states.
Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram
2017-04-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
Zhao, Xiao-Wei; Ma, Zhi-Qiang; Yin, Ming-Hao
2012-05-01
Knowledge of protein-protein interactions (PPIs) plays an important role in constructing protein interaction networks and understanding the general machineries of biological systems. In this study, a new method is proposed to predict PPIs using a comprehensive set of 930 features based only on sequence information, these features measure the interactions between residues a certain distant apart in the protein sequences from different aspects. To achieve better performance, the principal component analysis (PCA) is first employed to obtain an optimized feature subset. Then, the resulting 67-dimensional feature vectors are fed to Support Vector Machine (SVM). Experimental results on Drosophila melanogaster and Helicobater pylori datasets show that our method is very promising to predict PPIs and may at least be a useful supplement tool to existing methods.
Ákos, Zsuzsa; Beck, Róbert; Nagy, Máté; Vicsek, Tamás; Kubinyi, Enikő
2014-01-01
Movement interactions and the underlying social structure in groups have relevance across many social-living species. Collective motion of groups could be based on an "egalitarian" decision system, but in practice it is often influenced by underlying social network structures and by individual characteristics. We investigated whether dominance rank and personality traits are linked to leader and follower roles during joint motion of family dogs. We obtained high-resolution spatio-temporal GPS trajectory data (823,148 data points) from six dogs belonging to the same household and their owner during 14 30-40 min unleashed walks. We identified several features of the dogs' paths (e.g., running speed or distance from the owner) which are characteristic of a given dog. A directional correlation analysis quantifies interactions between pairs of dogs that run loops jointly. We found that dogs play the role of the leader about 50-85% of the time, i.e. the leader and follower roles in a given pair are dynamically interchangable. However, on a longer timescale tendencies to lead differ consistently. The network constructed from these loose leader-follower relations is hierarchical, and the dogs' positions in the network correlates with the age, dominance rank, trainability, controllability, and aggression measures derived from personality questionnaires. We demonstrated the possibility of determining dominance rank and personality traits of an individual based only on its logged movement data. The collective motion of dogs is influenced by underlying social network structures and by characteristics such as personality differences. Our findings could pave the way for automated animal personality and human social interaction measurements.
Shen, Hong-Bin
2011-01-01
Modern science of networks has brought significant advances to our understanding of complex systems biology. As a representative model of systems biology, Protein Interaction Networks (PINs) are characterized by a remarkable modular structures, reflecting functional associations between their components. Many methods were proposed to capture cohesive modules so that there is a higher density of edges within modules than those across them. Recent studies reveal that cohesively interacting modules of proteins is not a universal organizing principle in PINs, which has opened up new avenues for revisiting functional modules in PINs. In this paper, functional clusters in PINs are found to be able to form unorthodox structures defined as bi-sparse module. In contrast to the traditional cohesive module, the nodes in the bi-sparse module are sparsely connected internally and densely connected with other bi-sparse or cohesive modules. We present a novel protocol called the BinTree Seeking (BTS) for mining both bi-sparse and cohesive modules in PINs based on Edge Density of Module (EDM) and matrix theory. BTS detects modules by depicting links and nodes rather than nodes alone and its derivation procedure is totally performed on adjacency matrix of networks. The number of modules in a PIN can be automatically determined in the proposed BTS approach. BTS is tested on three real PINs and the results demonstrate that functional modules in PINs are not dominantly cohesive but can be sparse. BTS software and the supporting information are available at: www.csbio.sjtu.edu.cn/bioinf/BTS/. PMID:22140454
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2018-05-01
The pinning/leader control problems provide the design of the leader or pinning controller in order to guide a complex network to a desired trajectory or target (synchronisation or consensus). Let a time-invariant complex network, pinning/leader control problems include the design of the leader or pinning controller gain and number of nodes to pin in order to guide a network to a desired trajectory (synchronization or consensus). Usually, lower is the number of pinned nodes larger is the pinning gain required to assess network synchronisation. On the other side, realistic application scenario of complex networks is characterised by switching topologies, time-varying node coupling strength and link weight that make hard to solve the pinning/leader control problem. Additionally, the system dynamics at nodes can be heterogeneous. In this paper, we derive robust stabilisation conditions of time-varying heterogeneous complex networks with jointly connected topologies when coupling strength and link weight interactions are affected by time-varying uncertainties. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, we formulate low computationally demanding stabilisability conditions to design a pinning/leader control gain for robust network synchronisation. The effectiveness of the proposed approach is shown by several design examples applied to a paradigmatic well-known complex network composed of heterogeneous Chua's circuits.
Dynamics of neural cryptography
NASA Astrophysics Data System (ADS)
Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido
2007-05-01
Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.
Dynamics of neural cryptography.
Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido
2007-05-01
Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.
Organization of the cytokeratin network in an epithelial cell.
Portet, Stéphanie; Arino, Ovide; Vassy, Jany; Schoëvaërt, Damien
2003-08-07
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.
Dynamics of neural cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido
2007-05-15
Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently,more » synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.« less
Protein interaction networks from literature mining
NASA Astrophysics Data System (ADS)
Ihara, Sigeo
2005-03-01
The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.
Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir
2017-02-01
Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.
Integration of multiple biological features yields high confidence human protein interactome.
Karagoz, Kubra; Sevimoglu, Tuba; Arga, Kazim Yalcin
2016-08-21
The biological function of a protein is usually determined by its physical interaction with other proteins. Protein-protein interactions (PPIs) are identified through various experimental methods and are stored in curated databases. The noisiness of the existing PPI data is evident, and it is essential that a more reliable data is generated. Furthermore, the selection of a set of PPIs at different confidence levels might be necessary for many studies. Although different methodologies were introduced to evaluate the confidence scores for binary interactions, a highly reliable, almost complete PPI network of Homo sapiens is not proposed yet. The quality and coverage of human protein interactome need to be improved to be used in various disciplines, especially in biomedicine. In the present work, we propose an unsupervised statistical approach to assign confidence scores to PPIs of H. sapiens. To achieve this goal PPI data from six different databases were collected and a total of 295,288 non-redundant interactions between 15,950 proteins were acquired. The present scoring system included the context information that was assigned to PPIs derived from eight biological attributes. A high confidence network, which included 147,923 binary interactions between 13,213 proteins, had scores greater than the cutoff value of 0.80, for which sensitivity, specificity, and coverage were 94.5%, 80.9%, and 82.8%, respectively. We compared the present scoring method with others for evaluation. Reducing the noise inherent in experimental PPIs via our scoring scheme increased the accuracy significantly. As it was demonstrated through the assessment of process and cancer subnetworks, this study allows researchers to construct and analyze context-specific networks via valid PPI sets and one can easily achieve subnetworks around proteins of interest at a specified confidence level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jia, Peilin; Zhao, Zhongming
2014-01-01
A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data. PMID:24516372
Jia, Peilin; Zhao, Zhongming
2014-02-01
A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.
Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis.
Harel, Itamar; Maezawa, Yoshiro; Avraham, Roi; Rinon, Ariel; Ma, Hsiao-Yen; Cross, Joe W; Leviatan, Noam; Hegesh, Julius; Roy, Achira; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Carvajal, Jaime; Tole, Shubha; Kioussi, Chrissa; Quaggin, Susan; Tzahor, Eldad
2012-11-13
The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.
NASA Astrophysics Data System (ADS)
Hoffmann, Geoffrey W.; Benson, Maurice W.
1986-08-01
A neural network concept derived from an analogy between the immune system and the central nerous system is outlined. The theory is based on a nervous that is slightly more complicated than the conventional McCullogh-Pitts type of neuron, in that it exhibits hysteresis at the single cell level. This added complication is compensated by the fact that a network of such neurons is able to learn without the necessity for any changes in synaptic connection strengths. The learning occurs as a natural consequence of interactions between the network and its enviornment, with environmental stimuli moving the system around in an N-dimensional phase space, until a point in phase space is reached such that the system's responses are appropriate for dealing with the stimuli. Due to the hysteresis associated with each neuron, the system tends to stay in the region of phase space where it is located. The theory includes a role for sleep in learning.
Estimation of Global Network Statistics from Incomplete Data
Bliss, Catherine A.; Danforth, Christopher M.; Dodds, Peter Sheridan
2014-01-01
Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week. PMID:25338183
Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weighill, Deborah; Jones, Piet; Shah, Manesh
Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less
Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery
Weighill, Deborah; Jones, Piet; Shah, Manesh; ...
2018-05-11
Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less
Coevolution of dynamical states and interactions in dynamic networks
NASA Astrophysics Data System (ADS)
Zimmermann, Martín G.; Eguíluz, Víctor M.; San Miguel, Maxi
2004-06-01
We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.
Bayesian networks and information theory for audio-visual perception modeling.
Besson, Patricia; Richiardi, Jonas; Bourdin, Christophe; Bringoux, Lionel; Mestre, Daniel R; Vercher, Jean-Louis
2010-09-01
Thanks to their different senses, human observers acquire multiple information coming from their environment. Complex cross-modal interactions occur during this perceptual process. This article proposes a framework to analyze and model these interactions through a rigorous and systematic data-driven process. This requires considering the general relationships between the physical events or factors involved in the process, not only in quantitative terms, but also in term of the influence of one factor on another. We use tools from information theory and probabilistic reasoning to derive relationships between the random variables of interest, where the central notion is that of conditional independence. Using mutual information analysis to guide the model elicitation process, a probabilistic causal model encoded as a Bayesian network is obtained. We exemplify the method by using data collected in an audio-visual localization task for human subjects, and we show that it yields a well-motivated model with good predictive ability. The model elicitation process offers new prospects for the investigation of the cognitive mechanisms of multisensory perception.
EviNet: a web platform for network enrichment analysis with flexible definition of gene sets.
Jeggari, Ashwini; Alekseenko, Zhanna; Petrov, Iurii; Dias, José M; Ericson, Johan; Alexeyenko, Andrey
2018-06-09
The new web resource EviNet provides an easily run interface to network enrichment analysis for exploration of novel, experimentally defined gene sets. The major advantages of this analysis are (i) applicability to any genes found in the global network rather than only to those with pathway/ontology term annotations, (ii) ability to connect genes via different molecular mechanisms rather than within one high-throughput platform, and (iii) statistical power sufficient to detect enrichment of very small sets, down to individual genes. The users' gene sets are either defined prior to upload or derived interactively from an uploaded file by differential expression criteria. The pathways and networks used in the analysis can be chosen from the collection menu. The calculation is typically done within seconds or minutes and the stable URL is provided immediately. The results are presented in both visual (network graphs) and tabular formats using jQuery libraries. Uploaded data and analysis results are kept in separated project directories not accessible by other users. EviNet is available at https://www.evinet.org/.
Narikiyo, Hayato; Kakuta, Takahiro; Matsuyama, Hiroki; Gon, Masayuki; Tanaka, Kazuo; Chujo, Yoshiki
2017-07-01
It was shown that water-soluble network polymers composed of polyhedral oligomeric silsesquioxane (POSS) had hydrophobic spaces inside the network because of strong hydrophobicity of the cubic silica cage. In this study, the water-soluble POSS network polymers connected with triphenylamine derivatives (TPA-POSS) were synthesized, and their functions as a sensor for discriminating the geometric isomers of fatty acids were investigated. Accordingly, in the photoluminescence spectra, different time-courses of intensity and peak wavelengths of the emission bands were detected from the TPA-POSS-containing solution in the presence of cis- or trans-fatty acids during incubation. Furthermore, variable time-dependent changes were obtained by changing coexisting ratios between two geometric isomers. From the mechanistic investigation, it was implied that these changes could be originated from the difference in the degree of interaction between the POSS networks and each fatty acid. Our data could be applicable for constructing a sensing material for generation and proportion of trans-fatty acids in the oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Data-driven analysis of functional brain interactions during free listening to music and speech.
Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming
2015-06-01
Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.
Global Mapping of the Yeast Genetic Interaction Network
NASA Astrophysics Data System (ADS)
Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles
2004-02-01
A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.
Interaction Control to Synchronize Non-synchronizable Networks.
Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc
2016-11-17
Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.
Mutwil, Marek; Klie, Sebastian; Tohge, Takayuki; Giorgi, Federico M.; Wilkins, Olivia; Campbell, Malcolm M.; Fernie, Alisdair R.; Usadel, Björn; Nikoloski, Zoran; Persson, Staffan
2011-01-01
The model organism Arabidopsis thaliana is readily used in basic research due to resource availability and relative speed of data acquisition. A major goal is to transfer acquired knowledge from Arabidopsis to crop species. However, the identification of functional equivalents of well-characterized Arabidopsis genes in other plants is a nontrivial task. It is well documented that transcriptionally coordinated genes tend to be functionally related and that such relationships may be conserved across different species and even kingdoms. To exploit such relationships, we constructed whole-genome coexpression networks for Arabidopsis and six important plant crop species. The interactive networks, clustered using the HCCA algorithm, are provided under the banner PlaNet (http://aranet.mpimp-golm.mpg.de). We implemented a comparative network algorithm that estimates similarities between network structures. Thus, the platform can be used to swiftly infer similar coexpressed network vicinities within and across species and can predict the identity of functional homologs. We exemplify this using the PSA-D and chalcone synthase-related gene networks. Finally, we assessed how ontology terms are transcriptionally connected in the seven species and provide the corresponding MapMan term coexpression networks. The data support the contention that this platform will considerably improve transfer of knowledge generated in Arabidopsis to valuable crop species. PMID:21441431
TreeNetViz: revealing patterns of networks over tree structures.
Gou, Liang; Zhang, Xiaolong Luke
2011-12-01
Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE
Topological Principles of Control in Dynamical Networks
NASA Astrophysics Data System (ADS)
Kim, Jason; Pasqualetti, Fabio; Bassett, Danielle
Networked biological systems, such as the brain, feature complex patterns of interactions. To predict and correct the dynamic behavior of such systems, it is imperative to understand how the underlying topological structure affects and limits the function of the system. Here, we use network control theory to extract topological features that favor or prevent network controllability, and to understand the network-wide effect of external stimuli on large-scale brain systems. Specifically, we treat each brain region as a dynamic entity with real-valued state, and model the time evolution of all interconnected regions using linear, time-invariant dynamics. We propose a simplified feed-forward scheme where the effect of upstream regions (drivers) on the connected downstream regions (non-drivers) is characterized in closed-form. Leveraging this characterization of the simplified model, we derive topological features that predict the controllability properties of non-simplified networks. We show analytically and numerically that these predictors are accurate across a large range of parameters. Among other contributions, our analysis shows that heterogeneity in the network weights facilitate controllability, and allows us to implement targeted interventions that profoundly improve controllability. By assuming an underlying dynamical mechanism, we are able to understand the complex topology of networked biological systems in a functionally meaningful way.
Toutounji, Hazem; Pasemann, Frank
2014-01-01
The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot.
Toutounji, Hazem; Pasemann, Frank
2014-01-01
The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. PMID:24904403
Minary, Laetitia; Alla, François; Cambon, Linda; Kivits, Joelle; Potvin, Louise
2018-04-01
Public health interventions are increasingly being recognised as complex and context dependent. Related to this is the need for a systemic and dynamic conception of interventions that raises the question of delineating the scope and contours of interventions in complex systems. This means identifying which elements belong to the intervention (and therefore participate in its effects and can be transferred), which ones belong to the context and interact with the former to influence results (and therefore must be taken into account when transferring the intervention) and which contextual elements are irrelevant to the intervention. This paper, from which derives criteria based on a network framework, operationalises how the context and intervention systems interact and identify what needs to be replicated as interventions are implemented in different contexts. Representing interventions as networks (composed of human and non-human entities), we introduce the idea that the density of interconnections among the various entities provides a criterion for distinguishing core intervention from intervention context without disconnecting the two systems. This differentiates endogenous and exogenous intervention contexts and the mediators that connect them, which form the fuzzy and constantly changing intervention/context interface. We propose that a network framework representing intervention/context systems constitutes a promising approach for deriving empirical criteria to delineate the scope and contour of what is replicable in an intervention. This approach should allow better identification and description of the entities that have to be transferred to ensure the potential effectiveness of an intervention in a specific context. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Rudling, Axel; Orro, Adolfo; Carlsson, Jens
2018-02-26
Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.
Discovery and validation of a glioblastoma co-expressed gene module
Dunwoodie, Leland J.; Poehlman, William L.; Ficklin, Stephen P.; Feltus, Frank Alexander
2018-01-01
Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network. PMID:29541392
Discovery and validation of a glioblastoma co-expressed gene module.
Dunwoodie, Leland J; Poehlman, William L; Ficklin, Stephen P; Feltus, Frank Alexander
2018-02-16
Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network.
Pseudo paths towards minimum energy states in network dynamics
NASA Astrophysics Data System (ADS)
Hedayatifar, L.; Hassanibesheli, F.; Shirazi, A. H.; Vasheghani Farahani, S.; Jafari, G. R.
2017-10-01
The dynamics of networks forming on Heider balance theory moves towards lower tension states. The condition derived from this theory enforces agents to reevaluate and modify their interactions to achieve equilibrium. These possible changes in network's topology can be considered as various paths that guide systems to minimum energy states. Based on this theory the final destination of a system could reside on a local minimum energy, ;jammed state;, or the global minimum energy, balanced states. The question we would like to address is whether jammed states just appear by chance? Or there exist some pseudo paths that bound a system towards a jammed state. We introduce an indicator to suspect the location of a jammed state based on the Inverse Participation Ratio method (IPR). We provide a margin before a local minimum where the number of possible paths dramatically drastically decreases. This is a condition that proves adequate for ending up on a jammed states.
Abascal-Palacios, Guillermo; Schindler, Christina; Rojas, Adriana L; Bonifacino, Juan S.; Hierro, Aitor
2016-01-01
Summary The Golgi-Associated Retrograde Protein (GARP) is a tethering complex involved in the fusion of endosome-derived transport vesicles to the trans-Golgi network through interaction with components of the Syntaxin 6/Syntaxin 16/Vti1a/VAMP4 SNARE complex. The mechanisms by which GARP and other tethering factors engage the SNARE fusion machinery are poorly understood. Herein we report the structural basis for the interaction of the human Ang2 subunit of GARP with Syntaxin 6 and the closely related Syntaxin 10. The crystal structure of Syntaxin 6 Habc domain in complex with a peptide from the N terminus of Ang2 shows a novel binding mode in which a di-tyrosine motif of Ang2 interacts with a highly conserved groove in Syntaxin 6. Structure-based mutational analyses validate the crystal structure and support the phylogenetic conservation of this interaction. The same binding determinants are found in other tethering proteins and syntaxins, suggesting a general interaction mechanism. PMID:23932592
Shimba, Kenta; Sakai, Koji; Takayama, Yuzo; Kotani, Kiyoshi; Jimbo, Yasuhiko
2015-10-01
Stem cell transplantation is a promising therapy to treat neurodegenerative disorders, and a number of in vitro models have been developed for studying interactions between grafted neurons and the host neuronal network to promote drug discovery. However, methods capable of evaluating the process by which stem cells integrate into the host neuronal network are lacking. In this study, we applied an axonal conduction-based analysis to a co-culture study of primary and differentiated neurons. Mouse cortical neurons and neuronal cells differentiated from P19 embryonal carcinoma cells, a model for early neural differentiation of pluripotent stem cells, were co-cultured in a microfabricated device. The somata of these cells were separated by the co-culture device, but their axons were able to elongate through microtunnels and then form synaptic contacts. Propagating action potentials were recorded from these axons by microelectrodes embedded at the bottom of the microtunnels and sorted into clusters representing individual axons. While the number of axons of cortical neurons increased until 14 days in vitro and then decreased, those of P19 neurons increased throughout the culture period. Network burst analysis showed that P19 neurons participated in approximately 80% of the bursting activity after 14 days in vitro. Interestingly, the axonal conduction delay of P19 neurons was significantly greater than that of cortical neurons, suggesting that there are some physiological differences in their axons. These results suggest that our method is feasible to evaluate the process by which stem cell-derived neurons integrate into a host neuronal network.
2012-01-01
Background Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Results Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction network. Since multiple TLRs were found in the generic fever network, it is reasonable to hypothesize that vaccine-TLR interactions may play an important role in inducing fever response, which deserves a further investigation. Conclusions This study demonstrated that ontology-based literature mining is a powerful method for analyzing gene interaction networks and generating new scientific hypotheses. PMID:23256563
Barbieri, Mayara Caroline; Broekman, Gabriela Van Der Zwaan; Souza, Renata Olzon Dionysio de; Lima, Regina Aparecida Garcia de; Wernet, Monika; Dupas, Giselle
2016-10-01
This study aimed to understand the interactions established between social support networks and families that have children and adolescents with visual impairment, in two different cities in the state of Sao Paulo, Brazil. This was a qualitative, descriptive study with symbolic interactionism as a theoretical framework. A genogram, ecomap and semi-structured interviews with 18 families were used. The method adopted for data analysis was narrative analysis. Two themes were found: potentials derived from the relationship with the support network, and, counterpoints in the support network. The family members accessed other members of their own family, friends, spiritual and cultural activities, health services, government institutions, and philanthropic organizations as support networks. The weakness in health services support is an obstacle to comprehensive healthcare for children and adolescents living in city A. In city B, other possibilities exist because it has a reference service. Despite the weaknesses in the support network in both cities, the family articulates and develops a foundation so that they can provide the best situation possible for their child or adolescent. It is up to health professionals to provide support to families and empower them to care for their members.
Montalto, Alessandro; Faes, Luca; Marinazzo, Daniele
2014-01-01
A challenge for physiologists and neuroscientists is to map information transfer between components of the systems that they study at different scales, in order to derive important knowledge on structure and function from the analysis of the recorded dynamics. The components of physiological networks often interact in a nonlinear way and through mechanisms which are in general not completely known. It is then safer that the method of choice for analyzing these interactions does not rely on any model or assumption on the nature of the data and their interactions. Transfer entropy has emerged as a powerful tool to quantify directed dynamical interactions. In this paper we compare different approaches to evaluate transfer entropy, some of them already proposed, some novel, and present their implementation in a freeware MATLAB toolbox. Applications to simulated and real data are presented.
Montalto, Alessandro; Faes, Luca; Marinazzo, Daniele
2014-01-01
A challenge for physiologists and neuroscientists is to map information transfer between components of the systems that they study at different scales, in order to derive important knowledge on structure and function from the analysis of the recorded dynamics. The components of physiological networks often interact in a nonlinear way and through mechanisms which are in general not completely known. It is then safer that the method of choice for analyzing these interactions does not rely on any model or assumption on the nature of the data and their interactions. Transfer entropy has emerged as a powerful tool to quantify directed dynamical interactions. In this paper we compare different approaches to evaluate transfer entropy, some of them already proposed, some novel, and present their implementation in a freeware MATLAB toolbox. Applications to simulated and real data are presented. PMID:25314003
The flow of power law fluids in elastic networks and porous media.
Sochi, Taha
2016-02-01
The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual-based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross-sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major nonlinearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation, and performance indicate that the model enjoys certain advantages over the existing models such as being exact within the restricting assumptions on which the model is based, easy implementation, low computational costs, reliability, and smooth convergence. The proposed model can, therefore, be used as an alternative to the existing Newtonian distensible models; moreover, it stretches the capabilities of the existing modeling approaches to reach non-Newtonian rheologies.
Frasca, Mattia; Sharkey, Kieran J
2016-06-21
Understanding the dynamics of spread of infectious diseases between individuals is essential for forecasting the evolution of an epidemic outbreak or for defining intervention policies. The problem is addressed by many approaches including stochastic and deterministic models formulated at diverse scales (individuals, populations) and different levels of detail. Here we consider discrete-time SIR (susceptible-infectious-removed) dynamics propagated on contact networks. We derive a novel set of 'discrete-time moment equations' for the probability of the system states at the level of individual nodes and pairs of nodes. These equations form a set which we close by introducing appropriate approximations of the joint probabilities appearing in them. For the example case of SIR processes, we formulate two types of model, one assuming statistical independence at the level of individuals and one at the level of pairs. From the pair-based model we then derive a model at the level of the population which captures the behavior of epidemics on homogeneous random networks. With respect to their continuous-time counterparts, the models include a larger number of possible transitions from one state to another and joint probabilities with a larger number of individuals. The approach is validated through numerical simulation over different network topologies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dynamics and mechanics of motor-filament systems
NASA Astrophysics Data System (ADS)
Kruse, K.; Jülicher, F.
2006-08-01
Motivated by the cytoskeleton of eukaryotic cells, we develop a general framework for describing the large-scale dynamics of an active filament network. In the cytoskeleton, active cross-links are formed by motor proteins that are able to induce relative motion between filaments. Starting from pair-wise interactions of filaments via such active processes, our framework is based on momentum conservation and an analysis of the momentum flux. This allows us to calculate the stresses in the filament network generated by the action of motor proteins. We derive effective theories for the filament dynamics which can be related to continuum theories of active polar gels. As an example, we discuss the stability of homogenous isotropic filament distributions in two spatial dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yong; Liu, Liguo; Fu, Hua
Highlights: • We utilized mTRAQ-based quantification to study protein changes in Congo red-induced OMVs. • A total of 148 proteins were identified in S. flexneri-derived OMVs. • Twenty-eight and five proteins are significantly up- and down-regulated in the CR-induced OMV, respectively. • The result implied that a special sorting mechanism of particular proteins into OMVs may exist. • Key node proteins in the protein interaction network might be important for pathogenicity. - Abstract: The production of outer membrane vesicles (OMVs) is a common and regulated process of gram-negative bacteria. Nonetheless, the processes of Shigella flexneri OMV production still remain unclear.more » S. flexneri is the causative agent of endemic shigellosis in developing countries. The Congo red binding of strains is associated with increased infectivity of S. flexneri. Therefore, understanding the modulation pattern of OMV protein expression induced by Congo red will help to elucidate the bacterial pathogenesis. In the present study, we investigated the proteomic composition of OMVs and the change in OMV protein expression induced by Congo red using mTRAQ-based quantitative comparative proteomics. mTRAQ labelling increased the confidence in protein identification, and 148 total proteins were identified in S. flexneri-derived OMVs. These include a variety of important virulence factors, including Ipa proteins, TolC family, murein hydrolases, and members of the serine protease autotransporters of Enterobacteriaceae (SPATEs) family. Among the identified proteins, 28 and five proteins are significantly up- and down-regulated in the Congo red-induced OMV, respectively. Additionally, by comprehensive comparison with previous studies focused on DH5a-derived OMV, we identified some key node proteins in the protein–protein interaction network that may be involved in OMV biogenesis and are common to all gram-negative bacteria.« less
Sinz, Andrea
2018-05-28
Structural mass spectrometry (MS) is gaining increasing importance for deriving valuable three-dimensional structural information on proteins and protein complexes, and it complements existing techniques, such as NMR spectroscopy and X-ray crystallography. Structural MS unites different MS-based techniques, such as hydrogen/deuterium exchange, native MS, ion-mobility MS, protein footprinting, and chemical cross-linking/MS, and it allows fundamental questions in structural biology to be addressed. In this Minireview, I will focus on the cross-linking/MS strategy. This method not only delivers tertiary structural information on proteins, but is also increasingly being used to decipher protein interaction networks, both in vitro and in vivo. Cross-linking/MS is currently one of the most promising MS-based approaches to derive structural information on very large and transient protein assemblies and intrinsically disordered proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Su, Ting; Hong, Kwon Ho; Zhang, Wannian; Li, Fei; Li, Qiang; Yu, Fang; Luo, Genxiang; Gao, Honghe; He, Yu-Peng
2017-06-07
A series of phthalic acid derivatives (P) with a carbon-chain tail was designed and synthesized as single-component gelators. A combination of the single-component gelator P and a non-gelling additive n-alkylamine A through acid-base interaction brought about a series of novel phase-selective two-component gelators PA. The gelation capabilities of P and PA, and the structural, morphological, thermo-dynamic and rheological properties of the corresponding gels were investigated. A molecular dynamics simulation showed that the H-bonding network in PA formed between the NH of A and the carbonyl oxygen of P altered the assembly process of gelator P. Crude PA could be synthesized through a one-step process without any purification and could selectively gel the oil phase without a typical heating-cooling process. Moreover, such a crude PA and its gelation process could be amplified to the kilogram scale with high efficiency, which offers a practical economically viable solution to marine oil-spill recovery.
Li, Xin; Verspoor, Karin; Gray, Kathleen; Barnett, Stephen
2016-01-01
This paper summarises a longitudinal analysis of learning interactions occurring over three years among health professionals in an online social network. The study employs the techniques of Social Network Analysis (SNA) and statistical modeling to identify the changes in patterns of interaction over time and test associated structural network effects. SNA results indicate overall low participation in the network, although some participants became active over time and even led discussions. In particular, the analysis has shown that a change of lead contributor results in a change in learning interaction and network structure. The analysis of structural network effects demonstrates that the interaction dynamics slow down over time, indicating that interactions in the network are more stable. The health professionals may be reluctant to share knowledge and collaborate in groups but were interested in building personal learning networks or simply seeking information.
Jacobsen, Rannveig M; Sverdrup-Thygeson, Anne; Kauserud, Håvard; Birkemoe, Tone
2018-04-11
Ecological networks are composed of interacting communities that influence ecosystem structure and function. Fungi are the driving force for ecosystem processes such as decomposition and carbon sequestration in terrestrial habitats, and are strongly influenced by interactions with invertebrates. Yet, interactions in detritivore communities have rarely been considered from a network perspective. In the present study, we analyse the interaction networks between three functional guilds of fungi and insects sampled from dead wood. Using DNA metabarcoding to identify fungi, we reveal a diversity of interactions differing in specificity in the detritivore networks, involving three guilds of fungi. Plant pathogenic fungi were relatively unspecialized in their interactions with insects inhabiting dead wood, while interactions between the insects and wood-decay fungi exhibited the highest degree of specialization, which was similar to estimates for animal-mediated seed dispersal networks in previous studies. The low degree of specialization for insect symbiont fungi was unexpected. In general, the pooled insect-fungus networks were significantly more specialized, more modular and less nested than randomized networks. Thus, the detritivore networks had an unusual anti-nested structure. Future studies might corroborate whether this is a common aspect of networks based on interactions with fungi, possibly owing to their often intense competition for substrate. © 2018 The Author(s).
Network Physiology: How Organ Systems Dynamically Interact
Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073
Two distinct neural networks support the mapping of meaning to a novel word.
Ye, Zheng; Mestres-Missé, Anna; Rodriguez-Fornells, Antoni; Münte, Thomas F
2011-07-01
Children can learn the meaning of a new word from context during normal reading or listening, without any explicit instruction. It is unclear how such meaning acquisition is supported and achieved in human brain. In this functional magnetic resonance imaging (fMRI) study we investigated neural networks supporting word learning with a functional connectivity approach. Participants were exposed to a new word presented in two successive sentences and needed to derive the meaning of the new word. We observed two neural networks involved in mapping the meaning to the new word. One network connected the left inferior frontal gyrus (LIFG) with the middle frontal gyrus (MFG), medial superior frontal gyrus, caudate nucleus, thalamus, and inferior parietal lobule. The other network connected the left middle temporal gyrus (LMTG) with the MFG, anterior and posterior cingulate cortex. The LIFG network showed stronger interregional interactions for new than real words, whereas the LMTG network showed similar connectivity patterns for new and real words. We proposed that these two networks support different functions during word learning. The LIFG network appears to select the most appropriate meaning from competing candidates and to map the selected meaning onto the new word. The LMTG network may be recruited to integrate the word into sentential context, regardless of whether the word is real or new. The LIFG and the LMTG networks share a common node, the MFG, suggesting that these two networks communicate in working memory. Copyright © 2010 Wiley-Liss, Inc.
Specific non-monotonous interactions increase persistence of ecological networks.
Yan, Chuan; Zhang, Zhibin
2014-03-22
The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.
Interaction Control to Synchronize Non-synchronizable Networks
Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc
2016-01-01
Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks’ exact interaction topology and consequently have implications for biological and self-organizing technical systems. PMID:27853266
Social network type and morale in old age.
Litwin, H
2001-08-01
The aim of this research was to derive network types among an elderly population and to examine the relationship of network type to morale. Secondary analysis of data compiled by the Israeli Central Bureau of Statistics (n = 2,079) was employed, and network types were derived through K-means cluster analysis. Respondents' morale scores were regressed on network types, controlling for background and health variables. Five network types were derived. Respondents in diverse or friends networks reported the highest morale; those in exclusively family or restricted networks had the lowest. Multivariate regression analysis underscored that certain network types were second among the study variables in predicting respondents' morale, preceded only by disability level (Adjusted R(2) =.41). Classification of network types allows consideration of the interpersonal environments of older people in relation to outcomes of interest. The relative effects on morale of elective versus obligated social ties, evident in the current analysis, is a case in point.
Deciphering microbial interactions and detecting keystone species with co-occurrence networks.
Berry, David; Widder, Stefanie
2014-01-01
Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.
Vicsek, Tamás; Kubinyi, Enikő
2014-01-01
Movement interactions and the underlying social structure in groups have relevance across many social-living species. Collective motion of groups could be based on an “egalitarian” decision system, but in practice it is often influenced by underlying social network structures and by individual characteristics. We investigated whether dominance rank and personality traits are linked to leader and follower roles during joint motion of family dogs. We obtained high-resolution spatio-temporal GPS trajectory data (823,148 data points) from six dogs belonging to the same household and their owner during 14 30–40 min unleashed walks. We identified several features of the dogs' paths (e.g., running speed or distance from the owner) which are characteristic of a given dog. A directional correlation analysis quantifies interactions between pairs of dogs that run loops jointly. We found that dogs play the role of the leader about 50–85% of the time, i.e. the leader and follower roles in a given pair are dynamically interchangable. However, on a longer timescale tendencies to lead differ consistently. The network constructed from these loose leader–follower relations is hierarchical, and the dogs' positions in the network correlates with the age, dominance rank, trainability, controllability, and aggression measures derived from personality questionnaires. We demonstrated the possibility of determining dominance rank and personality traits of an individual based only on its logged movement data. The collective motion of dogs is influenced by underlying social network structures and by characteristics such as personality differences. Our findings could pave the way for automated animal personality and human social interaction measurements. PMID:24465200
Effect of interaction strength on robustness of controlling edge dynamics in complex networks
NASA Astrophysics Data System (ADS)
Pang, Shao-Peng; Hao, Fei
2018-05-01
Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.
A Markovian event-based framework for stochastic spiking neural networks.
Touboul, Jonathan D; Faugeras, Olivier D
2011-11-01
In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.
Li, Cheng-Wei; Chen, Bor-Sen
2016-01-01
Epigenetic and microRNA (miRNA) regulation are associated with carcinogenesis and the development of cancer. By using the available omics data, including those from next-generation sequencing (NGS), genome-wide methylation profiling, candidate integrated genetic and epigenetic network (IGEN) analysis, and drug response genome-wide microarray analysis, we constructed an IGEN system based on three coupling regression models that characterize protein-protein interaction networks (PPINs), gene regulatory networks (GRNs), miRNA regulatory networks (MRNs), and epigenetic regulatory networks (ERNs). By applying system identification method and principal genome-wide network projection (PGNP) to IGEN analysis, we identified the core network biomarkers to investigate bladder carcinogenic mechanisms and design multiple drug combinations for treating bladder cancer with minimal side-effects. The progression of DNA repair and cell proliferation in stage 1 bladder cancer ultimately results not only in the derepression of miR-200a and miR-200b but also in the regulation of the TNF pathway to metastasis-related genes or proteins, cell proliferation, and DNA repair in stage 4 bladder cancer. We designed a multiple drug combination comprising gefitinib, estradiol, yohimbine, and fulvestrant for treating stage 1 bladder cancer with minimal side-effects, and another multiple drug combination comprising gefitinib, estradiol, chlorpromazine, and LY294002 for treating stage 4 bladder cancer with minimal side-effects.
Gerstner, Wulfram
2017-01-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957
Niño-García, Juan Pablo; Ruiz-González, Clara; del Giorgio, Paul A
2016-01-01
Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum. PMID:26849312
Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A
2016-07-01
Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum.
Intrinsic connectivity in the human brain does not reveal networks for ‘basic’ emotions
Lindquist, Kristen A.; Dickerson, Bradford C.; Barrett, Lisa Feldman
2015-01-01
We tested two competing models for the brain basis of emotion, the basic emotion theory and the conceptual act theory of emotion, using resting-state functional connectivity magnetic resonance imaging (rs-fcMRI). The basic emotion view hypothesizes that anger, sadness, fear, disgust and happiness each arise from a brain network that is innate, anatomically constrained and homologous in other animals. The conceptual act theory of emotion hypothesizes that an instance of emotion is a brain state constructed from the interaction of domain-general, core systems within the brain such as the salience, default mode and frontoparietal control networks. Using peak coordinates derived from a meta-analysis of task-evoked emotion fMRI studies, we generated a set of whole-brain rs-fcMRI ‘discovery’ maps for each emotion category and examined the spatial overlap in their conjunctions. Instead of discovering a specific network for each emotion category, variance in the discovery maps was accounted for by the known domain-general network. Furthermore, the salience network is observed as part of every emotion category. These results indicate that specific networks for each emotion do not exist within the intrinsic architecture of the human brain and instead support the conceptual act theory of emotion. PMID:25680990
Graph theory network function in Parkinson's disease assessed with electroencephalography.
Utianski, Rene L; Caviness, John N; van Straaten, Elisabeth C W; Beach, Thomas G; Dugger, Brittany N; Shill, Holly A; Driver-Dunckley, Erika D; Sabbagh, Marwan N; Mehta, Shyamal; Adler, Charles H; Hentz, Joseph G
2016-05-01
To determine what differences exist in graph theory network measures derived from electroencephalography (EEG), between Parkinson's disease (PD) patients who are cognitively normal (PD-CN) and matched healthy controls; and between PD-CN and PD dementia (PD-D). EEG recordings were analyzed via graph theory network analysis to quantify changes in global efficiency and local integration. This included minimal spanning tree analysis. T-tests and correlations were used to assess differences between groups and assess the relationship with cognitive performance. Network measures showed increased local integration across all frequency bands between control and PD-CN; in contrast, decreased local integration occurred in PD-D when compared to PD-CN in the alpha1 frequency band. Differences found in PD-MCI mirrored PD-D. Correlations were found between network measures and assessments of global cognitive performance in PD. Our results reveal distinct patterns of band and network measure type alteration and breakdown for PD, as well as with cognitive decline in PD. These patterns suggest specific ways that interaction between cortical areas becomes abnormal and contributes to PD symptoms at various stages. Graph theory analysis by EEG suggests that network alteration and breakdown are robust attributes of PD cortical dysfunction pathophysiology. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, R. G. V.
2005-12-01
The Internet has been publicly portrayed as a new technological horizon yielding instantaneous interaction to a point where geography no longer matters. This research aims to dispel this impression by applying a dynamic form of trip modelling to investigate pings in a global computer network compiled by the Stanford Linear Accelerator Centre (SLAC) from 1998 to 2004. Internet flows have been predicted to have the same mathematical operators as trips to a supermarket, since they are both periodic and constrained by a distance metric. Both actual and virtual trips are part of a spectrum of origin-destination pairs in the time-space convergence of trip time-lines. Internet interaction is very near to the convergence of these time-lines (at a very small time scale in milliseconds, but with interactions over thousands of kilometres). There is a lag effect and this is formalised by the derivation of Gaussian and gravity inequalities between the time taken (Δ t) and the partitioning of distance (Δ x). This inequality seems to be robust for a regression of Δ t to Δ x in the SLAC data set for each year (1998 to 2004). There is a constant ‘forbidden zone’ in the interaction, underpinned by the fact that pings do not travel faster than the speed of light. Superimposed upon this zone is the network capacity where a linear regression of Δ t to Δ x is a proxy summarising global Internet connectivity for that year. The results suggest that there has been a substantial improvement in connectivity over the period with R 2 increasing steadily from 0.39 to 0.65 from less Gaussian spreading of the ping latencies. Further, the regression line shifts towards the inequality boundary from 1998 to 2004, where the increased slope shows a greater proportional rise in local connectivity over global connectivity. A conclusion is that national geography still does matter in spatial interaction modelling of the Internet.
Weighted projected networks: mapping hypergraphs to networks.
López, Eduardo
2013-05-01
Many natural, technological, and social systems incorporate multiway interactions, yet are characterized and measured on the basis of weighted pairwise interactions. In this article, I propose a family of models in which pairwise interactions originate from multiway interactions, by starting from ensembles of hypergraphs and applying projections that generate ensembles of weighted projected networks. I calculate analytically the statistical properties of weighted projected networks, and suggest ways these could be used beyond theoretical studies. Weighted projected networks typically exhibit weight disorder along links even for very simple generating hypergraph ensembles. Also, as the size of a hypergraph changes, a signature of multiway interaction emerges on the link weights of weighted projected networks that distinguishes them from fundamentally weighted pairwise networks. This signature could be used to search for hidden multiway interactions in weighted network data. I find the percolation threshold and size of the largest component for hypergraphs of arbitrary uniform rank, translate the results into projected networks, and show that the transition is second order. This general approach to network formation has the potential to shed new light on our understanding of weighted networks.
Cheema, Jitender; Faraldos, Juan A; O'Maille, Paul E
2017-02-01
Epistasis, the interaction between mutations and the genetic background, is a pervasive force in evolution that is difficult to predict yet derives from a simple principle - biological systems are interconnected. Therefore, one effect may be intimately linked to another, hence interdependent. Untangling epistatic interactions between and within genes is a vibrant area of research. Deriving a mechanistic understanding of epistasis is a major challenge. Particularly, elucidating how epistasis can attenuate the effects of otherwise dominant mutations that control phenotypes. Using the emergence of terpene cyclization in specialized metabolism as an excellent example, this review describes the process of discovery and interpretation of dominance and epistasis in relation to current efforts. Specifically, we outline experimental approaches to isolating epistatic networks of mutations in protein structure, formally quantifying epistatic interactions, then building biochemical models with chemical mechanisms in efforts to achieve an understanding of the physical basis for epistasis. From these models we describe informed conjectures about past evolutionary events that underlie the emergence, divergence and specialization of terpene synthases to illustrate key principles of the constraining forces of epistasis in enzyme function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Interneuronal Mechanism for Tinbergen’s Hierarchical Model of Behavioral Choice
Pirger, Zsolt; Crossley, Michael; László, Zita; Naskar, Souvik; Kemenes, György; O’Shea, Michael; Benjamin, Paul R.; Kemenes, Ildikó
2014-01-01
Summary Recent studies of behavioral choice support the notion that the decision to carry out one behavior rather than another depends on the reconfiguration of shared interneuronal networks [1]. We investigated another decision-making strategy, derived from the classical ethological literature [2, 3], which proposes that behavioral choice depends on competition between autonomous networks. According to this model, behavioral choice depends on inhibitory interactions between incompatible hierarchically organized behaviors. We provide evidence for this by investigating the interneuronal mechanisms mediating behavioral choice between two autonomous circuits that underlie whole-body withdrawal [4, 5] and feeding [6] in the pond snail Lymnaea. Whole-body withdrawal is a defensive reflex that is initiated by tactile contact with predators. As predicted by the hierarchical model, tactile stimuli that evoke whole-body withdrawal responses also inhibit ongoing feeding in the presence of feeding stimuli. By recording neurons from the feeding and withdrawal networks, we found no direct synaptic connections between the interneuronal and motoneuronal elements that generate the two behaviors. Instead, we discovered that behavioral choice depends on the interaction between two unique types of interneurons with asymmetrical synaptic connectivity that allows withdrawal to override feeding. One type of interneuron, the Pleuro-Buccal (PlB), is an extrinsic modulatory neuron of the feeding network that completely inhibits feeding when excited by touch-induced monosynaptic input from the second type of interneuron, Pedal-Dorsal12 (PeD12). PeD12 plays a critical role in behavioral choice by providing a synaptic pathway joining the two behavioral networks that underlies the competitive dominance of whole-body withdrawal over feeding. PMID:25155505
Emotions promote social interaction by synchronizing brain activity across individuals
Nummenmaa, Lauri; Glerean, Enrico; Viinikainen, Mikko; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko
2012-01-01
Sharing others’ emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas “tick together” in participants who are viewing similar emotional events in a movie. Participants’ brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness–unpleasantness (i.e., valence) and of arousal–calmness. Pearson’s correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower- and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel–based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals’ brain areas supporting emotional sensations and understanding of another’s actions, whereas high arousal directs individuals’ attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding. PMID:22623534
2014-01-01
Background Uncovering the complex transcriptional regulatory networks (TRNs) that underlie plant and animal development remains a challenge. However, a vast amount of data from public microarray experiments is available, which can be subject to inference algorithms in order to recover reliable TRN architectures. Results In this study we present a simple bioinformatics methodology that uses public, carefully curated microarray data and the mutual information algorithm ARACNe in order to obtain a database of transcriptional interactions. We used data from Arabidopsis thaliana root samples to show that the transcriptional regulatory networks derived from this database successfully recover previously identified root transcriptional modules and to propose new transcription factors for the SHORT ROOT/SCARECROW and PLETHORA pathways. We further show that these networks are a powerful tool to integrate and analyze high-throughput expression data, as exemplified by our analysis of a SHORT ROOT induction time-course microarray dataset, and are a reliable source for the prediction of novel root gene functions. In particular, we used our database to predict novel genes involved in root secondary cell-wall synthesis and identified the MADS-box TF XAL1/AGL12 as an unexpected participant in this process. Conclusions This study demonstrates that network inference using carefully curated microarray data yields reliable TRN architectures. In contrast to previous efforts to obtain root TRNs, that have focused on particular functional modules or tissues, our root transcriptional interactions provide an overview of the transcriptional pathways present in Arabidopsis thaliana roots and will likely yield a plethora of novel hypotheses to be tested experimentally. PMID:24739361
A Topological Criterion for Filtering Information in Complex Brain Networks
Latora, Vito; Chavez, Mario
2017-01-01
In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way. PMID:28076353
NASA Astrophysics Data System (ADS)
Hortos, William S.
2003-07-01
Mobile ad hoc networking (MANET) supports self-organizing, mobile infrastructures and enables an autonomous network of mobile nodes that can operate without a wired backbone. Ad hoc networks are characterized by multihop, wireless connectivity via packet radios and by the need for efficient dynamic protocols. All routers are mobile and can establish connectivity with other nodes only when they are within transmission range. Importantly, ad hoc wireless nodes are resource-constrained, having limited processing, memory, and battery capacity. Delivery of high quality-ofservice (QoS), real-time multimedia services from Internet-based applications over a MANET is a challenge not yet achieved by proposed Internet Engineering Task Force (IETF) ad hoc network protocols in terms of standard performance metrics such as end-to-end throughput, packet error rate, and delay. In the distributed operations of route discovery and maintenance, strong interaction occurs across MANET protocol layers, in particular, the physical, media access control (MAC), network, and application layers. The QoS requirements are specified for the service classes by the application layer. The cross-layer design must also satisfy the battery-limited energy constraints, by minimizing the distributed power consumption at the nodes and of selected routes. Interactions across the layers are modeled in terms of the set of concatenated design parameters including associated energy costs. Functional dependencies of the QoS metrics are described in terms of the concatenated control parameters. New cross-layer designs are sought that optimize layer interdependencies to achieve the "best" QoS available in an energy-constrained, time-varying network. The protocol design, based on a reactive MANET protocol, adapts the provisioned QoS to dynamic network conditions and residual energy capacities. The cross-layer optimization is based on stochastic dynamic programming conditions derived from time-dependent models of MANET packet flows. Regulation of network behavior is modeled by the optimal control of the conditional rates of multivariate point processes (MVPPs); these rates depend on the concatenated control parameters through a change of probability measure. The MVPP models capture behavior of many service applications, e.g., voice, video and the self-similar behavior of Internet data sessions. Performance verification of the cross-layer protocols, derived from the dynamic programming conditions, can be achieved by embedding the conditions in a reactive routing protocol for MANETs, in a simulation environment, such as the wireless extension of ns-2. A canonical MANET scenario consists of a distributed collection of battery-powered laptops or hand-held terminals, capable of hosting multimedia applications. Simulation details and performance tradeoffs, not presented, remain for a sequel to the paper.
Kobeleva, Xenia; Firbank, Michael; Peraza, Luis; Gallagher, Peter; Thomas, Alan; Burn, David J; O'Brien, John; Taylor, John-Paul
2017-07-01
Attention and executive dysfunction are features of Lewy body dementia (LBD) but their neuroanatomical basis is poorly understood. To investigate underlying dysfunctional attention-executive network (EXEC) interactions, we examined functional connectivity (FC) in 30 patients with LBD, 20 patients with Alzheimer's disease (AD), and 21 healthy controls during an event-related functional magnetic resonance imaging (fMRI) experiment. Participants performed a modified Attention Network Test (ANT), where they were instructed to press a button in response to the majority direction of arrows, which were either all pointing in the same direction or with one pointing in the opposite direction. Network activations during both target conditions and a baseline condition (no target) were derived by (ICA) Independent Component Analysis, and interactions between these networks were examined using the beta series correlations approach. Our study revealed that FC of ventral and dorsal attention networks DAN was reduced in LBD during all conditions, although most prominently during incongruent trials. These alterations in connectivity might be driven by a failure of engagement of ventral attention networks, and consequent over-reliance on the DAN. In contrast, when comparing AD patients with the other groups, we found hyperconnectivity between the posterior part of the default mode network (DMN) and the DAN in all conditions, particularly during incongruent trials. This might be attributable to either a compensatory effect to overcome DMN dysfunction, or be arising as a result of a disturbed transition of the DMN from rest to task. Our results demonstrate that dementia syndromes can be characterized both by hyper- and hypoconnectivity of distinct brain networks, depending on the interplay between task demand and available cognitive resources. However these are dependent upon the underlying pathology, which needs to be taken into account when developing specific cognitive therapies for LBD as compared to Alzheimer's. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
So, Nina; Franks, Becca; Lim, Sean; Curley, James P
2015-01-01
Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive behavioral characterization of group-living animals with the utilization of novel statistical methods to further our understanding of the neurobiological basis of social behavior at the individual, relationship and group levels.
So, Nina; Franks, Becca; Lim, Sean; Curley, James P.
2015-01-01
Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive behavioral characterization of group-living animals with the utilization of novel statistical methods to further our understanding of the neurobiological basis of social behavior at the individual, relationship and group levels. PMID:26226265
Okada, D; Endo, S; Matsuda, H; Ogawa, S; Taniguchi, Y; Katsuta, T; Watanabe, T; Iwaisaki, H
2018-05-12
Genome-wide association studies (GWAS) of quantitative traits have detected numerous genetic associations, but they encounter difficulties in pinpointing prominent candidate genes and inferring gene networks. The present study used a systems genetics approach integrating GWAS results with external RNA-expression data to detect candidate gene networks in feed utilization and growth traits of Japanese Black cattle, which are matters of concern. A SNP co-association network was derived from significant correlations between SNPs with effects estimated by GWAS across seven phenotypic traits. The resulting network genes contained significant numbers of annotations related to the traits. Using bovine transcriptome data from a public database, an RNA co-expression network was inferred based on the similarity of expression patterns across different tissues. An intersection network was then generated by superimposing the SNP and RNA networks and extracting shared interactions. This intersection network contained four tissue-specific modules: nervous system, reproductive system, muscular system, and glands. To characterize the structure (topographical properties) of the three networks, their scale-free properties were evaluated, which revealed that the intersection network was the most scale-free. In the sub-network containing the most connected transcription factors (URI1, ROCK2 and ETV6), most genes were widely expressed across tissues, and genes previously shown to be involved in the traits were found. Results indicated that the current approach might be used to construct a gene network that better reflects biological information, providing encouragement for the genetic dissection of economically important quantitative traits.
Zheng, Wenjun
2010-01-01
Abstract Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the Cα-only elastic network models, which assume elastic interactions between pairs of residues whose Cα atoms or heavy atoms are within a cutoff distance. The key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical distributions of distances between Cα atoms or heavy atoms derived from a large set of protein crystal structures. PMID:20550915
Modeling and simulating networks of interdependent protein interactions.
Stöcker, Bianca K; Köster, Johannes; Zamir, Eli; Rahmann, Sven
2018-05-21
Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, as generated by allosteric effects or mutual exclusion due to steric hindrance. Therefore, formal models for integrating and utilizing information about interaction dependencies are of high interest. Here, we describe an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks ("constrained networks"). The construction of these networks is based on public interaction databases as well as text-mined information about interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows fast simulation and facilitates the analysis of many proteins in large networks. In addition, this approach enables the simulation of perturbation effects, such as knockout of single or multiple proteins and changes of protein concentrations. We illustrate how our model can be used to analyze a constrained human adhesome protein network, which is responsible for the formation of diverse and dynamic cell-matrix adhesion sites. By comparing protein complex formation under known interaction dependencies versus without dependencies, we investigate how these dependencies shape the resulting repertoire of protein complexes. Furthermore, our model enables investigating how the interplay of network topology with interaction dependencies influences the propagation of perturbation effects across a large biochemical system. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsim and as a Bioconda package (https://bioconda.github.io).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jin-Zhong, E-mail: gujzh@lzu.edu.cn; Wu, Jiang; Kirillov, Alexander M.
2014-05-01
A series of six coordination compounds ([Zn(5-Brnic){sub 2}]·1.5H{sub 2}O){sub n} (1), [Cd(5-Brnic){sub 2}]{sub n} (2), [Co(5-Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (3), [Zn(5-Brnic){sub 2}(H{sub 2}biim)]{sub n} (4), ([Cd(5-Brnic){sub 2}(phen)]·H{sub 2}O){sub n} (5), and [Pb(5-Brnic){sub 2}(phen)] (6) have been generated by the hydrothermal method from the metal(II) nitrates, 5-bromonicotinic acid (5-BrnicH), and an optional ancillary 1,10-phenanthroline (phen) or 2,2′-biimidazole (H{sub 2}biim) ligand. All the products 1–6 have been characterized by IR spectroscopy, elemental, thermal, powder and single-crystal X-ray diffraction analyses. Their 5-bromonicotinate-driven structures vary from the 3D metal-organic framework with the seh-3,5-P21/c topology (in 2) and the 2D interdigitated layers with themore » sql topology (in 1 and 3), to the 1D chains (in 4 and 5) and the 0D discrete monomers (in 6). The 5-bromonicotinate moiety acts as a versatile building block and its tethered bromine atom plays a key role in reinforcing and extending the structures into diverse 3D supramolecular networks via the various halogen bonding Br⋯O, Br⋯Br, and Br⋯π interactions, as well as the N–H⋯O and C–H⋯O hydrogen bonds. The obtained results demonstrate a useful guideline toward engineering the supramolecular architectures in the coordination network assembly under the influence of various halogen bonding interactions. The luminescent (for 1, 2, 4, 5, and 6) and magnetic (for 3) properties have also been studied and discussed in detail. - Graphical abstract: Six coordination compounds driven by 5-bromonicotinic acid have been generated and structurally characterized, revealing diverse metal-organic networks that are further reinforced and extended via various halogen bonding interactions. - Highlights: • 5-Bromonicotinic acid is a versatile ligand for Zn, Cd, Co and Pb derivatives. • Careful selection of co-ligands and metals resulted in different network structures. • Halogen and hydrogen bonding interactions lead to various supramolecular networks. • Luminescent and magnetic properties were studied and discussed in detail.« less
Deciphering microbial interactions and detecting keystone species with co-occurrence networks
Berry, David; Widder, Stefanie
2014-01-01
Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets. PMID:24904535
Lin, Xiaotong; Liu, Mei; Chen, Xue-wen
2009-04-29
Protein-protein interactions play vital roles in nearly all cellular processes and are involved in the construction of biological pathways such as metabolic and signal transduction pathways. Although large-scale experiments have enabled the discovery of thousands of previously unknown linkages among proteins in many organisms, the high-throughput interaction data is often associated with high error rates. Since protein interaction networks have been utilized in numerous biological inferences, the inclusive experimental errors inevitably affect the quality of such prediction. Thus, it is essential to assess the quality of the protein interaction data. In this paper, a novel Bayesian network-based integrative framework is proposed to assess the reliability of protein-protein interactions. We develop a cross-species in silico model that assigns likelihood scores to individual protein pairs based on the information entirely extracted from model organisms. Our proposed approach integrates multiple microarray datasets and novel features derived from gene ontology. Furthermore, the confidence scores for cross-species protein mappings are explicitly incorporated into our model. Applying our model to predict protein interactions in the human genome, we are able to achieve 80% in sensitivity and 70% in specificity. Finally, we assess the overall quality of the experimentally determined yeast protein-protein interaction dataset. We observe that the more high-throughput experiments confirming an interaction, the higher the likelihood score, which confirms the effectiveness of our approach. This study demonstrates that model organisms certainly provide important information for protein-protein interaction inference and assessment. The proposed method is able to assess not only the overall quality of an interaction dataset, but also the quality of individual protein-protein interactions. We expect the method to continually improve as more high quality interaction data from more model organisms becomes available and is readily scalable to a genome-wide application.
Social brain volume is associated with in-degree social network size among older adults
2018-01-01
The social brain hypothesis proposes that large neocortex size evolved to support cognitively demanding social interactions. Accordingly, previous studies have observed that larger orbitofrontal and amygdala structures predict the size of an individual's social network. However, it remains uncertain how an individual's social connectedness reported by other people is associated with the social brain volume. In this study, we found that a greater in-degree network size, a measure of social ties identified by a subject's social connections rather than by the subject, significantly correlated with a larger regional volume of the orbitofrontal cortex, dorsomedial prefrontal cortex and lingual gyrus. By contrast, out-degree size, which is based on an individual's self-perceived connectedness, showed no associations. Meta-analytic reverse inference further revealed that regional volume pattern of in-degree size was specifically involved in social inference ability. These findings were possible because our dataset contained the social networks of an entire village, i.e. a global network. The results suggest that the in-degree aspect of social network size not only confirms the previously reported brain correlates of the social network but also shows an association in brain regions involved in the ability to infer other people's minds. This study provides insight into understanding how the social brain is uniquely associated with sociocentric measures derived from a global network. PMID:29367402
Nonlinear Dynamics on Interconnected Networks
NASA Astrophysics Data System (ADS)
Arenas, Alex; De Domenico, Manlio
2016-06-01
Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).
Neural Synchronization and Cryptography
NASA Astrophysics Data System (ADS)
Ruttor, Andreas
2007-11-01
Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.
Mechanical Cell-Cell Communication in Fibrous Networks: The Importance of Network Geometry.
Humphries, D L; Grogan, J A; Gaffney, E A
2017-03-01
Cells contracting in extracellular matrix (ECM) can transmit stress over long distances, communicating their position and orientation to cells many tens of micrometres away. Such phenomena are not observed when cells are seeded on substrates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for fibrous substrates to support far reaching stress and strain fields has implications for many physiological processes, while the mechanical properties of ECM are central to several pathological processes, including tumour invasion and fibrosis. Theoretical models have investigated the properties of ECM in a variety of network geometries. However, the effects of network architecture on mechanical cell-cell communication have received little attention. This work investigates the effects of geometry on network mechanics, and thus the ability for cells to communicate mechanically through different networks. Cell-derived displacement fields are quantified for various network geometries while controlling for network topology, cross-link density and micromechanical properties. We find that the heterogeneity of response, fibre alignment, and substrate displacement fields are sensitive to network choice. Further, we show that certain geometries support mechanical communication over longer distances than others. As such, we predict that the choice of network geometry is important in fundamental modelling of cell-cell interactions in fibrous substrates, as well as in experimental settings, where mechanical signalling at the cellular scale plays an important role. This work thus informs the construction of theoretical models for substrate mechanics and experimental explorations of mechanical cell-cell communication.
PubNet: a flexible system for visualizing literature derived networks
Douglas, Shawn M; Montelione, Gaetano T; Gerstein, Mark
2005-01-01
We have developed PubNet, a web-based tool that extracts several types of relationships returned by PubMed queries and maps them into networks, allowing for graphical visualization, textual navigation, and topological analysis. PubNet supports the creation of complex networks derived from the contents of individual citations, such as genes, proteins, Protein Data Bank (PDB) IDs, Medical Subject Headings (MeSH) terms, and authors. This feature allows one to, for example, examine a literature derived network of genes based on functional similarity. PMID:16168087
Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing
Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong
2018-01-01
The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination. PMID:29565313
Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing.
Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong
2018-03-22
The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination.
Capacity Evaluation of a Quantum-Based Channel in a Biological Context.
Loscri, Valeria; Vegni, Anna Maria
2016-12-01
Nanotechnology, as enabler of the miniaturization of devices in a scale ranging from 1 to few hundreds of nm , represents a viable solution for " alternative" communication paradigms that could be effective in complex networked systems, as body area networks. Traditional communication paradigms are not effective in the context of joint body and nano-networked systems, for several reasons, and then novel approaches have been investigated such as nanomechanical, electromagnetic, acoustic, molecular, etc. On the other hand, quantum phenomena represent a natural direction for developing nanotechnology, since it has to be considered as a new scale where new phenomena can occur and can be exploited for information purpose. Specific quantum particles are phonons, the quanta of mechanical vibrations (i.e., acoustic excitations), that can be analyzed as potential information carriers in a body networked context. In this paper we will focus on the generation of phonons from photon-phonon interaction, by irradiating a sample of human tissue with an electro-magnetic field, and then we will theoretically derive the information capacity and the bit rate in the frequency range [10 3 - 10 12 ] Hz.
Zhang, Xiaotian; Yin, Jian; Zhang, Xu
2018-03-02
Increasing evidence suggests that dysregulation of microRNAs (miRNAs) may lead to a variety of diseases. Therefore, identifying disease-related miRNAs is a crucial problem. Currently, many computational approaches have been proposed to predict binary miRNA-disease associations. In this study, in order to predict underlying miRNA-disease association types, a semi-supervised model called the network-based label propagation algorithm is proposed to infer multiple types of miRNA-disease associations (NLPMMDA) by mutual information derived from the heterogeneous network. The NLPMMDA method integrates disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity information of miRNAs and diseases to construct a heterogeneous network. NLPMMDA is a semi-supervised model which does not require verified negative samples. Leave-one-out cross validation (LOOCV) was implemented for four known types of miRNA-disease associations and demonstrated the reliable performance of our method. Moreover, case studies of lung cancer and breast cancer confirmed effective performance of NLPMMDA to predict novel miRNA-disease associations and their association types.
Holocene monsoon variability as resolved in small complex networks from palaeodata
NASA Astrophysics Data System (ADS)
Rehfeld, K.; Marwan, N.; Breitenbach, S.; Kurths, J.
2012-04-01
To understand the impacts of Holocene precipitation and/or temperature changes in the spatially extensive and complex region of Asia, it is promising to combine the information from palaeo archives, such as e.g. stalagmites, tree rings and marine sediment records from India and China. To this end, complex networks present a powerful and increasingly popular tool for the description and analysis of interactions within complex spatially extended systems in the geosciences and therefore appear to be predestined for this task. Such a network is typically constructed by thresholding a similarity matrix which in turn is based on a set of time series representing the (Earth) system dynamics at different locations. Looking into the pre-instrumental past, information about the system's processes and thus its state is available only through the reconstructed time series which -- most often -- are irregularly sampled in time and space. Interpolation techniques are often used for signal reconstruction, but they introduce additional errors, especially when records have large gaps. We have recently developed and extensively tested methods to quantify linear (Pearson correlation) and non-linear (mutual information) similarity in presence of heterogeneous and irregular sampling. To illustrate our approach we derive small networks from significantly correlated, linked, time series which are supposed to capture the underlying Asian Monsoon dynamics. We assess and discuss whether and where links and directionalities in these networks from irregularly sampled time series can be soundly detected. Finally, we investigate the role of the Northern Hemispheric temperature with respect to the correlation patterns and find that those derived from warm phases (e.g. Medieval Warm Period) are significantly different from patterns found in cold phases (e.g. Little Ice Age).
A multisample study of longitudinal changes in brain network architecture in 4-13-year-old children.
Wierenga, Lara M; van den Heuvel, Martijn P; Oranje, Bob; Giedd, Jay N; Durston, Sarah; Peper, Jiska S; Brown, Timothy T; Crone, Eveline A
2018-01-01
Recent advances in human neuroimaging research have revealed that white-matter connectivity can be described in terms of an integrated network, which is the basis of the human connectome. However, the developmental changes of this connectome in childhood are not well understood. This study made use of two independent longitudinal diffusion-weighted imaging data sets to characterize developmental changes in the connectome by estimating age-related changes in fractional anisotropy (FA) for reconstructed fibers (edges) between 68 cortical regions. The first sample included 237 diffusion-weighted scans of 146 typically developing children (4-13 years old, 74 females) derived from the Pediatric Longitudinal Imaging, Neurocognition, and Genetics (PLING) study. The second sample included 141 scans of 97 individuals (8-13 years old, 62 females) derived from the BrainTime project. In both data sets, we compared edges that had the most substantial age-related change in FA to edges that showed little change in FA. This allowed us to investigate if developmental changes in white matter reorganize network topology. We observed substantial increases in edges connecting peripheral and a set of highly connected hub regions, referred to as the rich club. Together with the observed topological differences between regions connecting to edges showing the smallest and largest changes in FA, this indicates that changes in white matter affect network organization, such that highly connected regions become even more strongly imbedded in the network. These findings suggest that an important process in brain development involves organizing patterns of inter-regional interactions. Hum Brain Mapp 39:157-170, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Novel Holistic Approaches for Overcoming Therapy Resistance in Pancreatic and Colon Cancers.
Sarkar, Fazlul H
2016-01-01
Gastrointestinal (GI) cancers, such as of the colon and pancreas, are highly resistant to both standard and targeted therapeutics. Therapy-resistant and heterogeneous GI cancers harbor highly complex signaling networks (the resistome) that resist apoptotic programming. Commonly used gemcitabine or platinum-based regimens fail to induce meaningful (i.e. disease-reversing) perturbations in the resistome, resulting in high rates of treatment failure. The GI cancer resistance networks are, in part, due to interactions between parallel signaling and aberrantly expressed microRNAs (miRNAs) that collectively promote the development and survival of drug-resistant cancer stem cells with epithelial-to-mesenchymal transition (EMT) characteristics. The lack of understanding of the resistance networks associated with this subpopulation of cells as well as reductionist, single protein-/pathway-targeted approaches have made 'effective drug design' a difficult task. We propose that the successful design of novel therapeutic regimens to target drug-resistant GI tumors is only possible if network-based drug avenues and agents, in particular 'natural agents' with no known toxicity, are correctly identified. Natural agents (dietary agents or their synthetic derivatives) can individually alter miRNA profiles, suppress EMT pathways and eliminate cancer stem-like cells that derive from pancreatic cancer and colon cancer, by partially targeting multiple yet meaningful networks within the GI cancer resistome. However, the efficacy of these agents as combinations (e.g. consumed in the diet) against this resistome has never been studied. This short review article provides an overview of the different challenges involved in the understanding of the GI resistome, and how novel computational biology can help in the design of effective therapies to overcome resistance. © 2015 S. Karger AG, Basel.
Applications of Social Network Analysis
NASA Astrophysics Data System (ADS)
Thilagam, P. Santhi
A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.
Characterizing the topology of probabilistic biological networks.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-01-01
Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/projects/probNet/.
Podder, Avijit; Jatana, Nidhi; Latha, N
2014-09-21
Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lange, Denise; Del-Claro, Kleber
2014-01-01
Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system. PMID:25141007
Ormoneit, D
1999-12-01
We consider the training of neural networks in cases where the nonlinear relationship of interest gradually changes over time. One possibility to deal with this problem is by regularization where a variation penalty is added to the usual mean squared error criterion. To learn the regularized network weights we suggest the Iterative Extended Kalman Filter (IEKF) as a learning rule, which may be derived from a Bayesian perspective on the regularization problem. A primary application of our algorithm is in financial derivatives pricing, where neural networks may be used to model the dependency of the derivatives' price on one or several underlying assets. After giving a brief introduction to the problem of derivatives pricing we present experiments with German stock index options data showing that a regularized neural network trained with the IEKF outperforms several benchmark models and alternative learning procedures. In particular, the performance may be greatly improved using a newly designed neural network architecture that accounts for no-arbitrage pricing restrictions.
Hsing, Michael; Byler, Kendall; Cherkasov, Artem
2009-01-01
Hub proteins (those engaged in most physical interactions in a protein interaction network (PIN) have recently gained much research interest due to their essential role in mediating cellular processes and their potential therapeutic value. It is straightforward to identify hubs if the underlying PIN is experimentally determined; however, theoretical hub prediction remains a very challenging task, as physicochemical properties that differentiate hubs from less connected proteins remain mostly uncharacterized. To adequately distinguish hubs from non-hub proteins we have utilized over 1300 protein descriptors, some of which represent QSAR (quantitative structure-activity relationship) parameters, and some reflect sequence-derived characteristics of proteins including domain composition and functional annotations. Those protein descriptors, together with available protein interaction data have been processed by a machine learning method (boosting trees) and resulted in the development of hub classifiers that are capable of predicting highly interacting proteins for four model organisms: Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster and Homo sapiens. More importantly, through the analyses of the most relevant protein descriptors, we are able to demonstrate that hub proteins not only share certain common physicochemical and structural characteristics that make them different from non-hub counterparts, but they also exhibit species-specific characteristics that should be taken into account when analyzing different PINs. The developed prediction models can be used for determining highly interacting proteins in the four studied species to assist future proteomics experiments and PIN analyses. Availability The source code and executable program of the hub classifier are available for download at: http://www.cnbi2.ca/hub-analysis/ PMID:20198194
Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.
Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C
2016-05-01
Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.
Limitation of degree information for analyzing the interaction evolution in online social networks
NASA Astrophysics Data System (ADS)
Shang, Ke-Ke; Yan, Wei-Sheng; Xu, Xiao-Ke
2014-04-01
Previously many studies on online social networks simply analyze the static topology in which the friend relationship once established, then the links and nodes will not disappear, but this kind of static topology may not accurately reflect temporal interactions on online social services. In this study, we define four types of users and interactions in the interaction (dynamic) network. We found that active, disappeared, new and super nodes (users) have obviously different strength distribution properties and this result also can be revealed by the degree characteristics of the unweighted interaction and friendship (static) networks. However, the active, disappeared, new and super links (interactions) only can be reflected by the strength distribution in the weighted interaction network. This result indicates the limitation of the static topology data on analyzing social network evolutions. In addition, our study uncovers the approximately stable statistics for the dynamic social network in which there are a large variation for users and interaction intensity. Our findings not only verify the correctness of our definitions, but also helped to study the customer churn and evaluate the commercial value of valuable customers in online social networks.
Functional Module Analysis for Gene Coexpression Networks with Network Integration.
Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K
2015-01-01
Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.
Identification of Modules in Protein-Protein Interaction Networks
NASA Astrophysics Data System (ADS)
Erten, Sinan; Koyutürk, Mehmet
In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.
Reconstructing directed gene regulatory network by only gene expression data.
Zhang, Lu; Feng, Xi Kang; Ng, Yen Kaow; Li, Shuai Cheng
2016-08-18
Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues. In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors. By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.
Jupiter, Daniel; Chen, Hailin; VanBuren, Vincent
2009-01-01
Background Although expression microarrays have become a standard tool used by biologists, analysis of data produced by microarray experiments may still present challenges. Comparison of data from different platforms, organisms, and labs may involve complicated data processing, and inferring relationships between genes remains difficult. Results STARNET 2 is a new web-based tool that allows post hoc visual analysis of correlations that are derived from expression microarray data. STARNET 2 facilitates user discovery of putative gene regulatory networks in a variety of species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans, S. cerevisiae, Arabidopsis and rice) by graphing networks of genes that are closely co-expressed across a large heterogeneous set of preselected microarray experiments. For each of the represented organisms, raw microarray data were retrieved from NCBI's Gene Expression Omnibus for a selected Affymetrix platform. All pairwise Pearson correlation coefficients were computed for expression profiles measured on each platform, respectively. These precompiled results were stored in a MySQL database, and supplemented by additional data retrieved from NCBI. A web-based tool allows user-specified queries of the database, centered at a gene of interest. The result of a query includes graphs of correlation networks, graphs of known interactions involving genes and gene products that are present in the correlation networks, and initial statistical analyses. Two analyses may be performed in parallel to compare networks, which is facilitated by the new HEATSEEKER module. Conclusion STARNET 2 is a useful tool for developing new hypotheses about regulatory relationships between genes and gene products, and has coverage for 10 species. Interpretation of the correlation networks is supported with a database of previously documented interactions, a test for enrichment of Gene Ontology terms, and heat maps of correlation distances that may be used to compare two networks. The list of genes in a STARNET network may be useful in developing a list of candidate genes to use for the inference of causal networks. The tool is freely available at , and does not require user registration. PMID:19828039
Gender Dimorphism of Brain Reward System Volumes in Alcoholism
Sawyer, Kayle S.; Oscar-Berman, Marlene; Barthelemy, Olivier J.; Papadimitriou, George M.; Harris, Gordon J.; Makris, Nikos
2017-01-01
The brain's reward network has been reported to be smaller in alcoholic men compared to nonalcoholic men, but little is known about the volumes of reward regions in alcoholic women. Morphometric analyses were performed on magnetic resonance brain scans of 60 long-term chronic alcoholics (ALC; 30 men) and 60 nonalcoholic controls (NC; 29 men). We derived volumes of total brain, and cortical and subcortical reward-related structures including the dorsolateral prefrontal (DLPFC), orbitofrontal, and cingulate cortices, and the temporal pole, insula, amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon (VDC). We examined the relationships of the volumetric findings to drinking history. Analyses revealed a significant gender interaction for the association between alcoholism and total reward network volumes, with ALC men having smaller reward volumes than NC men and ALC women having larger reward volumes than NC women. Analyses of a priori subregions revealed a similar pattern of reward volume differences with significant gender interactions for DLPFC and VDC. Overall, the volume of the cerebral ventricles in ALC participants was negatively associated with duration of abstinence, suggesting decline in atrophy over time. PMID:28285206
Influence of C-H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly.
Ji, Wei; Liu, Guofeng; Li, Zijian; Feng, Chuanliang
2016-03-02
For CH···O hydrogen bonds in assembled structures and the applications, one of the critical issues is how molecular spatial structures affect their interaction modes as well as how to translate the different modes into the macroscopic properties of materials. Herein, coumarin-derived isomeric hydrogelators with different spatial structures are synthesized, where only nitrogen atoms locate at the ortho, meso, or para position in the pyridine ring. The gelators can self-assemble into single crystals and nanofibrous networks through CH···O interactions, which are greatly influenced by nitrogen spatial positions in the pyridine ring, leading to the different self-assembly mechanisms, packing modes, and properties of the nanofibrous networks. Typically, different cell proliferation rates are obtained on the different CH···O bonds driving nanofibrous structures, implying that tiny variation of the stereo-position of nitrogen atoms can be sensitively detected by cells. The study paves a novel way to investigate the influence of isomeric molecular assembly on macroscopic properties and functions of materials.
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Luo, Xuan; Duan, Yuanling; Huang, Yanping; Zhang, Nanxi; Zhao, Liyan; Wu, Jie
2017-08-01
Two new inorganic-organic hybrid materials [Cu(enMe)2]2{(As2Mo6O26) [Cu(enMe)2]}·4H2O (1) and [As2Mo6(OH)2O24][Cu(H2O)2(phen)]2 (2) (enMe = 1,2'-propanediamine, phen = 1,10'-phenanthroline) based on [As2Mo6O26]6- building blocks, denoted as [As2Mo6], have been obtained by hydrothermal methods. 1 shows a 1-D straight chain structure constructed form [As2Mo6] building blocks and [Cu(enMe)2] complexes, and then extended to 3-D supramolecular network by lattice water via hydrogen bonds interactions. 2 exhibits a new 1-D covalent ribbon with large rectangular grids formed from [As2Mo6] building blocks connected by [Cu(H2O)2(phen)] complexes, then extended into 3-D supramolecular network via hydrogen bonds and π···π interactions. In additional, the photocatalytic activity for methylene blue degradation under visible-light irradiation of 2 was investigated.
Controlling Contagion Processes in Activity Driven Networks
NASA Astrophysics Data System (ADS)
Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro
2014-03-01
The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.
Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S
2005-01-01
Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two pathways needed). PMID:16283923
Resting-State Functional Connectivity Underlying Costly Punishment: A Machine-Learning Approach.
Feng, Chunliang; Zhu, Zhiyuan; Gu, Ruolei; Wu, Xia; Luo, Yue-Jia; Krueger, Frank
2018-06-08
A large number of studies have demonstrated costly punishment to unfair events across human societies. However, individuals exhibit a large heterogeneity in costly punishment decisions, whereas the neuropsychological substrates underlying the heterogeneity remain poorly understood. Here, we addressed this issue by applying a multivariate machine-learning approach to compare topological properties of resting-state brain networks as a potential neuromarker between individuals exhibiting different punishment propensities. A linear support vector machine classifier obtained an accuracy of 74.19% employing the features derived from resting-state brain networks to distinguish two groups of individuals with different punishment tendencies. Importantly, the most discriminative features that contributed to the classification were those regions frequently implicated in costly punishment decisions, including dorsal anterior cingulate cortex (dACC) and putamen (salience network), dorsomedial prefrontal cortex (dmPFC) and temporoparietal junction (mentalizing network), and lateral prefrontal cortex (central-executive network). These networks are previously implicated in encoding norm violation and intentions of others and integrating this information for punishment decisions. Our findings thus demonstrated that resting-state functional connectivity (RSFC) provides a promising neuromarker of social preferences, and bolster the assertion that human costly punishment behaviors emerge from interactions among multiple neural systems. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Exploring Team Passing Networks and Player Movement Dynamics in Youth Association Football
Coutinho, Diogo; Santos, Sara; Lago-Penas, Carlos; Jiménez, Sergio; Sampaio, Jaime
2017-01-01
Understanding how youth football players base their game interactions may constitute a solid criterion for fine-tuning the training process and, ultimately, to achieve better individual and team performances during competition. The present study aims to explore how passing networks and positioning variables can be linked to the match outcome in youth elite association football. The participants included 44 male elite players from under-15 and under-17 age groups. A passing network approach within positioning-derived variables was computed to identify the contributions of individual players for the overall team behaviour outcome during a simulated match. Results suggested that lower team passing dependency for a given player (expressed by lower betweenness network centrality scores) and high intra-team well-connected passing relations (expressed by higher closeness network centrality scores) were related to better outcomes. The correlation between the dyads’ positioning regularity and the passing density showed a most likely higher correlation in under-15 (moderate effect), indicating a possible more dependence of the ball position rather than in the under-17 teams (small/unclear effects). Overall, this study emphasizes the potential of coupling notational analyses with spatial-temporal relations to produce a more functional and holistic understanding of teams’ sports performance. Also, the social network analysis allowed to reveal novel key determinants of collective performance. PMID:28141823
Pathway analyses and understanding disease associations
Liu, Yu; Chance, Mark R
2013-01-01
High throughput technologies have been applied to investigate the underlying mechanisms of complex diseases, identify disease-associations and help to improve treatment. However it is challenging to derive biological insight from conventional single gene based analysis of “omics” data from high throughput experiments due to sample and patient heterogeneity. To address these challenges, many novel pathway and network based approaches were developed to integrate various “omics” data, such as gene expression, copy number alteration, Genome Wide Association Studies, and interaction data. This review will cover recent methodological developments in pathway analysis for the detection of dysregulated interactions and disease-associated subnetworks, prioritization of candidate disease genes, and disease classifications. For each application, we will also discuss the associated challenges and potential future directions. PMID:24319650
Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies
2014-04-07
Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.
Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies
2014-01-01
Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835
Iorio, Francesco; Bernardo-Faura, Marti; Gobbi, Andrea; Cokelaer, Thomas; Jurman, Giuseppe; Saez-Rodriguez, Julio
2016-12-20
Networks are popular and powerful tools to describe and model biological processes. Many computational methods have been developed to infer biological networks from literature, high-throughput experiments, and combinations of both. Additionally, a wide range of tools has been developed to map experimental data onto reference biological networks, in order to extract meaningful modules. Many of these methods assess results' significance against null distributions of randomized networks. However, these standard unconstrained randomizations do not preserve the functional characterization of the nodes in the reference networks (i.e. their degrees and connection signs), hence including potential biases in the assessment. Building on our previous work about rewiring bipartite networks, we propose a method for rewiring any type of unweighted networks. In particular we formally demonstrate that the problem of rewiring a signed and directed network preserving its functional connectivity (F-rewiring) reduces to the problem of rewiring two induced bipartite networks. Additionally, we reformulate the lower bound to the iterations' number of the switching-algorithm to make it suitable for the F-rewiring of networks of any size. Finally, we present BiRewire3, an open-source Bioconductor package enabling the F-rewiring of any type of unweighted network. We illustrate its application to a case study about the identification of modules from gene expression data mapped on protein interaction networks, and a second one focused on building logic models from more complex signed-directed reference signaling networks and phosphoproteomic data. BiRewire3 it is freely available at https://www.bioconductor.org/packages/BiRewire/ , and it should have a broad application as it allows an efficient and analytically derived statistical assessment of results from any network biology tool.
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.
Jones, Anya C; Troy, Niamh M; White, Elisha; Hollams, Elysia M; Gout, Alexander M; Ling, Kak-Ming; Kicic, Anthony; Stick, Stephen M; Sly, Peter D; Holt, Patrick G; Hall, Graham L; Bosco, Anthony
2018-01-24
Atopic asthma is a persistent disease characterized by intermittent wheeze and progressive loss of lung function. The disease is thought to be driven primarily by chronic aeroallergen-induced type 2-associated inflammation. However, the vast majority of atopics do not develop asthma despite ongoing aeroallergen exposure, suggesting additional mechanisms operate in conjunction with type 2 immunity to drive asthma pathogenesis. We employed RNA-Seq profiling of sputum-derived cells to identify gene networks operative at baseline in house dust mite-sensitized (HDM S ) subjects with/without wheezing history that are characteristic of the ongoing asthmatic state. The expression of type 2 effectors (IL-5, IL-13) was equivalent in both cohorts of subjects. However, in HDM S -wheezers they were associated with upregulation of two coexpression modules comprising multiple type 2- and epithelial-associated genes. The first module was interlinked by the hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3 and mucociliary clearance genes. Our findings provide new insight into the molecular mechanisms operative at baseline in the airway mucosa in atopic asthmatics undergoing natural aeroallergen exposure, and suggest that susceptibility to asthma amongst these subjects involves complex interactions between type 2- and epithelial-associated gene networks, which are not operative in equivalently sensitized/exposed atopic non-asthmatics.
Greed and Fear in Network Reciprocity: Implications for Cooperation among Organizations.
Kitts, James A; Leal, Diego F; Felps, Will; Jones, Thomas M; Berman, Shawn L
2016-01-01
Extensive interdisciplinary literatures have built on the seminal spatial dilemmas model, which depicts the evolution of cooperation on regular lattices, with strategies propagating locally by relative fitness. In this model agents may cooperate with neighbors, paying an individual cost to enhance their collective welfare, or they may exploit cooperative neighbors and diminish collective welfare. Recent research has extended the model in numerous ways, incorporating behavioral noise, implementing other network topologies or adaptive networks, and employing alternative dynamics of replication. Although the underlying dilemma arises from two distinct dimensions-the gains for exploiting cooperative partners (Greed) and the cost of cooperating with exploitative partners (Fear)-most work following from the spatial dilemmas model has argued or assumed that the dilemma can be represented with a single parameter: This research has typically examined Greed or Fear in isolation, or a composite such as the K-index of Cooperation or the ratio of the benefit to cost of cooperation. We challenge this claim on theoretical grounds-showing that embedding interaction in networks generally leads Greed and Fear to have divergent, interactive, and highly nonlinear effects on cooperation at the macro level, even when individuals respond identically to Greed and Fear. Using computational experiments, we characterize both dynamic local behavior and long run outcomes across regions of this space. We also simulate interventions to investigate changes of Greed and Fear over time, showing how model behavior changes asymmetrically as boundaries in payoff space are crossed, leading some interventions to have irreversible effects on cooperation. We then replicate our experiments on inter-organizational network data derived from links through shared directors among 2,400 large US corporations, thus demonstrating our findings for Greed and Fear on a naturally-occurring network. In closing, we discuss implications of our main findings regarding Greed and Fear for the problem of cooperation on inter-organizational networks.
Greed and Fear in Network Reciprocity: Implications for Cooperation among Organizations
Kitts, James A.; Leal, Diego F.; Felps, Will; Jones, Thomas M.; Berman, Shawn L.
2016-01-01
Extensive interdisciplinary literatures have built on the seminal spatial dilemmas model, which depicts the evolution of cooperation on regular lattices, with strategies propagating locally by relative fitness. In this model agents may cooperate with neighbors, paying an individual cost to enhance their collective welfare, or they may exploit cooperative neighbors and diminish collective welfare. Recent research has extended the model in numerous ways, incorporating behavioral noise, implementing other network topologies or adaptive networks, and employing alternative dynamics of replication. Although the underlying dilemma arises from two distinct dimensions—the gains for exploiting cooperative partners (Greed) and the cost of cooperating with exploitative partners (Fear)–most work following from the spatial dilemmas model has argued or assumed that the dilemma can be represented with a single parameter: This research has typically examined Greed or Fear in isolation, or a composite such as the K-index of Cooperation or the ratio of the benefit to cost of cooperation. We challenge this claim on theoretical grounds—showing that embedding interaction in networks generally leads Greed and Fear to have divergent, interactive, and highly nonlinear effects on cooperation at the macro level, even when individuals respond identically to Greed and Fear. Using computational experiments, we characterize both dynamic local behavior and long run outcomes across regions of this space. We also simulate interventions to investigate changes of Greed and Fear over time, showing how model behavior changes asymmetrically as boundaries in payoff space are crossed, leading some interventions to have irreversible effects on cooperation. We then replicate our experiments on inter-organizational network data derived from links through shared directors among 2,400 large US corporations, thus demonstrating our findings for Greed and Fear on a naturally-occurring network. In closing, we discuss implications of our main findings regarding Greed and Fear for the problem of cooperation on inter-organizational networks. PMID:26863540
A decentralized mechanism for improving the functional robustness of distribution networks.
Shi, Benyun; Liu, Jiming
2012-10-01
Most real-world distribution systems can be modeled as distribution networks, where a commodity can flow from source nodes to sink nodes through junction nodes. One of the fundamental characteristics of distribution networks is the functional robustness, which reflects the ability of maintaining its function in the face of internal or external disruptions. In view of the fact that most distribution networks do not have any centralized control mechanisms, we consider the problem of how to improve the functional robustness in a decentralized way. To achieve this goal, we study two important problems: 1) how to formally measure the functional robustness, and 2) how to improve the functional robustness of a network based on the local interaction of its nodes. First, we derive a utility function in terms of network entropy to characterize the functional robustness of a distribution network. Second, we propose a decentralized network pricing mechanism, where each node need only communicate with its distribution neighbors by sending a "price" signal to its upstream neighbors and receiving "price" signals from its downstream neighbors. By doing so, each node can determine its outflows by maximizing its own payoff function. Our mathematical analysis shows that the decentralized pricing mechanism can produce results equivalent to those of an ideal centralized maximization with complete information. Finally, to demonstrate the properties of our mechanism, we carry out a case study on the U.S. natural gas distribution network. The results validate the convergence and effectiveness of our mechanism when comparing it with an existing algorithm.
RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG
2015-01-01
The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425
Differential C3NET reveals disease networks of direct physical interactions
2011-01-01
Background Genes might have different gene interactions in different cell conditions, which might be mapped into different networks. Differential analysis of gene networks allows spotting condition-specific interactions that, for instance, form disease networks if the conditions are a disease, such as cancer, and normal. This could potentially allow developing better and subtly targeted drugs to cure cancer. Differential network analysis with direct physical gene interactions needs to be explored in this endeavour. Results C3NET is a recently introduced information theory based gene network inference algorithm that infers direct physical gene interactions from expression data, which was shown to give consistently higher inference performances over various networks than its competitors. In this paper, we present, DC3net, an approach to employ C3NET in inferring disease networks. We apply DC3net on a synthetic and real prostate cancer datasets, which show promising results. With loose cutoffs, we predicted 18583 interactions from tumor and normal samples in total. Although there are no reference interactions databases for the specific conditions of our samples in the literature, we found verifications for 54 of our predicted direct physical interactions from only four of the biological interaction databases. As an example, we predicted that RAD50 with TRF2 have prostate cancer specific interaction that turned out to be having validation from the literature. It is known that RAD50 complex associates with TRF2 in the S phase of cell cycle, which suggests that this predicted interaction may promote telomere maintenance in tumor cells in order to allow tumor cells to divide indefinitely. Our enrichment analysis suggests that the identified tumor specific gene interactions may be potentially important in driving the growth in prostate cancer. Additionally, we found that the highest connected subnetwork of our predicted tumor specific network is enriched for all proliferation genes, which further suggests that the genes in this network may serve in the process of oncogenesis. Conclusions Our approach reveals disease specific interactions. It may help to make experimental follow-up studies more cost and time efficient by prioritizing disease relevant parts of the global gene network. PMID:21777411
Uhart, Marina; Flores, Gabriel; Bustos, Diego M.
2016-01-01
Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976
Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J
2018-01-01
Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.
Granifo, Juan; Suárez, Sebastián; Boubeta, Fernando; Baggio, Ricardo
2017-12-01
We report herein the synthesis, crystallographic analysis and a study of the noncovalent interactions observed in the new 4'-substituted terpyridine-based derivative bis[4'-(isoquinolin-2-ium-4-yl)-2,2':6',2''-terpyridine-1,1''-diium] tris[tetrachloridozincate(II)] monohydrate, (C 24 H 19 N 4 ) 2 [ZnCl 4 ] 3 ·H 2 O or (ITPH 3 ) 2 [ZnCl 4 ] 3 ·H 2 O, where (ITPH 3 ) 3+ is the triply protonated cation derived from 4'-(isoquinolin-4-yl)-2,2':6',2''-terpyridine (ITP) [Granifo et al. (2016). Acta Cryst. C72, 932-938]. The (ITPH 3 ) 3+ cation presents a number of interesting similarities and differences compared with its neutral ITP relative, mainly in the role fulfilled in the packing arrangement by the profuse set of D-H...A [D (donor) = C, N or O; A (acceptor) = O or Cl], π-π and anion...π noncovalent interactions present. We discuss these interactions in two different complementary ways, viz. using a point-to-point approach in the light of Bader's theory of Atoms In Molecules (AIM), analyzing the individual significance of each interaction, and in a more `global' analysis, making use of the Hirshfeld surfaces and the associated enrichment ratio (ER) approach, evaluating the surprisingly large co-operative effect of the superabundant weaker contacts.
Oguz, Cihan; Sen, Shurjo K; Davis, Adam R; Fu, Yi-Ping; O'Donnell, Christopher J; Gibbons, Gary H
2017-10-26
One goal of personalized medicine is leveraging the emerging tools of data science to guide medical decision-making. Achieving this using disparate data sources is most daunting for polygenic traits. To this end, we employed random forests (RFs) and neural networks (NNs) for predictive modeling of coronary artery calcium (CAC), which is an intermediate endo-phenotype of coronary artery disease (CAD). Model inputs were derived from advanced cases in the ClinSeq®; discovery cohort (n=16) and the FHS replication cohort (n=36) from 89 th -99 th CAC score percentile range, and age-matched controls (ClinSeq®; n=16, FHS n=36) with no detectable CAC (all subjects were Caucasian males). These inputs included clinical variables and genotypes of 56 single nucleotide polymorphisms (SNPs) ranked highest in terms of their nominal correlation with the advanced CAC state in the discovery cohort. Predictive performance was assessed by computing the areas under receiver operating characteristic curves (ROC-AUC). RF models trained and tested with clinical variables generated ROC-AUC values of 0.69 and 0.61 in the discovery and replication cohorts, respectively. In contrast, in both cohorts, the set of SNPs derived from the discovery cohort were highly predictive (ROC-AUC ≥0.85) with no significant change in predictive performance upon integration of clinical and genotype variables. Using the 21 SNPs that produced optimal predictive performance in both cohorts, we developed NN models trained with ClinSeq®; data and tested with FHS data and obtained high predictive accuracy (ROC-AUC=0.80-0.85) with several topologies. Several CAD and "vascular aging" related biological processes were enriched in the network of genes constructed from the predictive SNPs. We identified a molecular network predictive of advanced coronary calcium using genotype data from ClinSeq®; and FHS cohorts. Our results illustrate that machine learning tools, which utilize complex interactions between disease predictors intrinsic to the pathogenesis of polygenic disorders, hold promise for deriving predictive disease models and networks.
Chand, Ganesh B; Wu, Junjie; Hajjar, Ihab; Qiu, Deqiang
2017-09-01
Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cognition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience network, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-executive network (Mann-Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p < 0.05). Furthermore, the degree of disruption in salience network control correlated significantly with lower overall cognitive performance measured by Montreal Cognitive Assessment (r = 0.295; p < 0.05). This study suggests that a disruption of the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.
Topology association analysis in weighted protein interaction network for gene prioritization
NASA Astrophysics Data System (ADS)
Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi
2016-11-01
Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.
Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
Caglar, Mehmet Umut; Pal, Ranadip
2013-01-01
Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.
The ‘who’ and ‘what’ of #diabetes on Twitter
Beguerisse-Díaz, Mariano; McLennan, Amy K.; Garduño-Hernández, Guillermo; Barahona, Mauricio; Ulijaszek, Stanley J.
2017-01-01
Social media are being increasingly used for health promotion, yet the landscape of users, messages and interactions in such fora is poorly understood. Studies of social media and diabetes have focused mostly on patients, or public agencies addressing it, but have not looked broadly at all of the participants or the diversity of content they contribute. We study Twitter conversations about diabetes through the systematic analysis of 2.5 million tweets collected over 8 months and the interactions between their authors. We address three questions. (1) What themes arise in these tweets? (2) Who are the most influential users? (3) Which type of users contribute to which themes? We answer these questions using a mixed-methods approach, integrating techniques from anthropology, network science and information retrieval such as thematic coding, temporal network analysis and community and topic detection. Diabetes-related tweets fall within broad thematic groups: health information, news, social interaction and commercial. At the same time, humorous messages and references to popular culture appear consistently, more than any other type of tweet. We classify authors according to their temporal ‘hub’ and ‘authority’ scores. Whereas the hub landscape is diffuse and fluid over time, top authorities are highly persistent across time and comprise bloggers, advocacy groups and NGOs related to diabetes, as well as for-profit entities without specific diabetes expertise. Top authorities fall into seven interest communities as derived from their Twitter follower network. Our findings have implications for public health professionals and policy makers who seek to use social media as an engagement tool and to inform policy design. PMID:29942579
Sex differences in the association of social network satisfaction and the risk for type 2 diabetes.
Lukaschek, K; Baumert, J; Kruse, J; Meisinger, C; Ladwig, K H
2017-05-02
The role of an individual's social network satisfaction (SNS) in the association of social isolation or living alone and incident type 2 diabetes (T2D) is unclear. We assessed the association of SNS with incident T2D and analysed potential modifications of the SNS-T2D association by social isolation or living alone. The study population (N = 6839 aged 25-74 years without diabetes at baseline) derived from the prospective population-based MONICA/KORA study (1989-2009). Social network satisfaction was assessed by a single item. Cox regression was used to estimate hazard ratios (HR) for SNS separately in men and women. In men with low SNS, risk for incident T2D increased significantly (HR: 2.15, 95% CI: 1.33-3.48, p value 0.002). After additional adjustments for social isolation or living alone, the risk for incident T2D was still significant, albeit less pronounced (HRs 1.85 or 2.05, p values 0.001 or 0.004). The interaction analysis showed an increased T2D risk effect for low SNS compared to high SNS in women living in a partnership (HR: 2.11, 95% CI: 1.00-4.44, p value for interaction: 0.047) and for moderate SNS compared to high SNS in socially connected women (1.56, 1.01-2.39, 0.010). Further research is needed to address the complexities of the perception of social relationships and social interactions, or interdependence, especially when another major public health issue such as T2D is concerned.
PAXIP1 potentiates the combination of WEE1 inhibitor AZD1775 and platinum agents in lung cancer
Jhuraney, Ankita; Woods, Nicholas T.; Wright, Gabriela; Rix, Lily; Kinose, Fumi; Kroeger, Jodi L.; Remily-Wood, Elizabeth; Cress, W. Douglas; Koomen, John M.; Brantley, Stephen G.; Gray, Jhanelle E.; Haura, Eric B.; Rix, Uwe; Monteiro, Alvaro N.
2016-01-01
The DNA damage response (DDR) involves a complex network of signaling events mediated by modular protein domains such as the BRCT (BRCA1 C-terminal) domain. Thus, proteins that interact with BRCT domains and are a part of the DDR constitute potential targets for sensitization to DNA damaging chemotherapy agents. We performed a pharmacological screen to evaluate seventeen kinases, identified in a BRCT-mediated interaction network as targets to enhance platinum-based chemotherapy in lung cancer. Inhibition of mitotic kinase WEE1 was found to have the most effective response in combination with platinum compounds in lung cancer cell lines. In the BRCT-mediated interaction network, WEE1 was found in complex with PAXIP1, a protein containing six BRCT domains involved in transcription and in the cellular response to DNA damage. We show that PAXIP1 BRCT domains regulate WEE1-mediated phosphorylation of CDK1. Further, ectopic expression of PAXIP1 promotes enhanced caspase 3-mediated apoptosis in cells treated with WEE1 inhibitor AZD1775 (formerly, MK-1775) and cisplatin compared with cells treated with AZD1775 alone. Cell lines and patient-derived xenograft models expressing both PAXIP1 and WEE1 exhibited synergistic effects of AZD1775 and cisplatin. In summary, PAXIP1 is involved in sensitizing lung cancer cells to the WEE1 inhibitor AZD1775 in combination with platinum-based treatment. We propose that WEE1 and PAXIP1 levels may be used as mechanism-based biomarkers of response when WEE1 inhibitor AZD1775 is combined with DNA damaging agents. PMID:27196765
Wigman, J T W; van Os, J; Borsboom, D; Wardenaar, K J; Epskamp, S; Klippel, A; Viechtbauer, W; Myin-Germeys, I; Wichers, M
2015-08-01
It has been suggested that the structure of psychopathology is best described as a complex network of components that interact in dynamic ways. The goal of the present paper was to examine the concept of psychopathology from a network perspective, combining complementary top-down and bottom-up approaches using momentary assessment techniques. A pooled Experience Sampling Method (ESM) dataset of three groups (individuals with a diagnosis of depression, psychotic disorder or no diagnosis) was used (pooled N = 599). The top-down approach explored the network structure of mental states across different diagnostic categories. For this purpose, networks of five momentary mental states ('cheerful', 'content', 'down', 'insecure' and 'suspicious') were compared between the three groups. The complementary bottom-up approach used principal component analysis to explore whether empirically derived network structures yield meaningful higher order clusters. Individuals with a clinical diagnosis had more strongly connected moment-to-moment network structures, especially the depressed group. This group also showed more interconnections specifically between positive and negative mental states than the psychotic group. In the bottom-up approach, all possible connections between mental states were clustered into seven main components that together captured the main characteristics of the network dynamics. Our combination of (i) comparing network structure of mental states across three diagnostically different groups and (ii) searching for trans-diagnostic network components across all pooled individuals showed that these two approaches yield different, complementary perspectives in the field of psychopathology. The network paradigm therefore may be useful to map transdiagnostic processes.
Karayianni, Katerina N; Grimaldi, Keith A; Nikita, Konstantina S; Valavanis, Ioannis K
2015-01-01
This paper aims to enlighten the complex etiology beneath obesity by analysing data from a large nutrigenetics study, in which nutritional and genetic factors associated with obesity were recorded for around two thousand individuals. In our previous work, these data have been analysed using artificial neural network methods, which identified optimised subsets of factors to predict one's obesity status. These methods did not reveal though how the selected factors interact with each other in the obtained predictive models. For that reason, parallel Multifactor Dimensionality Reduction (pMDR) was used here to further analyse the pre-selected subsets of nutrigenetic factors. Within pMDR, predictive models using up to eight factors were constructed, further reducing the input dimensionality, while rules describing the interactive effects of the selected factors were derived. In this way, it was possible to identify specific genetic variations and their interactive effects with particular nutritional factors, which are now under further study.
How plants connect pollination and herbivory networks and their contribution to community stability.
Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin
2016-04-01
Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.
Sase, Takumi; Katori, Yuichi; Komuro, Motomasa; Aihara, Kazuyuki
2017-01-01
We investigate a discrete-time network model composed of excitatory and inhibitory neurons and dynamic synapses with the aim at revealing dynamical properties behind oscillatory phenomena possibly related to brain functions. We use a stochastic neural network model to derive the corresponding macroscopic mean field dynamics, and subsequently analyze the dynamical properties of the network. In addition to slow and fast oscillations arising from excitatory and inhibitory networks, respectively, we show that the interaction between these two networks generates phase-amplitude cross-frequency coupling (CFC), in which multiple different frequency components coexist and the amplitude of the fast oscillation is modulated by the phase of the slow oscillation. Furthermore, we clarify the detailed properties of the oscillatory phenomena by applying the bifurcation analysis to the mean field model, and accordingly show that the intermittent and the continuous CFCs can be characterized by an aperiodic orbit on a closed curve and one on a torus, respectively. These two CFC modes switch depending on the coupling strength from the excitatory to inhibitory networks, via the saddle-node cycle bifurcation of a one-dimensional torus in map (MT1SNC), and may be associated with the function of multi-item representation. We believe that the present model might have potential for studying possible functional roles of phase-amplitude CFC in the cerebral cortex. PMID:28424606
Systems-Level Analysis of Innate Immunity
Zak, Daniel E.; Tam, Vincent C.; Aderem, Alan
2014-01-01
Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology. PMID:24655298
Cellular and molecular specificity of pituitary gland physiology.
Perez-Castro, Carolina; Renner, Ulrich; Haedo, Mariana R; Stalla, Gunter K; Arzt, Eduardo
2012-01-01
The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.
Rheological Properties of Gels from Pyrene Based Low Molecular Weight Gelators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leivo, Kimmo T.; Hahma, Arno P.
2008-07-07
Gels of pyrene derived low molecular weight organogelators (LMOGs) in primary alcohols have been characterized by rheometry and scanning electron microscopy. Total gelator concentration was 1-2.7 % w/w depending on the solvent and the gelator, including equimolar amounts of the gelator and 2,4,7-trinitrofluorenone (TNF), which is necessary for gelation. Thermoreversible and strongly shear thinning gels were achieved as the two components interact non-covalently to form a gel network. A qualitative correlation between the rheological properties and the nanoscale gel structure were found.
Rheological Properties of Gels from Pyrene Based Low Molecular Weight Gelators
NASA Astrophysics Data System (ADS)
Leivo, Kimmo T.; Hahma, Arno P.
2008-07-01
Gels of pyrene derived low molecular weight organogelators (LMOGs) in primary alcohols have been characterized by rheometry and scanning electron microscopy. Total gelator concentration was 1-2.7 % w/w depending on the solvent and the gelator, including equimolar amounts of the gelator and 2,4,7-trinitrofluorenone (TNF), which is necessary for gelation. Thermoreversible and strongly shear thinning gels were achieved as the two components interact non-covalently to form a gel network. A qualitative correlation between the rheological properties and the nanoscale gel structure were found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Cindy
2015-07-17
The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.
Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P. C.; Livesey, Frederick J.
2015-01-01
A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144
Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J
2015-09-15
A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Bruun, Jesper; Brewe, Eric
2013-12-01
The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (p<0.001) between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with future grades. In the network composed solely of noncontent related social interactions, these patterns of correlation are maintained in the sense that these network measures show the highest correlations and maintain their internal ranking. Using hierarchical linear regression, we find that a linear model that adds the network measures hide and target entropy, calculated on the ICS network, significantly improves a base model that uses only the FCI pretest scores from the beginning of the semester. Though one should not infer causality from these results, they do point to how social interactions in class are intertwined with academic interactions. We interpret this as an integral part of learning, and suggest that physics is a robust example.
Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion
Žitnik, Marinka; Zupan, Blaž
2015-01-01
Abstract Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions with greater precision. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, in this way completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to missing data values. We introduce a new interaction data imputation method called network-guided matrix completion (NG-MC). The core part of NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge presented as a collection of gene networks. NG-MC assumes that interactions are transitive, such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it propagates latent interaction profiles through each of the networks and updates gene network weights toward improved prediction. In a study with four different E-MAP data assays and considered protein–protein interaction and gene ontology similarity networks, NG-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allowed NG-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches. PMID:25658751
Dynamic Creative Interaction Networks and Team Creativity Evolution: A Longitudinal Study
ERIC Educational Resources Information Center
Jiang, Hui; Zhang, Qing-Pu; Zhou, Yang
2018-01-01
To assess the dynamical effects of creative interaction networks on team creativity evolution, this paper elaborates a theoretical framework that links the key elements of creative interaction networks, including node, edge and network structure, to creativity in teams. The process of team creativity evolution is divided into four phases,…
Functional Interaction Network Construction and Analysis for Disease Discovery.
Wu, Guanming; Haw, Robin
2017-01-01
Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.
Robustness Elasticity in Complex Networks
Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu
2012-01-01
Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060
Martínez-Ballesta, Maria Del Carmen; Pérez-Sánchez, Horacio; Moreno, Diego A; Carvajal, Micaela
2016-07-01
Their biodegradable nature and ability to target cells make biological vesicles potential nanocarriers for bioactives delivery. In this work, the interaction between proteoliposomes enriched in aquaporins derived from broccoli plants and the glucosinolates was evaluated. The vesicles were stored at different temperatures and their integrity was studied. Determination of glucosinolates, showed that indolic glucosinolates were more sensitive to degradation in aqueous solution than aliphatic glucosinolates. Glucoraphanin was stabilized by leaf and root proteoliposomes at 25°C through their interaction with aquaporins. An extensive hydrogen bond network, including different aquaporin residues, and hydrophobic interactions, as a consequence of the interaction between the linear alkane chain of glucoraphanin and Glu31 and Leu34 protein residues, were established as the main stabilizing elements. Combined our results showed that plasma membrane vesicles from leaf and root tissues of broccoli plants may be considered as suitable carriers for glucosinolate which stabilization can be potentially attributed to aquaporins. Copyright © 2016 Elsevier B.V. All rights reserved.
Fujimori, Shigeo; Hirai, Naoya; Ohashi, Hiroyuki; Masuoka, Kazuyo; Nishikimi, Akihiko; Fukui, Yoshinori; Washio, Takanori; Oshikubo, Tomohiro; Yamashita, Tatsuhiro; Miyamoto-Sato, Etsuko
2012-01-01
Next-generation sequencing (NGS) has been applied to various kinds of omics studies, resulting in many biological and medical discoveries. However, high-throughput protein-protein interactome datasets derived from detection by sequencing are scarce, because protein-protein interaction analysis requires many cell manipulations to examine the interactions. The low reliability of the high-throughput data is also a problem. Here, we describe a cell-free display technology combined with NGS that can improve both the coverage and reliability of interactome datasets. The completely cell-free method gives a high-throughput and a large detection space, testing the interactions without using clones. The quantitative information provided by NGS reduces the number of false positives. The method is suitable for the in vitro detection of proteins that interact not only with the bait protein, but also with DNA, RNA and chemical compounds. Thus, it could become a universal approach for exploring the large space of protein sequences and interactome networks. PMID:23056904
Characterizing Topology of Probabilistic Biological Networks.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-09-06
Biological interactions are often uncertain events, that may or may not take place with some probability. Existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. Here, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. We develop a method that accurately describes the degree distribution of such networks. We also extend our method to accurately compute the joint degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. It also helps us find an adequate mathematical model using maximum likelihood estimation. Our results demonstrate that power law and log-normal models best describe degree distributions for probabilistic networks. The inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected.
Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor
2016-11-30
Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).
Topology of molecular interaction networks.
Winterbach, Wynand; Van Mieghem, Piet; Reinders, Marcel; Wang, Huijuan; de Ridder, Dick
2013-09-16
Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks.Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs.Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.
Topology of molecular interaction networks
2013-01-01
Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks. Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs. Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes. Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further. PMID:24041013
Sosa, Sebastian; Zhang, Peng; Cabanes, Guénaël
2017-06-01
This study applied a temporal social network analysis model to describe three affiliative social networks (allogrooming, sleep in contact, and triadic interaction) in a non-human primate species, Macaca sylvanus. Three main social mechanisms were examined to determine interactional patterns among group members, namely preferential attachment (i.e., highly connected individuals are more likely to form new connections), triadic closure (new connections occur via previous close connections), and homophily (individuals interact preferably with others with similar attributes). Preferential attachment was only observed for triadic interaction network. Triadic closure was significant in allogrooming and triadic interaction networks. Finally, gender homophily was seasonal for allogrooming and sleep in contact networks, and observed in each period for triadic interaction network. These individual-based behaviors are based on individual reactions, and their analysis can shed light on the formation of the affiliative networks determining ultimate coalition networks, and how these networks may evolve over time. A focus on individual behaviors is necessary for a global interactional approach to understanding social behavior rules and strategies. When combined, these social processes could make animal social networks more resilient, thus enabling them to face drastic environmental changes. This is the first study to pinpoint some of the processes underlying the formation of a social structure in a non-human primate species, and identify common mechanisms with humans. The approach used in this study provides an ideal tool for further research seeking to answer long-standing questions about social network dynamics. © 2017 Wiley Periodicals, Inc.
Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein.
Leone, Serena; Picone, Delia
2016-01-01
MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.
Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.
Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M
2017-01-01
Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms and genes that lead to complex phenotypes, like meat quality, and the nutritional and healthfulness value of beef. Improvements in genome annotation and knowledge of gene function will contribute to more comprehensive analyses that will advance our ability to dissect the complex architecture of complex traits.
A Bayesian network approach to the database search problem in criminal proceedings
2012-01-01
Background The ‘database search problem’, that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method’s graphical environment, along with its computational and probabilistic architectures, represents a rich package that offers analysts and discussants with additional modes of interaction, concise representation, and coherent communication. PMID:22849390
Can the default-mode network be described with one spatial-covariance network?
Habeck, Christian; Steffener, Jason; Rakitin, Brian; Stern, Yaakov
2012-01-01
The default-mode network (DMN) has become a well accepted concept in cognitive and clinical neuroscience over the last decade, and perusal of the recent literature attests to a stimulating research field of cognitive and diagnostic applications (for example, (Andrews-Hanna, Reidler, Huang, & Buckner, 2010; Koch et al., 2010; Sheline, Barch et al., 2009; Sheline, Raichle et al., 2009; Uddin et al., 2008; Uddin, Kelly, Biswal, Castellanos, & Milham, 2009; Weng et al., 2009; Yan et al., 2009)). However, a formal definition of what exactly constitutes a functional brain network is difficult to come by. In recent contributions, some researchers argue that the DMN is best understood as multiple interacting subsystems (Buckner, Andrews-Hanna, & Schacter, 2008) and have explored modular components of the DMN that have different functional specialization and could to some extent be identified separately (Fox et al., 2005; Harrison et al., 2008; Uddin et al., 2009). Such conception of modularity seems to imply an opposite construct of a ‘unified whole’, but it is difficult to locate proponents of the idea of a DMN who are supplying constraints that can be brought to bear on data in rigorous tests. Our aim in this paper is to present a principled way of deriving a single covariance pattern as the neural substrate of the DMN, test to what extent its behavior tracks the coupling strength between critical seed regions, and investigate to what extent our stricter concept of a network is consistent with the already established findings about the DMN in the literature. We show that our approach leads to a functional covariance pattern whose pattern scores are a good proxy for the integrity of the connections between a medioprefrontal, posterior cingulate and parietal seed regions. Our derived DMN network thus has potential for diagnostic applications that are simpler to perform than computation of pairwise correlational strengths or seed maps. PMID:22668988
Multiple tipping points and optimal repairing in interacting networks
Majdandzic, Antonio; Braunstein, Lidia A.; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Eugene Stanley, H.; Havlin, Shlomo
2016-01-01
Systems composed of many interacting dynamical networks—such as the human body with its biological networks or the global economic network consisting of regional clusters—often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two ‘forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model. PMID:26926803
CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks
Baumbach, Jan
2007-01-01
Background Detailed information on DNA-binding transcription factors (the key players in the regulation of gene expression) and on transcriptional regulatory interactions of microorganisms deduced from literature-derived knowledge, computer predictions and global DNA microarray hybridization experiments, has opened the way for the genome-wide analysis of transcriptional regulatory networks. The large-scale reconstruction of these networks allows the in silico analysis of cell behavior in response to changing environmental conditions. We previously published CoryneRegNet, an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. Initially, it was designed to provide methods for the analysis and visualization of the gene regulatory network of Corynebacterium glutamicum. Results Now we introduce CoryneRegNet release 4.0, which integrates data on the gene regulatory networks of 4 corynebacteria, 2 mycobacteria and the model organism Escherichia coli K12. As the previous versions, CoryneRegNet provides a web-based user interface to access the database content, to allow various queries, and to support the reconstruction, analysis and visualization of regulatory networks at different hierarchical levels. In this article, we present the further improved database content of CoryneRegNet along with novel analysis features. The network visualization feature GraphVis now allows the inter-species comparisons of reconstructed gene regulatory networks and the projection of gene expression levels onto that networks. Therefore, we added stimulon data directly into the database, but also provide Web Service access to the DNA microarray analysis platform EMMA. Additionally, CoryneRegNet now provides a SOAP based Web Service server, which can easily be consumed by other bioinformatics software systems. Stimulons (imported from the database, or uploaded by the user) can be analyzed in the context of known transcriptional regulatory networks to predict putative contradictions or further gene regulatory interactions. Furthermore, it integrates protein clusters by means of heuristically solving the weighted graph cluster editing problem. In addition, it provides Web Service based access to up to date gene annotation data from GenDB. Conclusion The release 4.0 of CoryneRegNet is a comprehensive system for the integrated analysis of procaryotic gene regulatory networks. It is a versatile systems biology platform to support the efficient and large-scale analysis of transcriptional regulation of gene expression in microorganisms. It is publicly available at . PMID:17986320
Zhou, Jie-Bin; Zheng, Ying-Lin; Zeng, Yi-Xuan; Wang, Jia-Wei; Pei, Zhong; Pang, Ji-Yan
2018-03-25
Ageing is a complex but universal phenomenon that progressively challenges the homeostasis network and finally leads to the dysfunction of organisms and even death. Previous studies demonstrated that xyloketal B and its derivatives, a series of marine novel ketone compounds, possessed unique antioxidative effects on endothelial and neuronal oxidative injuries. In this study, we examined the effects of xyloketal derivatives on extending lifespan and healthspan of Caenorhabditis elegans. The results showed that most selected xyloketals could protect Caenorhabditis elegans against heat stress and extend the lifespan of worms. Compound 15, a benzo-1, 3-oxazine xyloketal derivative, possessed most potent effect in anti-heat stress assay and significantly attenuated ageing-related decrease of pumping and bending of the worms in healthspan assay. In addition, the beneficial effect of 15 was abolished in PS3551 worms, a strain that possesses non-functional heat shock transcription factor-1 (HSF-1). Furthermore, 15 increased the expression of heat shock protein 70 (HSP70), a downstream molecular chaperone of HSF-1. These results indicated that HSF-1 might contribute to the protective effect of this compound in Caenorhabditis elegans ageing. Molecular docking studies suggested that these xyloketal derivatives were bound to the DNA binding domain of HSF-1, promoted the conformation of HSF-1, thus strengthened the interaction between the HSF-1 and related DNA. ALA-67, ASN-74 and LYS-80 of binding region might be the key amino residues during the interaction. Finally, compound 15 could reduce the paralysis of the CL4176 worms, a transgenic strain expressing human Aβ 3-42 under a temperature-inducible system. Collectively, these data indicate that xyloketals have potential implications for further evaluation in anti-ageing studies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
NASA Astrophysics Data System (ADS)
Kachan, Devin Michael
Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain-stiffening behavior and compare this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory to account for coordination number inhomogeneities and predict a breakdown of universal scaling near the critical point at sufficiently high disorder, and discuss the utility for this type of model in describing biopolymer networks.
Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk
2014-10-01
The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.
Nariai, N; Kim, S; Imoto, S; Miyano, S
2004-01-01
We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.
Food Web Designer: a flexible tool to visualize interaction networks.
Sint, Daniela; Traugott, Michael
Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator-prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.
López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor
2014-01-01
Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790
Maximally informative pairwise interactions in networks
Fitzgerald, Jeffrey D.; Sharpee, Tatyana O.
2010-01-01
Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes. PMID:19905153
ERIC Educational Resources Information Center
Bozkurt, Aras; Karadeniz, Abdulkadir; Kocdar, Serpil
2017-01-01
The advent of Web 2.0 technologies transformed online networks into interactive spaces in which user-generated content has become the core material. With the possibilities that emerged from Web 2.0, social networking sites became very popular. The capability of social networking sites promises opportunities for communication and interaction,…
Interaction Networks: Generating High Level Hints Based on Network Community Clustering
ERIC Educational Resources Information Center
Eagle, Michael; Johnson, Matthew; Barnes, Tiffany
2012-01-01
We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…
ERIC Educational Resources Information Center
Network Planning Paper, 1983
1983-01-01
At a 2-day meeting in October 1982, the Library of Congress Network Advisory Committee (NAC) members discussed the complex issues involved in public and private sector interactions and their relationship to networking activities. The report, "Public Sector/Private Sector Interaction in Providing Information Services," prepared by the…
A global interaction network maps a wiring diagram of cellular function
Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles
2017-01-01
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008
Macromolecular networks and intelligence in microorganisms
Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey
2014-01-01
Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076
Enhancing the Functional Content of Eukaryotic Protein Interaction Networks
Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean
2014-01-01
Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489
Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H
2003-01-01
Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935
Revisiting tests for neglected nonlinearity using artificial neural networks.
Cho, Jin Seo; Ishida, Isao; White, Halbert
2011-05-01
Tests for regression neglected nonlinearity based on artificial neural networks (ANNs) have so far been studied by separately analyzing the two ways in which the null of regression linearity can hold. This implies that the asymptotic behavior of general ANN-based tests for neglected nonlinearity is still an open question. Here we analyze a convenient ANN-based quasi-likelihood ratio statistic for testing neglected nonlinearity, paying careful attention to both components of the null. We derive the asymptotic null distribution under each component separately and analyze their interaction. Somewhat remarkably, it turns out that the previously known asymptotic null distribution for the type 1 case still applies, but under somewhat stronger conditions than previously recognized. We present Monte Carlo experiments corroborating our theoretical results and showing that standard methods can yield misleading inference when our new, stronger regularity conditions are violated.
NASA Astrophysics Data System (ADS)
Alani, Harith; Szomszor, Martin; Cattuto, Ciro; van den Broeck, Wouter; Correndo, Gianluca; Barrat, Alain
Social interactions are one of the key factors to the success of conferences and similar community gatherings. This paper describes a novel application that integrates data from the semantic web, online social networks, and a real-world contact sensing platform. This application was successfully deployed at ESWC09, and actively used by 139 people. Personal profiles of the participants were automatically generated using several Web 2.0 systems and semantic academic data sources, and integrated in real-time with face-to-face contact networks derived from wearable sensors. Integration of all these heterogeneous data layers made it possible to offer various services to conference attendees to enhance their social experience such as visualisation of contact data, and a site to explore and connect with other participants. This paper describes the architecture of the application, the services we provided, and the results we achieved in this deployment.
Huett, Alan; Ng, Aylwin; Cao, Zhifang; Kuballa, Petric; Komatsu, Masaaki; Daly, Mark J.; Podolsky, Daniel K.; Xavier, Ramnik J.
2009-01-01
Autophagy is a conserved cellular process required for the removal of defective organelles, protein aggregates, and intracellular pathogens. We used a network analysis strategy to identify novel human autophagy components based upon the yeast interactome centered on the core yeast autophagy proteins. This revealed the potential involvement of 14 novel mammalian genes in autophagy, several of which have known or predicted roles in membrane organization or dynamics. We selected one of these membrane interactors, FNBP1L (formin binding protein 1-like), an F-BAR-containing protein (also termed Toca-1), for further study based upon a predicted interaction with ATG3. We confirmed the FNBP1L/ATG3 interaction biochemically and mapped the FNBP1L domains responsible. Using a functional RNA interference approach, we determined that FNBP1L is essential for autophagy of the intracellular pathogen Salmonella enterica serovar Typhimurium and show that the autophagy process serves to restrict the growth of intracellular bacteria. However, FNBP1L appears dispensable for other forms of autophagy induced by serum starvation or rapamycin. We present a model where FNBP1L is essential for autophagy of intracellular pathogens and identify FNBP1L as a differentially used molecule in specific autophagic contexts. By using network biology to derive functional biological information, we demonstrate the utility of integrated genomics to novel molecule discovery in autophagy. PMID:19342671
Topological structures in the equities market network
Leibon, Gregory; Pauls, Scott; Rockmore, Daniel; Savell, Robert
2008-01-01
We present a new method for articulating scale-dependent topological descriptions of the network structure inherent in many complex systems. The technique is based on “partition decoupled null models,” a new class of null models that incorporate the interaction of clustered partitions into a random model and generalize the Gaussian ensemble. As an application, we analyze a correlation matrix derived from 4 years of close prices of equities in the New York Stock Exchange (NYSE) and National Association of Securities Dealers Automated Quotation (NASDAQ). In this example, we expose (i) a natural structure composed of 2 interacting partitions of the market that both agrees with and generalizes standard notions of scale (e.g., sector and industry) and (ii) structure in the first partition that is a topological manifestation of a well-known pattern of capital flow called “sector rotation.” Our approach gives rise to a natural form of multiresolution analysis of the underlying time series that naturally decomposes the basic data in terms of the effects of the different scales at which it clusters. We support our conclusions and show the robustness of the technique with a successful analysis on a simulated network with an embedded topological structure. The equities market is a prototypical complex system, and we expect that our approach will be of use in understanding a broad class of complex systems in which correlation structures are resident.
Robinson, J M; Henderson, W A
2018-01-12
We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.
Astegiano, Julia; Altermatt, Florian; Massol, François
2017-11-13
Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.
Neonatal ghrelin programs development of hypothalamic feeding circuits
Steculorum, Sophie M.; Collden, Gustav; Coupe, Berengere; Croizier, Sophie; Lockie, Sarah; Andrews, Zane B.; Jarosch, Florian; Klussmann, Sven; Bouret, Sebastien G.
2015-01-01
A complex neural network regulates body weight and energy balance, and dysfunction in the communication between the gut and this neural network is associated with metabolic diseases, such as obesity. The stomach-derived hormone ghrelin stimulates appetite through interactions with neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we evaluated the physiological and neurobiological contribution of ghrelin during development by specifically blocking ghrelin action during early postnatal development in mice. Ghrelin blockade in neonatal mice resulted in enhanced ARH neural projections and long-term metabolic effects, including increased body weight, visceral fat, and blood glucose levels and decreased leptin sensitivity. In addition, chronic administration of ghrelin during postnatal life impaired the normal development of ARH projections and caused metabolic dysfunction. Consistent with these observations, direct exposure of postnatal ARH neuronal explants to ghrelin blunted axonal growth and blocked the neurotrophic effect of the adipocyte-derived hormone leptin. Moreover, chronic ghrelin exposure in neonatal mice also attenuated leptin-induced STAT3 signaling in ARH neurons. Collectively, these data reveal that ghrelin plays an inhibitory role in the development of hypothalamic neural circuits and suggest that proper expression of ghrelin during neonatal life is pivotal for lifelong metabolic regulation. PMID:25607843
Top-down network analysis characterizes hidden termite-termite interactions.
Campbell, Colin; Russo, Laura; Marins, Alessandra; DeSouza, Og; Schönrogge, Karsten; Mortensen, David; Tooker, John; Albert, Réka; Shea, Katriona
2016-09-01
The analysis of ecological networks is generally bottom-up, where networks are established by observing interactions between individuals. Emergent network properties have been indicated to reflect the dominant mode of interactions in communities that might be mutualistic (e.g., pollination) or antagonistic (e.g., host-parasitoid communities). Many ecological communities, however, comprise species interactions that are difficult to observe directly. Here, we propose that a comparison of the emergent properties from detail-rich reference communities with known modes of interaction can inform our understanding of detail-sparse focal communities. With this top-down approach, we consider patterns of coexistence between termite species that live as guests in mounds built by other host termite species as a case in point. Termite societies are extremely sensitive to perturbations, which precludes determining the nature of their interactions through direct observations. We perform a literature review to construct two networks representing termite mound cohabitation in a Brazilian savanna and in the tropical forest of Cameroon. We contrast the properties of these cohabitation networks with a total of 197 geographically diverse mutualistic plant-pollinator and antagonistic host-parasitoid networks. We analyze network properties for the networks, perform a principal components analysis (PCA), and compute the Mahalanobis distance of the termite networks to the cloud of mutualistic and antagonistic networks to assess the extent to which the termite networks overlap with the properties of the reference networks. Both termite networks overlap more closely with the mutualistic plant-pollinator communities than the antagonistic host-parasitoid communities, although the Brazilian community overlap with mutualistic communities is stronger. The analysis raises the hypothesis that termite-termite cohabitation networks may be overall mutualistic. More broadly, this work provides support for the argument that cryptic communities may be analyzed via comparison to well-characterized communities.
Influences of brain development and ageing on cortical interactive networks.
Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao
2011-02-01
To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Pires, Mathias M.; Cantor, Maurício; Guimarães, Paulo R.; de Aguiar, Marcus A. M.; dos Reis, Sérgio F.; Coltri, Patricia P.
2015-01-01
The network structure of biological systems provides information on the underlying processes shaping their organization and dynamics. Here we examined the structure of the network depicting protein interactions within the spliceosome, the macromolecular complex responsible for splicing in eukaryotic cells. We show the interactions of less connected spliceosome proteins are nested subsets of the connections of the highly connected proteins. At the same time, the network has a modular structure with groups of proteins sharing similar interaction patterns. We then investigated the role of affinity and specificity in shaping the spliceosome network by adapting a probabilistic model originally designed to reproduce food webs. This food-web model was as successful in reproducing the structure of protein interactions as it is in reproducing interactions among species. The good performance of the model suggests affinity and specificity, partially determined by protein size and the timing of association to the complex, may be determining network structure. Moreover, because network models allow building ensembles of realistic networks while encompassing uncertainty they can be useful to examine the dynamics and vulnerability of intracelullar processes. Unraveling the mechanisms organizing the spliceosome interactions is important to characterize the role of individual proteins on splicing catalysis and regulation. PMID:26443080
Generalised Transfer Functions of Neural Networks
NASA Astrophysics Data System (ADS)
Fung, C. F.; Billings, S. A.; Zhang, H.
1997-11-01
When artificial neural networks are used to model non-linear dynamical systems, the system structure which can be extremely useful for analysis and design, is buried within the network architecture. In this paper, explicit expressions for the frequency response or generalised transfer functions of both feedforward and recurrent neural networks are derived in terms of the network weights. The derivation of the algorithm is established on the basis of the Taylor series expansion of the activation functions used in a particular neural network. This leads to a representation which is equivalent to the non-linear recursive polynomial model and enables the derivation of the transfer functions to be based on the harmonic expansion method. By mapping the neural network into the frequency domain information about the structure of the underlying non-linear system can be recovered. Numerical examples are included to demonstrate the application of the new algorithm. These examples show that the frequency response functions appear to be highly sensitive to the network topology and training, and that the time domain properties fail to reveal deficiencies in the trained network structure.
Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2004-01-01
The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.
NASA Astrophysics Data System (ADS)
Li, Huajiao; Fang, Wei; An, Haizhong; Gao, Xiangyun; Yan, Lili
2016-05-01
Economic networks in the real world are not homogeneous; therefore, it is important to study economic networks with heterogeneous nodes and edges to simulate a real network more precisely. In this paper, we present an empirical study of the one-mode derivative holding-based network constructed by the two-mode affiliation network of two sets of actors using the data of worldwide listed energy companies and their shareholders. First, we identify the primitive relationship in the two-mode affiliation network of the two sets of actors. Then, we present the method used to construct the derivative network based on the shareholding relationship between two sets of actors and the affiliation relationship between actors and events. After constructing the derivative network, we analyze different topological features on the node level, edge level and entire network level and explain the meanings of the different values of the topological features combining the empirical data. This study is helpful for expanding the usage of complex networks to heterogeneous economic networks. For empirical research on the worldwide listed energy stock market, this study is useful for discovering the inner relationships between the nations and regions from a new perspective.
Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.
Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui
2017-01-01
The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caly, Leon; Kassouf, Vicki T.; Moseley, Gregory W.
Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72Lmore » mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications. - Highlights: • HIV-1 Vpr utilizes the microtubule network to traffic towards the nucleus. • Mechanism relies on interaction between Vpr and dynein light chain protein DYNLT1. • Long-term non-progressor derived mutation (F72L) impairs this interaction. • Key residues in the vicinity of F72 contribute to interaction with DYNLT1.« less
Neural network based visualization of collaborations in a citizen science project
NASA Astrophysics Data System (ADS)
Morais, Alessandra M. M.; Santos, Rafael D. C.; Raddick, M. Jordan
2014-05-01
Citizen science projects are those in which volunteers are asked to collaborate in scientific projects, usually by volunteering idle computer time for distributed data processing efforts or by actively labeling or classifying information - shapes of galaxies, whale sounds, historical records are all examples of citizen science projects in which users access a data collecting system to label or classify images and sounds. In order to be successful, a citizen science project must captivate users and keep them interested on the project and on the science behind it, increasing therefore the time the users spend collaborating with the project. Understanding behavior of citizen scientists and their interaction with the data collection systems may help increase the involvement of the users, categorize them accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Users behavior can be actively monitored or derived from their interaction with the data collection systems. Records of the interactions can be analyzed using visualization techniques to identify patterns and outliers. In this paper we present some results on the visualization of more than 80 million interactions of almost 150 thousand users with the Galaxy Zoo I citizen science project. Visualization of the attributes extracted from their behaviors was done with a clustering neural network (the Self-Organizing Map) and a selection of icon- and pixel-based techniques. These techniques allows the visual identification of groups of similar behavior in several different ways.
NASA Astrophysics Data System (ADS)
Verron, E.; Gros, A.
2017-09-01
Most network models for soft materials, e.g. elastomers and gels, are dedicated to idealized materials: all chains admit the same number of Kuhn segments. Nevertheless, such standard models are not appropriate for materials involving multiple networks, and some specific constitutive equations devoted to these materials have been derived in the last few years. In nearly all cases, idealized networks of different chain lengths are assembled following an equal strain assumption; only few papers adopt an equal stress assumption, although some authors argue that such hypothesis would reflect the equilibrium of the different networks in contact. In this work, a full-network model with an arbitrary chain length distribution is derived by considering that chains of different lengths satisfy the equal force assumption in each direction of the unit sphere. The derivation is restricted to non-Gaussian freely jointed chains and to affine deformation of the sphere. Firstly, after a proper definition of the undeformed configuration of the network, we demonstrate that the equal force assumption leads to the equality of a normalized stretch in chains of different lengths. Secondly, we establish that the network with chain length distribution behaves as an idealized full-network of which both chain length and density of are provided by the chain length distribution. This approach is finally illustrated with two examples: the derivation of a new expression for the Young modulus of bimodal interpenetrated polymer networks, and the prediction of the change in fluorescence during deformation of mechanochemically responsive elastomers.
Characterizing protein domain associations by Small-molecule ligand binding
Li, Qingliang; Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.
2012-01-01
Background Protein domains are evolutionarily conserved building blocks for protein structure and function, which are conventionally identified based on protein sequence or structure similarity. Small molecule binding domains are of great importance for the recognition of small molecules in biological systems and drug development. Many small molecules, including drugs, have been increasingly identified to bind to multiple targets, leading to promiscuous interactions with protein domains. Thus, a large scale characterization of the protein domains and their associations with respect to small-molecule binding is of particular interest to system biology research, drug target identification, as well as drug repurposing. Methods We compiled a collection of 13,822 physical interactions of small molecules and protein domains derived from the Protein Data Bank (PDB) structures. Based on the chemical similarity of these small molecules, we characterized pairwise associations of the protein domains and further investigated their global associations from a network point of view. Results We found that protein domains, despite lack of similarity in sequence and structure, were comprehensively associated through binding the same or similar small-molecule ligands. Moreover, we identified modules in the domain network that consisted of closely related protein domains by sharing similar biochemical mechanisms, being involved in relevant biological pathways, or being regulated by the same cognate cofactors. Conclusions A novel protein domain relationship was identified in the context of small-molecule binding, which is complementary to those identified by traditional sequence-based or structure-based approaches. The protein domain network constructed in the present study provides a novel perspective for chemogenomic study and network pharmacology, as well as target identification for drug repurposing. PMID:23745168
From Hippocampus to Whole-Brain: The Role of Integrative Processing in Episodic Memory Retrieval
Geib, Benjamin R.; Stanley, Matthew L.; Dennis, Nancy A.; Woldorff, Marty G.; Cabeza, Roberto
2017-01-01
Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. PMID:28112460
The Geomorphological Effects of Old Routes
NASA Astrophysics Data System (ADS)
Martinek, Jan; Bíl, Michal
2017-04-01
The communication network in rural areas in the historical Czech Lands predominantly consisted of unpaved routes prior to the eighteenth century. Certain parts of the network were transformed gradually into the current roads and are now being used by motor traffic. The majority of the old routes form, however, an abandoned network the remnants of which (abandoned during the Middle Ages or even earlier) are currently being discovered. Certain segments of used unpaved routes were, over the course of time, transformed into holloways (sunken lanes) and consequently also abandoned. The degree of incision of the holloway into the soil was determined by local geological conditions. Routes, which were abandoned due to more difficult transport in holloways, have distinct linear forms and can often be found as a grouping of parallel holloways. This indicates that these routes were frequently used or localized on low-resistant ground. Analyses of the precise digital elevation models, derived from LIDAR data, can reveal the distinct pattern of an old route network quite often interacting with other geomorphological phenomena (e.g., landslides, streams) or old human constructions (e.g., fortified settlements). We will present several cases where old paths interacted with landslides. These facts can consequently be used for dating the purposes of both the landslides and the old path sections. General erosion impacts, the degree of incision of the old transportation lines, can also be quantified through analyses of digital elevation models taking into consideration the former and new, incised, surface. We will demonstrate the methodology used for these analyses and the preliminary results.
NASA Astrophysics Data System (ADS)
Hilpert, Markus; Rasmuson, Anna; Johnson, William P.
2017-07-01
Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.
2017-01-01
Abstract Objectives: This study examined race differences in the probability of belonging to a specific social network typology of family, friends, and church members. Method: Samples of African Americans, Caribbean blacks, and non-Hispanic whites aged 55+ were drawn from the National Survey of American Life. Typology indicators related to social integration and negative interactions with family, friendship, and church networks were used. Latent class analysis was used to identify typologies, and latent class multinomial logistic regression was used to assess the influence of race, and interactions between race and age, and race and education on typology membership. Results: Four network typologies were identified: optimal (high social integration, low negative interaction), family-centered (high social integration within primarily the extended family network, low negative interaction), strained (low social integration, high negative interaction), and ambivalent (high social integration and high negative interaction). Findings for race and age and race and education interactions indicated that the effects of education and age on typology membership varied by race. Discussion: Overall, the findings demonstrate how race interacts with age and education to influence the probability of belonging to particular network types. A better understanding of the influence of race, education, and age on social network typologies will inform future research and theoretical developments in this area. PMID:28329871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goins, Christopher M.; Dajnowicz, Steven; Thanna, Sandeep
Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis ( Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitormore » orientation that were unobserved in previous Ag85C ebselen structures. The k inact/ K I values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein–inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein–inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural rearrangement due to covalent allosteric modification creates a sizable solvent network that encompasses the active site and extends to the modified Cys209 residue. In all, this study outlines factors that influence enzyme inhibition by ebselen and its derivatives while further highlighting the effects of the covalent modification of Cys209 by said inhibitors on the structure and stability of Ag85C. Moreover, the results suggest a strategy for developing new classes of Ag85 inhibitors with increased specificity and potency.« less
Goins, Christopher M; Dajnowicz, Steven; Thanna, Sandeep; Sucheck, Steven J; Parks, Jerry M; Ronning, Donald R
2017-05-12
Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis (Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitor orientation that were unobserved in previous Ag85C ebselen structures. The k inact /K I values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein-inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein-inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural rearrangement due to covalent allosteric modification creates a sizable solvent network that encompasses the active site and extends to the modified Cys209 residue. In all, this study outlines factors that influence enzyme inhibition by ebselen and its derivatives while further highlighting the effects of the covalent modification of Cys209 by said inhibitors on the structure and stability of Ag85C. Furthermore, the results suggest a strategy for developing new classes of Ag85 inhibitors with increased specificity and potency.
Goins, Christopher M.; Dajnowicz, Steven; Thanna, Sandeep; ...
2017-03-13
Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis ( Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitormore » orientation that were unobserved in previous Ag85C ebselen structures. The k inact/ K I values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein–inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein–inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural rearrangement due to covalent allosteric modification creates a sizable solvent network that encompasses the active site and extends to the modified Cys209 residue. In all, this study outlines factors that influence enzyme inhibition by ebselen and its derivatives while further highlighting the effects of the covalent modification of Cys209 by said inhibitors on the structure and stability of Ag85C. Moreover, the results suggest a strategy for developing new classes of Ag85 inhibitors with increased specificity and potency.« less
Mallik, Mrinmay Kumar
2018-02-07
Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.
User-Centric Secure Cross-Site Interaction Framework for Online Social Networking Services
ERIC Educational Resources Information Center
Ko, Moo Nam
2011-01-01
Social networking service is one of major technological phenomena on Web 2.0. Hundreds of millions of users are posting message, photos, and videos on their profiles and interacting with other users, but the sharing and interaction are limited within the same social networking site. Although users can share some content on a social networking site…
Statistical mechanics and scaling of fault populations with increasing strain in the Corinth Rift
NASA Astrophysics Data System (ADS)
Michas, Georgios; Vallianatos, Filippos; Sammonds, Peter
2015-12-01
Scaling properties of fracture/fault systems are studied in order to characterize the mechanical properties of rocks and to provide insight into the mechanisms that govern fault growth. A comprehensive image of the fault network in the Corinth Rift, Greece, obtained through numerous field studies and marine geophysical surveys, allows for the first time such a study over the entire area of the Rift. We compile a detailed fault map of the area and analyze the scaling properties of fault trace-lengths by using a statistical mechanics model, derived in the framework of generalized statistical mechanics and associated maximum entropy principle. By using this framework, a range of asymptotic power-law to exponential-like distributions are derived that can well describe the observed scaling patterns of fault trace-lengths in the Rift. Systematic variations and in particular a transition from asymptotic power-law to exponential-like scaling are observed to be a function of increasing strain in distinct strain regimes in the Rift, providing quantitative evidence for such crustal processes in a single tectonic setting. These results indicate the organization of the fault system as a function of brittle strain in the Earth's crust and suggest there are different mechanisms for fault growth in the distinct parts of the Rift. In addition, other factors such as fault interactions and the thickness of the brittle layer affect how the fault system evolves in time. The results suggest that regional strain, fault interactions and the boundary condition of the brittle layer may control fault growth and the fault network evolution in the Corinth Rift.
Resurgence of oscillation in coupled oscillators under delayed cyclic interaction
NASA Astrophysics Data System (ADS)
Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar
2017-07-01
This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.
NASA Astrophysics Data System (ADS)
Bista, S.; Stebbins, J. F.
2017-12-01
In aluminosilicate melts and glasses, both non-bridging oxygen content (NBO) and modifier cation field strength (Mg>Ca>Na>K) are known to facilitate network cation (e.g. Al, B) coordination increase with pressure. However, the role of these two compositional parameters in pressure-induced structural changes is derived from data for a limited set of compositions, where effects of the interaction between these parameters is less understood. For example, the effects of NBO are largely based on studies of Na and K aluminosilicate glasses, but effects of geologically important, higher field strength modifier cations such as Mg2+ and Fe2+ could well be significantly different. In this study, we look at a wide compositional range of Na, Ca and Mg aluminosilicate glasses (quenched from high pressure melts near to the glass transition temperature) to understand the roles of NBO and modifier cation field strength that can extend our view of processes important for silicate melts common in nature. Our results show that the role of NBO in pressure-induced structural changes varies systematically with increasing field strength of the modifier cation. In Na aluminosilicate glasses recovered from 1.5 to 3 GPa, large increases in average aluminum coordination are observed in glasses with high NBO content, while no detectable increases are seen for low nominal NBO (jadeite). In contrast, Mg aluminosilicate glasses with both high and low NBO show similar, large increases in average aluminum coordination with increasing pressure. The behaviors of Ca aluminosilicates fall between those of Na and Mg-rich glasses. We have also looked at interactions between different network forming cations in pressure-induced structural changes in low NBO Ca-aluminoborosilicate glasses with varying B/Si. Both aluminum and boron increase dramatically in coordination in these compositions 1.5 to 3 GPa. Increases in both average aluminum coordination and densification are larger in compositions containing higher boron concentrations, suggesting an interaction between boron and aluminum network cations in pressure-induced structural changes.
Group-based strategy diffusion in multiplex networks with weighted values
NASA Astrophysics Data System (ADS)
Yu, Jianyong; Jiang, J. C.; Xiang, Leijun
2017-03-01
The information diffusion of multiplex social networks has received increasing interests in recent years. Actually, the multiplex networks are made of many communities, and it should be gotten more attention for the influences of community level diffusion, besides of individual level interactions. In view of this, this work explores strategy interactions and diffusion processes in multiplex networks with weighted values from a new perspective. Two different groups consisting of some agents with different influential strength are firstly built in each layer network, the authority and non-authority groups. The strategy interactions between different groups in intralayer and interlayer networks are performed to explore community level diffusion, by playing two classical strategy games, Prisoner's Dilemma and Snowdrift Game. The impact forces from the different groups and the reactive forces from individual agents are simultaneously taken into account in intralayer and interlayer interactions. This paper reveals and explains the evolutions of cooperation diffusion and the influences of interlayer interaction tight degrees in multiplex networks with weighted values. Some thresholds of critical parameters of interaction degrees and games parameters settings are also discussed in group-based strategy diffusion.
Does the Type of Event Influence How User Interactions Evolve on Twitter?
del Val, Elena; Rebollo, Miguel; Botti, Vicente
2015-01-01
The number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace that is recorded. Thanks to this fact and the use of network theory, the analysis of messages, user interactions, and the complex structures that emerge is greatly facilitated. In addition, information generated in on-line social networks is labeled temporarily, which makes it possible to go a step further analyzing the dynamics of the interaction patterns. In this article, we present an analysis of the evolution of user interactions that take place in television, socio-political, conference, and keynote events on Twitter. Interactions have been modeled as networks that are annotated with the time markers. We study changes in the structural properties at both the network level and the node level. As a result of this analysis, we have detected patterns of network evolution and common structural features as well as differences among the events. PMID:25961305
Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia
2012-06-21
Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.
Structural stability of interaction networks against negative external fields
NASA Astrophysics Data System (ADS)
Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.
2018-04-01
We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.
2011-03-10
more and more social interactions are happening on the on-line. Especially recent uptake of the social network sites (SNSs), such as Facebook (http...results give overviews on social interactions on a popular social network site . As each twitter account has different characteristics based on...the public and individuals post their private stories on their blogs and share their interests using social network sites . On the other hand, people
MetaMapR: pathway independent metabolomic network analysis incorporating unknowns.
Grapov, Dmitry; Wanichthanarak, Kwanjeera; Fiehn, Oliver
2015-08-15
Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between >200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Diversity of multilayer networks and its impact on collaborating epidemics
NASA Astrophysics Data System (ADS)
Min, Yong; Hu, Jiaren; Wang, Weihong; Ge, Ying; Chang, Jie; Jin, Xiaogang
2014-12-01
Interacting epidemics on diverse multilayer networks are increasingly important in modeling and analyzing the diffusion processes of real complex systems. A viral agent spreading on one layer of a multilayer network can interact with its counterparts by promoting (cooperative interaction), suppressing (competitive interaction), or inducing (collaborating interaction) its diffusion on other layers. Collaborating interaction displays different patterns: (i) random collaboration, where intralayer or interlayer induction has the same probability; (ii) concentrating collaboration, where consecutive intralayer induction is guaranteed with a probability of 1; and (iii) cascading collaboration, where consecutive intralayer induction is banned with a probability of 0. In this paper, we develop a top-bottom framework that uses only two distributions, the overlaid degree distribution and edge-type distribution, to model collaborating epidemics on multilayer networks. We then state the response of three collaborating patterns to structural diversity (evenness and difference of network layers). For viral agents with small transmissibility, we find that random collaboration is more effective in networks with higher diversity (high evenness and difference), while the concentrating pattern is more suitable in uneven networks. Interestingly, the cascading pattern requires a network with moderate difference and high evenness, and the moderately uneven coupling of multiple network layers can effectively increase robustness to resist cascading failure. With large transmissibility, however, we find that all collaborating patterns are more effective in high-diversity networks. Our work provides a systemic analysis of collaborating epidemics on multilayer networks. The results enhance our understanding of biotic and informative diffusion through multiple vectors.
Analysis of complex neural circuits with nonlinear multidimensional hidden state models
Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.
2016-01-01
A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584
Deriving an Abstraction Network to Support Quality Assurance in OCRe
Ochs, Christopher; Agrawal, Ankur; Perl, Yehoshua; Halper, Michael; Tu, Samson W.; Carini, Simona; Sim, Ida; Noy, Natasha; Musen, Mark; Geller, James
2012-01-01
An abstraction network is an auxiliary network of nodes and links that provides a compact, high-level view of an ontology. Such a view lends support to ontology orientation, comprehension, and quality-assurance efforts. A methodology is presented for deriving a kind of abstraction network, called a partial-area taxonomy, for the Ontology of Clinical Research (OCRe). OCRe was selected as a representative of ontologies implemented using the Web Ontology Language (OWL) based on shared domains. The derivation of the partial-area taxonomy for the Entity hierarchy of OCRe is described. Utilizing the visualization of the content and structure of the hierarchy provided by the taxonomy, the Entity hierarchy is audited, and several errors and inconsistencies in OCRe’s modeling of its domain are exposed. After appropriate corrections are made to OCRe, a new partial-area taxonomy is derived. The generalizability of the paradigm of the derivation methodology to various families of biomedical ontologies is discussed. PMID:23304341
Role of local network oscillations in resting-state functional connectivity.
Cabral, Joana; Hugues, Etienne; Sporns, Olaf; Deco, Gustavo
2011-07-01
Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brain's neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes is found to be correlated, instantiating the empirically observed RSNs. Between clusters, patterns of positive and negative correlations are observed, as described in experimental studies. These results are found to be robust with respect to a biologically plausible range of model parameters. In conclusion, our model suggests how resting-state neural activity can originate from the interplay between the local neural dynamics and the large-scale structure of the brain. Copyright © 2011 Elsevier Inc. All rights reserved.
Evidence for dynamically organized modularity in the yeast protein-protein interaction network
NASA Astrophysics Data System (ADS)
Han, Jing-Dong J.; Bertin, Nicolas; Hao, Tong; Goldberg, Debra S.; Berriz, Gabriel F.; Zhang, Lan V.; Dupuy, Denis; Walhout, Albertha J. M.; Cusick, Michael E.; Roth, Frederick P.; Vidal, Marc
2004-07-01
In apparently scale-free protein-protein interaction networks, or `interactome' networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the `hubs', interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: `party' hubs, which interact with most of their partners simultaneously, and `date' hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes-or modules -to each other, whereas party hubs function inside modules.
Gene essentiality and the topology of protein interaction networks
Coulomb, Stéphane; Bauer, Michel; Bernard, Denis; Marsolier-Kergoat, Marie-Claude
2005-01-01
The mechanistic bases for gene essentiality and for cell mutational resistance have long been disputed. The recent availability of large protein interaction databases has fuelled the analysis of protein interaction networks and several authors have proposed that gene dispensability could be strongly related to some topological parameters of these networks. However, many results were based on protein interaction data whose biases were not taken into account. In this article, we show that the essentiality of a gene in yeast is poorly related to the number of interactants (or degree) of the corresponding protein and that the physiological consequences of gene deletions are unrelated to several other properties of proteins in the interaction networks, such as the average degrees of their nearest neighbours, their clustering coefficients or their relative distances. We also found that yeast protein interaction networks lack degree correlation, i.e. a propensity for their vertices to associate according to their degrees. Gene essentiality and more generally cell resistance against mutations thus seem largely unrelated to many parameters of protein network topology. PMID:16087428
Cytoscape: a software environment for integrated models of biomolecular interaction networks.
Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey
2003-11-01
Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel; Malamud, Bruce D.
2016-04-01
Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Community-level demographic consequences of urbanization: an ecological network approach.
Rodewald, Amanda D; Rohr, Rudolf P; Fortuna, Miguel A; Bascompte, Jordi
2014-11-01
Ecological networks are known to influence ecosystem attributes, but we poorly understand how interspecific network structure affect population demography of multiple species, particularly for vertebrates. Establishing the link between network structure and demography is at the crux of being able to use networks to understand population dynamics and to inform conservation. We addressed the critical but unanswered question, does network structure explain demographic consequences of urbanization? We studied 141 ecological networks representing interactions between plants and nesting birds in forests across an urbanization gradient in Ohio, USA, from 2001 to 2011. Nest predators were identified by video-recording nests and surveyed from 2004 to 2011. As landscapes urbanized, bird-plant networks were more nested, less compartmentalized and dominated by strong interactions between a few species (i.e. low evenness). Evenness of interaction strengths promoted avian nest survival, and evenness explained demography better than urbanization, level of invasion, numbers of predators or other qualitative network metrics. Highly uneven networks had approximately half the nesting success as the most even networks. Thus, nest survival reflected how urbanization altered species interactions, particularly with respect to how nest placement affected search efficiency of predators. The demographic effects of urbanization were not direct, but were filtered through bird-plant networks. This study illustrates how network structure can influence demography at the community level and further, that knowledge of species interactions and a network approach may be requisite to understanding demographic responses to environmental change. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Synchrony-induced modes of oscillation of a neural field model
NASA Astrophysics Data System (ADS)
Esnaola-Acebes, Jose M.; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest
2017-11-01
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.
Synchrony-induced modes of oscillation of a neural field model.
Esnaola-Acebes, Jose M; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest
2017-11-01
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.
Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World.
Di Silvestre, Dario; Bergamaschi, Andrea; Bellini, Edoardo; Mauri, PierLuigi
2018-06-03
The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.
Chen, Bor-Sen; Wu, Chia-Chou
2013-01-01
Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875
Best response game of traffic on road network of non-signalized intersections
NASA Astrophysics Data System (ADS)
Yao, Wang; Jia, Ning; Zhong, Shiquan; Li, Liying
2018-01-01
This paper studies the traffic flow in a grid road network with non-signalized intersections. The nature of the drivers in the network is simulated such that they play an iterative snowdrift game with other drivers. A cellular automata model is applied to study the characteristics of the traffic flow and the evolution of the behaviour of the drivers during the game. The drivers use best-response as their strategy to update rules. Three major findings are revealed. First, the cooperation rate in simulation experiences staircase-shaped drop as cost to benefit ratio r increases, and cooperation rate can be derived analytically as a function of cost to benefit ratio r. Second, we find that higher cooperation rate corresponds to higher average speed, lower density and higher flow. This reveals that defectors deteriorate the efficiency of traffic on non-signalized intersections. Third, the system experiences more randomness when the density is low because the drivers will not have much opportunity to update strategy when the density is low. These findings help to show how the strategy of drivers in a traffic network evolves and how their interactions influence the overall performance of the traffic system.
Social network analysis of the genetic structure of Pacific islanders.
Terrell, John Edward
2010-05-01
Social network analysis (SNA) is a body of theory and a set of relatively new computer-aided techniques used in the analysis and study of relational data. Recent studies of autosomal markers from over 40 human populations in the south-western Pacific have further documented the remarkable degree of genetic diversity in this part of the world. I report additional analysis using SNA methods contributing new controlled observations on the structuring of genetic diversity among these islanders. These SNA mappings are then compared with model-based network expectations derived from the geographic distances among the same populations. Previous studies found that genetic divergence among island Melanesian populations is organised by island, island size/topography, and position (coastal vs. inland), and that similarities observed correlate only weakly with an isolation-by-distance model. Using SNA methods, however, improves the resolution of among population comparison, and suggests that isolation by distance constrained by social networks together with position (coastal/inland) accounts for much of the population structuring observed. The multilocus data now available is also in accord with current thinking on the impact of major biogeographical transformations on prehistoric colonisation and post-settlement human interaction in Oceania.
A microRNA-mRNA expression network during oral siphon regeneration in Ciona.
Spina, Elijah J; Guzman, Elmer; Zhou, Hongjun; Kosik, Kenneth S; Smith, William C
2017-05-15
Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta , and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle. © 2017. Published by The Company of Biologists Ltd.
Visualizing protein partnerships in living cells and organisms.
Lowder, Melissa A; Appelbaum, Jacob S; Hobert, Elissa M; Schepartz, Alanna
2011-12-01
In recent years, scientists have expanded their focus from cataloging genes to characterizing the multiple states of their translated products. One anticipated result is a dynamic map of the protein association networks and activities that occur within the cellular environment. While in vitro-derived network maps can illustrate which of a multitude of possible protein-protein associations could exist, they supply a falsely static picture lacking the subtleties of subcellular location (where) or cellular state (when). Generating protein association network maps that are informed by both subcellular location and cell state requires novel approaches that accurately characterize the state of protein associations in living cells and provide precise spatiotemporal resolution. In this review, we highlight recent advances in visualizing protein associations and networks under increasingly native conditions. These advances include second generation protein complementation assays (PCAs), chemical and photo-crosslinking techniques, and proximity-induced ligation approaches. The advances described focus on background reduction, signal optimization, rapid and reversible reporter assembly, decreased cytotoxicity, and minimal functional perturbation. Key breakthroughs have addressed many challenges and should expand the repertoire of tools useful for generating maps of protein interactions resolved in both time and space. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Bor-Sen; Wu, Chia-Chou
2013-10-11
Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.
A microRNA-mRNA expression network during oral siphon regeneration in Ciona
Spina, Elijah J.; Guzman, Elmer; Zhou, Hongjun; Kosik, Kenneth S.
2017-01-01
Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta, and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle. PMID:28432214
Mapping biological process relationships and disease perturbations within a pathway network.
Stoney, Ruth; Robertson, David L; Nenadic, Goran; Schwartz, Jean-Marc
2018-01-01
Molecular interaction networks are routinely used to map the organization of cellular function. Edges represent interactions between genes, proteins, or metabolites. However, in living cells, molecular interactions are dynamic, necessitating context-dependent models. Contextual information can be integrated into molecular interaction networks through the inclusion of additional molecular data, but there are concerns about completeness and relevance of this data. We developed an approach for representing the organization of human cellular processes using pathways as the nodes in a network. Pathways represent spatial and temporal sets of context-dependent interactions, generating a high-level network when linked together, which incorporates contextual information without the need for molecular interaction data. Analysis of the pathway network revealed linked communities representing functional relationships, comparable to those found in molecular networks, including metabolism, signaling, immunity, and the cell cycle. We mapped a range of diseases onto this network and find that pathways associated with diseases tend to be functionally connected, highlighting the perturbed functions that result in disease phenotypes. We demonstrated that disease pathways cluster within the network. We then examined the distribution of cancer pathways and showed that cancer pathways tend to localize within the signaling, DNA processes and immune modules, although some cancer-associated nodes are found in other network regions. Altogether, we generated a high-confidence functional network, which avoids some of the shortcomings faced by conventional molecular models. Our representation provides an intuitive functional interpretation of cellular organization, which relies only on high-quality pathway and Gene Ontology data. The network is available at https://data.mendeley.com/datasets/3pbwkxjxg9/1.
Protein-protein interaction networks (PPI) and complex diseases
Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram
2014-01-01
The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094
Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
Pancaldi, Vera; Carrillo-de-Santa-Pau, Enrique; Javierre, Biola Maria; Juan, David; Fraser, Peter; Spivakov, Mikhail; Valencia, Alfonso; Rico, Daniel
2016-07-08
Network analysis is a powerful way of modeling chromatin interactions. Assortativity is a network property used in social sciences to identify factors affecting how people establish social ties. We propose a new approach, using chromatin assortativity, to integrate the epigenomic landscape of a specific cell type with its chromatin interaction network and thus investigate which proteins or chromatin marks mediate genomic contacts. We use high-resolution promoter capture Hi-C and Hi-Cap data as well as ChIA-PET data from mouse embryonic stem cells to investigate promoter-centered chromatin interaction networks and calculate the presence of specific epigenomic features in the chromatin fragments constituting the nodes of the network. We estimate the association of these features with the topology of four chromatin interaction networks and identify features localized in connected areas of the network. Polycomb group proteins and associated histone marks are the features with the highest chromatin assortativity in promoter-centered networks. We then ask which features distinguish contacts amongst promoters from contacts between promoters and other genomic elements. We observe higher chromatin assortativity of the actively elongating form of RNA polymerase 2 (RNAPII) compared with inactive forms only in interactions between promoters and other elements. Contacts among promoters and between promoters and other elements have different characteristic epigenomic features. We identify a possible role for the elongating form of RNAPII in mediating interactions among promoters, enhancers, and transcribed gene bodies. Our approach facilitates the study of multiple genome-wide epigenomic profiles, considering network topology and allowing the comparison of chromatin interaction networks.
Interactions between neural networks: a mechanism for tuning chaos and oscillations.
Wang, Lipo
2007-06-01
We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability.
Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.
Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk
2015-01-01
Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system throughput performance.
Disease Surveillance on Complex Social Networks.
Herrera, Jose L; Srinivasan, Ravi; Brownstein, John S; Galvani, Alison P; Meyers, Lauren Ancel
2016-07-01
As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors-sampling the most connected, random, and friends of random individuals-in three complex social networks-a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals-early and accurate detection of epidemic emergence and peak, and general situational awareness-we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information.
Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks
Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui
2017-01-01
The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295
Interactivity vs. fairness in networked linux systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wenji; Crawford, Matt; /Fermilab
In general, the Linux 2.6 scheduler can ensure fairness and provide excellent interactive performance at the same time. However, our experiments and mathematical analysis have shown that the current Linux interactivity mechanism tends to incorrectly categorize non-interactive network applications as interactive, which can lead to serious fairness or starvation issues. In the extreme, a single process can unjustifiably obtain up to 95% of the CPU! The root cause is due to the facts that: (1) network packets arrive at the receiver independently and discretely, and the 'relatively fast' non-interactive network process might frequently sleep to wait for packet arrival. Thoughmore » each sleep lasts for a very short period of time, the wait-for-packet sleeps occur so frequently that they lead to interactive status for the process. (2) The current Linux interactivity mechanism provides the possibility that a non-interactive network process could receive a high CPU share, and at the same time be incorrectly categorized as 'interactive.' In this paper, we propose and test a possible solution to address the interactivity vs. fairness problems. Experiment results have proved the effectiveness of the proposed solution.« less
Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.
Hur, Junguk; Özgür, Arzucan; He, Yongqun
2017-03-14
Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of these gene interaction networks identified top ranked E. coli genes and 6 INO interaction types (e.g., regulation and gene expression). Vaccine-related E. coli gene-gene interaction network was constructed using ontology-based literature mining strategy, which identified important E. coli vaccine genes and their interactions with other genes through specific interaction types.
Network-based study reveals potential infection pathways of hepatitis-C leading to various diseases.
Mukhopadhyay, Anirban; Maulik, Ujjwal
2014-01-01
Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement.
Network-Based Study Reveals Potential Infection Pathways of Hepatitis-C Leading to Various Diseases
Mukhopadhyay, Anirban; Maulik, Ujjwal
2014-01-01
Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement. PMID:24743187
The dissimilarity of species interaction networks.
Poisot, Timothée; Canard, Elsa; Mouillot, David; Mouquet, Nicolas; Gravel, Dominique
2012-12-01
In a context of global changes, and amidst the perpetual modification of community structure undergone by most natural ecosystems, it is more important than ever to understand how species interactions vary through space and time. The integration of biogeography and network theory will yield important results and further our understanding of species interactions. It has, however, been hampered so far by the difficulty to quantify variation among interaction networks. Here, we propose a general framework to study the dissimilarity of species interaction networks over time, space or environments, allowing both the use of quantitative and qualitative data. We decompose network dissimilarity into interactions and species turnover components, so that it is immediately comparable to common measures of β-diversity. We emphasise that scaling up β-diversity of community composition to the β-diversity of interactions requires only a small methodological step, which we foresee will help empiricists adopt this method. We illustrate the framework with a large dataset of hosts and parasites interactions and highlight other possible usages. We discuss a research agenda towards a biogeographical theory of species interactions. © 2012 Blackwell Publishing Ltd/CNRS.