Adamska, K; Bellinghausen, R; Voelkel, A
2008-06-27
The Hansen solubility parameter (HSP) seems to be a useful tool for the thermodynamic characterization of different materials. Unfortunately, estimation of the HSP values can cause some problems. In this work different procedures by using inverse gas chromatography have been presented for calculation of pharmaceutical excipients' solubility parameter. The new procedure proposed, based on the Lindvig et al. methodology, where experimental data of Flory-Huggins interaction parameter are used, can be a reasonable alternative for the estimation of HSP values. The advantage of this method is that the values of Flory-Huggins interaction parameter chi for all test solutes are used for further calculation, thus diverse interactions between test solute and material are taken into consideration.
NASA Astrophysics Data System (ADS)
Moaienla, T.; Singh, Th. David; Singh, N. Rajmuhon; Devi, M. Indira
2009-10-01
Studying the absorption difference and comparative absorption spectra of the interaction of Pr(III) and Nd(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents, various energy interaction parameters like Slater-Condon ( FK), Racah ( Ek), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding ( b1/2), percentage-covalency ( δ) have been evaluated applying partial and multiple regression analysis. The values of oscillator strength ( P) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been computed. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( P) and Tλ values reveal the mode of binding with different ligands.
Scalable Online Network Modeling and Simulation
2005-08-01
ONLINE NETWORK MODELING AND SIMULATION 6. AUTHOR(S) Boleslaw Szymanski , Shivkumar Kalyanaraman, Biplab Sikdar and Christopher Carothers 5...performance for a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature ...a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature interactions
Calus, Mario PL; Bijma, Piter; Veerkamp, Roel F
2004-01-01
Covariance functions have been proposed to predict breeding values and genetic (co)variances as a function of phenotypic within herd-year averages (environmental parameters) to include genotype by environment interaction. The objective of this paper was to investigate the influence of definition of environmental parameters and non-random use of sires on expected breeding values and estimated genetic variances across environments. Breeding values were simulated as a linear function of simulated herd effects. The definition of environmental parameters hardly influenced the results. In situations with random use of sires, estimated genetic correlations between the trait expressed in different environments were 0.93, 0.93 and 0.97 while simulated at 0.89 and estimated genetic variances deviated up to 30% from the simulated values. Non random use of sires, poor genetic connectedness and small herd size had a large impact on the estimated covariance functions, expected breeding values and calculated environmental parameters. Estimated genetic correlations between a trait expressed in different environments were biased upwards and breeding values were more biased when genetic connectedness became poorer and herd composition more diverse. The best possible solution at this stage is to use environmental parameters combining large numbers of animals per herd, while losing some information on genotype by environment interaction in the data. PMID:15339629
Inverse gas chromatographic determination of solubility parameters of excipients.
Adamska, Katarzyna; Voelkel, Adam
2005-11-04
The principle aim of this work was an application of inverse gas chromatography (IGC) for the estimation of solubility parameter for pharmaceutical excipients. The retention data of number of test solutes were used to calculate Flory-Huggins interaction parameter (chi1,2infinity) and than solubility parameter (delta2), corrected solubility parameter (deltaT) and its components (deltad, deltap, deltah) by using different procedures. The influence of different values of test solutes solubility parameter (delta1) over calculated values was estimated. The solubility parameter values obtained for all excipients from the slope, from Guillet and co-workers' procedure are higher than that obtained from components according Voelkel and Janas procedure. It was found that solubility parameter's value of the test solutes influences, but not significantly, values of solubility parameter of excipients.
Systematic study of rapidity dispersion parameter in high energy nucleus-nucleus interactions
NASA Astrophysics Data System (ADS)
Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena
2014-03-01
A systematic study of rapidity dispersion parameter as a quantitative measure of clustering of particles has been carried out in the interactions of 16O, 28Si and 32S projectiles at 4.5 A GeV/c with heavy (AgBr) and light (CNO) groups of targets present in the nuclear emulsion. For all the interactions, the total ensemble of events has been divided into four overlapping multiplicity classes depending on the number of shower particles. For all the interactions and for each multiplicity class, the rapidity dispersion parameter values indicate the occurrence of clusterization during the multiparticle production at Dubna energy. The measured rapidity dispersion parameter values are found to decrease with the increase of average multiplicity for all the interactions. The dependence of rapidity dispersion parameter on the average multiplicity can be successfully described by a relation D(η) = a + b
NASA Astrophysics Data System (ADS)
Moaienla, T.; Bendangsenla, N.; David Singh, Th.; Sumitra, Ch.; Rajmuhon Singh, N.; Indira Devi, M.
2012-02-01
Spectral analysis of Nd(III) complexes with some amino acids viz.; glycine, L-alanine, L-phenylalanine and L-aspartic acid in the presence and absence of Ca 2+ was carried out in some organic solvents; CH 3OH, CH 3CN, DMF and dioxane using comparative absorption spectra of 4f-4f transitions. The study was carried out by evaluating various energy interaction parameters like Slator-Condon ( Fk), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding parameter ( b1/2), percent-covalency ( δ) by applying partial and multiple regression analysis. The values of oscillator strength ( Pobs) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been calculated. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( Pobs) and Tλ values, reveal the mode of binding with the different ligands. Kinetic studies for the complexation of Nd(III):glycine:Ca(II) have also been discussed at different temperatures in DMF medium and from it the values of activation energy ( Ea) and thermodynamic parameters like Δ H°, Δ S° and Δ G° for the complexation are evaluated.
Okamoto, Naoya; Yoshimatsu, Katsunori; Schneider, Kai; Farge, Marie
2014-03-01
Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found to be independent of scale for all considered values of the interaction parameter. The strength of the imposed magnetic field does amplify the anisotropy of the flow.
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao
2012-08-01
The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their sizes is 0.75.
Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.
Doggen, E V H; Kinnunen, J J
2013-07-12
We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.
Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita
2017-01-01
Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary mixtures of surfactants contains urea in concentration of 4M significant decreases of an interaction parameter value happens which confirms the importance of hydrogen bonds in synergistic interactions (urea compete in hydrogen bonds). Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Purohit, Suresh; Suthar, Shyam Sunder; Vyas, Mahendra; Beniwal, Ram Chandra
2018-05-01
The main transport properties of liquid or liquid mixtures are viscosity, diffusion, transference and electrical conductance. Viscosities of various liquid mixtures have been studied and their analyses have also been done by the help of some parameters. For each solution, the excess thermodynamic properties (YE) have been investigated. These excess thermodynamic properties are excess molar volume (VE), viscosity deviation (Δη) and excess Gibbs free energy of activation of viscous flow (ΔG*E). These parameters provide us the important information about interaction between molecules. For example, the negative value of VE and positive value of Δη shows the strong interaction between the solute and solvent molecules while positive value of VE and negative value of Δη shows the weak interaction between solute and solvent molecules. Above parameters and their discussion have been made in our earlier paper. In the present research paper, the viscosity data have been correlated with the equations of Grunberg and Nissan, Hind et al., Tamura and Kurata Katti. The excess values have been correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations. It has been found that in all cases, the data obtained fitted with the values correlated by the corresponding models very well. The results are interpreted in terms of molecular interactions occurring in the solution.
Two-Player 2 × 2 Quantum Game in Spin System
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Situ, Haozhen
2017-05-01
In this work, we study the payoffs of quantum Samaritan's dilemma played with the thermal entangled state of XXZ spin model in the presence of Dzyaloshinskii-Moriya (DM) interaction. We discuss the effect of anisotropy parameter, strength of DM interaction and temperature on quantum Samaritan's dilemma. It is shown that although increasing DM interaction and anisotropy parameter generate entanglement, players payoffs are not simply decided by entanglement and depend on other game components such as strategy and payoff measurement. In general, Entanglement and Alice's payoff evolve to a relatively stable value with anisotropy parameter, and develop to a fixed value with DM interaction strength, while Bob's payoff changes in the reverse direction. It is noted that the augment of Alice's payoff compensates for the loss of Bob's payoff. For different strategies, payoffs have different changes with temperature. Our results and discussions can be analogously generalized to other 2 × 2 quantum static games in various spin models.
Ghost Dark Energy with Non-Linear Interaction Term
NASA Astrophysics Data System (ADS)
Ebrahimi, E.
2016-06-01
Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.
Vibrational Relaxation and Collision-Induced Dissociation of Xenon Fluoride by Neon
1989-03-01
potential energy surface, which consists of a Morse function for the XeF interaction and Lennard - Jones functions for the NeXe and NeF interactions. Rate...interaction and a Lennard - Jones function for the NeXe and the NeF interactions. The values of the Morse potential parameters for XeF are taken from...interactions are calculated using the theoretical data provided by Svehla.59 The parameters for the Morse potential and the Lennard - Jones potentials are listed
Superslow relaxation in identical phase oscillators with random and frustrated interactions
NASA Astrophysics Data System (ADS)
Daido, H.
2018-04-01
This paper is concerned with the relaxation dynamics of a large population of identical phase oscillators, each of which interacts with all the others through random couplings whose parameters obey the same Gaussian distribution with the average equal to zero and are mutually independent. The results obtained by numerical simulation suggest that for the infinite-size system, the absolute value of Kuramoto's order parameter exhibits superslow relaxation, i.e., 1/ln t as time t increases. Moreover, the statistics on both the transient time T for the system to reach a fixed point and the absolute value of Kuramoto's order parameter at t = T are also presented together with their distribution densities over many realizations of the coupling parameters.
Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro
2018-06-01
Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n ) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m -2 s -1 . Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Kosmach, V. F.; Likhachev, A. YU.; Benton, E. V.; Crawford, H. J.
1995-01-01
A method is proposed for finding the dependence of mean multiplicities of secondaries on the nucleus-collision impact parameter from the data on the total interaction ensemble. The impact parameter has been shown to completely define the mean characteristics of an individual interaction event. A difference has been found between experimental results and the data calculated in terms of the cascade-evaporation model at impact-parameter values below 3 fm.
NASA Astrophysics Data System (ADS)
Chan, C. H.; Brown, G.; Rikvold, P. A.
2017-05-01
A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.
Group-based strategy diffusion in multiplex networks with weighted values
NASA Astrophysics Data System (ADS)
Yu, Jianyong; Jiang, J. C.; Xiang, Leijun
2017-03-01
The information diffusion of multiplex social networks has received increasing interests in recent years. Actually, the multiplex networks are made of many communities, and it should be gotten more attention for the influences of community level diffusion, besides of individual level interactions. In view of this, this work explores strategy interactions and diffusion processes in multiplex networks with weighted values from a new perspective. Two different groups consisting of some agents with different influential strength are firstly built in each layer network, the authority and non-authority groups. The strategy interactions between different groups in intralayer and interlayer networks are performed to explore community level diffusion, by playing two classical strategy games, Prisoner's Dilemma and Snowdrift Game. The impact forces from the different groups and the reactive forces from individual agents are simultaneously taken into account in intralayer and interlayer interactions. This paper reveals and explains the evolutions of cooperation diffusion and the influences of interlayer interaction tight degrees in multiplex networks with weighted values. Some thresholds of critical parameters of interaction degrees and games parameters settings are also discussed in group-based strategy diffusion.
Optimisation of process parameters on thin shell part using response surface methodology (RSM)
NASA Astrophysics Data System (ADS)
Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.
2017-09-01
This study is carried out to focus on optimisation of process parameters by simulation using Autodesk Moldflow Insight (AMI) software. The process parameters are taken as the input in order to analyse the warpage value which is the output in this study. There are some significant parameters that have been used which are melt temperature, mould temperature, packing pressure, and cooling time. A plastic part made of Polypropylene (PP) has been selected as the study part. Optimisation of process parameters is applied in Design Expert software with the aim to minimise the obtained warpage value. Response Surface Methodology (RSM) has been applied in this study together with Analysis of Variance (ANOVA) in order to investigate the interactions between parameters that are significant to the warpage value. Thus, the optimised warpage value can be obtained using the model designed using RSM due to its minimum error value. This study comes out with the warpage value improved by using RSM.
Dynamic behavior of the interaction between epidemics and cascades on heterogeneous networks
NASA Astrophysics Data System (ADS)
Jiang, Lurong; Jin, Xinyu; Xia, Yongxiang; Ouyang, Bo; Wu, Duanpo
2014-12-01
Epidemic spreading and cascading failure are two important dynamical processes on complex networks. They have been investigated separately for a long time. But in the real world, these two dynamics sometimes may interact with each other. In this paper, we explore a model combined with the SIR epidemic spreading model and a local load sharing cascading failure model. There exists a critical value of the tolerance parameter for which the epidemic with high infection probability can spread out and infect a fraction of the network in this model. When the tolerance parameter is smaller than the critical value, the cascading failure cuts off the abundance of paths and blocks the spreading of the epidemic locally. While the tolerance parameter is larger than the critical value, the epidemic spreads out and infects a fraction of the network. A method for estimating the critical value is proposed. In simulations, we verify the effectiveness of this method in the uncorrelated configuration model (UCM) scale-free networks.
Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Huang, Zhiming
2018-02-01
In this article, we investigate the dynamics and correlations of quantum-memory-assisted entropic uncertainty, the tightness of the uncertainty, entanglement, quantum correlation and mixedness for various spin chain models with Dzyaloshinskii-Moriya (DM) interaction, including the XXZ model with DM interaction, the XY model with DM interaction and the Ising model with DM interaction. We find that the uncertainty grows to a stable value with growing temperature but reduces as the coupling coefficient, anisotropy parameter and DM values increase. It is found that the entropic uncertainty is closely correlated with the mixedness of the system. The increasing quantum correlation can result in a decrease in the uncertainty, and the robustness of quantum correlation is better than entanglement since entanglement means sudden birth and death. The tightness of the uncertainty drops to zero, apart from slight volatility as various parameters increase. Furthermore, we propose an effective approach to steering the uncertainty by weak measurement reversal.
NASA Astrophysics Data System (ADS)
Kivotides, Demosthenes
2018-03-01
The interactions between vortex tubes and magnetic-flux rings in incompressible magnetohydrodynamics are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, which are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, which have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic ring) vortex rings that reconnect with the vortex tube by forming an intriguing, serpentinelike, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields, are also indicated.
Modelling biological invasions: species traits, species interactions, and habitat heterogeneity.
Cannas, Sergio A; Marco, Diana E; Páez, Sergio A
2003-05-01
In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.
Prediction of kinase-inhibitor binding affinity using energetic parameters
Usha, Singaravelu; Selvaraj, Samuel
2016-01-01
The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient values form the major deterministic factors for binding affinity of the ligand for its receptor. PMID:28149052
Investigation of intermolecular interaction of binary mixture of acrylonitrile with bromobenzene
NASA Astrophysics Data System (ADS)
Deshmukh, S. D.; Pattebahadur, K. L.; Mohod, A. G.; Patil, S. S.; Khirade, P. W.
2018-04-01
In this paper, study of binary mixture of Acrylonitrile (ACN)with Bromobenzene(BB) has been carried out at eleven concentrations at room temperature. The determined density(ρ) and refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range. The aforesaid parameters are used to calculate excess parameters and fitted to the Redlich-Kister equation to determine the bj coefficients. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Bromobenzene is supported by the FTIR spectra.
NASA Astrophysics Data System (ADS)
Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.
2017-08-01
The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.
Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O
2013-03-01
Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.
Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases.
Mohammadzadeh, Hosein; Adli, Fereshteh; Nouri, Sahereh
2016-12-01
We investigate perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. We show that the intrinsic statistical interaction of nonextensive Bose (Fermi) gas is attractive (repulsive) similar to the extensive case but the value of thermodynamic curvature is changed by a nonextensive parameter. In contrary to the extensive ideal classical gas, the nonextensive one may be divided to two different regimes. According to the deviation parameter of the system to the nonextensive case, one can find a special value of fugacity, z^{*}, where the sign of thermodynamic curvature is changed. Therefore, we argue that the nonextensive parameter induces an attractive (repulsive) statistical interaction for z
Spatial trends in Pearson Type III statistical parameters
Lichty, R.W.; Karlinger, M.R.
1995-01-01
Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors
NASA Technical Reports Server (NTRS)
Rosero, Enrique; Yang, Zong-Liang; Wagener, Thorsten; Gulden, Lindsey E.; Yatheendradas, Soni; Niu, Guo-Yue
2009-01-01
We use sensitivity analysis to identify the parameters that are most responsible for shaping land surface model (LSM) simulations and to understand the complex interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the US Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol s total and first-order sensitivity indexes, we show that very few parameters directly control the variance of the model output. Significant parameter interaction occurs so that not only the optimal parameter values differ between models, but the relationships between parameters change. GW decreases parameter interaction and appears to improve model realism, especially at wetter sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. A case study at a wet site shows GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and baseflow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. This evidence suggests a priori assignment of parameters should also consider climatic differences.
An extensive study of Bose-Einstein condensation in liquid helium using Tsallis statistics
NASA Astrophysics Data System (ADS)
Guha, Atanu; Das, Prasanta Kumar
2018-05-01
Realistic scenario can be represented by general canonical ensemble way better than the ideal one, with proper parameter sets involved. We study the Bose-Einstein condensation phenomena of liquid helium within the framework of Tsallis statistics. With a comparatively high value of the deformation parameter q(∼ 1 . 4) , the theoretically calculated value of the critical temperature (Tc) of the phase transition of liquid helium is found to agree with the experimentally determined value (Tc = 2 . 17 K), although they differs from each other for q = 1 (undeformed scenario). This throws a light on the understanding of the phenomenon and connects temperature fluctuation(non-equilibrium conditions) with the interactions between atoms qualitatively. More interactions between atoms give rise to more non-equilibrium conditions which is as expected.
Reducing the H0 and σ8 tensions with dark matter-neutrino interactions
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Bœhm, Céline; Hivon, Eric; Bouchet, François R.
2018-02-01
The introduction of dark matter-neutrino interactions modifies the cosmic microwave background (CMB) angular power spectrum at all scales, thus affecting the reconstruction of the cosmological parameters. Such interactions can lead to a slight increase of the value of H0 and a slight decrease of S8≡σ8√{Ωm/0.3 } , which can help reduce somewhat the tension between the CMB and weak lensing or Cepheids data sets. Here we show that it is impossible to solve both tensions simultaneously. While the 2015 Planck temperature and low multipole polarization data combined with the Cepheids data sets prefer large values of the Hubble rate (up to H0=72.1-1.7+1.5 km /s /Mpc , when Neff is free to vary), the σ8 parameter remains too large to reduce the σ8 tension. Adding high multipole Planck polarization data does not help since this data shows a strong preference for low values of H0, thus worsening current tensions, even though they also prefer smaller value of σ8.
Neutrino oscillations and Non-Standard Interactions
NASA Astrophysics Data System (ADS)
Farzan, Yasaman; Tórtola, Mariam
2018-02-01
Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant oscillation effects that can give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase, the mass ordering and the octant of θ_{23}. Determining the exact values of neutrino mass and mixing parameters is crucial to test neutrino models and flavor symmetries designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar experiments and the atmospheric data from Super-Kamiokande, IceCube and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO and Double Chooz as well as the long baseline neutrino data from MINOS, T2K and NOvA. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will be mainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass ≲ 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.
Localized coherence in two interacting populations of social agents
NASA Astrophysics Data System (ADS)
González-Avella, J. C.; Cosenza, M. G.; San Miguel, M.
2014-04-01
We investigate the emergence of localized coherent behavior in systems consisting of two populations of social agents possessing a condition for non-interacting states, mutually coupled through global interaction fields. We employ two examples of such dynamics: (i) Axelrod’s model for social influence, and (ii) a discrete version of a bounded confidence model for opinion formation. In each case, the global interaction fields correspond to the statistical mode of the states of the agents in each population. In both systems we find localized coherent states for some values of parameters, consisting of one population in a homogeneous state and the other in a disordered state. This situation can be considered as a social analogue to a chimera state arising in two interacting populations of oscillators. In addition, other asymptotic collective behaviors appear in both systems depending on parameter values: a common homogeneous state, where both populations reach the same state; different homogeneous states, where both population reach homogeneous states different from each other; and a disordered state, where both populations reach inhomogeneous states.
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2014-01-01
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
Maximum Mass of Hybrid Stars in the Quark Bag Model
NASA Astrophysics Data System (ADS)
Alaverdyan, G. B.; Vartanyan, Yu. L.
2017-12-01
The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.
NASA Astrophysics Data System (ADS)
Wang, Yao; Chen, Mei-Dan; Li, Xian; Li, Biao
2017-05-01
Through Hirota bilinear transformation and symbolic computation with Maple, a class of lump solutions, rationally localised in all directions in the space, to a reduced generalised (3+1)-dimensional shallow water wave (SWW) equation are prensented. The resulting lump solutions all contain six parameters, two of which are free due to the translation invariance of the SWW equation and the other four of which must satisfy a nonzero determinant condition guaranteeing analyticity and rational localisation of the solutions. Then we derived the interaction solutions for lump solutions and one stripe soliton and the result shows that the particular lump solutions with specific values of the involved parameters will be drowned or swallowed by the stripe soliton. Furthermore, we extend this method to a more general combination of positive quadratic function and hyperbolic functions. Especially, it is interesting that a rogue wave is found to be aroused by the interaction between lump solutions and a pair of resonance stripe solitons. By choosing the values of the parameters, the dynamic properties of lump solutions, interaction solutions for lump solutions and one stripe soliton and interaction solutions for lump solutions and a pair of resonance solitons, are shown by dynamic graphs.
Bifurcation analysis of a photoreceptor interaction model for Retinitis Pigmentosa
NASA Astrophysics Data System (ADS)
Camacho, Erika T.; Radulescu, Anca; Wirkus, Stephen
2016-09-01
Retinitis Pigmentosa (RP) is the term used to describe a diverse set of degenerative eye diseases affecting the photoreceptors (rods and cones) in the retina. This work builds on an existing mathematical model of RP that focused on the interaction of the rods and cones. We non-dimensionalize the model and examine the stability of the equilibria. We then numerically investigate other stable modes that are present in the system for various parameter values and relate these modes to the original problem. Our results show that stable modes exist for a wider range of parameter values than the stability of the equilibrium solutions alone, suggesting that additional approaches to preventing cone death may exist.
Planning Robot-Control Parameters With Qualitative Reasoning
NASA Technical Reports Server (NTRS)
Peters, Stephen F.
1993-01-01
Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.
Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.
2018-05-01
The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.
Nonlinear Curve-Fitting Program
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Badavi, Forooz F.
1989-01-01
Nonlinear optimization algorithm helps in finding best-fit curve. Nonlinear Curve Fitting Program, NLINEAR, interactive curve-fitting routine based on description of quadratic expansion of X(sup 2) statistic. Utilizes nonlinear optimization algorithm calculating best statistically weighted values of parameters of fitting function and X(sup 2) minimized. Provides user with such statistical information as goodness of fit and estimated values of parameters producing highest degree of correlation between experimental data and mathematical model. Written in FORTRAN 77.
The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio
NASA Astrophysics Data System (ADS)
Roquier, Gerard
2017-06-01
The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.
Charge relaxation and dynamics in organic semiconductors
NASA Astrophysics Data System (ADS)
Kwok, H. L.
2006-08-01
Charge relaxation in dispersive materials is often described in terms of the stretched exponential function (Kohlrausch law). The process can be explained using a "hopping" model which in principle, also applies to charge transport such as current conduction. This work analyzed reported transient photoconductivity data on functionalized pentacene single crystals using a geometric hopping model developed by B. Sturman et al and extracted values (or range of values) on the materials parameters relevant to charge relaxation as well as charge transport. Using the correlated disorder model (CDM), we estimated values of the carrier mobility for the pentacene samples. From these results, we observed the following: i) the transport site density appeared to be of the same order of magnitude as the carrier density; ii) it was possible to extract lower bound values on the materials parameters linked to the transport process; and iii) by matching the simulated charge decay to the transient photoconductivity data, we were able to refine estimates on the materials parameters. The data also allowed us to simulate the stretched exponential decay. Our observations suggested that the stretching index and the carrier mobility were related. Physically, such interdependence would allow one to demarcate between localized molecular interactions and distant coulomb interactions.
Deconstructing thermodynamic parameters of a coupled system from site-specific observables.
Chowdhury, Sandipan; Chanda, Baron
2010-11-02
Cooperative interactions mediate information transfer between structural domains of a protein molecule and are major determinants of protein function and modulation. The prevalent theories to understand the thermodynamic origins of cooperativity have been developed to reproduce the complex behavior of a global thermodynamic observable such as ligand binding or enzyme activity. However, in most cases the measurement of a single global observable cannot uniquely define all the terms that fully describe the energetics of the system. Here we establish a theoretical groundwork for analyzing protein thermodynamics using site-specific information. Our treatment involves extracting a site-specific parameter (defined as χ value) associated with a structural unit. We demonstrate that, under limiting conditions, the χ value is related to the direct interaction terms associated with the structural unit under observation and its intrinsic activation energy. We also introduce a site-specific interaction energy term (χ(diff)) that is a function of the direct interaction energy of that site with every other site in the system. When combined with site-directed mutagenesis and other molecular level perturbations, analyses of χ values of site-specific observables may provide valuable insights into protein thermodynamics and structure.
Chimera regimes in a ring of oscillators with local nonlinear interaction
NASA Astrophysics Data System (ADS)
Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.
2017-03-01
One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.
NASA Astrophysics Data System (ADS)
Xing, Wanqiu; Wang, Weiguang; Shao, Quanxi; Yong, Bin
2018-01-01
Quantifying precipitation (P) partition into evapotranspiration (E) and runoff (Q) is of great importance for global and regional water availability assessment. Budyko framework serves as a powerful tool to make simple and transparent estimation for the partition, using a single parameter, to characterize the shape of the Budyko curve for a "specific basin", where the single parameter reflects the overall effect by not only climatic seasonality, catchment characteristics (e.g., soil, topography and vegetation) but also agricultural activities (e.g., cultivation and irrigation). At the regional scale, these influencing factors are interconnected, and the interactions between them can also affect the single parameter of Budyko-type equations' estimating. Here we employ the multivariate adaptive regression splines (MARS) model to estimate the Budyko curve shape parameter (n in the Choudhury's equation, one form of the Budyko framework) of the selected 96 catchments across China using a data set of long-term averages for climatic seasonality, catchment characteristics and agricultural activities. Results show average storm depth (ASD), vegetation coverage (M), and seasonality index of precipitation (SI) are three statistically significant factors affecting the Budyko parameter. More importantly, four pairs of interactions are recognized by the MARS model as: The interaction between CA (percentage of cultivated land area to total catchment area) and ASD shows that the cultivation can weaken the reducing effect of high ASD (>46.78 mm) on the Budyko parameter estimating. Drought (represented by the value of Palmer drought severity index < -0.74) and uneven distribution of annual rainfall (represented by the value of coefficient of variation of precipitation > 0.23) tend to enhance the Budyko parameter reduction by large SI (>0.797). Low vegetation coverage (34.56%) is likely to intensify the rising effect on evapotranspiration ratio by IA (percentage of irrigation area to total catchment area). The Budyko n values estimated by the MARS model reproduce the calculated ones by the observation well for the selected 96 catchments (with R = 0.817, MAE = 4.09). Compared to the multiple stepwise regression model estimating the parameter n taken the influencing factors as independent inputs, the MARS model enhances the capability of the Budyko framework for assessing water availability at regional scale using readily available data.
Jabłoński, Mirosław
2015-11-19
Using large sets of systems having an intramolecular charge-inverted hydrogen bond (IMCIHB), M···(Ha-Si) "agostic bond" or M···(η(2)-SiH) σ interaction, we have compared both geometric and QTAIM-based topological parameters characterizing all these three types of interactions. It is shown that IMCIHBs can be distinguished from the other relevant interactions by the significantly less elongated Si-H bond. The other geometric parameters are not characteristic because they accept wide ranges of values in systems having either an M···(Ha-Si) "agostic bond" or M···(η(2)-SiH) σ interaction. If QTAIM-based results are investigated, then it is shown that an IMCIHB can be characterized by the position of the BCPH···M that is closer to the metal atom, whereas, quite the contrary, this BCP has been found to be closer to the agostic hydrogen in complexes having either M···(Ha-Si) or M···(η(2)-SiH) interactions. Another difference is in the curvature of the M···H bond path. If the M···H bond path tracing the M···(H-E) (E = Si, C) interaction is curved, then this curvature appears near the agostic hydrogen-a property particularly pronounced in M···(Ha-C) agostic bonds. Moreover, it has also been shown that an IMCIHB can be characterized by lower curvatures and, in general, lower values of the electron density computed at BCPH···Al than at BCPs of either M···(Ha-Si) or M···(η(2)-SiH) interactions. Importantly, IMCIHBs can be distinguished from the other two types of interactions on the basis of values of delocalization index, which are significantly lower for IMCIHBs. Other QTAIM-based parameters have occurred to be not characteristic for IMCIHBs due to wide ranges of their values obtained for M···(Ha-Si) and M···(η(2)-SiH) interactions. It has also been shown that the PBE0 functional gives the best molecular structure in comparison with experimental data.
Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects
NASA Astrophysics Data System (ADS)
Braaten, Eric; Johnson, Evan; Zhang, Hong
2018-05-01
Near a critical value of the wino mass where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold, low-energy winos can be described by a zero-range effective field theory (ZREFT) in which the winos interact nonperturbatively through a contact interaction and through Coulomb interactions. The effects of wino-pair annihilation into electroweak gauge bosons are taken into account through the analytic continuation of the real parameters for the contact interaction to complex values. The parameters of ZREFT can be determined by matching wino-wino scattering amplitudes calculated by solving the Schrödinger equation for winos interacting through a real potential due to the exchange of electroweak gauge bosons and an imaginary potential due to wino-pair annihilation into electroweak gauge bosons. ZREFT at leading order gives an accurate analytic description of low-energy wino-wino scattering, inclusive wino-pair annihilation, and a wino-pair bound state. ZREFT can also be applied to partial annihilation rates, such as the Sommerfeld enhancement of the annihilation rate of wino pairs into monochromatic photons.
NASA Astrophysics Data System (ADS)
Yeung, Yau Yuen; Tanner, Peter A.
2013-12-01
The experimental free ion 4f2 energy level data sets comprising 12 or 13 J-multiplets of La+, Ce2+, Pr3+ and Nd4+ have been fitted by a semiempirical atomic Hamiltonian comprising 8, 10, or 12 freely-varying parameters. The root mean square errors were 16.1, 1.3, 0.3 and 0.3 cm-1, respectively for fits with 10 parameters. The fitted inter-electronic repulsion and magnetic parameters vary linearly with ionic charge, i, but better linear fits are obtained with (4-i)2, although the reason is unclear at present. The two-body configuration interaction parameters α and β exhibit a linear relation with [ΔE(bc)]-1, where ΔE(bc) is the energy difference between the 4f2 barycentre and that of the interacting configuration, namely 4f6p for La+, Ce2+, and Pr3+, and 5p54f3 for Nd4+. The linear fit provides the rationale for the negative value of α for the case of La+, where the interacting configuration is located below 4f2.
NASA Astrophysics Data System (ADS)
Shimizu, Akira; Inoue, Jun-Ichi
1999-10-01
We study the nonequilibrium time evolution of the Bose-Einstein condensate of interacting bosons confined in a leaky box, when its number fluctuation is initially (t=0) suppressed. We take account of quantum fluctuations of all modes, including k=0, of the bosons. As the wave function of the ground state that has a definite number N of interacting bosons, we use a variational form \\|N,y>, which is obtained by operating a unitary operator eiG(y) on the number state of free bosons. Using eiG(y), we identify a ``natural coordinate'' b of the interacting bosons, by which many physical properties can be simply described. The \\|N,y> can be represented simply as a number state of b we thus call it the ``number state of interacting bosons'' (NSIB). To simulate real systems, for which if one fixes N at t=0 N will fluctuate at later times because of a finite probability of exchanging bosons between the box and the environment, we evaluate the time evolution of the reduced density operator ρ⁁(t) of the bosons in the box as a function of the leakage flux J. We concentrate on the most interesting and nontrivial time stage, i.e., the early time stage for which Jt<
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh; Heer, Manmohan Singh; Rani, Asha
2016-07-01
The gamma-ray shielding behaviour of a material can be investigated by determining its various interaction and energy-absorption parameters (such as mass attenuation coefficients, mass energy absorption coefficients, and corresponding effective atomic numbers and electron densities). Literature review indicates that the effective atomic number (Zeff) has been used as extensive parameters for evaluating the effects and defect in the chosen materials caused by ionising radiations (X-rays and gamma-rays). A computer program (Zeff-toolkit) has been designed for obtaining the mean value of effective atomic number calculated by three different methods. A good agreement between the results obtained with Zeff-toolkit, Auto_Zeff software and experimentally measured values of Zeff has been observed. Although the Zeff-toolkit is capable of computing effective atomic numbers for both photon interaction (Zeff,PI) and energy absorption (Zeff,En) using three methods in each. No similar computer program is available in the literature which simultaneously computes these parameters simultaneously. The computed parameters have been compared and correlated in the wide energy range (0.001-20 MeV) for 10 commonly used building materials. The prominent variations in these parameters with gamma-ray photon energy have been observed due to the dominance of various absorption and scattering phenomena. The mean values of two effective atomic numbers (Zeff,PI and Zeff,En) are equivalent at energies below 0.002 MeV and above 0.3 MeV, indicating the dominance of gamma-ray absorption (photoelectric and pair production) over scattering (Compton) at these energies. Conversely in the energy range 0.002-0.3 MeV, the Compton scattering of gamma-rays dominates the absorption. From the 10 chosen samples of building materials, 2 soils showed better shielding behaviour than did other 8 materials.
MC3: Multi-core Markov-chain Monte Carlo code
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan
2016-10-01
MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.
Hexagonal boron nitride and water interaction parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu; Wagner, Lucas K.
2016-04-28
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics andmore » ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.« less
Random Blume-Emery-Griffiths model on the Bethe lattice
NASA Astrophysics Data System (ADS)
Albayrak, Erhan
2015-12-01
The random phase transitions of the Blume-Emery-Griffiths (BEG) model for the spin-1 system are investigated on the Bethe lattice and the phase diagrams of the model are obtained. The biquadratic exchange interaction (K) is turned on, i.e. the BEG model, with probability p either attractively (K > 0) or repulsively (K < 0) and turned off, which leads to the BC model, with the probability (1 - p) throughout the Bethe lattice. By taking the bilinear exchange interaction parameter J as a scaling parameter, the effects of the competitions between the reduced crystal fields (D / J), reduced biquadratic exchange interaction parameter (K / J) and the reduced temperature (kT / J) for given values of the probability when the coordination number is q=4, i.e. on a square lattice, are studied in detail.
Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita
Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described.
Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad
2017-01-01
In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks ( M c ), crosslink density ( M r ), volume interaction parameter ( v 2, s ), Flory Huggins water interaction parameter and diffusion coefficient ( Q ) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM.
Indications of a late-time interaction in the dark sector.
Salvatelli, Valentina; Said, Najla; Bruni, Marco; Melchiorri, Alessandro; Wands, David
2014-10-31
We show that a general late-time interaction between cold dark matter and vacuum energy is favored by current cosmological data sets. We characterize the strength of the coupling by a dimensionless parameter q(V) that is free to take different values in four redshift bins from the primordial epoch up to today. This interacting scenario is in agreement with measurements of cosmic microwave background temperature anisotropies from the Planck satellite, supernovae Ia from Union 2.1 and redshift space distortions from a number of surveys, as well as with combinations of these different data sets. Our analysis of the 4-bin interaction shows that a nonzero interaction is likely at late times. We then focus on the case q(V)≠0 in a single low-redshift bin, obtaining a nested one parameter extension of the standard ΛCDM model. We study the Bayesian evidence, with respect to ΛCDM, of this late-time interaction model, finding moderate evidence for an interaction starting at z=0.9, dependent upon the prior range chosen for the interaction strength parameter q(V). For this case the null interaction (q(V)=0, i.e., ΛCDM) is excluded at 99% C.L.
GENERAL: Entanglement sudden death induced by the Dzialoshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Zeng, Hong-Fang; Shao, Bin; Yang, Lin-Guang; Li, Jian; Zou, Jian
2009-08-01
In this paper, we study the entanglement dynamics of two-spin Heisenberg XYZ model with the Dzialoshinskii-Moriya (DM) interaction. The system is initially prepared in the Werner state. The effects of purity of the initial state and DM coupling parameter on the evolution of entanglement are investigated. The necessary and sufficient condition for the appearance of the entanglement sudden death (ESD) phenomenon has been deduced. The result shows that the ESD always occurs if the initial state is sufficiently impure for the given coupling parameter or the DM interaction is sufficiently strong for the given initial state. Moreover, the critical values of them are calculated.
The Easy Way of Finding Parameters in IBM (EWofFP-IBM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turkan, Nureddin
E2/M1 multipole mixing ratios of even-even nuclei in transitional region can be calculated as soon as B(E2) and B(M1) values by using the PHINT and/or NP-BOS codes. The correct calculations of energies must be obtained to produce such calculations. Also, the correct parameter values are needed to calculate the energies. The logic of the codes is based on the mathematical and physical Statements describing interacting boson model (IBM) which is one of the model of nuclear structure physics. Here, the big problem is to find the best fitted parameters values of the model. So, by using the Easy Way ofmore » Finding Parameters in IBM (EWofFP-IBM), the best parameter values of IBM Hamiltonian for {sup 102-110}Pd and {sup 102-110}Ru isotopes were firstly obtained and then the energies were calculated. At the end, it was seen that the calculated results are in good agreement with the experimental ones. In addition, it was carried out that the presented energy values obtained by using the EWofFP-IBM are dominantly better than the previous theoretical data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berthet, M.
1963-01-01
The energy levels and their displacement DELTA E with respect to that of a meson placed in a coulomb potential are determined and compared with the experimental values. This comparison permits the selection of values for the parameters introduced by the hypothesis of the optical model. The absorption in the nucleus is studied using the hamiltonian of the nucleon- pi meson interaction and not th optical model. The results are compared with experimen values. As an introduction, the exact form of the interac tion of mesons with nuclei is defined by adopting the opti model. (J.S.R.)
Investigation of the Dirac Equation by Using the Conformable Fractional Derivative
NASA Astrophysics Data System (ADS)
Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.
2018-05-01
In this paper,the Dirac equation is constructed using the conformable fractional derivative so that in its limit for the fractional parameter, the normal version is recovered. Then, the Cornell potential is considered as the interaction of the system. In this case, the wave function and the energy eigenvalue equation are derived with the aim of the bi-confluent Heun functions. use of the conformable fractional derivative is proven to lead to a branching treatment for the energy of the system. Such a treatment is obvious for small values of the fractional parameter, and a united value as the fractional parameter approaches unity.
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2015-12-01
Integral enthalpies of solution Δsol H m of diglycylglycine in aqueous solutions of glycerol, ethylene glycol, and 1,2-propylene glycol are measured via solution calorimetry. The experimental data are used to calculate the standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of the tripeptide from water to aqueous solutions of polyatomic alcohols. The enthalpic pairwise coefficients h xy of interactions between the tripeptide and polyatomic alcohol molecules are calculated using the McMillan-Mayer solution theory and are found to have positive values. The findings are discussed using the theory of estimating various types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical parameters of diglycylglycine dissolution.
Mikami, Akiko; Hori, Satoko; Ohtani, Hisakazu; Sawada, Yasufumi
2017-01-01
The purpose of the study was to quantitatively estimate and predict drug interactions between terbinafine and tricyclic antidepressants (TCAs), amitriptyline or nortriptyline, based on in vitro studies. Inhibition of TCA-metabolizing activity by terbinafine was investigated using human liver microsomes. Based on the unbound K i values obtained in vitro and reported pharmacokinetic parameters, a pharmacokinetic model of drug interaction was fitted to the reported plasma concentration profiles of TCAs administered concomitantly with terbinafine to obtain the drug-drug interaction parameters. Then, the model was used to predict nortriptyline plasma concentration with concomitant administration of terbinafine and changes of area under the curve (AUC) of nortriptyline after cessation of terbinafine. The CYP2D6 inhibitory potency of terbinafine was unaffected by preincubation, so the inhibition seems to be reversible. Terbinafine competitively inhibited amitriptyline or nortriptyline E-10-hydroxylation, with unbound K i values of 13.7 and 12.4 nM, respectively. Observed plasma concentrations of TCAs administered concomitantly with terbinafine were successfully simulated with the drug interaction model using the in vitro parameters. Model-predicted nortriptyline plasma concentration after concomitant nortriptylene/terbinafine administration for two weeks exceeded the toxic level, and drug interaction was predicted to be prolonged; the AUC of nortriptyline was predicted to be increased by 2.5- or 2.0- and 1.5-fold at 0, 3 and 6 months after cessation of terbinafine, respectively. The developed model enables us to quantitatively predict the prolonged drug interaction between terbinafine and TCAs. The model should be helpful for clinical management of terbinafine-CYP2D6 substrate drug interactions, which are difficult to predict due to their time-dependency.
Regularities in Low-Temperature Phosphatization of Silicates
NASA Astrophysics Data System (ADS)
Savenko, A. V.
2018-01-01
The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.
Dipole-relaxation parameters for Ce3+-Fint- complexes in CaF2:Ce and CaF2:Ce,Mn
NASA Astrophysics Data System (ADS)
Jassemnejad, B.; McKeever, S. W. S.
1987-12-01
Dipole-relaxation parameters for Ce3+-Fint- centers (C4v symmetry) in CaF2 are calculated using the method of ionic thermocurrents (ITC). The data indicate concentration-dependent effects if analyzed using the traditional ITC equation, assuming a single value for the reorientation activation energy. This analysis is unable to account for an observed broadening of the ITC peak as more Ce is added to the crystals. However, as has been published for other MF2:R3+ systems, we find that the broadening can be successfully accounted for by adopting a modified ITC equation which allows for a Gaussian distribution of activation energies about a mean value E0 and with a distribution width p. The parameter E0 is found to be independent of dipole content while p is found to increase with increasing dipole concentration. The data are consistent with a perturbation of the dipole-relaxation parameters due to interactions with other defects within the system. However, the strength of the observed effects is difficult to explain by invoking electrostatic dipole-dipole interactions only. Other perturbations, due perhaps to monopole-dipole interactions or elastic interactions, must be taking place. The data indicate that dipole concentrations calculated by ITC will be in error in the presence of such interactions due to a reduction in the mean contribution per dipole to the overall polarization density. For samples in which interaction effects are negligible, we calculate a dipole moment of 3.12×10-29 C m. The data further indicate that that the addition of Mn to the system causes a decrease in the interaction effects via a reduction in the Ce C4v center dipole moment. It appears that the broadening of the ITC curve is sensitive to the defect structure surrounding the dipoles.
qPIPSA: Relating enzymatic kinetic parameters and interaction fields
Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C
2007-01-01
Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism. PMID:17919319
Evaluation of the 235U resonance parameters to fit the standard recommended values
NASA Astrophysics Data System (ADS)
Leal, Luiz; Noguere, Gilles; Paradela, Carlos; Durán, Ignacio; Tassan-Got, Laurent; Danon, Yaron; Jandel, Marian
2017-09-01
A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. A resonance re-evaluation of the n + 235U interaction has been performed to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-of-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. This paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.
Tricriticality of the Blume-Emery-Griffiths model in thin films of stacked triangular lattices
NASA Astrophysics Data System (ADS)
El Hog, Sahbi; Diep, H. T.
2016-03-01
We study in this paper the Blume-Emery-Griffiths model in a thin film of stacked triangular lattices. The model is described by three parameters: bilinear exchange interaction between spins J, quadratic exchange interaction K and single-ion anisotropy D. The spin Si at the lattice site i takes three values (-1, 0, +1). This model can describe the mixing phase of He-4 (Si = +1,-1) and He-3 (Si = 0) at low temperatures. Using Monte Carlo simulations, we show that there exists a critical value of D below (above) which the transition is of second-(first-)order. In general, the temperature dependence of the concentrations of He-3 is different from layer by layer. At a finite temperature in the superfluid phase, the film surface shows a deficit of He-4 with respect to interior layers. However, effects of surface interaction parameters can reverse this situation. Effects of the film thickness on physical properties will be also shown as functions of temperature.
Quantitative estimation of film forming polymer-plasticizer interactions by the Lorentz-Lorenz Law.
Dredán, J; Zelkó, R; Dávid, A Z; Antal, I
2006-03-09
Molar refraction as well as refractive index has many uses. Beyond confirming the identity and purity of a compound, determination of molecular structure and molecular weight, molar refraction is also used in other estimation schemes, such as in critical properties, surface tension, solubility parameter, molecular polarizability, dipole moment, etc. In the present study molar refraction values of polymer dispersions were determined for the quantitative estimation of film forming polymer-plasticizer interactions. Information can be obtained concerning the extent of interaction between the polymer and the plasticizer from the calculation of molar refraction values of film forming polymer dispersions containing plasticizer.
Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hock, Kiel; Earle, Keith
2016-02-06
In this paper, we use Boltzmann statistics and the maximum likelihood distribution derived from Bayes’ Theorem to infer parameter values for a Pake Doublet Spectrum, a lineshape of historical significance and contemporary relevance for determining distances between interacting magnetic dipoles. A Metropolis Hastings Markov Chain Monte Carlo algorithm is implemented and designed to find the optimum parameter set and to estimate parameter uncertainties. In conclusion, the posterior distribution allows us to define a metric on parameter space that induces a geometry with negative curvature that affects the parameter uncertainty estimates, particularly for spectra with low signal to noise.
Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh
2018-01-11
A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with ΔE int for all 1-butylpyridinium ion pairs (R 2 = 0.9918). The ionic crystal density values calculated by using DFT-based MESP showed only slight variations from experimentally reported values.
NASA Astrophysics Data System (ADS)
Kurudirek, Murat; Türkmen, İbrahim; Özdemir, Yüksel
2009-09-01
Total mass attenuation coefficients, mean free paths (MFP), half-value (HVT) and tenth-value (TVT) thicknesses of Portland cement and three mixtures have been calculated in function of the energy from 1 keV to 100 GeV. Both in the low- and high-energy region there were significant variations in those parameters where photoelectric process and pair production partially dominates, respectively. In general, the attenuation parameters were found to vary with chemical composition, density of given material and photon energy.
Study of intermolecular interactions in binary mixtures of ethanol in methanol
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.
2016-05-01
Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.
Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad
2017-01-01
Abstract In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks (M c), crosslink density (M r), volume interaction parameter (v 2,s), Flory Huggins water interaction parameter and diffusion coefficient (Q) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM. PMID:29491802
Monopole-antimonopole interaction potential
NASA Astrophysics Data System (ADS)
Saurabh, Ayush; Vachaspati, Tanmay
2017-11-01
We numerically study the interactions of twisted monopole-antimonopole pairs in the 't Hooft-Polyakov model for a range of values of the scalar to vector mass ratio. We also recover the sphaleron solution at maximum twist discovered by Taubes [Commun. Math. Phys. 86, 257 (1982), 10.1007/BF01206014] and map out its energy and size as functions of parameters.
Lattice-dynamical model for the filled skutterudite LaFe4Sb12: Harmonic and anharmonic couplings
NASA Astrophysics Data System (ADS)
Feldman, J. L.; Singh, D. J.; Bernstein, N.
2014-06-01
The filled skutterudite LaFe4Sb12 shows greatly reduced thermal conductivity compared to that of the related unfilled compound CoSb3, although the microscopic reasons for this are unclear. We calculate harmonic and anharmonic force constants for the interaction of the La filler atom with the framework atoms. We find that force constants show a general trend of decaying rapidly with distance and are very small for the interaction of the La with its next-nearest-neighbor Sb and nearest-neighbor La. However, a few rather long-range interactions, such as with the next-nearest-neighbor La and with the third neighbor Sb, are surprisingly strong, although still small. We test the central-force approximation and find significant deviations from it. Using our force constants we calculate a bare La mode Gruneisen parameter and find a value of 3-4, substantially higher than values associated with cage atom anharmonicity, i.e., a value of about 1 for CoSb3 but much smaller than a previous estimate [Bernstein et al., Phys. Rev. B 81, 134301 (2010), 10.1103/PhysRevB.81.134301]. This latter difference is primarily due to the previously used overestimate of the La-Fe cubic force constants. We also find a substantial negative contribution to this bare La Gruneisen parameter from the aforementioned third-neighbor La-Sb interaction. Our results underscore the need for rather long-range interactions in describing the role of anharmonicity on the dynamics in this material.
Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics
NASA Astrophysics Data System (ADS)
Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Nplqcd Collaboration
2017-12-01
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the S U (3 ) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of ≈806 MeV ). Specifically, the S -wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of Lüscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The leading-order low-energy scattering parameters in the two-nucleon systems that were previously obtained at these quark masses are determined with a refined analysis, and the scattering parameters in two other channels containing the Σ and Ξ baryons are constrained for the first time. It is found that the values of these parameters are consistent with an approximate S U (6 ) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-Nc limit of QCD. The two distinct S U (6 )-invariant interactions between two baryons are constrained for the first time at this value of the quark masses, and their values indicate an approximate accidental S U (16 ) symmetry. The S U (3 ) irreps containing the N N (1S0), N N (3S1) and 1/√{2 } (Ξ0n +Ξ-p )(3S1) channels unambiguously exhibit a single bound state, while the irrep containing the Σ+p (3S1) channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.
Simulation of the weakly interacting Bose gas relaxation for cases of various interaction types
NASA Astrophysics Data System (ADS)
Kartsev, P. F.; Kuznetsov, I. O.
2017-12-01
In this work, we investigate the role of interactions in the process of thermalization of a weakly interacting Bose gas. The system of kinetic equations based on the ‘Fermi’s golden rule’ is solved numerically using special transformation for calculation efficiency. We study the distribution function for particles in various conditions, including interaction with phonon subsystem, i.e. energy exchange with thermal bath. The possibility to achieve the state of Bose-Einstein condensation with specific values of parameters, is also discussed.
NASA Astrophysics Data System (ADS)
Li, Liang-Sheng
2016-12-01
We explore the tricritical points and the critical lines of both Blume-Emery-Grifnths and Ising model within long-range interactions in the microcanonical ensemble. For K = K MTP , the tricritical exponents take the values β = 1/4, 1 = γ- ≠ γ+ = 1/2 and 0 = α- ≠ α+ = -1/2, which disagree with classical (mean held) values. When K > K MTP , the phase transition becomes second order and the critical exponents have classical values except close to the canonical tricritical parameters (K CTP ), where the values of the critical expoents become β = 1/2, 1 = γ- ≠ γ+ = 2 and 0 = α- ≠ α+ = 1. Supported by the National Natural Science Foundation of China under Grant No. 11104032
Homogeneous quantum electrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
Interaction of two-dimensional transverse jet with a supersonic mainstream
NASA Technical Reports Server (NTRS)
Kraemer, G. O.; Tiwari, S. N.
1983-01-01
The interaction of a two dimensional sonic jet injected transversely into a confined main flow was studied. The main flow consisted of air at a Mach number of 2.9. The effects of varying the jet parameters on the flow field were examined using surface pressure and composition data. Also, the downstream flow field was examined using static pressure, pitot pressure, and composition profile data. The jet parameters varied were gapwidth, jet static pressure, and injectant species of either helium or nitrogen. The values of the jet parameters used were 0.039, 0.056, and 0.109 cm for the gapwidth and 5, 10, and 20 for the jet to mainstream static pressure ratios. The features of the flow field produced by the mixing and interaction of the jet with the mainstream were related to the jet momentum. The data were used to demonstrate the validity of an existing two dimensional elliptic flow code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson-Sellers, A.
Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology andmore » (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.« less
Energy dependence of radiation interaction parameters of some organic compounds
NASA Astrophysics Data System (ADS)
Singh, Mohinder; Tondon, Akash; Sandhu, B. S.; Singh, Bhajan
2018-04-01
Gamma rays interact with a material through photoelectric absorption, Compton scattering, Rayleigh scattering and Pair production in the intermediate energy range. The probability of occurrence of a particular type of process depends on the energy of incident gamma rays, atomic number of the material, scattering angle and geometrical conditions. Various radiological parameters for organic compounds, namely ethylene glycol (C2H6O2), propylene glycol (C3H8O2), glycerin (C3H8O3), isoamyl alcohol (C5H12O), butanone (C4H8O), acetophenone (C8H8O2), cyclohexanone (C6H10O), furfural (C5H4O2), benzaldehyde (C7H6O), cinnamaldehyde (C9H8O), glutaraldehyde (C5H8O2), aniline (C6H7N), benzyl amine (C6H7N), nitrobenzene (C6H5NO2), ethyl benzene (C8H10), ethyl formate (C3H6O2) and water (H2O) are presented at 81, 122, 356 and 511 keV energies employing NaI(Tl) scintillation detector in narrow-beam transmission geometry. The radiation interaction parameters such as mass attenuation, molar extinction and mass energy absorption coefficients, half value layer, total atomic and effective electronic cross-sections and CT number have been evaluated for these organic compounds. The general trend of values of mass attenuation coefficients, half value layer, molar extinction coefficients, total atomic and effective electronic cross-sections and mass energy absorption coefficients shows a decrease with increase in incident gamma photon energy. The values of CT number are found to increases linearly with increase of effective atomic number (Zeff). The variation in CT number around Zeff ≈ 3.3 shows the peak like structure with respect to water and the correlation between CT number and linear attenuation coefficient is about 0.99. Appropriate equations are fitted to these experimentally determined parameters for the organic compounds at incident photon energy ranging from 81 keV to 511 keV used in the present study. Experimental values are compared with the theoretical data obtained using WinXcom software package, and are found in good agreement.
Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; North, Chris
2012-10-14
With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focusmore » on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.« less
NASA Astrophysics Data System (ADS)
Anyalebechi, P. N.
Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.
Photon Interaction Parameters for Some Borate Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Nisha; Kaur, Updesh; Singh, Tejbir
2010-11-06
Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.
NASA Technical Reports Server (NTRS)
Waddington, C. J.
1978-01-01
Evidence is reexamined which has been cited as suggesting serious errors in the use of fragmentation parameters appropriate to an airlike medium deduced from measurements made in nuclear emulsions to evaluate corrections for certain effects in balloon-borne observations of cosmic-ray nuclei. Fragmentation parameters for hydrogenlike interactions are calculated and shown to be in overall good agreement with those obtained previously for air. Experimentally measured fragmentation parameters in emulsion are compared with values computed semiempirically, and reasonable agreement is indicated.
A modified Leslie-Gower predator-prey interaction model and parameter identifiability
NASA Astrophysics Data System (ADS)
Tripathi, Jai Prakash; Meghwani, Suraj S.; Thakur, Manoj; Abbas, Syed
2018-01-01
In this work, bifurcation and a systematic approach for estimation of identifiable parameters of a modified Leslie-Gower predator-prey system with Crowley-Martin functional response and prey refuge is discussed. Global asymptotic stability is discussed by applying fluctuation lemma. The system undergoes into Hopf bifurcation with respect to parameters intrinsic growth rate of predators (s) and prey reserve (m). The stability of Hopf bifurcation is also discussed by calculating Lyapunov number. The sensitivity analysis of the considered model system with respect to all variables is performed which also supports our theoretical study. To estimate the unknown parameter from the data, an optimization procedure (pseudo-random search algorithm) is adopted. System responses and phase plots for estimated parameters are also compared with true noise free data. It is found that the system dynamics with true set of parametric values is similar to the estimated parametric values. Numerical simulations are presented to substantiate the analytical findings.
Spinning boson stars and Kerr black holes with scalar hair: The effect of self-interactions
NASA Astrophysics Data System (ADS)
Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi F.
2016-05-01
Self-interacting boson stars (BSs) have been shown to alleviate the astrophysically low maximal mass of their nonself-interacting counterparts. We report some physical features of spinning self-interacting BSs, namely their compactness, the occurrence of ergo-regions and the scalar field profiles, for a sample of values of the coupling parameter. The results agree with the general picture that these BSs are comparatively less compact than the nonself-interacting ones. We also briefly discuss the effect of scalar self-interactions on the properties of Kerr black holes with scalar hair.
Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas
NASA Astrophysics Data System (ADS)
Vovchenko, Volodymyr; Motornenko, Anton; Gorenstein, Mark I.; Stoecker, Horst
2018-03-01
The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the "excluded volume" parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically from the classical excluded volume (EV) model result. At temperatures T =100 -200 MeV, the widely used classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core radius by large factors of 3-4. Previous studies, which employed the hard-core radii of hadrons as an input into the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc=0.25 -0.3 fm. Role of the attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV parameter vN N≃1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover temperature region.
Modelling non-linear effects of dark energy
NASA Astrophysics Data System (ADS)
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
Atomistic modelling of magnetic nano-granular thin films
NASA Astrophysics Data System (ADS)
Agudelo-Giraldo, J. D.; Arbeláez-Echeverry, O. D.; Restrepo-Parra, E.
2018-03-01
In this work, a complete model for studying the magnetic behaviour of polycrystalline thin films at nanoscale was processed. This model includes terms as exchange interaction, dipolar interaction and various types of anisotropies. For the first term, exchange interaction dependence of the distance n was used with purpose of quantify the interaction, mainly in grain boundaries. The third term includes crystalline, surface and boundary anisotropies. Special attention was paid to the disorder vector that determines the loss of cubic symmetry in the crystalline structure. For the case of the dipolar interaction, a similar implementation of the fast multiple method (FMM) was performed. Using these tools, modelling and simulations were developed varying the number of grains, and the results obtained presented a great dependence of the magnetic properties on this parameter. Comparisons between critical temperature and magnetization of saturation depending on the number of grains were performed for samples with and without factors as the surface and boundary anisotropies, and the dipolar interaction. It was observed that the inclusion of these parameters produced a decrease in the critical temperature and the magnetization of saturation; furthermore, in both cases, including and not including the disorder parameters, not only the critical temperature, but also the magnetization of saturation exhibited a range of values that also depend on the number of grains. This presence of a critical interval is due to each grain can transit toward the ferromagnetic state at different values of critical temperature. The processes of Zero field cooling (ZFC), Field cooling (FCC) and field cooling in warming mode (FCW) were necessary for understanding the mono-domain regime around of transition temperature, due to the high probabilities of a Super-paramagnetic (SPM) state.
Integrating fluorescence and interactance measurements to improve apple maturity assessment
NASA Astrophysics Data System (ADS)
Noh, Hyun Kwon; Lu, Renfu
2006-10-01
Fluorescence and reflectance (or interactance) are promising techniques for measuring fruit quality and condition. Our previous research showed that a hyperspectral imaging technique integrating fluorescence and reflectance could improve predictions of selected quality parameters compared to single sensing techniques. The objective of this research was to use a low cost spectrometer for rapid acquisition of fluorescence and interactance spectra from apples and develop an algorithm integrating the two types of data for predicting skin and flesh color, fruit firmness, starch index, soluble solids content, and titratable acid. Experiments were performed to measure UV light induced transient fluorescence and interactance spectra from 'Golden Delicious' apples that were harvested over a period of four weeks during the 2005 harvest season. Standard destructive tests were performed to measure maturity parameters from the apples. Principal component (PC) analysis was applied to the interactance and fluorescence data. A back-propagation feedforward neural network with the inputs of PC data was used to predict individual maturity parameters. Interactance mode was consistently better than fluorescence mode in predicting the maturity parameters. Integrating interactance and fluorescence improved predictions of all parameters except flesh chroma; values of the correlation coefficient for firmness, soluble solids content, starch index, and skin and flesh hue were 0.77, 0.77, 0.89, 0.99, and 0.96 respectively, with the corresponding standard errors of 6.93 N, 0.90%, 0.97 g/L, 0.013 rad, and 0.013 rad. These results represented 4.1% to 23.5% improvements in terms of standard error, in comparison with the better results from the two single sensing methods. Integrating interactance and fluorescence can better assess apple maturity and quality.
Huang, Jui-Hua; Li, Ren-Hau; Huang, Shu-Ling; Sia, Hon-Ke; Chen, Yu-Ling; Tang, Feng-Cheng
2015-01-01
This study aimed to investigate (1) relations of smoking and alcohol to metabolic syndrome (MetS) and its components, with nutrition and exercise controlled; and (2) interactions between smoking/alcohol and nutrition/exercise on MetS. This cross-sectional study enrolled 4025 workers. Self-reported lifestyles, anthropometric values, blood pressure (BP), and biochemical determinations were obtained. Among males, smoking significantly increased the risk of low high-density lipoprotein cholesterol (HDL-C), high triglyceride, abdominal obesity (AO), and MetS. Additionally, smoking showed significant interaction effects with nutrition on high BP, AO, and MetS; after further analysis, nutrition did not decrease above-mentioned risks for smokers. However, there was no significant interaction of smoking with exercise on any metabolic parameter. Alcohol increased the risk of AO, but decreased low HDL-C. It also showed an interaction effect with exercise on AO; after further analysis, exercise decreased AO risk for drinkers. Among females, alcohol significantly decreased the risk of high fasting blood glucose, but did not show significant interaction with nutrition/exercise on any metabolic parameter. In conclusion, in males, smoking retained significant associations with MetS and its components, even considering benefits of nutrition; exercise kept predominance on lipid parameters regardless of smoking status. Alcohol showed inconsistencies on metabolic parameters for both genders. PMID:26694434
Huang, Jui-Hua; Li, Ren-Hau; Huang, Shu-Ling; Sia, Hon-Ke; Chen, Yu-Ling; Tang, Feng-Cheng
2015-12-16
This study aimed to investigate (1) relations of smoking and alcohol to metabolic syndrome (MetS) and its components, with nutrition and exercise controlled; and (2) interactions between smoking/alcohol and nutrition/exercise on MetS. This cross-sectional study enrolled 4025 workers. Self-reported lifestyles, anthropometric values, blood pressure (BP), and biochemical determinations were obtained. Among males, smoking significantly increased the risk of low high-density lipoprotein cholesterol (HDL-C), high triglyceride, abdominal obesity (AO), and MetS. Additionally, smoking showed significant interaction effects with nutrition on high BP, AO, and MetS; after further analysis, nutrition did not decrease above-mentioned risks for smokers. However, there was no significant interaction of smoking with exercise on any metabolic parameter. Alcohol increased the risk of AO, but decreased low HDL-C. It also showed an interaction effect with exercise on AO; after further analysis, exercise decreased AO risk for drinkers. Among females, alcohol significantly decreased the risk of high fasting blood glucose, but did not show significant interaction with nutrition/exercise on any metabolic parameter. In conclusion, in males, smoking retained significant associations with MetS and its components, even considering benefits of nutrition; exercise kept predominance on lipid parameters regardless of smoking status. Alcohol showed inconsistencies on metabolic parameters for both genders.
Schmidt, Burkhard; Friedrich, Bretislav
2014-02-14
We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as alignment and orientation cosines - in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.
NASA Technical Reports Server (NTRS)
Claassen, J. P.; Fung, A. K.
1975-01-01
As part of an effort to demonstrate the value of the microwave scatterometer as a remote sea wind sensor, the interaction between an arbitrarily polarized scatterometer antenna and a noncoherent distributive target was derived and applied to develop a measuring technique to recover all the scattering parameters. The results are helpful for specifying antenna polarization properties for accurate retrieval of the parameters not only for the sea but also for other distributive scenes.
THEORETICAL RESEARCH OF THE OPTICAL SPECTRA AND EPR PARAMETERS FOR Cs2NaYCl6:Dy3+ CRYSTAL
NASA Astrophysics Data System (ADS)
Dong, Hui-Ning; Dong, Meng-Ran; Li, Jin-Jin; Li, Deng-Feng; Zhang, Yi
2013-09-01
The calculated EPR parameters are in reasonable agreement with the observed values. The important material Cs2NaYCl6 doped with rare earth ions have received much attention because of its excellent optical and magnetic properties. Based on the superposition model, in this paper the crystal field energy levels, the electron paramagnetic resonance parameters g factors of Dy3+ and hyperfine structure constants of 161Dy3+ and 163Dy3+ isotopes in Cs2NaYCl6 crystal are studied by diagonalizing the 42 × 42 energy matrix. In the calculations, the contributions of various admixtures and interactions such as the J-mixing, the mixtures among the states with the same J-value, and the covalence are all considered. The calculated results are in reasonable agreement with the observed values. The results are discussed.
Prethermalization and persistent order in the absence of a thermal phase transition
NASA Astrophysics Data System (ADS)
Halimeh, Jad C.; Zauner-Stauber, Valentin; McCulloch, Ian P.; de Vega, Inés; Schollwöck, Ulrich; Kastner, Michael
2017-01-01
We numerically study the dynamics after a parameter quench in the one-dimensional transverse-field Ising model with long-range interactions (∝1 /rα with distance r ), for finite chains and also directly in the thermodynamic limit. In nonequilibrium, i.e., before the system settles into a thermal state, we find a long-lived regime that is characterized by a prethermal value of the magnetization, which in general differs from its thermal value. We find that the ferromagnetic phase is stabilized dynamically: as a function of the quench parameter, the prethermal magnetization shows a transition between a symmetry-broken and a symmetric phase, even for those values of α for which no finite-temperature transition occurs in equilibrium. The dynamical critical point is shifted with respect to the equilibrium one, and the shift is found to depend on α as well as on the quench parameters.
Bencala, Kenneth E.
1984-01-01
Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.
Okunade, Akintunde A
2007-07-01
The mass attenuation and energy-absorption coefficients (radiation interaction data), which are widely used in the shielding and dosimetry of X-rays used for medical diagnostic and orthovoltage therapeutic procedures, are strongly dependent on the energy of photons, elements and percentage by weight of elements in body tissues and substitutes. Significant disparities exist in the values of percentage by weight of elements reported in literature for body tissues and substitutes for individuals of different ages, genders and states of health. Often, interested parties are in need of these radiation interaction data for body tissues or substitutes with percentage by weight of elements and intermediate energies that are not tabulated in literature. To provide for the use of more precise values of these radiation interaction data, parameters and computer programs, MUA_T and MUEN_T are presented for the computation of mass attenuation and energy-absorption coefficients for body tissues and substitutes of arbitrary percentage-by-weight elemental composition and photon energy ranging between 1 keV (or k-edge) and 400 keV. Results are presented, which show that the values of mass attenuation and energy-absorption coefficients obtained from computer programs are in good agreement with those reported in literature.
NASA Astrophysics Data System (ADS)
Leushin, A. M.
2011-10-01
The level structure of the ground 3d5 configuration of Mn2+, Fe3+, Co4+ and Ni5+ ions was theoretically interpreted by means of a least-squares fit of the energy parameters to the observed values within the framework of the single-configuration approximation. In the Hamiltonian in addition to real electrostatic, spin-orbit, and spin-spin interactions, electrostatic and spin-orbit interactions correlated by configuration mixing were included. It was shown that the correct positions of almost all the energy levels are determined when the Hamiltonian includes the terms of the lineal (two-body operators) and nonlinear (three-body operators) theory of the configuration interaction. The most correct theoretical description of the experimental spectra was obtained by taking into account relativistic interactions and correlation effects of spin-orbit interactions. Adjustable parameters of the interactions included into the Hamiltonian were found.
Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng
2014-01-01
In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.
Vortex/boundary layer interactions
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Bradshaw, P.
1989-01-01
Detailed and high quality measurements with hot-wires and pressure probes are presented for two different interactions between a vortex pair with common flow down and a turbulent boundary layer. The interactions studied have larger values of the vortex circulation parameter than those studied previously. The results indicate that the boundary layer under the vortex pair is thinned by lateral divergence and that boundary layer fluid is entrained into the vortex. The effect of the interaction on the vortex core (other than the inviscid effect of the image vortices behind the surface) is small.
Interaction of breathing localized solutions for subcritical bifurcations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deissler, R.J.; Brand, H.R.
1995-06-12
We discuss interactions of spatially localized solutions, which breathe in the modulus, for coupled quintic complex Ginzburg-Landau equations. The interaction behavior is much richer than and qualitatively different from that of the fixed-shape solutions reported previously. The outcome of a collision can depend on the initial conditions, and, in particular, {ital sensitively} on the initial conditions for {ital chaotic} solutions, even though parameter values are unchanged. The novelty of these interactions, as compared to those of the fixed-shape solutions and to those of solitons is emphasized.
Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity
NASA Astrophysics Data System (ADS)
Ingber, Lester
1984-06-01
A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules of human short-term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic interactions.
Simulation-based Extraction of Key Material Parameters from Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Alsafi, Huseen; Peninngton, Gray
Models for the atomic force microscopy (AFM) tip and sample interaction contain numerous material parameters that are often poorly known. This is especially true when dealing with novel material systems or when imaging samples that are exposed to complicated interactions with the local environment. In this work we use Monte Carlo methods to extract sample material parameters from the experimental AFM analysis of a test sample. The parameterized theoretical model that we use is based on the Virtual Environment for Dynamic AFM (VEDA) [1]. The extracted material parameters are then compared with the accepted values for our test sample. Using this procedure, we suggest a method that can be used to successfully determine unknown material properties in novel and complicated material systems. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics,Towson University.
NASA Astrophysics Data System (ADS)
Barnard, P. E.; Terblans, J. J.; Swart, H. C.
2015-12-01
The article takes a new look at the process of atomic segregation by considering the influence of surface relaxation on the segregation parameters; the activation energy (Q), segregation energy (ΔG), interaction parameter (Ω) and the pre-exponential factor (D0). Computational modelling, namely Density Functional Theory (DFT) and the Modified Darken Model (MDM) in conjunction with Auger Electron Spectroscopy (AES) was utilized to study the variation of the segregation parameters for S in the surface region of Fe(100). Results indicate a variation in each of the segregation parameters as a function of the atomic layer under consideration. Values of the segregation parameters varied more dramatically as the surface layer is approached, with atomic layer 2 having the largest deviations in comparison to the bulk values. This atomic layer had the highest Q value and formed the rate limiting step for the segregation of S towards the Fe(100) surface. It was found that the segregation process is influenced by two sets of segregation parameters, those of the surface region formed by atomic layer 2, and those in the bulk material. This article is the first to conduct a full scale investigation on the influence of surface relaxation on segregation and labelled it the "surface effect".
The role of electrostatics in protein-protein interactions of a monoclonal antibody.
Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R
2014-07-07
Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.
NASA Astrophysics Data System (ADS)
HerdaǦDELEN, Amaç; Bingol, Haluk
Social interactions and personal tastes shape our consumption behavior of cultural products. In this study, we present a computational model of a cultural market and we aim to analyze the behavior of the consumer population as an emergent phenomena. Our results suggest that the final market shares of cultural products dramatically depend on consumer heterogeneity and social interaction pressure. Furthermore, the relation between the resulting market shares and social interaction is robust with respect to a wide range of variation in the parameter values and the type of topology.
Pareto-Zipf law in growing systems with multiplicative interactions
NASA Astrophysics Data System (ADS)
Ohtsuki, Toshiya; Tanimoto, Satoshi; Sekiyama, Makoto; Fujihara, Akihiro; Yamamoto, Hiroshi
2018-06-01
Numerical simulations of multiplicatively interacting stochastic processes with weighted selections were conducted. A feedback mechanism to control the weight w of selections was proposed. It becomes evident that when w is moderately controlled around 0, such systems spontaneously exhibit the Pareto-Zipf distribution. The simulation results are universal in the sense that microscopic details, such as parameter values and the type of control and weight, are irrelevant. The central ingredient of the Pareto-Zipf law is argued to be the mild control of interactions.
NASA Astrophysics Data System (ADS)
Zolotaryuk, A. V.
2017-06-01
Several families of one-point interactions are derived from the system consisting of two and three δ-potentials which are regularized by piecewise constant functions. In physical terms such an approximating system represents two or three extremely thin layers separated by some distance. The two-scale squeezing of this heterostructure to one point as both the width of δ-approximating functions and the distance between these functions simultaneously tend to zero is studied using the power parameterization through a squeezing parameter \\varepsilon \\to 0 , so that the intensity of each δ-potential is cj =aj \\varepsilon1-μ , aj \\in {R} , j = 1, 2, 3, the width of each layer l =\\varepsilon and the distance between the layers r = c\\varepsilon^τ , c > 0. It is shown that at some values of the intensities a 1, a 2 and a 3, the transmission across the limit point potentials is non-zero, whereas outside these (resonance) values the one-point interactions are opaque splitting the system at the point of singularity into two independent subsystems. Within the interval 1 < μ < 2 , the resonance sets consist of two curves on the (a_1, a_2) -plane and three surfaces in the (a_1, a_2, a_3) -space. As the parameter μ approaches the value μ =2 , three types of splitting the one-point interactions into countable families are observed.
Al-Amri, Mohammad; Al Balushi, Hilal; Mashabi, Abdulrhman
2017-12-01
Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, <0.153 and <0.055, respectively. The repeatability was higher for joint kinetic than kinematic parameters, as reflected in small values of SEM (<0.13 Nm/kg and <3.4°) and MDC (<0.335 Nm/kg and <9.44°). The obtained values of all parameters fell within the 95% limits of agreement. Our findings demonstrate the repeatability of the GRAIL system available in our laboratory. The SEM and MDC values can be used to assist researchers and clinicians to distinguish 'real' changes in gait performance over time.
In silico modeling of the yeast protein and protein family interaction network
NASA Astrophysics Data System (ADS)
Goh, K.-I.; Kahng, B.; Kim, D.
2004-03-01
Understanding of how protein interaction networks of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce an in silico ``coevolutionary'' model for the protein interaction network and the protein family network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed: gene duplication, divergence, and mutation. This model produces a prototypical feature of complex networks in a wide range of parameter space, following the generalized Pareto distribution in connectivity. Moreover, we investigate other structural properties of our model in detail with some specific values of parameters relevant to the yeast Saccharomyces cerevisiae, showing excellent agreement with the empirical data. Our model indicates that the physical constraints encoded via the domain structure of proteins play a crucial role in protein interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babenko, V. A.; Petrov, N. M., E-mail: pet2@ukr.net
2016-01-15
The relation between quantities that characterize the pion–nucleon and nucleon–nucleon interactions is studied with allowance for the fact that, at low energies, nuclear forces in nucleon–nucleon systems are mediated predominantly by one-pion exchange. On the basis of the values currently recommended for the low-energy parameters of the proton–proton interaction, the charged pion–nucleon coupling constant is evaluated at g{sub π}{sup 2}±/4π = 14.55(13). This value is in perfect agreement with the experimental value of g{sub π}{sup 2}±/4π = 14.52(26) found by the Uppsala Neutron Research Group. At the same time, the value obtained for the charged pion–nucleon coupling constant differs sizablymore » from the value of the pion–nucleon coupling constant for neutral pions, which is g{sub π}{sup 2} 0/4π = 13.55(13). This is indicative of a substantial charge dependence of the coupling constant.« less
Mathematical Model of Three Species Food Chain Interaction with Mixed Functional Response
NASA Astrophysics Data System (ADS)
Ws, Mada Sanjaya; Mohd, Ismail Bin; Mamat, Mustafa; Salleh, Zabidin
In this paper, we study mathematical model of ecology with a tritrophic food chain composed of a classical Lotka-Volterra functional response for prey and predator, and a Holling type-III functional response for predator and super predator. There are two equilibrium points of the system. In the parameter space, there are passages from instability to stability, which are called Hopf bifurcation points. For the first equilibrium point, it is possible to find bifurcation points analytically and to prove that the system has periodic solutions around these points. Furthermore the dynamical behaviors of this model are investigated. Models for biologically reasonable parameter values, exhibits stable, unstable periodic and limit cycles. The dynamical behavior is found to be very sensitive to parameter values as well as the parameters of the practical life. Computer simulations are carried out to explain the analytical findings.
Electron energy spectrum and magnetic interactions in high-Tc superconductors
NASA Technical Reports Server (NTRS)
Turshevski, S. A.; Liechtenstein, A. I.; Antropov, V. P.; Gubanov, V. A.
1991-01-01
The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T(sub N1) and T(sub N2). The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T(sub N2) reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T(sub N1) and T(sub N2) which depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg Hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J(sub ij) parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors.
Electron energy spectrum and magnetic interactions in high-T(sub c) superconductors
NASA Technical Reports Server (NTRS)
Turshevski, S. A.; Liechtenstein, A. I.; Antropov, V. P.; Gubanov, V. A.
1990-01-01
The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T sub N1 and T sub N2. The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T sub N2 reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T sub N1 and T sub N2 depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J sub ij parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors.
Cosmology with an interacting van der Waals fluid
NASA Astrophysics Data System (ADS)
Elizalde, E.; Khurshudyan, M.
A model for the late-time accelerated expansion of the Universe is considered where a van der Waals fluid interacting with matter plays the role of dark energy. The transition towards this phase in the cosmic evolution history is discussed in detail and, moreover, a complete classification of the future finite-time singularities is obtained for six different possible forms of the nongravitational interaction between dark energy (the van der Waals fluid) and dark matter. This study shows, in particular, that a Universe with a noninteracting three-parameter van der Waals fluid can evolve into a Universe characterized by a type IV (generalized sudden) singularity. On the other hand, for certain values of the parameters, exit from the accelerated expanding phase is possible in the near future, what means that the expansion of the Universe in the future could become decelerated - to our knowledge, this interesting situation is not commonplace in the literature. On the other hand, our study shows that space can be divided into different regions. For some of them, in particular, the nongravitational interactions Q = 3Hbρde, Q = 3Hbρdm and Q = 3Hb(ρde + ρde) may completely suppress future finite-time singularity formation, for sufficiently high values of b. On the other hand, for some other regions of the parameter space, the mentioned interactions would not affect the singularity type, namely the type IV singularity generated in the case of the noninteracting model would be preserved. A similar conclusion has been archived for the cases of Q = 3bHρdeρdm/(ρde + ρdm), Q = 3bHρdm2/(ρ de + ρdm) and Q = 3bHρde2/(ρ de + ρdm) nongravitational interactions, with only one difference: the Q = 3bHρdm2/(ρ de + ρdm) interaction will change the type IV singularity of the noninteracting model into a type II (the sudden) singularity.
Energy spectra and E2 transition rates of 124—130Ba
NASA Astrophysics Data System (ADS)
Sabri, H.; Seidi, M.
2016-10-01
In this paper, we have studied the energy spectra and B(E2) values of 124—130Ba isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes. We have used a transitional interacting Boson model (IBM), Hamiltonian which is based on affine SU(1,1) Lie algebra in the both IBM-1 and 2 versions and also the Catastrophe theory in combination with a coherent state formalism to generate energy surfaces and determine the exact values of control parameters. Our results for control parameters suggest a combination of U(5) and SO(6) dynamical symmetries in this isotopic chain. Also, the theoretical predictions can be rather well reproduce the experimental counterparts, when the control parameter is approached to the SO(6) limit.
Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2015-01-01
The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.
Type of adsorbent and column height in adsorption process of used cooking oil
NASA Astrophysics Data System (ADS)
Hasnelly, Hervelly, Taufik, Yusman; Melany, Ivo Nila
2015-12-01
The purpose of this research was to find out the best adsorbent and column height that can adsorb color and soluble impurities substances in used cooking oil. This research was meant for knowledge development of refined cooking oil technology. The used of this research was giving out information on the recycling process of used cooking oil. Research design used 2 × 2 factorial pattern in randomized group design with 6 repetitions. The first factor is adsorbent type (J) that consist of activated carbon (J1) and Zeolit (J2). The second factor is column height (K) with variations of 15 cm (k1) and 20 cm (k2). Chemical analysis parameter are free fatty acid, water content and saponification value. Physical parameter measurement was done on color with Hunter Lab system analysis and viscosity using viscometer method. Chemical analysis result of preliminary research on used cooking oil showed water content of 1,9%, free fatty acid 1,58%, saponification value 130,79 mg KOH/g oil, viscosity 0,6 d Pas and color with L value of -27,60, a value 1,04 and b value 1,54. Result on main research showed that adsorbent type only gave effect on water content whereas column height and its interaction was not gave significant effect on water content. Interaction between adsorbent type (J) and column height (K) gave significant effect to free fatty acid, saponification value, viscosity and color for L, a and b value of recycled cooking oil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mörtsell, E., E-mail: edvard@fysik.su.se
The bimetric generalization of general relativity has been proven to be able to give an accelerated background expansion consistent with observations. Apart from the energy densities coupling to one or both of the metrics, the expansion will depend on the cosmological constant contribution to each of them, as well as the three parameters describing the interaction between the two metrics. Even for fixed values of these parameters can several possible solutions, so called branches, exist. Different branches can give similar background expansion histories for the observable metric, but may have different properties regarding, for example, the existence of ghosts andmore » the rate of structure growth. In this paper, we outline a method to find viable solution branches for arbitrary parameter values. We show how possible expansion histories in bimetric gravity can be inferred qualitatively, by picturing the ratio of the scale factors of the two metrics as the spatial coordinate of a particle rolling along a frictionless track. A particularly interesting example discussed is a specific set of parameter values, where a cosmological dark matter background is mimicked without introducing ghost modes into the theory.« less
Cosmological histories in bimetric gravity: a graphical approach
NASA Astrophysics Data System (ADS)
Mörtsell, E.
2017-02-01
The bimetric generalization of general relativity has been proven to be able to give an accelerated background expansion consistent with observations. Apart from the energy densities coupling to one or both of the metrics, the expansion will depend on the cosmological constant contribution to each of them, as well as the three parameters describing the interaction between the two metrics. Even for fixed values of these parameters can several possible solutions, so called branches, exist. Different branches can give similar background expansion histories for the observable metric, but may have different properties regarding, for example, the existence of ghosts and the rate of structure growth. In this paper, we outline a method to find viable solution branches for arbitrary parameter values. We show how possible expansion histories in bimetric gravity can be inferred qualitatively, by picturing the ratio of the scale factors of the two metrics as the spatial coordinate of a particle rolling along a frictionless track. A particularly interesting example discussed is a specific set of parameter values, where a cosmological dark matter background is mimicked without introducing ghost modes into the theory.
On the ab initio evaluation of Hubbard parameters. II. The κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal
NASA Astrophysics Data System (ADS)
Fortunelli, Alessandro; Painelli, Anna
1997-05-01
A previously proposed approach for the ab initio evaluation of Hubbard parameters is applied to BEDT-TTF dimers. The dimers are positioned according to four geometries taken as the first neighbors from the experimental data on the κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal. RHF-SCF, CAS-SCF and frozen-orbital calculations using the 6-31G** basis set are performed with different values of the total charge, allowing us to derive all the relevant parameters. It is found that the electronic structure of the BEDT-TTF planes is adequately described by the standard Extended Hubbard Model, with the off-diagonal electron-electron interaction terms (X and W) of negligible size. The derived parameters are in good agreement with available experimental data. Comparison with previous theoretical estimates shows that the t values compare well with those obtained from Extended Hückel Theory (whereas the minimal basis set estimates are completely unreliable). On the other hand, the Uaeff values exhibit an appreciable dependence on the chemical environment.
A model for cross-cultural reciprocal interactions through mass media.
González-Avella, Juan Carlos; Cosenza, Mario G; San Miguel, Maxi
2012-01-01
We investigate the problem of cross-cultural interactions through mass media in a model where two populations of social agents, each with its own internal dynamics, get information about each other through reciprocal global interactions. As the agent dynamics, we employ Axelrod's model for social influence. The global interaction fields correspond to the statistical mode of the states of the agents and represent mass media messages on the cultural trend originating in each population. Several phases are found in the collective behavior of either population depending on parameter values: two homogeneous phases, one having the state of the global field acting on that population, and the other consisting of a state different from that reached by the applied global field; and a disordered phase. In addition, the system displays nontrivial effects: (i) the emergence of a largest minority group of appreciable size sharing a state different from that of the applied global field; (ii) the appearance of localized ordered states for some values of parameters when the entire system is observed, consisting of one population in a homogeneous state and the other in a disordered state. This last situation can be considered as a social analogue to a chimera state arising in globally coupled populations of oscillators.
Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.
Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N
2017-12-12
London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the computed enthalpies of vaporization despite only having to evaluate a much smaller section of the parameter space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments.
Xie, Suchao; Zhou, Hui
2014-01-01
In order to predict the injury parameters of the occupants corresponding to different experimental parameters and to determine impact injury indices conveniently and efficiently, a model forecasting occupant impact injury was established in this work. The work was based on finite experimental observation values obtained by numerical simulation. First, the various factors influencing the impact injuries caused by the interaction between unrestrained occupants and the compartment's internal structures were collated and the most vulnerable regions of the occupant's body were analyzed. Then, the forecast model was set up based on a genetic algorithm-back propagation (GA-BP) hybrid algorithm, which unified the individual characteristics of the back propagation-artificial neural network (BP-ANN) model and the genetic algorithm (GA). The model was well suited to studies of occupant impact injuries and allowed multiple-parameter forecasts of the occupant impact injuries to be realized assuming values for various influencing factors. Finally, the forecast results for three types of secondary collision were analyzed using forecasting accuracy evaluation methods. All of the results showed the ideal accuracy of the forecast model. When an occupant faced a table, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.0 percent and the average relative error (ARE) values did not exceed 3.0 percent. When an occupant faced a seat, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 5.2 percent and the ARE values did not exceed 3.1 percent. When the occupant faced another occupant, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.3 percent and the ARE values did not exceed 3.8 percent. The injury forecast model established in this article reduced repeat experiment times and improved the design efficiency of the internal compartment's structure parameters, and it provided a new way for assessing the safety performance of the interior structural parameters in existing, and newly designed, railway vehicle compartments.
Revenue Prediction of a Local Event Using the Mathematical Model of Hit Phenomena
NASA Astrophysics Data System (ADS)
Ishii, A.; Matsumoto, T.; Miki, S.
We propose a theoretical approach to investigate human-humaninteraction in the society, which uses a many-body theory that incorporates human-human interaction. We treat advertisement as an external force, and include the word of mouth (WOM) effect as a two-body interaction between humans and the rumor effect as a three-body interaction among humans. The parameters to define the strength of human interactions are assumed to be constant values. The calculated result explained well the two local events ``Mizuki-Shigeru Road in Sakaiminato" and ``the sculpture festival at Tottori" in Japan.
Space Shuttle third flight /STS-3/ entry RCS analysis. [Reaction Control System
NASA Technical Reports Server (NTRS)
Scallion, W. I.; Compton, H. R.; Suit, W. T.; Powell, R. W.; Blackstock, T. A.; Bates, B. L.
1983-01-01
Flight data obtained from three Space Transportation System orbiter entries (STS-1, 2, and 3) are processed and analyzed to determine the roll interactions caused by the firing of the entry reaction control system (RCS). Comparisons between the flight-derived parameters and the predicted derivatives without interaction effects are made. The flight-derived RCS Plume flow-field interaction effects are independently deduced by direct integration of the incremental changes in the wing upper surface pressures induced by RCS side thruster firings. The separately obtained interaction effects are compared to the predicted values and the differences are discussed.
Interactive Database of Pulsar Flux Density Measurements
NASA Astrophysics Data System (ADS)
Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.
2012-12-01
The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.
Alternative method of quantum state tomography toward a typical target via a weak-value measurement
NASA Astrophysics Data System (ADS)
Chen, Xi; Dai, Hong-Yi; Yang, Le; Zhang, Ming
2018-03-01
There is usually a limitation of weak interaction on the application of weak-value measurement. This limitation dominates the performance of the quantum state tomography toward a typical target in the finite and high-dimensional complex-valued superposition of its basis states, especially when the compressive sensing technique is also employed. Here we propose an alternative method of quantum state tomography, presented as a general model, toward such typical target via weak-value measurement to overcome such limitation. In this model the pointer for the weak-value measurement is a qubit, and the target-pointer coupling interaction is no longer needed within the weak interaction limitation, meanwhile this interaction under the compressive sensing can be described with the Taylor series of the unitary evolution operator. The postselection state at the target is the equal superposition of all basis states, and the pointer readouts are gathered under multiple Pauli operator measurements. The reconstructed quantum state is generated from an optimization algorithm of total variation augmented Lagrangian alternating direction algorithm. Furthermore, we demonstrate an example of this general model for the quantum state tomography toward the planar laser-energy distribution and discuss the relations among some parameters at both our general model and the original first-order approximate model for this tomography.
Parameter estimation and sensitivity analysis for a mathematical model with time delays of leukemia
NASA Astrophysics Data System (ADS)
Cândea, Doina; Halanay, Andrei; Rǎdulescu, Rodica; Tǎlmaci, Rodica
2017-01-01
We consider a system of nonlinear delay differential equations that describes the interaction between three competing cell populations: healthy, leukemic and anti-leukemia T cells involved in Chronic Myeloid Leukemia (CML) under treatment with Imatinib. The aim of this work is to establish which model parameters are the most important in the success or failure of leukemia remission under treatment using a sensitivity analysis of the model parameters. For the most significant parameters of the model which affect the evolution of CML disease during Imatinib treatment we try to estimate the realistic values using some experimental data. For these parameters, steady states are calculated and their stability is analyzed and biologically interpreted.
NASA Astrophysics Data System (ADS)
Whittaker, Ian C.; Sembay, Steve
2016-07-01
Solar wind charge exchange occurs at Earth between the neutral planetary exosphere and highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the interaction efficiency, known as the α value. This study produces experimental α values at the Earth, for oxygen emission in the range of 0.5-0.7 keV. Thirteen years of data from the Advanced Composition Explorer are examined, comparing O7+ and O8+ abundances, as well as O/H to other solar wind parameters allowing all parameters in the αO7,8+ calculation to be estimated based on solar wind velocity. Finally, a table is produced for a range of solar wind speeds giving average O7+ and O8+ abundances, O/H, and αO7,8+ values.
NASA Technical Reports Server (NTRS)
Giver, L. P.; Brown, L. R.; Wattson, R. B.; Spencer, M. N.; Chackerian, C., Jr.; Strawa, Anthony W. (Technical Monitor)
1995-01-01
Rotationless band intensities and Herman-Wallis parameters are listed in HITRAN tabulations for several hundred CO2 overtone-combination bands. These parameters are based on laboratory measurements when available, and on DND calculations for the unmeasured bands. The DND calculations for the Fermi interacting nv(sub 1) + v(sub 3) polyads show the a(sub 2) Herman-Wallis parameter varying smoothly from a negative value for the first member of the polyad to a positive value for the final member. Measurements of the v(sub 1) + v(sub 3) dyad are consistent with the DND calculations for the a(sub 2) parameter, as are our recent measurements of the 4v(sub 1) + v(sub 3) pentad. However, the measurement-based values in the HITRAN tables for the 2v(sub 1) + v(sub 3) triad and the 3v(sub 1) + v(sub 3) tetrad do not support the DND calculated values for the a(sub 2) parameters. We therefore decided to make new measurements to improve some of these intensity parameters. With the McMath FTS at Kitt Peak National Observatory/National Solar Observatory we recorded several spectra of the. 4000 to 8000 cm(exp -1) region of pure CO2 at 0.011 cm(exp -1) resolution using the 6 meter White absorption cell. The signal/noise and absorbance of the first and fourth bands of the 3v(sub 1) + v(sub 3) tetrad of C-12O-16 were ideal on these spectra for measuring line intensities and broadening widths. Our selfbroadening results agree with the HITRAN parameterization, while our measurements of the rotationless band intensities are about 15% less than the HITRAN values. We find a negative value of a(sub 2) for the 30011-00001 band and a positive value for the 30014-00001 band, whereas the HITRAN values of a(sub 2) are positive for all four tetrad bands. Our a(sub 1) and a(sub 2) Herman-Wallis parameters are closer to DND calculated values than the 1992 HITRAN values for both the 30011-00001 and the 30014-00001 band.
Vandenhove, H; Gil-García, C; Rigol, A; Vidal, M
2009-09-01
Predicting the transfer of radionuclides in the environment for normal release, accidental, disposal or remediation scenarios in order to assess exposure requires the availability of an important number of generic parameter values. One of the key parameters in environmental assessment is the solid liquid distribution coefficient, K(d), which is used to predict radionuclide-soil interaction and subsequent radionuclide transport in the soil column. This article presents a review of K(d) values for uranium, radium, lead, polonium and thorium based on an extensive literature survey, including recent publications. The K(d) estimates were presented per soil groups defined by their texture and organic matter content (Sand, Loam, Clay and Organic), although the texture class seemed not to significantly affect K(d). Where relevant, other K(d) classification systems are proposed and correlations with soil parameters are highlighted. The K(d) values obtained in this compilation are compared with earlier review data.
Computational substrates of social value in interpersonal collaboration.
Fareri, Dominic S; Chang, Luke J; Delgado, Mauricio R
2015-05-27
Decisions to engage in collaborative interactions require enduring considerable risk, yet provide the foundation for building and maintaining relationships. Here, we investigate the mechanisms underlying this process and test a computational model of social value to predict collaborative decision making. Twenty-six participants played an iterated trust game and chose to invest more frequently with their friends compared with a confederate or computer despite equal reinforcement rates. This behavior was predicted by our model, which posits that people receive a social value reward signal from reciprocation of collaborative decisions conditional on the closeness of the relationship. This social value signal was associated with increased activity in the ventral striatum and medial prefrontal cortex, which significantly predicted the reward parameters from the social value model. Therefore, we demonstrate that the computation of social value drives collaborative behavior in repeated interactions and provide a mechanistic account of reward circuit function instantiating this process. Copyright © 2015 the authors 0270-6474/15/358170-11$15.00/0.
Lump solutions with interaction phenomena in the (2+1)-dimensional Ito equation
NASA Astrophysics Data System (ADS)
Zou, Li; Yu, Zong-Bing; Tian, Shou-Fu; Feng, Lian-Li; Li, Jin
2018-03-01
In this paper, we consider the (2+1)-dimensional Ito equation, which was introduced by Ito. By considering the Hirota’s bilinear method, and using the positive quadratic function, we obtain some lump solutions of the Ito equation. In order to ensure rational localization and analyticity of these lump solutions, some sufficient and necessary conditions are provided on the parameters that appeared in the solutions. Furthermore, the interaction solutions between lump solutions and the stripe solitons are discussed by combining positive quadratic function with exponential function. Finally, the dynamic properties of these solutions are shown via the way of graphical analysis by selecting appropriate values of the parameters.
Two competing species in super-diffusive dynamical regimes
NASA Astrophysics Data System (ADS)
La Cognata, A.; Valenti, D.; Spagnolo, B.; Dubkov, A. A.
2010-09-01
The dynamics of two competing species within the framework of the generalized Lotka-Volterra equations, in the presence of multiplicative α-stable Lévy noise sources and a random time dependent interaction parameter, is studied. The species dynamics is characterized by two different dynamical regimes, exclusion of one species and coexistence of both, depending on the values of the interaction parameter, which obeys a Langevin equation with a periodically fluctuating bistable potential and an additive α-stable Lévy noise. The stochastic resonance phenomenon is analyzed for noise sources asymmetrically distributed. Finally, the effects of statistical dependence between multiplicative noise and additive noise on the dynamics of the two species are studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajaj, Annu, E-mail: annu.bajaj11@gmail.com; Jain, Sushma
2016-05-06
The present investigation is concerened with the studies on electronic spectral parameters viz. Oscillator strength (P), Judd-Ofelt T{sub λ} (λ=2,4,6), Slater-Condon(F{sub K}),Lande(ζ{sub 4F}),Nephelauxetic ratio(β), Bonding parameter (b{sup 1/2}) and Percent covalency parameter (δ%) for Nd(III) ion complexes with the ligands having Nitrogen,Oxygen Sulphur donor sites.The variation in the values of oscillator strength explicitly shows the relative sensitivities of the 4f-4f transition as well as the specific correlation between ligand structures and nature of Nd(III) ligand interaction.
Rocchia, W; Neshich, G
2007-10-05
STING and Java Protein Dossier provide a collection of physical-chemical parameters, describing protein structure, stability, function, and interaction, considered one of the most comprehensive among the available protein databases of similar type. Particular attention in STING is paid to the electrostatic potential. It makes use of DelPhi, a well-known tool that calculates this physical-chemical quantity for biomolecules by solving the Poisson Boltzmann equation. In this paper, we describe a modification to the DelPhi program aimed at integrating it within the STING environment. We also outline how the "amino acid electrostatic potential" and the "surface amino acid electrostatic potential" are calculated (over all Protein Data Bank (PDB) content) and how the corresponding values are made searchable in STING_DB. In addition, we show that the STING and Java Protein Dossier are also capable of providing these particular parameter values for the analysis of protein structures modeled in computers or being experimentally solved, but not yet deposited in the PDB. Furthermore, we compare the calculated electrostatic potential values obtained by using the earlier version of DelPhi and those by STING, for the biologically relevant case of lysozyme-antibody interaction. Finally, we describe the STING capacity to make queries (at both residue and atomic levels) across the whole PDB, by looking at a specific case where the electrostatic potential parameter plays a crucial role in terms of a particular protein function, such as ligand binding. BlueStar STING is available at http://www.cbi.cnptia.embrapa.br.
Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng
2014-01-01
In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules. PMID:24551141
Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction
Hu, Sanbao
2014-01-01
This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690
NASA Astrophysics Data System (ADS)
Glendinning, Paul
2011-12-01
Newton's cradle for two balls with Hertzian interactions is considered as a hybrid system, and this makes it possible to derive return maps for the motion between collisions in an exact form despite the fact that the three-halves interaction law cannot be solved in closed form. The return maps depend on a constant whose value can only be determined numerically, but solutions can be written down explicitly in terms of this parameter, and we compare this with the results of simulations. The results are in fact independent of the details of the interaction potential.
Interactive signal analysis and ultrasonic data collection system user's manual
NASA Technical Reports Server (NTRS)
Smith, G. R.
1978-01-01
The interactive signal analysis and ultrasonic data collection system (ECHO1) is a real time data acquisition and display system. ECHO1 executed on a PDP-11/45 computer under the RT11 real time operating system. Extensive operator interaction provided the requisite parameters to the data collection, calculation, and data modules. Data were acquired in real time from a pulse echo ultrasonic system using a Biomation Model 8100 transient recorder. The data consisted of 2084 intensity values representing the amplitude of pulses transmitted and received by the ultrasonic unit.
Materials cohesion and interaction forces.
Rosenholm, Jarl B; Peiponen, Kai-Erik; Gornov, Evgeny
2008-09-01
The most important methods to determine the cohesive interactions of materials and adhesive interactions between different substances are reviewed. The term cohesion is generalized as representing the unifying interaction forces of a single material and adhesion forces between different substances due to attraction. The aim is to interlink a number of frequently used interaction parameters in order to promote the understanding of materials research executed within different scientific (Material, Colloid, Sol-Gel and Nano) communities. The modern interdisciplinary research requires a removal of the historical obstacles represented by widely differing nomenclature used for the same material properties. The interaction parameters of different models are reviewed and representative numerical values computed from tabulated thermodynamic and spectroscopic material constants. The results are compared with published values. The models are grouped to represent single and two component systems, respectively. The latter group includes models for films on substrates and work of adhesion between liquids and solids. In most cases rather rough approximations have been employed, mostly relating to van der Waals substances for which the gas state is common reference state. In order to improve the predictability of the key Hamaker constant, a novel model for interpreting the dielectric spectrum is presented. The interrelation between thermodynamic, electronic, spectroscopic and dielectric parameters is illustrated by model calculations on typical inorganic materials of current interest as model compounds. The ionic solids are represented by NaCl and KCl, while ZnO, FeO, Fe(2)O(3), Fe(3)O(4), Al(2)O(3), SiO(2), TiO(2), ZrO(2), SnO, SnO(2) represent ceramic oxides and semiconductors. The model compounds thus illustrate the effect of bond type (covalent or ionic) and valence (charge number and sign) of the constituent elements. However, since the focus is placed on a phenomenological analysis, the number of examples remains self-evidently incomplete.
A Gaussian Approximation Approach for Value of Information Analysis.
Jalal, Hawre; Alarid-Escudero, Fernando
2018-02-01
Most decisions are associated with uncertainty. Value of information (VOI) analysis quantifies the opportunity loss associated with choosing a suboptimal intervention based on current imperfect information. VOI can inform the value of collecting additional information, resource allocation, research prioritization, and future research designs. However, in practice, VOI remains underused due to many conceptual and computational challenges associated with its application. Expected value of sample information (EVSI) is rooted in Bayesian statistical decision theory and measures the value of information from a finite sample. The past few years have witnessed a dramatic growth in computationally efficient methods to calculate EVSI, including metamodeling. However, little research has been done to simplify the experimental data collection step inherent to all EVSI computations, especially for correlated model parameters. This article proposes a general Gaussian approximation (GA) of the traditional Bayesian updating approach based on the original work by Raiffa and Schlaifer to compute EVSI. The proposed approach uses a single probabilistic sensitivity analysis (PSA) data set and involves 2 steps: 1) a linear metamodel step to compute the EVSI on the preposterior distributions and 2) a GA step to compute the preposterior distribution of the parameters of interest. The proposed approach is efficient and can be applied for a wide range of data collection designs involving multiple non-Gaussian parameters and unbalanced study designs. Our approach is particularly useful when the parameters of an economic evaluation are correlated or interact.
Rigo, Vincent; Graas, Estelle; Rigo, Jacques
2012-07-01
Selected optimal respiratory cycles should allow calculation of respiratory mechanic parameters focusing on patient-ventilator interaction. New computer software automatically selecting optimal breaths and respiratory mechanics derived from those cycles are evaluated. Retrospective study. University level III neonatal intensive care unit. Ten mins synchronized intermittent mandatory ventilation and assist/control ventilation recordings from ten newborns. The ventilator provided respiratory mechanic data (ventilator respiratory cycles) every 10 secs. Pressure, flow, and volume waves and pressure-volume, pressure-flow, and volume-flow loops were reconstructed from continuous pressure-volume recordings. Visual assessment determined assisted leak-free optimal respiratory cycles (selected respiratory cycles). New software graded the quality of cycles (automated respiratory cycles). Respiratory mechanic values were derived from both sets of optimal cycles. We evaluated quality selection and compared mean values and their variability according to ventilatory mode and respiratory mechanic provenance. To assess discriminating power, all 45 "t" values obtained from interpatient comparisons were compared for each respiratory mechanic parameter. A total of 11,724 breaths are evaluated. Automated respiratory cycle/selected respiratory cycle selections agreement is high: 88% of maximal κ with linear weighting. Specificity and positive predictive values are 0.98 and 0.96, respectively. Averaged values are similar between automated respiratory cycle and ventilator respiratory cycle. C20/C alone is markedly decreased in automated respiratory cycle (1.27 ± 0.37 vs. 1.81 ± 0.67). Tidal volume apparent similarity disappears in assist/control: automated respiratory cycle tidal volume (4.8 ± 1.0 mL/kg) is significantly lower than for ventilator respiratory cycle (5.6 ± 1.8 mL/kg). Coefficients of variation decrease for all automated respiratory cycle parameters in all infants. "t" values from ventilator respiratory cycle data are two to three times higher than ventilator respiratory cycles. Automated selection is highly specific. Automated respiratory cycle reflects most the interaction of both ventilator and patient. Improving discriminating power of ventilator monitoring will likely help in assessing disease status and following trends. Averaged parameters derived from automated respiratory cycles are more precise and could be displayed by ventilators to improve real-time fine tuning of ventilator settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Huiping; Qian, Yun; Zhao, Chun
2015-09-09
In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. Themore » relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.« less
Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich
2016-07-01
A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Misra, S N; Anjaiah, K; Joseph, G; Abdi, S H
1992-02-01
The interactions of praseodymium(III) and neodymium(III) with nucleosides and nucleotides have been studied in different stoichiometry in water and water-DMF mixtures by employing absorption difference and comparative absorption spectrophotometry. The 4f-4f bands were analysed by linear curve analysis followed by gaussian curve analysis, and various spectral parameters were computed, using partial and multiple regression method. The magnitude of changes in both energy interaction and intensity were used to explore the degree of outer and inner sphere coordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Crystalline complexes of the type [Ln(nucleotide)2(H2O)2]- (where nucleotide--GMP or IMP) were characterized by IR, 1H NMR, 31P NMR data. These studies indicated that the binding of the nucleotide is through phosphate oxygen in a bidentate manner and the complexes undergo substantial ionisation in aqueous medium, thereby supporting the observed weak 4f-4f bands and lower values for nephelauxetic effect (1-beta), bonding (b) and covalency (delta) parameters derived from coulombic and spin orbit interaction parameters.
Modelling audiovisual integration of affect from videos and music.
Gao, Chuanji; Wedell, Douglas H; Kim, Jongwan; Weber, Christine E; Shinkareva, Svetlana V
2018-05-01
Two experiments examined how affective values from visual and auditory modalities are integrated. Experiment 1 paired music and videos drawn from three levels of valence while holding arousal constant. Experiment 2 included a parallel combination of three levels of arousal while holding valence constant. In each experiment, participants rated their affective states after unimodal and multimodal presentations. Experiment 1 revealed a congruency effect in which stimulus combinations of the same extreme valence resulted in more extreme state ratings than component stimuli presented in isolation. An interaction between music and video valence reflected the greater influence of negative affect. Video valence was found to have a significantly greater effect on combined ratings than music valence. The pattern of data was explained by a five parameter differential weight averaging model that attributed greater weight to the visual modality and increased weight with decreasing values of valence. Experiment 2 revealed a congruency effect only for high arousal combinations and no interaction effects. This pattern was explained by a three parameter constant weight averaging model with greater weight for the auditory modality and a very low arousal value for the initial state. These results demonstrate key differences in audiovisual integration between valence and arousal.
Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field
NASA Astrophysics Data System (ADS)
Metwally, N.
2018-06-01
In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.
NASA Astrophysics Data System (ADS)
Johri, Manoj; Johri, Gajendra K.; Rishishwar, Rajendra P.
1990-12-01
The study of spectral lineshape is important to understand intermolecular forces1-5. We have calculated the linewidth and the lineshift for different rotation-vibration transitions of linear molecules (CO and HCl) perturbed by argon using generalized interaction potential4. The Murphy Boggs6 (MB), Mehrotra Boggs7 and perturbation theories have been used for the linewidth calculation. The lineshift parameters have been calculated using the MEB theory7 including the phase shift effect and ignoring Ji=Ji and Jf=Jf transitions. In these calculation the variation of the rotational constant with the vibrational quantum number has been taken into account. The calculated lineshift parameters decrease with an increase in the initial rotation quamtum numbers (Ji). It remains positive for the lower values of Ji and becomes negative for the higher values of Ji where as the measured8 values are negative for all the transitions. The calculated linewidth parameters using the MEB theory7 are lower by about 15% than the measured values for CO-A collisions. The vibrational dependence in CO-A collisions show significant change in the lineshift. For H Cl-A collisions the discrepancy between the calculated lienwidth parameters using the Mehrotra Boggs theory and the measured9 values is about 46% for J=0-1 transitions and decreases to 22% for J=8-9 transition. The results of the perturbation theory do not show regular variation of the linewidth parameters with the rotational state. The linewidth parameters using the Murphy Boggs theory are lower than the measured9 values by about 50% for all the transitions considered. It is found that the contribution of the diabetic collisions is important as included in the perturbtive and the Mehrotra Boggs approaches. Further, if the pressure broadening method is used to probe anisotropy of the intermolecular forces, there is need of modifying the existing theoretical models and the experimental techniques.
NASA Astrophysics Data System (ADS)
Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang
2015-10-01
In this work, we assess the usefulness of static 15N NMR techniques for the determination of the 15N chemical shift anisotropy (CSA) tensor parameters and 15N-1H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone 15N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the 15N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the 15N CSA parameters, a more advanced approach based on the ;magic sandwich; SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the 15N-1H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.
Monte Carlo simulation of elongating metallic nanowires in the presence of surfactants
NASA Astrophysics Data System (ADS)
Gimenez, M. Cecilia; Reinaudi, Luis; Leiva, Ezequiel P. M.
2015-12-01
Nanowires of different metals undergoing elongation were studied by means of canonical Monte Carlo simulations and the embedded atom method representing the interatomic potentials. The presence of a surfactant medium was emulated by the introduction of an additional stabilization energy, represented by a parameter Q. Several values of the parameter Q and temperatures were analyzed. In general, it was observed for all studied metals that, as Q increases, there is a greater elongation before the nanowire breaks. In the case of silver, linear monatomic chains several atoms long formed at intermediate values of Q and low temperatures. Similar observations were made for the case of silver-gold alloys when the medium interacted selectively with Ag.
Evaluation of the 235 U resonance parameters to fit the standard recommended values
Leal, Luiz; Noguere, Gilles; Paradela, Carlos; ...
2017-09-13
A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. We performed a resonance re-evaluation of the n + 235U interactionmore » in order to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-o-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. Our paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.« less
Evaluation of the 235 U resonance parameters to fit the standard recommended values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, Luiz; Noguere, Gilles; Paradela, Carlos
A great deal of effort has been dedicated to the revision of the standard values in connection with the neutron interaction for some actinides. While standard data compilation are available for decades nuclear data evaluations included in existing nuclear data libraries (ENDF, JEFF, JENDL, etc.) do not follow the standard recommended values. Indeed, the majority of evaluations for major actinides do not conform to the standards whatsoever. In particular, for the n + 235U interaction the only value in agreement with the standard is the thermal fission cross section. We performed a resonance re-evaluation of the n + 235U interactionmore » in order to address the issues regarding standard values in the energy range from 10-5 eV to 2250 eV. Recently, 235U fission cross-section measurements have been performed at the CERN Neutron Time-o-Flight facility (TOF), known as n_TOF, in the energy range from 0.7 eV to 10 keV. The data were normalized according to the recommended standard of the fission integral in the energy range 7.8 eV to 11 eV. As a result, the n_TOF averaged fission cross sections above 100 eV are in good agreement with the standard recommended values. The n_TOF data were included in the 235U resonance analysis that was performed with the code SAMMY. In addition to the average standard values related to the fission cross section, standard thermal values for fission, capture, and elastic cross sections were also included in the evaluation. Our paper presents the procedure used for re-evaluating the 235U resonance parameters including the recommended standard values as well as new cross section measurements.« less
NASA Technical Reports Server (NTRS)
Wittmer, Kenneth S.; Devenport, William J.
1996-01-01
The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.
Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network
NASA Technical Reports Server (NTRS)
Kuhn, D. Richard; Kacker, Raghu; Lei, Yu
2010-01-01
This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.
NASA Astrophysics Data System (ADS)
Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani
2017-12-01
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.
Laser magnetic resonance in supersonic plasmas - The rotational spectrum of SH(+)
NASA Technical Reports Server (NTRS)
Hovde, David C.; Saykally, Richard J.
1987-01-01
The rotational spectrum of v = 0 and v = 1X3Sigma(-)SH(+) was measured by laser magnetic resonance. Rotationally cold (Tr = 30 K), vibrationally excited (Tv = 3000 K) ions were generated in a corona excited supersonic expansion. The use of this source to identify ion signals is described. Improved molecular parameters were obtained; term values are presented from which astrophysically important transitions may be calculated. Accurate hyperfine parameters for both vibrational levels were determined and the vibrational dependence of the Fermi contact interaction was resolved. The hyperfine parameters agree well with recent many-body perturbation theory calculations.
Models of Pilot Behavior and Their Use to Evaluate the State of Pilot Training
NASA Astrophysics Data System (ADS)
Jirgl, Miroslav; Jalovecky, Rudolf; Bradac, Zdenek
2016-07-01
This article discusses the possibilities of obtaining new information related to human behavior, namely the changes or progressive development of pilots' abilities during training. The main assumption is that a pilot's ability can be evaluated based on a corresponding behavioral model whose parameters are estimated using mathematical identification procedures. The mean values of the identified parameters are obtained via statistical methods. These parameters are then monitored and their changes evaluated. In this context, the paper introduces and examines relevant mathematical models of human (pilot) behavior, the pilot-aircraft interaction, and an example of the mathematical analysis.
NASA Astrophysics Data System (ADS)
Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.
2012-12-01
Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (θD), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.
Interacting quantum dot coupled to a kondo spin: a universal Hamiltonian study.
Rotter, Stefan; Türeci, Hakan E; Alhassid, Y; Stone, A Douglas
2008-04-25
We study a Kondo spin coupled to a mesoscopic interacting quantum dot that is described by the "universal Hamiltonian." The problem is solved numerically by diagonalizing the system Hamiltonian in a good-spin basis and analytically in the weak and strong Kondo coupling limits. The ferromagnetic exchange interaction within the dot leads to a stepwise increase of the ground-state spin (Stoner staircase), which is modified nontrivially by the Kondo interaction. We find that the spin-transition steps move to lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong Kondo coupling. The interplay between Kondo and ferromagnetic exchange correlations can be probed with experimentally tunable parameters.
NASA Astrophysics Data System (ADS)
Safari, Samaneh; Niknam, Ali Reza; Jahangiri, Fazel; Jazi, Bahram
2018-04-01
The nonlinear interaction of Hermite-Gaussian and Laguerre-Gaussian (LG) laser beams with a collisional inhomogeneous plasma is studied, and the amplitude of the emitted terahertz (THz) electric field is evaluated. The effects of laser beams and plasma parameters, including the beams width, LG modes, the plasma collision frequency, and the amplitude of density ripple on the evolution of THz electric field amplitude, are examined. It is found that the shape of the generated THz radiation pattern can be tuned by the laser parameters. In addition, the optimum values of the effective parameters for achieving the maximum THz electric field amplitude are proposed. It is shown that a significant enhancement up to 4.5% can be obtained in our scheme, which is much greater than the maximum efficiency obtained for laser beams with the same profiles.
Interaction model between capsule robot and intestine based on nonlinear viscoelasticity.
Zhang, Cheng; Liu, Hao; Tan, Renjia; Li, Hongyi
2014-03-01
Active capsule endoscope could also be called capsule robot, has been developed from laboratory research to clinical application. However, the system still has defects, such as poor controllability and failing to realize automatic checks. The imperfection of the interaction model between capsule robot and intestine is one of the dominating reasons causing the above problems. A model is hoped to be established for the control method of the capsule robot in this article. It is established based on nonlinear viscoelasticity. The interaction force of the model consists of environmental resistance, viscous resistance and Coulomb friction. The parameters of the model are identified by experimental investigation. Different methods are used in the experiment to obtain different values of the same parameter at different velocities. The model is proved to be valid by experimental verification. The achievement in this article is the attempted perfection of an interaction model. It is hoped that the model can optimize the control method of the capsule robot in the future.
Spectral properties of excitons in the bilayer graphene
NASA Astrophysics Data System (ADS)
Apinyan, V.; Kopeć, T. K.
2018-01-01
In this paper, we consider the spectral properties of the bilayer graphene with the local excitonic pairing interaction between the electrons and holes. We consider the generalized Hubbard model, which includes both intralayer and interlayer Coulomb interaction parameters. The solution of the excitonic gap parameter is used to calculate the electronic band structure, single-particle spectral functions, the hybridization gap, and the excitonic coherence length in the bilayer graphene. We show that the local interlayer Coulomb interaction is responsible for the semimetal-semiconductor transition in the double layer system, and we calculate the hybridization gap in the band structure above the critical interaction value. The formation of the excitonic band gap is reported as the threshold process and the momentum distribution functions have been calculated numerically. We show that in the weak coupling limit the system is governed by the Bardeen-Cooper-Schrieffer (BCS)-like pairing state. Contrary, in the strong coupling limit the excitonic condensate states appear in the semiconducting phase, by forming the Dirac's pockets in the reciprocal space.
Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions
NASA Technical Reports Server (NTRS)
Dill, D.; Starace, A. F.; Manson, S. T.
1974-01-01
The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.
Effect of solute interactions in columbium /Nb/ on creep strength
NASA Technical Reports Server (NTRS)
Klein, M. J.; Metcalfe, A. G.
1973-01-01
The creep strength of 17 ternary columbium (Nb)-base alloys was determined using an abbreviated measuring technique, and the results were analyzed to identify the contributions of solute interactions to creep strength. Isostrength creep diagrams and an interaction strengthening parameter, ST, were used to present and analyze data. It was shown that the isostrength creep diagram can be used to estimate the creep strength of untested alloys and to identify compositions with the most economical use of alloy elements. Positive values of ST were found for most alloys, showing that interaction strengthening makes an important contribution to the creep strength of these ternary alloys.
NASA Astrophysics Data System (ADS)
Koch, Jonas; Nowak, Wolfgang
2013-04-01
At many hazardous waste sites and accidental spills, dense non-aqueous phase liquids (DNAPLs) such as TCE, PCE, or TCA have been released into the subsurface. Once a DNAPL is released into the subsurface, it serves as persistent source of dissolved-phase contamination. In chronological order, the DNAPL migrates through the porous medium and penetrates the aquifer, it forms a complex pattern of immobile DNAPL saturation, it dissolves into the groundwater and forms a contaminant plume, and it slowly depletes and bio-degrades in the long-term. In industrial countries the number of such contaminated sites is tremendously high to the point that a ranking from most risky to least risky is advisable. Such a ranking helps to decide whether a site needs to be remediated or may be left to natural attenuation. Both the ranking and the designing of proper remediation or monitoring strategies require a good understanding of the relevant physical processes and their inherent uncertainty. To this end, we conceptualize a probabilistic simulation framework that estimates probability density functions of mass discharge, source depletion time, and critical concentration values at crucial target locations. Furthermore, it supports the inference of contaminant source architectures from arbitrary site data. As an essential novelty, the mutual dependencies of the key parameters and interacting physical processes are taken into account throughout the whole simulation. In an uncertain and heterogeneous subsurface setting, we identify three key parameter fields: the local velocities, the hydraulic permeabilities and the DNAPL phase saturations. Obviously, these parameters depend on each other during DNAPL infiltration, dissolution and depletion. In order to highlight the importance of these mutual dependencies and interactions, we present results of several model set ups where we vary the physical and stochastic dependencies of the input parameters and simulated processes. Under these changes, the probability density functions demonstrate strong statistical shifts in their expected values and in their uncertainty. Considering the uncertainties of all key parameters but neglecting their interactions overestimates the output uncertainty. However, consistently using all available physical knowledge when assigning input parameters and simulating all relevant interactions of the involved processes reduces the output uncertainty significantly back down to useful and plausible ranges. When using our framework in an inverse setting, omitting a parameter dependency within a crucial physical process would lead to physical meaningless identified parameters. Thus, we conclude that the additional complexity we propose is both necessary and adequate. Overall, our framework provides a tool for reliable and plausible prediction, risk assessment, and model based decision support for DNAPL contaminated sites.
Some dynamical aspects of interacting quintessence model
NASA Astrophysics Data System (ADS)
Choudhury, Binayak S.; Mondal, Himadri Shekhar; Chatterjee, Devosmita
2018-04-01
In this paper, we consider a particular form of coupling, namely B=σ (\\dot{ρ _m}-\\dot{ρ _φ }) in spatially flat (k=0) Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time. We perform phase-space analysis for this interacting quintessence (dark energy) and dark matter model for different numerical values of parameters. We also show the phase-space analysis for the `best-fit Universe' or concordance model. In our analysis, we observe the existence of late-time scaling attractors.
Sumner, T; Shephard, E; Bogle, I D L
2012-09-07
One of the main challenges in the development of mathematical and computational models of biological systems is the precise estimation of parameter values. Understanding the effects of uncertainties in parameter values on model behaviour is crucial to the successful use of these models. Global sensitivity analysis (SA) can be used to quantify the variability in model predictions resulting from the uncertainty in multiple parameters and to shed light on the biological mechanisms driving system behaviour. We present a new methodology for global SA in systems biology which is computationally efficient and can be used to identify the key parameters and their interactions which drive the dynamic behaviour of a complex biological model. The approach combines functional principal component analysis with established global SA techniques. The methodology is applied to a model of the insulin signalling pathway, defects of which are a major cause of type 2 diabetes and a number of key features of the system are identified.
NASA Astrophysics Data System (ADS)
Kromp, Florian; Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Weiss, Tamara; Ambros, Peter F.; Reiter, Michael
2015-02-01
We propose a user-driven method for the segmentation of neuroblastoma nuclei in microscopic fluorescence images involving the gradient energy tensor. Multispectral fluorescence images contain intensity and spatial information about antigene expression, fluorescence in situ hybridization (FISH) signals and nucleus morphology. The latter serves as basis for the detection of single cells and the calculation of shape features, which are used to validate the segmentation and to reject false detections. Accurate segmentation is difficult due to varying staining intensities and aggregated cells. It requires several (meta-) parameters, which have a strong influence on the segmentation results and have to be selected carefully for each sample (or group of similar samples) by user interactions. Because our method is designed for clinicians and biologists, who may have only limited image processing background, an interactive parameter selection step allows the implicit tuning of parameter values. With this simple but intuitive method, segmentation results with high precision for a large number of cells can be achieved by minimal user interaction. The strategy was validated on handsegmented datasets of three neuroblastoma cell lines.
NASA Astrophysics Data System (ADS)
Deviren, Seyma Akkaya
2017-02-01
In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.
Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures
NASA Astrophysics Data System (ADS)
Rowley, R. L.; Stoker, J. M.; Giles, N. F.
1991-05-01
The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.
NASA Astrophysics Data System (ADS)
Barhoumi, Z.; Saini, M.; Amdouni, N.; Pal, A.
2016-09-01
The micellization of an aqueous solution of the surface active ionic liquid (SAIL), 1-butyl-3-methylimidazolium octylsufate (C4mim)(C8OSO3) and its interaction with an anionic polymer sodium polystyrene sulfonate, (NaPSS) were studied using conductimetry, tensiometry and fluorimetry. Surface tension profile shows a more dramatic increase in the value of surface tension of aqueous (C4mim)(C8OSO3) before the critical micelle concentration (cmc) of IL. The critical micelle concentration (cmc) value of this surfactant was found out from conductance measurements. The thermodynamic parameters, i.e., Gibb's free energy, enthalpy, and entropy of micellization of the IL in aqueous solution have been calculated. Behavior of fluorescence probe confirms the binding interactions between SAIL and the polyelectrolyte.
NASA Astrophysics Data System (ADS)
Žunkovič, Bojan; Heyl, Markus; Knap, Michael; Silva, Alessandro
2018-03-01
We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α , which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α ≤2 . The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α ≤2 . We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.
LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands
Dodda, Leela S.
2017-01-01
Abstract The accurate calculation of protein/nucleic acid–ligand interactions or condensed phase properties by force field-based methods require a precise description of the energetics of intermolecular interactions. Despite the progress made in force fields, small molecule parameterization remains an open problem due to the magnitude of the chemical space; the most critical issue is the estimation of a balanced set of atomic charges with the ability to reproduce experimental properties. The LigParGen web server provides an intuitive interface for generating OPLS-AA/1.14*CM1A(-LBCC) force field parameters for organic ligands, in the formats of commonly used molecular dynamics and Monte Carlo simulation packages. This server has high value for researchers interested in studying any phenomena based on intermolecular interactions with ligands via molecular mechanics simulations. It is free and open to all at jorgensenresearch.com/ligpargen, and has no login requirements. PMID:28444340
Lambert, Dominic; Draper, David E.
2012-01-01
To investigate the mechanism by which urea destabilizes RNA structure, urea-induced unfolding of four different RNA secondary and tertiary structures was quantified in terms of an m-value, the rate at which the free energy of unfolding changes with urea molality. From literature data and our osmometric study of a backbone analog, we derived average interaction potentials (per Å2 of solvent accessible surface) between urea and three kinds of RNA surfaces: phosphate, ribose, and base. Estimates of the increases in solvent accessible surface areas upon RNA denaturation were based on a simple model of unfolded RNA as a combination of helical and single strand segments. These estimates, combined with the three interaction potentials and a term to account for urea interactions with released ions, yield calculated m-values in good agreement with experimental values (200 mm monovalent salt). Agreement was obtained only if single-stranded RNAs were modeled in a highly stacked, A form conformation. The primary driving force for urea induced denaturation is the strong interaction of urea with the large surface areas of bases that become exposed upon denaturation of either RNA secondary or tertiary structure, though urea interactions with backbone and released ions may account for up to a third of the m-value. Urea m-values for all four RNA are salt-dependent, which we attribute to an increased extension (or decreased charge density) of unfolded RNAs with increased urea concentration. The sensitivity of the urea m-value to base surface exposure makes it a potentially useful probe of the conformations of RNA unfolded states. PMID:23088364
NASA Astrophysics Data System (ADS)
Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.
2016-08-01
Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.
NASA Astrophysics Data System (ADS)
Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.
2011-02-01
We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/< N> are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.
Microwave dielectric study of polar liquids at 298 K
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Murugkar, A.; Khirade, P. W.
2018-05-01
Present paper deals with study of microwave dielectric properties like dielectric constant, viscosity, density and refractive index for the binary mixtures of Dimethylsulphoxide (DMSO) and Methanol over the entire concentration range were measured at 298K. The experimental data further used to determine the excess properties viz. excess static dielectric constant, excess molar volume, excess viscosity& derived properties viz. molar refraction&Bruggman factor. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure breaking factor in the mixture predominates in the system.
Effect of additives on the clouding and aggregation behavior of Triton X-100
NASA Astrophysics Data System (ADS)
Semwal, Divyam; Sen, Indrani Das; Jayaram, Radha V.
2018-04-01
The present study investigates the effect of additives such as CsNO3 and imidazolium ionic liquids on the cloud point (CP) of Triton X-100. Thermodynamic parameters of the clouding process were determined in order to understand the interactions. CP was found to increase with the increase in concentration of most of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar phase1. The thermodynamic parameters on the introduction of CsNO3 in TX-100 - ionic liquid system helps in understanding the different interactions occurring in the system. All ΔG values for clouding were found to be positive and hence made the process non spontaneous.
Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol
NASA Astrophysics Data System (ADS)
Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh
2017-07-01
Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.
Geographic information system/watershed model interface
Fisher, Gary T.
1989-01-01
Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.
Optimal convergence in naming game with geography-based negotiation on small-world networks
NASA Astrophysics Data System (ADS)
Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Chen, Guanrong; Wang, Bing-Hong
2011-01-01
We propose a negotiation strategy to address the effect of geography on the dynamics of naming games over small-world networks. Communication and negotiation frequencies between two agents are determined by their geographical distance in terms of a parameter characterizing the correlation between interaction strength and the distance. A finding is that there exists an optimal parameter value leading to fastest convergence to global consensus on naming. Numerical computations and a theoretical analysis are provided to substantiate our findings.
NASA Astrophysics Data System (ADS)
Singh, S. Surendra
2018-05-01
Considering the locally rotationally symmetric (LRS) Bianchi type-I metric with cosmological constant Λ, Einstein’s field equations are discussed based on the background of anisotropic fluid. We assumed the condition A = B 1 m for the metric potentials A and B, where m is a positive constant to obtain the viable model of the Universe. It is found that Λ(t) is positive and inversely proportional to time. The values of matter-energy density Ωm, dark energy density ΩΛ and deceleration parameter q are found to be consistent with the values of WMAP observations. State finder parameters and anisotropic deviation parameter are also investigated. It is also observed that the derived model is an accelerating, shearing and non-rotating Universe. Some of the asymptotic and geometrical behaviors of the derived models are investigated with the age of the Universe.
NASA Astrophysics Data System (ADS)
Dilmi, S.; Saib, S.; Bouarissa, N.
2018-06-01
Structural, electronic, electron-phonon coupling and superconducting properties of the intermetallic compound LuC2 are investigated by means of ab initio pseudopotential plane wave method within the generalized gradient approximation. The calculated equilibrium lattice parameters yielded a very good accord with experiment. There is no imaginary phonon frequency in the whole Brillouin zone supporting thus the dynamical stability in the material of interest. The average electron-phonon coupling parameter is found to be 0.59 indicating thus a weak-coupling BCS superconductor. Using a reasonable value of μ* = 0.12 for the effective Coulomb repulsion parameter, the superconducting critical temperature Tc is found to be 3.324 which is in excellent agreement with the experimental value of 3.33 K. The effect of the spin-orbit coupling on the superconducting properties of the material of interest has been examined and found to be weak.
GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.
Patrick, Christopher E; Giustino, Feliciano
2012-05-23
We investigate the quasiparticle band structure of anatase TiO(2), a wide gap semiconductor widely employed in photovoltaics and photocatalysis. We obtain GW quasiparticle energies starting from density-functional theory (DFT) calculations including Hubbard U corrections. Using a simple iterative procedure we determine the value of the Hubbard parameter yielding a vanishing quasiparticle correction to the fundamental bandgap of anatase TiO(2). The bandgap (3.3 eV) calculated using this optimal Hubbard parameter is smaller than the value obtained by applying many-body perturbation theory to standard DFT eigenstates and eigenvalues (3.7 eV). We extend our analysis to the rutile polymorph of TiO(2) and reach similar conclusions. Our work highlights the role of the starting non-interacting Hamiltonian in the calculation of GW quasiparticle energies in TiO(2) and suggests an optimal Hubbard parameter for future calculations.
Langner, Monika; Krystkowiak, Karolina; Salmanowicz, Bolesław P; Adamski, Tadeusz; Krajewski, Paweł; Kaczmarek, Zygmunt; Surma, Maria
2017-12-01
The major determinants of wheat quality are Glu-1 and Glu-3 glutenin loci and environmental factors. Additive effects of alleles at the Glu-1 and Glu-3 loci, as well as their interactions, were evaluated for dough rheology and baking properties in four groups of wheat doubled haploid lines differing in high- and low-molecular-weight glutenin composition. Flour quality, Reomixer (Reologica Instruments, Lund, Sweden), dough extension, Farinograph (Brabender GmbH, Duisburg, Germany) and baking parameters were determined. Groups of lines with the alleles Glu-A3b and Glu-B3d were characterized by higher values of dough and baking parameters compared to those with the Glu-A3e and Glu-B3a alleles. Effects of interactions between allelic variants at the Glu-1 and Glu-3 loci on Reomixer parameters, dough extension tests and baking parameters were significant, although additive effects of individual alleles were not always significant. The allelic variants at Glu-B3 had a much greater effect on dough rheological parameters than the variants at Glu-A3 or Glu-D3 loci. The effect of allelic variations at the Glu-D3 loci on rheological parameters and bread-making quality was non-significant, whereas their interactions with a majority of alleles at the other Glu-1 × Glu-3 loci were significant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Interaction of Human Hemoglobin with Methotrexate
NASA Astrophysics Data System (ADS)
Zaharia, M.; Gradinaru, R.
2015-05-01
This study focuses on the interaction between methotrexate and human hemoglobin using steady-state ultraviolet-visible and fluorescence quenching methods. Fluorescence quenching was found to be valuable in assessing drug binding to hemoglobin. The quenching of methotrexate is slightly smaller than the quenching observed with related analogs (dihydrofolate and tetrahydrofolate). The quenching studies were performed at four different temperatures and various pH values. The number of binding sites for tryptophan is ~1. Parameter-dependent assays revealed that electrostatic forces play an essential role in the methotrexate-hemoglobin interaction. Furthermore, the complex was easily eluted using gel filtration chromatography.
K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution
DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...
2017-06-09
The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less
NASA Astrophysics Data System (ADS)
Reif, Maria M.; Hünenberger, Philippe H.
2011-04-01
The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, Δ G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate Δ G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated Δ G_hyd^{ominus }[H+] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of Δ G_hyd^{ominus }[H+] close to -1100 kJ.mol-1.
Classical spin glass system in external field with taking into account relaxation effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorkyan, A. S., E-mail: g_ashot@sci.am; Abajyan, H. G.
2013-08-15
We study statistical properties of disordered spin systems under the influence of an external field with taking into account relaxation effects. For description of system the spatial 1D Heisenberg spin-glass Hamiltonian is used. In addition, we suppose that interactions occur between nearest-neighboring spins and they are random. Exact solutions which define angular configuration of the spin in nodes were obtained from the equations of stationary points of Hamiltonian and the corresponding conditions for the energy local minimum. On the basis of these recurrent solutions an effective parallel algorithm is developed for simulation of stabile spin-chains of an arbitrary length. Itmore » is shown that by way of an independent order of N{sup 2} numerical simulations (where N is number of spin in each chain) it is possible to generate ensemble of spin-chains, which is completely ergodic which is equivalent to full self-averaging of spin-chains' vector polarization. Distributions of different parameters (energy, average polarization by coordinates, and spin-spin interaction constant) of unperturbed system are calculated. In particular, analytically is proved and numerically is shown, that for the Heisenberg nearest-neighboring Hamiltonian model, the distribution of spin-spin interaction constants as opposed to widely used Gauss-Edwards-Anderson distribution satisfies Levy alpha-stable distribution law. This distribution is nonanalytic function and does not have variance. In the work we have in detail studied critical properties of an ensemble depending on value of external field parameters (from amplitude and frequency) and have shown that even at weak external fields the spin-glass systemis strongly frustrated. It is shown that frustrations have fractal behavior, they are selfsimilar and do not disappear at scale decreasing of area. By the numerical computation is shown that the average polarization of spin-glass on a different coordinates can have values which can lead to catastrophes in the equation ofClausius-Mossotti for dielectric constant. In other words, for some values of external field parameter, a critical phenomenon occurs in the system which is impossible to describe by the real-valued Heisenberg spin-glass Hamiltonian. For the solution of this problem at first the complex-valued disordered Hamiltonian is used. Physically this type of extension of Hamiltonian allows to consider relaxation effects which occur in the system under the influence of an external field. On the basis of developed approach an effective parallel algorithm is developed for simulation of statistic parameters of spin-glass system under the influence of an external field.« less
Changes in Body Composition in Anorexia Nervosa: Predictors of Recovery and Treatment Outcome
Arcelus, Jon; Sánchez, Isabel; Riesco, Nadine; Jiménez-Murcia, Susana; González-Gómez, Jana; Granero, Roser; Custal, Nuria; Montserrat-Gil de Bernabé, Monica; Tárrega, Salomé; Baños, Rosa M.; Botella, Cristina; de la Torre, Rafael; Fernández-García, José C.; Fernández-Real, José M.; Frühbeck, Gema; Gómez-Ambrosi, Javier; Tinahones, Francisco J.; Crujeiras, Ana B.; Casanueva, Felipe F.; Menchón, José M.; Fernández-Aranda, Fernando
2015-01-01
The restoration of body composition (BC) parameters is considered to be one of the most important goals in the treatment of patients with anorexia nervosa (AN). However, little is known about differences between AN diagnostic subtypes [restricting (AN-R) and binge/purging (AN-BP)] and weekly changes in BC during refeeding treatment. Therefore, the main objectives of our study were twofold: 1) to assess the changes in BC throughout nutritional treatment in an AN sample and 2) to analyze predictors of BC changes during treatment, as well as predictors of treatment outcome. The whole sample comprised 261 participants [118 adult females with AN (70 AN-R vs. 48 AN-BP), and 143 healthy controls]. BC was measured weekly during 15 weeks of day-hospital treatment using bioelectrical impedance analysis (BIA). Assessment measures also included the Eating Disorders Inventory-2, as well as a number of other clinical indices. Overall, the results showed that AN-R and AN-BP patients statistically differed in all BC measures at admission. However, no significant time×group interaction was found for almost all BC parameters. Significant time×group interactions were only found for basal metabolic rate (p = .041) and body mass index (BMI) (p = .035). Multiple regression models showed that the best predictors of pre-post changes in BC parameters (namely fat-free mass, muscular mass, total body water and BMI) were the baseline values of BC parameters. Stepwise predictive logistic regressions showed that only BMI and age were significantly associated with outcome, but not with the percentage of body fat. In conclusion, these data suggest that although AN patients tended to restore all BC parameters during nutritional treatment, only AN-BP patients obtained the same fat mass values as healthy controls. Put succinctly, the best predictors of changes in BC were baseline BC values, which did not, however, seem to influence treatment outcome. PMID:26600309
Changes in Body Composition in Anorexia Nervosa: Predictors of Recovery and Treatment Outcome.
Agüera, Zaida; Romero, Xandra; Arcelus, Jon; Sánchez, Isabel; Riesco, Nadine; Jiménez-Murcia, Susana; González-Gómez, Jana; Granero, Roser; Custal, Nuria; Montserrat-Gil de Bernabé, Monica; Tárrega, Salomé; Baños, Rosa M; Botella, Cristina; de la Torre, Rafael; Fernández-García, José C; Fernández-Real, José M; Frühbeck, Gema; Gómez-Ambrosi, Javier; Tinahones, Francisco J; Crujeiras, Ana B; Casanueva, Felipe F; Menchón, José M; Fernández-Aranda, Fernando
2015-01-01
The restoration of body composition (BC) parameters is considered to be one of the most important goals in the treatment of patients with anorexia nervosa (AN). However, little is known about differences between AN diagnostic subtypes [restricting (AN-R) and binge/purging (AN-BP)] and weekly changes in BC during refeeding treatment. Therefore, the main objectives of our study were twofold: 1) to assess the changes in BC throughout nutritional treatment in an AN sample and 2) to analyze predictors of BC changes during treatment, as well as predictors of treatment outcome. The whole sample comprised 261 participants [118 adult females with AN (70 AN-R vs. 48 AN-BP), and 143 healthy controls]. BC was measured weekly during 15 weeks of day-hospital treatment using bioelectrical impedance analysis (BIA). Assessment measures also included the Eating Disorders Inventory-2, as well as a number of other clinical indices. Overall, the results showed that AN-R and AN-BP patients statistically differed in all BC measures at admission. However, no significant time×group interaction was found for almost all BC parameters. Significant time×group interactions were only found for basal metabolic rate (p = .041) and body mass index (BMI) (p = .035). Multiple regression models showed that the best predictors of pre-post changes in BC parameters (namely fat-free mass, muscular mass, total body water and BMI) were the baseline values of BC parameters. Stepwise predictive logistic regressions showed that only BMI and age were significantly associated with outcome, but not with the percentage of body fat. In conclusion, these data suggest that although AN patients tended to restore all BC parameters during nutritional treatment, only AN-BP patients obtained the same fat mass values as healthy controls. Put succinctly, the best predictors of changes in BC were baseline BC values, which did not, however, seem to influence treatment outcome.
Monte Carlo simulation of elongating metallic nanowires in the presence of surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gimenez, M. Cecilia; Reinaudi, Luis, E-mail: luis.reinaudi@unc.edu.ar; Leiva, Ezequiel P. M.
2015-12-28
Nanowires of different metals undergoing elongation were studied by means of canonical Monte Carlo simulations and the embedded atom method representing the interatomic potentials. The presence of a surfactant medium was emulated by the introduction of an additional stabilization energy, represented by a parameter Q. Several values of the parameter Q and temperatures were analyzed. In general, it was observed for all studied metals that, as Q increases, there is a greater elongation before the nanowire breaks. In the case of silver, linear monatomic chains several atoms long formed at intermediate values of Q and low temperatures. Similar observations weremore » made for the case of silver-gold alloys when the medium interacted selectively with Ag.« less
Proton-neutron sdg boson model and spherical-deformed phase transition
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Sugita, Michiaki
1988-12-01
The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.
FAST TRACK COMMUNICATION: The nonlinear fragmentation equation
NASA Astrophysics Data System (ADS)
Ernst, Matthieu H.; Pagonabarraga, Ignacio
2007-04-01
We study the kinetics of nonlinear irreversible fragmentation. Here, fragmentation is induced by interactions/collisions between pairs of particles and modelled by general classes of interaction kernels, for several types of breakage models. We construct initial value and scaling solutions of the fragmentation equations, and apply the 'non-vanishing mass flux' criterion for the occurrence of shattering transitions. These properties enable us to determine the phase diagram for the occurrence of shattering states and of scaling states in the phase space of model parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.
2014-08-14
The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X -(H 2O), X = F, Cl, Br, I, and alkali metal-water, M +(H 2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits tomore » the ab initio data that are between one and two orders of magnitude better in the χ 2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.« less
High-resolution infrared studies of the v 10, v 11, v 14, and v 18 levels of [1.1.1]propellane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, Robynne W.; Masiello, Tony; Martin, Matthew A.
2012-11-15
This paper is a continuation of earlier work for which the high resolution infrared spectrum of [1.1.1]propellane was measured and its k and l structure resolved for the first time. Here we present results from an analysis of more than 16,000 transitions involving three fundamental bands v 10 (E'-A1'), v 11 (E'-A1'), v 14 (A2''-A1') and two difference bands (v 10- v 18) (E'-E'') and (v 11-v 18) (E'-E"). Additional information about v18 was also obtained from the difference band (v 15+v 18)-v 18 (E'-E") and the binary combination band (v 15+v 18) (E'-A1'). Through the use of the groundmore » state constants reported in an earlier paper [1], rovibrational constants have been determined for all the vibrational states involved in these bands. The rovibrational parameters for the v 18(E'') state were obtained from combination-differences and showed no need to include interactions with other states. The v 10(E') state analysis was also straight-forward, with only a weak Coriolis interaction with the levels of the v 14(A2'') state. The latter levels are much more affected by a strong Coriolis interaction with the levels of the nearby v 11(E') state and also by a small but significant interaction with another state, presumably the v16(E'') state, that is not directly observed. Gaussian calculations (B3LYP/cc-pVTZ) computed at the anharmonic level aided the analyses by providing initial values for many of the parameters. These theoretical results generally compare favorably with the final parameter values deduced from the spectral analyses. Finally, evidence was obtained for several level crossings between the rotational levels of the v 11 and v 14 states and, using a weak coupling term corresponding to a Δk = ±5, Δl = ∓1 matrix element, it was possible to find transitions from the ground state that, combined with transitions to the same upper state, give a value of C 0 = 0.1936519(4) cm -1. This result, combined with the value of B 0 = 0.28755833(14) cm-1 reported earlier [1], yields a value of 1.586282(3) Å for the length of the novel axial CC bond in propellane.« less
Constraints on supersymmetric dark matter for heavy scalar superpartners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Peisi; Roglans, Roger A.; Spiegel, Daniel D.
2017-05-01
We study the constraints on neutralino dark matter in minimal low energy supersymmetry models and the case of heavy lepton and quark scalar superpartners. For values of the Higgsino and gaugino mass parameters of the order of the weak scale, direct detection experiments are already putting strong bounds on models in which the dominant interactions between the dark matter candidates and nuclei are governed by Higgs boson exchange processes, particularly for positive values of the Higgsino mass parameter mu. For negative values of mu, there can be destructive interference between the amplitudes associated with the exchange of the standard CP-evenmore » Higgs boson and the exchange of the nonstandard one. This leads to specific regions of parameter space which are consistent with the current experimental constraints and a thermal origin of the observed relic density. In this article, we study the current experimental constraints on these scenarios, as well as the future experimental probes, using a combination of direct and indirect dark matter detection and heavy Higgs and electroweakino searches at hadron colliders« less
Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.
1988-01-01
The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)
NASA Astrophysics Data System (ADS)
Mohamed, Abdel-Baset A.
2018-05-01
Analytical description for a Su(2)-quantum system interacting with a damped Su(1, 1)-cavity, which is filled with a non-linear Kerr medium, is presented. The dynamics of non-classicality of Su(1, 1)-state is investigated via the negative part of the Wigner function. We show that the negative part depends on the unitary interaction and the Kerr-like medium and it can be disappeared by increasing the dissipation rate and the detuning parameter. The phase space information of the Husimi function and its Wehrl density is very sensitive not only to the coupling to the environment and the unitary interaction but also to the detuning as well as to the Kerr-like medium. The phase space information may be completely erased by increasing the coupling to the environment. The coherence loss of the Su(2)-state is investigated via the Husimi Wehrl entropy. If the effects of the detuning parameter or/and of the Kerr-like medium are combined with the damping effect, the damping effect of the coupling to the environment may be weaken, and the Wehrl entropy is delayed to reach its steady-state value. At the steady-state value, the phase space information and the coherence are quickly lost.
An expert system for prediction of aquatic toxicity of contaminants
Hickey, James P.; Aldridge, Andrew J.; Passino, Dora R. May; Frank, Anthony M.; Hushon, Judith M.
1990-01-01
The National Fisheries Research Center-Great Lakes has developed an interactive computer program in muLISP that runs on an IBM-compatible microcomputer and uses a linear solvation energy relationship (LSER) to predict acute toxicity to four representative aquatic species from the detailed structure of an organic molecule. Using the SMILES formalism for a chemical structure, the expert system identifies all structural components and uses a knowledge base of rules based on an LSER to generate four structure-related parameter values. A separate module then relates these values to toxicity. The system is designed for rapid screening of potential chemical hazards before laboratory or field investigations are conducted and can be operated by users with little toxicological background. This is the first expert system based on LSER, relying on the first comprehensive compilation of rules and values for the estimation of LSER parameters.
Empirical parameterization of a model for predicting peptide helix/coil equilibrium populations.
Andersen, N. H.; Tong, H.
1997-01-01
A modification of the Lifson-Roig formulation of helix/coil transitions is presented; it (1) incorporates end-capping and coulombic (salt bridges, hydrogen bonding, and side-chain interactions with charged termini and the helix dipole) effects, (2) helix-stabilizing hydrophobic clustering, (3) allows for different inherent termination probabilities of individual residues, and (4) differentiates helix elongation in the first versus subsequent turns of a helix. Each residue is characterized by six parameters governing helix formation. The formulation of the conditional probability of helix initiation and termination that we developed is essentially the same as one presented previously (Shalongo W, Stellwagen, E. 1995. Protein Sci 4:1161-1166) and nearly the mathematical equivalent of the new capping formulation incorporated in the model presented by Rohl et al. (1996. Protein Sci 5:2623-2637). Side-chain/side-chain interactions are, in most cases, incorporated as context dependent modifications of propagation rather than nucleation parameters. An alternative procedure for converting [theta]221 values to experimental fractional helicities (
Time-varying q-deformed dark energy interacts with dark matter
NASA Astrophysics Data System (ADS)
Dil, Emre; Kolay, Erdinç
We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.
Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe
2014-01-01
Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.
Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe
2014-01-01
Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217
Su, G; Madsen, P; Lund, M S
2009-05-01
Crossbreeding is currently increasing in dairy cattle production. Several studies have shown an environment-dependent heterosis [i.e., an interaction between heterosis and environment (H x E)]. An H x E interaction is usually estimated from a few discrete environment levels. The present study proposes a reaction norm model to describe H x E interaction, which can deal with a large number of environment levels using few parameters. In the proposed model, total heterosis consists of an environment-independent part, which is described as a function of heterozygosity, and an environment-dependent part, which is described as a function of heterozygosity and environmental value (e.g., herd-year effect). A Bayesian approach is developed to estimate the environmental covariates, the regression coefficients of the reaction norm, and other parameters of the model simultaneously in both linear and nonlinear reaction norms. In the nonlinear reaction norm model, the H x E is approximated using linear splines. The approach was tested using simulated data, which were generated using an animal model with a reaction norm for heterosis. The simulation study includes 4 scenarios (the combinations of moderate vs. low heritability and moderate vs. low herd-year variation) of H x E interaction in a nonlinear form. In all scenarios, the proposed model predicted total heterosis very well. The correlation between true heterosis and predicted heterosis was 0.98 in the scenarios with low herd-year variation and 0.99 in the scenarios with moderate herd-year variation. This suggests that the proposed model and method could be a good approach to analyze H x E interactions and predict breeding values in situations in which heterosis changes gradually and continuously over an environmental gradient. On the other hand, it was found that a model ignoring H x E interaction did not significantly harm the prediction of breeding value under the simulated scenarios in which the variance for environment-dependent heterosis effects was small (as it generally is), and sires were randomly used over production environments.
Performance in wild ungulates: measuring population density and condition of individuals
John G. Kie
1988-01-01
Measures of performance in wild ungulates can include characteristics indicative of condition and health such as body weights, fat reserves, blood values, reproductive rates, and parasite loads. Performance may also be inferred from habitat-related factors, such as diet and nutritional intake. However, these parameters interact with population density to form a...
NASA Astrophysics Data System (ADS)
Ashat, Ali; Pratama, Heru Berian
2017-12-01
The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.
Estimating Likelihood of Fetal In Vivo Interactions Using In ...
Tox21/ToxCast efforts provide in vitro concentration-response data for thousands of compounds. Predicting whether chemical-biological interactions observed in vitro will occur in vivo is challenging. We hypothesize that using a modified model from the FDA guidance for drug interaction studies, Cmax/AC50 (i.e., maximal in vivo blood concentration over the half-maximal in in vitro activity concentration), will give a useful approximation for concentrations where in vivo interactions are likely. Further, for doses where maternal blood concentrations are likely to elicit an interaction (Cmax/AC50>0.1), where do the compounds accumulate in fetal tissues? In order to estimate these doses based on Tox21 data, in silico parameters of chemical fraction unbound in plasma and intrinsic hepatic clearance were estimated from ADMET predictor (Simulations-Plus Inc.) and used in the HTTK R-package to obtain Cmax values from a physiologically-based toxicokinetics model. In silico estimated Cmax values predicted in vivo human Cmax with median absolute error of 0.81 for 93 chemicals, giving confidence in the R-package and in silico estimates. A case example evaluating Cmax/AC50 values for peroxisome proliferator-activated receptor gamma (PPARγ) and glucocorticoid receptor revealed known compounds (glitazones and corticosteroids, respectively) highest on the list at pharmacological doses. Doses required to elicit likely interactions across all Tox21/ToxCast assays were compared to
Pawar, Suma K; Jaldappagari, Seetharamappa
2017-09-01
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra-red spectroscopy (FT-IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern-Volmer quenching constants and binding constants for the MS-HSA system at 293, 298 and 303 K were obtained from the Stern-Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS-HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three-dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS-HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Luo, Yongkun; Qin, Rongshan
2014-06-01
The structure and the anisotropic properties of the surfaces of face-centred-cubic (FCC) metals have been studied using the broken-bond model while considering the third and fourth nearest neighbouring (3rd and 4th NN) interactions. The pair potential expressions are obtained using the Rose-Vinet universal potential equation. The model is suitable for calculation of the property of a surface with arbitrary crystallographic orientations and can provide absolute unrelaxed surface energy values using three input parameters, namely the lattice constant, bulk modulus and cohesive energy. These parameters are available for the majority of FCC metals. The numerical results for 7 FCC metals have been obtained and compared with these obtained from ab initio calculations and experimental measurements. Good agreement is observed between the two. Taking into account up to the 4th NN interactions, the overall surface energy anisotropy for FCC metals was found to be between 12% to 16%, and the ratio between the surface energies at (100) and (111) planes was found to be 1.05. These values are less than those reported by conventional calculations but more similar to experimental measurements. It is found that the strength of 3rd and 4th NN interactions differs from one element to another, the Ni and Cu interactions being the most significant while the Au, Pt and Pb interactions are the least significant. This suggests that the polar diagrams of the surface energy of Ni and Cu are different from those of Au, Pt and Pb by showing cusps of the unconventional {110} and high-index {210}, {311} and possibly {135} poles. This provides explanations to the recent experimental observations of the {110}, {210}, {311} and {135} facets in equilibrated Ni and Cu crystallines.
NASA Technical Reports Server (NTRS)
Muschol, Martin; Rosenberger, Franz
1995-01-01
We have performed multiangle static and dynamic light scattering studies of lysozyme solutions at pH=4.7. The Rayleigh ratio R(sub g) and the collective diffusion coefficient D(sub c) were determined as function of both protein concentration c(sub p) and salt concentration c(sub s) with two different salts. At low salt concentrations, the scattering ratio K(sub c)(sub p)/R(sub theta) and diffusivity increased with protein concentration above the values for a monomeric, ideal solution. With increasing salt concentration this trend was eventually reversed. The hydrodynamic interactions of lysozyme in solution, extracted from the combination of static and dynamic scattering data, decreased significantly with increasing salt concentration. These observations reflect changes in protein interactions, in response to increased salt screening, from net repulsion to net attraction. Both salts had the same qualitative effect, but the quantitative behavior did not scale with the ionic strength of the solution. This indicates the presence of salt specific effects. At low protein concentrations, the slopes of K(sub c)(sub p)/R(sub theta) and D(sub c) vs c(sub p) were obtained. The dependence of the slopes on ionic strength was modeled using a DLVO potential for colloidal interactions of two spheres, with the net protein charge Z(sub e) and Hamaker constant A(sub H) as fitting parameters. The model reproduces the observed variations with ionic strength quite well. Independent fits to the static and dynamic data, however, led to different values of the fitting parameters. These and other shortcomings suggest that colloidal interaction models alone are insufficient to explain protein interactions in solutions.
NASA Astrophysics Data System (ADS)
Bibi, Madiha; Khalil-Ur-Rehman; Malik, M. Y.; Tahir, M.
2018-04-01
In the present article, unsteady flow field characteristics of the Williamson fluid model are explored. The nanosized particles are suspended in the flow regime having the interaction of a magnetic field. The fluid flow is induced due to a stretching permeable surface. The flow model is controlled through coupled partial differential equations to the used shooting method for a numerical solution. The obtained partial differential equations are converted into ordinary differential equations as an initial value problem. The shooting method is used to find a numerical solution. The mathematical modeling yields physical parameters, namely the Weissenberg number, the Prandtl number, the unsteadiness parameter, the magnetic parameter, the mass transfer parameter, the Lewis number, the thermophoresis parameter and Brownian parameters. It is found that the Williamson fluid velocity, temperature and nanoparticles concentration are a decreasing function of the unsteadiness parameter.
Quasi-particle properties from tunneling in the v = 5/2 fractional quantum Hall state.
Radu, Iuliana P; Miller, J B; Marcus, C M; Kastner, M A; Pfeiffer, L N; West, K W
2008-05-16
Quasi-particles with fractional charge and statistics, as well as modified Coulomb interactions, exist in a two-dimensional electron system in the fractional quantum Hall (FQH) regime. Theoretical models of the FQH state at filling fraction v = 5/2 make the further prediction that the wave function can encode the interchange of two quasi-particles, making this state relevant for topological quantum computing. We show that bias-dependent tunneling across a narrow constriction at v = 5/2 exhibits temperature scaling and, from fits to the theoretical scaling form, extract values for the effective charge and the interaction parameter of the quasi-particles. Ranges of values obtained are consistent with those predicted by certain models of the 5/2 state.
Huang, Yongfang; Gang, Tieqiang; Chen, Lijie
2017-01-01
For pre-corroded aluminum alloy 7075-T6, the interacting effects of two neighboring pits on the stress concentration are comprehensively analyzed by considering various relative position parameters (inclination angle θ and dimensionless spacing parameter λ) and pit depth (d) with the finite element method. According to the severity of the stress concentration, the critical corrosion regions, bearing high susceptibility to fatigue damage, are determined for intersecting and adjacent pits, respectively. A straightforward approach is accordingly proposed to conservatively estimate the combined stress concentration factor induced by two neighboring pits, and a concrete application example is presented. It is found that for intersecting pits, the normalized stress concentration factor Ktnor increases with the increase of θ and λ and always reaches its maximum at θ = 90°, yet for adjacent pits, Ktnor decreases with the increase of λ and the maximum value appears at a slight asymmetric location. The simulations reveal that Ktnor follows a linear and an exponential relationship with the dimensionless depth parameter Rd for intersecting and adjacent cases, respectively. PMID:28772758
NASA Astrophysics Data System (ADS)
Mei, Yang; Chen, Bo-Wei; Wei, Chen-Fu; Zheng, Wen-Chen
2016-09-01
The high-order perturbation formulas based on the two-mechanism model are employed to calculate the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) for two approximately rhombic W5+ centers in KTiOPO4 (KTP) crystal. In the model, both the widely-applied crystal-field (CF) mechanism concerning the interactions of CF excited states with the ground state and the generally-neglected charge-transfer (CT) mechanism concerning the interactions of CT excited states with the ground state are included. The calculated results agree with the experimental values, and the signs of constants Ai are suggested. The calculations indicate that (i) for the high valence state dn ions in crystals, the contributions to spin-Hamiltonian parameters should take into account both the CF and CT mechanisms and (ii) the large g-shifts |Δgi | (=|gi-ge |, where ge≈ 2.0023) for W5+ centers in crystals are due to the large spin-orbit parameter of free W5+ ion.
Extent of Fock-exchange mixing for a hybrid van der Waals density functional?
NASA Astrophysics Data System (ADS)
Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per
2018-05-01
The vdW-DF-cx0 exchange-correlation hybrid design [K. Berland et al., J. Chem. Phys. 146, 234106 (2017)] has a truly nonlocal correlation component and aims to facilitate concurrent descriptions of both covalent and non-covalent molecular interactions. The vdW-DF-cx0 design mixes a fixed ratio, a, of the Fock exchange into the consistent-exchange van der Waals density functional, vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)]. The mixing value a is sometimes taken as a semi-empirical parameter in hybrid formulations. Here, instead, we assert a plausible optimum average a value for the vdW-DF-cx0 design from a formal analysis; A new, independent determination of the mixing a is necessary since the Becke fit [A. D. Becke, J. Chem. Phys. 98, 5648 (1993)], yielding a' = 0.2, is restricted to semilocal correlation and does not reflect non-covalent interactions. To proceed, we adapt the so-called two-legged hybrid construction [K. Burke et al., Chem. Phys. Lett. 265, 115 (1997)] to a starting point in the vdW-DF-cx functional. For our approach, termed vdW-DF-tlh, we estimate the properties of the adiabatic-connection specification of the exact exchange-correlation functional, by combining calculations of the Fock exchange and of the coupling-constant variation in vdW-DF-cx. We find that such vdW-DF-tlh hybrid constructions yield accurate characterizations of molecular interactions (even if they lack self-consistency). The accuracy motivates trust in the vdW-DF-tlh determination of system-specific values of the Fock-exchange mixing. We find that an average value a' = 0.2 best characterizes the vdW-DF-tlh description of covalent and non-covalent interactions, although there exists some scatter. This finding suggests that the original Becke value, a' = 0.2, also represents an optimal average Fock-exchange mixing for the new, truly nonlocal-correlation hybrids. To enable self-consistent calculations, we furthermore define and test a zero-parameter hybrid functional vdW-DF-cx0p (having fixed mixing a' = 0.2) and document that this truly nonlocal correlation hybrid works for general molecular interactions (at reference and at relaxed geometries). It is encouraging that the vdW-DF-cx0p functional remains useful also for descriptions of some extended systems.
Lee, Da-Som; Kim, Yang; Song, Youngwoon; Lee, Ji-Hye; Lee, Suyong; Yoo, Sang-Ho
2016-02-01
The potential of the protein-polyphenol interaction was applied to crosslinking reinforced protein networks in gluten-free rice noodles. Specifically, inter-component interaction between soy protein isolate and extract of Acanthopanax sessiliflorus fruit (ogaja) was examined with a view to improving its quality. In a components-interacting model system, a mixture of soy protein isolate (SPI) and ogaja extract (OE) induced a drastic increase in absorbance at 660 nm by haze formation, while the major anthocyanin of ogaja, cyanidin-3-O-sambubioside, sparsely interacted with SPI or gelatin. Individual or combined treatment of SPI and OE on rice dough decreased all the viscosity parameters in rapid visco analysis. However, SPI-OE treatment significantly increased all the texture parameters of rice dough derived from Mixolab(®) analysis (P < 0.05). Incorporation of SPI in rice dough significantly reduced endothermic ΔH, and SPI-OE treatment further decreased this value. SPI-OE interaction significantly increased the tensile properties of cooked noodle and decreased 53.7% of cooking loss compared to the untreated rice noodle. SPI-OE treatment caused a considerable reinforcement of the network as shown by reducing cooking loss and suggested the potential for utilizing protein-polyphenol interaction for gluten-free rice noodle production. © 2015 Society of Chemical Industry.
Proynov, Emil; Liu, Fenglai; Gan, Zhengting; Wang, Matthew; Kong, Jing
2015-01-01
We implement and compute the density functional nonadditive three-body dispersion interaction using a combination of Tang-Karplus formalism and the exchange-dipole moment model of Becke and Johnson. The computation of the C9 dispersion coefficients is done in a non-empirical fashion. The obtained C9 values of a series of noble atom triplets agree well with highly accurate values in the literature. We also calculate the C9 values for a series of benzene trimers and find a good agreement with high-level ab initio values reported recently in the literature. For the question of damping of the three-body dispersion at short distances, we propose two damping schemes and optimize them based on the benzene trimers data, and the fitted analytic potentials of He3 and Ar3 trimers fitted to the results of high-level wavefunction theories available from the literature. Both damping schemes respond well to the optimization of two parameters. PMID:26328836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proynov, Emil; Wang, Matthew; Kong, Jing, E-mail: jing.kong@mtsu.edu
We implement and compute the density functional nonadditive three-body dispersion interaction using a combination of Tang-Karplus formalism and the exchange-dipole moment model of Becke and Johnson. The computation of the C{sub 9} dispersion coefficients is done in a non-empirical fashion. The obtained C{sub 9} values of a series of noble atom triplets agree well with highly accurate values in the literature. We also calculate the C{sub 9} values for a series of benzene trimers and find a good agreement with high-level ab initio values reported recently in the literature. For the question of damping of the three-body dispersion at shortmore » distances, we propose two damping schemes and optimize them based on the benzene trimers data, and the fitted analytic potentials of He{sub 3} and Ar{sub 3} trimers fitted to the results of high-level wavefunction theories available from the literature. Both damping schemes respond well to the optimization of two parameters.« less
He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong
2016-02-01
Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.
Resurgence of oscillation in coupled oscillators under delayed cyclic interaction
NASA Astrophysics Data System (ADS)
Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar
2017-07-01
This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.
Midi-maxi computer interaction in the interpretation of nuclear medicine procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlapper, G.A.
1977-01-01
A study of renal function with an Anger Gamma Camera coupled with a Digital Equipment Corporation Gamma-11 System and an IBM System 370 demonstrates the potential of quantitative determinations of physiological function through the application of midi-maxi computer interaction in the interpretation of nuclear medicine procedures. It is shown that radiotracers can provide an opportunity to assess physiological processes of renal function by noninvasively following the path of a tracer as a function of time. Time-activity relationships obtained over seven anatomically defined regions are related to parameters of a seven compartment model employed to describe the renal clearance process. Themore » values obtained for clinically significant parameters agree with known renal pathophysiology. Differentiation of failure of acute, chronic, and obstructive forms is indicated.« less
Radhika, R; Shankar, R; Vijayakumar, S; Kolandaivel, P
2018-05-01
The theoretical studies on DNA with the anticancer drug 6-Mercaptopurine (6-MP) are investigated using theoretical methods to shed light on drug designing. Among the DNA base pairs considered, 6-MP is stacked with GC with the highest interaction energy of -46.19 kcal/mol. Structural parameters revealed that structure of the DNA base pairs is deviated from the planarity of the equilibrium position due to the formation of hydrogen bonds and stacking interactions with 6-MP. These deviations are verified through the systematic comparison between X-H bond contraction and elongation and the associated blue shift and red shift values by both NBO analysis and vibrational analysis. Bent's rule is verified for the C-H bond contraction in the 6-MP interacted base pairs. The AIM results disclose that the higher values of electron density (ρ) and Laplacian of electron density (∇ 2 ρ) indicate the increased overlap between the orbitals that represent the strong interaction and positive values of the total electron density show the closed-shell interaction. The relative sensitivity of the chemical shift values for the DNA base pairs with 6-MP is investigated to confirm the hydrogen bond strength. Molecular dynamics simulation studies of G-quadruplex DNA d(TGGGGT) 4 with 6-MP revealed that the incorporation of 6-MP appears to cause local distortions and destabilize the G-quadruplex DNA.
Wagner, Brian J.; Harvey, Judson W.
1997-01-01
Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute exchange rates are fast relative to stream-water velocity and all solute is exchanged with the storage zone over the experimental reach. As DaI increases, tracer dispersion caused by hyporheic exchange eventually reaches an equilibrium condition and storage-zone exchange parameters become essentially nonidentifiable.
Choi, Myung-Jin; Yohannes, Sileshi Belew; Lee, Seung-Jin; Damte, Dereje; Kim, Jong-Choon; Suh, Joo-Won; Park, Seung-Chun
2014-03-01
The pharmacokinetic interaction of enrofloxacin and trimethoprim was evaluated after single-dose intraperitoneal or oral co-administration in rats. Plasma concentrations of the two drugs were determined by high-performance liquid chromatography. Following intraperitoneal combination, a significant (P < 0.05) increase in mean values of plasma half-life (t 1/2) and maximum plasma concentration (C max) was observed for enrofloxacin and trimethoprim, respectively. There was a significant (P < 0.05) increase in mean values of area under the plasma drug concentration versus time from time zero to infinity (AUC0-∞) and C max between combined oral doses (10, 30 and 100 mg/kg) of both antibacterial drugs. Also, after oral conjugation a significant difference in mean values of MRT0-∞ was observed between lower (10 mg/kg) and higher (100 mg/kg) doses of both drugs. A significant increase in pharmacokinetic parameters of both drugs in combined intraperitoneal and oral doses indicated pharmacokinetic interaction of enrofloxacin and trimethoprim. Further study is recommended in other species of animals.
Bipolarons in one-dimensional extended Peierls-Hubbard models
NASA Astrophysics Data System (ADS)
Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona
2017-04-01
We study two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. In the case of hard-core bare particles, we show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. On the other hand, in the case of soft-core particles/ spinfull fermions, we show that phonon-mediated interactions are attractive and result in strongly bound and mobile bipolarons in a wide region of parameter space. This illustrates that, depending on the strength of the phonon-mediated interactions and statistics of bare particles, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.
McSwiggen, P.L.
1993-01-01
Earlier attempts at solution models for the ternary carbonate system have been unable to adequately accommodate the cation ordering which occurs in some of the carbonate phases. The carbonate solution model of this study combines a Margules type of interaction model with a Bragg-Williams type of ordering model. The ordering model determines the equilibrium state of order for a crystal, from which the cation distribution within the lattice can be obtained. The interaction model addresses the effect that mixing different cation species within a given cation layer has on the total free energy of the system. An ordering model was derived, based on the Bragg-Williams approach; it is applicable to ternary systems involving three cations substituting on two sites, and contains three ordering energy parameters (WCaMg, WCaFe, and WCaMgFe). The solution model of this study involves six Margules-type interaction parameters (W12, W21, W13, W31, W23, and W32). Values for the two sets of energy parameters were calculated from experimental data and from compositional relationships in natural assemblages. ?? 1993 Springer-Verlag.
Plasmon and exciton superconductivity mechanisms in layered structures
NASA Technical Reports Server (NTRS)
Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.
1977-01-01
Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.
Fadıloğlu, Eylem Ezgi; Serdaroğlu, Meltem
2018-01-01
Abstract This study was conducted to evaluate the effects of pre and post-rigor marinade injections on some quality parameters of Longissimus dorsi (LD) muscles. Three marinade formulations were prepared with 2% NaCl, 2% NaCl+0.5 M lactic acid and 2% NaCl+0.5 M sodium lactate. In this study marinade uptake, pH, free water, cooking loss, drip loss and color properties were analyzed. Injection time had significant effect on marinade uptake levels of samples. Regardless of marinate formulation, marinade uptake of pre-rigor samples injected with marinade solutions were higher than post rigor samples. Injection of sodium lactate increased pH values of samples whereas lactic acid injection decreased pH. Marinade treatment and storage period had significant effect on cooking loss. At each evaluation period interaction between marinade treatment and injection time showed different effect on free water content. Storage period and marinade application had significant effect on drip loss values. Drip loss in all samples increased during the storage. During all storage days, lowest CIE L* value was found in pre-rigor samples injected with sodium lactate. Lactic acid injection caused color fade in pre-rigor and post-rigor samples. Interaction between marinade treatment and storage period was found statistically significant (p<0.05). At day 0 and 3, the lowest CIE b* values obtained pre-rigor samples injected with sodium lactate and there were no differences were found in other samples. At day 6, no significant differences were found in CIE b* values of all samples. PMID:29805282
Fadıloğlu, Eylem Ezgi; Serdaroğlu, Meltem
2018-04-01
This study was conducted to evaluate the effects of pre and post-rigor marinade injections on some quality parameters of Longissimus dorsi (LD) muscles. Three marinade formulations were prepared with 2% NaCl, 2% NaCl+0.5 M lactic acid and 2% NaCl+0.5 M sodium lactate. In this study marinade uptake, pH, free water, cooking loss, drip loss and color properties were analyzed. Injection time had significant effect on marinade uptake levels of samples. Regardless of marinate formulation, marinade uptake of pre-rigor samples injected with marinade solutions were higher than post rigor samples. Injection of sodium lactate increased pH values of samples whereas lactic acid injection decreased pH. Marinade treatment and storage period had significant effect on cooking loss. At each evaluation period interaction between marinade treatment and injection time showed different effect on free water content. Storage period and marinade application had significant effect on drip loss values. Drip loss in all samples increased during the storage. During all storage days, lowest CIE L* value was found in pre-rigor samples injected with sodium lactate. Lactic acid injection caused color fade in pre-rigor and post-rigor samples. Interaction between marinade treatment and storage period was found statistically significant ( p <0.05). At day 0 and 3, the lowest CIE b* values obtained pre-rigor samples injected with sodium lactate and there were no differences were found in other samples. At day 6, no significant differences were found in CIE b* values of all samples.
Poša, Mihalj; Tepavčević, Vesna
2011-09-01
The formation of mixed micelles built of 7,12-dioxolithocholic and the following hydrophobic bile acids was examined by conductometric method: cholic (C), deoxycholic (D), chenodeoxycholic (CD), 12-oxolithocholic (12-oxoL), 7-oxolithocholic (7-oxoL), ursodeoxycholic (UD) and hiodeoxycholic (HD). Interaction parameter (β) in the studied binary mixed micelles had negative value, suggesting synergism between micelle building units. Based on β value, the hydrophobic bile acids formed two groups: group I (C, D and CD) and group II (12-oxoL, 7-oxoL, UD and HD). Bile acids from group II had more negative β values than bile acids from group I. Also, bile acids from group II formed intermolecular hydrogen bonds in aggregates with both smaller (2) and higher (4) aggregation numbers, according to the analysis of their stereochemical (conformational) structures and possible structures of mixed micelles built of these bile acids and 7,12-dioxolithocholic acid. Haemolytic potential and partition coefficient of nitrazepam were higher in mixed micelles built of the more hydrophobic bile acids (C, D, CD) and 7,12-dioxolithocholic acid than in micelles built only of 7,12-dioxolithocholic acid. On the other hand, these mixed micelles still had lower values of haemolytic potential than micelles built of C, D or CD. The mixed micelles that included bile acids: 12-oxoL, 7-oxoL, UD or HD did not significantly differ from the micelles of 7,12-dioxolithocholic acid, observing the values of their haemolytic potential. Copyright © 2011 Elsevier B.V. All rights reserved.
Decoherence Effect on Quantum Correlation and Entanglement in a Two-qubit Spin Chain
NASA Astrophysics Data System (ADS)
Pourkarimi, Mohammad Reza; Rahnama, Majid; Rooholamini, Hossein
2015-04-01
Assuming a two-qubit system in Werner state which evolves in Heisenberg XY model with Dzyaloshinskii-Moriya (DM) interaction under the effect of different environments. We evaluate and compare quantum entanglement, quantum and classical correlation measures. It is shown that in the absence of decoherence effects, there is a critical value of DM interaction for which entanglement may vanish while quantum and classical correlations do not. In the presence of environment the behavior of correlations depends on the kind of system-environment interaction. Correlations can be sustained by manipulating Hamiltonian anisotropic-parameter in a dissipative environment. Quantum and classical correlations are more stable than entanglement generally.
Thermodynamic perturbation theory for fused sphere hard chain fluids using nonadditive interactions
NASA Astrophysics Data System (ADS)
Abu-Sharkh, Basel F.; Sunaidi, Abdallah; Hamad, Esam Z.
2004-03-01
A model is developed for the equation of state of fused chains based on Wertheim thermodynamic perturbation theory and nonadditive size interactions. The model also assumes that the structure (represented by the radial distribution function) of the fused chain fluid is the same as that of the touching hard sphere chain fluid. The model is completely based on spherical additive and nonadditive size interactions. The model has the advantage of offering good agreement with simulation data while at the same time being independent of fitted parameters. The model is most accurate for short chains, small values of Δ (slightly fused spheres) and at intermediate (liquidlike) densities.
Nonlinear QED effects in X-ray emission of pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakeri, Soroush; Haghighat, Mansour; Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it
2017-10-01
In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarizationmore » characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.« less
A survey of the kinetic parameters of class C beta-lactamases. Penicillins.
Galleni, M; Frère, J M
1988-01-01
The interaction between six class C beta-lactamases and various penicillins has been studied. All the enzymes behaved in a very uniform manner. Benzylpenicillin exhibited relatively low kcat. values (14-75 s-1) but low values of Km resulted in high catalytic efficiencies [kcat./Km = 10 X 10(6)-75 X 10(6) M-1.s-1]. The kcat. values for ampicillin were 10-100-fold lower. Carbenicillin, oxacillin cloxacillin and methicillin were very poor substrates, exhibiting kcat. values between 1 x 10(-3) and 0.1 s-1. The Km values were correspondingly small. It could safely be hypothesized that, with all the tested substrates, deacylation was rate-limiting, resulting in acyl-enzyme accumulation. PMID:3264154
NASA Astrophysics Data System (ADS)
Nawa, Kenji; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Weinert, Michael
Effective on-site Coulomb interactions (Ueff) and electron configurations in the localized d and f orbitals of metal complexes in transition-metal oxides and organometallic molecules, play a key role in the first-principles search for the true ground-state. However, wide ranges of values in the Ueff parameter of a material, even in the same ionic state, are often reported. Here, we revisit this issue from constraint density functional theory (DFT) by using the full-potential linearized augmented plane wave method. The Ueff parameters for prototypical transition-metal oxides, TMO (TM =Mn, Fe, Co, Ni), were calculated by the second derivative of the total energy functional with respect to the d occupation numbers inside the muffin-tin (MT) spheres as a function of the sphere radius. We find that the calculated Ueff values depend significantly on the MT radius, with a variation of more than 3 eV when the MT radius changes from 2.0 to 2.7 a.u., but importantly an identical valence band structure can be produced in all the cases, with an approximate scaling of Ueff. This indicates that a simple transferability of the Ueff value among different calculation methods is not allowed. We further extend the constraint DFT to treat various electron configurations of the localized d-orbitals in organometallic molecules, TMCp2 (TM =Cr, Mn, Fe, Co, Ni), and find that the calculated Ueff values can reproduce the experimentally determined ground-state electron configurations.
Spectral behaviour of eosin Y in different solvents and aqueous surfactant media.
Chakraborty, Moumita; Panda, Amiya Kumar
2011-10-15
Photophysical behaviour of the anionic xanthene dye, eosin Y (EY) was investigated in solvents of different polarities as well as in the presence of aqueous cationic surfactants. From the correlation between E(T)(30) and Kosower Z values of EY in different solvents, subsequent parameters for EY were determined in the presence of surfactants. A red shift, both in the absorption and emission spectra of EY, was observed with decreasing solvent polarity. Dimerisation of EY was found to be dependent on solvent polarity. Cationic surfactants retarded the process of dimerisation, which were evident from the lower dimerisation constant (K(D)) values, compared to that of in pure water. Dye-surfactant interaction constants were determined at different temperatures (298-318 K) and subsequently the thermodynamic parameters, viz., ΔG°, ΔH° and ΔS° were evaluated using the interaction constant values. The fluorescence spectra of EY followed the same trend as in the absorption spectra, although with lesser extents. Stokes shifts were calculated and correlated with the polarity of the medium. Fluorescence of EY was initially quenched by the cationic surfactants in their pre-micellar region, which then followed a red shift with intensity enhancement. Fluorescence quenching was found to be of Stern-Volmer type where the excited state lifetime of EY remained unchanged in different surfactant media. However, the anisotropy value of EY was changed in the post micellar region of surfactants. Copyright © 2011 Elsevier B.V. All rights reserved.
NLC Luminosity as a Function of Beam Parameters
NASA Astrophysics Data System (ADS)
Nosochkov, Y.
2002-06-01
Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.
Modeling of Internet Influence on Group Emotion
NASA Astrophysics Data System (ADS)
Czaplicka, Agnieszka; Hołyst, Janusz A.
Long-range interactions are introduced to a two-dimensional model of agents with time-dependent internal variables ei = 0, ±1 corresponding to valencies of agent emotions. Effects of spontaneous emotion emergence and emotional relaxation processes are taken into account. The valence of agent i depends on valencies of its four nearest neighbors but it is also influenced by long-range interactions corresponding to social relations developed for example by Internet contacts to a randomly chosen community. Two types of such interactions are considered. In the first model the community emotional influence depends only on the sign of its temporary emotion. When the coupling parameter approaches a critical value a phase transition takes place and as result for larger coupling constants the mean group emotion of all agents is nonzero over long time periods. In the second model the community influence is proportional to magnitude of community average emotion. The ordered emotional phase was here observed for a narrow set of system parameters.
Inferring epidemiological parameters from phylogenetic information for the HIV-1 epidemic among MSM
NASA Astrophysics Data System (ADS)
Quax, Rick; van de Vijver, David A. M. C.; Frentz, Dineke; Sloot, Peter M. A.
2013-09-01
The HIV-1 epidemic in Europe is primarily sustained by a dynamic topology of sexual interactions among MSM who have individual immune systems and behavior. This epidemiological process shapes the phylogeny of the virus population. Both fields of epidemic modeling and phylogenetics have a long history, however it remains difficult to use phylogenetic data to infer epidemiological parameters such as the structure of the sexual network and the per-act infectiousness. This is because phylogenetic data is necessarily incomplete and ambiguous. Here we show that the cluster-size distribution indeed contains information about epidemiological parameters using detailed numberical experiments. We simulate the HIV epidemic among MSM many times using the Monte Carlo method with all parameter values and their ranges taken from literature. For each simulation and the corresponding set of parameter values we calculate the likelihood of reproducing an observed cluster-size distribution. The result is an estimated likelihood distribution of all parameters from the phylogenetic data, in particular the structure of the sexual network, the per-act infectiousness, and the risk behavior reduction upon diagnosis. These likelihood distributions encode the knowledge provided by the observed cluster-size distrbution, which we quantify using information theory. Our work suggests that the growing body of genetic data of patients can be exploited to understand the underlying epidemiological process.
NASA Astrophysics Data System (ADS)
Zhou, H.; Liu, W.; Ning, T.
2017-12-01
Land surface actual evapotranspiration plays a key role in the global water and energy cycles. Accurate estimation of evapotranspiration is crucial for understanding the interactions between the land surface and the atmosphere, as well as for managing water resources. The nonlinear advection-aridity approach was formulated by Brutsaert to estimate actual evapotranspiration in 2015. Subsequently, this approach has been verified, applied and developed by many scholars. The estimation, impact factors and correlation analysis of the parameter alpha (αe) of this approach has become important aspects of the research. According to the principle of this approach, the potential evapotranspiration (ETpo) (taking αe as 1) and the apparent potential evapotranspiration (ETpm) were calculated using the meteorological data of 123 sites of the Loess Plateau and its surrounding areas. Then the mean spatial values of precipitation (P), ETpm and ETpo for 13 catchments were obtained by a CoKriging interpolation algorithm. Based on the runoff data of the 13 catchments, actual evapotranspiration was calculated using the catchment water balance equation at the hydrological year scale (May to April of the following year) by ignoring the change of catchment water storage. Thus, the parameter was estimated, and its relationships with P, ETpm and aridity index (ETpm/P) were further analyzed. The results showed that the general range of annual parameter value was 0.385-1.085, with an average value of 0.751 and a standard deviation of 0.113. The mean annual parameter αe value showed different spatial characteristics, with lower values in northern and higher values in southern. The annual scale parameter linearly related with annual P (R2=0.89) and ETpm (R2=0.49), while it exhibited a power function relationship with the aridity index (R2=0.83). Considering the ETpm is a variable in the nonlinear advection-aridity approach in which its effect has been incorporated, the relationship of precipitation and parameter (αe=1.0×10-3*P+0.301) was developed. The value of αe in this study is lower than those in the published literature. The reason is unclear at this point and yet need further investigation. The preliminary application of the nonlinear advection-aridity approach in the Loess Plateau has shown promising results.
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2018-05-01
It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.
NASA Astrophysics Data System (ADS)
Yezli, M.; Bekhechi, S.; Hontinfinde, F.; EZ-Zahraouy, H.
2016-04-01
Two nonperturbative methods such as Monte-Carlo simulation (MC) and Transfer-Matrix Finite-Size-Scaling calculations (TMFSS) have been used to study the phase transition of the spin- 3 / 2 Blume-Emery-Griffiths model (BEG) with quadrupolar and antiferromagnetic next-nearest-neighbor exchange interactions. Ground state and finite temperature phase diagrams are obtained by means of these two methods. New degenerate phases are found and only second order phase transitions occur for all values of the parameter interactions. No sign of the intermediate phase is found from both methods. Critical exponents are also obtained from TMFSS calculations. Ising criticality and nonuniversal behaviors are observed depending on the strength of the second neighbor interaction.
Holland, J Nathaniel; DeAngelis, Donald L
2009-12-01
Interactions between two populations are often defined by their interaction outcomes; that is, the positive, neutral, or negative effects of species on one another. Yet, signs of outcomes are not absolute, but vary with the biotic and abiotic contexts of interactions. Here, we develop a general theory for transitions between outcomes based on consumer-resource (C-R) interactions in which one or both species exploit the other as a resource. Simple models of C-R interactions revealed multiple equilibria, including one for species coexistence and others for extinction of one or both species, indicating that species' densities alone could determine the fate of interactions. All possible outcomes [(+ +), (+ -), (--), (+ 0), (- 0), (0 0)] of species coexistence emerged merely through changes in parameter values of C-R interactions, indicating that variation in C-R interactions resulting from biotic and abiotic conditions could determine shifts in outcomes. These results suggest that C-R interactions can provide a broad mechanism for understanding context- and density-dependent transitions between interaction outcomes.
Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions
Holland, J. Nathaniel; DeAngelis, Donald L.
2009-01-01
Interactions between two populations are often defined by their interaction outcomes; that is, the positive, neutral, or negative effects of species on one another. Yet, signs of outcomes are not absolute, but vary with the biotic and abiotic contexts of interactions. Here, we develop a general theory for transitions between outcomes based on consumer-resource (C-R) interactions in which one or both species exploit the other as a resource. Simple models of C-R interactions revealed multiple equilibria, including one for species coexistence and others for extinction of one or both species, indicating that species densities alone could determine the fate of interactions. All possible outcomes (+ +), (+ -), (- -), (+ 0), (- 0), (0 0) of species coexistence emerged merely through changes in parameter values of C-R interactions, indicating that variation in C-R interactions resulting from biotic and abiotic conditions could determine shifts in outcomes. These results suggest that C-R interactions can provide a broad mechanism for understanding context- and density-dependent transitions between interaction outcomes.
Theoretical study of the hyperfine parameters of OH
NASA Technical Reports Server (NTRS)
Chong, Delano P.; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.
1991-01-01
In the present study of the hyperfine parameters of O-17H as a function of the one- and n-particle spaces, all of the parameters except oxygen's spin density, b sub F(O), are sufficiently easily tractable to allow concentration on the computational requirements for accurate determination of b sub F(O). Full configuration-interaction (FCI) calculations in six Gaussian basis sets yield unambiguous results for (1) the effect of uncontracting the O s and p basis sets; (2) that of adding diffuse s and p functions; and (3) that of adding polarization functions to O. The size-extensive modified coupled-pair functional method yields b sub F values which are in fair agreement with FCI results.
Interaction of pulsating and spinning waves in condensed phase combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booty, M.R.; Margolis, S.B.; Matkowsky, B.J.
1986-10-01
The authors employ a nonlinear stability analysis in the neighborhood of a multiple bifurcation point to describe the interaction of pulsating and spinning modes of condensed phase combustion. Such phenomena occur in the synthesis of refractory materials. In particular, they consider the propagation of combustion waves in a long thermally insulated cylindrical sample and show that steady, planar combustion is stable for a modified activation energy/melting parameter less than a critical value. Above this critical value primary bifurcation states, corresponding to time-periodic pulsating and spinning modes of combustion, emanate from the steadily propagating solution. By varying the sample radius, themore » authors split a multiple bifurcation point to obtain bifurcation diagrams which exhibit secondary, tertiary, and quarternary branching to various types of quasi-periodic combustion waves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosking, Jonathan R. M.; Natarajan, Ramesh
The computer creates a utility demand forecast model for weather parameters by receiving a plurality of utility parameter values, wherein each received utility parameter value corresponds to a weather parameter value. Determining that a range of weather parameter values lacks a sufficient amount of corresponding received utility parameter values. Determining one or more utility parameter values that corresponds to the range of weather parameter values. Creating a model which correlates the received and the determined utility parameter values with the corresponding weather parameters values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi
2014-12-15
Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed betweenmore » Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity increases monotonously with increasing WO{sub 3} content. • Interaction parameter decreases monotonously with increasing WO{sub 3} content. • Glasses with high WO{sub 3}contents is regarded as a floppy network system.« less
Post-Planck constraints on interacting vacuum energy
NASA Astrophysics Data System (ADS)
Wang, Yuting; Wands, David; Zhao, Gong-Bo; Xu, Lixin
2014-07-01
We present improved constraints on an interacting vacuum model using updated astronomical observations including the first data release from Planck. We consider a model with one dimensionless parameter, α, describing the interaction between dark matter and vacuum energy (with fixed equation of state w=-1). The background dynamics correspond to a generalized Chaplygin gas cosmology, but the perturbations have a zero sound speed. The tension between the value of the Hubble constant, H0, determined by Planck data plus WMAP polarization (Planck +WP) and that determined by the Hubble Space Telescope (HST) can be alleviated by energy transfer from dark matter to vacuum (α>0). A positive α increases the allowed values of H0 due to parameter degeneracy within the model using only cosmic microwave background data. Combining with additional data sets of including supernova type Ia (SN Ia) and baryon acoustic oscillation (BAO), we can significantly tighten the bounds on α. Redshift-space distortions (RSD), which constrain the linear growth of structure, provide the tightest constraints on vacuum interaction when combined with Planck+WP, and prefer energy transfer from vacuum to dark matter (α<0) which suppresses the growth of structure. Using the combined data sets of Planck +WP+Union2.1+BAO+RSD, we obtain the constraint on α to be -0.083<α<-0.006 (95% C.L.), allowing low H0 consistent with the measurement from 6dF Galaxy survey. This interacting vacuum model can alleviate the tension between RSD and Planck +WP in the ΛCDM model for α <0, or between HST measurements of H0 and Planck+WP for α>0, but not both at the same time.
Non-standard interactions and neutrinos from dark matter annihilation in the Sun
NASA Astrophysics Data System (ADS)
Demidov, S. V.
2018-02-01
We perform an analysis of the influence of non-standard neutrino interactions (NSI) on neutrino signal from dark matter annihilations in the Sun. Taking experimentally allowed benchmark values for the matter NSI parameters we show that the evolution of such neutrinos with energies at GeV scale can be considerably modified. We simulate propagation of neutrinos from the Sun to the Earth for realistic dark matter annihilation channels and find that the matter NSI can result in at most 30% correction to the signal rate of muon track events at neutrino telescopes. Still present experimental bounds on dark matter from these searches are robust in the presence of NSI within considerable part of their allowed parameter space. At the same time electron neutrino flux from dark matter annihilation in the Sun can be changed by a factor of few.
NASA Astrophysics Data System (ADS)
Zaim, N.; Zaim, A.; Kerouad, M.
2017-02-01
In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.
Richards-like two species population dynamics model.
Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto
2014-12-01
The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished.
Parity-violating electric-dipole transitions in helium
NASA Technical Reports Server (NTRS)
Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.
1980-01-01
The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question
Perceiving while producing: Modeling the dynamics of phonological planning
Roon, Kevin D.; Gafos, Adamantios I.
2016-01-01
We offer a dynamical model of phonological planning that provides a formal instantiation of how the speech production and perception systems interact during online processing. The model is developed on the basis of evidence from an experimental task that requires concurrent use of both systems, the so-called response-distractor task in which speakers hear distractor syllables while they are preparing to produce required responses. The model formalizes how ongoing response planning is affected by perception and accounts for a range of results reported across previous studies. It does so by explicitly addressing the setting of parameter values in representations. The key unit of the model is that of the dynamic field, a distribution of activation over the range of values associated with each representational parameter. The setting of parameter values takes place by the attainment of a stable distribution of activation over the entire field, stable in the sense that it persists even after the response cue in the above experiments has been removed. This and other properties of representations that have been taken as axiomatic in previous work are derived by the dynamics of the proposed model. PMID:27440947
Incorporating time-delays in S-System model for reverse engineering genetic networks.
Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan
2013-06-18
In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in Escherichia coli show a significant improvement compared with other state-of-the-art approaches for GRN modeling.
Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing.
Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu
2014-05-21
We show by using molecular dynamics simulations that a water overlayer on charged graphene experiences first-order ice-to-liquid (electromelting), and then liquid-to-ice (electrofreezing) phase transitions with the increase of the charge value. Corresponding to the ice-liquid-ice transition, the variations of the order parameters indicate an order-disorder-order transition. The key to this novel phenomenon is the surface charge induced change of the orientations of water dipoles, which leads to the change of the water-water interactions from being attractive to repulsive at a critical charge value qc. To further uncover how the orientations of water dipoles influence the interaction strength between water molecules, a theoretical model considering both the Coulomb and van der Waals interactions is established. The results show that with the increase of the charge value, the interaction strength between water molecules decreases below qc, then increases above qc. These two inverse processes lead to electromelting and electrofreezing, respectively. Combining this model with the Eyring equation, the diffusion coefficient is obtained, the variation of which is in qualitative agreement with the simulation results. Our findings not only expand our knowledge of the graphene-water interface, but related analyses could also help recognize the controversial role of the surface charge or electric field in promoting phase transitions of water.
Evaluating effective pair and multisite interactions for Ni-Mo system
NASA Astrophysics Data System (ADS)
Banerjee, Rumu H.; Arya, A.; Banerjee, S.
2018-04-01
Cluster expansion (CE) method was used to calculate the energies of various Ni-Mo phases. The clusters comprising of few nearest neighbours can describe any phase of Ni-Mo system by suitable choice of effective pair and multisite interaction parameters (ECI). The ECIs were evaluated in present study by fitting the ground state energies obtained by first principle calculations. The ECIs evaluated for Ni-Mo system were mostly pair clusters followed by triplets and quadruplet clusters with cluster diameters in the range 2.54 - 10.20 Å. The ECI values diminished for multi-body (triplets and quadruplets) clusters as compared to 2-point or pair clusters indicating a good convergence of CE model. With these ECIs the predicted energies of all the Ni-Mo structures across the Mo concentration range 0-100 at% were obtained. The quantitative error in the energies calculated by CE approach and first principle is very small (< 0.026 meV/atom). The appreciable values of 2-point ECIs upto 4th nearest neighbour reveal that two body interactions are dominant in the case of Ni-Mo system. These ECIs are compared with the reported values of compositional dependent effective pair interactions evaluated by first principle as well as by Monte Carlo method.
Attempt to model laboratory-scale diffusion and retardation data.
Hölttä, P; Siitari-Kauppi, M; Hakanen, M; Tukiainen, V
2001-02-01
Different approaches for measuring the interaction between radionuclides and rock matrix are needed to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of the underground repositories for the spent nuclear fuel. In this work, the retardation of sodium, calcium and strontium was studied on mica gneiss, unaltered, moderately altered and strongly altered tonalite using dynamic fracture column method. In-diffusion of calcium into rock cubes was determined to predict retardation in columns. In-diffusion of calcium into moderately and strongly altered tonalite was interpreted using a numerical code FTRANS. The code was able to interprete in-diffusion of weakly sorbing calcium into the saturated porous matrix. Elution curves of calcium for the moderately and strongly altered tonalite fracture columns were explained adequately using FTRANS code and parameters obtained from in-diffusion calculations. In this paper, mass distribution ratio values of sodium, calcium and strontium for intact rock are compared to values, previously obtained for crushed rock from batch and crushed rock column experiments. Kd values obtained from fracture column experiments were one order of magnitude lower than Kd values from batch experiments.
Covey, Curt; Lucas, Donald D.; Tannahill, John; ...
2013-07-01
Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2-3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination.This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling,more » the Morris one-at-a-time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N-dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one-at-a-time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM’s behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT’s ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience. Supporting information is also provided at the end of the full text of the article.« less
Distribution-centric 3-parameter thermodynamic models of partition gas chromatography.
Blumberg, Leonid M
2017-03-31
If both parameters (the entropy, ΔS, and the enthalpy, ΔH) of the classic van't Hoff model of dependence of distribution coefficients (K) of analytes on temperature (T) are treated as the temperature-independent constants then the accuracy of the model is known to be insufficient for the needed accuracy of retention time prediction. A more accurate 3-parameter Clarke-Glew model offers a way to treat ΔS and ΔH as functions, ΔS(T) and ΔH(T), of T. A known T-centric construction of these functions is based on relating them to the reference values (ΔS ref and ΔH ref ) corresponding to a predetermined reference temperature (T ref ). Choosing a single T ref for all analytes in a complex sample or in a large database might lead to practically irrelevant values of ΔS ref and ΔH ref for those analytes that have too small or too large retention factors at T ref . Breaking all analytes in several subsets each with its own T ref leads to discontinuities in the analyte parameters. These problems are avoided in the K-centric modeling where ΔS(T) and ΔS(T) and other analyte parameters are described in relation to their values corresponding to a predetermined reference distribution coefficient (K Ref ) - the same for all analytes. In this report, the mathematics of the K-centric modeling are described and the properties of several types of K-centric parameters are discussed. It has been shown that the earlier introduced characteristic parameters of the analyte-column interaction (the characteristic temperature, T char , and the characteristic thermal constant, θ char ) are a special chromatographically convenient case of the K-centric parameters. Transformations of T-centric parameters into K-centric ones and vice-versa as well as the transformations of one set of K-centric parameters into another set and vice-versa are described. Copyright © 2017 Elsevier B.V. All rights reserved.
Axelrod Model of Social Influence with Cultural Hybridization
NASA Astrophysics Data System (ADS)
Radillo-Díaz, Alejandro; Pérez, Luis A.; Del Castillo-Mussot, Marcelo
2012-10-01
Since cultural interactions between a pair of social agents involve changes in both individuals, we present simulations of a new model based on Axelrod's homogenization mechanism that includes hybridization or mixture of the agents' features. In this new hybridization model, once a cultural feature of a pair of agents has been chosen for the interaction, the average of the values for this feature is reassigned as the new value for both agents after interaction. Moreover, a parameter representing social tolerance is implemented in order to quantify whether agents are similar enough to engage in interaction, as well as to determine whether they belong to the same cluster of similar agents after the system has reached the frozen state. The transitions from a homogeneous state to a fragmented one decrease in abruptness as tolerance is increased. Additionally, the entropy associated to the system presents a maximum within the transition, the width of which increases as tolerance does. Moreover, a plateau was found inside the transition for a low-tolerance system of agents with only two cultural features.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália
2018-05-01
An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
2000-01-01
An uncoupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC) technique is developed and applied to provide solutions for continuum jets interacting with rarefied external flows. The technique is based on a correlation of the appropriate Bird breakdown parameter for a transitional-rarefied condition that defines a surface within which the continuum solution is unaffected by the external flow-jet interaction. The method is applied to two problems to assess and demonstrate its validity; one of a jet interaction in the transitional-rarefied flow regime and the other in the moderately rarefied regime. Results show that the appropriate Bird breakdown surface for uncoupling the continuum and non-continuum solutions is a function of a non-dimensional parameter relating the momentum flux and collisionality between the two interacting flows. The correlation is exploited for the simulation of a jet interaction modeled for an experimental condition in the transitional-rarefied flow regime and the validity of the correlation is demonstrated. The uncoupled technique is also applied to an aerobraking flight condition for the Mars Global Surveyor spacecraft with attitude control system jet interaction. Aerodynamic yawing moment coefficients for cases without and with jet interaction at various angles-of-attack were predicted, and results from the present method compare well with values published previously. The flow field and surface properties are analyzed in some detail to describe the mechanism by which the jet interaction affects the aerodynamics.
Lomnitz, Jason G.; Savageau, Michael A.
2016-01-01
Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment, and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1) enumeration of the repertoire of model phenotypes, (2) prediction of values for the parameters for any model phenotype, and (3) analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between three stable states by transient stimulation through one of two input channels: a positive channel that increases the count, and a negative channel that decreases the count. This example shows the power of these new automated methods to rapidly identify behaviors of interest and efficiently predict parameter values for their realization. These tools may be applied to understand complex natural circuitry and to aid in the rational design of synthetic circuits. PMID:27462346
Wang, Shu; Robertson, Megan L
2015-06-10
Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between polystyrene and short-chain polyacrylates (n ≤ 10). To our knowledge, this is the first study to explore the thermodynamic interactions between polystyrene and long-chain poly(n-alkyl acrylates) with n > 10. This work lays the groundwork for the development of multicomponent structured systems (i.e., blends and copolymers) in this class of sustainable materials.
NASA Technical Reports Server (NTRS)
Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey
2015-01-01
Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.
MUTUAL DIFFUSION OF PAIRS OF RARE GASES AT DIFFERENT TEMPERATURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, B.N.; Srivastava, K.P.
1959-04-01
The eoefficient of mutual diffusion of the binary gas mixtures Ne--Ar, Ar--Krs and Ne--Kr has been determined at 0, 15, 30s and 45 C. Diffusion is allowed to take place between two diffusion bulbs through a precision capillary tube and samples of gas are withdrawn from one bulb at different times and analyzed by a differential conductivity analyzer. From the experimentally determined values of the diffusion coefficient at different temperatures the unlike interaction parameters for the above gas pairs have been calculated by two different methods on the Lennard-Jones I2:6 model. These values of the force parameters are found tomore » be in good agreement with those obtained from the usual combination rules and also from the thermal diffusion data following the method of Srivastava and Madan. These values are found to reproduce the experimental data on mutual diffusion quite satisfactorily. With Kelvin's method, these data have also been utilized to calculate the self-diffusion coefficient of neon, argons and krypton. (auth)« less
Thermalization threshold in models of 1D fermions
NASA Astrophysics Data System (ADS)
Mukerjee, Subroto; Modak, Ranjan; Ramswamy, Sriram
2013-03-01
The question of how isolated quantum systems thermalize is an interesting and open one. In this study we equate thermalization with non-integrability to try to answer this question. In particular, we study the effect of system size on the integrability of 1D systems of interacting fermions on a lattice. We find that for a finite-sized system, a non-zero value of an integrability breaking parameter is required to make an integrable system appear non-integrable. Using exact diagonalization and diagnostics such as energy level statistics and the Drude weight, we find that the threshold value of the integrability breaking parameter scales to zero as a power law with system size. We find the exponent to be the same for different models with its value depending on the random matrix ensemble describing the non-integrable system. We also study a simple analytical model of a non-integrable system with an integrable limit to better understand how a power law emerges.
Renormalization group approach to symmetry protected topological phases
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert P. L.; Schnyder, Andreas P.; Chen, Wei
2018-04-01
A defining feature of a symmetry protected topological phase (SPT) in one dimension is the degeneracy of the Schmidt values for any given bipartition. For the system to go through a topological phase transition separating two SPTs, the Schmidt values must either split or cross at the critical point in order to change their degeneracies. A renormalization group (RG) approach based on this splitting or crossing is proposed, through which we obtain an RG flow that identifies the topological phase transitions in the parameter space. Our approach can be implemented numerically in an efficient manner, for example, using the matrix product state formalism, since only the largest first few Schmidt values need to be calculated with sufficient accuracy. Using several concrete models, we demonstrate that the critical points and fixed points of the RG flow coincide with the maxima and minima of the entanglement entropy, respectively, and the method can serve as a numerically efficient tool to analyze interacting SPTs in the parameter space.
Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad
2017-10-25
Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.
Renormalization of effective interactions in a negative charge transfer insulator
NASA Astrophysics Data System (ADS)
Seth, Priyanka; Peil, Oleg E.; Pourovskii, Leonid; Betzinger, Markus; Friedrich, Christoph; Parcollet, Olivier; Biermann, Silke; Aryasetiawan, Ferdi; Georges, Antoine
2017-11-01
We compute from first principles the effective interaction parameters appropriate for a low-energy description of the rare-earth nickelate LuNiO3 involving the partially occupied eg states only. The calculation uses the constrained random-phase approximation and reveals that the effective on-site Coulomb repulsion is strongly reduced by screening effects involving the oxygen-p and nickel-t2 g states. The long-range component of the effective low-energy interaction is also found to be sizable. As a result, the effective on-site interaction between parallel-spin electrons is reduced down to a small negative value. This validates effective low-energy theories of these materials that were proposed earlier. Electronic structure methods combined with dynamical mean-field theory are used to construct and solve an appropriate low-energy model and explore its phase diagram as a function of the on-site repulsion and Hund's coupling. For the calculated values of these effective interactions, we find that in agreement with experiments, LuNiO3 is a metal without disproportionation of the eg occupancy when considered in its orthorhombic structure, while the monoclinic phase is a disproportionated insulator.
Fluorescence spectroscopic study on the interaction of resveratrol with lipoxygenase
NASA Astrophysics Data System (ADS)
Pinto, María del Carmen; Duque, Antonio Luis; Macías, Pedro
2010-09-01
The interaction of lipoxygenase with (E)-resveratrol was investigated by fluorescence spectroscopy. The data obtained revealed that the quenching of intrinsic fluorescence of lipoxygenase is produced by the formation of a complex lipoxygenase-(E)-resveratrol. From the value obtained for the binding constant, according to the Stern-Volmer modified equation, was deduced the existence of static quenching mechanism and, as consequence, the existence of a strong interaction between (E)-resveratrol and lipoxygenase. The values obtained for the thermodynamic parameter Δ H (-3.58 kJ mol -1) and Δ S (87.97 J mol -1K -1) suggested the participation of hydrophobic interactions and hydrogen bonds in the stabilization of the complex ligand-protein. From the static quenching we determined that only exist one independent binding site. Based on the Förster energy transfer theory, the distance between the acceptor ((E)-resveratrol) and the donor (Trp residues of lipoxygenase) was calculated to be 3.42 nm. Finally, based on the information obtained from the evaluation of synchronous and three-dimensional fluorescence spectroscopy, we deduced that the interaction of (E)-resveratrol with lipoxygenase produces micro-environmental and conformational alterations of protein in the binding region.
Thermal emf generated by laser emission along thin metal films
NASA Astrophysics Data System (ADS)
Konov, V. I.; Nikitin, P. I.; Satiukov, D. G.; Uglov, S. A.
1991-07-01
Substantial pulse thermal emf values (about 1.5 V) have been detected along the substrate during the interaction of laser emission with thin metal films (Ni, Ti, and Bi) sprayed on corrugated substrates. Relationships are established between the irradiation conditions and parameters of the generated electrical signals. Possible mechanisms of thermal emf generation and promising applications are discussed.
Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivas, G., E-mail: srinu123g@gmail.com; Ramesh, B.; Shareefuddin, Md.
2016-05-06
The mixed alkali and alkaline earth oxide borate glass with the composition xK{sub 2}O - (25-x) Li{sub 2}O-12.5BaO-12.5MgO-50B{sub 2}O{sub 3} (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α{sub 0}2-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α{sub 0}2-), and (Λ) increases with increasing of K{sub 2}O content and electronicmore » polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K{sub 2}O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).« less
Asymptotic Normalization Coefficients in a Potential Model Involving Forbidden States
NASA Astrophysics Data System (ADS)
Blokhintsev, L. D.; Savin, D. A.
2018-03-01
It is shown that values obtained for asymptotic normalization coefficients by means of a potential fitted to experimental data on elastic scattering depend substantially on the presence and the number n of possible forbidden states in the fitted potential. The present analysis was performed within exactly solvable potential models for various nuclear systems and various potentials without and with allowance for Coulomb interaction. Various methods for changing the number n that are based on the use of various versions of the change in the parameters of the potential model were studied. A compact analytic expression for the asymptotic normalization coefficients was derived for the case of the Hulthén potential. Specifically, the d + α and α + 12C systems, which are of importance for astrophysics, were examined. It was concluded that an incorrect choice of n could lead to a substantial errors in determining the asymptotic normalization coefficients. From the results of our calculations, it also follows that, for systems with a low binding energy and, as a consequence, with a large value of the Coulomb parameter, the inclusion of the Coulomb interaction may radically change the asymptotic normalization coefficients, increasing them sharply.
A componential model of human interaction with graphs: 1. Linear regression modeling
NASA Technical Reports Server (NTRS)
Gillan, Douglas J.; Lewis, Robert
1994-01-01
Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.
Interactions of Fluorescein Dye with Spherical and Star Shaped Gold Nanoparticles.
Pal, Gopa Dutta; Paul, Somnath; Bardhan, Munmun; Ganguly, Tapan
2018-04-01
UV-vis absorption, FT-IR, steady state fluorescence and fluorescence lifetime measurements were made on Fluorescein dye (Fl dye) molecules in presence of gold nanoparticles of different morphologies: spherical gold nanoparticles (GNP) and star shaped gold nanoparticles (GNS). The experimental observations demonstrate that Fl dye molecules form dimers when adsorbed on nanosurface of spherical gold particles. On the other hand possibly due to lack of adsorption on the surface of GNS the dye molecules were unable to form dimers. The projected tips on the surface of GNS may possibly hinder the dyes to adsorb on the surface of this nanoparticle. From the spectral analysis and measurements of thermodynamic parameters it is inferred that two different types of ground state interactions occur between Fl-dye-GNP and Fl dye-GNS systems. Both the observed negative values of the thermodynamic parameters ΔH and ΔS in the case of the former system predict the possibility of occurrences of hydrogen bonding interactions between two neighboring Fl dye molecules when adsorbed on the nanosurface of GNP. On the other hand in Fl dye-GNS system electrostatic interactions appear to occur, as evidenced from negative ΔH and positive value of ΔS, between the positive charges residing on the tips of the nanoparticles and anionic form of Fl dye. It has been concluded that as the adsorption of organic dyes on solid surfaces is prerequisite for the degradation of dye pollutants, the present experimental observations demonstrate that GNP could be used as a better candidate than GNS in degradation mechanism of the xanthenes dyes.
Interactive vs. Non-Interactive Ensembles for Weather Prediction and Climate Projection
NASA Astrophysics Data System (ADS)
Duane, Gregory
2013-04-01
If the members of an ensemble of different models are allowed to interact with one another in run time, predictive skill can be improved as compared to that of any individual model or any average of indvidual model outputs. Inter-model connections in such an interactive ensemble can be trained, using historical data, so that the resulting ``supermodel" synchronizes with reality when used in weather-prediction mode, where the individual models perform data assimilation from each other (with trainable inter-model "observation error") as well as from real observations. In climate-projection mode, parameters of the individual models are changed, as might occur from an increase in GHG levels, and one obtains relevant statistical properties of the new supermodel attractor. In simple cases, it has been shown that training of the inter-model connections with the old parameter values gives a supermodel that is still predictive when the parameter values are changed. Here we inquire as to the circumstances under which supermodel performance can be expected to exceed that of the customary weighted average of model outputs. We consider a supermodel formed from quasigeostrophic channel models with different forcing coefficients, and introduce an effective training scheme for the inter-model connections. We show that the blocked-zonal index cycle is reproduced better by the supermodel than by any non-interactive ensemble in the extreme case where the forcing coefficients of the different models are very large or very small. With realistic differences in forcing coefficients, as would be representative of actual differences among IPCC-class models, the usual linearity assumption is justified and a weighted average of model outputs is adequate. It is therefore hypothesized that supermodeling is likely to be useful in situations where there are qualitative model differences, as arising from sub-gridscale parameterizations, that affect overall model behavior. Otherwise the usual ex post facto averaging will probably suffice. Previous results from an ENSO-prediction supermodel [Kirtman et al.] are re-examined in light of the hypothesis about the importance of qualitative inter-model differences.
Pradhan, Sudeep; Song, Byungjeong; Lee, Jaeyeon; Chae, Jung-Woo; Kim, Kyung Im; Back, Hyun-Moon; Han, Nayoung; Kwon, Kwang-Il; Yun, Hwi-Yeol
2017-12-01
Exploratory preclinical, as well as clinical trials, may involve a small number of patients, making it difficult to calculate and analyze the pharmacokinetic (PK) parameters, especially if the PK parameters show very high inter-individual variability (IIV). In this study, the performance of a classical first-order conditional estimation with interaction (FOCE-I) and expectation maximization (EM)-based Markov chain Monte Carlo Bayesian (BAYES) estimation methods were compared for estimating the population parameters and its distribution from data sets having a low number of subjects. In this study, 100 data sets were simulated with eight sampling points for each subject and with six different levels of IIV (5%, 10%, 20%, 30%, 50%, and 80%) in their PK parameter distribution. A stochastic simulation and estimation (SSE) study was performed to simultaneously simulate data sets and estimate the parameters using four different methods: FOCE-I only, BAYES(C) (FOCE-I and BAYES composite method), BAYES(F) (BAYES with all true initial parameters and fixed ω 2 ), and BAYES only. Relative root mean squared error (rRMSE) and relative estimation error (REE) were used to analyze the differences between true and estimated values. A case study was performed with a clinical data of theophylline available in NONMEM distribution media. NONMEM software assisted by Pirana, PsN, and Xpose was used to estimate population PK parameters, and R program was used to analyze and plot the results. The rRMSE and REE values of all parameter (fixed effect and random effect) estimates showed that all four methods performed equally at the lower IIV levels, while the FOCE-I method performed better than other EM-based methods at higher IIV levels (greater than 30%). In general, estimates of random-effect parameters showed significant bias and imprecision, irrespective of the estimation method used and the level of IIV. Similar performance of the estimation methods was observed with theophylline dataset. The classical FOCE-I method appeared to estimate the PK parameters more reliably than the BAYES method when using a simple model and data containing only a few subjects. EM-based estimation methods can be considered for adapting to the specific needs of a modeling project at later steps of modeling.
An interactive Bayesian geostatistical inverse protocol for hydraulic tomography
Fienen, Michael N.; Clemo, Tom; Kitanidis, Peter K.
2008-01-01
Hydraulic tomography is a powerful technique for characterizing heterogeneous hydrogeologic parameters. An explicit trade-off between characterization based on measurement misfit and subjective characterization using prior information is presented. We apply a Bayesian geostatistical inverse approach that is well suited to accommodate a flexible model with the level of complexity driven by the data and explicitly considering uncertainty. Prior information is incorporated through the selection of a parameter covariance model characterizing continuity and providing stability. Often, discontinuities in the parameter field, typically caused by geologic contacts between contrasting lithologic units, necessitate subdivision into zones across which there is no correlation among hydraulic parameters. We propose an interactive protocol in which zonation candidates are implied from the data and are evaluated using cross validation and expert knowledge. Uncertainty introduced by limited knowledge of dynamic regional conditions is mitigated by using drawdown rather than native head values. An adjoint state formulation of MODFLOW-2000 is used to calculate sensitivities which are used both for the solution to the inverse problem and to guide protocol decisions. The protocol is tested using synthetic two-dimensional steady state examples in which the wells are located at the edge of the region of interest.
A Pipeline for Constructing a Catalog of Multi-method Models of Interacting Galaxies
NASA Astrophysics Data System (ADS)
Holincheck, Anthony
Galaxies represent a fundamental unit of matter for describing the large-scale structure of the universe. One of the major processes affecting the formation and evolution of galaxies are mutual interactions. These interactions can including gravitational tidal distortion, mass transfer, and even mergers. In any hierarchical model, mergers are the key mechanism in galaxy formation and evolution. Computer simulations of interacting galaxies have evolved in the last four decades from simple restricted three-body algorithms to full n-body gravity models. These codes often included sophisticated physical mechanisms such as gas dynamics, supernova feedback, and central blackholes. As the level of complexity, and perhaps realism, increases so does the amount of computational resources needed. These advanced simulations are often used in parameter studies of interactions. They are usually only employed in an ad hoc fashion to recreate the dynamical history of specific sets of interacting galaxies. These specific models are often created with only a few dozen or at most few hundred sets of simulation parameters being attempted. This dissertation presents a prototype pipeline for modeling specific pairs of interacting galaxies in bulk. The process begins with a simple image of the current disturbed morphology and an estimate of distance to the system and mass of the galaxies. With the use of an updated restricted three-body simulation code and the help of Citizen Scientists, the pipeline is able to sample hundreds of thousands of points in parameter space for each system. Through the use of a convenient interface and innovative scoring algorithm, the pipeline aids researchers in identifying the best set of simulation parameters. This dissertation demonstrates a successful recreation of the disturbed morphologies of 62 pairs of interacting galaxies. The pipeline also provides for examining the level of convergence and uniqueness of the dynamical properties of each system. By creating a population of models for actual systems, the current research is able to compare simulation-based and observational values on a larger scale than previous efforts. Several potential relationships between star formation rate and dynamical time since closest approach are presented.
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine
2016-01-01
A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine
2016-01-01
A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.
Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.
Khamassi, Mehdi; Enel, Pierre; Dominey, Peter Ford; Procyk, Emmanuel
2013-01-01
Converging evidence suggest that the medial prefrontal cortex (MPFC) is involved in feedback categorization, performance monitoring, and task monitoring, and may contribute to the online regulation of reinforcement learning (RL) parameters that would affect decision-making processes in the lateral prefrontal cortex (LPFC). Previous neurophysiological experiments have shown MPFC activities encoding error likelihood, uncertainty, reward volatility, as well as neural responses categorizing different types of feedback, for instance, distinguishing between choice errors and execution errors. Rushworth and colleagues have proposed that the involvement of MPFC in tracking the volatility of the task could contribute to the regulation of one of RL parameters called the learning rate. We extend this hypothesis by proposing that MPFC could contribute to the regulation of other RL parameters such as the exploration rate and default action values in case of task shifts. Here, we analyze the sensitivity to RL parameters of behavioral performance in two monkey decision-making tasks, one with a deterministic reward schedule and the other with a stochastic one. We show that there exist optimal parameter values specific to each of these tasks, that need to be found for optimal performance and that are usually hand-tuned in computational models. In contrast, automatic online regulation of these parameters using some heuristics can help producing a good, although non-optimal, behavioral performance in each task. We finally describe our computational model of MPFC-LPFC interaction used for online regulation of the exploration rate and its application to a human-robot interaction scenario. There, unexpected uncertainties are produced by the human introducing cued task changes or by cheating. The model enables the robot to autonomously learn to reset exploration in response to such uncertain cues and events. The combined results provide concrete evidence specifying how prefrontal cortical subregions may cooperate to regulate RL parameters. It also shows how such neurophysiologically inspired mechanisms can control advanced robots in the real world. Finally, the model's learning mechanisms that were challenged in the last robotic scenario provide testable predictions on the way monkeys may learn the structure of the task during the pretraining phase of the previous laboratory experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Study on the interaction mechanism between aromatic amino acids and quercetin
NASA Astrophysics Data System (ADS)
Gou, Xingxing; Pu, Xiaohua; Li, Zongxiao
2017-11-01
In this paper, we selected quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) as the research objects to investigate the change rules in the reaction process. The thermodynamic functions (Ka, Δ G, and Δ S) of the interactions between quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) were measured by isothermal titration calorimetry. The values of binding constant (Ka) reached maximum at 25°C; the entropies and Gibbs free energies were both negative at different temperatures. The kinetic parameters of quercetin and amino acids in the interaction process was determined by microcalorimetry. The results inferred that the driving force of the reaction was hydrogen bond or van der Waals force.
Complex behavior in chains of nonlinear oscillators.
Alonso, Leandro M
2017-06-01
This article outlines sufficient conditions under which a one-dimensional chain of identical nonlinear oscillators can display complex spatio-temporal behavior. The units are described by phase equations and consist of excitable oscillators. The interactions are local and the network is poised to a critical state by balancing excitation and inhibition locally. The results presented here suggest that in networks composed of many oscillatory units with local interactions, excitability together with balanced interactions is sufficient to give rise to complex emergent features. For values of the parameters where complex behavior occurs, the system also displays a high-dimensional bifurcation where an exponentially large number of equilibria are borne in pairs out of multiple saddle-node bifurcations.
NASA Astrophysics Data System (ADS)
Sharma, Samriti; Sandarve, Sharma, Amit K.; Sharma, Meena
2018-05-01
For the investigation of interactions of L-leucine in aqueous solutions of an ionic liquid (1-butyl-3-methylimidazolium tetra fluoroborate [Bmim][BF4]) at atmospheric pressure over a temperature range of (293.15K to 313.16K), we use the volumetric approach. By using the density data we have calculated the apparent molar volume, VΦ, limiting apparent molar volume, V0Φ, the slope, Sv, partial molar volume of transfer, V0Φ,tr. The values of these acoustical parameters have been used for the interpretation of different interactions like hydrophilic-hydrophilic, hydrophilic-hydrophobic, ion hydrophilic, solute-solvent and solute-solute interactions in the amino acid and ionic liquid solutions.
Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling
NASA Astrophysics Data System (ADS)
Li, Zhidan; Han, Qiang
2018-04-01
The one dimension interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations and various physical quantities as functions of the fermion-fermion interaction $U$ are calculated systematically using the density matrix renormalization group method. A special value of interaction $U_p$ is revealed in the topological region of the phase diagram. We show that at $U_p$ the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. $U_p$ may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.
User's Manual for Aerofcn: a FORTRAN Program to Compute Aerodynamic Parameters
NASA Technical Reports Server (NTRS)
Conley, Joseph L.
1992-01-01
The computer program AeroFcn is discussed. AeroFcn is a utility program that computes the following aerodynamic parameters: geopotential altitude, Mach number, true velocity, dynamic pressure, calibrated airspeed, equivalent airspeed, impact pressure, total pressure, total temperature, Reynolds number, speed of sound, static density, static pressure, static temperature, coefficient of dynamic viscosity, kinematic viscosity, geometric altitude, and specific energy for a standard- or a modified standard-day atmosphere using compressible flow and normal shock relations. Any two parameters that define a unique flight condition are selected, and their values are entered interactively. The remaining parameters are computed, and the solutions are stored in an output file. Multiple cases can be run, and the multiple case solutions can be stored in another output file for plotting. Parameter units, the output format, and primary constants in the atmospheric and aerodynamic equations can also be changed.
Inverse sequential procedures for the monitoring of time series
NASA Technical Reports Server (NTRS)
Radok, Uwe; Brown, Timothy
1993-01-01
Climate changes traditionally have been detected from long series of observations and long after they happened. The 'inverse sequential' monitoring procedure is designed to detect changes as soon as they occur. Frequency distribution parameters are estimated both from the most recent existing set of observations and from the same set augmented by 1,2,...j new observations. Individual-value probability products ('likelihoods') are then calculated which yield probabilities for erroneously accepting the existing parameter(s) as valid for the augmented data set and vice versa. A parameter change is signaled when these probabilities (or a more convenient and robust compound 'no change' probability) show a progressive decrease. New parameters are then estimated from the new observations alone to restart the procedure. The detailed algebra is developed and tested for Gaussian means and variances, Poisson and chi-square means, and linear or exponential trends; a comprehensive and interactive Fortran program is provided in the appendix.
A Bayesian approach to tracking patients having changing pharmacokinetic parameters
NASA Technical Reports Server (NTRS)
Bayard, David S.; Jelliffe, Roger W.
2004-01-01
This paper considers the updating of Bayesian posterior densities for pharmacokinetic models associated with patients having changing parameter values. For estimation purposes it is proposed to use the Interacting Multiple Model (IMM) estimation algorithm, which is currently a popular algorithm in the aerospace community for tracking maneuvering targets. The IMM algorithm is described, and compared to the multiple model (MM) and Maximum A-Posteriori (MAP) Bayesian estimation methods, which are presently used for posterior updating when pharmacokinetic parameters do not change. Both the MM and MAP Bayesian estimation methods are used in their sequential forms, to facilitate tracking of changing parameters. Results indicate that the IMM algorithm is well suited for tracking time-varying pharmacokinetic parameters in acutely ill and unstable patients, incurring only about half of the integrated error compared to the sequential MM and MAP methods on the same example.
Single-molecule dynamic force spectroscopy of the fibronectin-heparin interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Gabriel; Lamontagne, Charles-Antoine; Lebel, Rejean
2007-12-21
The integrity of cohesive tissues strongly depends on the presence of the extracellular matrix, which provides support and anchorage for cells. The fibronectin protein and the heparin-like glycosaminoglycans are key components of this dynamic structural network. In this report, atomic force spectroscopy was used to gain insight into the compliance and the resistance of the fibronectin-heparin interaction. We found that this interaction can be described by an energetic barrier width of 3.1 {+-} 0.2 A and an off-rate of 0.2 {+-} 0.1 s{sup -1}. These dissociation parameters are similar to those of other carbohydrate-protein interactions and to off-rate values reportedmore » for more complex interactions between cells and extracellular matrix components. Our results indicate that the function of the fibronectin-heparin interaction is supported by its capacity to sustain significant deformations and considerable external mechanical forces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitman, A.J.
The sensitivity of a land-surface scheme (the Biosphere Atmosphere Transfer Scheme, BATS) to its parameter values was investigated using a single column model. Identifying which parameters were important in controlling the turbulent energy fluxes, temperature, soil moisture, and runoff was dependent upon many factors. In the simulation of a nonmoisture-stressed tropical forest, results were dependent on a combination of reservoir terms (soil depth, root distribution), flux efficiency terms (roughness length, stomatal resistance), and available energy (albedo). If moisture became limited, the reservoir terms increased in importance because the total fluxes predicted depended on moisture availability and not on the ratemore » of transfer between the surface and the atmosphere. The sensitivity shown by BATS depended on which vegetation type was being simulated, which variable was used to determine sensitivity, the magnitude and sign of the parameter change, the climate regime (precipitation amount and frequency), and soil moisture levels and proximity to wilting. The interactions between these factors made it difficult to identify the most important parameters in BATS. Therefore, this paper does not argue that a particular set of parameters is important in BATS, rather it shows that no general ranking of parameters is possible. It is also emphasized that using `stand-alone` forcing to examine the sensitivity of a land-surface scheme to perturbations, in either parameters or the atmosphere, is unreliable due to the lack of surface-atmospheric feedbacks.« less
Estimating the Effect of Competition on Trait Evolution Using Maximum Likelihood Inference.
Drury, Jonathan; Clavel, Julien; Manceau, Marc; Morlon, Hélène
2016-07-01
Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However, these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and geography perform better than other models. The matching competition model is an important new tool for studying the influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step toward a better integration of interspecific interactions in many ecological and evolutionary processes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pairing matrix elements and pairing gaps with bare, effective, and induced interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barranco, F.; Bortignon, P.F.; Colo, G.
2005-11-01
The dependence on the single-particle states of the pairing matrix elements of the Gogny force and of the bare low-momentum nucleon-nucleon potential v{sub low-k}--designed so as to reproduce the low-energy observables avoiding the use of a repulsive core--is studied for a typical finite, superfluid nucleus ({sup 120}Sn). It is found that the matrix elements of v{sub low-k} follow closely those of v{sub Gogny} on a wide range of energy values around the Fermi energy e{sub F}, those associated with v{sub low-k} being less attractive. This result explains the fact that around e{sub F} the pairing gap {delta}{sub Gogny} associated withmore » the Gogny interaction (and with a density of single-particle levels corresponding to an effective k mass m{sub k}{approx_equal}0.7 m) is a factor of about 2 larger than {delta}{sub low-k}, being in agreement with {delta}{sub exp}=1.4 MeV. The exchange of low-lying collective surface vibrations among pairs of nucleons moving in time-reversal states gives rise to an induced pairing interaction v{sub ind} peaked at e{sub F}. The interaction (v{sub low-k}+v{sub ind}) Z{sub {omega}} arising from the renormalization of the bare nucleon-nucleon potential and of the single-particle motion ({omega}-mass and quasiparticle strength Z{sub {omega}}) associated with the particle-vibration coupling mechanism, leads to a value of the pairing gap at the Fermi energy {delta}{sub ren} that accounts for the experimental value. An important question that remains to be studied quantitatively is to what extent {delta}{sub Gogny}, which depends on average parameters, and {delta}{sub ren}, which explicitly depends on the parameters describing the (low-energy) nuclear structure, display or not a similar isotopic dependence and whether this dependence is borne out by the data.« less
Sharma, Ity; Kaminski, George A
2017-01-15
Our Fuzzy-Border (FB) continuum solvent model has been extended and modified to produce hydration parameters for small molecules using POlarizable Simulations Second-order Interaction Model (POSSIM) framework with an average error of 0.136 kcal/mol. It was then used to compute pK a shifts for carboxylic and basic residues of the turkey ovomucoid third domain (OMTKY3) protein. The average unsigned errors in the acid and base pK a values were 0.37 and 0.4 pH units, respectively, versus 0.58 and 0.7 pH units as calculated with a previous version of polarizable protein force field and Poisson Boltzmann continuum solvent. This POSSIM/FB result is produced with explicit refitting of the hydration parameters to the pK a values of the carboxylic and basic residues of the OMTKY3 protein; thus, the values of the acidity constants can be viewed as additional fitting target data. In addition to calculating pK a shifts for the OMTKY3 residues, we have studied aspartic acid residues of Rnase Sa. This was done without any further refitting of the parameters and agreement with the experimental pK a values is within an average unsigned error of 0.65 pH units. This result included the Asp79 residue that is buried and thus has a high experimental pK a value of 7.37 units. Thus, the presented model is capable or reproducing pK a results for residues in an environment that is significantly different from the solvated protein surface used in the fitting. Therefore, the POSSIM force field and the FB continuum solvent parameters have been demonstrated to be sufficiently robust and transferable. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sensitivity of GRETINA position resolution to hole mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasher, V. S.; Cromaz, M.; Merchan, E.
The sensitivity of the position resolution of the gamma-ray tracking array GRETINA to the hole charge-carrier mobility parameter is investigated. The χ 2 results from a fit of averaged signal (“superpulse”) data exhibit a shallow minimum for hole mobilities 15% lower than the currently adopted values. Calibration data on position resolution is analyzed, together with simulations that isolate the hole mobility dependence of signal decomposition from other effects such as electronics cross-talk. Our results effectively exclude hole mobility as a dominant parameter for improving the position resolution for reconstruction of gamma-ray interaction points in GRETINA.
Sensitivity of GRETINA position resolution to hole mobility
Prasher, V. S.; Cromaz, M.; Merchan, E.; ...
2017-02-01
The sensitivity of the position resolution of the gamma-ray tracking array GRETINA to the hole charge-carrier mobility parameter is investigated. The χ 2 results from a fit of averaged signal (“superpulse”) data exhibit a shallow minimum for hole mobilities 15% lower than the currently adopted values. Calibration data on position resolution is analyzed, together with simulations that isolate the hole mobility dependence of signal decomposition from other effects such as electronics cross-talk. Our results effectively exclude hole mobility as a dominant parameter for improving the position resolution for reconstruction of gamma-ray interaction points in GRETINA.
Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G
2016-03-07
This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.
The spectrum of singly ionized tungsten
NASA Astrophysics Data System (ADS)
Husain, Abid; Jabeen, S.; Wajid, Abdul
2018-05-01
The ab initio calculations were performed using Cowan's computer code for ground configuration5d46s incorporating other interacting even parity configurations 5d36s2 and 5d5, also for the three lowest excited configurations5d46p, 5d36s6p and 5d36s5f of odd parity matrix. The initial energy parameter scaling applied for Eav and ζ at 100% of the HFR values and Fk at 85%, Gk and Rk at 75% of the HFR values. The reported values of levels were taken from NIST ASD levels list. The levels were used to run least square fitted (LSF). This allowed adjusting the energy to the real values and hence a better prediction was achieved.
NASA Astrophysics Data System (ADS)
Mostafavi, Najmeh; Ebrahimi, Ali
2018-06-01
In order to characterize various interactions in the G-quadruplex ⋯ Mn+ (G-Q ⋯ Mn+) complexes, the individual H-bond (EHB) and metal ion-ligand interaction (EMO) energies have been estimated using the electron charge densities (ρs) calculated at the X ⋯ H (X = N and O) and Mn+ ⋯ O (Mn+ is an alkaline, alkaline earth and transition metal ion) bond critical points (BCPs) obtained from the atoms in molecules (AIM) analysis. The estimated values of EMO and EHB were evaluated using the structural parameters, results of natural bond orbital analysis (NBO), aromaticity indexes and atomic charges. The EMO value increase with the ratio of ionic charge to radius, e/r, where a linear correlation is observed between EMO and e/r (R = 0.97). Meaningful relationships are also observed between EMO and indexes used for aromaticity estimation. The ENH value is higher than EOH in the complexes; this is in complete agreement with the trend of N⋯Hsbnd N and O⋯Hsbnd N angles, the E (2) value of nN → σ*NH and nO → σ*NH interactions and the difference between the natural charges on the H-bonded atom and the hydrogen atom of guanine (Δq). In general, the O1MO2 angle becomes closer to 109.5° with the increase in EMO and decrease in EHB in the presence of metal ion.
Core Problem: Does the CV Parent Body Magnetization require differentiation?
NASA Astrophysics Data System (ADS)
O'Brien, T.; Tarduno, J. A.; Smirnov, A. V.
2016-12-01
Evidence for the presence of past dynamos from magnetic studies of meteorites can provide key information on the nature and evolution of parent bodies. However, the suggestion of a past core dynamo for the CV parent body based on the study of the Allende meteorite has led to a paradox: a core dynamo requires differentiation, evidence for which is missing in the meteorite record. The key parameter used to distinguish core dynamo versus external field mechanisms is absolute field paleointensity, with high values (>>1 μT) favoring the former. Here we explore the fundamental requirements for absolute field intensity measurement in the Allende meteorite: single domain grains that are non-interacting. Magnetic hysteresis and directional data define strong magnetic interactions, negating a standard interpretation of paleointensity measurements in terms of absolute paleofield values. The Allende low field magnetic susceptibility is dominated by magnetite and FeNi grains, whereas the magnetic remanence is carried by an iron sulfide whose remanence-carrying capacity increases with laboratory cycling at constant field values, indicating reordering. The iron sulfide and FeNi grains are in close proximity, providing mineralogical context for interactions. We interpret the magnetization of Allende to record the intense early solar wind with metal-sulfide interactions amplifying the field, giving the false impression of a higher field value in some prior studies. An undifferentiated CV parent body is thus compatible with Allende's magnetization. Early solar wind magnetization should be the null hypothesis for evaluating the source of magnetization for chondrites and other meteorites.
Fakir, Hatim; Hlatky, Lynn; Li, Huamin; Sachs, Rainer
2013-12-01
Optimal treatment planning for fractionated external beam radiation therapy requires inputs from radiobiology based on recent thinking about the "five Rs" (repopulation, radiosensitivity, reoxygenation, redistribution, and repair). The need is especially acute for the newer, often individualized, protocols made feasible by progress in image guided radiation therapy and dose conformity. Current stochastic tumor control probability (TCP) models incorporating tumor repopulation effects consider "stem-like cancer cells" (SLCC) to be independent, but the authors here propose that SLCC-SLCC interactions may be significant. The authors present a new stochastic TCP model for repopulating SLCC interacting within microenvironmental niches. Our approach is meant mainly for comparing similar protocols. It aims at practical generalizations of previous mathematical models. The authors consider protocols with complete sublethal damage repair between fractions. The authors use customized open-source software and recent mathematical approaches from stochastic process theory for calculating the time-dependent SLCC number and thereby estimating SLCC eradication probabilities. As specific numerical examples, the authors consider predicted TCP results for a 2 Gy per fraction, 60 Gy protocol compared to 64 Gy protocols involving early or late boosts in a limited volume to some fractions. In sample calculations with linear quadratic parameters α = 0.3 per Gy, α∕β = 10 Gy, boosting is predicted to raise TCP from a dismal 14.5% observed in some older protocols for advanced NSCLC to above 70%. This prediction is robust as regards: (a) the assumed values of parameters other than α and (b) the choice of models for intraniche SLCC-SLCC interactions. However, α = 0.03 per Gy leads to a prediction of almost no improvement when boosting. The predicted efficacy of moderate boosts depends sensitively on α. Presumably, the larger values of α are the ones appropriate for individualized treatment protocols, with the smaller values relevant only to protocols for a heterogeneous patient population. On that assumption, boosting is predicted to be highly effective. Front boosting, apart from practical advantages and a possible advantage as regards iatrogenic second cancers, also probably gives a slightly higher TCP than back boosting. If the total number of SLCC at the start of treatment can be measured even roughly, it will provide a highly sensitive way of discriminating between various models and parameter choices. Updated mathematical methods for calculating repopulation allow credible generalizations of earlier results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Toll, J.; Cothern, K.
1995-12-31
The authors have performed robust sensitivity studies of the physico-chemical Hudson River PCB model PCHEPM to identify the parameters and process uncertainties contributing the most to uncertainty in predictions of water column and sediment PCB concentrations, over the time period 1977--1991 in one segment of the lower Hudson River. The term ``robust sensitivity studies`` refers to the use of several sensitivity analysis techniques to obtain a more accurate depiction of the relative importance of different sources of uncertainty. Local sensitivity analysis provided data on the sensitivity of PCB concentration estimates to small perturbations in nominal parameter values. Range sensitivity analysismore » provided information about the magnitude of prediction uncertainty associated with each input uncertainty. Rank correlation analysis indicated which parameters had the most dominant influence on model predictions. Factorial analysis identified important interactions among model parameters. Finally, term analysis looked at the aggregate influence of combinations of parameters representing physico-chemical processes. The authors scored the results of the local and range sensitivity and rank correlation analyses. The authors considered parameters that scored high on two of the three analyses to be important contributors to PCB concentration prediction uncertainty, and treated them probabilistically in simulations. They also treated probabilistically parameters identified in the factorial analysis as interacting with important parameters. The authors used the term analysis to better understand how uncertain parameters were influencing the PCB concentration predictions. The importance analysis allowed us to reduce the number of parameters to be modeled probabilistically from 16 to 5. This reduced the computational complexity of Monte Carlo simulations, and more importantly, provided a more lucid depiction of prediction uncertainty and its causes.« less
Farashi, Sajjad; Sasanpour, Pezhman; Rafii-Tabar, Hashem
2018-05-24
Purpose-Although the effect of electromagnetic fields on biological systems has attracted attraction in recent years, there has not been any conclusive result concerning the effects of interaction and the underlying mechanisms involved. Besides the complexity of biological systems, the parameters of the applied electromagnetic field have not been estimated in most of the experiments. Material and Method-In this study, we have used computational approach in order to find the excitation parameters of an external electric field which produces sensible effects in the function of insulin secretory machinery, whose failure triggers the diabetes disease. A mathematical model of the human β-cell has been used and the effects of external electric fields with different amplitudes, frequencies and wave shapes have been studied. Results-The results from our simulations show that the external electric field can influence the membrane electrical activity and perhaps the insulin secretion when its amplitude exceeds a threshold value. Furthermore, our simulations reveal that different waveforms have distinct effects on the β-cell membrane electrical activity and the characteristic features of the excitation like frequency would change the interaction mechanism. Conclusion-The results could help the researchers to investigate the possible role of the environmental electromagnetic fields on the promotion of diabetes disease.
NASA Astrophysics Data System (ADS)
Syaina, L. P.; Majidi, M. A.
2018-04-01
Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.
Fermionic dark matter with pseudo-scalar Yukawa interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbani, Karim, E-mail: k-ghorbani@araku.ac.ir
2015-01-01
We consider a renormalizable extension of the standard model whose fermionic dark matter (DM) candidate interacts with a real singlet pseudo-scalar via a pseudo-scalar Yukawa term while we assume that the full Lagrangian is CP-conserved in the classical level. When the pseudo-scalar boson develops a non-zero vacuum expectation value, spontaneous CP-violation occurs and this provides a CP-violated interaction of the dark sector with the SM particles through mixing between the Higgs-like boson and the SM-like Higgs boson. This scenario suggests a minimal number of free parameters. Focusing mainly on the indirect detection observables, we calculate the dark matter annihilation crossmore » section and then compute the DM relic density in the range up to m{sub DM} = 300 GeV.We then find viable regions in the parameter space constrained by the observed DM relic abundance as well as invisible Higgs decay width in the light of 125 GeV Higgs discovery at the LHC. We find that within the constrained region of the parameter space, there exists a model with dark matter mass m{sub DM} ∼ 38 GeV annihilating predominantly into b quarks, which can explain the Fermi-LAT galactic gamma-ray excess.« less
Editors pp iii Effects of long-range magnetic interactions on DLA aggregation [rapid communication
NASA Astrophysics Data System (ADS)
Xu, Xiao-Jun; Cai, Ping-Gen; Ye, Quan-Lin; Xia, A.-Gen; Ye, Gao-Xiang
2005-04-01
An extra degree of freedom is introduced in the well-known diffusion-limited aggregation model, i.e., the growth entities are “spin” taking. The model with long-range magnetic interactions that decay as βC/rα on two-dimensional square lattices is studied for different values of α. This model leads to a wide variety of kinetic processes and morphology distribution with both the coupling energy βC and the range of the interactions, i.e., the exponent α. The simulated result of the model shows that the “quenching” of the degree of freedom on the cluster by the long-range magnetic interactions leads to branching or compactness, but, moreover, to combined geometric and physical “transitions” of the aggregations with the growth parameters.
NASA Astrophysics Data System (ADS)
Dewaele, Hélène; Munier, Simon; Albergel, Clément; Planque, Carole; Laanaia, Nabil; Carrer, Dominique; Calvet, Jean-Christophe
2017-09-01
Soil maximum available water content (MaxAWC) is a key parameter in land surface models (LSMs). However, being difficult to measure, this parameter is usually uncertain. This study assesses the feasibility of using a 15-year (1999-2013) time series of satellite-derived low-resolution observations of leaf area index (LAI) to estimate MaxAWC for rainfed croplands over France. LAI interannual variability is simulated using the CO2-responsive version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) LSM for various values of MaxAWC. Optimal value is then selected by using (1) a simple inverse modelling technique, comparing simulated and observed LAI and (2) a more complex method consisting in integrating observed LAI in ISBA through a land data assimilation system (LDAS) and minimising LAI analysis increments. The evaluation of the MaxAWC estimates from both methods is done using simulated annual maximum above-ground biomass (Bag) and straw cereal grain yield (GY) values from the Agreste French agricultural statistics portal, for 45 administrative units presenting a high proportion of straw cereals. Significant correlations (p value < 0.01) between Bag and GY are found for up to 36 and 53 % of the administrative units for the inverse modelling and LDAS tuning methods, respectively. It is found that the LDAS tuning experiment gives more realistic values of MaxAWC and maximum Bag than the inverse modelling experiment. Using undisaggregated LAI observations leads to an underestimation of MaxAWC and maximum Bag in both experiments. Median annual maximum values of disaggregated LAI observations are found to correlate very well with MaxAWC.
Bruylants, Gilles; Wintjens, René; Looze, Yvan; Redfield, Christina; Bartik, Kristin
2007-12-01
Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.
Searching for dark matter-dark energy interactions: Going beyond the conformal case
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Mifsud, Jurgen
2018-01-01
We consider several cosmological models which allow for nongravitational direct couplings between dark matter and dark energy. The distinguishing cosmological features of these couplings can be probed by current cosmological observations, thus enabling us to place constraints on these specific interactions which are composed of the conformal and disformal coupling functions. We perform a global analysis in order to independently constrain the conformal, disformal, and mixed interactions between dark matter and dark energy by combining current data from: Planck observations of the cosmic microwave background radiation anisotropies, a combination of measurements of baryon acoustic oscillations, a supernova type Ia sample, a compilation of Hubble parameter measurements estimated from the cosmic chronometers approach, direct measurements of the expansion rate of the Universe today, and a compilation of growth of structure measurements. We find that in these coupled dark-energy models, the influence of the local value of the Hubble constant does not significantly alter the inferred constraints when we consider joint analyses that include all cosmological probes. Moreover, the parameter constraints are remarkably improved with the inclusion of the growth of structure data set measurements. We find no compelling evidence for an interaction within the dark sector of the Universe.
Long-range interactions in magnetic bilayer above the critical temperature
NASA Astrophysics Data System (ADS)
de Souza, R. M. V.; Pereira, T. A. S.; Godoy, M.; de Arruda, A. S.
2018-01-01
In this paper we have studied the stabilization of the long-range order in (z ; x) -plane of two isotropic Heisenberg ferromagnetic monolayers coupled by a short-range exchange interaction (J⊥), by a long range dipole-dipole interactions and a magnetic field. We have applied a magnetic field along of the z-direction to study the thermodynamic properties above the critical temperature. The dispersion relation ω and the magnetization are given as function of dipolar anisotropy parameter defined as Ed =(gμ) 2 S /a3J∥ and for other Hamiltonian parameters, and they are calculated by the double-time Zubarev-Tyablikov Green's functions in the random-phase approximation (RPA). The results show that the system is unstable for values of Ed ≥ 0.012 with external magnetic field ranging between H /J∥ = 0 and 10-3. The instability appears for Ed larger then Edc = 0.0158 with H /J∥ = 10-5, Edc = 0.02885 with H /J∥ = 10-4, and Edc = 0.115 with H /J∥ = 10-3, i.e., a small magnetic field is sufficient to maintain the magnetic order in a greater range of the dipolar interaction.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroki; Matsuda, Yu; Niimi, Tomohide
2017-07-01
Gas-surface interaction is studied by the molecular dynamics method to investigate qualitatively characteristics of accommodation coefficients. A large number of trajectories of gas molecules colliding to and scattering from a surface are statistically analyzed to calculate the energy (thermal) accommodation coefficient (EAC) and the tangential momentum accommodation coefficient (TMAC). Considering experimental measurements of the accommodation coefficients, the incident velocities are stochastically sampled to represent a bulk condition. The accommodation coefficients for noble gases show qualitative coincidence with experimental values. To investigate characteristics of these accommodation coefficients in detail, the gas-surface interaction is parametrically studied by varying the molecular mass of gas, the gas-surface interaction strength, and the molecular size of gas, one by one. EAC increases with increasing every parameter, while TMAC increases with increasing the interaction strength, but decreases with increasing the molecular mass and the molecular size. Thus, contradictory results in experimentally measured TMAC for noble gases could result from the difference between the surface conditions employed in the measurements in the balance among the effective parameters of molecular mass, interaction strength, and molecular size, due to surface roughness and/or adsorbed molecules. The accommodation coefficients for a thermo-fluid dynamics field with a temperature difference between gas and surface and a bulk flow at the same time are also investigated.
NASA Astrophysics Data System (ADS)
Lesiuk, Michał; Moszynski, Robert
2014-12-01
In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.
NASA Astrophysics Data System (ADS)
Ibrahim, M. Z.; Alrozi, R.; Zubir, N. A.; Bashah, N. A.; Ali, S. A. Md; Ibrahim, N.
2018-05-01
The oxidation process such as heterogeneous Fenton and/or Fenton-like reactions is considered as an effective and efficient method for treatment of dye degradation. In this study, the degradation of Acid Orange 7 (AO7) was investigated by using Fe3-xCoxO4 as a heterogeneous Fenton-like catalyst. Response surface methodology (RSM) was used to optimize the operational parameters condition and the interaction of two or more parameters. The parameter studies were catalyst dosage (X1 ), pH (X2 ) and H2O2 concentration (X3 ) towards AO7 degradation. Based on analysis of variance (ANOVA), the derived quadratic polynomial model was significant whereby the predicted values matched the experimental values with regression coefficient of R2 = 0.9399. The optimum condition for AO7 degradation was obtained at catalyst dosage of 0.84 g/L, pH of 3 and H2O2 concentration of 46.70 mM which resulted in 86.30% removal of AO7 dye. These findings present new insights into the influence of operational parameters in the heterogeneous Fenton-like oxidation of AO7 using Fe3-xCoxO4 catalyst.
NASA Technical Reports Server (NTRS)
Bever, G. A.
1981-01-01
The flight test data requirements at the NASA Dryden Flight Research Center increased in complexity, and more advanced instrumentation became necessary to accomplish mission goals. This paper describes the way in which an airborne computer was used to perform real-time calculations on critical flight test parameters during a flight test on a winglet-equipped KC-135A aircraft. With the computer, an airborne flight test engineer can select any sensor for airborne display in several formats, including engineering units. The computer is able to not only calculate values derived from the sensor outputs but also to interact with the data acquisition system. It can change the data cycle format and data rate, and even insert the derived values into the pulse code modulation (PCM) bit stream for recording.
a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source
NASA Astrophysics Data System (ADS)
Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.
2007-09-01
A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.
a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source
NASA Astrophysics Data System (ADS)
Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.
A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.
Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery
NASA Astrophysics Data System (ADS)
Girard, Guillaume; Zhou, Sheng; Bigaouette, Nicolas; Brunette, Isabelle; Chaker, Mohamed; Germain, Lucie; Lavertu, Pierre-Luc; Martin, François; Olivié, Gilles; Ozaki, Tsuneyuki; Parent, Mireille; Vidal, François; Kieffer, Jean-Claude
2004-10-01
The Femtosecond laser is a very promising tool for performing accurate dissection in various cornea layers. Clearly, the development of this application requires basic knowledge about laser-tissue interaction. One of the most significant parameter in laser applications is the ablation threshold, defined as the minimal laser energy per unit surface required for ablation. This paper investigates the ablation threshold as a function of the laser pulse duration for two corneal layers (endothelium and epithelium) as well as for hydrogel with different hydration degrees. The measured ablation thresholds prove to behave very differently as a function of the pulse duration for the various materials investigated, although the values obtained for the shortest laser pulses are quite similar. Our experimental results are fitted with a simple model for laser-matter interaction in order to determine some intrinsic physical parameters characterizing each target.
Learning dependence from samples.
Seth, Sohan; Príncipe, José C
2014-01-01
Mutual information, conditional mutual information and interaction information have been widely used in scientific literature as measures of dependence, conditional dependence and mutual dependence. However, these concepts suffer from several computational issues; they are difficult to estimate in continuous domain, the existing regularised estimators are almost always defined only for real or vector-valued random variables, and these measures address what dependence, conditional dependence and mutual dependence imply in terms of the random variables but not finite realisations. In this paper, we address the issue that given a set of realisations in an arbitrary metric space, what characteristic makes them dependent, conditionally dependent or mutually dependent. With this novel understanding, we develop new estimators of association, conditional association and interaction association. Some attractive properties of these estimators are that they do not require choosing free parameter(s), they are computationally simpler, and they can be applied to arbitrary metric spaces.
Razdan, Neil K; Koshy, David M; Prausnitz, John M
2017-11-07
A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.
Uncertainty Quantification in Aeroelasticity
NASA Astrophysics Data System (ADS)
Beran, Philip; Stanford, Bret; Schrock, Christopher
2017-01-01
Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.
Dielectric and spectroscopic study of binary mixture of Acrylonitrile with Chlorobenzene
NASA Astrophysics Data System (ADS)
Deshmukh, Snehal D.; Pattebahadur, K. L.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
In this paper, study of binary mixture of Acrylonitrile (ACN) with Chlorobenzene (CBZ) has been carried out at eleven concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range and fitted to the Redlich-Kister equation. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Chlorobenzene is supported by the FTIR spectra.
Pressure and Temperature Sensors Using Two Spin Crossover Materials.
Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann
2016-02-02
The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.
Theory of High-T{sub c} Superconducting Cuprates Based on Experimental Evidence
DOE R&D Accomplishments Database
Abrikosov, A. A.
1999-12-10
A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of T{sub c}, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc.
Resonant structure, formation and stability of the planetary system HD155358
NASA Astrophysics Data System (ADS)
Silburt, Ari; Rein, Hanno
2017-08-01
Two Jovian-sized planets are orbiting the star HD155358 near exact mean motion resonance (MMR) commensurability. In this work, we re-analyse the radial velocity (RV) data previously collected by Robertson et al. Using a Bayesian framework, we construct two models - one that includes and the other that excludes gravitational planet-planet interactions (PPIs). We find that the orbital parameters from our PPI and no planet-planet interaction (noPPI) models differ by up to 2σ, with our noPPI model being statistically consistent with previous results. In addition, our new PPI model strongly favours the planets being in MMR, while our noPPI model strongly disfavours MMR. We conduct a stability analysis by drawing samples from our PPI model's posterior distribution and simulating them for 109 yr, finding that our best-fitting values land firmly in a stable region of parameter space. We explore a series of formation models that migrate the planets into their observed MMR. We then use these models to directly fit to the observed RV data, where each model is uniquely parametrized by only three constants describing its migration history. Using a Bayesian framework, we find that a number of migration models fit the RV data surprisingly well, with some migration parameters being ruled out. Our analysis shows that PPIs are important to take into account when modelling observations of multiplanetary systems. The additional information that one can gain from interacting models can help constrain planet migration parameters.
NASA Astrophysics Data System (ADS)
Gałęcki, Krystian; Kowalska-Baron, Agnieszka
2016-12-01
In this study, the influence of heavy-atom perturbation, induced by the addition of iodide ions, on the fluorescence and phosphorescence decay parameters of some single tryptophan containing serum albumins isolated from: human (HSA), equine (ESA) and leporine (LSA) has been studied. The obtained results indicated that, there exist two distinct conformations of the proteins with different exposure to the quencher. In addition, the Stern-Volmer plots indicated saturation of iodide ions in the binding region. Therefore, to determine quenching parameter, we proposed alternative quenching model and we have performed a global analysis of each conformer to define the effect of iodide ions in the cavity by determining the value of the association constant. The possible quenching mechanism may be based on long-range through-space interactions between the buried chromophore and quencher in the aqueous phase. The discrepancies of the decay parameters between the albumins studied may be related with the accumulation of positive charge at the main and the back entrance to the Drug Site 1 where tryptophan residue is located.
Estimation of π-π Electronic Couplings from Current Measurements.
Trasobares, J; Rech, J; Jonckheere, T; Martin, T; Aleveque, O; Levillain, E; Diez-Cabanes, V; Olivier, Y; Cornil, J; Nys, J P; Sivakumarasamy, R; Smaali, K; Leclere, P; Fujiwara, A; Théron, D; Vuillaume, D; Clément, N
2017-05-10
The π-π interactions between organic molecules are among the most important parameters for optimizing the transport and optical properties of organic transistors, light-emitting diodes, and (bio-) molecular devices. Despite substantial theoretical progress, direct experimental measurement of the π-π electronic coupling energy parameter t has remained an old challenge due to molecular structural variability and the large number of parameters that affect the charge transport. Here, we propose a study of π-π interactions from electrochemical and current measurements on a large array of ferrocene-thiolated gold nanocrystals. We confirm the theoretical prediction that t can be assessed from a statistical analysis of current histograms. The extracted value of t ≈35 meV is in the expected range based on our density functional theory analysis. Furthermore, the t distribution is not necessarily Gaussian and could be used as an ultrasensitive technique to assess intermolecular distance fluctuation at the subangström level. The present work establishes a direct bridge between quantum chemistry, electrochemistry, organic electronics, and mesoscopic physics, all of which were used to discuss results and perspectives in a quantitative manner.
Mutual diffusion coefficients of heptane isomers in nitrogen: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Chae, Kyungchan; Violi, Angela
2011-01-01
The accurate knowledge of transport properties of pure and mixture fluids is essential for the design of various chemical and mechanical systems that include fluxes of mass, momentum, and energy. In this study we determine the mutual diffusion coefficients of mixtures composed of heptane isomers and nitrogen using molecular dynamics (MD) simulations with fully atomistic intermolecular potential parameters, in conjunction with the Green-Kubo formula. The computed results were compared with the values obtained using the Chapman-Enskog (C-E) equation with Lennard-Jones (LJ) potential parameters derived from the correlations of state values: MD simulations predict a maximum difference of 6% among isomers while the C-E equation presents that of 3% in the mutual diffusion coefficients in the temperature range 500-1000 K. The comparison of two approaches implies that the corresponding state principle can be applied to the models, which are only weakly affected by the anisotropy of the interaction potentials and the large uncertainty will be included in its application for complex polyatomic molecules. The MD simulations successfully address the pure effects of molecular structure among isomers on mutual diffusion coefficients by revealing that the differences of the total mutual diffusion coefficients for the six mixtures are caused mainly by heptane isomers. The cross interaction potential parameters, collision diameter σ _{12}, and potential energy well depth \\varepsilon _{12} of heptane isomers and nitrogen mixtures were also computed from the mutual diffusion coefficients.
Influence of macromolecular precipitants on phase behavior of monoclonal antibodies.
Rakel, Natalie; Galm, Lara; Bauer, Katharina Christin; Hubbuch, Juergen
2015-01-01
For the successful application of protein crystallization as a downstream step, a profound knowledge of protein phase behavior in solutions is needed. Therefore, a systematic screening was conducted to analyze the influence of macromolecular precipitants in the form of polyethylene glycol (PEG). First, the influence of molecular weight and concentration of PEG at different pH-values were investigated and analyzed in three-dimensional (3-D) phase diagrams to find appropriate conditions in terms of a fast kinetic and crystal size for downstream processing. In comparison to the use of salts as precipitant, PEG was more suitable to obtain compact 3-D crystals over a broad range of conditions, whereby the molecular weight of PEG is, besides the pH-value, the most important parameter. Second, osmotic second virial coefficients as parameters for protein interactions are experimentally determined with static light scattering to gain a deep insight view in the phase behavior on a molecular basis. The PEG-protein solutions were analyzed as a pseudo-one-compartment system. As the precipitant is also a macromolecule, the new approach of analyzing cross-interactions between the protein and the macromolecule PEG in form of the osmotic second cross-virial coefficient (B23 ) was applied. Both parameters help to understand the protein phase behavior. However, a predictive description of protein phase behavior for systems consisting of monoclonal antibodies and PEG as precipitant is not possible, as kinetic phenomena and concentration dependencies were not taken into account. © 2014 American Institute of Chemical Engineers.
Borst, Jordi; Berkhemer, Olvert A; Roos, Yvo B W E M; van Bavel, Ed; van Zwam, Wim H; van Oostenbrugge, Robert J; van Walderveen, Marianne A A; Lingsma, Hester F; van der Lugt, Aad; Dippel, Diederik W J; Yoo, Albert J; Marquering, Henk A; Majoie, Charles B L M
2015-12-01
The utility of computed tomographic perfusion (CTP)-based patient selection for intra-arterial treatment of acute ischemic stroke has not been proven in randomized trials and requires further study in a cohort that was not selected based on CTP. Our objective was to study the relationship between CTP-derived parameters and outcome and treatment effect in patients with acute ischemic stroke because of a proximal intracranial arterial occlusion. We included 175 patients who underwent CTP in the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in The Netherlands (MR CLEAN). Association of CTP-derived parameters (ischemic-core volume, penumbra volume, and percentage ischemic core) with outcome was estimated with multivariable ordinal logistic regression as an adjusted odds ratio for a shift in the direction of a better outcome on the modified Rankin Scale. Interaction between CTP-derived parameters and treatment effect was determined using multivariable ordinal logistic regression. Interaction with treatment effect was also tested for mismatch (core <70 mL; penumbra core >1.2; penumbra core >10 mL). The adjusted odds ratio for improved functional outcome for ischemic core, percentage ischemic core, and penumbra were 0.79 per 10 mL (95% confidence interval: 0.71-0.89; P<0.001), 0.82 per 10% (95% confidence interval: 0.66-0.90; P=0.002), and 0.97 per 10 mL (96% confidence interval: 0.92-1.01; P=0.15), respectively. No significant interaction between any of the CTP-derived parameters and treatment effect was observed. We observed no significant interaction between mismatch and treatment effect. CTP seems useful for predicting functional outcome, but cannot reliably identify patients who will not benefit from intra-arterial therapy. © 2015 American Heart Association, Inc.
Tian, Yiwei; Booth, Jonathan; Meehan, Elizabeth; Jones, David S; Li, Shu; Andrews, Gavin P
2013-01-07
Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter χ was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter χ was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (ΔG(mix)) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram.
Combine EPR and two-slit experiments: Interference of advanced waves
NASA Astrophysics Data System (ADS)
Klyshko, D. N.
1988-10-01
A nonclassical interference effect, using two-photon correlations in nonlinear optical interactions, is discussed. The apparent nonlocality could be conveniently interpreted in terms of advanced waves, emitted by one detector toward the other. A new Bell-type experiment is proposed, in which the measured photon's parameter is the wave-vector (instead of the polarisation), so that the observable can take more than two possible values.
1989-06-01
the intensity for which performance equals the chosen value. We use the PEST (parameter estimation by sequential testing; Taylor and Creelman , 1967...forward masking in the auditory nerve." J. Acoust. Soc. Am. 84, 584-591. Taylor, M.M. and Creelman , C.D. (1967). "PEST: Efficient estimates on
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Nieto, Beatriz, E-mail: bsanchez@fis.puc.cl; Goset, Karen C.; Caviedes, Ivan
Purpose: To propose multivariate predictive models for changes in pulmonary function tests ({Delta}PFTs) with respect to preradiotherapy (pre-RT) values in patients undergoing RT for breast cancer and lymphoma. Methods and Materials: A prospective study was designed to measure {Delta}PFTs of patients undergoing RT. Sixty-six patients were included. Spirometry, lung capacity (measured by helium dilution), and diffusing capacity of carbon monoxide tests were used to measure lung function. Two lung definitions were considered: paired lung vs. irradiated lung (IL). Correlation analysis of dosimetric parameters (mean lung dose and the percentage of lung volume receiving more than a threshold dose) and {Delta}PFTsmore » was carried out to find the best dosimetric predictor. Chemotherapy, age, smoking, and the selected dose-volume parameter were considered as single and interaction terms in a multivariate analysis. Stability of results was checked by bootstrapping. Results: Both lung definitions proved to be similar. Modeling was carried out for IL. Acute and late damage showed the highest correlations with volumes irradiated above {approx}20 Gy (maximum R{sup 2} = 0.28) and {approx}40 Gy (maximum R{sup 2} = 0.21), respectively. RT alone induced a minor and transitory restrictive defect (p = 0.013). Doxorubicin-cyclophosphamide-paclitaxel (Taxol), when administered pre-RT, induced a late, large restrictive effect, independent of RT (p = 0.031). Bootstrap values confirmed the results. Conclusions: None of the dose-volume parameters was a perfect predictor of outcome. Thus, different predictor models for {Delta}PFTs were derived for the IL, which incorporated other nondosimetric parameters mainly through interaction terms. Late {Delta}PFTs seem to behave more serially than early ones. Large restrictive defects were demonstrated in patients pretreated with doxorubicin-cyclophosphamide-paclitaxel.« less
NASA Astrophysics Data System (ADS)
Nasef, Mohamed Mahmoud; Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad
2011-11-01
Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting ( G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 °C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting.
Lee, R T; Gabius, H J; Lee, Y C
1998-07-01
The interaction between Urtica dioica agglutinin (UDA) and N-acetylglucosamine (GlcNAc) and its beta(1-4)-linked oligomers was studied by fluorescence titration and isothermal titration microcalorimetry. UDA possesses one significant binding site that can be measured calorimetrically. This site is composed of three subsites, each subsite accommodating one GlcNAc residue. The interaction is enthalpically driven, and the binding area of UDA is characterized by a deltaH of interaction for a given oligosaccharide considerably smaller than that of wheat germ agglutinin (WGA), despite the fact that they both belong to a family of proteins composed entirely of hevein domains. Relatively high deltaCp values of the UDA-carbohydrate interactions and more favorable entropy term compared to WGA suggest that binding of the carbohydrate ligands by UDA has a higher hydrophobic component than that of WGA.
Huang, Jian; Pfeiffer, L N; West, K W
2014-01-24
In high quality updoped GaAs field-effect transistors, the two-dimensional charge carrier concentrations can be tuned to very low values similar to the density of electrons on helium surfaces. An important interaction effect, screening of the Coulomb interaction by the gate, rises as a result of the large charge spacing comparable to the distance between the channel and the gate. Based on the results of the temperature (T) dependence of the resistivity from measuring four different samples, a power-law characteristic is found for charge densities ≤2×10(9) cm(-2). Moreover, the exponent exhibits a universal dependence on a single dimensionless parameter, the ratio between the mean carrier separation and the distance to the metallic gate that screens the Coulomb interaction. Thus, the electronic properties are tuned through varying the shape of the interaction potential.
Noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
Static penetration resistance of soils
NASA Technical Reports Server (NTRS)
Durgunoglu, H. T.; Mitchell, J. K.
1973-01-01
Model test results were used to define the failure mechanism associated with the static penetration resistance of cohesionless and low-cohesion soils. Knowledge of this mechanism has permitted the development of a new analytical method for calculating the ultimate penetration resistance which explicitly accounts for penetrometer base apex angle and roughness, soil friction angle, and the ratio of penetration depth to base width. Curves relating the bearing capacity factors to the soil friction angle are presented for failure in general shear. Strength parameters and penetrometer interaction properties of a fine sand were determined and used as the basis for prediction of the penetration resistance encountered by wedge, cone, and flat-ended penetrometers of different surface roughness using the proposed analytical method. Because of the close agreement between predicted values and values measured in laboratory tests, it appears possible to deduce in-situ soil strength parameters and their variation with depth from the results of static penetration tests.
Analysis of LDPE-ZnO-clay nanocomposites using novel cumulative rheological parameters
NASA Astrophysics Data System (ADS)
Kracalik, Milan
2017-05-01
Polymer nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of dispersive polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about dumping behaviour (e.g. Van Gurp-Palmen-plot, comparison of loss factor tan δ). On the contrary to evaluation of damping behaviour, values of cot δ were calculated and called as "storage factor", analogically to loss factor. Then values of storage factor were integrated over specific frequency range and called as "cumulative storage factor". In this contribution, LDPE-ZnO-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel analysis approach. Next to cumulative storage factor, further cumulative rheological parameters like cumulative complex viscosity, cumulative complex modulus or cumulative storage modulus have been introduced.
Tao, Jianfei; Jiang, Peng; Peng, Chengcheng; Li, Min; Liu, Runhui; Zhang, Weidong
2016-07-15
To investigate the effect of Shexiang Baoxin Pill (SBP), a tranditional Chinese medicine, on the pharmacokinetic (PK) parameters of simvastatin in healthy volunteers' plasma, a quantitative method was developed using an Agilent G6410A rapid performance liquid chromatography (RPLC) coupled with triple quadrupole mass spectrometry system. The established method was rapid with high extraction recovery and successfully applied for the determination of simvastatin in plasma of 16 healthy volunteers. The results demonstrated that the MRT(0-∞), T1/2 and Tmax value of simvastatin were significantly decreased, while the AUC(0-t) and Cmax values of smivastatin were increased by SBP. The pharmacokinetic study demonstrated that the metabolism parameters of simvastatin could be affected by SBP and the potential drug-drug interaction should be noted in the future clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.
Can Anomalous Amplification be Attained without Postselection?
Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I; Howell, John C
2016-03-11
We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.
Can Anomalous Amplification be Attained without Postselection?
NASA Astrophysics Data System (ADS)
Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.
2016-03-01
We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.
Measurement of interaction between antiprotons
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2015-11-04
In this paper, one of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by themore » STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton–antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton–proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and their properties.« less
NASA Astrophysics Data System (ADS)
Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre
2016-07-01
The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.
Determination of heat transfer coefficient for an interaction of sub-cooled gas and metal
NASA Astrophysics Data System (ADS)
Zaidi Sidek, Mohd; Syahidan Kamarudin, Muhammad
2016-02-01
Heat transfer coefficient (HTC) for a hot metal surface and their surrounding is one of the need be defined parameter in hot forming process. This study has been conducted to determine the HTC for an interaction between sub-cooled gas sprayed on a hot metal surface. Both experiments and finite element have been adopted in this work. Initially, the designated experiment was conducted to obtain temperature history of spray cooling process. Then, an inverse method was adopted to calculate the HTC value before we validate in a finite element simulation model. The result shows that the heat transfer coefficient for interaction of subcooled gas and hot metal surface is 1000 W/m2K.
NASA Astrophysics Data System (ADS)
Okuda, Takashi; Horio, Kohji; Ohmura, Yoshihiro; Mizuno, Yukio
2018-06-01
The well-known interacting-electron-gas model of metallic states is modified by replacing the Coulomb interaction by a truncated one to weaken the repulsive force between electrons at short distances. The new model is applied to the so-called simple metals and is found far superior to the old one. Most of the calculations are carried out successfully on the basis of the random-phase-approximation (RPA), which is known much too poor for the old familiar model. In the present paper the numerical value of the new parameter peculiar to the new model is determined systematically with the help of the observed plasmon spectrum for each metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, C; Bronk, L; UT Graduate School of Biomedical Sciences at Houston, Houston, TX
2015-06-15
Purpose: High throughput in vitro experiments assessing cell survival following proton radiation indicate that both the alpha and the beta parameters of the linear quadratic model increase with increasing proton linear energy transfer (LET). We investigated the relative biological effectiveness (RBE) of double-strand break (DSB) induction as a means of explaining the experimental results. Methods: Experiments were performed with two lung cancer cell lines and a range of proton LET values (0.94 – 19.4 keV/µm) using an experimental apparatus designed to irradiate cells in a 96 well plate such that each column encounters protons of different dose-averaged LET (LETd). Traditionalmore » linear quadratic survival curve fitting was performed, and alpha, beta, and RBE values obtained. Survival curves were also fit with a model incorporating RBE of DSB induction as the sole fit parameter. Fitted values of the RBE of DSB induction were then compared to values obtained using Monte Carlo Damage Simulation (MCDS) software and energy spectra calculated with Geant4. Other parameters including alpha, beta, and number of DSBs were compared to those obtained from traditional fitting. Results: Survival curve fitting with RBE of DSB induction yielded alpha and beta parameters that increase with proton LETd, which follows from the standard method of fitting; however, relying on a single fit parameter provided more consistent trends. The fitted values of RBE of DSB induction increased beyond what is predicted from MCDS data above proton LETd of approximately 10 keV/µm. Conclusion: In order to accurately model in vitro proton irradiation experiments performed with high throughput methods, the RBE of DSB induction must increase more rapidly than predicted by MCDS above LETd of 10 keV/µm. This can be explained by considering the increased complexity of DSBs or the nature of intra-track pairwise DSB interactions in this range of LETd values. NIH Grant 2U19CA021239-35.« less
2012-01-01
This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result. PMID:23369574
Role of spin-orbit coupling in the physical properties of La X3 (X =In , P, Bi) superconductors
NASA Astrophysics Data System (ADS)
Tütüncü, H. M.; Karaca, Ertuǧrul; Uzunok, H. Y.; Srivastava, G. P.
2018-05-01
We report a comprehensive and complementary study on structural, elastic, mechanical, electronic, phonon, and electron-phonon interaction properties of La X3 (X = In, Pb, and Bi) using first-principles density functional calculations within the local density approximation with and without the spin-orbit coupling (SOC). The calculated lattice parameters for these intermetallic compounds with and without SOC are found to differ by less than 2 % from their experimental values. The effect of SOC on the elastic, mechanical, electronic, phonon, and electron-phonon interaction properties is more profound for LaPb3 and LaBi3 containing heavier X elements rather than LaIn3 containing lighter X element. The inclusion of SOC considerably removes the degeneracies of some bands near the Fermi level and makes some phonon branches in LaPb3 and LaBi3 softer and increases the strength of dominant peaks in their Eliashberg spectral functions. Thus the SOC related enhancement of their electron-phonon coupling parameter values can be related to both a softening of their phonon dispersion curves and an increase in their electron-phonon coupling matrix elements. The superconducting transition temperature with SOC is computed to be 0.69 K for LaIn3, 4.23 K for LaPb3, and 6.87 K for LaBi3, which agree very well with the respective measured values of 0.70, 4.18, and 7.30 K.
D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico
2015-06-01
This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using Active Learning for Speeding up Calibration in Simulation Models.
Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan
2016-07-01
Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.
Using Active Learning for Speeding up Calibration in Simulation Models
Cevik, Mucahit; Ali Ergun, Mehmet; Stout, Natasha K.; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan
2015-01-01
Background Most cancer simulation models include unobservable parameters that determine the disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality and their values are typically estimated via lengthy calibration procedure, which involves evaluating large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Methods Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We develop an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs, therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using previously developed University of Wisconsin Breast Cancer Simulation Model (UWBCS). Results In a recent study, calibration of the UWBCS required the evaluation of 378,000 input parameter combinations to build a race-specific model and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378,000 combinations. Conclusion Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. PMID:26471190
Measurement of redox potential in nanoecotoxicological investigations.
Tantra, Ratna; Cackett, Alex; Peck, Roger; Gohil, Dipak; Snowden, Jacqueline
2012-01-01
Redox potential has been identified by the Organisation for Economic Co-operation and Development (OECD) as one of the parameters that should be investigated for the testing of manufactured nanomaterials. There is still some ambiguity concerning this parameter, i.e., as to what and how to measure, particularly when in a nanoecotoxicological context. In this study the redox potentials of six nanomaterials (either zinc oxide (ZnO) or cerium oxide (CeO(2))) dispersions were measured using an oxidation-reduction potential (ORP) electrode probe. The particles under testing differed in terms of their particle size and dispersion stability in deionised water and in various ecotox media. The ORP values of the various dispersions and how they fluctuate relative to each other are discussed. Results show that the ORP values are mainly governed by the type of liquid media employed, with little contributions from the nanoparticles. Seawater was shown to have reduced the ORP value, which was attributed to an increase in the concentration of reducing agents such as sulphites or the reduction of dissolved oxygen concentration. The lack of redox potential value contribution from the particles themselves is thought to be due to insufficient interaction of the particles at the Pt electrode of the ORP probe.
Measurement of Redox Potential in Nanoecotoxicological Investigations
Tantra, Ratna; Cackett, Alex; Peck, Roger; Gohil, Dipak; Snowden, Jacqueline
2012-01-01
Redox potential has been identified by the Organisation for Economic Co-operation and Development (OECD) as one of the parameters that should be investigated for the testing of manufactured nanomaterials. There is still some ambiguity concerning this parameter, i.e., as to what and how to measure, particularly when in a nanoecotoxicological context. In this study the redox potentials of six nanomaterials (either zinc oxide (ZnO) or cerium oxide (CeO2)) dispersions were measured using an oxidation-reduction potential (ORP) electrode probe. The particles under testing differed in terms of their particle size and dispersion stability in deionised water and in various ecotox media. The ORP values of the various dispersions and how they fluctuate relative to each other are discussed. Results show that the ORP values are mainly governed by the type of liquid media employed, with little contributions from the nanoparticles. Seawater was shown to have reduced the ORP value, which was attributed to an increase in the concentration of reducing agents such as sulphites or the reduction of dissolved oxygen concentration. The lack of redox potential value contribution from the particles themselves is thought to be due to insufficient interaction of the particles at the Pt electrode of the ORP probe. PMID:22131988
NASA Astrophysics Data System (ADS)
Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.
2016-11-01
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.
How CMB and large-scale structure constrain chameleon interacting dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au
2015-07-01
We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength,more » can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.« less
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Hadidi, Saba; Feizi, Foroozan
2015-03-01
This study was designed to examine the interaction of Tenofovir (Ten) with human serum albumin (HSA) under physiological conditions. The binding of drugs with human serum albumin is a crucial factor influencing the distribution and bioactivity of drugs in the body. To understand the action mechanisms between Ten and HSA, the binding of Ten with HSA was investigated by a combined experimental and computational approach. UV-vis results confirmed that Ten interacted with HSA to form a ground-state complex and values of the Stern-Volmer quenching constant indicate the presence of a static component in the quenching mechanism. As indicated by the thermodynamic parameters (positive ΔH and ΔS values), hydrophobic interaction plays a major role in the Ten-HSA complex. Through the site marker competitive experiment, Ten was confirmed to be located in site I of HSA. Furthermore, UV-vis absorption spectra, synchronous fluorescence spectrum and CD data were used to investigate the structural change of HSA molecules with addition of Ten, the results indicate that the secondary structure of HSA molecules was changed in the presence of Ten. The experimental results were in agreement with the results obtained via molecular docking study.
Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.
Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid
2016-07-01
This study aims to investigate the interaction between glutathione and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopies under simulated physiological conditions (pH 7.4) and molecular docking methods. The results of fluorescence spectroscopy indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of glutathione through a static quenching mechanism. The fluorescence quenching obtained was related to the formation of BSA-glutathione complex. The values of KSV, Ka and Kb for the glutathione and BSA interaction were in the order of 10(5). The thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and also Gibb's free energy (ΔG) were determined using Van't Hoff equation. These values showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of glutathione to BSA and the stabilization of the complex. Also, the interaction of glutathione and BSA was spontaneous. The effects of glutathione on the BSA conformation were determined using UV-vis spectroscopy. Moreover, glutathione was docked in BSA using ArgusLab as a molecular docking program. It was recognized that glutathione binds within the sub-domain IIA pocket in domain II of BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patsahan, O
2014-06-01
We study the effects of an interaction range on the gas-liquid phase diagram and the crossover behavior of a simple model of ionic fluids: an equimolar binary mixture of equisized hard spheres interacting through screened Coulomb potentials which are repulsive between particles of the same species and attractive between particles of different species. Using the collective variables theory, we find explicit expressions for the relevant coefficients of the effective φ{4} Ginzburg-Landau Hamiltonian in a one-loop approximation. Within the framework of this approximation, we calculate the critical parameters and gas-liquid phase diagrams for varying inverse screening length z. Both the critical temperature scaled by the Yukawa potential contact value and the critical density rapidly decrease with an increase of the interaction range (a decrease of z) and then for z<0.05 they slowly approach the values found for a restricted primitive model (RPM). We find that gas-liquid coexistence region reduces with an increase of z and completely vanishes at z≃2.78. Our results clearly show that an increase in the interaction range leads to a decrease of the crossover temperature. For z≃0.01, the crossover temperature is the same as for the RPM.
Reactivity of fluoroalkanes in reactions of coordinated molecular decomposition
NASA Astrophysics Data System (ADS)
Pokidova, T. S.; Denisov, E. T.
2017-08-01
Experimental results on the coordinated molecular decomposition of RF fluoroalkanes to olefin and HF are analyzed using the model of intersecting parabolas (IPM). The kinetic parameters are calculated to allow estimates of the activation energy ( E) and rate constant ( k) of these reactions, based on enthalpy and IPM algorithms. Parameters E and k are found for the first time for eight RF decomposition reactions. The factors that affect activation energy E of RF decomposition (the enthalpy of the reaction, the electronegativity of the atoms of reaction centers, and the dipole-dipole interaction of polar groups) are determined. The values of E and k for reverse reactions of addition are estimated.
Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method
NASA Astrophysics Data System (ADS)
Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.
1994-11-01
We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.
Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagman, Michael L.; Winter, Frank; Chang, Emmanuel
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less
Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics
Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; ...
2017-12-28
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less
Gas-liquid nucleation at large metastability: unusual features and a new formalism
NASA Astrophysics Data System (ADS)
Santra, Mantu; Singh, Rakesh S.; Bagchi, Biman
2011-03-01
Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order to understand the large numerical discrepancy between simulation predictions and experimental results, we carried out a study of the dependence on the range of intermolecular interactions of both the surface tension of an equilibrium planar gas-liquid interface and the free energy barrier of nucleation. Both are found to depend significantly on the range of interaction for the Lennard-Jones potential, both in two and three dimensions. The value of surface tension and also the free energy difference between the gas and the liquid phase increase significantly and converge only when the range of interaction is extended beyond 6-7 molecular diameters. We find, with the full range of interaction potential, that the surface tension shows only a weak dependence on supersaturation, so the reason for the breakdown of CNT (with simulated values of surface tension and free energy gap) cannot be attributed to the supersaturation dependence of surface tension. This remains an unsettled issue at present because of the use of the value of surface tension obtained at coexistence.
Högman, M; Thornadtsson, A; Liv, P; Hua-Huy, T; Dinh-Xuan, A T; Tufvesson, E; Dressel, H; Janson, C; Koskela, K; Oksa, P; Sauni, R; Uitti, J; Moilanen, E; Lehtimäki, L
2017-09-13
The lung just like all other organs is affected by age. The lung matures by the age of 20 and age-related changes start around middle age, at 40-50 years. Exhaled nitric oxide (F E NO) has been shown to be age, height and gender dependent. We hypothesize that the nitric oxide (NO) parameters alveolar NO (C A NO), airway flux (J aw NO), airway diffusing capacity (D aw NO) and airway wall content (C aw NO) will also demonstrate this dependence. Data from healthy subjects were gathered by the current authors from their earlier publications in which healthy individuals were included as control subjects. Healthy subjects (n = 433) ranged in age from 7 to 78 years. Age-stratified reference values of the NO parameters were significantly different. Gender differences were only observed in the 20-49 age group. The results from the multiple regression models in subjects older than 20 years revealed that age, height and gender interaction together explained 6% of variation in F E NO at 50 ml s -1 (F E NO 50 ), 4% in J aw NO, 16% in C aw NO, 8% in D aw NO and 12% in C A NO. In conclusion, in this study we have generated reference values for NO parameters from an extended NO analysis of healthy subjects. This is important in order to be able to use these parameters in clinical practice.
Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki
2014-01-01
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. PMID:24958104
Seismic activity prediction using computational intelligence techniques in northern Pakistan
NASA Astrophysics Data System (ADS)
Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat
2017-10-01
Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.
Nonlinear Quantum Metrology of Many-Body Open Systems
NASA Astrophysics Data System (ADS)
Beau, M.; del Campo, A.
2017-07-01
We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.
Piezo-optic and elasto-optic properties of monoclinic triglycine sulfate crystals.
Mytsyk, Bogdan; Demyanyshyn, Natalya; Erba, Alessandro; Shut, Viktor; Mozzharov, Sergey; Kost, Yaroslav; Mys, Oksana; Vlokh, Rostyslav
2017-12-01
For the first time, to the best of our knowledge, we have experimentally determined all of the components of the piezo-optic tensor for monoclinic crystals. This has been implemented on a specific example of triglycine sulfate crystals. Based on the results obtained, the complete elasto-optic tensor has been calculated. Acousto-optic figures of merit (AOFMs) have been estimated for the case of acousto-optic interaction occurring in the principal planes of the optical indicatrix ellipsoid and for geometries in which the highest elasto-optic coefficients are involved as effective parameters. It has been found that the highest AOFM value is equal to 6.8×10 -15 s 3 /kg for the case of isotropic acousto-optic interaction with quasi-longitudinal acoustic waves in the principal planes. This AOFM is higher than the corresponding values typical for canonic acousto-optic materials, which are transparent in the deep ultraviolet spectral range.
Interaction of multiarmed spirals in bistable media.
He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng
2013-05-01
We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.
Origin of the blood hyperserotonemia of autism
Janušonis, Skirmantas
2008-01-01
Background Research in the last fifty years has shown that many autistic individuals have elevated serotonin (5-hydroxytryptamine, 5-HT) levels in blood platelets. This phenomenon, known as the platelet hyperserotonemia of autism, is considered to be one of the most well-replicated findings in biological psychiatry. Its replicability suggests that many of the genes involved in autism affect a small number of biological networks. These networks may also play a role in the early development of the autistic brain. Results We developed an equation that allows calculation of platelet 5-HT concentration as a function of measurable biological parameters. It also provides information about the sensitivity of platelet 5-HT levels to each of the parameters and their interactions. Conclusion The model yields platelet 5-HT concentrations that are consistent with values reported in experimental studies. If the parameters are considered independent, the model predicts that platelet 5-HT levels should be sensitive to changes in the platelet 5-HT uptake rate constant, the proportion of free 5-HT cleared in the liver and lungs, the gut 5-HT production rate and its regulation, and the volume of the gut wall. Linear and non-linear interactions among these and other parameters are specified in the equation, which may facilitate the design and interpretation of experimental studies. PMID:18498654
Origin of the blood hyperserotonemia of autism.
Janusonis, Skirmantas
2008-05-22
Research in the last fifty years has shown that many autistic individuals have elevated serotonin (5-hydroxytryptamine, 5-HT) levels in blood platelets. This phenomenon, known as the platelet hyperserotonemia of autism, is considered to be one of the most well-replicated findings in biological psychiatry. Its replicability suggests that many of the genes involved in autism affect a small number of biological networks. These networks may also play a role in the early development of the autistic brain. We developed an equation that allows calculation of platelet 5-HT concentration as a function of measurable biological parameters. It also provides information about the sensitivity of platelet 5-HT levels to each of the parameters and their interactions. The model yields platelet 5-HT concentrations that are consistent with values reported in experimental studies. If the parameters are considered independent, the model predicts that platelet 5-HT levels should be sensitive to changes in the platelet 5-HT uptake rate constant, the proportion of free 5-HT cleared in the liver and lungs, the gut 5-HT production rate and its regulation, and the volume of the gut wall. Linear and non-linear interactions among these and other parameters are specified in the equation, which may facilitate the design and interpretation of experimental studies.
NASA Astrophysics Data System (ADS)
Tubino, Federica
2018-03-01
The effect of human-structure interaction in the vertical direction for footbridges is studied based on a probabilistic approach. The bridge is modeled as a continuous dynamic system, while pedestrians are schematized as moving single-degree-of-freedom systems with random dynamic properties. The non-dimensional form of the equations of motion allows us to obtain results that can be applied in a very wide set of cases. An extensive Monte Carlo simulation campaign is performed, varying the main non-dimensional parameters identified, and the mean values and coefficients of variation of the damping ratio and of the non-dimensional natural frequency of the coupled system are reported. The results obtained can be interpreted from two different points of view. If the characterization of pedestrians' equivalent dynamic parameters is assumed as uncertain, as revealed from a current literature review, then the paper provides a range of possible variations of the coupled system damping ratio and natural frequency as a function of pedestrians' parameters. Assuming that a reliable characterization of pedestrians' dynamic parameters is available (which is not the case at present, but could be in the future), the results presented can be adopted to estimate the damping ratio and natural frequency of the coupled footbridge-pedestrian system for a very wide range of real structures.
NASA Astrophysics Data System (ADS)
Schönert, Stefan; Lasserre, Thierry; Oberauer, Lothar
2003-03-01
In the forthcoming months, the KamLAND experiment will probe the parameter space of the solar large mixing angle MSW solution as the origin of the solar neutrino deficit with ν¯e's from distant nuclear reactors. If however the solution realized in nature is such that Δm2sol>~2×10-4 eV2 (thereafter named the HLMA region), KamLAND will only observe a rate suppression but no spectral distortion and hence it will not have the optimal sensitivity to measure the mixing parameters. In this case, we propose a new medium baseline reactor experiment located at Heilbronn (Germany) to pin down the precise value of the solar mixing parameters. In this paper, we present the Heilbronn detector site, we calculate the ν¯e interaction rate and the positron spectrum expected from the surrounding nuclear power plants. We also discuss the sensitivity of such an experiment to |Ue3| in both normal and inverted neutrino mass hierarchy scenarios. We then outline the detector design, estimate background signals induced by natural radioactivity as well as by in situ cosmic ray muon interaction, and discuss a strategy to detect the anti-neutrino signal `free of background'.
NASA Astrophysics Data System (ADS)
Brauer, Claudia; Torfs, Paul; Teuling, Ryan; Uijlenhoet, Remko
2015-04-01
Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS) to fill the gap between complex, spatially distributed models often used in lowland catchments and simple, parametric models which have mostly been developed for mountainous catchments (Brauer et al., 2014ab). This parametric rainfall-runoff model can be used all over the world in both freely draining lowland catchments and polders with controlled water levels. The open source model code is implemented in R and can be downloaded from www.github.com/ClaudiaBrauer/WALRUS. The structure and code of WALRUS are simple, which facilitates detailed investigation of the effect of parameters on all model variables. WALRUS contains only four parameters requiring calibration; they are intended to have a strong, qualitative relation with catchment characteristics. Parameter estimation remains a challenge, however. The model structure contains three main feedbacks: (1) between groundwater and surface water; (2) between saturated and unsaturated zone; (3) between catchment wetness and (quick/slow) flowroute division. These feedbacks represent essential rainfall-runoff processes in lowland catchments, but increase the risk of parameter dependence and equifinality. Therefore, model performance should not only be judged based on a comparison between modelled and observed discharges, but also based on the plausibility of the internal modelled variables. Here, we present a method to analyse the effect of parameter values on internal model states and fluxes in a qualitative and intuitive way using interactive parallel plotting. We applied WALRUS to ten Dutch catchments with different sizes, slopes and soil types and both freely draining and polder areas. The model was run with a large number of parameter sets, which were created using Latin Hypercube Sampling. The model output was characterised in terms of several signatures, both measures of goodness of fit and statistics of internal model variables (such as the percentage of rain water travelling through the quickflow reservoir). End users can then eliminate parameter combinations with unrealistic outcomes based on expert knowledge using interactive parallel plots. In these plots, for instance, ranges can be selected for each signature and only model runs which yield signature values in these ranges are highlighted. The resulting selection of realistic parameter sets can be used for ensemble simulations. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geoscientific Model Development, 7, 2313-2332, www.geosci-model-dev.net/7/2313/2014/gmd-7-2313-2014.pdf C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrology and Earth System Sciences, 18, 4007-4028, www.hydrol-earth-syst-sci.net/18/4007/2014/hess-18-4007-2014.pdf
Neutrino velocity and local Lorentz invariance
NASA Astrophysics Data System (ADS)
Cardone, Fabio; Mignani, Roberto; Petrucci, Andrea
2015-09-01
We discuss the possible violation of local Lorentz invariance (LLI) arising from a faster-than-light neutrino speed. A toy calculation of the LLI violation parameter δ, based on the (disclaimed) OPERA data, suggests that the values of δ are determined by the interaction involved, and not by the energy range. This hypothesis is further corroborated by the analysis of the more recent results of the BOREXINO, LVD and ICARUS experiments.
NASA Astrophysics Data System (ADS)
Bialas, A.; Czyz, W.; Zalewski, K.
2006-10-01
A model-independent lower bound on the entropy S of the multi-particle system produced in high energy collisions, provided by the measurable Rényi entropy H2, is shown to be very effective. Estimates show that the ratio H2/S remains close to one half for all realistic values of the parameters.
Interpreting the 750 GeV diphoton excess by the singlet extension of the Manohar-Wise model
NASA Astrophysics Data System (ADS)
Cao, Junjie; Han, Chengcheng; Shang, Liangliang; Su, Wei; Yang, Jin Min; Zhang, Yang
2016-04-01
The evidence of a new scalar particle X from the 750 GeV diphoton excess, and the absence of any other signal of new physics at the LHC so far suggest the existence of new colored scalars, which may be moderately light and thus can induce sizable Xgg and Xγγ couplings without resorting to very strong interactions. Motivated by this speculation, we extend the Manohar-Wise model by adding one gauge singlet scalar field. The resulting theory then predicts one singlet dominated scalar ϕ as well as three kinds of color-octet scalars, which can mediate through loops the ϕgg and ϕγγ interactions. After fitting the model to the diphoton data at the LHC, we find that in reasonable parameter regions the excess can be explained at 1σ level by the process gg → ϕ → γγ, and the best points predict the central value of the excess rate with χmin2 = 2.32, which corresponds to a p-value of 0.68. We also consider the constraints from various LHC Run I signals, and we conclude that, although these constraints are powerful in excluding the parameter space of the model, the best points are still experimentally allowed.
Pairing phase diagram of three holes in the generalized Hubbard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, O.; Espinosa, J.E.
Investigations of high-{Tc} superconductors suggest that the electronic correlation may play a significant role in the formation of pairs. Although the main interest is on the physic of two-dimensional highly correlated electron systems, the one-dimensional models related to high temperature superconductivity are very popular due to the conjecture that properties of the 1D and 2D variants of certain models have common aspects. Within the models for correlated electron systems, that attempt to capture the essential physics of high-temperature superconductors and parent compounds, the Hubbard model is one of the simplest. Here, the pairing problem of a three electrons system hasmore » been studied by using a real-space method and the generalized Hubbard Hamiltonian. This method includes the correlated hopping interactions as an extension of the previously proposed mapping method, and is based on mapping the correlated many body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem was solved in a non-perturbative way. In a linear chain, the authors analyzed the pairing phase diagram of three correlated holes for different values of the Hamiltonian parameters. For some value of the hopping parameters they obtain an analytical solution for all kind of interactions.« less
Phase Transition for the Maki-Thompson Rumour Model on a Small-World Network
NASA Astrophysics Data System (ADS)
Agliari, Elena; Pachon, Angelica; Rodriguez, Pablo M.; Tavani, Flavia
2017-11-01
We consider the Maki-Thompson model for the stochastic propagation of a rumour within a population. In this model the population is made up of "spreaders", "ignorants" and "stiflers"; any spreader attempts to pass the rumour to the other individuals via pair-wise interactions and in case the other individual is an ignorant, it becomes a spreader, while in the other two cases the initiating spreader turns into a stifler. In a finite population the process will eventually reach an equilibrium situation where individuals are either stiflers or ignorants. We extend the original hypothesis of homogenously mixed population by allowing for a small-world network embedding the model, in such a way that interactions occur only between nearest-neighbours. This structure is realized starting from a k-regular ring and by inserting, in the average, c additional links in such a way that k and c are tuneable parameters for the population architecture. We prove that this system exhibits a transition between regimes of localization (where the final number of stiflers is at most logarithmic in the population size) and propagation (where the final number of stiflers grows algebraically with the population size) at a finite value of the network parameter c. A quantitative estimate for the critical value of c is obtained via extensive numerical simulations.
An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.
Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen
2018-06-01
This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.
Long-range intercellular Ca2+ wave patterns
NASA Astrophysics Data System (ADS)
Tabi, C. B.; Maïna, I.; Mohamadou, A.; Ekobena, H. P. F.; Kofané, T. C.
2015-10-01
Modulational instability is utilized to investigate intercellular Ca2+ wave propagation in an array of diffusively coupled cells. Cells are supposed to be connected via paracrine signaling, where long-range effects, due to the presence of extracellular messengers, are included. The multiple-scale expansion is used to show that the whole dynamics of Ca2+ waves, from the endoplasmic reticulum to the cytosol, can be reduced to a single differential-difference nonlinear equation whose solutions are assumed to be plane waves. Their linear stability analysis is studied, with emphasis on the impact of long-range coupling, via the range parameter s. It is shown that s, as well as the number of interacting cells, importantly modifies the features of modulational instability, as small values of s imply a strong coupling, and increasing its value rather reduces the problem to a first-neighbor one. Our theoretical findings are numerically tested, as the generic equations are fully integrated, leading to the emergence of nonlinear patterns of Ca2+ waves. Strong long-range coupling is pictured by extended trains of breather-like structures whose frequency decreases with increasing s. We also show numerically that the number of interacting cells plays on the spatio-temporal formation of Ca2+ patterns, whilst the quasi-perfect intercellular communication depends on the paracrine coupling parameter.
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
NASA Astrophysics Data System (ADS)
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.
NASA Astrophysics Data System (ADS)
Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun
2018-01-01
In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.
NASA Astrophysics Data System (ADS)
Gaikwad, Dhammajyot Kundlik; Pawar, Pravina P.; Selvam, T. Palani
2017-09-01
The mass attenuation coefficients (μ/ρ) for some enzymes, proteins, amino acids and fatty acids were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies, by performing transmission experiments using 57Co, 133Ba, 137Cs, 60Co and 22Na sources collimated to produce 0.52 cm diameter beams. A NaI (Tl) scintillation detector with energy resolution 8.2% at 663 keV was used for detection. The experimental values of (μ/ρ) were then used to determine the atomic cross section (σa), electronic cross section (σe), effective atomic number (Zeff) and electron density (Neff). It was observed that (μ/ρ), σa and σe decrease initially and then tends to be almost constant at higher energies. Values of Zeff and Neff were observed roughly constant with energy. The deviations in experimental results of radiological parameters were believed to be affected by physical and chemical environments. Experimental results of radiological parameters were observed in good agreement with WinXCom values.
Potential energy function for CH3+CH3 ⇆ C2H6: Attributes of the minimum energy path
NASA Astrophysics Data System (ADS)
Robertson, S. H.; Wardlaw, D. M.; Hirst, D. M.
1993-11-01
The region of the potential energy surface for the title reaction in the vicinity of its minimum energy path has been predicted from the analysis of ab initio electronic energy calculations. The ab initio procedure employs a 6-31G** basis set and a configuration interaction calculation which uses the orbitals obtained in a generalized valence bond calculation. Calculated equilibrium properties of ethane and of isolated methyl radical are compared to existing theoretical and experimental results. The reaction coordinate is represented by the carbon-carbon interatomic distance. The following attributes are reported as a function of this distance and fit to functional forms which smoothly interpolate between reactant and product values of each attribute: the minimum energy path potential, the minimum energy path geometry, normal mode frequencies for vibrational motion orthogonal to the reaction coordinate, a torsional potential, and a fundamental anharmonic frequency for local mode, out-of-plane CH3 bending (umbrella motion). The best representation is provided by a three-parameter modified Morse function for the minimum energy path potential and a two-parameter hyperbolic tangent switching function for all other attributes. A poorer but simpler representation, which may be satisfactory for selected applications, is provided by a standard Morse function and a one-parameter exponential switching function. Previous applications of the exponential switching function to estimate the reaction coordinate dependence of the frequencies and geometry of this system have assumed the same value of the range parameter α for each property and have taken α to be less than or equal to the ``standard'' value of 1.0 Å-1. Based on the present analysis this is incorrect: The α values depend on the property and range from ˜1.2 to ˜1.8 Å-1.
Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid
2017-07-10
In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.
An inverse gas chromatographic methodology for studying gas-liquid mass transfer.
Paloglou, A; Martakidis, K; Gavril, D
2017-01-13
A novel methodology of reversed flow inverse gas chromatography (RF-IGC) is presented. It permits the simultaneous determination of mass transfer coefficients across the gas liquid interface as well as the respective solubility parameters and thermodynamic functions of dissolution of gases into liquids. The standard deviation of the experimentally determined parameters is estimated for first time, which combined with the successful comparison of the values of the present parameters with other literature ones ascertain the reliability of the methodology. Another novelty of the present work is that the chromatographic sampling of the physicochemical phenomena is done without performing the usual flow reversals procedure. Vinyl chloride monomer's (VCM) interaction with various composition liquid foods: orange juice, milk and olive oil was used as model system. The present transfer rates are controlled by the gas film at lower temperatures, but at higher temperatures the resistances in both films tend to become equal. The found liquid diffusivity values express the total mass transfer from the gas phase into the liquid's bulk and they decrease with rising temperature, as the solubilities of gases in liquids do. Solubility, expressed by Henry's law constant and the mean values of interfacial thickness are of the same order of magnitude to literature ones. From the thermodynamic point of view, VCM dissolution in all liquids is accompanied by significant heat release and it is a slightly non-spontaneous process, near equilibrium, while the entropy change values are negative. Copyright © 2016 Elsevier B.V. All rights reserved.
Loss of stability of a railway wheel-set, subcritical or supercritical
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Dai, Huanyun
2017-11-01
Most researches on railway vehicle stability analysis are focused on the codimension 1 (for short, codim 1) bifurcations like subcritical and supercritical Hopf bifurcation. The analysis of codim 1 bifurcation can be completed based on one bifurcation parameter. However, two bifurcation parameters should be considered to give a general view of the motion of the system when it undergoes a degenerate Hopf bifurcation. This kind of bifurcation named the generalised Hopf bifurcation belongs to the codimension 2 (for short, codim 2) bifurcations where two bifurcation parameters need to be taken into consideration. In this paper, we give a numerical analysis of the codim 2 bifurcations of a nonlinear railway wheel-set with the QR algorithm to calculate the eigenvalues of the linearised system incorporating the Golden Cut method and the shooting method to calculate the limit cycles around the Hopf bifurcation points. Here, we found the existence of a generalised Hopf bifurcation where a subcritical Hopf bifurcation turns into a supercritical one with the increase of the bifurcation parameters, which belong to the codim 2 bifurcations, in a nonlinear railway wheel-set model. Only the nonlinear wheel/rail interactive relationship has been taken into consideration in the lateral model that is formulated in this paper. The motion of the wheel-set has been investigated when the bifurcation parameters are perturbed in the neighbourhood of their critical parameters, and the influences of different parameters on critical values of the bifurcation parameters are also given. From the results, it can be seen that the bifurcation types of the wheel-set will change with a variation of the bifurcation parameters in the neighbourhood of their critical values.
Local versus global interactions in nonequilibrium transitions: A model of social dynamics
NASA Astrophysics Data System (ADS)
González-Avella, J. C.; Eguíluz, V. M.; Cosenza, M. G.; Klemm, K.; Herrera, J. L.; San Miguel, M.
2006-04-01
A nonequilibrium system of locally interacting elements in a lattice with an absorbing order-disorder phase transition is studied under the effect of additional interacting fields. These fields are shown to produce interesting effects in the collective behavior of this system. Both for autonomous and external fields, disorder grows in the system when the probability of the elements to interact with the field is increased. There exists a threshold value of this probability beyond which the system is always disordered. The domain of parameters of the ordered regime is larger for nonuniform local fields than for spatially uniform fields. However, the zero field limit is discontinous. In the limit of vanishingly small probability of interaction with the field, autonomous or external fields are able to order a system that would fall in a disordered phase under local interactions of the elements alone. We consider different types of fields which are interpreted as forms of mass media acting on a social system in the context of Axelrod’s model for cultural dissemination.
Local versus global interactions in nonequilibrium transitions: A model of social dynamics.
González-Avella, J C; Eguíluz, V M; Cosenza, M G; Klemm, K; Herrera, J L; San Miguel, M
2006-04-01
A nonequilibrium system of locally interacting elements in a lattice with an absorbing order-disorder phase transition is studied under the effect of additional interacting fields. These fields are shown to produce interesting effects in the collective behavior of this system. Both for autonomous and external fields, disorder grows in the system when the probability of the elements to interact with the field is increased. There exists a threshold value of this probability beyond which the system is always disordered. The domain of parameters of the ordered regime is larger for nonuniform local fields than for spatially uniform fields. However, the zero field limit is discontinous. In the limit of vanishingly small probability of interaction with the field, autonomous or external fields are able to order a system that would fall in a disordered phase under local interactions of the elements alone. We consider different types of fields which are interpreted as forms of mass media acting on a social system in the context of Axelrod's model for cultural dissemination.
Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances
Tipping, E.; Reddy, M.M.; Hurley, M.A.
1990-01-01
The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.
Meor Mohd Affandi, M M R; Tripathy, Minaketan; Shah, Syed Adnan Ali; Majeed, A B A
2016-01-01
We examined the solubility of simvastatin in water in 0.01 mol·dm(-3), 0.02 mol·dm(-3), 0.04 mol·dm(-3), 0.09 mol·dm(-3), 0.18 mol·dm(-3), 0.36 mol·dm(-3), and 0.73 mol·dm(-3) arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute-solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG (0), ΔH (0), ΔS (0), and E s) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute-solvent and solute-cosolute interactions. Further, these systems were analyzed using ultraviolet-visible analysis, Fourier-transform infrared spectroscopy, and (13)C, (1)H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation.
Meor Mohd Affandi, MMR; Tripathy, Minaketan; Shah, Syed Adnan Ali; Majeed, ABA
2016-01-01
We examined the solubility of simvastatin in water in 0.01 mol·dm−3, 0.02 mol·dm−3, 0.04 mol·dm−3, 0.09 mol·dm−3, 0.18 mol·dm−3, 0.36 mol·dm−3, and 0.73 mol·dm−3 arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute–solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG0, ΔH0, ΔS0, and Es) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute–solvent and solute–cosolute interactions. Further, these systems were analyzed using ultraviolet–visible analysis, Fourier-transform infrared spectroscopy, and 13C, 1H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation. PMID:27041998
Kinetics of motility-induced phase separation and swim pressure
NASA Astrophysics Data System (ADS)
Patch, Adam; Yllanes, David; Marchetti, M. Cristina
Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. We correlate the time evolution of the mean pressure towards its steady state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems. NSF-DMR-1305184, NSF-DGE-1068780, ACI-1341006, FIS2015-65078-C02, BIFI-ZCAM.
NASA Astrophysics Data System (ADS)
Magnasco, Valerio; Battezzati, Michele; Rapallo, Arnaldo; Costa, Camilla
2006-09-01
T-dependent long-range Keesom coefficients are evaluated up to the R-10 term for small values of the dimensionless parameter |a|. For large values of |a| corrections must be introduced mostly for the dipole-dipole term, the correct values of C6 being best obtained from a recently derived asymptotic formula. The corresponding attractive energies are the isotropic electrostatic contributions to the interaction energy and are temperature-dependent. Comparison with long-range induction and dispersion energy results for some simple polar axially symmetric molecules in the gas phase shows that at R = 10 a0 and T = 293 K the electrostatic dipole-dipole component is dominant for ∣ a11∣ > 0.5. For centrosymmetric molecules the corresponding electrostatic contribution is usually negligible with respect to dispersion.
Investigation of giant magnetoconductance in organic devices based on hopping mechanism
NASA Astrophysics Data System (ADS)
Yang, F. J.; Qin, W.; Xie, S. J.
2014-04-01
We suggest a spin-dependent hopping mechanism which includes the effect of the external magnetic field as well as hyperfine interaction (HFI) to explain the observed giant magnetoconductance (MC) in non-magnetic organic devices. Based on the extended Marcus theory, we calculate the MC by using the master equation. It is found that a MC value as large as 91% is obtained under a low driving voltage. For suitable parameters, the theoretical results are in good agreement with the experimental data. Influences of the carrier density, HFI, and the carrier localization on the MC value are investigated. Especially, it is found that a low-dimensional structure of the organic materials is favorable to get a large MC value.
Investigation of giant magnetoconductance in organic devices based on hopping mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F. J.; Qin, W.; Xie, S. J., E-mail: xsj@sdu.edu.cn
2014-04-14
We suggest a spin-dependent hopping mechanism which includes the effect of the external magnetic field as well as hyperfine interaction (HFI) to explain the observed giant magnetoconductance (MC) in non-magnetic organic devices. Based on the extended Marcus theory, we calculate the MC by using the master equation. It is found that a MC value as large as 91% is obtained under a low driving voltage. For suitable parameters, the theoretical results are in good agreement with the experimental data. Influences of the carrier density, HFI, and the carrier localization on the MC value are investigated. Especially, it is found thatmore » a low-dimensional structure of the organic materials is favorable to get a large MC value.« less
Shapes and stability of algebraic nuclear models
NASA Technical Reports Server (NTRS)
Lopez-Moreno, Enrique; Castanos, Octavio
1995-01-01
A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.
A four-layer model for the heat budget of homogeneous land surfaces
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Monteith, J. L.
1988-01-01
The present model envisions the heat balance of a homogeneous land surface in terms of available energy, a set of driving potentials, and parameters for the physical state of the soil and vegetation. Two unique features of the model are: (1) the expression of the interaction of evaporation from the soil and from foliage by changes in the value of the saturation vapor pressure deficit of air in the canopy (the conclusions of this interaction being consistent with field observations); and (2) the treatment of sensible and latent heat exchange between the atmosphere and a soil consisting of two discrete layers.
How does informational heterogeneity affect the quality of forecasts?
NASA Astrophysics Data System (ADS)
Gualdi, S.; De Martino, A.
2010-01-01
We investigate a toy model of inductive interacting agents aiming to forecast a continuous, exogenous random variable E. Private information on E is spread heterogeneously across agents. Herding turns out to be the preferred forecasting mechanism when heterogeneity is maximal. However in such conditions aggregating information efficiently is hard even in the presence of learning, as the herding ratio rises significantly above the efficient market expectation of 1 and remarkably close to the empirically observed values. We also study how different parameters (interaction range, learning rate, cost of information and score memory) may affect this scenario and improve efficiency in the hard phase.
Effect of dispersion forces on squeezing with Rydberg atoms
NASA Technical Reports Server (NTRS)
Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.
1994-01-01
We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.
2013-08-01
The interaction between L-phenylalanine and nicotinic acid is studied by solution calorimetry in an aqueous buffer solution (pH 7.35) at different ratios of the reagents. Experimental data on the enthalpy of dissolution of amino acid in the buffer solution of nicotinic acid at 298.15 K are calculated. The values of thermodynamic parameters for the complexation of L-phenylalanine with nicotinic acid are calculated. It is shown that the formation of a 1: 2 molecular complex is stabilized by the entropy factor due to the dominant role of the dehydration effect of initial reagents.
The endogenous dynamics of financial markets: Interaction and information dissemination
NASA Astrophysics Data System (ADS)
Yang, ChunXia; Hu, Sen; Xia, BingYing
2012-06-01
We investigate the process that different interactions between investors will prompt information to propagate along a differentiated path and construct a financial market model. As information spreads, increasingly investors are attracted to participate in trading, then the “herding effect” is magnified gradually, which will induce the topology of market network to change and the price to fluctuate. Especially, under different initial conditions or parameters, the peak and fat-tail property is produced and the obtained statistic values coincide with empirical results: the power-law exponents between the peak value of return probability distribution and the time scales range from 0.579 to 0.747, and the exponents between the accumulation distribution and the return on the tail are close to 3. Besides, the extent of volatility clustering in our produced price series is close to that of S&P 500 and locates between NASDAQ and HSI. All the results obtained here indicate that the continuous variation of the “herding effect” resulting from information propagation among interacting investors may be the origin of stylized facts of price fluctuations.
Gómez-Coca, Silvia; Ruiz, Eliseo
2012-03-07
The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.
Whistler-triggered chorus emissions observed during daytime at low latitude ground station Jammu
NASA Astrophysics Data System (ADS)
Pratap Patel, Ravindra; Singh, K. K.; Singh, A. K.; Singh, R. P.
In this paper, we present whistler-triggered chorus emission recorded during daytime at low latitude ground station Jammu (geomag. Lat. = 22 degree 26 minute N; L = 1.17) during the period from 1996 to 2003. After analysis of the eight years collected data, we found out 29 events, which are definitely identified as chorus emission triggered by whistlers. During the observation period the magnetic activity is high. Analysis shows that the whistlers have propagated along the geomagnetic field line having L-values lying between L = 1.9 and 4.4. These waves could have propagated along the geomagnetic field lines either in ducted mode or pro-longitudinal mode. The measured relative intensity of the triggered emission and whistler wave is approximately the same and also varies from one event to another. It is proposed that these waves are generated through a process of wave-particle interaction and wave-wave interactions. Related parameters of this interaction are computed for different L-value and wave amplitude. With the help of dynamic spectra of these emissions, the proposed mechanisms are explained.
Fernández-Viadero, Carlos; Peña Sarabia, Nicolás; Jiménez-Sanz, Magdalena; Ordóñez-González, Javier; Verduga Vélez, Rosario; Crespo Santiago, Dámaso
2016-01-01
It is important to assess longitudinal nutritional parameters during the ageing process in order to determine body composition changes. This procedure is more relevant when dealing with institutionalised geriatric patients suffering from cognitive impairment. The aim of this study was to assess the interactions, if any, between mental status and several nutritional parameters in a cohort of elderly people. A longitudinal prospective two years follow-up evaluation was performed on 301 elderly residents (233 females and 68 males) in a nursing home, of whom 51 of them fulfilled the clinical criteria for dementia. Both anthropometric and biochemical parameters were obtained annually, according to standard procedures. The dementia group had lower values when compared to the non-dementia group. Furthermore, nutritional values remained constant in the group with cognitive impairment (no significant differences were observed throughout the study period). BMI 24.5±4.9 vs 24.2±4.1; tricipital skinfold 15.0±6.0 vs 14.7±6.9; brachial circumference 25.9±3.3 vs 25.7±3.5, and albumin 3.7±0.3 vs 3.7±0.3. At the end of the study, the group without cognitive impairment showed lower values in all the parameters analysed when compared to the baseline ones, except for bicipital fold and plasma triglycerides. Our study shows that there are no variations in the elderly with cognitive impairment, as regards the nutritional, anthropometric and biochemist parameters analysed. On the contrary, the group with normal cognitive status showed a reduction in most of the parameters. Further studies analysing larger populations of elderly people and over longer periods of time will provide more information to improve our knowledge on this important issue. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.
Fujimori, Miki; Kadota, Kazunori; Tozuka, Yuichi
2017-04-01
Transglycosylated stevia (stevia-G) can effectively improve the dissolution and bioavailability of poorly water-soluble drugs. Furthermore, addition of an ionic surfactant to stevia-G solution has been shown to enhance the dissolution effect of stevia-G on flurbiprofen. Herein, 4 surfactants, namely sodium dodecyl sulfate, sodium N-dodecanoylsarcosinate, sodium monododecyl phosphate, and lauryltrimethylammonium chloride (LTAC) were screened to investigate their synergistic effect with stevia-G in enhancing the solubility of mefenamic acid (MFA). The ternary formulation containing LTAC produced the highest increase in solubility, whereas the binary MFA/LTAC formulation did not increase the solubility of MFA. Surface tension was evaluated to analyze the interaction between stevia-G and each ionic surfactant, wherein the Rubingh model was applied to predict mixed micelle formation between stevia-G and LTAC. Interaction parameters calculated by the Rubingh model reflected mixed micelle formation between stevia-G and LTAC relative to the self-interactions of the 2 individual surfactants. All interaction parameters in this system showed negative values, indicating a favorable interaction (e.g., hydrogen bond or electrostatic and dipole) between binary components in the mixed micelles. Spray-dried particles of ternary formulations (MFA/stevia-G/LTAC) were prepared to evaluate the dissolution profile and physicochemical properties. Dissolution profiling showed that the concentration of MFA released from spray-dried particles was significantly higher than untreated MFA. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Interactive vs. Non-Interactive Multi-Model Ensembles
NASA Astrophysics Data System (ADS)
Duane, G. S.
2013-12-01
If the members of an ensemble of different models are allowed to interact with one another in run time, predictive skill can be improved as compared to that of any individual model or any average of indvidual model outputs. Inter-model connections in such an interactive ensemble can be trained, using historical data, so that the resulting ``supermodel' synchronizes with reality when used in weather-prediction mode, where the individual models perform data assimilation from each other (with trainable inter-model 'observation error') as well as from real observations. In climate-projection mode, parameters of the individual models are changed, as might occur from an increase in GHG levels, and one obtains relevant statistical properties of the new supermodel attractor. In simple cases, it has been shown that training of the inter-model connections with the old parameter values gives a supermodel that is still predictive when the parameter values are changed. Here we inquire as to the circumstances under which supermodel performance can be expected to exceed that of the customary weighted average of model outputs. We consider a supermodel formed from quasigeostrophic (QG) channel models with different forcing coefficients, and introduce an effective training scheme for the inter-model connections. We show that the blocked-zonal index cycle is reproduced better by the supermodel than by any non-interactive ensemble in the extreme case where the forcing coefficients of the different models are very large or very small. With realistic differences in forcing coefficients, as would be representative of actual differences among IPCC-class models, the usual linearity assumption is justified and a weighted average of model outputs is adequate. It is therefore hypothesized that supermodeling is likely to be useful in situations where there are qualitative model differences, as arising from sub-gridscale parameterizations, that affect overall model behavior. Otherwise the usual ex post facto averaging will probably suffice. The advantage of supermodeling is seen in statistics such as anticorrelation between blocking activity in the Atlantic and Pacific sectors, in the case of the QG channel model, rather than in overall blocking frequency. Likewise in climate models, the advantage of supermodeling is typically manifest in higher-order statistics rather than in quantities such as mean temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in; Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology; Jain, P. K.
In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typicalmore » PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.« less
Parameterization of a mesoscopic model for the self-assembly of linear sodium alkyl sulfates
NASA Astrophysics Data System (ADS)
Mai, Zhaohuan; Couallier, Estelle; Rakib, Mohammed; Rousseau, Bernard
2014-05-01
A systematic approach to develop mesoscopic models for a series of linear anionic surfactants (CH3(CH2)n - 1OSO3Na, n = 6, 9, 12, 15) by dissipative particle dynamics (DPD) simulations is presented in this work. The four surfactants are represented by coarse-grained models composed of the same head group and different numbers of identical tail beads. The transferability of the DPD model over different surfactant systems is carefully checked by adjusting the repulsive interaction parameters and the rigidity of surfactant molecules, in order to reproduce key equilibrium properties of the aqueous micellar solutions observed experimentally, including critical micelle concentration (CMC) and average micelle aggregation number (Nag). We find that the chain length is a good index to optimize the parameters and evaluate the transferability of the DPD model. Our models qualitatively reproduce the essential properties of these surfactant analogues with a set of best-fit parameters. It is observed that the logarithm of the CMC value decreases linearly with the surfactant chain length, in agreement with Klevens' rule. With the best-fit and transferable set of parameters, we have been able to calculate the free energy contribution to micelle formation per methylene unit of -1.7 kJ/mol, very close to the experimentally reported value.
Do mobile phones pose a potential risk to autonomic modulation of the heart?
Barutcu, Irfan; Esen, Ali Metin; Kaya, Dayimi; Turkmen, Muhsin; Karakaya, Osman; Saglam, Mustafa; Melek, Mehmet; Çelik, Ataç; Kilit, Celal; Onrat, Ersel; Kirma, Cevat
2011-11-01
It has long been speculated that mobile phones may interact with the cardiac devices and thereby cardiovascular system may be a potential target for the electromagnetic fields emitted by the mobile phones. Therefore, the present study was designed to test possible effects of radiofrequency waves emitted by digital mobile phones on cardiac autonomic modulation by short-time heart rate variability (HRV) analysis. A total of 20 healthy young subjects were included to the study. All participants were rested in supine position at least for 15 minutes on a comfortable bed, and then time and frequency domain HRV parameters were recorded at baseline in supine position for 5 minutes. After completion of baseline records, by using a mobile GSM (Global System for Mobile Communication) phone, HRV parameters were recorded at turned off mode, at turned on mode, and at calling mode over 5 minutes periods for each stage. Neither time nor frequency domain HRV parameters altered significantly during off mode compare to their baseline values. Also, neither time nor frequency domain HRV parameters altered significantly during turned on and calling mode compared to their baseline values. Short-time exposure to electromagnetic fields emitted by mobile phone does not affect cardiac autonomic modulation in healthy subjects.
NASA Astrophysics Data System (ADS)
Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.
2016-08-01
Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.
Modeling of traction-coupling properties of wheel propulsor
NASA Astrophysics Data System (ADS)
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
In conditions of operation of aggregates on soils with low bearing capacity, the main performance indicators of their operation are determined by the properties of retaining the functional qualities of the propulsor. Therefore, the parameters of the anti-skid device can not be calculated by only one criterion. The equipment of propellers with anti-skid devices, which allow to reduce the compaction effect of the propulsion device on the soil, seems to be a rational solution to the problem of increasing traction and coupling properties of the driving wheels. The mathematical model is based on the study of the interaction of the driving wheel with anti-skid devices and a deformable bearing surface, which takes into account the wheel diameter, skid coefficient, the parameters of the anti-skid device, the physical and mechanical properties of the soil. As a basic mathematical model that determines the dependence of the coupling properties on the wheel parameters, the model obtained as a result of integration and reflecting the process of soil deformation from the shear stress is adopted. The total value of the resistance forces will determine the force of the hitch pressure on the horizontal soil layers, and the value of its deformation is the degree of wheel slippage. When the anti-skid devices interact with the soil, the traction capacity of the wheel is composed of shear forces, soil shear and soil deformation forces with detachable hooks. As a result of the interaction of the hook with the soil, the latter presses against the walls of the hook with the force equal to the sum of the hook load and the resistance to movement. During operation, the linear dimensions of the hook will decrease, which is not taken into account by the safety factor. Abrasive wear of the thickness of the hook is approximately proportional to the work of friction caused by the movement of the hook when inserted into the soil and slipping the wheel.
System and method for motor parameter estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhrs, Bin; Yan, Ting
2014-03-18
A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less
Rufeil-Fiori, Elena; Banchio, Adolfo J
2018-03-07
In lipid monolayers with phase coexistence, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normally distributed size domains. For this purpose, we vary the relevant system parameters, polydispersity and interaction strength, within a range of experimental interest. We also analyze the consequences of using a monodisperse model to determine the interaction strength from an experimental RDF. We find that polydispersity strongly affects the value of the interaction strength, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, by suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antic, Bratislav; Perovic, Marija; Kremenovic, Aleksandar
2015-09-30
The evolution of the magnetic state, crystal structure and microstructure parameters of nanocrystalline zinc–ferrite, tuned by thermal annealing of ~4 nm nanoparticles, was systematically studied by complementary characterization methods. Structural analysis of neutron and synchrotron x-ray radiation data revealed a mixed cation distribution in the nanoparticle samples, with the degree of inversion systematically decreasing from 0.25 in an as-prepared nanocrystalline sample to a non-inverted spinel structure with a normal cation distribution in the bulk counterpart. The results of DC magnetization and Mossbauer spectroscopy experiments indicated a superparamagnetic relaxation in ~4 nm nanoparticles, albeit with different freezing temperatures T f ofmore » 27.5 K and 46 K, respectively. The quadrupole splitting parameter decreases with the annealing temperature due to cation redistribution between the tetrahedral and octahedral sites of the spinel structure and the associated defects. DC magnetization measurements indicated the existence of significant interparticle interactions among nanoparticles (‘superspins’). Additional confirmation for the presence of interparticle interactions was found from the fit of the T f(H) dependence to the AT line, from which a value of the anisotropy constant of K eff = 5.6 × 10 5 erg cm -3 was deduced. Further evidence for strong interparticle interactions was found from AC susceptibility measurements, where the frequency dependence of the freezing temperature T f(ƒ) was satisfactory described by both Vogel–Fulcher and dynamic scaling theory, both applicable for interacting systems. The parameters obtained from these fits suggest collective freezing of magnetic moments at T f .« less
Mohamadi, P; Razmjou, J; Naseri, B; Hassanpour, M
2017-12-01
The tomato leaf miner, Tuta absoluta (Meyrick), is a devastating pest of tomato worldwide. One of the control measures of T. absoluta is the use of biological control agents, such as Trichogramma wasps. Interactions between natural enemies and insect pests may be affected by application of fertilizers, because changes in plant quality through the fertilizer application may therefore affect herbivore characteristics and suitability of them to parasitism. Laboratory tests were carried out to evaluate the life table parameters of Trichogramma brassicae Bezdenko on T. absoluta eggs reared on tomato plants treated either with vermicompost (40%), humic fertilizer (2 g/kg soil), or control (suitable mixture of field soil and sand). Population growth parameters of T. brassicae were affected by fertilizer treatments. Significant differences were found for immature life period and total fecundity of T. brassicae on the treatments. Differences of intrinsic rate of natural increase (r m ), finite rate of increase (λ), net reproductive rate (R 0 ), mean generation time (T), and doubling time (DT) of T. brassicae among treatments were also significant. The lowest values of r m , λ, and R 0 were recorded for T. brassicae developed on T. absoluta eggs on control treatment, whereas the highest values of these parameters were observed on 2 g/kg humic fertilizer. Furthermore, T. brassicae had the shortest T and DT values on 2 g/kg humic fertilizer and 40% vermicompost treatments. Our results showed that application of humic fertilizer and vermicompost could positively affect population growth parameters of T. brassicae on eggs of T. absoluta fed on tomato plants.
Study on interaction of mangiferin to insulin and glucagon in ternary system
NASA Astrophysics Data System (ADS)
Lin, Hui; Chen, Rui; Liu, Xiaoyan; Sheng, Fenling; Zhang, Haixia
2010-05-01
The binding of mangiferin to insulin and glucagon was investigated in the presence and absence of another Peptide by optical spectroscopy. Fluorescence titration experiments revealed that mangiferin quenched the intrinsic fluorescence of insulin and glucagon by static quenching. The ratios of binding constants of glucagon-mangiferin to insulin-mangiferin at different temperatures were calculated in "pure" and ternary system, respectively. The results indicated that the Peptides were competitive with each other to act on mangiferin. Values of the thermodynamic parameters and the experiments of pH effect proved that the key interacting forces between mangiferin and the Peptides were hydrophobic interaction. In addition, UV-vis absorption, synchronous fluorescence and Fourier transform infrared measurements showed that the conformation of insulin and glucagon were changed after adding mangiferin.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime
2016-11-01
An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.
Singer, Magi; Saint Georges, Catherine; Bodeau, Nicolas; Chetouani, Mohamed; Cohen, David; Feldman, Ruth
2018-01-01
Language has long been identified as a powerful communicative tool among humans. Yet, pre-linguistic communication, which is common in many species, is also used by human infants prior to the acquisition of language. The potential communicational value of pre-linguistic vocal interactions between human infants and mothers has been studied in the past decades. With 120 dyads (mothers and three- or six-month-old infants), we used the classical Still Face Paradigm (SFP) in which mothers interact freely with their infants, then refrain from communication (Still Face, SF), and finally resume play. We employed innovative automated techniques to measure infant and maternal vocalization and pause, and dyadic parameters (infant response to mother, joint silence and overlap) and the emotional component of Infant Directed Speech (e-IDS) throughout the interaction. We showed that: (i) during the initial free play mothers use longer vocalizations and more e-IDS when they interact with older infants and (ii) infant boys exhibit longer vocalizations and shorter pauses than girls. (iii) During the SF and reunion phases, infants show marked and sustained changes in vocalizations but their mothers do not and (iv) mother–infant dyadic parameters increase in the reunion phase. Our quantitative results show that infants, from the age of three months, actively participate to restore the interactive loop after communicative ruptures long before vocalizations show clear linguistic meaning. Thus, auditory signals provide from early in life a channel by which infants co-create interactions, enhancing the mother–infant bond. PMID:29410790
Initial-state-independent equilibration at the breakdown of the eigenstate thermalization hypothesis
NASA Astrophysics Data System (ADS)
Khodja, Abdellah; Schmidtke, Daniel; Gemmer, Jochen
2016-04-01
This work aims at understanding the interplay between the eigenstate thermalization hypothesis (ETH), initial state independent equilibration, and quantum chaos in systems that do not have a direct classical counterpart. It is based on numerical investigations of asymmetric Heisenberg spin ladders with varied interaction strengths between the legs, i.e., along the rungs. The relaxation of the energy difference between the legs is investigated. Two different parameters, both intended to quantify the degree of accordance with the ETH, are computed. Both indicate violation of the ETH at large interaction strengths but at different thresholds. Indeed, the energy difference is found not to relax independently of its initial value above some critical interaction strength, which coincides with one of the thresholds. At the same point the level statistics shift from Poisson-type to Wigner-type. Hence, the system may be considered to become integrable again in the strong interaction limit.
Correlated lateral phase separations in stacks of lipid membranes
NASA Astrophysics Data System (ADS)
Hoshino, Takuma; Komura, Shigeyuki; Andelman, David
2015-12-01
Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.
NASA Astrophysics Data System (ADS)
Bastos, Carlos M. O.; Sabino, Fernando P.; Sipahi, Guilherme M.; Da Silva, Juarez L. F.
2018-02-01
Despite the large number of theoretical III-V semiconductor studies reported every year, our atomistic understanding is still limited. The limitations of the theoretical approaches to yield accurate structural and electronic properties on an equal footing, is due to the unphysical self-interaction problem that mainly affects the band gap and spin-orbit splitting (SOC) in semiconductors and, in particular, III-V systems with similar magnitude of the band gap and SOC. In this work, we report a consistent study of the structural and electronic properties of the III-V semiconductors by using the screening hybrid-density functional theory framework, by fitting the α parameters for 12 different III-V compounds, namely, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb, to minimize the deviation between the theoretical and experimental values of the band gap and SOC. Structural relaxation effects were also included. Except for AlP, whose α = 0.127, we obtained α values that ranged from 0.209 to 0.343, which deviate by less than 0.1 from the universal value of 0.25. Our results for the lattice parameter and elastic constants indicate that the fitting of α does not affect those structural parameters when compared with the HSE06 functional, where α = 0.25. Our analysis of the band structure based on the k ṡ p method shows that the effective masses are in agreement with the experimental values, which can be attributed to the simultaneous fitting of the band gap and SOC. Also, we estimate the values of g-factors, extracted directly from the band structure, which are close to experimental results, which indicate that the obtained band structure produced a realistic set of k ṡ p parameters.
Strongly correlated fermions after a quantum quench.
Manmana, S R; Wessel, S; Noack, R M; Muramatsu, A
2007-05-25
Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter values, two different initial states (e.g., metallic and insulating) lead to observables which become indistinguishable after relaxation. We find that the resulting quasistationary state is nonthermal. This result holds for both integrable and nonintegrable variants of the system.
Stroet, Martin; Koziara, Katarzyna B; Malde, Alpeshkumar K; Mark, Alan E
2017-12-12
A general method for parametrizing atomic interaction functions is presented. The method is based on an analysis of surfaces corresponding to the difference between calculated and target data as a function of alternative combinations of parameters (parameter space mapping). The consideration of surfaces in parameter space as opposed to local values or gradients leads to a better understanding of the relationships between the parameters being optimized and a given set of target data. This in turn enables for a range of target data from multiple molecules to be combined in a robust manner and for the optimal region of parameter space to be trivially identified. The effectiveness of the approach is illustrated by using the method to refine the chlorine 6-12 Lennard-Jones parameters against experimental solvation free enthalpies in water and hexane as well as the density and heat of vaporization of the liquid at atmospheric pressure for a set of 10 aromatic-chloro compounds simultaneously. Single-step perturbation is used to efficiently calculate solvation free enthalpies for a wide range of parameter combinations. The capacity of this approach to parametrize accurate and transferrable force fields is discussed.
Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.
2015-01-01
Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122
NASA Astrophysics Data System (ADS)
Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.
2018-07-01
The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.
A general range-separated double-hybrid density-functional theory
NASA Astrophysics Data System (ADS)
Kalai, Cairedine; Toulouse, Julien
2018-04-01
A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.
Surface instability of an imperfectly bonded thin elastic film under surface van der Waals forces
NASA Astrophysics Data System (ADS)
Wang, Xu; Jing, Rong
2017-02-01
This paper studies surface instability of a thin elastic film imperfectly bonded to a rigid substrate interacting with a rigid contactor through van der Waals forces under plane strain conditions. The film-substrate interface is modeled as a linear spring with vanishing thickness described in terms of the normal and tangential interface parameters. Depending on the ratio of the two imperfect interface parameters, the critical value of the Poisson's ratio for the occurrence of surface wrinkling in the absence of surface energy can be greater than, equal to, or smaller than 0.25, which is the critical Poisson's ratio for a perfect film-substrate interface. The critical surface energy for the inhibition of the surface wrinkling is also obtained. Finally, we propose a very simple and effective method to study the surface instability of a multilayered elastic film with imperfect interfaces interacting with a rigid contactor or with another multilayered elastic film (or a multilayered simply supported plate) with imperfect interfaces.
The crack-inclusion interaction problem
NASA Technical Reports Server (NTRS)
Liu, X.-H.; Erdogan, F.
1986-01-01
The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.
The crack-inclusion interaction problem
NASA Technical Reports Server (NTRS)
Xue-Hui, L.; Erdogan, F.
1984-01-01
The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.
Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.
Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick
2018-01-01
In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.
NASA Astrophysics Data System (ADS)
Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Bobkova, M. S.; Krivoshapkin, A. L.; Orlov, K. Yu
2016-06-01
In this paper a computer simulation of a blood flow in cerebral vessels with a giant saccular aneurysm at the bifurcation of the basilar artery is performed. The modelling is based on patient-specific clinical data (both flow domain geometry and boundary conditions for the inlets and outlets). The hydrodynamic and mechanical parameters are calculated in the frameworks of three models: rigid-wall assumption, one-way FSI approach, and full (two-way) hydroelastic model. A comparison of the numerical solutions shows that mutual fluid- solid interaction can result in qualitative changes in the structure of the fluid flow. Other characteristics of the flow (pressure, stress, strain and displacement) qualitatively agree with each other in different approaches. However, the quantitative comparison shows that accounting for the flow-vessel interaction, in general, decreases the absolute values of these parameters. Solving of the hydroelasticity problem gives a more detailed solution at a cost of highly increased computational time.
Muley, Abhijeet B; Chaudhari, Sandeep A; Singhal, Rekha S
2017-09-01
Cutinase, a member of α/β-fold hydrolase family possess potentially diverse applications in several industrial processes and products. The present work aims towards thermo-stabilization of cutinase from novel source Fusarium sp. ICT SAC1 via non-covalent interaction with polysaccharides. Although all six polysaccharides chosen for study enhanced the thermal stability, pectin was found to be most promising. The interaction protocol for cutinase with pectin was optimized sequentially with respect to the ratio of enzyme to pectin, solution pH, and buffer strength. Cutinase-pectin conjugate under optimized conditions (1:12, pH-6.5, 50mM) showed enhanced thermal stability as evident from lower inactivation rate constant, higher half-life and D-value within the 40-55°C. A slender rise in K m and V max values and enhanced thermodynamic parameters of cutinase-pectin conjugate were observed after non-covalent interaction. Entropy values were 1.5-fold higher for cutinase-pectin conjugate at each temperature suggesting an upsurge in number of protein molecules in a transition activated state. Positive values of entropy for both forms of cutinase suggested a rise in disordered conformation. Noticeable conformational changes in cutinase after conjugation with pectin were confirmed by FTIR as well as fluorescence emission spectra. An increment in helix to turn conversion was observed in complexed cutinase vis-à-vis free cutinase. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization of classical static noise via qubit as probe
NASA Astrophysics Data System (ADS)
Javed, Muhammad; Khan, Salman; Ullah, Sayed Arif
2018-03-01
The dynamics of quantum Fisher information (QFI) of a single qubit coupled to classical static noise is investigated. The analytical relation for QFI fixes the optimal initial state of the qubit that maximizes it. An approximate limit for the time of coupling that leads to physically useful results is identified. Moreover, using the approach of quantum estimation theory and the analytical relation for QFI, the qubit is used as a probe to precisely estimate the disordered parameter of the environment. Relation for optimal interaction time with the environment is obtained, and condition for the optimal measurement of the noise parameter of the environment is given. It is shown that all values, in the mentioned range, of the noise parameter are estimable with equal precision. A comparison of our results with the previous studies in different classical environments is made.
Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces
NASA Astrophysics Data System (ADS)
Ibrahim, F. S.; Hady, F. M.
1990-06-01
The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.
Interactive mixture of inhomogeneous dark fluids driven by dark energy: a dynamical system analysis
NASA Astrophysics Data System (ADS)
Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.
2018-03-01
We examine the evolution of an inhomogeneous mixture of non-relativistic pressureless cold dark matter (CDM), coupled to dark energy (DE) characterised by the equation of state parameter w<-1/3, with the interaction term proportional to the DE density. This coupled mixture is the source of a spherically symmetric Lemaître-Tolman-Bondi (LTB) metric admitting an asymptotic Friedman-Lemaître-Robertson-Walker (FLRW) background. Einstein's equations reduce to a 5-dimensional autonomous dynamical system involving quasi-local variables related to suitable averages of covariant scalars and their fluctuations. The phase space evolution around the critical points (past/future attractors and five saddles) is examined in detail. For all parameter values and both directions of energy flow (CDM to DE and DE to CDM) the phase space trajectories are compatible with a physically plausible early cosmic times behaviour near the past attractor. This result compares favourably with mixtures with interaction driven by the CDM density, whose past evolution is unphysical for DE to CDM energy flow. Numerical examples are provided describing the evolution of an initial profile that can be associated with idealised structure formation scenarios.
A GUI-based Tool for Bridging the Gap between Models and Process-Oriented Studies
NASA Astrophysics Data System (ADS)
Kornfeld, A.; Van der Tol, C.; Berry, J. A.
2014-12-01
Models used for simulation of photosynthesis and transpiration by canopies of terrestrial plants typically have subroutines such as STOMATA.F90, PHOSIB.F90 or BIOCHEM.m that solve for photosynthesis and associated processes. Key parameters such as the Vmax for Rubisco and temperature response parameters are required by these subroutines. These are often taken from the literature or determined by separate analysis of gas exchange experiments. It is useful to note however that subroutines can be extracted and run as standalone models to simulate leaf responses collected in gas exchange experiments. Furthermore, there are excellent non-linear fitting tools that can be used to optimize the parameter values in these models to fit the observations. Ideally the Vmax fit in this way should be the same as that determined by a separate analysis, but it may not because of interactions with other kinetic constants and the temperature dependence of these in the full subroutine. We submit that it is more useful to fit the complete model to the calibration experiments rather as disaggregated constants. We designed a graphical user interface (GUI) based tool that uses gas exchange photosynthesis data to directly estimate model parameters in the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model and, at the same time, allow researchers to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. We have also ported some of this functionality to an Excel spreadsheet, which could be used as a teaching tool to help integrate process-oriented and model-oriented studies.
Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions
NASA Astrophysics Data System (ADS)
Lee, Yu-Wen; Lee, Yu-Li
2018-01-01
We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.
Najib, Omaima N; Martin, Gary P; Kirton, Stewart B; Sallam, Al-Sayed; Murnane, Darragh
2016-06-15
The diffusion process through a non-porous barrier membrane depends on the properties of the drug, vehicle and membrane. The aim of the current study was to investigate whether a series of oily vehicles might have the potential to interact to varying degrees with synthetic membranes and to determine whether any such interaction might affect the permeation of co-formulated permeants: methylparaben (MP); butylparaben (BP) or caffeine (CF). The oils (isopropyl myristate (IPM), isohexadecane (IHD), hexadecane (HD), oleic acid (OA) and liquid paraffin (LP)) and membranes (silicone, high density polyethylene and polyurethane) employed in the study were selected such that they displayed a range of different structural, and physicochemical properties. Diffusion studies showed that many of the vehicles were not inert and did interact with the membranes resulting in a modification of the permeants' flux when corrected for membrane thickness (e.g. normalized flux of MP increased from 1.25±0.13μgcm(-1)h(-1) in LP to 17.94±0.25μgcm(-1)h(-1)in IPM). The oils were sorbed differently to membranes (range of weight gain: 2.2±0.2% for polyurethane with LP to 105.6±1.1% for silicone with IHD). Membrane interaction was apparently dependent upon the physicochemical properties including; size, shape, flexibility and the Hansen solubility parameter values of both the membranes and oils. Sorbed oils resulted in modified permeant diffusion through the membranes. No simple correlation was found to exist between the Hansen solubility parameters of the oils or swelling of the membrane and the normalized fluxes of the three compounds investigated. More sophisticated modelling would appear to be required to delineate and quantify the key molecular parameters of membrane, permeant and vehicle compatibility and their interactions of relevance to membrane permeation. Copyright © 2016 Elsevier B.V. All rights reserved.
Program for computer aided reliability estimation
NASA Technical Reports Server (NTRS)
Mathur, F. P. (Inventor)
1972-01-01
A computer program for estimating the reliability of self-repair and fault-tolerant systems with respect to selected system and mission parameters is presented. The computer program is capable of operation in an interactive conversational mode as well as in a batch mode and is characterized by maintenance of several general equations representative of basic redundancy schemes in an equation repository. Selected reliability functions applicable to any mathematical model formulated with the general equations, used singly or in combination with each other, are separately stored. One or more system and/or mission parameters may be designated as a variable. Data in the form of values for selected reliability functions is generated in a tabular or graphic format for each formulated model.
pp interaction at very high energies in cosmic ray experiments
NASA Astrophysics Data System (ADS)
Kendi Kohara, A.; Ferreira, Erasmo; Kodama, Takeshi
2014-11-01
An analysis of p-air cross section data from extensive air shower measurements is presented, based on an analytical representation of the pp scattering amplitudes that describes with high precision all available accelerator data at ISR, SPS and LHC energies. The theoretical basis of the representation, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permits reliable extrapolation to high energy cosmic ray (CR) and asymptotic energy ranges. Calculations of σ p-airprod based on Glauber formalism are made using the input values of the quantities σ , ρ , BI and BR at high energies, with attention given to the independence of the slope parameters, with {{B}R}\
Local operators in kinetic wealth distribution
NASA Astrophysics Data System (ADS)
Andrecut, M.
2016-05-01
The statistical mechanics approach to wealth distribution is based on the conservative kinetic multi-agent model for money exchange, where the local interaction rule between the agents is analogous to the elastic particle scattering process. Here, we discuss the role of a class of conservative local operators, and we show that, depending on the values of their parameters, they can be used to generate all the relevant distributions. We also show numerically that in order to generate the power-law tail, an heterogeneous risk aversion model is required. By changing the parameters of these operators, one can also fine tune the resulting distributions in order to provide support for the emergence of a more egalitarian wealth distribution.
NASA Technical Reports Server (NTRS)
Maples, A. L.
1981-01-01
The operation of solidification Model 2 is described and documentation of the software associated with the model is provided. Model 2 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of unsteady horizontal axisymmetric bidirectional solidification. The solidification program allows interactive modification of calculation parameters as well as selection of graphical and tabular output. In batch mode, parameter values are input in card image form and output consists of printed tables of solidification functions. The operational aspects of Model 2 that differ substantially from Model 1 are described. The global flow diagrams and data structures of Model 2 are included. The primary program documentation is the code itself.
Nonextensivity at the Circum-Pacific subduction zones-Preliminary studies
NASA Astrophysics Data System (ADS)
Scherrer, T. M.; França, G. S.; Silva, R.; de Freitas, D. B.; Vilar, C. S.
2015-05-01
Following the fragment-asperity interaction model introduced by Sotolongo-Costa and Posadas (2004) and revised by Silva et al. (2006), we try to explain the nonextensive effect in the context of the asperity model designed by Lay and Kanamori (1981). To address this issue, we used data from the NEIC catalog in the decade between 2001 and 2010, in order to investigate the so-called Circum-Pacific subduction zones. We propose a geophysical explanation to nonextensive parameter q. The results need further investigation however evidence of correlation between the nonextensive parameter and the asperity model is shown, i.e., we show that q-value is higher for areas with larger asperities and stronger coupling.
Optimization of multi-environment trials for genomic selection based on crop models.
Rincent, R; Kuhn, E; Monod, H; Oury, F-X; Rousset, M; Allard, V; Le Gouis, J
2017-08-01
We propose a statistical criterion to optimize multi-environment trials to predict genotype × environment interactions more efficiently, by combining crop growth models and genomic selection models. Genotype × environment interactions (GEI) are common in plant multi-environment trials (METs). In this context, models developed for genomic selection (GS) that refers to the use of genome-wide information for predicting breeding values of selection candidates need to be adapted. One promising way to increase prediction accuracy in various environments is to combine ecophysiological and genetic modelling thanks to crop growth models (CGM) incorporating genetic parameters. The efficiency of this approach relies on the quality of the parameter estimates, which depends on the environments composing this MET used for calibration. The objective of this study was to determine a method to optimize the set of environments composing the MET for estimating genetic parameters in this context. A criterion called OptiMET was defined to this aim, and was evaluated on simulated and real data, with the example of wheat phenology. The MET defined with OptiMET allowed estimating the genetic parameters with lower error, leading to higher QTL detection power and higher prediction accuracies. MET defined with OptiMET was on average more efficient than random MET composed of twice as many environments, in terms of quality of the parameter estimates. OptiMET is thus a valuable tool to determine optimal experimental conditions to best exploit MET and the phenotyping tools that are currently developed.
NASA Astrophysics Data System (ADS)
Li, Yuankai; Ding, Liang; Zheng, Zhizhong; Yang, Qizhi; Zhao, Xingang; Liu, Guangjun
2018-05-01
For motion control of wheeled planetary rovers traversing on deformable terrain, real-time terrain parameter estimation is critical in modeling the wheel-terrain interaction and compensating the effect of wheel slipping. A multi-mode real-time estimation method is proposed in this paper to achieve accurate terrain parameter estimation. The proposed method is composed of an inner layer for real-time filtering and an outer layer for online update. In the inner layer, sinkage exponent and internal frictional angle, which have higher sensitivity than that of the other terrain parameters to wheel-terrain interaction forces, are estimated in real time by using an adaptive robust extended Kalman filter (AREKF), whereas the other parameters are fixed with nominal values. The inner layer result can help synthesize the current wheel-terrain contact forces with adequate precision, but has limited prediction capability for time-variable wheel slipping. To improve estimation accuracy of the result from the inner layer, an outer layer based on recursive Gauss-Newton (RGN) algorithm is introduced to refine the result of real-time filtering according to the innovation contained in the history data. With the two-layer structure, the proposed method can work in three fundamental estimation modes: EKF, REKF and RGN, making the method applicable for flat, rough and non-uniform terrains. Simulations have demonstrated the effectiveness of the proposed method under three terrain types, showing the advantages of introducing the two-layer structure.
Kim, Hojeong; Heckman, C. J.
2014-01-01
Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interaction between PIC neuromodulation and PIC location dependence, we used a two-compartment model that was biologically realistic in that it retains directional and frequency-dependent electrical coupling between the soma and the dendrites, as seen in multi-compartment models based on full anatomical reconstructions of motoneurons. Our two-compartment approach allowed us to systematically vary the coupling parameters between the soma and the dendrite to accurately reproduce the effect of location of the dendritic PIC on the generation of nonlinear (hysteretic) motoneuron firing patterns. Our results show that as a single parameter value for PIC activation was either increased or decreased by 20% from its default value, the solution space of the coupling parameter values for nonlinear firing outputs was drastically reduced by approximately 80%. As a result, the model tended to fire only in a linear mode at the majority of dendritic PIC sites. The same results were obtained when all parameters for the PIC activation simultaneously changed only by approximately ±10%. Our results suggest the democratization effect of neuromodulation: the neuromodulation by the brainstem systems may play a role in switching the motoneurons with PICs at different dendritic locations to a similar mode of firing by reducing the effect of the dendritic location of PICs on the firing behavior. PMID:25309410
NLINEAR - NONLINEAR CURVE FITTING PROGRAM
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1994-01-01
A common method for fitting data is a least-squares fit. In the least-squares method, a user-specified fitting function is utilized in such a way as to minimize the sum of the squares of distances between the data points and the fitting curve. The Nonlinear Curve Fitting Program, NLINEAR, is an interactive curve fitting routine based on a description of the quadratic expansion of the chi-squared statistic. NLINEAR utilizes a nonlinear optimization algorithm that calculates the best statistically weighted values of the parameters of the fitting function and the chi-square that is to be minimized. The inputs to the program are the mathematical form of the fitting function and the initial values of the parameters to be estimated. This approach provides the user with statistical information such as goodness of fit and estimated values of parameters that produce the highest degree of correlation between the experimental data and the mathematical model. In the mathematical formulation of the algorithm, the Taylor expansion of chi-square is first introduced, and justification for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations are derived, which are solved by matrix algebra. To achieve convergence, the algorithm requires meaningful initial estimates for the parameters of the fitting function. NLINEAR is written in Fortran 77 for execution on a CDC Cyber 750 under NOS 2.3. It has a central memory requirement of 5K 60 bit words. Optionally, graphical output of the fitting function can be plotted. Tektronix PLOT-10 routines are required for graphics. NLINEAR was developed in 1987.
Conditions for l =1 Pomeranchuk instability in a Fermi liquid
NASA Astrophysics Data System (ADS)
Wu, Yi-Ming; Klein, Avraham; Chubukov, Andrey V.
2018-04-01
We perform a microscopic analysis of how the constraints imposed by conservation laws affect q =0 Pomeranchuk instabilities in a Fermi liquid. The conventional view is that these instabilities are determined by the static interaction between low-energy quasiparticles near the Fermi surface, in the limit of vanishing momentum transfer q . The condition for a Pomeranchuk instability is set by Flc (s )=-1 , where Flc (s ) (a Landau parameter) is a properly normalized partial component of the antisymmetrized static interaction F (k ,k +q ;p ,p -q ) in a charge (c) or spin (s) subchannel with angular momentum l . However, it is known that conservation laws for total spin and charge prevent Pomeranchuk instabilities for l =1 spin- and charge-current order parameters. Our study aims to understand whether this holds only for these special forms of l =1 order parameters or is a more generic result. To this end we perform a diagrammatic analysis of spin and charge susceptibilities for charge and spin density order parameters, as well as perturbative calculations to second order in the Hubbard U . We argue that for l =1 spin-current and charge-current order parameters, certain vertex functions, which are determined by high-energy fermions, vanish at Fl=1 c (s )=-1 , preventing a Pomeranchuk instability from taking place. For an order parameter with a generic l =1 form factor, the vertex function is not expressed in terms of Fl=1 c (s ), and a Pomeranchuk instability may occur when F1c (s )=-1 . We argue that for other values of l , a Pomeranchuk instability may occur at Flc (s )=-1 for an order parameter with any form factor.
Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology.
Roberts, M G; Heesterbeek, J A P
2013-03-01
We address the interaction of ecological processes, such as consumer-resource relationships and competition, and the epidemiology of infectious diseases spreading in ecosystems. Modelling such interactions seems essential to understand the dynamics of infectious agents in communities consisting of interacting host and non-host species. We show how the usual epidemiological next-generation matrix approach to characterize invasion into multi-host communities can be extended to calculate R₀, and how this relates to the ecological community matrix. We then present two simple examples to illustrate this approach. The first of these is a model of the rinderpest, wildebeest, grass interaction, where our inferred dynamics qualitatively matches the observed phenomena that occurred after the eradication of rinderpest from the Serengeti ecosystem in the 1980s. The second example is a prey-predator system, where both species are hosts of the same pathogen. It is shown that regions for the parameter values exist where the two host species are only able to coexist when the pathogen is present to mediate the ecological interaction.
Study of a tri-trophic prey-dependent food chain model of interacting populations.
Haque, Mainul; Ali, Nijamuddin; Chakravarty, Santabrata
2013-11-01
The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf-Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper. Copyright © 2013 Elsevier Inc. All rights reserved.
A numerical study of Coulomb interaction effects on 2D hopping transport.
Kinkhabwala, Yusuf A; Sverdlov, Viktor A; Likharev, Konstantin K
2006-02-15
We have extended our supercomputer-enabled Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the case of substantial electron-electron Coulomb interaction. Such interaction may not only suppress the average value of hopping current, but also affect its fluctuations rather substantially. In particular, the spectral density S(I)(f) of current fluctuations exhibits, at sufficiently low frequencies, a 1/f-like increase which approximately follows the Hooge scaling, even at vanishing temperature. At higher f, there is a crossover to a broad range of frequencies in which S(I)(f) is nearly constant, hence allowing characterization of the current noise by the effective Fano factor [Formula: see text]. For sufficiently large conductor samples and low temperatures, the Fano factor is suppressed below the Schottky value (F = 1), scaling with the length L of the conductor as F = (L(c)/L)(α). The exponent α is significantly affected by the Coulomb interaction effects, changing from α = 0.76 ± 0.08 when such effects are negligible to virtually unity when they are substantial. The scaling parameter L(c), interpreted as the average percolation cluster length along the electric field direction, scales as [Formula: see text] when Coulomb interaction effects are negligible and [Formula: see text] when such effects are substantial, in good agreement with estimates based on the theory of directed percolation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Acosta, E. G.; Napsuciale, Mauro; Rodriguez, Simon
We develop a second order formalism for massive spin 1/2 fermions based on the projection over Poincare invariant subspaces in the ((1/2),0)+(0,(1/2)) representation of the homogeneous Lorentz group. Using the U(1){sub em} gauge principle we obtain a second order description for the electromagnetic interactions of a spin 1/2 fermion with two free parameters, the gyromagnetic factor g and a parameter {xi} related to odd-parity Lorentz structures. We calculate Compton scattering in this formalism. In the particular case g=2, {xi}=0, and for states with well-defined parity, we recover Dirac results. In general, we find the correct classical limit and a finitemore » value r{sub c}{sup 2} for the forward differential cross section, independent of the photon energy and of the value of the parameters g and {xi}. The differential cross section vanishes at high energies for all g, {xi} except in the forward direction. The total cross section at high energies vanishes only for g=2, {xi}=0. We argue that this formalism is more convenient than Dirac theory in the description of low energy electromagnetic properties of baryons and illustrate the point with the proton case.« less
Mousavi, Seyed Mahdi; Niaei, Aligholi; Salari, Dariush; Panahi, Parvaneh Nakhostin; Samandari, Masoud
2013-01-01
A response surface methodology (RSM) involving a central composite design was applied to the modelling and optimization of a preparation of Mn/active carbon nanocatalysts in NH3-SCR of NO at 250 degrees C and the results were compared with the artificial neural network (ANN) predicted values. The catalyst preparation parameters, including metal loading (wt%), calcination temperature and pre-oxidization degree (v/v% HNO3) were selected as influence factors on catalyst efficiency. In the RSM model, the predicted values of NO conversion were found to be in good agreement with the experimental values. Pareto graphic analysis showed that all the chosen parameters and some of the interactions were effective on response. The optimization results showed that maximum NO conversion was achieved at the optimum conditions: 10.2 v/v% HNO3, 6.1 wt% Mn loading and calcination at 480 degrees C. The ANN model was developed by a feed-forward back propagation network with the topology 3, 8 and 1 and a Levenberg-Marquardt training algorithm. The mean square error for the ANN and RSM models were 0.339 and 1.176, respectively, and the R2 values were 0.991 and 0.972, respectively, indicating the superiority of ANN in capturing the nonlinear behaviour of the system and being accurate in estimating the values of the NO conversion.
Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki; Aoki, Kazuhiro
2014-09-01
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Hanna, John V; Pike, Kevin J; Charpentier, Thibault; Kemp, Thomas F; Smith, Mark E; Lucier, Bryan E G; Schurko, Robert W; Cahill, Lindsay S
2010-03-08
A variable B(0) field static (broadline) NMR study of a large suite of niobate materials has enabled the elucidation of high-precision measurement of (93)Nb NMR interaction parameters such as the isotropic chemical shift (delta(iso)), quadrupole coupling constant and asymmetry parameter (C(Q) and eta(Q)), chemical shift span/anisotropy and skew/asymmetry (Omega/Deltadelta and kappa/eta(delta)) and Euler angles (alpha, beta, gamma) describing the relative orientation of the quadrupolar and chemical shift tensorial frames. These measurements have been augmented with ab initio DFT calculations by using WIEN2k and NMR-CASTEP codes, which corroborate these reported values. Unlike previous assertions made about the inability to detect CSA (chemical shift anisotropy) contributions from Nb(V) in most oxo environments, this study emphasises that a thorough variable B(0) approach coupled with the VOCS (variable offset cumulative spectroscopy) technique for the acquisition of undistorted broad (-1/2<-->+1/2) central transition resonances facilitates the unambiguous observation of both quadrupolar and CSA contributions within these (93)Nb broadline data. These measurements reveal that the (93)Nb electric field gradient tensor is a particularly sensitive measure of the immediate and extended environments of the Nb(V) positions, with C(Q) values in the 0 to >80 MHz range being measured; similarly, the delta(iso) (covering an approximately 250 ppm range) and Omega values (covering a 0 to approximately 800 ppm range) characteristic of these niobate systems are also sensitive to structural disposition. However, their systematic rationalisation in terms of the Nb-O bond angles and distances defining the immediate Nb(V) oxo environment is complicated by longer-range influences that usually involve other heavy elements comprising the structure. It has also been established in this study that the best computational method(s) of analysis for the (93)Nb NMR interaction parameters generated here are the all-electron WIEN2k and the gauge included projector augmented wave (GIPAW) NMR-CASTEP DFT approaches, which account for the short- and long-range symmetries, periodicities and interaction-potential characteristics for all elements (and particularly the heavy elements) in comparison with Gaussian 03 methods, which focus on terminated portions of the total structure.
The Dynamics of a SEIR-SIRC Antigenic Drift Influenza Model.
Adi-Kusumo, Fajar
2017-06-01
We consider the dynamics of an influenza model with antigenic drift mechanism. Antigenic drift is an antigen mutation on the skin surface of the influenza virus that do not produce a new virus strain. The mutation produces the same virus but with slightly different antigens that cannot be recognized by the immune receptors formed by the previous infection. There are some type of influenza that involve the interaction between two populations such as human and animal. In this paper, we construct an influenza model with antigenic drift mechanism on the human population that has interaction with the animal population. The animal population is assumed to follow the SEIR epidemic model. Our model is motivated by the fact that some of the influenza cases in human come from the animal such as the swine and the avian. The transmission parameter that shows number of contact between the susceptible human and the infectious animals are important to study. The parameter plays an important role to detect the cycle of infection of the disease. The other important parameters are the seasonality degree, which shows the pathogen appearance and disappearance via annual migration, and the infection rate on the human population. We employ the bifurcation theory to analyze the behavior of the system and to detect the cycle of infection types when the parameters values are varied.
Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption.
Mandal, Abhishek; Singh, Neera; Nain, Lata
2017-09-02
Low cost agro-waste biosorbents namely eucalyptus bark (EB), corn cob (CC), bamboo chips (BC), rice straw (RS) and rice husk (RH) were characterized and used to study atrazine and imidacloprid sorption. Adsorption studies suggested that biosorbents greatly varied in their pesticide sorption behaviour. The EB was the best biosorbent to sorb both atrazine and imidacloprid with K F values of 169.9 and 85.71, respectively. The adsorption isotherm were nonlinear in nature with slope (1/n) values <1. The Freundlich constant Correlating atrazine/imidacloprid sorption parameter [K F .(1/n)] with the physicochemical properties of the biosorbents suggested that atrazine adsorption correlated significantly to the aromaticity, polarity, surface area, fractal dimension, lacunarity and relative C-O band intensity parameters of biosorbents. Probably, both physisorption and electrostatic interactions were responsible for the pesticide sorption. The eucalyptus bark can be exploited as low cost adsorbent for the removal of these pesticides as well as a component of on-farm biopurification systems.
Consistent van der Waals Radii for the Whole Main Group
Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G.
2013-01-01
Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and noble gas crystals are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present article we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi’s scale. The method chosen is a set of two-parameter correlations of Bondi’s radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in Å) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.50; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83. PMID:19382751
Consistent van der Waals radii for the whole main group.
Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G
2009-05-14
Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.
Real, Jose T; Folgado, José; Molina Mendez, Mercedes; Martinez-Hervás, Sergio; Peiro, Marta; Ascaso, Juan F
2016-01-01
To study new risk factors for peripheral macroangiopathy (PM) in patients with diabetes, as oxidative stress (OS) and its interaction with classical risk factors: age, Lp(a), plasma homocysteine values and HbA1c. We studied 204 type2 diabetic (T2DM) patients, consecutive selected form a reference hospital and a secondary hospital form our Community (2009-2010). Design was a case (ABI<0.89) control (ABI0.9-1.2) study. PM was defined using ankle brachial index (ABI). Thirty nine T2DM subjects presented ABI>1.2 and were excluded. Clinical and biological parameters were determined using standard methods. Comparing clinical and biological parameters obtained in both studied groups (T2DM+ABI<0.9 vs T2DM+ABI0.9-1.2), we found statistical significant differences in age, evolution time of diabetes, Lp(a) and plasma homocysteine values. No differences were found in OS parameters: reduced glutathione, oxidized glutathione and maloldialdehide between studied groups. Plasma homocysteine values were an independent risk factor for the presence of PM and were related to evolution time of diabetes and reduced glutathione. We have confirmed that Lp(a) and independently plasma homocysteine values were related to PM in T2DM subjects. No association with PM and OS markers (GSH, GSSG and MDA) were found in T2DM with more than 10years of evolution time of their disease and high prevalence of chronic complications. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
On the control of spin-boson systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boscain, Ugo, E-mail: ugo.boscain@polytechnique.edu; Mason, Paolo, E-mail: Paolo.Mason@l2s.centralesupelec.fr; Panati, Gianluca, E-mail: panati@mat.uniroma1.it
2015-09-15
In this paper, we study the so-called spin-boson system, namely, a two-level system in interaction with a distinguished mode of a quantized bosonic field. We give a brief description of the controlled Rabi and Jaynes–Cummings models and we discuss their appearance in the mathematics and physics literature. We then study the controllability of the Rabi model when the control is an external field acting on the bosonic part. Applying geometric control techniques to the Galerkin approximation and using perturbation theory to guarantee non-resonance of the spectrum of the drift operator, we prove approximate controllability of the system, for almost everymore » value of the interaction parameter.« less
Pseudoscalar—sterile neutrino interactions: reconciling the cosmos with neutrino oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archidiacono, Maria; Gariazzo, Stefano; Giunti, Carlo
2016-08-01
The Short BaseLine (SBL) neutrino oscillation anomalies hint at the presence of a sterile neutrino with a mass of around 1 eV. However, such a neutrino is incompatible with cosmological data, in particular observations of the Cosmic Microwave Background (CMB) anisotropies. However, this conclusion can change by invoking new physics. One possibility is to introduce a secret interaction in the sterile neutrino sector mediated by a light pseudoscalar. In this pseudoscalar model, CMB data prefer a sterile neutrino mass that is fully compatible with the mass ranges suggested by SBL anomalies. In addition, this model predicts a value of themore » Hubble parameter which is completely consistent with local measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Farhan, Y.H.; Scow, K.M.; Fan, S.
Trichloroethylene (TCE) biodegradation in soil under aerobic conditions requires the presence of another compound, such as toluene, to support growth of microbial populations and enzyme induction. The biodegradation kinetics of TCE and toluene were examined by conducting three groups of experiments in soil: toluene only, toluene combined with low TCE concentrations, and toluene with TCE concentrations similar to or higher than toluene. The biodegradation of TCE and toluene and their interrelationships were modeled using a combination of several biodegradation functions. In the model, the pollutants were described as existing in the solid, liquid, and gas phases of soil, with biodegradationmore » occurring only in the liquid phase. The distribution of the chemicals between the solid and liquid phase was described by a linear sorption isotherm, whereas liquid-vapor partitioning was described by Henry's law. Results from 12 experiments with toluene only could be described by a single set of kinetic parameters. The same set of parameters could describe toluene degradation in 10 experiments where low TCE concentrations were present. From these 10 experiments a set of parameters describing TCE cometabolism induced by toluene also was obtained. The complete set of parameters was used to describe the biodegradation of both compounds in 15 additional experiments, where significant TCE toxicity and inhibition effects were expected. Toluene parameters were similar to values reported for pure culture systems. Parameters describing the interaction of TCE with toluene and biomass were different from reported values for pure cultures, suggesting that the presence of soil may have affected the cometabolic ability of the indigenous soil microbial populations.« less
Constraining the surface properties of effective Skyrme interactions
NASA Astrophysics Data System (ADS)
Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.
2016-08-01
Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The latter is of particular interest because it provides asurf as a numerical integral without the need to solve self-consistent equations. Results for semi-infinite nuclear matter obtained with the HF, ETF, and MTF methods will be compared with one another and with asurf, as deduced from ETF calculations of very heavy fictitious nuclei. Results: The surface energy coefficient of 76 parametrizations of the Skyrme EDF have been calculated. Values obtained with the HF, ETF, and MTF methods are not identical, but differ by fairly constant systematic offsets. By contrast, extracting asurf from the binding energy of semi-infinite matter or of very large nuclei within the same method gives the same result within the numerical uncertainties. Conclusions: Despite having some drawbacks compared to the other methods studied here, the MTF approach provides sufficiently precise values for asurf such that it can be used as a very robust constraint on surface properties during a parameter fit at negligible additional cost. While the excitation energy of superdeformed states and the height of fission barriers is obviously strongly correlated to asurf, the presence of shell effects prevents a one-to-one correspondence between them. As in addition the value of asurf providing realistic fission barriers depends on the choices made for corrections for spurious motion, its "best value" (within a given scheme to calculate it) depends on the fit protocol. Through the construction of a series of eight parametrizations SLy5s1-SLy5s8 of the standard Skyrme EDF with systematically varied asurf value, it is shown how to arrive at a fit with realistic deformation properties.
Bending of an Infinite beam on a base with two parameters in the absence of a part of the base
NASA Astrophysics Data System (ADS)
Aleksandrovskiy, Maxim; Zaharova, Lidiya
2018-03-01
Currently, in connection with the rapid development of high-rise construction and the improvement of joint operation of high-rise structures and bases models, the questions connected with the use of various calculation methods become topical. The rigor of analytical methods is capable of more detailed and accurate characterization of the structures behavior, which will affect the reliability of objects and can lead to a reduction in their cost. In the article, a model with two parameters is used as a computational model of the base that can effectively take into account the distributive properties of the base by varying the coefficient reflecting the shift parameter. The paper constructs the effective analytical solution of the problem of a beam of infinite length interacting with a two-parameter voided base. Using the Fourier integral equations, the original differential equation is reduced to the Fredholm integral equation of the second kind with a degenerate kernel, and all the integrals are solved analytically and explicitly, which leads to an increase in the accuracy of the computations in comparison with the approximate methods. The paper consider the solution of the problem of a beam loaded with a concentrated force applied at the point of origin with a fixed value of the length of the dip section. The paper gives the analysis of the obtained results values for various parameters of coefficient taking into account cohesion of the ground.
Simulation Based Earthquake Forecasting with RSQSim
NASA Astrophysics Data System (ADS)
Gilchrist, J. J.; Jordan, T. H.; Dieterich, J. H.; Richards-Dinger, K. B.
2016-12-01
We are developing a physics-based forecasting model for earthquake ruptures in California. We employ the 3D boundary element code RSQSim to generate synthetic catalogs with millions of events that span up to a million years. The simulations incorporate rate-state fault constitutive properties in complex, fully interacting fault systems. The Unified California Earthquake Rupture Forecast Version 3 (UCERF3) model and data sets are used for calibration of the catalogs and specification of fault geometry. Fault slip rates match the UCERF3 geologic slip rates and catalogs are tuned such that earthquake recurrence matches the UCERF3 model. Utilizing the Blue Waters Supercomputer, we produce a suite of million-year catalogs to investigate the epistemic uncertainty in the physical parameters used in the simulations. In particular, values of the rate- and state-friction parameters a and b, the initial shear and normal stress, as well as the earthquake slip speed, are varied over several simulations. In addition to testing multiple models with homogeneous values of the physical parameters, the parameters a, b, and the normal stress are varied with depth as well as in heterogeneous patterns across the faults. Cross validation of UCERF3 and RSQSim is performed within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM) to determine the affect of the uncertainties in physical parameters observed in the field and measured in the lab, on the uncertainties in probabilistic forecasting. We are particularly interested in the short-term hazards of multi-event sequences due to complex faulting and multi-fault ruptures.
Snyder, James A; Abramyan, Tigran; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A
2012-12-01
Adsorption free energies for eight host-guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5-9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface.
Snyder, James A.; Abramyan, Tigran; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.
2012-01-01
Adsorption free energies for eight host–guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5–9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface. PMID:22941539
Impact of initial surface parameters on the final quality of laser micro-polished surfaces
NASA Astrophysics Data System (ADS)
Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.
2012-03-01
Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.
Atomic Mass and Nuclear Binding Energy for I-131 (Iodine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-131 (Iodine, atomic number Z = 53, mass number A = 131).
Direction of Coupling from Phases of Interacting Oscillators: A Permutation Information Approach
NASA Astrophysics Data System (ADS)
Bahraminasab, A.; Ghasemi, F.; Stefanovska, A.; McClintock, P. V. E.; Kantz, H.
2008-02-01
We introduce a directionality index for a time series based on a comparison of neighboring values. It can distinguish unidirectional from bidirectional coupling, as well as reveal and quantify asymmetry in bidirectional coupling. It is tested on a numerical model of coupled van der Pol oscillators, and applied to cardiorespiratory data from healthy subjects. There is no need for preprocessing and fine-tuning the parameters, which makes the method very simple, computationally fast and robust.
Gravitational particle production in braneworld cosmology.
Bambi, C; Urban, F R
2007-11-09
Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.
Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).
Metastability in the Spin-1 Blume-Emery-Griffiths Model within Constant Coupling Approximation
NASA Astrophysics Data System (ADS)
Ekiz, C.
2017-02-01
In this paper, the equilibrium properties of spin-1 Blume-Emery-Griffiths model are studied by using constant-coupling approximation. The dipolar and quadrupolar order parameters, the stable, metastable and unstable states and free energy of the model are investigated. The states are defined in terms of local minima of the free energy of system. The numerical calculations are presented for several values of exchange interactions on the simple cubic lattice with q = 6.
Bulk Properties of Ni3Al(gamma') With Cu and Au Additions
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John
1995-01-01
The BFS method for alloys is applied to the study of 200 alloys obtained from adding Cu and Au impurities to a Ni3Al matrix. We analyze the trends in the bulk properties of these alloys (heat of formation, lattice parameter, and bulk modulus) and detect specific alloy compositions for which these quantities have particular values. A detailed analysis of the atomic interactions that lead to the preferred ordering patterns is presented.
Automated analysis of biological oscillator models using mode decomposition.
Konopka, Tomasz
2011-04-01
Oscillating signals produced by biological systems have shapes, described by their Fourier spectra, that can potentially reveal the mechanisms that generate them. Extracting this information from measured signals is interesting for the validation of theoretical models, discovery and classification of interaction types, and for optimal experiment design. An automated workflow is described for the analysis of oscillating signals. A software package is developed to match signal shapes to hundreds of a priori viable model structures defined by a class of first-order differential equations. The package computes parameter values for each model by exploiting the mode decomposition of oscillating signals and formulating the matching problem in terms of systems of simultaneous polynomial equations. On the basis of the computed parameter values, the software returns a list of models consistent with the data. In validation tests with synthetic datasets, it not only shortlists those model structures used to generate the data but also shows that excellent fits can sometimes be achieved with alternative equations. The listing of all consistent equations is indicative of how further invalidation might be achieved with additional information. When applied to data from a microarray experiment on mice, the procedure finds several candidate model structures to describe interactions related to the circadian rhythm. This shows that experimental data on oscillators is indeed rich in information about gene regulation mechanisms. The software package is available at http://babylone.ulb.ac.be/autoosc/.
Theory of polyelectrolytes in solvents.
Chitanvis, Shirish M
2003-12-01
Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian, charged chain and derive an effective short-ranged potential between the charges on the chain. This potential is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent characterizing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value obtained for second order phase transitions. For short chains, the radius of gyration varies linearly with N, the chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain length N indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable to experimental verification.
Schooling and variation in the COMT gene: The devil is in the details
Campbell, Daniel; Bick, Johanna; Yrigollen, Carolyn M.; Lee, Maria; Joseph, Antony; Chang, Joseph T.; Grigorenko, Elena L.
2013-01-01
Background Schooling is considered to be one of the major contributors to the development of intelligence within societies and individuals. Genetic variation might modulate the impact of schooling and explain, at least partially, the presence of individual differences in classrooms. Method We studied a sample of 1502 children (mean age = 11.7 years) from Zambia. Approximately 57% of these children were enrolled in school, and the rest were not. To quantify genetic variation, we investigated a number of common polymorphisms in the catechol-O-methyltransferase (COMT) gene that controls the production of the protein thought to account for >60% of the dopamine degradation in the prefrontal cortex. Results Haplotype analyses generated results ranging from the presence to absence of significant interactions between a number of COMT haplotypes and indicators of schooling (i.e., in- vs. out-of-school and grade completed) in the prediction of nonverbal intelligence, depending on the parameter specification. However, an investigation of the distribution of corresponding p-values suggested that these positive results were false. Conclusions Convincing evidence that the variation in the COMT gene is associated with individual differences in nonverbal intelligence either directly or through interactions with schooling was not found. P-values produced by the method of testing for haplotype effects employed here may be sensitive to parameter settings, invalid under default settings, and should be checked for validity through simulation. PMID:23952646
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Mozuelos, P.
This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact descriptionmore » of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short-ranged association of microions to the microgels. The behavior of these effective charges as a function of the amount of added salt and the macroion charge, size, and concentration reveals the interplay among all these system parameters.« less
Finding Top-kappa Unexplained Activities in Video
2012-03-09
parameters that define an UAP instance affect the running time by varying the values of each parameter while keeping the others fixed to a default...value. Runtime of Top-k TUA. Table 1 reports the values we considered for each parameter along with the corresponding default value. Parameter Values...Default value k 1, 2, 5, All All τ 0.4, 0.6, 0.8 0.6 L 160, 200, 240, 280 200 # worlds 7 E+04, 4 E+05, 2 E+07 2 E+07 TABLE 1: Parameter values used in
NASA Astrophysics Data System (ADS)
Satoliya, Anil Kumar; Vyas, B. M.; Shekhawat, M. S.
2018-05-01
The first time satellite space based measurement of atmospheric black carbon (BC) aerosols scattering coefficient at 550nm (BC SC at 550nm), dust aerosols scattering and dust aerosols extinction coefficient (DSC at 550nm and DEC at 550nm) parameters have been used to understand their long term trend of natural and anthropogenic aerosols behavior with its close association with ground based measured precipitation parameters such as Total Rain Fall (TRF), and Total Number of Rainy Days (TNRD) for the same period over western Indian regions concerned to the primary aerosols sources of natural activities. The basic objective of this study is an attempt to investigate the inter-correlation between dust and black carbon aerosols loading characteristics with a variation of rainfall pattern parameters as indirect aerosols induced effect i.e., aerosols-cloud interaction. The black carbon aerosols generated by diverse anthropogenic or human made activities are studied by choosing of measured atmospheric BC SC at 550nm parameter, whereas desert dust mineral aerosols primarily produced by varieties of natural activities pre-dominated of dust mineral desert aerosols mainly over Thar desert influenced area of hot climate and rural tropical site are investigated by selecting DSC at 550nm and DEC at 550nm of first semi-urban site i.e., Udaipur (UDP, 24.6°N, 73.35°E, 580m above surface level (asl)) situated in southern Rajasthan part as well as over other two Great Indian Thar desert locations i.e., Jaisalmer (JSM, 26.90°N, 69.90°E, 220m asl)) and Bikaner (BKN, 28.03°N, 73.30°E, 224m asl) located in the vicinity of the Thar desert region situated in Rajasthan state of the western Indian region. The source of the present study would be collection of longer period of monthly values of the above parameters of spanning 35 years i.e., 1980 to 2015. Such types of atmospheric aerosols-cloud monsoon interaction investigation is helpful in view of understanding their direct and indirect aerosols active role of optical absorption and scattering of solar light radiation at useful wavelength 550nm as well as heating of clouds over least explored region, i.e., the Thar desert region and also away from less dust dominated influenced provinces for longer period. The analysis of the above the result would also give a clear scientific evidence of alteration in enhancement in DSC at 550nm and DEC at 550nm and BC SC at 550nm variables with simultaneous corresponding reduction in the five yearly mean precipitation activity parameters such as TRF and TNRD. It is quite evident that anthropogenic BC aerosols activity are showing the significant increasing trend at all three locations, but it is more prominent over central Thar Desert influenced regime, i.e., JSM and BKN relative to semi-urban region i.e., UDP. The systematic increasing pattern of average monthly mean value of DSC at 550nm and DEC at 550nm or increasing aerosol loading have been revealed from acquiring their lowest value in January month and the highest values in July and retained with the broad peak values in pre-monsoon months. Subsequently, their respective values reduce sharply downward from August to December onwards. The mountain value of dust aerosols parameters, i.e., DSC at 550nm and DEC at 550nm are systematically enhanced toward from UDP to BKN and then maximized at JSM. It is clearly obvious fact that the following ascending order of desert aerosols loading influenced activity in different areas has been recorded, i.e., JSM> BKN>UDP. Several other interesting features of the earth-climate change implication in reference to the altering nature of reduction of precipitation parameter pattern with simultaneous observed elevated dust aerosol and BC aerosol loading have been also noticed in the course of present investigation. Overall reduction in rainfall pattern effect with increasing of dust aerosols loading or vice versa are seen more pronounced over JSM and lees prevalence over UDP. The more detailed investigations about other interesting results of Aerosols-Indian monsoon over western Indian locations are also discussed thoroughly in this paper.
Modelling algae-duckweed interaction under chemical pressure within a laboratory microcosm.
Lamonica, Dominique; Clément, Bernard; Charles, Sandrine; Lopes, Christelle
2016-06-01
Contaminant effects on species are generally assessed with single-species bioassays. As a consequence, interactions between species that occur in ecosystems are not taken into account. To investigate the effects of contaminants on interacting species dynamics, our study describes the functioning of a 2-L laboratory microcosm with two species, the duckweed Lemna minor and the microalgae Pseudokirchneriella subcapitata, exposed to cadmium contamination. We modelled the dynamics of both species and their interactions using a mechanistic model based on coupled ordinary differential equations. The main processes occurring in this two-species microcosm were thus formalised, including growth and settling of algae, growth of duckweeds, interspecific competition between the two species and cadmium effects. We estimated model parameters by Bayesian inference, using simultaneously all the data issued from multiple laboratory experiments specifically conducted for this study. Cadmium concentrations ranged between 0 and 50 μg·L(-1). For all parameters of our model, we obtained biologically realistic values and reasonable uncertainties. Only duckweed dynamics was affected by interspecific competition, while algal dynamics was not impaired. Growth rate of both species decreased with cadmium concentration, as well as competition intensity showing that the interspecific competition pressure on duckweed decreased with cadmium concentration. This innovative combination of mechanistic modelling and model-guided experiments was successful to understand the algae-duckweed microcosm functioning without and with contaminant. This approach appears promising to include interactions between species when studying contaminant effects on ecosystem functioning. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Di Liberto, M.; Malpetti, D.; Japaridze, G. I.; Morais Smith, C.
2014-08-01
We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long-studied four-Fermi-point unconventional metal.
NASA Astrophysics Data System (ADS)
Das, Rajarshi
2014-03-01
The Tokai to Kamioka (T2K) Experiment is a long-baseline neutrino oscillation experiment located in Japan with the primary goal to precisely measure multiple neutrino flavor oscillation parameters. An off-axis muon neutrino beam with an energy that peaks at 600 MeV is generated at the JPARC facility and directed towards the kiloton Super-Kamiokande (SK) water Cherenkov detector located 295 km away. The rates of electron neutrino and muon neutrino interactions are measured at SK and compared with expected model values. This yields a measurement of the neutrino oscillation parameters sinq and sinq. Measurements from a Near Detector that is 280 m downstream of the neutrino beam target are used to constrain uncertainties in the beam flux prediction and neutrino interaction rates. We present a measurement of inclusive charged current neutrino interactions on water. We used several sub-detectors in the ND280 complex, including a Pi-Zero detector (P0D) that has alternating planes of plastic scintillator and water bag layers, a time projection chamber (TPC) and fine-grained detector (FGD) to detect and reconstruct muons from neutrino charged current events. Finally, we describe a ``forward-fitting'' technique that is used to constrain the beam flux and cross section as an input for the neutrino oscillation analysis and also to extract a flux-averaged inclusive charged current cross section on water.
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen
2017-09-19
To investigate and compare the differences of structures and properties of CL-20/TNT cocrystal and composite explosives, the CL-20/TNT cocrystal and composite models were established. Molecular dynamics simulations were performed to investigate the structures, mechanical properties, sensitivity, stabilities and detonation performance of cocrystal and composite models with COMPASS force field in NPT ensemble. The lattice parameters, mechanical properties, binding energies, interaction energy of trigger bond, cohesive energy density and detonation parameters were determined and compared. The results show that, compared with pure CL-20, the rigidity and stiffness of cocrystal and composite models decreased, while plastic properties and ductility increased, so mechanical properties can be effectively improved by adding TNT into CL-20 and the cocrystal model has better mechanical properties. The interaction energy of the trigger bond and the cohesive energy density is in the order of CL-20/TNT cocrystal > CL-20/TNT composite > pure CL-20, i.e., cocrystal model is less sensitive than CL-20 and the composite model, and has the best safety parameters. Binding energies show that the cocrystal model has higher intermolecular interaction energy values than the composite model, thus illustrating the better stability of the cocrystal model. Detonation parameters vary as CL-20 > cocrystal > composite, namely, the energy density and power of cocrystal and composite model are weakened; however, the CL-20/TNT cocrystal explosive still has desirable energy density and detonation performance. This results presented in this paper help offer some helpful guidance to better understand the mechanism of CL-20/TNT cocrystal explosives and provide some theoretical assistance for cocrystal explosive design.