Science.gov

Sample records for interaction studies revealed

  1. Epistatic study reveals two genetic interactions in blood pressure regulation

    PubMed Central

    2013-01-01

    Background Although numerous candidate gene and genome-wide association studies have been performed on blood pressure, a small number of regulating genetic variants having a limited effect have been identified. This phenomenon can partially be explained by possible gene-gene/epistasis interactions that were little investigated so far. Methods We performed a pre-planned two-phase investigation: in phase 1, one hundred single nucleotide polymorphisms (SNPs) in 65 candidate genes were genotyped in 1,912 French unrelated adults in order to study their two-locus combined effects on blood pressure (BP) levels. In phase 2, the significant epistatic interactions observed in phase 1 were tested in an independent population gathering 1,755 unrelated European adults. Results Among the 9 genetic variants significantly associated with systolic and diastolic BP in phase 1, some may act through altering the corresponding protein levels: SNPs rs5742910 (Padjusted≤0.03) and rs6046 (Padjusted =0.044) in F7 and rs1800469 (Padjusted ≤0.036) in TGFB1; whereas some may be functional through altering the corresponding protein structure: rs1800590 (Padjusted =0.028, SE=0.088) in LPL and rs2228570 (Padjusted ≤9.48×10-4) in VDR. The two epistatic interactions found for systolic and diastolic BP in the discovery phase: VCAM1 (rs1041163) * APOB (rs1367117), and SCGB1A1 (rs3741240) * LPL (rs1800590), were tested in the replication population and we observed significant interactions on DBP. In silico analyses yielded putative functional properties of the SNPs involved in these epistatic interactions trough the alteration of corresponding protein structures. Conclusions These findings support the hypothesis that different pathways and then different genes may act synergistically in order to modify BP. This could highlight novel pathophysiologic mechanisms underlying hypertension. PMID:23298194

  2. Multitargeting by curcumin as revealed by molecular interaction studies

    PubMed Central

    Gupta, Subash C.; Prasad, Sahdeo; Kim, Ji Hye; Patchva, Sridevi; Webb, Lauren J.; Priyadarsini, Indira K.

    2012-01-01

    Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca2+ ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto–enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting

  3. Multitargeting by curcumin as revealed by molecular interaction studies.

    PubMed

    Gupta, Subash C; Prasad, Sahdeo; Kim, Ji Hye; Patchva, Sridevi; Webb, Lauren J; Priyadarsini, Indira K; Aggarwal, Bharat B

    2011-11-01

    Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca(2+) ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto-enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting

  4. Domain Interaction Studies of Herpes Simplex Virus 1 Tegument Protein UL16 Reveal Its Interaction with Mitochondria.

    PubMed

    Chadha, Pooja; Sarfo, Akua; Zhang, Dan; Abraham, Thomas; Carmichael, Jillian; Han, Jun; Wills, John W

    2017-01-15

    The UL16 tegument protein of herpes simplex virus 1 (HSV-1) is conserved among all herpesviruses and plays many roles during replication. This protein has an N-terminal domain (NTD) that has been shown to bind to several viral proteins, including UL11, VP22, and glycoprotein E, and these interactions are negatively regulated by a C-terminal domain (CTD). Thus, in pairwise transfections, UL16 binding is enabled only when the CTD is absent or altered. Based on these results, we hypothesized that direct interactions occur between the NTD and the CTD. Here we report that the separated and coexpressed functional domains of UL16 are mutually responsive to each other in transfected cells and form complexes that are stable enough to be captured in coimmunoprecipitation assays. Moreover, we found that the CTD can associate with itself. To our surprise, the CTD was also found to contain a novel and intrinsic ability to localize to specific spots on mitochondria in transfected cells. Subsequent analyses of HSV-infected cells by immunogold electron microscopy and live-cell confocal imaging revealed a population of UL16 that does not merely accumulate on mitochondria but in fact makes dynamic contacts with these organelles in a time-dependent manner. These findings suggest that the domain interactions of UL16 serve to regulate not just the interaction of this tegument protein with its viral binding partners but also its interactions with mitochondria. The purpose of this novel interaction remains to be determined.

  5. Revealing halogen bonding interactions with anomeric systems: an ab initio quantum chemical studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2015-02-01

    A computational study has been performed using MP2 and CCSD(T) methods on a series of O⋯X (X=Br, Cl and I) halogen bonds to evaluate the strength and characteristic of such highly directional noncovalent interactions. The study has been carried out on a series of dimeric complexes formed between interhalogen compounds (such as BrF, BrCl and BrI) and oxygen containing electron donor molecule. The existence and consequences of the anomeric effect of the electron donor molecule has also been investigated through an exploration of halogen bonding interactions in this halogen bonded complexes. The ab initio quantum chemical calculations have been employed to study both the nature and directionality of the halogen molecules toward the sp(3) oxygen atom in anomeric systems. The presence of anomeric nO→σ*CN interaction involves a dominant role for the availability of the axial and equatorial lone pairs of donor O atom to participate with interhalogen compounds in the halogen-bonded complexes. The energy difference between the axial and equatorial conformers with interhalogen compounds reaches up to 4.60 kJ/mol, which however depends upon the interacting halogen atoms and its attaching atoms. The energy decomposition analysis further suggests that the total halogen bond interaction energies are mainly contributed by the attractive electrostatic and dispersion components. The role of substituents attached with the halogen atoms has also been evaluated in this study. With the increase of halogen atom size and the positive nature of σ-hole, the halogen atom interacted more with the electron donor atom and the electrostatic contribution to the total interaction energy enhances appreciably. Further, noncovalent interaction (NCI) studies have been carried out to locate the noncovalent halogen bonding interactions in real space.

  6. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors.

    PubMed

    Cura, Vincent; Marechal, Nils; Troffer-Charlier, Nathalie; Strub, Jean-Marc; van Haren, Matthijs J; Martin, Nathaniel I; Cianférani, Sarah; Bonnefond, Luc; Cavarelli, Jean

    2017-01-01

    PRMT2 is the less-characterized member of the protein arginine methyltransferase family in terms of structure, activity, and cellular functions. PRMT2 is a modular protein containing a catalytic Ado-Met-binding domain and unique Src homology 3 domain that binds proteins with proline-rich motifs. PRMT2 is involved in a variety of cellular processes and has diverse roles in transcriptional regulation through different mechanisms depending on its binding partners. PRMT2 has been demonstrated to have weak methyltransferase activity on a histone H4 substrate, but its optimal substrates have not yet been identified. To obtain insights into the function and activity of PRMT2, we solve several crystal structures of PRMT2 from two homologs (zebrafish and mouse) in complex with either the methylation product S-adenosyl-L-homocysteine or other compounds including the first synthetic PRMT2 inhibitor (Cp1) studied so far. We reveal that the N-terminal-containing SH3 module is disordered in the full-length crystal structures, and highlights idiosyncratic features of the PRMT2 active site. We identify a new nonhistone protein substrate belonging to the serine-/arginine-rich protein family which interacts with PRMT2 and we characterize six methylation sites by mass spectrometry. To better understand structural basis for Cp1 binding, we also solve the structure of the complex PRMT4:Cp1. We compare the inhibitor-protein interactions occurring in the PRMT2 and PRMT4 complex crystal structures and show that this compound inhibits efficiently PRMT2. These results are a first step toward a better understanding of PRMT2 substrate recognition and may accelerate the development of structure-based drug design of PRMT2 inhibitors. All coordinates and structure factors have been deposited in the Protein Data Bank: zPRMT21-408 -SFG = 5g02; zPRMT273-408 -SAH = 5fub; mPRMT21-445 -SAH = 5ful; mPRMT21-445 -Cp1 = 5fwa, mCARM1130-487 -Cp1 = 5k8v. © 2016 Federation of European Biochemical Societies.

  7. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status.

    PubMed

    Rask-Andersen, Mathias; Karlsson, Torgny; Ek, Weronica E; Johansson, Åsa

    2017-09-01

    Previous genome-wide association studies (GWAS) have identified hundreds of genetic loci to be associated with body mass index (BMI) and risk of obesity. Genetic effects can differ between individuals depending on lifestyle or environmental factors due to gene-environment interactions. In this study, we examine gene-environment interactions in 362,496 unrelated participants with Caucasian ancestry from the UK Biobank resource. A total of 94 BMI-associated SNPs, selected from a previous GWAS on BMI, were used to construct weighted genetic scores for BMI (GSBMI). Linear regression modeling was used to estimate the effect of gene-environment interactions on BMI for 131 lifestyle factors related to: dietary habits, smoking and alcohol consumption, physical activity, socioeconomic status, mental health, sleeping patterns, as well as female-specific factors such as menopause and childbirth. In total, 15 lifestyle factors were observed to interact with GSBMI, of which alcohol intake frequency, usual walking pace, and Townsend deprivation index, a measure of socioeconomic status, were all highly significant (p = 1.45*10-29, p = 3.83*10-26, p = 4.66*10-11, respectively). Interestingly, the frequency of alcohol consumption, rather than the total weekly amount resulted in a significant interaction. The FTO locus was the strongest single locus interacting with any of the lifestyle factors. However, 13 significant interactions were also observed after omitting the FTO locus from the genetic score. Our analyses indicate that many lifestyle factors modify the genetic effects on BMI with some groups of individuals having more than double the effect of the genetic score. However, the underlying causal mechanisms of gene-environmental interactions are difficult to deduce from cross-sectional data alone and controlled experiments are required to fully characterise the causal factors.

  8. Simple F Test Reveals Gene-Gene Interactions in Case-Control Studies

    PubMed Central

    Chen, Guanjie; Yuan, Ao; Zhou, Jie; Bentley, Amy R.; Adeyemo, Adebowale; Rotimi, Charles N.

    2012-01-01

    Missing heritability is still a challenge for Genome Wide Association Studies (GWAS). Gene-gene interactions may partially explain this residual genetic influence and contribute broadly to complex disease. To analyze the gene-gene interactions in case-control studies of complex disease, we propose a simple, non-parametric method that utilizes the F-statistic. This approach consists of three steps. First, we examine the joint distribution of a pair of SNPs in cases and controls separately. Second, an F-test is used to evaluate the ratio of dependence in cases to that of controls. Finally, results are adjusted for multiple tests. This method was used to evaluate gene-gene interactions that are associated with risk of Type 2 Diabetes among African Americans in the Howard University Family Study. We identified 18 gene-gene interactions (P < 0.0001). Compared with the commonly-used logistical regression method, we demonstrate that the F-ratio test is an efficient approach to measuring gene-gene interactions, especially for studies with limited sample size. PMID:22837643

  9. Revealing Non-Covalent Interactions

    PubMed Central

    Johnson, Erin R.; Keinan, Shahar; Mori-Sánchez, Paula; Contreras-García, Julia; Cohen, Aron J.; Yang, Weitao

    2010-01-01

    Molecular structure does not easily identify the intricate non-covalent interactions that govern many areas of biology and chemistry, including design of new materials and drugs. We develop an approach to detect non-covalent interactions in real space, based on the electron density and its derivatives. Our approach reveals underlying chemistry that compliments the covalent structure. It provides a rich representation of van der Waals interactions, hydrogen bonds, and steric repulsion in small molecules, molecular complexes, and solids. Most importantly, the method, requiring only knowledge of the atomic coordinates, is efficient and applicable to large systems, such as proteins or DNA. Across these applications, a view of non-bonded interactions emerges as continuous surfaces rather than close contacts between atom pairs, offering rich insight into the design of new and improved ligands. PMID:20394428

  10. Genome-wide interaction studies reveal sex-specific asthma risk alleles

    PubMed Central

    Myers, Rachel A.; Scott, Nicole M.; Gauderman, W. James; Qiu, Weiliang; Mathias, Rasika A.; Romieu, Isabelle; Levin, Albert M.; Pino-Yanes, Maria; Graves, Penelope E.; Villarreal, Albino Barraza; Beaty, Terri H.; Carey, Vincent J.; Croteau-Chonka, Damien C.; del Rio Navarro, Blanca; Edlund, Christopher; Hernandez-Cadena, Leticia; Navarro-Olivos, Efrain; Padhukasahasram, Badri; Salam, Muhammad T.; Torgerson, Dara G.; Van den Berg, David J.; Vora, Hita; Bleecker, Eugene R.; Meyers, Deborah A.; Williams, L. Keoki; Martinez, Fernando D.; Burchard, Esteban G.; Barnes, Kathleen C.; Gilliland, Frank D.; Weiss, Scott T.; London, Stephanie J.; Raby, Benjamin A.; Ober, Carole; Nicolae, Dan L.

    2014-01-01

    Asthma is a complex disease with sex-specific differences in prevalence. Candidate gene studies have suggested that genotype-by-sex interaction effects on asthma risk exist, but this has not yet been explored at a genome-wide level. We aimed to identify sex-specific asthma risk alleles by performing a genome-wide scan for genotype-by-sex interactions in the ethnically diverse participants in the EVE Asthma Genetics Consortium. We performed male- and female-specific genome-wide association studies in 2653 male asthma cases, 2566 female asthma cases and 3830 non-asthma controls from European American, African American, African Caribbean and Latino populations. Association tests were conducted in each study sample, and the results were combined in ancestry-specific and cross-ancestry meta-analyses. Six sex-specific asthma risk loci had P-values < 1 × 10−6, of which two were male specific and four were female specific; all were ancestry specific. The most significant sex-specific association in European Americans was at the interferon regulatory factor 1 (IRF1) locus on 5q31.1. We also identify a Latino female-specific association in RAP1GAP2. Both of these loci included single-nucleotide polymorphisms that are known expression quantitative trait loci and have been associated with asthma in independent studies. The IRF1 locus is a strong candidate region for male-specific asthma susceptibility due to the association and validation we demonstrate here, the known role of IRF1 in asthma-relevant immune pathways and prior reports of sex-specific differences in interferon responses. PMID:24824216

  11. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes

    NASA Astrophysics Data System (ADS)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M.; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-10-01

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti

  12. Intermolecular interaction studies of winter flounder antifreeze protein reveal the existence of thermally accessible binding state.

    PubMed

    Nguyen, Dat H; Colvin, Michael E; Yeh, Yin; Feeney, Robert E; Fink, William H

    2004-10-05

    The physical nature underlying intermolecular interactions between two rod-like winter flounder antifreeze protein (AFP) molecules and their implication for the mechanism of antifreeze function are examined in this work using molecular dynamics simulations, augmented with free energy calculations employing a continuum solvation model. The energetics for different modes of interactions of two AFP molecules is examined in both vacuum and aqueous phases along with the water distribution in the region encapsulated by two antiparallel AFP backbones. The results show that in a vacuum two AFP molecules intrinsically attract each other in the antiparallel fashion, where their complementary charge side chains face each other directly. In the aqueous environment, this attraction is counteracted by both screening and entropic effects. Therefore, two nearly energetically degenerate states, an aggregated state and a dissociated state, result as a new aspect of intermolecular interaction in the paradigm for the mechanism of action of AFP. The relevance of these findings to the mechanism of function of freezing inhibition in the context of our work on Antarctic cod antifreeze glycoprotein (Nguyen et al., Biophysical Journal, 2002, Vol. 82, pp. 2892-2905) is discussed.

  13. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.

    PubMed

    Verberk, Wilco C E P; Durance, Isabelle; Vaughan, Ian P; Ormerod, Steve J

    2016-05-01

    Aquatic ecological responses to climatic warming are complicated by interactions between thermal effects and other environmental stressors such as organic pollution and hypoxia. Laboratory experiments have demonstrated how oxygen limitation can set heat tolerance for some aquatic ectotherms, but only at unrealistic lethal temperatures and without field data to assess whether oxygen shortages might also underlie sublethal warming effects. Here, we test whether oxygen availability affects both lethal and nonlethal impacts of warming on two widespread Eurasian mayflies, Ephemera danica, Müller 1764 and Serratella ignita (Poda 1761). Mayfly nymphs are often a dominant component of the invertebrate assemblage in streams, and play a vital role in aquatic and riparian food webs. In the laboratory, lethal impacts of warming were assessed under three oxygen conditions. In the field, effects of oxygen availability on nonlethal impacts of warming were assessed from mayfly occurrence in 42 293 UK stream samples where water temperature and biochemical oxygen demand were measured. Oxygen limitation affected both lethal and sublethal impacts of warming in each species. Hypoxia lowered lethal limits by 5.5 °C (±2.13) and 8.2 °C (±0.62) for E. danica and S. ignita respectively. Field data confirmed the importance of oxygen limitation in warmer waters; poor oxygenation drastically reduced site occupancy, and reductions were especially pronounced under warm water conditions. Consequently, poor oxygenation lowered optimal stream temperatures for both species. The broad concordance shown here between laboratory results and extensive field data suggests that oxygen limitation not only impairs survival at thermal extremes but also restricts species abundance in the field at temperatures well below upper lethal limits. Stream oxygenation could thus control the vulnerability of aquatic ectotherms to global warming. Improving water oxygenation and reducing pollution can provide

  14. Time-resolved toxicity study reveals the dynamic interactions between uncoated silver nanoparticles and bacteria.

    PubMed

    Dong, Feng; Mohd Zaidi, Nurul Fitriah; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich

    2017-06-01

    It is still unclear whether the toxicity of silver nanoparticles (AgNPs) can be attributed solely to the release of Ag(+) or whether dissolved and nanoparticulate Ag act in parallel; this is due to the difficulty in distinguishing Ag(+)- from AgNP-effects. Also, AgNPs undergo changes during toxicity tests. This is the first study to investigate the influence of AgNP dissolution over time on viable counts at high time resolution and low cell density, avoiding the apparently reduced toxicity at higher cell densities identified in our study. Uncapped AgNPs were synthesized to avoid any interference from surface coatings. The transformations of AgNPs during storage were reduced. Lowering the concentration of AgNPs reduced their aggregation in Davis minimal medium (DMM). Also, AgNPs dissolved more slowly in DMM than in water. The minimum inhibitory concentrations (MICs) of Ag(+) and AgNPs increased with cell density according to a power law, suggesting that binding to cells decreased effective concentrations. However, AgNPs acted as a reservoir of Ag, releasing new Ag(+) to maintain the Ag stress. The toxicity of AgNPs was dominated by dissolved Ag. Combining controlled conditions, high time-resolution and low cell density, we could demonstrate different roles of ionic and nano Ag in bacterial death caused by AgNPs.

  15. Structural studies reveal an important role for the pleiotrophin C-terminus in mediating interactions with chondroitin sulfate.

    PubMed

    Ryan, Eathen; Shen, Di; Wang, Xu

    2016-04-01

    Pleiotrophin (PTN) is a potent glycosaminoglycan-binding cytokine that is important in neural development, angiogenesis and tissue regeneration. Much of its activity is attributed to its interactions with the chondroitin sulfate (CS) proteoglycan, receptor type protein tyrosine phosphatase ζ (PTPRZ). However, there is little high resolution structural information on the interactions between PTN and CS, nor is it clear why the C-terminal tail of PTN is necessary for signaling through PTPRZ, even though it does not contribute to heparin binding. We determined the first structure of PTN and analyzed its interactions with CS. Our structure shows that PTN possesses large basic surfaces on both of its structured domains and also that residues in the hinge segment connecting the domains have significant contacts with the C-terminal domain. Our analysis of PTN-CS interactions showed that the C-terminal tail of PTN is essential for maintaining stable interactions with chondroitin sulfate A, the type of CS commonly found on PTPRZ. These results offer the first possible explanation of why truncated PTN missing the C-terminal tail is unable to signal through PTPRZ. NMR analysis of the interactions of PTN with CS revealed that the C-terminal domain and hinge of PTN make up the major CS-binding site in PTN, and that removal of the C-terminal tail weakened the affinity of the site for CSA but not for other high sulfation density CS. Coordinates of the ensemble of ten PTN structures have been deposited in RCSB under accession number 2n6f. Chemical shifts assignments and structural constraints have been deposited in BMRB under accession number 25762. © 2016 Federation of European Biochemical Societies.

  16. Interactions between dendrimers and ionic liquids revealed by pulsed field gradient and nuclear Overhauser effect NMR studies.

    PubMed

    Zhao, Libo; Li, Cai; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen; Cheng, Yiyun

    2012-06-21

    The host-guest interactions of cationic and anionic poly(amidoamine) (PAMAM) dendrimers with three ionic liquids including 1-butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethyl sulfate ([BMIM][MDEGSO(4)]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]), and trihexyltetradecylphosphonium bis((trifluoromethyl)sulfonyl)imide ([THTDP][TFSI]) were investigated by several NMR techniques such as (1)H and (19)F NMR, pulsed field gradient (PFG) NMR, and 2D nuclear Overhauser enhancement spectroscopy (NOESY). Anionic PAMAM dendrimer interacts with the ionic liquids via ionic interactions. However, almost no interaction is observed between cationic PAMAM dendrimer and the ionic liquids without pH adjustment. Besides, no inclusion formation between the PAMAM dendrimers and the ionic liquids is observed on the basis of NOE NMR studies. The interactions between dendrimers and ionic liquids are very different from those between dendrimers and surfactants or amphiphilic drugs. The results obtained from PFG and NOE studies provide new insights into dendrimer-based host-guest systems.

  17. QM/MM Studies Reveal How Substrate-Substrate and Enzyme-Substrate Interactions Modulate Retaining Glycosyltransferases Catalysis and Mechanism.

    PubMed

    Gómez, Hansel; Mendoza, Fernanda; Lluch, José M; Masgrau, Laura

    2015-01-01

    Glycosyltransferases (GTs) catalyze the biosynthesis of glycosidic linkages by transferring a monosaccharide from a nucleotide sugar donor to an acceptor substrate, and they do that with exquisite regio- and stereospecificity. Retaining GTs act with retention of the configuration at the anomeric carbon of the transferred sugar. Their chemical mechanism has been under debate for long as conclusive experimental data to confirm the mechanism have been elusive. In the past years, quantum mechanical/molecular mechanical (QM/MM) calculations have shed light on the mechanistic discussion. Here, we review the work carried out in our group investigating three of these retaining enzymes (LgtC, α3GalT, and GalNAc-T2). Our results support the controversial front-side attack mechanism as the general mechanism for most retaining GTs. The latest structural data are in agreement with these findings. QM/MM calculations have revealed how enzyme-substrate and substrate-substrate interactions modulate the transfer reaction catalyzed by these enzymes. Moreover, they provide an explanation on why in some cases a strong nucleophilic residue is found on the β-face of the sugar, opening the door to a shift toward a double-displacement mechanism.

  18. Revealing the molecular signatures of host-pathogen interactions

    PubMed Central

    2011-01-01

    Advances in sequencing technology and genome-wide association studies are now revealing the complex interactions between hosts and pathogen through genomic variation signatures, which arise from evolutionary co-existence. PMID:22011345

  19. Functional Complementation Studies Reveal Different Interaction Partners of Escherichia coli IscS and Human NFS1.

    PubMed

    Bühning, Martin; Friemel, Martin; Leimkühler, Silke

    2017-08-29

    The trafficking and delivery of sulfur to cofactors and nucleosides is a highly regulated and conserved process among all organisms. All sulfur transfer pathways generally have an l-cysteine desulfurase as an initial sulfur-mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of sulfur-containing biomolecules like iron-sulfur (Fe-S) clusters, thiamine, biotin, lipoic acid, the molybdenum cofactor (Moco), and thiolated nucleosides in tRNA. The human l-cysteine desulfurase NFS1 and the Escherichia coli homologue IscS share a level of amino acid sequence identity of ∼60%. While E. coli IscS has a versatile role in the cell and was shown to have numerous interaction partners, NFS1 is mainly localized in mitochondria with a crucial role in the biosynthesis of Fe-S clusters. Additionally, NFS1 is also located in smaller amounts in the cytosol with a role in Moco biosynthesis and mcm(5)s(2)U34 thio modifications of nucleosides in tRNA. NFS1 and IscS were conclusively shown to have different interaction partners in their respective organisms. Here, we used functional complementation studies of an E. coli iscS deletion strain with human NFS1 to dissect their conserved roles in the transfer of sulfur to a specific target protein. Our results show that human NFS1 and E. coli IscS share conserved binding sites for proteins involved in Fe-S cluster assembly like IscU, but not with proteins for tRNA thio modifications or Moco biosynthesis. In addition, we show that human NFS1 was almost fully able to complement the role of IscS in Moco biosynthesis when its specific interaction partner protein MOCS3 from humans was also present.

  20. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response

    PubMed Central

    2012-01-01

    Background Gut microbiota and the host exist in a mutualistic relationship, with the functional composition of the microbiota strongly affecting the health and well-being of the host. Thus, it is important to develop a synthetic approach to study the host transcriptome and the microbiome simultaneously. Early microbial colonization in infants is critically important for directing neonatal intestinal and immune development, and is especially attractive for studying the development of human-commensal interactions. Here we report the results from a simultaneous study of the gut microbiome and host epithelial transcriptome of three-month-old exclusively breast- and formula-fed infants. Results Variation in both host mRNA expression and the microbiome phylogenetic and functional profiles was observed between breast- and formula-fed infants. To examine the interdependent relationship between host epithelial cell gene expression and bacterial metagenomic-based profiles, the host transcriptome and functionally profiled microbiome data were subjected to novel multivariate statistical analyses. Gut microbiota metagenome virulence characteristics concurrently varied with immunity-related gene expression in epithelial cells between the formula-fed and the breast-fed infants. Conclusions Our data provide insight into the integrated responses of the host transcriptome and microbiome to dietary substrates in the early neonatal period. We demonstrate that differences in diet can affect, via gut colonization, host expression of genes associated with the innate immune system. Furthermore, the methodology presented in this study can be adapted to assess other host-commensal and host-pathogen interactions using genomic and transcriptomic data, providing a synthetic genomics-based picture of host-commensal relationships. PMID:22546241

  1. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    NASA Astrophysics Data System (ADS)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  2. Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity.

    PubMed

    Knott, Brandon C; Crowley, Michael F; Himmel, Michael E; Ståhlberg, Jerry; Beckham, Gregg T

    2014-06-18

    Translocation of carbohydrate polymers through protein tunnels and clefts is a ubiquitous biochemical phenomenon in proteins such as polysaccharide synthases, glycoside hydrolases, and carbohydrate-binding modules. Although static snapshots of carbohydrate polymer binding in proteins have long been studied via crystallography and spectroscopy, the molecular details of polysaccharide chain processivity have not been elucidated. Here, we employ simulation to examine how a cellulose chain translocates by a disaccharide unit during the processive cycle of a glycoside hydrolase family 7 cellobiohydrolase. Our results demonstrate that these biologically and industrially important enzymes employ a two-step mechanism for chain threading to form a Michaelis complex and that the free energy barrier to chain threading is significantly lower than the hydrolysis barrier. Taken with previous studies, our findings suggest that the rate-limiting step in enzymatic cellulose degradation is the glycosylation reaction, not chain processivity. Based on the simulations, we find that strong electrostatic interactions with polar residues that are conserved in GH7 cellobiohydrolases, but not in GH7 endoglucanases, at the leading glucosyl ring provide the thermodynamic driving force for polysaccharide chain translocation. Also, we consider the role of aromatic-carbohydrate interactions, which are widespread in carbohydrate-active enzymes and have long been associated with processivity. Our analysis suggests that the primary role for these aromatic residues is to provide tunnel shape and guide the carbohydrate chain to the active site. More broadly, this work elucidates the role of common protein motifs found in carbohydrate-active enzymes that synthesize or depolymerize polysaccharides by chain translocation mechanisms coupled to catalysis.

  3. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions?

    PubMed Central

    Hall, F. Scott; Perona, Maria T. G.

    2012-01-01

    This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that are determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms. PMID:22643448

  4. Subcellular fractionation and localization studies reveal a direct interaction of the fragile X mental retardation protein (FMRP) with nucleolin.

    PubMed

    Taha, Mohamed S; Nouri, Kazem; Milroy, Lech G; Moll, Jens M; Herrmann, Christian; Brunsveld, Luc; Piekorz, Roland P; Ahmadian, Mohammad R

    2014-01-01

    Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs.

  5. Association Studies in Populus tomentosa Reveal the Genetic Interactions of Pto-MIR156c and Its Targets in Wood Formation

    PubMed Central

    Quan, Mingyang; Wang, Qingshi; Phangthavong, Souksamone; Yang, Xiaohui; Song, Yuepeng; Du, Qingzhang; Zhang, Deqiang

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression in many biological processes, but the significance of the interaction between a miRNA and its targets in perennial trees remains largely unknown. Here, we employed transcript profiling and association studies in Populus tomentosa (Pto) to decipher the effect of genetic variation and interactions between Pto-miR156c and its potential targets (Pto-SPL15, Pto-SPL20, and Pto-SPL25) in 435 unrelated individuals from a natural population of P. tomentosa. Single-SNP (single-nucleotide polymorphism) based association studies with analysis of the underlying additive and dominant effects identified 69 significant associations (P < 0.01), representing 51 common SNPs (minor allele frequency > 0.05) from Pto-MIR156c and its three potential targets, with six wood and growth traits, revealing their common roles in wood formation. Epistasis analysis uncovered 129 significant SNP-SNP associations with ten traits, indicating the potential genetic interactions of Pto-MIR156c and its three putative targets. Interestingly, expression analysis in stem (phloem, cambium, and xylem) revealed that Pto-miR156c expression showed strong negative correlations with Pto-SPL20 (r = −0.90, P < 0.01) and Pto-SPL25 (r = −0.65, P < 0.01), and a positive correlation with Pto-SPL15 (r = 0.40, P < 0.01), which also indicated the putative interactions of Pto-miR156c and its potential targets and their common roles in wood formation. Thus, our study provided an alternative approach to decipher the interaction between miRNAs and their targets and to dissect the genetic architecture of complex traits in trees. PMID:27536313

  6. Toroidal Interaction and Propeller Chirality of Hexaarylbenzenes. Dynamic Domino Inversion Revealed by Combined Experimental and Theoretical Circular Dichroism Studies.

    PubMed

    Kosaka, Tomoyo; Inoue, Yoshihisa; Mori, Tadashi

    2016-03-03

    Hexaarylbenzenes (HABs) have greatly attracted much attention due to their unique propeller-shaped structure and potential application in materials science, such as liquid crystals, molecular capsules/rotors, redox materials, nonlinear optical materials, as well as molecular wires. Less attention has however been paid to their propeller chirality. By introducing small point-chiral group(s) at the periphery of HABs, propeller chirality was effectively induced, provoking strong Cotton effects in the circular dichroism (CD) spectrum. Temperature and solvent polarity manipulate the dynamics of propeller inversion in solution. As such, whizzing toroids become more substantial in polar solvents and at an elevated temperature, where radial aromatic rings (propeller blades) prefer orthogonal alignment against the central benzene ring (C6 core), maximizing toroidal interactions.

  7. A study of the YopD-lcrH interaction from Yersinia pseudotuberculosis reveals a role for hydrophobic residues within the amphipathic domain of YopD.

    PubMed

    Francis, M S; Aili, M; Wiklund, M L; Wolf-Watz, H

    2000-10-01

    The enteropathogen Yersinia pseudotuberculosis is a model system used to study the molecular mechanisms by which Gram-negative pathogens translocate effector proteins into target eukaryotic cells by a common type III secretion machine. Of the numerous proteins produced by Y. pseudotuberculosis that act in concert to establish an infection, YopD (Yersinia outer protein D) is a crucial component essential for yop regulation and Yop effector translocation. In this study, we describe the mechanisms by which YopD functions to control these processes. With the aid of the yeast two-hybrid system, we investigated the interaction between YopD and the cognate chaperone LcrH. We confirmed that non-secreted LcrH is necessary for YopD stabilization before secretion, presumably by forming a complex with YopD in the bacterial cytoplasm. At least in yeast, this complex depends upon the N-terminal domain and a C-terminal amphipathic alpha-helical domain of YopD. Introduction of amino acid substitutions within the hydrophobic side of the amphipathic alpha-helix abolished the YopD-LcrH interaction, indicating that hydrophobic, as opposed to electrostatic, forces of attraction are important for this process. Suppressor mutations isolated within LcrH could compensate for defects in the amphipathic domain of YopD to restore binding. Isolation of LcrH mutants unable to interact with wild-type YopD revealed no single domain responsible for YopD binding. The YopD and LcrH mutants generated in this study will be relevant tools for understanding YopD function during a Yersinia infection.

  8. Using metabarcoding to reveal and quantify plant-pollinator interactions

    PubMed Central

    Pornon, André; Escaravage, Nathalie; Burrus, Monique; Holota, Hélène; Khimoun, Aurélie; Mariette, Jérome; Pellizzari, Charlène; Iribar, Amaia; Etienne, Roselyne; Taberlet, Pierre; Vidal, Marie; Winterton, Peter; Zinger, Lucie; Andalo, Christophe

    2016-01-01

    Given the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 times more plant species involved in plant-pollinator interactions. We further observed a tight positive relationship between the pollen-carrying capacities of insect taxa and the number of trnL and ITS1 sequences. The number of visits received per plant species also positively correlated to the number of their ITS1 and trnL sequences in insect pollen loads. By revealing interactions hard to observe otherwise, metabarcoding significantly enlarges the spatiotemporal observation window of pollination interactions. By providing new qualitative and quantitative information, metabarcoding holds great promise for investigating diverse facets of interactions and will provide a new perception of pollination networks as a whole. PMID:27255732

  9. Using metabarcoding to reveal and quantify plant-pollinator interactions.

    PubMed

    Pornon, André; Escaravage, Nathalie; Burrus, Monique; Holota, Hélène; Khimoun, Aurélie; Mariette, Jérome; Pellizzari, Charlène; Iribar, Amaia; Etienne, Roselyne; Taberlet, Pierre; Vidal, Marie; Winterton, Peter; Zinger, Lucie; Andalo, Christophe

    2016-06-03

    Given the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 times more plant species involved in plant-pollinator interactions. We further observed a tight positive relationship between the pollen-carrying capacities of insect taxa and the number of trnL and ITS1 sequences. The number of visits received per plant species also positively correlated to the number of their ITS1 and trnL sequences in insect pollen loads. By revealing interactions hard to observe otherwise, metabarcoding significantly enlarges the spatiotemporal observation window of pollination interactions. By providing new qualitative and quantitative information, metabarcoding holds great promise for investigating diverse facets of interactions and will provide a new perception of pollination networks as a whole.

  10. Revealing protein-lncRNA interaction.

    PubMed

    Ferrè, Fabrizio; Colantoni, Alessio; Helmer-Citterich, Manuela

    2016-01-01

    Long non-coding RNAs (lncRNAs) are associated to a plethora of cellular functions, most of which require the interaction with one or more RNA-binding proteins (RBPs); similarly, RBPs are often able to bind a large number of different RNAs. The currently available knowledge is already drawing an intricate network of interactions, whose deregulation is frequently associated to pathological states. Several different techniques were developed in the past years to obtain protein-RNA binding data in a high-throughput fashion. In parallel, in silico inference methods were developed for the accurate computational prediction of the interaction of RBP-lncRNA pairs. The field is growing rapidly, and it is foreseeable that in the near future, the protein-lncRNA interaction network will rise, offering essential clues for a better understanding of lncRNA cellular mechanisms and their disease-associated perturbations. © The Author 2015. Published by Oxford University Press.

  11. Revealing protein–lncRNA interaction

    PubMed Central

    Colantoni, Alessio; Helmer-Citterich, Manuela

    2016-01-01

    Long non-coding RNAs (lncRNAs) are associated to a plethora of cellular functions, most of which require the interaction with one or more RNA-binding proteins (RBPs); similarly, RBPs are often able to bind a large number of different RNAs. The currently available knowledge is already drawing an intricate network of interactions, whose deregulation is frequently associated to pathological states. Several different techniques were developed in the past years to obtain protein–RNA binding data in a high-throughput fashion. In parallel, in silico inference methods were developed for the accurate computational prediction of the interaction of RBP–lncRNA pairs. The field is growing rapidly, and it is foreseeable that in the near future, the protein–lncRNA interaction network will rise, offering essential clues for a better understanding of lncRNA cellular mechanisms and their disease-associated perturbations. PMID:26041786

  12. Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances

    DOE PAGES

    Dantas, Joana M.; Kokhan, Oleksandr; Pokkuluri, P. Raj; ...

    2015-06-09

    Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the HS analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for HS respiration in G. sulfurreducens, but the process is far from fully understood. In this work, NMR chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS,more » and to measure their binding affinity. The results showed that the AH2QDS binds reversibly to the more solvent exposed edge of PpcA heme IV. The NMR and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme IV (- 127 mV) compared to that of AH2QDS (- 184 mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between AH2QDS and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. In conclusion, such behavior might confer selective advantage to G. sulfurreducens, which can utilize the HS in any redox state available in the environment for its metabolic needs.« less

  13. A solution NMR study of the interactions of oligomannosides and the anti-HIV-1 2G12 antibody reveals distinct binding modes for branched ligands.

    PubMed

    Enríquez-Navas, Pedro M; Marradi, Marco; Padro, Daniel; Angulo, Jesús; Penadés, Soledad

    2011-02-01

    The structural and affinity details of the interactions of synthetic oligomannosides, linear (di-, tri-, and tetra-) and branched (penta- and hepta-), with the broadly neutralizing anti-HIV-1 antibody 2G12 (HIV=human immunodeficiency virus) have been investigated in solution by using ligand-based NMR techniques, specifically saturation transfer difference (STD) NMR spectroscopy and transferred NOE experiments. Linear oligomannosides show similar binding modes to the antibody, with the nonreducing terminal disaccharide Manα(1→2)Man (Man=mannose) making the closest protein/ligand contacts in the bound state. In contrast, the branched pentamannoside shows two alternate binding modes, involving both ligand arms (D2- and D3-like), a dual binding description of the molecular recognition of this ligand by 2G12 in solution that differs from the single binding mode deduced from X-ray studies. On the contrary, the antibody shows an unexpected selectivity for one arm (D1-like) of the other branched ligand (heptamannoside). This result explains the previously reported lack of affinity enhancement relative to that of the D1-like tetramannoside. Single-ligand STD NMR titration experiments revealed noticeable differences in binding affinities among the linear and branched ligands in solution, with the latter showing decreased affinity. Among the analyzed series of ligands, the strongest 2G12 binders were the linear tri- and tetramannosides because both show similar affinity for the antibody. These results demonstrate that NMR spectroscopic techniques can deliver abundant structural, dynamics, and affinity information for the characterization of oligomannose-2G12 binding in solution, thus complementing, and, as in the case of the pentamannoside, extending, the structural view from X-ray crystallography. This information is of key importance for the development of multivalent synthetic gp120 high-mannose glycoconjugate mimics in the context of vaccine development.

  14. Anticipatory eye fixations reveal tool knowledge for tool interaction.

    PubMed

    Belardinelli, Anna; Barabas, Marissa; Himmelbach, Marc; Butz, Martin V

    2016-08-01

    Action-oriented eye-tracking studies have shown that eye fixations reveal much about current behavioral intentions. The eyes typically fixate those positions of a tool or an object where the fingers will be placed next, or those positions in a scene, where obstacles need to be avoided to successfully reach or transport a tool or object. Here, we asked to what extent eye fixations can also reveal active cognitive inference processes, which are expected to integrate bottom-up visual information with internal knowledge for planning suitable object interactions task-dependently. In accordance to the available literature, we expected that task-relevant knowledge will include sensorimotor, semantic, and mechanical aspects. To investigate if and in which way this internal knowledge influences eye fixation behavior while planning an object interaction, we presented pictures of familiar and unfamiliar tools and instructed participants to either pantomime 'lifting' or 'using' the respective tool. When confronted with unfamiliar tools, participants fixated the tool's effector part closer and longer in comparison with familiar tools. This difference was particularly prominent during 'using' trials when compared with 'lifting' trials. We suggest that this difference indicates that the brain actively extracts mechanical information about the unknown tool in order to infer its appropriate usage. Moreover, the successive fixations over a trial indicate that a dynamic, task-oriented, active cognitive process unfolds, which integrates available tool knowledge with visually gathered information to plan and determine the currently intended tool interaction.

  15. Label-free solution-based kinetic study of aptamer-small molecule interactions by kinetic capillary electrophoresis with UV detection revealing how kinetics control equilibrium.

    PubMed

    Bao, Jiayin; Krylova, Svetlana M; Reinstein, Oren; Johnson, Philip E; Krylov, Sergey N

    2011-11-15

    Here we demonstrate a label-free solution-based approach for studying the kinetics of biopolymer-small molecule interactions. The approach utilizes kinetic capillary electrophoresis (KCE) separation and UV light absorption detection of the unlabeled small molecule. In this proof-of-concept work, we applied KCE-UV to study kinetics of interaction between a small molecule and a DNA aptamer. From the kinetic analysis of a series of aptamers, we found that dissociation rather than binding controls the stability of the complex. Because of its label-free features and generic nature, KCE-UV promises to become a practical tool for challenging kinetic studies of biopolymer-small molecule interactions.

  16. Correcting for the study bias associated with protein–protein interaction measurements reveals differences between protein degree distributions from different cancer types

    PubMed Central

    Schaefer, Martin H.; Serrano, Luis; Andrade-Navarro, Miguel A.

    2015-01-01

    Protein–protein interaction (PPI) networks are associated with multiple types of biases partly rooted in technical limitations of the experimental techniques. Another source of bias are the different frequencies with which proteins have been studied for interaction partners. It is generally believed that proteins with a large number of interaction partners tend to be essential, evolutionarily conserved, and involved in disease. It has been repeatedly reported that proteins driving tumor formation have a higher number of PPI partners. However, it has been noticed before that the degree distribution of PPI networks is biased toward disease proteins, which tend to have been studied more often than non-disease proteins. At the same time, for many poorly characterized proteins no interactions have been reported yet. It is unclear to which extent this study bias affects the observation that cancer proteins tend to have more PPI partners. Here, we show that the degree of a protein is a function of the number of times it has been screened for interaction partners. We present a randomization-based method that controls for this bias to decide whether a group of proteins is associated with significantly more PPI partners than the proteomic background. We apply our method to cancer proteins and observe, in contrast to previous studies, no conclusive evidence for a significantly higher degree distribution associated with cancer proteins as compared to non-cancer proteins when we compare them to proteins that have been equally often studied as bait proteins. Comparing proteins from different tumor types, a more complex picture emerges in which proteins of certain cancer classes have significantly more interaction partners while others are associated with a smaller degree. For example, proteins of several hematological cancers tend to be associated with a higher number of interaction partners as expected by chance. Solid tumors, in contrast, are usually associated with a degree

  17. Revealing physical interaction networks from statistics of collective dynamics.

    PubMed

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-02-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system's model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems.

  18. Revealing physical interaction networks from statistics of collective dynamics

    PubMed Central

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  19. Linear filtering reveals false negatives in species interaction data

    PubMed Central

    Stock, Michiel; Poisot, Timothée; Waegeman, Willem; De Baets, Bernard

    2017-01-01

    Species interaction datasets, often represented as sparse matrices, are usually collected through observation studies targeted at identifying species interactions. Due to the extensive required sampling effort, species interaction datasets usually contain many false negatives, often leading to bias in derived descriptors. We show that a simple linear filter can be used to detect false negatives by scoring interactions based on the structure of the interaction matrices. On 180 different datasets of various sizes, sparsities and ecological interaction types, we found that on average in about 75% of the cases, a false negative interaction got a higher score than a true negative interaction. Furthermore, we show that this filter is very robust, even when the interaction matrix contains a very large number of false negatives. Our results demonstrate that unobserved interactions can be detected in species interaction datasets, even without resorting to information about the species involved. PMID:28383526

  20. Linear filtering reveals false negatives in species interaction data.

    PubMed

    Stock, Michiel; Poisot, Timothée; Waegeman, Willem; De Baets, Bernard

    2017-04-06

    Species interaction datasets, often represented as sparse matrices, are usually collected through observation studies targeted at identifying species interactions. Due to the extensive required sampling effort, species interaction datasets usually contain many false negatives, often leading to bias in derived descriptors. We show that a simple linear filter can be used to detect false negatives by scoring interactions based on the structure of the interaction matrices. On 180 different datasets of various sizes, sparsities and ecological interaction types, we found that on average in about 75% of the cases, a false negative interaction got a higher score than a true negative interaction. Furthermore, we show that this filter is very robust, even when the interaction matrix contains a very large number of false negatives. Our results demonstrate that unobserved interactions can be detected in species interaction datasets, even without resorting to information about the species involved.

  1. Docking studies and network analyses reveal capacity of compounds from Kandelia rheedii to strengthen cellular immunity by interacting with host proteins during tuberculosis infection

    PubMed Central

    Zaman, Aubhishek

    2012-01-01

    Kandelia rheedii (locally known as Guria or Rasunia), widely found and used in Indian subcontinent, is a well-known herbal cure to tuberculosis. However, neither the mechanism nor the active components of the plant extract responsible for mediating this action has yet been confirmed. Here in this study, molecular interactions of three compounds (emodin, fusaric acid and skyrin) from the plant extract with the host protein targets (casein kinase (CSNK), estrogen receptor (ERBB), dopamine β-hydroxylase (DBH) and glucagon receptor (Gcgr)) has been found. These protein targets are known to be responsible for strengthening cellular immunity against Mycobacteria tuberculosis. The specific interactions of these three compounds with the respective protein targets have been discussed here. The insights from study should further help us designing molecular medicines against tuberculosis. PMID:23275699

  2. Karst depressions as geoarchaeological archives: revealing the past human-environmental interactions of Zominthos (Crete) through geophysical prospection, geomorphologic studies and mineralogical investigations

    NASA Astrophysics Data System (ADS)

    Siart, C.; Hecht, S.; Holzhauer, I.; Meyer, H. P.; Eitel, B.; Schukraft, G.; Bubenzer, O.; Altherr, R.; Panagiotopoulos, D.

    2009-04-01

    Focusing on the currently uninhabited plateau of Zominthos at 1200 m a.s.l. in Central Crete, which - according to huge archaeological remains - was densely populated during the Minoan era (Neopalatial period, ca. 1650 B.C.), the main objective of the project is to reconstruct the Bronze-Age landscape evolution with special regard to human-environmental interactions. Primary aims are to investigate the general structure of the subsurface karst relief (e.g. dolines, poljes), the amount of overlying loose sediments, their provenance and their geoarchive function, which has not been studied so far. A multi-method approach with combined Earth Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) perfectly qualifies for this issue, proving that Cretan karst depressions are filled with thick colluvial accumulations up to 20 m below surface. Subsequent to vibra coring of the sedimentary archives, mineralogical analyses and AMS 14C datings were conducted. Heavy mineral analyses (SEM-EDX, EPMA) show that the filled karst hollows include high concentrations of autochthonous materials. This suggests massive neotectonic activity, formerly existing but currently absent klippes of different petrography and aeolian input during the Holocene. The latter is supported by the detection of volcanogenic tephra in the cores, which absolutely correlates to the chemical composition of Santorini rhyodacites (Minoan eruption 3.6 ka). As such minerals have never been found at altitudes above 1000 m a.s.l. on Crete before, the spatial fallout of the ash needs to be revised with respect to a distribution further south of Santorini. Corresponding pyroxenes and glass shards were detected in a depth of up to 10 m below surface and thus prove the geomorphodynamic activity since the Bronze-Age, which lead to the radical change of the palaeolandscape induced by anthropogenic land use and soil erosion. The environmental transformation is confirmed by maximum radiocarbon ages of 4991

  3. Cephradine antacids interaction studies.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Afzal, M

    2007-07-01

    The present work comprises of interaction studies of cephradine with antacids. Cephradine is included among the first generation cephalosporin, which is active against a wide range of Gram positive and Gram-negative bacteria including penicillinase-producing staphylococci. Since the presence of complexing ligand may affect the bioavailability of a drug in blood or tissues, therefore, in order to study the probable interaction of cephradine with antacids all the reaction conditions were simulated to natural environments. Antacids are commonly used in patients complaining of GI irritations. The behavior of cephradine in presence of seven antacids i.e., simethicone, magaldrate, magnesium carbonate, magnesium hydroxide, magnesium trisilicate, sodium bicarbonate and aluminium hydroxide was studied by using standard dissolution apparatus. Cephradine was monitored both by UV and by high performance liquid chromatography. The results revealed that antacids containing polyvalent cations retarded the in vitro availability of cephradine. Moreover, these studies indicated that cephradine was strongly adsorbed on antacids; magnesium trisilicate and simeco tablets (powdered) exhibited relatively higher adsorption capacities.

  4. Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The cycling between GDP- and GTP- bound forms of the Ras protein is partly regulated by the binding of Sos. The structural/dynamic behavior of the complex formed between activated Sos and Ras at the point of the functional cycle where the nucleotide exchange is completed has not been described to date. Here we show that solution NMR spectra of H-Ras∙GTPγS mixed with a functional fragment of Sos (SosCat) at a 2:1 ratio are consistent with the formation of a rather dynamic assembly. H-Ras∙GTPγS binding was in fast exchange on the NMR timescale and retained a significant degree of molecular tumbling independent of SosCat, while SosCat also tumbled largely independently of H-Ras. Estimates of apparent molecular weight from both NMR data and SEC-MALS revealed that, at most, only one H-Ras∙GTPγS molecule appears stably bound to Sos. The weak transient interaction between Sos and the second H-Ras∙GTPγS may provide a necessary mechanism for complex dissociation upon the completion of the native GDP → GTP exchange reaction, but also explains measurable GTP → GTP exchange activity of Sos routinely observed in in vitro assays that use fluorescently-labelled analogs of GTP. Overall, the data presents the first dynamic snapshot of Ras functional cycle as controlled by Sos. PMID:27412770

  5. Site-directed mutations and kinetic studies show key residues involved in alkylammonium interactions and reveal two sites for phosphorylcholine in Pseudomonas aeruginosa phosphorylcholine phosphatase.

    PubMed

    Beassoni, Paola R; Otero, Lisandro H; Boetsch, Cristhian; Domenech, Carlos E; González-Nilo, Fernado D; Lisa, Angela T

    2011-07-01

    Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine (Pcho) to produce choline and inorganic phosphate. PchP belongs to the haloacid dehalogenase superfamily (HAD) and possesses the three characteristic motifs of this family: motif I ((31)D and (33)D), motif II ((166)S), and motif III ((242)K, (261)G, (262)D and (267)D), which fold to form the catalytic site that binds the metal ion and the phosphate moiety of Pcho. Based on comparisons to the PHOSPHO1 and PHOSPHO2 human enzymes and the choline-binding proteins of Gram-(+) bacteria, we selected residues (42)E and (43)E and the aromatic triplet (82)YYY(84) for site-directed mutagenesis to study the interactions with Pcho and p-nitrophenylphosphate as substrates of PchP. Because mutations in (42)E, (43)E and the three tyrosine residues affect both the substrate affinity and the inhibitory effect produced by high Pcho concentrations, we postulate that two sites, one catalytic and one inhibitory, are present in PchP and that they are adjacent and share residues.

  6. Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme

    DOE PAGES

    Bagai, Ireena; Sarangi, Ritimukta; Fleischhacker, Angela S.; ...

    2015-05-05

    Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O₂₋ and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs).more » While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2O), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2R) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts with a second

  7. Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme

    SciTech Connect

    Bagai, Ireena; Sarangi, Ritimukta; Fleischhacker, Angela S.; Sharma, Ajay; Hoffman, Brian M.; Zuiderweg, Erik R. P.; Ragsdale, Stephen W.

    2015-05-05

    Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O₂₋ and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs). While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2O), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2R) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts

  8. Spectroscopic Studies Reveal That the Heme Regulatory Motifs of Heme Oxygenase-2 Are Dynamically Disordered and Exhibit Redox-Dependent Interaction with Heme

    PubMed Central

    2015-01-01

    Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O2- and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs). While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2O), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2R) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts with a second bound heme

  9. Bioluminescence to reveal structure and interaction of coastal planktonic communities

    NASA Astrophysics Data System (ADS)

    Moline, Mark A.; Blackwell, Shelley M.; Case, James F.; Haddock, Steven H. D.; Herren, Christen M.; Orrico, Cristina M.; Terrill, Eric

    2009-02-01

    Ecosystem function will in large part be determined by functional groups present in biological communities. The simplest distinction with respect to functional groups of an ecosystem is the differentiation between primary and secondary producers. A challenge thus far has been to examine these groups simultaneously with sufficient temporal and spatial resolution for observations to be relevant to the scales of change in coastal oceans. This study takes advantage of general differences in the bioluminescence flash kinetics between planktonic dinoflagellates and zooplankton to measure relative abundances of the two groups within the same-time space volume. This novel approach for distinguishing these general classifications using a single sensor is validated using fluorescence data and exclusion experiments. The approach is then applied to data collected from an autonomous underwater vehicle surveying >500 km in Monterey Bay and San Luis Obispo Bay, CA during the summers of 2002-2004. The approach also reveals that identifying trophic interaction between the two planktonic communities may also be possible.

  10. Case Studies Reveal Camper Growth.

    ERIC Educational Resources Information Center

    Brannan, Steve; Fullerton, Ann

    1999-01-01

    Case studies in the National Camp Evaluation Project and National Inclusive Camp Practices project used interviews with counselors and parents about camper's growth to yield qualitative data for camp program evaluation. The importance, methods, and benefits of case studies are described. Sidebars give examples of comments on perceived camper…

  11. Revealing Significant Learning Moments with Interactive Whiteboards in Mathematics

    ERIC Educational Resources Information Center

    Bruce, Catherine D.; McPherson, Richard; Sabeti, Farhad Mordy; Flynn, Tara

    2011-01-01

    The aim of this study was to identify when and how the interactive whiteboard (IWB) functioned as a productive tool that impacted student learning in mathematics. Using video data, field notes, and interview transcripts from 1 school year in two optimal case study classrooms, we were able to examine the unique opportunities afforded by the size of…

  12. Revealing Significant Learning Moments with Interactive Whiteboards in Mathematics

    ERIC Educational Resources Information Center

    Bruce, Catherine D.; McPherson, Richard; Sabeti, Farhad Mordy; Flynn, Tara

    2011-01-01

    The aim of this study was to identify when and how the interactive whiteboard (IWB) functioned as a productive tool that impacted student learning in mathematics. Using video data, field notes, and interview transcripts from 1 school year in two optimal case study classrooms, we were able to examine the unique opportunities afforded by the size of…

  13. Time-Frequency Analysis Reveals Pairwise Interactions in Insect Swarms

    NASA Astrophysics Data System (ADS)

    Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.

    2015-06-01

    The macroscopic emergent behavior of social animal groups is a classic example of dynamical self-organization, and is thought to arise from the local interactions between individuals. Determining these interactions from empirical data sets of real animal groups, however, is challenging. Using multicamera imaging and tracking, we studied the motion of individual flying midges in laboratory mating swarms. By performing a time-frequency analysis of the midge trajectories, we show that the midge behavior can be segmented into two distinct modes: one that is independent and composed of low-frequency maneuvers, and one that consists of higher-frequency nearly harmonic oscillations conducted in synchrony with another midge. We characterize these pairwise interactions, and make a hypothesis as to their biological function.

  14. Coupled nucleotide covariations reveal dynamic RNA interaction patterns.

    PubMed Central

    Gultyaev, A P; Franch, T; Gerdes, K

    2000-01-01

    Evolutionarily conserved structures in related RNA molecules contain coordinated variations (covariations) of paired nucleotides. Analysis of covariations is a very powerful approach to deduce phylogenetically conserved (i.e., functional) conformations, including tertiary interactions. Here we discuss conserved RNA folding pathways that are revealed by covariation patterns. In such pathways, structural requirements for alternative pairings cause some nucleotides to covary with two different partners. Such "coupled" covariations between three or more nucleotides were found in various types of RNAs. The analysis of coupled covariations can unravel important features of RNA folding dynamics and improve phylogeny reconstruction in some cases. Importantly, it is necessary to distinguish between multiple covariations determined by mutually exclusive structures and those determined by tertiary contacts. PMID:11105748

  15. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions.

    PubMed

    Khanova, Elena; Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2012-04-01

    Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.

  16. Mutagenesis of the aspartic acid ligands in human serum transferrin: lobe-lobe interaction and conformation as revealed by antibody, receptor-binding and iron-release studies.

    PubMed Central

    Mason, A; He, Q Y; Tam, B; MacGillivray, R A; Woodworth, R

    1998-01-01

    Recombinant non-glycosylated human serum transferrin and mutants in which the liganding aspartic acid (D) in one or both lobes was changed to a serine residue (S) were produced in a mammalian cell system and purified from the tissue culture media. Significant downfield shifts of 20, 30, and 45 nm in the absorption maxima were found for the D63S-hTF, D392S-hTF and the double mutant, D63S/D392S-hTF when compared to wild-type hTF. A monoclonal antibody to a sequential epitope in the C-lobe of hTF reported affinity differences between the apo- and iron-forms of each mutant and the control. Cell-binding studies performed under the same buffer conditions used for the antibody work clearly showed that the mutated lobe(s) had an open cleft. It is not clear whether the receptor itself may play a role in promoting the open conformation or whether the iron remains in the cleft. PMID:9461487

  17. Jigsaw Technique in Reading Class of Young Learners: Revealing Students' Interaction

    ERIC Educational Resources Information Center

    Tamah, Siti Mina

    2007-01-01

    Purpose: The purpose of this study was to reveal classroom interaction patterns in jigsaw classroom of young learners. To be more specific, this study was aimed at depicting the ways young learners initiate discussion, respond to initiations, and evaluate responses and initiations. Methodology: Five graders of 2 elementary schools in Surabaya,…

  18. Comparative modeling and docking studies of p16ink4/cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1.

    PubMed

    Naqsh e Zahra, Syeda; Khattak, Naureen Aslam; Mir, Asif

    2013-01-01

    Lung cancer is the major cause of mortality worldwide. Major signalling pathways that could play significant role in lung cancer therapy include (1) Growth promoting pathways (Epidermal Growth Factor Receptor/Ras/ PhosphatidylInositol 3-Kinase) (2) Growth inhibitory pathways (p53/Rb/P14ARF, STK11) (3) Apoptotic pathways (Bcl-2/Bax/Fas/FasL). Insilico strategy was implemented to solve the mystery behind selected lung cancer pathway by applying comparative modeling and molecular docking studies. YASARA [v 12.4.1] was utilized to predict structural models of P16-INK4 and RB1 genes using template 4ELJ-A and 1MX6-B respectively. WHAT CHECK evaluation tool demonstrated overall quality of predicted P16-INK4 and RB1 with Z-score of -0.132 and -0.007 respectively which showed a strong indication of reliable structure prediction. Protein-protein interactions were explored by utilizing STRING server, illustrated that CDK4 and E2F1 showed strong interaction with P16-INK4 and RB1 based on confidence score of 0.999 and 0.999 respectively. In order to facilitate a comprehensive understanding of the complex interactions between candidate genes with their functional interactors, GRAMM-X server was used. Protein-protein docking investigation of P16-INK4 revealed four ionic bonds illustrating Arg47, Arg80,Cys72 and Met1 residues as actively participating in interactions with CDK4 while docking results of RB1 showed four hydrogen bonds involving Glu864, Ser567, Asp36 and Arg861 residues which interact strongly with its respective functional interactor E2F1. This research may provide a basis for understanding biological insights of P16-INK4 and RB1 proteins which will be helpful in future to design a suitable drug to inhibit the disease pathogenesis as we have determined the interacting amino acids which can be targeted in order to design a ligand in-vitro to propose a drug for clinical trials. Protein -protein docking of candidate genes and their important interacting residues likely

  19. Interacting Supernova Remnants: Cosmic Ray Accelerators revealed by Fermi

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.

    2010-11-01

    Supernova remnants (SNRs) interacting with molecular clouds are potentially exciting systems in which to detect evidence of cosmic ray acceleration. The large reservoir of dense gas in the cloud acts as a target for particles accelerated by the supernova blastwave. Such systems should be prominent gamma-ray emission at GeV energies, allowing detailed studies of the nature of the underlying accelerated particle population, the environmental effects on particle acceleration, and the diffusion of the recently accelerated cosmic rays into the surrounding interstellar medium. Using the OH(1720 MHz) maser as an unambiguous tracer of shock interaction with dense gas, the first year of Fermi-LAT observations have been searched for counterparts to interacting SNRs at energies between 200 MeV and 300 GeV. Twelve sources are identified coincident with maser SNRs. Gamma-ray emission from these sources is well modeled by neutral pion decay produced after accelerated protons and nuclei collide with the dense ambient gas. Spectral steepening above 1 GeV is observed for several sources, giving evidence of environmental effects on the population of the highest energy cosmic rays. The total energy of accelerated particles is a estimated to be a few percent of the total supernova energy. This is more than an order of magnitude higher than the local cosmic ray density. The enhanced ionization rate from cosmic rays is sufficient to produce the non-equilibrium shock chemistry needed to explain the high columns OH in the post-shock gas that gives rise to OH(1720 MHz) masers. Extended OH enhancements throughout the post-shock gas suggest the enhanced cosmic rays permeate the shock interface with molecular clouds. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center.

  20. Critical Density Interaction Studies

    SciTech Connect

    Young, P; Baldis, H A; Cheung, P; Rozmus, W; Kruer, W; Wilks, S; Crowley, S; Mori, W; Hansen, C

    2001-02-14

    Experiments have been performed to study the propagation of intense laser pulses to high plasma densities. The issue of self-focusing and filamentation of the laser pulse as well as developing predictive capability of absorption processes and x-ray conversion efficiencies is important for numerous programs at the Laboratory, particularly Laser Program (Fast Ignitor and direct-drive ICF) and D&NT (radiography, high energy backlighters and laser cutting). Processes such as resonance absorption, profile modification, linear mode conversion, filamentation and stimulated Brillouin scattering can occur near the critical density and can have important effects on the coupling of laser light to solid targets. A combination of experiments have been used to study the propagation of laser light to high plasma densities and the interaction physics of intense laser pulses with solid targets. Nonparaxial fluid codes to study nonstationary behavior of filamentation and stimulated Brillouin scattering at high densities have also been developed as part of this project.

  1. Interaction network analysis revealed biomarkers in myocardial infarction.

    PubMed

    Zhang, Tong; Zhao, Li-Li; Zhang, Zhuo-Ran; Fu, Pei-De; Su, Zhen-Dong; Qi, Li-Chun; Li, Xue-Qi; Dong, Yu-Mei

    2014-08-01

    Myocardial infarction (MI) is a serious heart disease. The cardiac cells of patients with MI will die due to lack of blood for a long time. In this study, we aimed to find new targets for MI diagnosis and therapy. We downloaded GSE22229 including 12 blood samples from healthy persons and GSE29111 from Gene Expression Omnibus including 36 blood samples from MI patients. Then we identified differentially expressed genes (DEGs) in patients with MI compared to normal controls with p value < 0.05 and |logFC| > 1. Furthermore, interaction network and sub-network of these of these DEGs were constructed by NetBox. Linker genes were screened in the Global Network database. The degree of linker genes were calculated by igraph package in R language. Gene ontology and kyoto encyclopedia of genes and genomes pathway analysis were performed for DEGs and network modules. A total of 246 DEGs were identified in MI, which were enriched in the immune response. In the interaction network, LCK, CD247, CD3D, FYN, HLA-DRA, IL2, CD8A CD3E, CD4, CD3G had high degree, among which CD3E, CD4, CD3G were DEGs while others were linker genes screened from Global Network database. Genes in the sub-network were also enriched in the immune response pathway. The genes with high degree may be biomarkers for MI diagnosis and therapy.

  2. The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles.

    PubMed

    Durek, Pawel; Walther, Dirk

    2008-11-25

    The study of biological interaction networks is a central theme of systems biology. Here, we investigate the relationships between two distinct types of interaction networks: the metabolic pathway map and the protein-protein interaction network (PIN). It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzymes complexes. Inspecting high-throughput PIN data, it was shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In our study, we expanded this line of research to include comparisons of the underlying respective network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency. Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and may thus be essential for the structural integrity of several biosynthetic systems. Our results reveal topological equivalences between the protein interaction network and the metabolic pathway network. Evolved

  3. Fully Quantified Spectral Imaging Reveals in Vivo Membrane Protein Interactions

    PubMed Central

    King, Christopher; Stoneman, Michael; Raicu, Valerica; Hristova, Kalina

    2016-01-01

    Here we introduce the Fully Quantified Spectral Imaging (FSI) method as a new tool to probe the stoichiometry and stability of protein complexes in biological membranes. The FSI method yields two dimensional membrane concentrations and FRET efficiencies in native plasma membranes. It can be used to characterize the association of membrane proteins: to differentiate between monomers, dimers, or oligomers, to produce binding (association) curves, and to measure the free energies of association in the membrane. We use the FSI method to study the lateral interactions of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a member of the receptor tyrosine kinase (RTK) superfamily, in plasma membranes, in vivo. The knowledge gained through the use of the new method challenges the current understanding of VEGFR2 signaling. PMID:26787445

  4. Arc electrode interaction study

    NASA Technical Reports Server (NTRS)

    Zhou, X.; Berns, D.; Heberlein, J.

    1994-01-01

    The project consisted of two parts: (1) the cathode interaction studies which were a continuation of previous work and had the objective of increasing our understanding of the microscopic phenomena controlling cathode erosion in arc jet thrusters, and (2) the studies of the anode attachment in arc jet thrusters. The cathode interaction studies consisted of (1) a continuation of some modeling work in which the previously derived model for the cathode heating was applied to some specific gases and electrode materials, and (2) experimental work in which various diagnostics was applied to the cathode. The specific diagnostics used were observation of the cathode tip during arcing using a Laser Strobe Video system in conjunction with a tele-microscope, a monochromator with an optical multichannel analyzer for the determination of the cathode temperature distribution, and various ex situ materials analysis methods. The emphasis of our effort was shifted to the cathode materials analysis because a parallel project was in place during the second half of 1993 with a visiting scientist pursuing arc electrode materials studies. As a consequence, the diagnostic investigations of the arc in front of the cathode had to be postponed to the first half of 1994, and we are presently preparing these measurements. The results of last year's study showed some unexpected effects influencing the cathode erosion behavior, such as increased erosion away from the cathode tip, and our understanding of these effects should improve our ability to control cathode erosion. The arc jet anode attachment studies concentrated on diagnostics of the instabilities in subsonic anode attachment arc jet thrusters, and were supplemental measurements to work which was performed by one of the authors who spent the summer as an intern at NASA Lewis Research Center. A summary of the results obtained during the internship are included because they formed an integral part of the study. Two tasks for 1994, the

  5. Interactions With Robots: The Truths We Reveal About Ourselves.

    PubMed

    Broadbent, Elizabeth

    2017-01-03

    In movies, robots are often extremely humanlike. Although these robots are not yet reality, robots are currently being used in healthcare, education, and business. Robots provide benefits such as relieving loneliness and enabling communication. Engineers are trying to build robots that look and behave like humans and thus need comprehensive knowledge not only of technology but also of human cognition, emotion, and behavior. This need is driving engineers to study human behavior toward other humans and toward robots, leading to greater understanding of how humans think, feel, and behave in these contexts, including our tendencies for mindless social behaviors, anthropomorphism, uncanny feelings toward robots, and the formation of emotional attachments. However, in considering the increased use of robots, many people have concerns about deception, privacy, job loss, safety, and the loss of human relationships. Human-robot interaction is a fascinating field and one in which psychologists have much to contribute, both to the development of robots and to the study of human behavior.

  6. Studies on Strong Interactions

    NASA Astrophysics Data System (ADS)

    Coriano, Claudio

    Five studies, four in Quantum field theory and one in fermionic molecular dynamics are presented. In the first study, introduced in chapter one and developed in chapter two of this dissertation, we formulate an extension of QCD sum rules to Compton scattering of the pion at intermediate energy. The chapter is based on the research paper Fixed angle pion Compton scattering and QCD sum rules by Prof. George Sterman and the author, which has been submitted for publication as a regular article. In chapter 3 we discuss the relation between traditional bosonic exchange models of nuclear strong interaction and soliton models, in the particular case of the sine-Gordon model. The chapter is based on the research paper "Scattering in soliton models and bosonic exchange descriptions", by R. R. Parwani, H. Yamagishi, I. Zahed and the author, and is published in Phys. Rev. D 45 (1992), 2542. A preprint of this paper (Preprint 1) has been included as an Appendix to the Chapter. In Chapter 4 we discuss aspects of the propagation of quantized fields in classical backgrounds, using the light-cone expansion of the propagator. The chapter is based on the research papers "Electrodynamics in the presence of an axion", published by the author in Modern Physics Letters A 7 (1992), 1253, and on the paper "Singularity of Green's function and the effective action in massive Yang Mills theories, by Prof. H. Yamagishi and the author. This last paper is published in Physical Review D 41 (1990), 3226 and its reprint appears in the final part of the Chapter (Reprint 1). In chapter 5, entitled "On the time dependent Rayleigh-Ritz equations", we discuss aspects of the variational approach to fermionic molecular dynamics. This investigation by R. Parwani, H. Yamagishi and the author has been published in Nucl. Physics A 522 (1991), 591. A preprint of this research paper has been inserted in the final part of the Chapter (Preprint 2).

  7. Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets

    PubMed Central

    Lu, Xiaowen; Kensche, Philip R.; Huynen, Martijn A.; Notebaart, Richard A.

    2013-01-01

    Genetic interactions reveal insights into cellular function and can be used to identify drug targets. Here we construct a new model to predict negative genetic interactions in protein complexes by exploiting the evolutionary history of genes in parallel converging pathways in metabolism. We evaluate our model with protein complexes of Saccharomyces cerevisiae and show that the predicted protein pairs more frequently have a negative genetic interaction than random proteins from the same complex. Furthermore, we apply our model to human protein complexes to predict novel cancer drug targets, and identify 20 candidate targets with empirical support and 10 novel targets amenable to further experimental validation. Our study illustrates that negative genetic interactions can be predicted by systematically exploring genome evolution, and that this is useful to identify novel anti-cancer drug targets. PMID:23851603

  8. Fish introductions reveal the temperature dependence of species interactions

    PubMed Central

    Hein, Catherine L.; Öhlund, Gunnar; Englund, Göran

    2014-01-01

    A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km2), but not in small, warm lakes (annual air temperature more than 0.9–1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091–2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike–brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity. PMID:24307673

  9. Fish introductions reveal the temperature dependence of species interactions.

    PubMed

    Hein, Catherine L; Öhlund, Gunnar; Englund, Göran

    2014-01-22

    A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km(2)), but not in small, warm lakes (annual air temperature more than 0.9-1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091-2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike-brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity.

  10. Galaxy-environment Interactions as Revealed by the Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph; Tripp, Todd M.; Wang, Daniel; Willmer, Christopher; Prochaska, Jason X.; Werk, Jessica; Bordoloi, Rongmon; Katz, Neal; Tumlinson, Jason

    2017-01-01

    Galaxies do not live in isolation, and their star formation activity and gas supply are closely tied to the density of the environment in which they reside. The circumgalactic medium (CGM) serves as the point of first contact between a galaxy and its environment and mediates the gas accretion and outflow processes that regulate the galaxy ecosystem. Employing a combination of ultraviolet QSO spectroscopy, optical galaxy surveys, and X-ray imaging and spectroscopy, I will show that the metal-enriched gas and cool, photoionized H I in the CGM gas reflect the galaxy’s large-scale environment from scales of modest groups to clusters. Thus, QSO absorption line spectroscopy provides uniquely sensitive multiphase gas diagnostics of the physical conditions at the sites of galaxy-environment interactions. By shock-heating or stripping the CGM gas, as is indicated by its absorption, these interactions may deplete or deprive the galaxy's gas supply and quench its star formation.

  11. Joint fitting reveals hidden interactions in tumor growth.

    PubMed

    Barberis, L; Pasquale, M A; Condat, C A

    2015-01-21

    Tumor growth is often the result of the simultaneous development of two or more cancer cell populations. Crucial to the system evolution are the interactions between these populations. To obtain information about these interactions we apply the recently developed vector universality (VUN) formalism to various instances of competition between tumor populations. The formalism allows us (a) to quantify the growth mechanisms of a HeLa cell colony, describing the phenotype switching responsible for its fast expansion, (b) to reliably reconstruct the evolution of the necrotic and viable fractions in both in vitro and in vivo tumors using data for the time dependences of the total masses alone, and (c) to show how the shedding of cells leading to subspheroid formation is beneficial to both the spheroid and subspheroid populations, suggesting that shedding is a strong positive influence on cancer dissemination.

  12. Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy.

    PubMed

    Kramer, Michael H; Farré, Jean-Claude; Mitra, Koyel; Yu, Michael Ku; Ono, Keiichiro; Demchak, Barry; Licon, Katherine; Flagg, Mitchell; Balakrishnan, Rama; Cherry, J Michael; Subramani, Suresh; Ideker, Trey

    2017-02-16

    We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.

  13. Quantitative Multicolor Super-Resolution Microscopy Reveals Tetherin HIV-1 Interaction

    PubMed Central

    Lehmann, Martin; Rocha, Susana; Mangeat, Bastien; Blanchet, Fabien; Uji-i, Hiroshi; Hofkens, Johan; Piguet, Vincent

    2011-01-01

    Virus assembly and interaction with host-cell proteins occur at length scales below the diffraction limit of visible light. Novel super-resolution microscopy techniques achieve nanometer resolution of fluorescently labeled molecules. The cellular restriction factor tetherin (also known as CD317, BST-2 or HM1.24) inhibits the release of human immunodeficiency virus 1 (HIV-1) through direct incorporation into viral membranes and is counteracted by the HIV-1 protein Vpu. For super-resolution analysis of HIV-1 and tetherin interactions, we established fluorescence labeling of HIV-1 proteins and tetherin that preserved HIV-1 particle formation and Vpu-dependent restriction, respectively. Multicolor super-resolution microscopy revealed important structural features of individual HIV-1 virions, virus assembly sites and their interaction with tetherin at the plasma membrane. Tetherin localization to micro-domains was dependent on both tetherin membrane anchors. Tetherin clusters containing on average 4 to 7 tetherin dimers were visualized at HIV-1 assembly sites. Combined biochemical and super-resolution analysis revealed that extended tetherin dimers incorporate both N-termini into assembling virus particles and restrict HIV-1 release. Neither tetherin domains nor HIV-1 assembly sites showed enrichment of the raft marker GM1. Together, our super-resolution microscopy analysis of HIV-1 interactions with tetherin provides new insights into the mechanism of tetherin-mediated HIV-1 restriction and paves the way for future studies of virus-host interactions. PMID:22194693

  14. Revealing Transient Interactions between Phosphatidylinositol-specific Phospholipase C and Phosphatidylcholine--Rich Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne

    2013-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).

  15. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    PubMed Central

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  16. Global Geometric Affinity for Revealing High Fidelity Protein Interaction Network

    PubMed Central

    Fang, Yi; Benjamin, William; Sun, Mengtian; Ramani, Karthik

    2011-01-01

    Protein-protein interaction (PPI) network analysis presents an essential role in understanding the functional relationship among proteins in a living biological system. Despite the success of current approaches for understanding the PPI network, the large fraction of missing and spurious PPIs and a low coverage of complete PPI network are the sources of major concern. In this paper, based on the diffusion process, we propose a new concept of global geometric affinity and an accompanying computational scheme to filter the uncertain PPIs, namely, reduce the spurious PPIs and recover the missing PPIs in the network. The main concept defines a diffusion process in which all proteins simultaneously participate to define a similarity metric (global geometric affinity (GGA)) to robustly reflect the internal connectivity among proteins. The robustness of the GGA is attributed to propagating the local connectivity to a global representation of similarity among proteins in a diffusion process. The propagation process is extremely fast as only simple matrix products are required in this computation process and thus our method is geared toward applications in high-throughput PPI networks. Furthermore, we proposed two new approaches that determine the optimal geometric scale of the PPI network and the optimal threshold for assigning the PPI from the GGA matrix. Our approach is tested with three protein-protein interaction networks and performs well with significant random noises of deletions and insertions in true PPIs. Our approach has the potential to benefit biological experiments, to better characterize network data sets, and to drive new discoveries. PMID:21559288

  17. Spectroscopy reveals that ethyl esters interact with proteins in wine.

    PubMed

    Di Gaspero, Mattia; Ruzza, Paolo; Hussain, Rohanah; Vincenzi, Simone; Biondi, Barbara; Gazzola, Diana; Siligardi, Giuliano; Curioni, Andrea

    2017-02-15

    Impairment of wine aroma after vinification is frequently associated to bentonite treatments and this can be the result of protein removal, as recently demonstrated for ethyl esters. To evaluate the existence of an interaction between wine proteins and ethyl esters, the effects induced by these fermentative aroma compounds on the secondary structure and stability of VVTL1, a Thaumatin-like protein purified from wine, was analyzed by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The secondary structure of wine VVTL1 was not strongly affected by the presence of selected ethyl esters. In contrast, VVTL1 stability was slightly increased by the addition of ethyl-octanoate, -decanoate and -dodecanoate, but decreased by ethyl-hexanoate. This indicates the existence of an interaction between VVTL1 and at least some aroma compounds produced during fermentation. The data suggest that proteins removal from wine by bentonite can result in indirect removal of at least some aroma compounds associated with them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Systematic Analysis of Dimeric E3-RING Interactions Reveals Increased Combinatorial Complexity in Human Ubiquitination Networks*

    PubMed Central

    Woodsmith, Jonathan; Jenn, Robert C.; Sanderson, Chris M.

    2012-01-01

    Ubiquitination controls the stability or function of many human proteins, thereby regulating a wide range of physiological processes. In most cases the combinatorial pattern of protein interactions that facilitate substrate recognition or modification remain unclear. Moreover, the efficiency of ubiquitination reactions can be altered by the formation of homo- and heterotypic E3-RING complexes. To establish the prevalence and nature of binary E3-RING/E3-RING interactions systematic yeast two-hybrid screens were performed to test 7269 potential interactions between 124 human E3-RING proteins. These studies identified 228 dimeric interactions between 100 E3-RINGs, of which 205 were novel. Complementary co-immunoprecipitation studies were performed to test predicted network interactions, showing a high correlation (64%) with primary yeast two-hybrid data. This data was integrated with known E3-RING interactions, tissue expression profiles and proteomic ubiquitination datasets to facilitate identification of subnetworks in which E3-RING dimerization events have the potential to alter network structure. These results reveal a widespread yet selective pattern of E3-RING dimerization events, which have the potential to confer further combinatorial complexity within human ubiquitination cascades. PMID:22493164

  19. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions.

    PubMed

    Nédélec, François

    2002-09-16

    An aster of microtubules is a set of flexible polar filaments with dynamic plus ends that irradiate from a common location at which the minus ends of the filaments are found. Processive soluble oligomeric motor complexes can bind simultaneously to two microtubules, and thus exert forces between two asters. Using computer simulations, I have explored systematically the possible steady-state regimes reached by two asters under the action of various kinds of oligomeric motors. As expected, motor complexes can induce the asters to fuse, for example when the complexes consist only of minus end-directed motors, or to fully separate, when the motors are plus end directed. More surprisingly, complexes made of two motors of opposite directionalities can also lead to antiparallel interactions between overlapping microtubules that are stable and sustained, like those seen in mitotic spindle structures. This suggests that such heterocomplexes could have a significant biological role, if they exist in the cell.

  20. Recent Studies of the Nuclear Interaction

    NASA Astrophysics Data System (ADS)

    Carlson, J.

    Recent studies of light p-shell nuclei reveal that so-called 'realistic' nuclear interactions, those based on the NN scattering data augmented with plausible models of the three-nucleon interaction, provide a good description or nuclei through A=8. However, significant discrepancies exist, primarily in the energies of neutron rich systems and in the L.S splittings in the spectra of these nuclei. We briefly describe the methods used in these studies, and describe improved models of the three-nucleon interaction.

  1. Attractive PHHP interactions revealed by state-of-the-art ab initio calculations.

    PubMed

    Yourdkhani, Sirous; Jabłoński, Mirosław; Echeverría, Jorge

    2017-10-10

    We report in this work a combined structural and state-of-the-art computational study of homopolar P-HH-P intermolecular contacts. Database surveys have shown the abundance of such surprisingly unexplored contacts, which are usually accompanied by other weak interactions in the solid state. By means of a detailed theoretical study utilizing SAPT(DFT), MP2, SCS-MP2, MP2C and CCSD(T) methods and both aug-cc-pVXZ and aug-cc-pCVXZ (X = D, T, Q, 5) basis sets as well as extrapolation to the CBS limit, we have shown that P-HH-P contacts are indeed attractive and considerably strong. SAPT(DFT) calculations have revealed the dispersive nature of the P-HH-P interaction with only minor contribution of the inductive term, whereas the first-order electrostatic term is clearly overbalanced by the first-order exchange energy. In general the computed interaction energies follow the trend: E ≈ E < E < E. Our results have also shown that the aug-cc-pVDZ (or aug-cc-pCVDZ) basis set is not yet well balanced and that the second-order dispersion energy term is the slowest converging among all SAPT(DFT) energy components. Compared to aug-cc-pVXZ basis sets, their core-correlation counterparts have a modest influence on all supermolecular interaction energies and a negligible influence on both the SAPT(DFT) interaction energy and its components.

  2. Revealing the Complexity of Community-Campus Interactions

    ERIC Educational Resources Information Center

    Nichols, Naomi Elizabeth; Phipps, David; Gaetz, Stephen; Fisher, Alison L.; Tanguay, Nancy

    2014-01-01

    In this paper, four qualitative case studies capture the complex interplay between the social and structural relations that shape community - academic partnerships. Collaborations begin as relationships among people. They are sustained by institutional structures that recognize and support these relationships. Productive collaborations centralize…

  3. Comparative drug pair screening across multiple glioblastoma cell lines reveals novel drug-drug interactions

    PubMed Central

    Schmidt, Linnéa; Kling, Teresia; Monsefi, Naser; Olsson, Maja; Hansson, Caroline; Baskaran, Sathishkumar; Lundgren, Bo; Martens, Ulf; Häggblad, Maria; Westermark, Bengt; Forsberg Nilsson, Karin; Uhrbom, Lene; Karlsson-Lindahl, Linda; Gerlee, Philip; Nelander, Sven

    2013-01-01

    Background Glioblastoma multiforme (GBM) is the most aggressive brain tumor in adults, and despite state-of-the-art treatment, survival remains poor and novel therapeutics are sorely needed. The aim of the present study was to identify new synergistic drug pairs for GBM. In addition, we aimed to explore differences in drug-drug interactions across multiple GBM-derived cell cultures and predict such differences by use of transcriptional biomarkers. Methods We performed a screen in which we quantified drug-drug interactions for 465 drug pairs in each of the 5 GBM cell lines U87MG, U343MG, U373MG, A172, and T98G. Selected interactions were further tested using isobole-based analysis and validated in 5 glioma-initiating cell cultures. Furthermore, drug interactions were predicted using microarray-based transcriptional profiling in combination with statistical modeling. Results Of the 5 × 465 drug pairs, we could define a subset of drug pairs with strong interaction in both standard cell lines and glioma-initiating cell cultures. In particular, a subset of pairs involving the pharmaceutical compounds rimcazole, sertraline, pterostilbene, and gefitinib showed a strong interaction in a majority of the cell cultures tested. Statistical modeling of microarray and interaction data using sparse canonical correlation analysis revealed several predictive biomarkers, which we propose could be of importance in regulating drug pair responses. Conclusion We identify novel candidate drug pairs for GBM and suggest possibilities to prospectively use transcriptional biomarkers to predict drug interactions in individual cases. PMID:24101737

  4. Characterizing WW Domain Interactions of Tumor Suppressor WWOX Reveals Its Association with Multiprotein Networks*

    PubMed Central

    Abu-Odeh, Mohammad; Bar-Mag, Tomer; Huang, Haiming; Kim, TaeHyung; Salah, Zaidoun; Abdeen, Suhaib K.; Sudol, Marius; Reichmann, Dana; Sidhu, Sachdev; Kim, Philip M.; Aqeilan, Rami I.

    2014-01-01

    WW domains are small modules present in regulatory and signaling proteins that mediate specific protein-protein interactions. The WW domain-containing oxidoreductase (WWOX) encodes a 46-kDa tumor suppressor that contains two N-terminal WW domains and a central short-chain dehydrogenase/reductase domain. Based on its ligand recognition motifs, the WW domain family is classified into four groups. The largest one, to which WWOX belongs, recognizes ligands with a PPXY motif. To pursue the functional properties of the WW domains of WWOX, we employed mass spectrometry and phage display experiments to identify putative WWOX-interacting partners. Our analysis revealed that the first WW (WW1) domain of WWOX is the main functional interacting domain. Furthermore, our study uncovered well known and new PPXY-WW1-interacting partners and shed light on novel LPXY-WW1-interacting partners of WWOX. Many of these proteins are components of multiprotein complexes involved in molecular processes, including transcription, RNA processing, tight junction, and metabolism. By utilizing GST pull-down and immunoprecipitation assays, we validated that WWOX is a substrate of the E3 ubiquitin ligase ITCH, which contains two LPXY motifs. We found that ITCH mediates Lys-63-linked polyubiquitination of WWOX, leading to its nuclear localization and increased cell death. Our data suggest that the WW1 domain of WWOX provides a versatile platform that links WWOX with individual proteins associated with physiologically important networks. PMID:24550385

  5. Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks.

    PubMed

    Abu-Odeh, Mohammad; Bar-Mag, Tomer; Huang, Haiming; Kim, TaeHyung; Salah, Zaidoun; Abdeen, Suhaib K; Sudol, Marius; Reichmann, Dana; Sidhu, Sachdev; Kim, Philip M; Aqeilan, Rami I

    2014-03-28

    WW domains are small modules present in regulatory and signaling proteins that mediate specific protein-protein interactions. The WW domain-containing oxidoreductase (WWOX) encodes a 46-kDa tumor suppressor that contains two N-terminal WW domains and a central short-chain dehydrogenase/reductase domain. Based on its ligand recognition motifs, the WW domain family is classified into four groups. The largest one, to which WWOX belongs, recognizes ligands with a PPXY motif. To pursue the functional properties of the WW domains of WWOX, we employed mass spectrometry and phage display experiments to identify putative WWOX-interacting partners. Our analysis revealed that the first WW (WW1) domain of WWOX is the main functional interacting domain. Furthermore, our study uncovered well known and new PPXY-WW1-interacting partners and shed light on novel LPXY-WW1-interacting partners of WWOX. Many of these proteins are components of multiprotein complexes involved in molecular processes, including transcription, RNA processing, tight junction, and metabolism. By utilizing GST pull-down and immunoprecipitation assays, we validated that WWOX is a substrate of the E3 ubiquitin ligase ITCH, which contains two LPXY motifs. We found that ITCH mediates Lys-63-linked polyubiquitination of WWOX, leading to its nuclear localization and increased cell death. Our data suggest that the WW1 domain of WWOX provides a versatile platform that links WWOX with individual proteins associated with physiologically important networks.

  6. Interaction between Scene and Object Processing Revealed by Human fMRI and MEG Decoding.

    PubMed

    Brandman, Talia; Peelen, Marius V

    2017-08-09

    Scenes strongly facilitate object recognition, such as when we make out the shape of a distant boat on the water. Yet, although known to interact in perception, neuroimaging research has primarily provided evidence for separate scene- and object-selective cortical pathways. This raises the question of how these pathways interact to support context-based perception. Here we used a novel approach in human fMRI and MEG studies to reveal supra-additive scene-object interactions. Participants (men and women) viewed degraded objects that were hard to recognize when presented in isolation but easy to recognize within their original scene context, in which no other associated objects were present. fMRI decoding showed that the multivariate representation of the objects' category (animate/inanimate) in object-selective cortex was strongly enhanced by the presence of scene context, even though the scenes alone did not evoke category-selective response patterns. This effect in object-selective cortex was correlated with concurrent activity in scene-selective regions. MEG decoding results revealed that scene-based facilitation of object processing peaked at 320 ms after stimulus onset, 100 ms later than peak decoding of intact objects. Together, results suggest that expectations derived from scene information, processed in scene-selective cortex, feed back to shape object representations in visual cortex. These findings characterize, in space and time, functional interactions between scene- and object-processing pathways.SIGNIFICANCE STATEMENT Although scenes and objects are known to contextually interact in visual perception, the study of high-level vision has mostly focused on the dissociation between their selective neural pathways. The current findings are the first to reveal direct facilitation of object recognition and neural representation by scene background, even in the absence of contextually associated objects. Using a multivariate approach to both fMRI and MEG, we

  7. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit.

    PubMed

    Ashoori, Maryam; Burns, Catherine M; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamwork and leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams.

  8. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit

    PubMed Central

    Ashoori, Maryam; Burns, Catherine M.; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamworkand leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. Practitioner Summary: This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams PMID:24837514

  9. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions.

    PubMed

    Couzens, Amber L; Knight, James D R; Kean, Michelle J; Teo, Guoci; Weiss, Alexander; Dunham, Wade H; Lin, Zhen-Yuan; Bagshaw, Richard D; Sicheri, Frank; Pawson, Tony; Wrana, Jeffrey L; Choi, Hyungwon; Gingras, Anne-Claude

    2013-11-19

    The Hippo pathway regulates organ size and tissue homeostasis in response to multiple stimuli, including cell density and mechanotransduction. Pharmacological inhibition of phosphatases can also stimulate Hippo signaling in cell culture. We defined the Hippo protein-protein interaction network with and without inhibition of serine and threonine phosphatases by okadaic acid. We identified 749 protein interactions, including 599 previously unrecognized interactions, and demonstrated that several interactions with serine and threonine phosphatases were phosphorylation-dependent. Mutation of the T-loop of MST2 (mammalian STE20-like protein kinase 2), which prevented autophosphorylation, disrupted its association with STRIPAK (striatin-interacting phosphatase and kinase complex). Deletion of the amino-terminal forkhead-associated domain of SLMAP (sarcolemmal membrane-associated protein), a component of the STRIPAK complex, prevented its association with MST1 and MST2. Phosphatase inhibition produced temporally distinct changes in proteins that interacted with MOB1A and MOB1B (Mps one binder kinase activator-like 1A and 1B) and promoted interactions with upstream Hippo pathway proteins, such as MST1 and MST2, and with the trimeric protein phosphatase 6 complex (PP6). Mutation of three basic amino acids that are part of a phospho-serine- and phospho-threonine-binding domain in human MOB1B prevented its interaction with MST1 and PP6 in cells treated with okadaic acid. Collectively, our results indicated that changes in phosphorylation orchestrate interactions between kinases and phosphatases in Hippo signaling, providing a putative mechanism for pathway regulation.

  10. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces

    PubMed Central

    Engin, H. Billur; Kreisberg, Jason F.; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10−4) and oncogenes (Odds Ratio 1.17, P-value < 10−3). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10−8). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer

  11. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.

    PubMed

    Engin, H Billur; Kreisberg, Jason F; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10(-4)) and oncogenes (Odds Ratio 1.17, P-value < 10(-3)). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10(-8)). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer

  12. Local NH-π interactions involving aromatic residues of proteins: influence of backbone conformation and ππ* excitation on the π H-bond strength, as revealed from studies of isolated model peptides.

    PubMed

    Sohn, Woon Yong; Brenner, Valérie; Gloaguen, Eric; Mons, Michel

    2016-11-02

    Conformer-selective IR gas phase spectroscopy and high level quantum chemistry methods have been used to characterise the diversity of local NH-π interactions between the π ring of a phenylalanine aromatic residue and the nearby main chain amide groups. The study of model systems shows how the amide NH stretch vibrational features, in the 3410-3460 cm(-1) frequency range, can be used to monitor the strength of these local π H-bonds, which is found to depend on both the backbone conformation and the aromatic side chain orientation. This is rationalized in terms of partial electron transfer between the π cloud and the main chain NH bonds, with the help of analysis tools based on Natural Bonding Orbitals and Non-Covalent Interactions plots. The experimental study, extended to the NH-π interactions when the Phe residue is excited in its first ππ* electronic state, also demonstrates the principle of the ππ* labelling technique, i.e. a selective labelling of those NH bonds in a peptide molecule that are in close contact with an aromatic ring, as an elegant tool for IR spectroscopic assignments. The validation of theoretical predictions against experimental data (frequency change upon excitation) eventually qualifies the use of the CC2 method for the description of the ππ* excited states of systems having a phenyl ring, both in terms of structure, vibrational modes and nature of excited states.

  13. Second-order receptive fields reveal multidigit interactions in area 3b of the macaque monkey

    PubMed Central

    Thakur, Pramodsingh H.; Fitzgerald, Paul J.

    2012-01-01

    Linear receptive field (RF) models of area 3b neurons reveal a three-component structure: a central excitatory region flanked by two inhibitory regions that are spatially and temporally nonoverlapping with the excitation. Previous studies also report that there is an “infield” inhibitory region throughout the neuronal RF, which is a nonlinear interactive (second order) effect whereby stimuli lagging an input to the excitatory region are suppressed. Thus linear models may be inaccurate approximations of the neurons' true RFs. In this study, we characterize the RFs of area 3b neurons, using a second-order quadratic model. Data were collected from 80 neurons of two awake, behaving macaque monkeys while a random dot pattern was scanned simultaneously across the distal pads of digits D2, 3, and 4. We used an iterative method derived from matching pursuit to identify a set of linear and nonlinear terms with significant effects on the neuronal response. For most neurons (65/80), the linear component of the quadratic RF was characterized by a single excitatory region on the dominant digit. Interactions within the dominant digit were characterized by two quadratic filters that capture the spatial aspects of the interactive infield inhibition. Interactions between the dominant (most responsive) digit and its adjacent digit(s) formed the largest class of cross-digit interactions. The results demonstrate that a significant part of area 3b responses is due to nonlinear mechanisms, and furthermore, the data support the notion that area 3b neurons have “nonclassical RF”-like input from adjacent fingers, indicating that area 3b plays a role in integrating shape inputs across digits. PMID:22457468

  14. Integrating protein-protein interaction networks with phenotypes reveals signs of interactions

    PubMed Central

    Vinayagam, Arunachalam; Zirin, Jonathan; Roesel, Charles; Hu, Yanhui; Yilmazel, Bahar; Samsonova, Anastasia A.; Neumüller, Ralph A.; Mohr, Stephanie E.; Perrimon, Norbert

    2013-01-01

    A major objective of systems biology is to organize molecular interactions as networks and to characterize information-flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the “signs” of interactions (i.e. activation/inhibition relationships). We constructed a Drosophila melanogaster signed PPI network, consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes Enolase and Aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation/inhibition relationships between physically interacting proteins within signaling pathways will impact our understanding of many biological functions, including signal transduction and mechanisms of disease. PMID:24240319

  15. Studies of food drug interactions.

    PubMed

    Aman, Syed Faisal; Hassan, Fouzia; Naqvi, Baqar S; Hasan, Syed Muhammmad Farid

    2010-07-01

    Medicines can treat and alleviate many diseases provided that they must be taken properly to ensure that they are safe and useful. One issue related with the medicines is that whether to take on empty stomach or with food. The present work gives information regarding food-drug interactions that were studied by collecting seventy five prescriptions from various hospitals. In most of the collected prescriptions, food-drug interactions were detected using the literature available. It was also found that only few studies have been carried out so far on the effect of food on drug disposition in the Asian population. Thus more studies on food-drug interactions particularly in the local population is recommended in order to determine the effect of food and food components on drug disposition and to the kinetics of the drugs which has not yet well highlighted in this part of the world.

  16. Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners

    PubMed Central

    Strübbe, Gero; Popp, Christian; Schmidt, Alexander; Pauli, Andrea; Ringrose, Leonie; Beisel, Christian; Paro, Renato

    2011-01-01

    The maintenance of specific gene expression patterns during cellular proliferation is crucial for the identity of every cell type and the development of tissues in multicellular organisms. Such a cellular memory function is conveyed by the complex interplay of the Polycomb and Trithorax groups of proteins (PcG/TrxG). These proteins exert their function at the level of chromatin by establishing and maintaining repressed (PcG) and active (TrxG) chromatin domains. Past studies indicated that a core PcG protein complex is potentially associated with cell type or even cell stage-specific sets of accessory proteins. In order to better understand the dynamic aspects underlying PcG composition and function we have established an inducible version of the biotinylation tagging approach to purify Polycomb and associated factors from Drosophila embryos. This system enabled fast and efficient isolation of Polycomb containing complexes under near physiological conditions, thereby preserving substoichiometric interactions. Novel interacting proteins were identified by highly sensitive mass spectrometric analysis. We found many TrxG related proteins, suggesting a previously unrecognized extent of molecular interaction of the two counteracting chromatin regulatory protein groups. Furthermore, our analysis revealed an association of PcG protein complexes with the cohesin complex and showed that Polycomb-dependent silencing of a transgenic reporter depends on cohesin function. PMID:21415365

  17. Molecular interaction of 2-mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor.

    PubMed

    Teng, Yue; Zou, Luyi; Huang, Ming; Zong, Wansong

    2014-12-01

    2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment possesses a potential risk to human health. In this work, the toxic interaction of MBI with the important antioxidant enzyme catalase (CAT) was investigated using spectroscopic and molecular docking methods under physiological conditions. MBI can spontaneously bind with CAT with one binding site through hydrogen bonds and van der Waals forces to form MBI-CAT complex. The molecular docking study revealed that MBI bound into the CAT interface of chains B and C, which led to some conformational and microenvironmental changes of CAT and further resulted in the inhibition of CAT activity. This present study provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme CAT.

  18. Differentially expressed genes and interacting pathways in bladder cancer revealed by bioinformatic analysis.

    PubMed

    Shen, Yinzhou; Wang, Xuelei; Jin, Yongchao; Lu, Jiasun; Qiu, Guangming; Wen, Xiaofei

    2014-10-01

    The goal of this study was to identify cancer-associated differentially expressed genes (DEGs), analyze their biological functions and investigate the mechanism(s) of cancer occurrence and development, which may provide a theoretical foundation for bladder cancer (BCa) therapy. We downloaded the mRNA expression profiling dataset GSE13507 from the Gene Expression Omnibus database; the dataset includes 165 BCa and 68 control samples. T‑tests were used to identify DEGs. To further study the biological functions of the identified DEGs, we performed a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Next, we built a network of potentially interacting pathways to study the synergistic relationships among DEGs. A total of 12,105 genes were identified as DEGs, of which 5,239 were upregulated and 6,866 were downregulated in BCa. The DEGs encoding activator protein 1 (AP-1), nuclear factor of activated T-cells (NFAT) proteins, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and interleukin (IL)-10 were revealed to participate in the significantly enriched immune pathways that were downregulated in BCa. KEGG enrichment analysis revealed 7 significantly upregulated and 47 significantly downregulated pathways enriched among the DEGs. We found a crosstalk interaction among a total of 44 pathways in the network of BCa-affected pathways. In conclusion, our results show that BCa involves dysfunctions in multiple systems. Our study is expected to pave ways for immune and inflammatory research and provide molecular insights for cancer therapy.

  19. Expression and Protein Interaction Analyses Reveal Combinatorial Interactions of LBD Transcription Factors During Arabidopsis Pollen Development.

    PubMed

    Kim, Mirim; Kim, Min-Jung; Pandey, Shashank; Kim, Jungmook

    2016-11-01

    LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor gene family members play key roles in diverse aspects of plant development. LBD10 and LBD27 have been shown to be essential for pollen development in Arabidopsis thaliana. From the previous RNA sequencing (RNA-Seq) data set of Arabidopsis pollen, we identified the mRNAs of LBD22, LBD25 and LBD36 in addition to LBD10 and LBD27 in Arabidopsis pollen. Here we conducted expression and cellular analysis using GFP:GUS (green fluorescent protein:β-glucuronidase) reporter gene and subcellular localization assays using LBD:GFP fusion proteins expressed under the control of their own promoters in Arabidopsis. We found that these LBD proteins display spatially and temporally distinct and overlapping expression patterns during pollen development. Bimolecular fluorescence complementation and GST (glutathione S-transferase) pull-down assays demonstrated that protein-protein interactions occur among the LBDs exhibiting overlapping expression during pollen development. We further showed that LBD10, LBD22, LBD25, LBD27 and LBD36 interact with each other to form heterodimers, which are localized to the nucleus in Arabidopsis protoplasts. Taken together, these results suggest that combinatorial interactions among LBD proteins may be important for their function in pollen development in Arabidopsis.

  20. The interaction of N-trifluoroacetylgalactosamine and its derivatives with winged bean (Psophocarpus tetragonolobus) basic agglutinin reveals differential mechanism of their recognition: a fluorine-19 nuclear magnetic resonance study.

    PubMed

    Katiyar, Samiksha; Singh, Amrita; Surolia, Avadhesha

    2014-10-01

    Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-α-N-trifluoroacetylgalactosamine (MeαNTFAGalN) and methyl-β-tifluoroacetylgalactosamine (MeβNTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and MeβNTFAGalN, and 0.01-ppm chemical shift change for MeαNTFAGalN, demonstrate that the MeαNTFAGalN has a sufficiently long residence time on the protein binding site as compared to MeβNTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of α and β anomers of NTFAGalN and MeαNTFAGalN is controlled enthalpically, while that of MeβNTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the MeβNTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.

  1. Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells.

    PubMed

    Corby, M J; Stoneman, Michael R; Biener, Gabriel; Paprocki, Joel D; Kolli, Rajesh; Raicu, Valerica; Frick, David N

    2017-07-07

    Human cells detect RNA viruses through a set of helicases called RIG-I-like receptors (RLRs) that initiate the interferon response via a mitochondrial signaling complex. Many RNA viruses also encode helicases, which are sometimes covalently linked to proteases that cleave signaling proteins. One unresolved question is how RLRs interact with each other and with viral proteins in cells. This study examined the interactions among the hepatitis C virus (HCV) helicase and RLR helicases in live cells with quantitative microspectroscopic imaging (Q-MSI), a technique that determines FRET efficiency and subcellular donor and acceptor concentrations. HEK293T cells were transfected with various vector combinations to express cyan fluorescent protein (CFP) or YFP fused to either biologically active HCV helicase or one RLR (i.e. RIG-I, MDA5, or LGP2), expressed in the presence or absence of polyinosinic-polycytidylic acid (poly(I:C)), which elicits RLR accumulation at mitochondria. Q-MSI confirmed previously reported RLR interactions and revealed an interaction between HCV helicase and LGP2. Mitochondria in CFP-RIG-I:YFP-RIG-I cells, CFP-MDA5:YFP-MDA5 cells, and CFP-MDA5:YFP-LGP2 cells had higher FRET efficiencies in the presence of poly(I:C), indicating that RNA causes these proteins to accumulate at mitochondria in higher-order complexes than those formed in the absence of poly(I:C). However, mitochondria in CFP-LGP2:YFP-LGP2 cells had lower FRET signal in the presence of poly(I:C), suggesting that LGP2 oligomers disperse so that LGP2 can bind MDA5. Data support a new model where an LGP2-MDA5 oligomer shuttles NS3 to the mitochondria to block antiviral signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Cell-material interactions revealed via material techniques of surface patterning.

    PubMed

    Yao, Xiang; Peng, Rong; Ding, Jiandong

    2013-10-04

    Cell-material interactions constitute a key fundamental topic in biomaterials study. Various cell cues and matrix cues as well as soluble factors regulate cell behaviors on materials. These factors are coupled with each other as usual, and thus it is very difficult to unambiguously elucidate the role of each regulator. The recently developed material techniques of surface patterning afford unique ways to reveal the underlying science. This paper reviews the pertinent material techniques to fabricate patterns of microscale and nanoscale resolutions, and corresponding cell studies. Some issues are emphasized, such as cell localization on patterned surfaces of chemical contrast, and effects of cell shape, cell size, cell-cell contact, and seeding density on differentiation of stem cells. Material cues to regulate cell adhesion, cell differentiation and other cell events are further summed up. Effects of some physical properties, such as surface topography and matrix stiffness, on cell behaviors are also discussed; nanoscaled features of substrate surfaces to regulate cell fate are summarized as well. The pertinent work sheds new insight into the cell-material interactions, and is stimulating for biomaterial design in regenerative medicine, tissue engineering, and high-throughput detection, diagnosis, and drug screening. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lateral and Medial Ventral Occipitotemporal Regions Interact During the Recognition of Images Revealed from Noise

    PubMed Central

    Nordhjem, Barbara; Ćurčić-Blake, Branislava; Meppelink, Anne Marthe; Renken, Remco J.; de Jong, Bauke M.; Leenders, Klaus L.; van Laar, Teus; Cornelissen, Frans W.

    2016-01-01

    Several studies suggest different functional roles for the medial and the lateral sections of the ventral visual cortex in object recognition. Texture and surface information is processed in medial sections, while shape information is processed in lateral sections. This begs the question whether and how these functionally specialized sections interact with each other and with early visual cortex to facilitate object recognition. In the current research, we set out to answer this question. In an fMRI study, 13 subjects viewed and recognized images of objects and animals that were gradually revealed from noise while their brains were being scanned. We applied dynamic causal modeling (DCM)—a method to characterize network interactions—to determine the modulatory effect of object recognition on a network comprising the primary visual cortex (V1), the lingual gyrus (LG) in medial ventral cortex and the lateral occipital cortex (LO). We found that object recognition modulated the bilateral connectivity between LG and LO. Moreover, the feed-forward connectivity from V1 to LG and LO was modulated, while there was no evidence for feedback from these regions to V1 during object recognition. In particular, the interaction between medial and lateral areas supports a framework in which visual recognition of objects is achieved by networked regions that integrate information on image statistics, scene content and shape—rather than by a single categorically specialized region—within the ventral visual cortex. PMID:26778997

  4. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell

    PubMed Central

    Skliros, Dimitrios; Kalatzis, Panos G.; Katharios, Pantelis; Flemetakis, Emmanouil

    2016-01-01

    Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage–host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the “schizoT4like” clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD+ and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection. PMID:27895630

  5. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell.

    PubMed

    Skliros, Dimitrios; Kalatzis, Panos G; Katharios, Pantelis; Flemetakis, Emmanouil

    2016-01-01

    Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage-host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the "schizoT4like" clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD(+) and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection.

  6. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System.

    PubMed

    Chaturvedi, Vishal; Dye, Danielle E; Kinnear, Beverley F; van Kuppevelt, Toin H; Grounds, Miranda D; Coombe, Deirdre R

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.

  7. Metabolomics Reveals Cryptic Interactive Effects of Species Interactions and Environmental Stress on Nitrogen and Sulfur Metabolism in Seagrass.

    PubMed

    Hasler-Sheetal, Harald; Castorani, Max C N; Glud, Ronnie N; Canfield, Donald E; Holmer, Marianne

    2016-11-01

    Eutrophication of estuaries and coastal seas is accelerating, increasing light stress on subtidal marine plants and changing their interactions with other species. To date, we have limited understanding of how such variations in environmental and biological stress modify the impact of interactions among foundational species and eventually affect ecosystem health. Here, we used metabolomics to assess the impact of light reductions on interactions between the seagrass Zostera marina, an important habitat-forming marine plant, and the abundant and commercially important blue mussel Mytilus edulis. Plant performance varied with light availability but was unaffected by the presence of mussels. Metabolomic analysis, on the other hand, revealed an interaction between light availability and presence of M. edulis on seagrass metabolism. Under high light, mussels stimulated seagrass nitrogen and energy metabolism. Conversely, in low light mussels impeded nitrogen and energy metabolism, and enhanced responses against sulfide toxicity, causing inhibited oxidative energy metabolism and tissue degradation. Metabolomic analysis thereby revealed cryptic changes to seagrass condition that could not be detected by traditional approaches. Our findings suggest that coastal eutrophication and associated reductions in light may shift seagrass-bivalve interactions from mutualistic to antagonistic, which is important for conservation management of seagrass meadows.

  8. Extraterrestrial Studies Using Nuclear Interactions

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.

    2003-01-01

    Cosmogenic nuclides were used to study the recent histories of the aubrite Norton County and the pallasite Brenham using calculated production rates. Calculations were done of the rates for making cosmogenic noble-gas isotopes in the Jovian satellite Europa by the interactions of galactic cosmic rays and especially trapped Jovian protons. Cross sections for the production of cosmogenic nuclides were reported and plans made to measure additional cross sections. A new code, MCNPX, was used to numerically simulate the interactions of cosmic rays with matter and the subsequent production of cosmogenic nuclides. A review was written about studies of extraterrestrial matter using cosmogenic radionuclides. Several other projects were done. Results are reviewed here with references to my recent publications for details.

  9. Nonlinear cardio-respiratory interactions revealed by time-phase bispectral analysis

    NASA Astrophysics Data System (ADS)

    Jamsek, Janez; Stefanovska, Aneta; McClintock, Peter V. E.

    2004-09-01

    Bispectral analysis based on high order statistics, introduced recently as a technique for revealing time-phase relationships among interacting noisy oscillators, has been used to study the nature of the coupling between cardiac and respiratory activity. Univariate blood flow signals recorded simultaneously by laser-Doppler flowmetry on both legs and arms were analysed. Coupling between cardiac and respiratory activity was also checked by use of bivariate data and computation of the cross-bispectrum between the ECG and respiratory signals. Measurements were made on six healthy males aged 25-27 years. Recordings were taken during spontaneous breathing (20 min), and during paced respiration at frequencies both lower and higher than that of spontaneous respiration (either two or three recordings with a constant frequency in the interval between 0.09 and 0.35 Hz). At each paced frequency recordings were taken for 12 min. It was confirmed that the dynamics of blood flow can usefully be considered in terms of coupled oscillators, and demonstrated that interactions between the cardiac and respiratory processes are weak and time-varying, and that they can be nonlinear. Nonlinear coupling was revealed to exist during both spontaneous and paced respiration. When present, it was detected in all four blood flow signals and in the cross-bispectrum between the ECG and respiratory signal. The episodes with nonlinear coupling were detected in 11 out of 22 recordings and lasted between 19 s in the case of high frequency (0.34 Hz) and 106 s in the case of low frequency paced respiration (0.11 Hz).

  10. New cellular tools reveal complex epithelial–mesenchymal interactions in hepatocarcinogenesis

    PubMed Central

    Sagmeister, S; Eisenbauer, M; Pirker, C; Mohr, T; Holzmann, K; Zwickl, H; Bichler, C; Kandioler, D; Wrba, F; Mikulits, W; Gerner, C; Shehata, M; Majdic, O; Streubel, B; Berger, W; Micksche, M; Zatloukal, K; Schulte-Hermann, R; Grasl-Kraupp, B

    2008-01-01

    To enable detailed analyses of cell interactions in tumour development, new epithelial and mesenchymal cell lines were established from human hepatocellular carcinoma by spontaneous outgrowth in culture. We obtained several hepatocarcinoma (HCC)-, B-lymphoblastoid (BLC)-, and myofibroblastoid (MF)-lines from seven cases. In-depth characterisation included cell kinetics, genotype, tumourigenicity, expression of cell-type specific markers, and proteome patterns. Many functions of the cells of origin were found to be preserved. We studied the impact of the mesenchymal lines on hepatocarcinogenesis by in vitro assays. BLC- and MF-supernatants strongly increased the DNA replication of premalignant hepatocytes. The stimulation by MF-lines was mainly attributed to HGF secretion. In HCC-cells, MF-supernatant had only minor effects on cell growth but enhanced migration. MF-lines also stimulated neoangiogenesis through vEGF release. BLC-supernatant dramatically induced death of HCC-cells, which could be largely abrogated by preincubating the supernatant with TNFβ-antiserum. Thus, the new cell lines reveal stage-specific stimulatory and inhibitory interactions between mesenchymal and epithelial tumour cells. In conclusion, the new cell lines provide unique tools to analyse essential components of the complex interplay between the microenvironment and the developing liver cancer, and to identify factors affecting proliferation, migration and death of tumour cells, neoangiogenesis, and outgrowth of additional malignancy. PMID:18594539

  11. Wax constituents on the inflorescence stems of double eceriferum mutants in Arabidopsis reveal complex gene interactions.

    PubMed

    Goodwin, S Mark; Rashotte, Aaron M; Rahman, Musrur; Feldmann, Kenneth A; Jenks, Matthew A

    2005-04-01

    To shed new light on gene involvement in plant cuticular-wax production, 11 eceriferum (cer) mutants of Arabidopsis having dramatic alterations in wax composition of inflorescence stems were used to create 14 double cer mutants each with two homozygous recessive cer loci. A comprehensive analysis of stem waxes on these double mutants revealed unexpected CER gene interactions and new ideas about individual CER gene functions. Five of the 14 double cer mutants produced significantly more total wax than one of their respective cer parents, indicating from a genetic standpoint a partial bypassing (or complementation) of one cer mutation by the other. Eight of the 14 double cer mutants had alkane amounts lower than both respective cer parents, suggesting that most of these CER gene products play a major additive role in alkane synthesis. Other results suggested that some CER genes function in more than one step of the wax pathway, including those associated with sequential steps in acyl-CoA elongation. Surprisingly, complete epistasis was not observed for any of the cer gene combinations tested. Significant overlap or redundancy of genetic operations thus appears to be a central feature of wax metabolism. Future studies of CER gene product function, as well as the utilization of CER genes for crop improvement, must now account for the complex gene interactions described here.

  12. Ecoinformatics Can Reveal Yield Gaps Associated with Crop-Pest Interactions: A Proof-of-Concept

    PubMed Central

    Rosenheim, Jay A.; Meisner, Matthew H.

    2013-01-01

    Farmers and private consultants execute a vast, decentralized data collection effort with each cropping cycle, as they gather pest density data to make real-time pest management decisions. Here we present a proof of concept for an ecoinformatics approach to pest management research, which attempts to harness these data to answer questions about pest-crop interactions. The impact of herbivory by Lygus hesperus on cotton is explored as a case study. Consultant-derived data satisfied a ‘positive control’ test for data quality by clearly resolving the expected negative relationship between L. hesperus density and retention of flower buds. The enhanced statistical power afforded by the large ecoinformatics dataset revealed an early-season window of crop sensitivity, during which L. hesperus densities as low as 1-2 per sample were associated with yield loss. In contrast, during the mid-season insecticide use by farmers was often unnecessary, as cotton compensated fully for moderate L. hesperus densities. Because the dataset emerged from the commercial production setting, it also revealed the limited degree to which farmers were willing to delay crop harvest to provide opportunities for compensatory fruiting. Observational approaches to pest management research have strengths and weaknesses that complement those of traditional, experimental approaches; combining these methods can contribute to enhanced agricultural productivity. PMID:24260408

  13. Ecoinformatics can reveal yield gaps associated with crop-pest interactions: a proof-of-concept.

    PubMed

    Rosenheim, Jay A; Meisner, Matthew H

    2013-01-01

    Farmers and private consultants execute a vast, decentralized data collection effort with each cropping cycle, as they gather pest density data to make real-time pest management decisions. Here we present a proof of concept for an ecoinformatics approach to pest management research, which attempts to harness these data to answer questions about pest-crop interactions. The impact of herbivory by Lygus hesperus on cotton is explored as a case study. Consultant-derived data satisfied a 'positive control' test for data quality by clearly resolving the expected negative relationship between L. hesperus density and retention of flower buds. The enhanced statistical power afforded by the large ecoinformatics dataset revealed an early-season window of crop sensitivity, during which L. hesperus densities as low as 1-2 per sample were associated with yield loss. In contrast, during the mid-season insecticide use by farmers was often unnecessary, as cotton compensated fully for moderate L. hesperus densities. Because the dataset emerged from the commercial production setting, it also revealed the limited degree to which farmers were willing to delay crop harvest to provide opportunities for compensatory fruiting. Observational approaches to pest management research have strengths and weaknesses that complement those of traditional, experimental approaches; combining these methods can contribute to enhanced agricultural productivity.

  14. IRAS study of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Allam, S.

    1998-04-01

    Interacting galaxies are ideal laboratories for studying the influence of gravitational forces on galaxies. From theoretical and observational studies, we know how sensitive galaxies are to tidal interaction, from the formation of tidal tails, bridges, bursts of star formation up to a complete merging of the galaxies. The Far Infrared (FIR) properties of interacting galaxies give information on the dynamical and physical properties of these systems. Several earlier studies using the IRAS point source catalogue (IPSC) and IRAS Faint Source Survey (FSS), showed that the FIR emission from interacting/merging galaxies is enhanced with respect to isolated non-interacting galaxies; moreover, that high density environments have more influence in producing enhanced FIR emission over isolated interacting systems. In general the ratio of FIR to optical luminosity in interacting systems was found to be enhanced. It is regarded as an increased star formation (SF) rate in these systems. Later on, due to the rather high IPSC detection threshold, and its low resolution, several contradictory results have been reported. In this thesis the FIR emission from interacting galaxies is studied by using the high resolution IRAS software introduced by Bontekoe et al. (1994). This soft ware package uses a Maximum Entropy method (hereafter MaxEnt). The MaxEnt formulation is rooted in Bayesian probability theory. The raw IRAS data contains the Point Spread Function (PSF) of both the telescope mirror (60 cm --> 1 arcmin at 60 μm) and the PSF of the detectors (≃ 5 arcmin). Since there is much redundancy in the data, the MaxEnt routine can be used to remove the 5 arcmin PSF from the detectors. For many interacting galaxies this is enough to resolve them. The size of the images was chosen such that the objects could be studied including their surroundings. The absolute position calibration and flux estimates for the MaxEnt images are described in Allam et al. (1996). Because of the high

  15. Comparative genomics reveals distinct host-interacting traits of three major human-associated propionibacteria.

    PubMed

    Mak, Tim N; Schmid, Monika; Brzuszkiewicz, Elzbieta; Zeng, Guanghong; Meyer, Rikke; Sfanos, Karen S; Brinkmann, Volker; Meyer, Thomas F; Brüggemann, Holger

    2013-09-22

    Propionibacteria are part of the human microbiota. Many studies have addressed the predominant colonizer of sebaceous follicles of the skin, Propionibacterium acnes, and investigated its association with the skin disorder acne vulgaris, and lately with prostate cancer. Much less is known about two other propionibacterial species frequently found on human tissue sites, Propionibacterium granulosum and Propionibacterium avidum. Here we analyzed two and three genomes of P. granulosum and P. avidum, respectively, and compared them to two genomes of P. acnes; we further highlight differences among the three cutaneous species with proteomic and microscopy approaches. Electron and atomic force microscopy revealed an exopolysaccharide (EPS)-like structure surrounding P. avidum cells, that is absent in P. acnes and P. granulosum. In contrast, P. granulosum possesses pili-like appendices, which was confirmed by surface proteome analysis. The corresponding genes were identified; they are clustered with genes encoding sortases. Both, P. granulosum and P. avidum lack surface or secreted proteins for predicted host-interacting factors of P. acnes, including several CAMP factors, sialidases, dermatan-sulphate adhesins, hyaluronidase and a SH3 domain-containing lipoprotein; accordingly, only P. acnes exhibits neuraminidase and hyaluronidase activities. These functions are encoded on previously unrecognized island-like regions in the genome of P. acnes. Despite their omnipresence on human skin little is known about the role of cutaneous propionibacteria. All three species are associated with a variety of diseases, including postoperative and device-related abscesses and infections. We showed that the three organisms have evolved distinct features to interact with their human host. Whereas P. avidum and P. granulosum produce an EPS-like surface structure and pili-like appendices, respectively, P. acnes possesses a number of unique surface-exposed proteins with host-interacting

  16. Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants

    PubMed Central

    Ngaki, Micheline N.; Wang, Bing; Sahu, Binod B.; Srivastava, Subodh K.; Farooqi, Mohammad S.; Kambakam, Sekhar; Swaminathan, Sivakumar

    2016-01-01

    Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction. PMID:27760122

  17. Co-evolutionary Analysis of Domains in Interacting Proteins Reveals Insights into Domain–Domain Interactions Mediating Protein–Protein Interactions

    PubMed Central

    Jothi, Raja; Cherukuri, Praveen F.; Tasneem, Asba; Przytycka, Teresa M.

    2006-01-01

    Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein–protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the noninteracting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain–domain interactions. Given a protein–protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain–domain interactions, and used known domain–domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain–domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites. PMID:16949097

  18. Emotional regulatory function of Receptor Interacting Protein 140 revealed in the ventromedial hypothalamus

    PubMed Central

    Flaisher-Grinberg, S; Tsai, HC; Feng, X; Wei, LN

    2014-01-01

    Receptor-interacting protein (RIP140) is a transcription co-regulator highly expressed in macrophages to regulate inflammatory and metabolic processes. However, its implication in neurological, cognitive and emotional conditions, and the cellular systems relevant to its biological activity within the central nervous system are currently less clear. A transgenic mouse line with macrophage-specific knockdown of RIP140 was generated (MΦRIPKD mice) and brain-region specific RIP140 knockdown efficiency evaluated. Mice were subjected to a battery of tests, designed to evaluate multiple behavioral domains at naïve or following site-specific RIP140 re-expression. Gene expression analysis assessed TNF-α, IL-1β, TGF-1β, IL1-RA and Neuropeptide Y (NPY) expression, and in-vitro studies examined the effects of macrophage’s RIP140 on astrocytes’ NPY production. We found RIP140 expression was dramatically reduced in macrophages within the ventromedial hypothalamus (VMH) and the cingulate cortex of MΦRIPKD mice. These animals exhibited increased anxiety- and depressive-like behaviors. VMH-targeted RIP140 re-expression in MΦRIPKD mice reversed its depressive- but not its anxiety-like phenotype. Analysis of specific neurochemical changes revealed reduced astrocytic-NPY expression within the hypothalamus of MΦRIPKD mice, and in-vitro analysis confirmed that conditioned medium of RIP140-silnenced macrophage culture could no longer stimulate NPY production from astrocytes. The current study revealed an emotional regulatory function of macrophage-derived RIP140 in the VMH, and secondary dysregulation of NPY within hypothalamic astrocyte population, which might be associated with the observed behavioral phenotype of MΦRIPKD mice. This study highlights RIP140 as a novel target for the development of potential therapeutic and intervention strategies for emotional regulation disorders. PMID:24726835

  19. Water-module interaction studies

    NASA Technical Reports Server (NTRS)

    Mon, G.; Wen, L.; Ross, R., Jr.

    1988-01-01

    Mechanisms by which moisture enters photovoltaic modules and techniques for reducing such interactions are reported. Results from a study of the effectiveness of various module sealants are given. Techniques for measuring the rate and quantity of moisture ingress are discussed. It is shown that scribe lines and porous frit bridging conductors provide preferential paths for moisture ingress and that moisture diffusion by surface/interfacial paths is considerably more rapid than diffusion by bulk paths, which implies that thin-film substrate and supersubstrate modules are much more vulnerable to moist environments than are bulk-encapsulated crystalline-silicon modules. Design approaches that reduce moisture entry are discussed.

  20. Provenance and reconnaissance study of detrital zircons of the Palaeozoic Cape Supergroup in South Africa: revealing the interaction of the Kalahari and Río de la Plata cratons

    NASA Astrophysics Data System (ADS)

    Fourie, Pieter H.; Zimmermann, Udo; Beukes, Nicolas J.; Naidoo, Thanusha; Kobayashi, Katsuro; Kosler, Jan; Nakamura, Eizo; Tait, Jenny; Theron, Johannes N.

    2011-04-01

    In order to facilitate the understanding of the geological evolution of the Kalahari Craton and its relation to South America, the provenance of the first large-scale cratonic cover sequence of the craton, namely the Ordovician to Carboniferous Cape Supergroup was studied through geochemical analyses of the siliciclastics, and age determinations of detrital zircon. The Cape Supergroup comprises mainly quartz-arenites and a Hirnantian tillite in the basal Table Mountain Group, subgreywackes and mudrocks in the overlying Bokkeveld Group, while siltstones, interbedded shales and quartz-arenites are typical for the Witteberg Group at the top of the Cape Supergroup. Palaeocurrent analyses indicate transport of sediment mainly from northerly directions, off the interior of the Kalahari Craton with subordinate transport from a westerly source in the southwestern part of the basin near Cape Town. Geochemical provenance data suggest mainly sources from passive to active continental margin settings. The reconnaissance study of detrital zircons reveals a major contribution of Mesoproterozoic sources throughout the basin, reflecting the dominance of the Namaqua-Natal Metamorphic Belt, situated immediately north of the preserved strata of Cape Supergroup, as a source with Archaean-aged zircons being extremely rare. We interpret the Namaqua-Natal Metamorphic Belt to have been a large morphological divide at the time of deposition of the Cape Supergroup that prevented input of detrital zircons from the interior early Archaean Kaapvaal cratonic block of the Kalahari Craton. Neoproterozoic and Cambrian zircons are abundant and reflect the basement geology of the outcrops of Cape strata. Exposures close to Cape Town must have received sediment from a cratonic fragment that was situated off the Kalahari Craton to the west and that has subsequently drifted away. This cratonic fragment predominantly supplied Meso- to Neoproterozoic, and Cambrian-aged zircon grains in addition to minor

  1. Modes of Escherichia coli Dps Interaction with DNA as Revealed by Atomic Force Microscopy

    PubMed Central

    Melekhov, Vladislav V.; Shvyreva, Uliana S.; Timchenko, Alexander A.; Tutukina, Maria N.; Preobrazhenskaya, Elena V.; Burkova, Diana V.; Artiukhov, Valiriy G.

    2015-01-01

    Multifunctional protein Dps plays an important role in iron assimilation and a crucial role in bacterial genome packaging. Its monomers form dodecameric spherical particles accumulating ~400 molecules of oxidized iron ions within the protein cavity and applying a flexible N-terminal ends of each subunit for interaction with DNA. Deposition of iron is a well-studied process by which cells remove toxic Fe2+ ions from the genetic material and store them in an easily accessible form. However, the mode of interaction with linear DNA remained mysterious and binary complexes with Dps have not been characterized so far. It is widely believed that Dps binds DNA without any sequence or structural preferences but several lines of evidence have demonstrated its ability to differentiate gene expression, which assumes certain specificity. Here we show that Dps has a different affinity for the two DNA fragments taken from the dps gene regulatory region. We found by atomic force microscopy that Dps predominantly occupies thermodynamically unstable ends of linear double-stranded DNA fragments and has high affinity to the central part of the branched DNA molecule self-assembled from three single-stranded oligonucleotides. It was proposed that Dps prefers binding to those regions in DNA that provide more contact pads for the triad of its DNA-binding bundle associated with one vertex of the protein globule. To our knowledge, this is the first study revealed the nucleoid protein with an affinity to branched DNA typical for genomic regions with direct and inverted repeats. As a ubiquitous feature of bacterial and eukaryotic genomes, such structural elements should be of particular care, but the protein system evolutionarily adapted for this function is not yet known, and we suggest Dps as a putative component of this system. PMID:25978038

  2. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System

    PubMed Central

    Chaturvedi, Vishal; Dye, Danielle E.; Kinnear, Beverley F.; van Kuppevelt, Toin H.; Grounds, Miranda D.; Coombe, Deirdre R.

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates. PMID:26030912

  3. Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions

    PubMed Central

    Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.

    2016-01-01

    The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566

  4. Interaction between Coronal Mass Ejections: Limited Spatial Extent Revealed by SOHO Observations

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Nat; Reiner, Mike J.; Makela, Pertti; Yashiro, Seiji

    2016-07-01

    A spectacular CME interaction event was observed on 2013 May 22 by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO) mission as confirmed by the radio signature detected by the Radio and Plasma Wave experiment (WAVES) on board the Wind spacecraft. The interaction event was also associated with an intense solar energetic particle event, typical of such events in solar cycles 23 and 24. Detailed height-time plots of the interacting CMEs at various position angles revealed a surprising result: only a limited spatial extent of the primary CME was affected by the interaction. The speed of the primary CME showed a sharp decline in the position angle range where it interacted with the preceding CME. At these position angles, the speed of the preceding CME increased. At position angles away from the interaction region, the speed of the primary CME remained roughly the same except for the usual drag deceleration. This result has important implications to theories on CME collision: treating the interacting CMEs to be rigid bodies and using the whole mass of the CMEs may not be correct.

  5. Complete structure of the bacterial flagellar hook reveals extensive set of stabilizing interactions

    PubMed Central

    Matsunami, Hideyuki; Barker, Clive S.; Yoon, Young-Ho; Wolf, Matthias; Samatey, Fadel A.

    2016-01-01

    The bacterial flagellar hook is a tubular helical structure made by the polymerization of multiple copies of a protein, FlgE. Here we report the structure of the hook from Campylobacter jejuni by cryo-electron microscopy at a resolution of 3.5 Å. On the basis of this structure, we show that the hook is stabilized by intricate inter-molecular interactions between FlgE molecules. Extra domains in FlgE, found only in Campylobacter and in related bacteria, bring more stability and robustness to the hook. Functional experiments suggest that Campylobacter requires an unusually strong hook to swim without its flagella being torn off. This structure reveals details of the quaternary organization of the hook that consists of 11 protofilaments. Previous study of the flagellar filament of Campylobacter by electron microscopy showed its quaternary structure made of seven protofilaments. Therefore, this study puts in evidence the difference between the quaternary structures of a bacterial filament and its hook. PMID:27811912

  6. Whitefly genome expression reveals host-symbiont interaction in amino acid biosynthesis.

    PubMed

    Upadhyay, Santosh Kumar; Sharma, Shailesh; Singh, Harpal; Dixit, Sameer; Kumar, Jitesh; Verma, Praveen C; Chandrashekar, K

    2015-01-01

    Whitefly (Bemisia tabaci) complex is a serious insect pest of several crop plants worldwide. It comprises several morphologically indistinguishable species, however very little is known about their genetic divergence and biosynthetic pathways. In the present study, we performed transcriptome sequencing of Asia 1 species of B. tabaci complex and analyzed the interaction of host-symbiont genes in amino acid biosynthetic pathways. We obtained about 83 million reads using Illumina sequencing that assembled into 72716 unitigs. A total of 21129 unitigs were annotated at stringent parameters. Annotated unitigs were mapped to 52847 gene ontology (GO) terms and 131 Kyoto encyclopedia of genes and genomes (KEGG) pathways. Expression analysis of the genes involved in amino acid biosynthesis pathways revealed the complementation between whitefly and its symbiont partner Candidatus Portiera aleyrodidarum. Most of the non-essential amino acids and intermediates of essential amino acid pathways were supplied by the host insect to its symbiont. The symbiont expressed the pathways for the essential amino acids arginine, threonine and tryptophan and the immediate precursors of valine, leucine, isoleucine and phenyl-alanine. High level expression of the amino acid transporters in the whitefly suggested the molecular mechanisms for the exchange of amino acids between the host and the symbiont. Our study provides a comprehensive transcriptome data for Asia 1 species of B. tabaci complex that focusses light on integration of host and symbiont genes in amino acid biosynthesis pathways.

  7. Interactive social neuroscience to study autism spectrum disorder.

    PubMed

    Rolison, Max J; Naples, Adam J; McPartland, James C

    2015-03-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative "interactive social neuroscience" methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD.

  8. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions

    PubMed Central

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-01-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  9. Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function.

    PubMed

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Zhang, Shu; Zhao, Shijie; Chen, Hanbo; Zhang, Tuo; Hu, Xintao; Han, Junwei; Ye, Jieping; Guo, Lei; Liu, Tianming

    2015-04-01

    For decades, it has been largely unknown to what extent multiple functional networks spatially overlap/interact with each other and jointly realize the total cortical function. Here, by developing novel sparse representation of whole-brain fMRI signals and by using the recently publicly released large-scale Human Connectome Project high-quality fMRI data, we show that a number of reproducible and robust functional networks, including both task-evoked and resting state networks, are simultaneously distributed in distant neuroanatomic areas and substantially spatially overlapping with each other, thus forming an initial collection of holistic atlases of functional networks and interactions (HAFNIs). More interestingly, the HAFNIs revealed two distinct patterns of highly overlapped regions and highly specialized regions and exhibited that these two patterns of areas are reciprocally localized, revealing a novel organizational principle of cortical function.

  10. Crystal Structures of HIV-1 Reverse Transcriptase with Picomolar Inhibitors Reveal Key Interactions for Drug Design

    PubMed Central

    Frey, Kathleen M.; Bollini, Mariela; Mislak, Andrea C.; Cisneros, José A.; Gallardo-Macias, Ricardo; Jorgensen, William L.; Anderson, Karen S.

    2012-01-01

    X-ray crystal structures at 2.9 Å resolution are reported for complexes of catechol diethers 1 and 2 with HIV-1 reverse transcriptase. The results help elucidate the structural origins of the extreme antiviral activity of the compounds. The possibility of halogen bonding between the inhibitors and Pro95 is addressed. Structural analysis reveals key interactions with conserved residues P95 and W229 of importance for design of inhibitors with high potency and favorable resistance profiles. PMID:23163887

  11. Insulating state in tetralayers reveals an even-odd interaction effect in multilayer graphene

    NASA Astrophysics Data System (ADS)

    Grushina, Anya L.; Ki, Dong-Keun; Koshino, Mikito; Nicolet, Aurelien A. L.; Faugeras, Clément; McCann, Edward; Potemski, Marek; Morpurgo, Alberto F.

    2015-03-01

    Close to charge neutrality, the electronic properties of graphene and its multilayers are sensitive to electron-electron interactions. In bilayers, for instance, interactions are predicted to open a gap between valence and conduction bands, turning the system into an insulator. In mono and (Bernal-stacked) trilayers, which remain conducting at low temperature, interactions do not have equally drastic consequences. It is expected that interaction effects become weaker for thicker multilayers, whose behaviour should converge to that of graphite. Here we show that this expectation does not correspond to reality by revealing the occurrence of an insulating state close to charge neutrality in Bernal-stacked tetralayer graphene. The phenomenology—incompatible with the behaviour expected from the single-particle band structure—resembles that observed in bilayers, but the insulating state in tetralayers is visible at higher temperature. We explain our findings, and the systematic even-odd effect of interactions in Bernal-stacked layers of different thickness that emerges from experiments, in terms of a generalization of the interaction-driven, symmetry-broken states proposed for bilayers.

  12. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions

    SciTech Connect

    Jiang, Jiansen; Chan, Henry; Cash, Darian D.; Miracco, Edward J.; Ogorzalek Loo, Rachel R.; Upton, Heather E.; Cascio, Duilio; O'Brien Johnson, Reid; Collins, Kathleen; Loo, Joseph A.; Zhou, Z. Hong; Feigon, Juli

    2015-10-15

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.

  13. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions

    DOE PAGES

    Jiang, Jiansen; Chan, Henry; Cash, Darian D.; ...

    2015-10-15

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less

  14. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions

    PubMed Central

    Jiang, Jiansen; Chan, Henry; Cash, Darian D.; Miracco, Edward J.; Ogorzalek Loo, Rachel R.; Upton, Heather E.; Cascio, Duilio; Johnson, Reid O’Brien; Collins, Kathleen; Loo, Joseph A.; Zhou, Z. Hong; Feigon, Juli

    2015-01-01

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3′-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). We report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Our findings provide structural and mechanistic insights into telomerase holoenzyme function. PMID:26472759

  15. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions.

    PubMed

    Jiang, Jiansen; Chan, Henry; Cash, Darian D; Miracco, Edward J; Ogorzalek Loo, Rachel R; Upton, Heather E; Cascio, Duilio; O'Brien Johnson, Reid; Collins, Kathleen; Loo, Joseph A; Zhou, Z Hong; Feigon, Juli

    2015-10-30

    Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). We report the cryo-electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Our findings provide structural and mechanistic insights into telomerase holoenzyme function. Copyright © 2015, American Association for the Advancement of Science.

  16. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies.

    PubMed

    Upasani, Medha L; Limaye, Bhakti M; Gurjar, Gayatri S; Kasibhatla, Sunitha M; Joshi, Rajendra R; Kadoo, Narendra Y; Gupta, Vidya S

    2017-08-10

    Fusarium wilt is one of the major biotic stresses reducing chickpea productivity. The use of wilt-resistant cultivars is the most appropriate means to combat the disease and secure productivity. As a step towards understanding the molecular basis of wilt resistance in chickpea, we investigated the transcriptomes of wilt-susceptible and wilt-resistant cultivars under both Fusarium oxysporum f.sp. ciceri (Foc) challenged and unchallenged conditions. Transcriptome profiling using LongSAGE provided a valuable insight into the molecular interactions between chickpea and Foc, which revealed several known as well as novel genes with differential or unique expression patterns in chickpea contributing to lignification, hormonal homeostasis, plant defense signaling, ROS homeostasis, R-gene mediated defense, etc. Similarly, several Foc genes characteristically required for survival and growth of the pathogen were expressed only in the susceptible cultivar with null expression of most of these genes in the resistant cultivar. This study provides a rich resource for functional characterization of the genes involved in resistance mechanism and their use in breeding for sustainable wilt-resistance. Additionally, it provides pathogen targets facilitating the development of novel control strategies.

  17. Recent coselection in human populations revealed by protein-protein interaction network.

    PubMed

    Qian, Wei; Zhou, Hang; Tang, Kun

    2014-12-21

    Genome-wide scans for signals of natural selection in human populations have identified a large number of candidate loci that underlie local adaptations. This is surprising given the relatively short evolutionary time since the divergence of the human population. One hypothesis that has not been formally examined is whether and how the recent human evolution may have been shaped by coselection in the context of complex molecular interactome. In this study, genome-wide signals of selection were scanned in East Asians, Europeans, and Africans using 1000 Genome data, and subsequently mapped onto the protein-protein interaction (PPI) network. We found that the candidate genes of recent positive selection localized significantly closer to each other on the PPI network than expected, revealing substantial clustering of selected genes. Furthermore, gene pairs of shorter PPI network distances showed higher similarities of their recent evolutionary paths than those further apart. Last, subnetworks enriched with recent coselection signals were identified, which are substantially overrepresented in biological pathways related to signal transduction, neurogenesis, and immune function. These results provide the first genome-wide evidence for association of recent selection signals with the PPI network, shedding light on the potential mechanisms of recent coselection in the human genome. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Revealing the Interactional Features of Learning and Teaching Moments in Outdoor Activity

    ERIC Educational Resources Information Center

    Waters, Jane; Bateman, Amanda

    2015-01-01

    The data considered in this article was generated as part of a doctoral research study entitled: "A sociocultural consideration of child-initiated interaction with teachers in indoor and outdoor spaces" (Waters 2011) where child-initiated, teacher-child interaction in indoor and outdoor spaces were investigated. The purpose of the…

  19. Revealing the Interactional Features of Learning and Teaching Moments in Outdoor Activity

    ERIC Educational Resources Information Center

    Waters, Jane; Bateman, Amanda

    2015-01-01

    The data considered in this article was generated as part of a doctoral research study entitled: "A sociocultural consideration of child-initiated interaction with teachers in indoor and outdoor spaces" (Waters 2011) where child-initiated, teacher-child interaction in indoor and outdoor spaces were investigated. The purpose of the…

  20. Genetic Modifier Screens Reveal New Components that Interact with the Drosophila Dystroglycan-Dystrophin Complex

    PubMed Central

    Yatsenko, Andriy S.; Shcherbata, Halyna R.; Fischer, Karin A.; Maksymiv, Dariya V.; Chernyk, Yaroslava I.; Ruohola-Baker, Hannele

    2008-01-01

    The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-β and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought. PMID:18545683

  1. Annotation of tertiary interactions in RNA structures reveals variations and correlations

    PubMed Central

    Xin, Yurong; Laing, Christian; Leontis, Neocles B.; Schlick, Tamar

    2008-01-01

    RNA tertiary motifs play an important role in RNA folding and biochemical functions. To help interpret the complex organization of RNA tertiary interactions, we comprehensively analyze a data set of 54 high-resolution RNA crystal structures for motif occurrence and correlations. Specifically, we search seven recognized categories of RNA tertiary motifs (coaxial helix, A-minor, ribose zipper, pseudoknot, kissing hairpin, tRNA D-loop/T-loop, and tetraloop–tetraloop receptor) by various computer programs. For the nonredundant RNA data set, we find 613 RNA tertiary interactions, most of which occur in the 16S and 23S rRNAs. An analysis of these motifs reveals the diversity and variety of A-minor motif interactions and the various possible loop–loop receptor interactions that expand upon the tetraloop–tetraloop receptor. Correlations between motifs, such as pseudoknot or coaxial helix with A-minor, reveal higher-order patterns. These findings may ultimately help define tertiary structure restraints for RNA tertiary structure prediction. A complete annotation of the RNA diagrams for our data set is available at http://www.biomath.nyu.edu/motifs/. PMID:18957492

  2. Interactions of Isophorone Derivatives with DNA: Spectroscopic Studies

    PubMed Central

    Deiana, Marco; Matczyszyn, Katarzyna; Massin, Julien; Olesiak-Banska, Joanna; Andraud, Chantal; Samoc, Marek

    2015-01-01

    Interactions of three new isophorone derivatives, Isoa Isob and Isoc with salmon testes DNA have been investigated using UV-Vis, fluorescence and circular dichroism spectroscopic methods. All the studied compounds interact with DNA through intercalative binding mode. The stoichiometry of the isophorone/DNA adducts was found to be 1:1. The fluorescence quenching data revealed a binding interaction with the base pairs of DNA. The CD data indicate that all the investigated isophorones induce DNA modifications. PMID:26069963

  3. Theoretical studies of molecular interactions

    SciTech Connect

    Lester, W.A. Jr.

    1993-12-01

    This research program is directed at extending fundamental knowledge of atoms and molecules including their electronic structure, mutual interaction, collision dynamics, and interaction with radiation. The approach combines the use of ab initio methods--Hartree-Fock (HF) multiconfiguration HF, configuration interaction, and the recently developed quantum Monte Carlo (MC)--to describe electronic structure, intermolecular interactions, and other properties, with various methods of characterizing inelastic and reaction collision processes, and photodissociation dynamics. Present activity is focused on the development and application of the QMC method, surface catalyzed reactions, and reorientation cross sections.

  4. Chemometric analysis reveals links in the formation of fragrant bio-molecules during agarwood (Aquilaria malaccensis) and fungal interactions.

    PubMed

    Sen, Supriyo; Dehingia, Madhusmita; Talukdar, Narayan Chandra; Khan, Mojibur

    2017-03-14

    Fragrant agarwood, arguably the costliest wood in the world, is formed by plant-fungal interactions in Aquilaria spp. However, very little is known about this fragrant outcome of interaction. Therefore, mimicking the ancient traditions of agarwood production in Assam (Northeast India), a chemometric assessment of the agarwood-fungus interaction was made by chemical profiling (GC-MS) coupled with statistical analysis (principal component, correlation network analysis) across three platforms, viz. callus, juvenile plants and resinous wood-chips with an associated Fusarium. In the study of callus-fungus interaction, increased accumulation of key aroma compounds such as pentatriacontane {fold change (log2FC) = 3.47)}, 17-pentatriacontene (log2FC = 2.95), tetradecane, 2-methyl- (log2FC = 1.10) over callus and activation of pathways related to defense and secondary metabolism indicated links to aroma production. Study on fungal interactions in juvenile plants and resinous wood-chips indicated formation of terpenoid precursors (e.g. farnesol, geranylgeraniol acetate) and agarwood sesquiterpenes (e.g. agarospirol, γ-eudesmol). Correlation network analysis revealed the possible regulation of sesquiterpene biosynthesis involving squalene. Also a direct role of fungus in aroma (e.g. dodecane, 4-methyl-, tetracosane) was highlighted. Appearance of fragrant molecules unknown to agarwood during interaction featured as a new possibility for future research.

  5. Chemometric analysis reveals links in the formation of fragrant bio-molecules during agarwood (Aquilaria malaccensis) and fungal interactions

    PubMed Central

    Sen, Supriyo; Dehingia, Madhusmita; Talukdar, Narayan Chandra; Khan, Mojibur

    2017-01-01

    Fragrant agarwood, arguably the costliest wood in the world, is formed by plant-fungal interactions in Aquilaria spp. However, very little is known about this fragrant outcome of interaction. Therefore, mimicking the ancient traditions of agarwood production in Assam (Northeast India), a chemometric assessment of the agarwood-fungus interaction was made by chemical profiling (GC-MS) coupled with statistical analysis (principal component, correlation network analysis) across three platforms, viz. callus, juvenile plants and resinous wood-chips with an associated Fusarium. In the study of callus-fungus interaction, increased accumulation of key aroma compounds such as pentatriacontane {fold change (log2FC) = 3.47)}, 17-pentatriacontene (log2FC = 2.95), tetradecane, 2-methyl- (log2FC = 1.10) over callus and activation of pathways related to defense and secondary metabolism indicated links to aroma production. Study on fungal interactions in juvenile plants and resinous wood-chips indicated formation of terpenoid precursors (e.g. farnesol, geranylgeraniol acetate) and agarwood sesquiterpenes (e.g. agarospirol, γ-eudesmol). Correlation network analysis revealed the possible regulation of sesquiterpene biosynthesis involving squalene. Also a direct role of fungus in aroma (e.g. dodecane, 4-methyl-, tetracosane) was highlighted. Appearance of fragrant molecules unknown to agarwood during interaction featured as a new possibility for future research. PMID:28290512

  6. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems.

    PubMed

    Leitão, Joana; Thielscher, Axel; Tünnerhoff, Johannes; Noppeney, Uta

    2015-08-12

    Adaptive behavior relies on combining bottom-up sensory inputs with top-down control signals to guide responses in line with current goals and task demands. Over the past decade, accumulating evidence has suggested that the dorsal and ventral frontoparietal attentional systems are recruited interactively in this process. This fMRI study used concurrent transcranial magnetic stimulation (TMS) as a causal perturbation approach to investigate the interactions between dorsal and ventral attentional systems and sensory processing areas. In a sustained spatial attention paradigm, human participants detected weak visual targets that were presented in the lower-left visual field on 50% of the trials. Further, we manipulated the presence/absence of task-irrelevant auditory signals. Critically, on each trial we applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS). IPS-TMS relative to Sham-TMS increased activation in the parietal cortex regardless of sensory stimulation, confirming the neural effectiveness of TMS stimulation. Visual targets increased activations in the anterior insula, a component of the ventral attentional system responsible for salience detection. Conversely, they decreased activations in the ventral visual areas. Importantly, IPS-TMS abolished target-evoked activation increases in the right temporoparietal junction (TPJ) of the ventral attentional system, whereas it eliminated target-evoked activation decreases in the right fusiform. Our results demonstrate that IPS-TMS exerts profound directional causal influences not only on visual areas but also on the TPJ as a critical component of the ventral attentional system. They reveal a complex interplay between dorsal and ventral attentional systems during target detection under sustained spatial attention. Adaptive behavior relies on combining bottom-up sensory inputs with top-down attentional control. Although the dorsal and ventral frontoparietal systems are key players in

  7. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion

    PubMed Central

    Rosenthal, Sara Brin; Twomey, Colin R.; Hartnett, Andrew T.; Wu, Hai Shan; Couzin, Iain D.

    2015-01-01

    Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion. PMID:25825752

  8. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion.

    PubMed

    Rosenthal, Sara Brin; Twomey, Colin R; Hartnett, Andrew T; Wu, Hai Shan; Couzin, Iain D

    2015-04-14

    Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion.

  9. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif.

    PubMed

    Magliery, Thomas J; Regan, Lynne

    2004-10-22

    Consensus design methods have been used successfully to engineer proteins with a particular fold, and moreover to engineer thermostable exemplars of particular folds. Here, we consider how a statistical free energy approach can expand upon current methods of phylogenetic design. As an example, we have analyzed the tetratricopeptide repeat (TPR) motif, using multiple sequence alignment to identify the significance of each position in the TPR. The results provide information above and beyond that revealed by consensus design alone, especially at poorly conserved positions. A particularly striking finding is that certain residues, which TPR-peptide co-crystal structures show are in direct contact with the ligand, display a marked hypervariability. This suggests a novel means of identifying ligand-binding sites, and also implies that TPRs generally function as ligand-binding domains. Using perturbation analysis (or statistical coupling analysis), we examined site-site interactions within the TPR motif. Correlated occurrences of amino acid residues at poorly conserved positions explain how TPRs achieve their near-neutral surface charge distributions, and why a TPR designed from straight consensus has an unusually high net charge. Networks of interacting sites revealed that TPRs fall into two unrecognized families with distinct sets of interactions related to the identity of position 7 (Leu or Lys/Arg). Statistical free energy analysis provides a more complete description of "What makes a TPR a TPR?" than consensus alone, and it suggests general approaches to extend and improve the phylogenetic design of proteins.

  10. Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions

    PubMed Central

    Bukhari, Qasim; Schroeter, Aileen; Cole, David M.; Rudin, Markus

    2017-01-01

    fMRI studies in mice typically require the use of anesthetics. Yet, it is known that anesthesia alters responses to stimuli or functional networks at rest. In this work, we have used Dual Regression analysis Network Modeling to investigate the effects of two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived functional networks, and in particular to what extent anesthesia affected the interaction within and between these networks. Experimental data have been used from a previous study (Grandjean et al., 2014). We applied multivariate ICA analysis and Dual Regression to infer the differences in functional connectivity between isoflurane- and medetomidine-anesthetized mice. Further network analysis was performed to investigate within- and between-network connectivity differences between these anesthetic regimens. The results revealed five major networks in the mouse brain: lateral cortical, associative cortical, default mode, subcortical, and thalamic network. The anesthesia regime had a profound effect both on within- and between-network interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical interactions have been observed, with only minor interactions involving subcortical structures and in particular attenuated cortico-thalamic connectivity. In contrast, medetomidine-anesthetized mice displayed subcortical functional connectivity including interactions between cortical and thalamic ICA components. Combining the two anesthetics at low dose resulted in network interaction that constituted the superposition of the interaction observed for each anesthetic alone. The study demonstrated that network modeling is a promising tool for analyzing the brain functional architecture in mice and comparing alterations therein caused by different physiological or pathological states. Understanding the differential effects of anesthetics on brain networks and their interaction is essential when interpreting fMRI data recorded under

  11. Resting State fMRI in Mice Reveals Anesthesia Specific Signatures of Brain Functional Networks and Their Interactions.

    PubMed

    Bukhari, Qasim; Schroeter, Aileen; Cole, David M; Rudin, Markus

    2017-01-01

    fMRI studies in mice typically require the use of anesthetics. Yet, it is known that anesthesia alters responses to stimuli or functional networks at rest. In this work, we have used Dual Regression analysis Network Modeling to investigate the effects of two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived functional networks, and in particular to what extent anesthesia affected the interaction within and between these networks. Experimental data have been used from a previous study (Grandjean et al., 2014). We applied multivariate ICA analysis and Dual Regression to infer the differences in functional connectivity between isoflurane- and medetomidine-anesthetized mice. Further network analysis was performed to investigate within- and between-network connectivity differences between these anesthetic regimens. The results revealed five major networks in the mouse brain: lateral cortical, associative cortical, default mode, subcortical, and thalamic network. The anesthesia regime had a profound effect both on within- and between-network interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical interactions have been observed, with only minor interactions involving subcortical structures and in particular attenuated cortico-thalamic connectivity. In contrast, medetomidine-anesthetized mice displayed subcortical functional connectivity including interactions between cortical and thalamic ICA components. Combining the two anesthetics at low dose resulted in network interaction that constituted the superposition of the interaction observed for each anesthetic alone. The study demonstrated that network modeling is a promising tool for analyzing the brain functional architecture in mice and comparing alterations therein caused by different physiological or pathological states. Understanding the differential effects of anesthetics on brain networks and their interaction is essential when interpreting fMRI data recorded under

  12. Hyperspectral remote sensing and long term monitoring reveal watershed-estuary ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.

    2016-02-01

    Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and

  13. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites.

    PubMed

    Grey, Corinne; Clément, Julie A J; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent; de Massy, Bernard

    2017-04-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis.

  14. Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers

    PubMed Central

    Hendrix, Jelle; Baumgärtel, Viola; Schrimpf, Waldemar; Ivanchenko, Sergey; Digman, Michelle A.; Gratton, Enrico; Kräusslich, Hans-Georg; Müller, Barbara

    2015-01-01

    Assembly of the Gag polyprotein into new viral particles in infected cells is a crucial step in the retroviral replication cycle. Currently, little is known about the onset of assembly in the cytosol. In this paper, we analyzed the cytosolic HIV-1 Gag fraction in real time in live cells using advanced fluctuation imaging methods and thereby provide detailed insights into the complex relationship between cytosolic Gag mobility, stoichiometry, and interactions. We show that Gag diffuses as a monomer on the subsecond timescale with severely reduced mobility. Reduction of mobility is associated with basic residues in its nucleocapsid (NC) domain, whereas capsid (CA) and matrix (MA) domains do not contribute significantly. Strikingly, another diffusive Gag species was observed on the seconds timescale that oligomerized in a concentration-dependent manner. Both NC- and CA-mediated interactions strongly assist this process. Our results reveal potential nucleation steps of cytosolic Gag fractions before membrane-assisted Gag assembly. PMID:26283800

  15. Synthetic Nucleosomes Reveal that GlcNAcylation Modulates Direct Interaction with the FACT Complex

    PubMed Central

    Raj, Ritu; Lercher, Lukas; Mohammed, Shabaz

    2016-01-01

    Abstract Transcriptional regulation can be established by various post‐translational modifications (PTMs) on histone proteins in the nucleosome and by nucleobase modifications on chromosomal DNA. Functional consequences of histone O‐GlcNAcylation (O‐GlcNAc=O‐linked β‐N‐acetylglucosamine) are largely unexplored. Herein, we generate homogeneously GlcNAcylated histones and nucleosomes by chemical post‐translational modification. Mass‐spectrometry‐based quantitative interaction proteomics reveals a direct interaction between GlcNAcylated nucleosomes and the “facilitates chromatin transcription” (FACT) complex. Preferential binding of FACT to GlcNAcylated nucleosomes may point towards O‐GlcNAcylation as one of the triggers for FACT‐driven transcriptional control. PMID:27272618

  16. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites

    PubMed Central

    Grey, Corinne; Clément, Julie A.J.; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent

    2017-01-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis. PMID:28336543

  17. Features of the Chaperone Cellular Network Revealed through Systematic Interaction Mapping.

    PubMed

    Rizzolo, Kamran; Huen, Jennifer; Kumar, Ashwani; Phanse, Sadhna; Vlasblom, James; Kakihara, Yoshito; Zeineddine, Hussein A; Minic, Zoran; Snider, Jamie; Wang, Wen; Pons, Carles; Seraphim, Thiago V; Boczek, Edgar Erik; Alberti, Simon; Costanzo, Michael; Myers, Chad L; Stagljar, Igor; Boone, Charles; Babu, Mohan; Houry, Walid A

    2017-09-12

    A comprehensive view of molecular chaperone function in the cell was obtained through a systematic global integrative network approach based on physical (protein-protein) and genetic (gene-gene or epistatic) interaction mapping. This allowed us to decipher interactions involving all core chaperones (67) and cochaperones (15) of Saccharomyces cerevisiae. Our analysis revealed the presence of a large chaperone functional supercomplex, which we named the naturally joined (NAJ) chaperone complex, encompassing Hsp40, Hsp70, Hsp90, AAA+, CCT, and small Hsps. We further found that many chaperones interact with proteins that form foci or condensates under stress conditions. Using an in vitro reconstitution approach, we demonstrate condensate formation for the highly conserved AAA+ ATPases Rvb1 and Rvb2, which are part of the R2TP complex that interacts with Hsp90. This expanded view of the chaperone network in the cell clearly demonstrates the distinction between chaperones having broad versus narrow substrate specificities in protein homeostasis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Vibrational Circular Dichroism (VCD) Reveals Subtle Conformational Aspects and Intermolecular Interactions in the Carnitine Family.

    PubMed

    Mazzeo, Giuseppe; Abbate, Sergio; Longhi, Giovanna; Castiglioni, Ettore; Villani, Claudio

    2015-12-01

    Vibrational circular dichroism spectra (VCD) in the mid-IR region and electronic circular dichroism (ECD) spectra for three carnitine derivatives in the form of hydrochloride salts were recorded in deuterated methanol solutions. Density Functional Theory calculations help one to understand the significance of the observed VCD bands. VCD and ECD spectra are informative about the absolute configuration of the molecule, but VCD data reveal also some conformational aspects in the N,N,N-trimethyl moiety and inform us about intermolecular interactions gained from the carbonyl stretching region for the acyl substituted carnitines.

  19. Ato protein interactions in yeast plasma membrane revealed by fluorescence lifetime imaging (FLIM).

    PubMed

    Strachotová, Dita; Holoubek, Aleš; Kučerová, Helena; Benda, Aleš; Humpolíčková, Jana; Váchová, Libuše; Palková, Zdena

    2012-09-01

    Each of the three plasma membrane Ato proteins is involved in ammonium signalling and the development of yeast colonies. This suggests that although these proteins are homologous, they do not functionally substitute for each other, but may form a functional complex. Here, we present a detailed combined FRET, FLIM and photobleaching study, which enabled us to detect interactions between Ato proteins found in distinct compartments of yeast cells. We thus show that the proteins Ato1p and Ato2p interact and can form complexes when present in the plasma membrane. No interaction was detected between Ato1p and Ato3p or Ato2p and Ato3p. In addition, using specially prepared strains, we were able to detect an interaction between molecules of the same Ato protein, namely Ato1p-Ato1p and Ato3p-Ato3p, but not Ato2p-Ato2p.

  20. Evolutionarily Conserved Pattern of Interactions in a Protein Revealed by Local Thermal Expansion Properties.

    PubMed

    Dellarole, Mariano; Caro, Jose A; Roche, Julien; Fossat, Martin; Barthe, Philippe; García-Moreno E, Bertrand; Royer, Catherine A; Roumestand, Christian

    2015-07-29

    The way in which the network of intramolecular interactions determines the cooperative folding and conformational dynamics of a protein remains poorly understood. High-pressure NMR spectroscopy is uniquely suited to examine this problem because it combines the site-specific resolution of the NMR experiments with the local character of pressure perturbations. Here we report on the temperature dependence of the site-specific volumetric properties of various forms of staphylococcal nuclease (SNase), including three variants with engineered internal cavities, as measured with high-pressure NMR spectroscopy. The strong temperature dependence of pressure-induced unfolding arises from poorly understood differences in thermal expansion between the folded and unfolded states. A significant inverse correlation was observed between the global thermal expansion of the folded proteins and the number of strong intramolecular hydrogen bonds, as determined by the temperature coefficient of the backbone amide chemical shifts. Comparison of the identity of these strong H-bonds with the co-evolution of pairs of residues in the SNase protein family suggests that the architecture of the interactions detected in the NMR experiments could be linked to a functional aspect of the protein. Moreover, the temperature dependence of the residue-specific volume changes of unfolding yielded residue-specific differences in expansivity and revealed how mutations impact intramolecular interaction patterns. These results show that intramolecular interactions in the folded states of proteins impose constraints against thermal expansion and that, hence, knowledge of site-specific thermal expansivity offers insight into the patterns of strong intramolecular interactions and other local determinants of protein stability, cooperativity, and potentially also of function.

  1. Combined computational and biochemical study reveals the importance of electrostatic interactions between the "pH sensor" and the cation binding site of the sodium/proton antiporter NhaA of Escherichia coli.

    PubMed

    Olkhova, Elena; Kozachkov, Lena; Padan, Etana; Michel, Hartmut

    2009-08-15

    Sodium proton antiporters are essential enzymes that catalyze the exchange of sodium ions for protons across biological membranes. The crystal structure of NhaA has provided a basis to explore the mechanism of ion exchange and its unique regulation by pH. Here, the mechanism of the pH activation of the antiporter is investigated through functional and computational studies of several variants with mutations in the ion-binding site (D163, D164). The most significant difference found computationally between the wild type antiporter and the active site variants, D163E and D164N, are low pK(a) values of Glu78 making them insensitive to pH. Although in the variant D163N the pK(a) of Glu78 is comparable to the physiological one, this variant cannot demonstrate the long-range electrostatic effect of Glu78 on the pH-dependent structural reorganization of trans-membrane helix X and, hence, is proposed to be inactive. In marked contrast, variant D164E remains sensitive to pH and can be activated by alkaline pH shift. Remarkably, as expected computationally and discovered here biochemically, D164E is viable and active in Na(+)/H(+) exchange albeit with increased apparent K(M). Our results unravel the unique electrostatic network of NhaA that connect the coupled clusters of the "pH sensor" with the binding site, which is crucial for pH activation of NhaA.

  2. Molecular characterization reveals the complexity of previously overlooked coral-exosymbiont interactions and the implications for coral-guild ecology.

    PubMed

    Rouzé, H; Leray, M; Magalon, H; Penin, L; Gélin, P; Knowlton, N; Fauvelot, C

    2017-03-30

    Several obligate associate crabs and shrimps species may co-occur and interact within a single coral host, leading to patterns of associations that can provide essential ecological services. However, knowledge of the dynamics of interactions in this system is limited, partly because identifying species involved in the network remains challenging. In this study, we assessed the diversity of the decapods involved in exosymbiotic assemblages for juvenile and adult Pocillopora damicornis types α and β on reefs of New Caledonia and Reunion Island. This approach revealed complex patterns of association at regional and local scales with a prevalence of assemblages involving crab-shrimp partnerships. Furthermore, the distinction of two lineages in the snapping shrimp Alpheus lottini complex, rarely recognized in ecological studies, reveals a key role for cryptic diversity in structuring communities of mutualists. The existence of partnerships between species that occurred more commonly than expected by chance suggests an increased advantage for the host or a better adaptation of associated species to local environmental conditions. The consideration of cryptic diversity helps to accurately describe the complexity of interaction webs for diverse systems such as coral reefs, as well as the functional roles of dominant associated species for the persistence of coral populations.

  3. Molecular characterization reveals the complexity of previously overlooked coral-exosymbiont interactions and the implications for coral-guild ecology

    PubMed Central

    Rouzé, H.; Leray, M.; Magalon, H.; Penin, L.; Gélin, P.; Knowlton, N.; Fauvelot, C.

    2017-01-01

    Several obligate associate crabs and shrimps species may co-occur and interact within a single coral host, leading to patterns of associations that can provide essential ecological services. However, knowledge of the dynamics of interactions in this system is limited, partly because identifying species involved in the network remains challenging. In this study, we assessed the diversity of the decapods involved in exosymbiotic assemblages for juvenile and adult Pocillopora damicornis types α and β on reefs of New Caledonia and Reunion Island. This approach revealed complex patterns of association at regional and local scales with a prevalence of assemblages involving crab-shrimp partnerships. Furthermore, the distinction of two lineages in the snapping shrimp Alpheus lottini complex, rarely recognized in ecological studies, reveals a key role for cryptic diversity in structuring communities of mutualists. The existence of partnerships between species that occurred more commonly than expected by chance suggests an increased advantage for the host or a better adaptation of associated species to local environmental conditions. The consideration of cryptic diversity helps to accurately describe the complexity of interaction webs for diverse systems such as coral reefs, as well as the functional roles of dominant associated species for the persistence of coral populations. PMID:28358026

  4. Interaction of beta-lactoglobulin with phospholipid bilayers: a molecular level elucidation as revealed by infrared spectroscopy.

    PubMed

    Lefèvre, T; Subirade, M

    2000-10-10

    Fourier transform infrared (FTIR) spectroscopy has been used to study, at a molecular level, the interactions between beta-lactoglobulin (BLG), the most abundant globular protein in milk, and some lipids (sphingomyelin, SM; dimyristoylphosphatidylcholine, DMPC; dipalmytoylphosphatidylcholine, DPPC; dimyristoylphosphatidylserine-sodium salt, DMPS; dipalmitoylphosphatidylserine-sodium salt, DPPS) constituting the milk fat globule membrane (MFGM). The interactions were monitored with respect to alteration in the secondary structure of BLG, as registered by the amide I' band, and phospholipid conformation, as revealed by the acyl chain and carbonyl bands. The results show that neither the conformation nor the thermotropism of neutral bilayers containing DMPC or DPPC is affected by BLG. Reciprocally, the secondary structure and thermal behaviour of pure BLG remain the same in the presence of PC. These results suggest that no interaction occurs between PC and BLG, in agreement with previous studies. However, it is found that BLG interacts with neutral bilayers constituted by milk SM lipids, increasing gauche conformers and thus conformational disorder of the lipid acyl chains. This perturbing effect has been attributed to a partial penetration of BLG into the hydrophobic core of the bilayer, which allows hydrophobic interactions between BLG and SM. Moreover, the fact that SM possesses the same headgroup of PC implies that the head group does not prevent the occurrence of BLG-lipid interactions and other lipid regions can control the binding of BLG to lipids. Furthermore, BLG was found to interact electrostatically with charged bilayers containing PS, leading to a rigidification of the lipid hydrocarbon chains and a dehydration of the interfacial region. This last effect suggests that the protein limits the accessibility of water molecules to the interfacial region of the phospholipids by its presence at the membrane surface.

  5. Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation

    PubMed Central

    Peng, R; Tong, J-S; Li, H; Yue, B; Zou, F; Yu, J; Zhang, L

    2013-01-01

    Bax is a proapoptotic Bcl-2 family member that has a central role in the initiation of mitochondria-dependent apoptosis. However, the mechanism of Bax activation during apoptosis remains unsettled. It is believed that the activation of Bax is mediated by either dissociation from prosurvival Bcl-2 family members, or direct association with BH3-only members. Several interaction sites on Bax that mediate its interactions with other Bcl-2 family members, as well as its proapoptotic activity, have been identified in previous studies by other groups. To rigorously investigate the functional role of these interaction sites, we knocked in their respective mutants using HCT116 colon cancer cells, in which apoptosis induced by several stimuli is strictly Bax-dependent. Bax-mediated apoptosis was intact upon knock-in (KI) of K21E and D33A, which were shown to block the interaction of Bax with BH3-only activators. Apoptosis was partially reduced by KI of D68R, which impairs the interaction of Bax with prosurvival members, and S184V, a constitutively mitochondria-targeting mutant. In contrast, apoptosis was largely suppressed by KI of L70A/D71A, which blocks homo-oligomerization of Bax and its binding to prosurvival Bcl-2 family proteins. Collectively, our results suggest that the activation of endogenous Bax in HCT116 cells is dependent on its homo-oligomerization sites, but not those previously shown to interact with BH3-only activators or prosurvival proteins only. We therefore postulate that critical interaction sites yet to be identified, or mechanisms other than protein-protein interactions, need to be pursued to delineate the mechanism of Bax activation during apoptosis. PMID:23392123

  6. Modularity Reveals the Tendency of Arbuscular Mycorrhizal Fungi To Interact Differently with Generalist and Specialist Plant Species in Gypsum Soils

    PubMed Central

    Torrecillas, Emma; del Mar Alguacil, Maria; Roldán, Antonio; Díaz, Gisela; Montesinos-Navarro, Alicia

    2014-01-01

    Patterns in plant–soil biota interactions could be influenced by the spatial distribution of species due to soil conditions or by the functional traits of species. Gypsum environments usually constitute a mosaic of heterogeneous soils where gypsum and nongypsum soils are imbricated at a local scale. A case study of the interactions of plants with arbuscular mycorrhizal fungi (AMF) in gypsum environments can be illustrative of patterns in biotic interactions. We hypothesized that (i) soil characteristics might affect the AMF community and (ii) there are differences between the AMF communities (modules) associated with plants exclusive to gypsum soils (gypsophytes) and those associated with plants that show facultative behavior on gypsum and/or marly-limestone soils (gypsovags). We used indicator species and network analyses to test for differences between the AMF communities harbored in gypsophyte and gypsovag plants. We recorded 46 operational taxonomic units (OTUs) belonging to nine genera of Glomeromycota. The indicator species analysis showed two OTUs preferentially associating with gypsum soils and three OTUs preferentially associating with marly-limestone soils. Modularity analysis revealed that soil type can be a major factor shaping AMF communities, and some AMF groups showed a tendency to interact differently with plants that had distinct ecological strategies (gypsophytes and gypsovags). Characterization of ecological networks can be a valuable tool for ascertaining the potential influence of above- and below-ground biotic interactions (plant-AMF) on plant community composition. PMID:24973074

  7. Bacterial discrimination by Dictyostelid amoebae reveals the complexity of ancient interspecies interactions

    PubMed Central

    Nasser, Waleed; Santhanam, Balaji; Miranda, Edward Roshan; Parikh, Anup; Juneja, Kavina; Rot, Gregor; Dinh, Chris; Chen, Rui; Zupan, Blaz; Shaulsky, Gad; Kuspa, Adam

    2014-01-01

    Background Amoebae and bacteria interact within predator/prey and host/pathogen relationships, but the general response of amoeba to bacteria is not well understood. The amoeba Dictyostelium discoideum feeds on, and is colonized by diverse bacterial species including Gram-positive [Gram(+)] and Gram-negative [Gram(−)] bacteria, two major groups of bacteria that differ in structure and macromolecular composition. Results Transcriptional profiling of D. discoideum revealed sets of genes whose expression is enriched in amoebae interacting with different species of bacteria, including sets that appear specific to amoebae interacting with Gram(+), or with Gram(−) bacteria. In a genetic screen utilizing the growth of mutant amoebae on a variety of bacteria as a phenotypic readout, we identified amoebal genes that are only required for growth on Gram(+) bacteria, including one that encodes the cell surface protein gp130, as well as several genes that are only required for growth on Gram(−) bacteria including one that encodes a putative lysozyme, AlyL. These genes are required for parts of the transcriptional response of wild-type amoebae, and this allowed their classification into potential response pathways. Conclusions We have defined genes that are critical for amoebal survival during feeding on Gram(+), or Gram(−), bacteria which we propose form part of a regulatory network that allows D. discoideum to elicit specific cellular responses to different species of bacteria in order to optimize survival. PMID:23664307

  8. Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships.

    PubMed

    Jin, Ke; Musso, Gabriel; Vlasblom, James; Jessulat, Matthew; Deineko, Viktor; Negroni, Jacopo; Mosca, Roberto; Malty, Ramy; Nguyen-Tran, Diem-Hang; Aoki, Hiroyuki; Minic, Zoran; Freywald, Tanya; Phanse, Sadhna; Xiang, Qian; Freywald, Andrew; Aloy, Patrick; Zhang, Zhaolei; Babu, Mohan

    2015-02-06

    Although detailed, focused, and mechanistic analyses of associations among mitochondrial proteins (MPs) have identified their importance in varied biological processes, a systematic understanding of how MPs function in concert both with one another and with extra-mitochondrial proteins remains incomplete. Consequently, many questions regarding the role of mitochondrial dysfunction in the development of human disease remain unanswered. To address this, we compiled all existing mitochondrial physical interaction data for over 1200 experimentally defined yeast MPs and, through bioinformatic analysis, identified hundreds of heteromeric MP complexes having extensive associations both within and outside the mitochondria. We provide support for these complexes through structure prediction analysis, morphological comparisons of deletion strains, and protein co-immunoprecipitation. The integration of these MP complexes with reported genetic interaction data reveals substantial crosstalk between MPs and non-MPs and identifies novel factors in endoplasmic reticulum-mitochondrial organization, membrane structure, and mitochondrial lipid homeostasis. More than one-third of these MP complexes are conserved in humans, with many containing members linked to clinical pathologies, enabling us to identify genes with putative disease function through guilt-by-association. Although still remaining incomplete, existing mitochondrial interaction data suggests that the relevant molecular machinery is modular, yet highly integrated with non-mitochondrial processes.

  9. Social phenotype extended to communities: expanded multilevel social selection analysis reveals fitness consequences of interspecific interactions.

    PubMed

    Campobello, Daniela; Hare, James F; Sarà, Maurizio

    2015-04-01

    In social species, fitness consequences are associated with both individual and social phenotypes. Social selection analysis has quantified the contribution of conspecific social traits to individual fitness. There has been no attempt, however, to apply a social selection approach to quantify the fitness implications of heterospecific social phenotypes. Here, we propose a novel social selection based approach integrating the role of all social interactions at the community level. We extended multilevel selection analysis by including a term accounting for the group phenotype of heterospecifics. We analyzed nest activity as a model social trait common to two species, the lesser kestrel (Falco naumanni) and jackdaw (Corvus monedula), nesting in either single- or mixed-species colonies. By recording reproductive outcome as a measure of relative fitness, our results reveal an asymmetric system wherein only jackdaw breeding performance was affected by the activity phenotypes of both conspecific and heterospecific neighbors. Our model incorporating heterospecific social phenotypes is applicable to animal communities where interacting species share a common social trait, thus allowing an assessment of the selection pressure imposed by interspecific interactions in nature. Finally, we discuss the potential role of ecological limitations accounting for random or preferential assortments among interspecific social phenotypes, and the implications of such processes to community evolution. © 2015 The Author(s).

  10. Atmospheric/Ocean Interaction Studies

    DTIC Science & Technology

    1997-09-30

    models (GCMs) around the world reveal a common problem in simulating the climatic asymmetry of relevance to the intertropical convergence zones ...NRL’s participation in CMIP. An NRL review article has been published (Hogan and Li 1997), 2 journal articles have been accepted by the Journal of...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the

  11. Covalent Label Transfer between Peroxisomal Importomer Components Reveals Export-driven Import Interactions*

    PubMed Central

    Bhogal, Moninder S.; Lanyon-Hogg, Thomas; Johnston, Katherine A.; Warriner, Stuart L.; Baker, Alison

    2016-01-01

    Peroxisomes are vital metabolic organelles found in almost all eukaryotic organisms, and they rely exclusively on import of their matrix protein content from the cytosol. In vitro import of proteins into isolated peroxisomal fractions has provided a wealth of knowledge on the import process. However, the common method of protease protection garnered no information on the import of an N-terminally truncated PEX5 (PEX5C) receptor construct or peroxisomal malate dehydrogenase 1 (pMDH1) cargo protein into sunflower peroxisomes because of high degrees of protease susceptibility or resistance, respectively. Here we present a means for analysis of in vitro import through a covalent biotin label transfer and employ this method to the import of PEX5C. Label transfer demonstrates that the PEX5C construct is monomeric under the conditions of the import assay. This technique was capable of identifying the PEX5-PEX14 interaction as the first interaction of the import process through competition experiments. Labeling of the peroxisomal protein import machinery by PEX5C demonstrated that this interaction was independent of added cargo protein, and, strikingly, the interaction between PEX5C and the import machinery was shown to be ATP-dependent. These important mechanistic insights highlight the power of label transfer in studying interactions, rather than proteins, of interest and demonstrate that this technique should be applied to future studies of peroxisomal in vitro import. PMID:26567336

  12. Stapled peptides in the p53 pathway: computer simulations reveal novel interactions of the staples with the target protein.

    PubMed

    Joseph, Thomas Leonard; Lane, David; Verma, Chandra S

    2010-11-15

    Atomistic simulations of a set of stapled peptides derived from the transactivation domain of p53 (designed by Verdine & colleagues, JACS 2007 129:2456) and complexed to MDM2 reveal that the good binders are uniquely characterized by higher helicity and by extensive interactions between the hydrocarbon staples and the MDM2 surface; in contrast the poor binders have reduced helicity and their staples are mostly solvent exposed. Our studies also find that the best binders can also potentially inhibit MDMX with similar affinities, suggesting that such stapled peptides can be evolved for dual inhibition with therapeutic potential.

  13. Studying Haloanisoles Interaction with Olfactory Receptors.

    PubMed

    Silva Teixeira, Carla S; Silva Ferreira, António C; Cerqueira, Nuno M F S A

    2016-07-20

    In this paper, computational means were used to explain and predict the interaction of several odorant molecules, including three haloanisoles, 2,4,6-trichloroanisole (TCA), 2,4,6-tribromoanisole (TBA), and 2,4,6-trichlorophenol (TCP), with three olfactory receptors (ORs): OR1A1, OR1A2, and OR3A1. As the X-ray structure of these ORs is not known, the three-dimensional structure of each OR was modeled by homology modeling. The structures of these ORs were stabilized by molecular dynamic simulations and the complexes of the odorant molecules with each ORs were generated by molecular docking. The theoretical results have shown that each OR has distinct but well-defined binding regions for each type of odorant molecules (aldehydes and alcohols). In OR3A1, the aldehydes bind in the bottom region of the binding pocket nearby Ser257 and Thr249. In the paralogues OR1A1 and OR1A2, the aldehydes tend to interact in the top region of the binding pocket and close to a positively charged lysine. On the other hand, the alcohols interact in the bottom region of the active site and close to a negatively charged aspartate. These results indicate that when aldehydes and alcohols odorants compete in these two ORs, the aldehydes can block the access of the alcohols odorants to their specific binding site. This observation goes in line with the experimental data that reveals that when the odorant is an aldehyde, a lower quantity of ligand is needed to cause 50% of the maximum response (lower EC50), when compared with the alcohols. The theoretical results have also allowed to explain the differences in the activity of (S)-(-)-citronellol in the wild-type and mutated OR1A1. The theoretical results show that Asn109 has a preponderant role in this matter, since when it is mutated, it leads to a conformational rearrangement of the binding pocket that prevents the interaction of (S)-(-)-citronellol with Asp111 that was shown to be important for the OR activation. The good agreement between

  14. Dynamics of Disagreement: Large-Scale Temporal Network Analysis Reveals Negative Interactions in Online Collaboration

    PubMed Central

    Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha

    2016-01-01

    Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes. PMID:27808267

  15. Dynamics of Disagreement: Large-Scale Temporal Network Analysis Reveals Negative Interactions in Online Collaboration

    NASA Astrophysics Data System (ADS)

    Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha

    2016-11-01

    Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes.

  16. Ungulate preference for burned patches reveals strength of fire–grazing interaction

    PubMed Central

    Allred, Brady W; Fuhlendorf, Samuel D; Engle, David M; Elmore, R Dwayne

    2011-01-01

    The interactions between fire and grazing are widespread throughout fire-dependent landscapes. The utilization of burned areas by grazing animals establishes the fire–grazing interaction, but the preference for recently burned areas relative to other influences (water, topography, etc.) is unknown. In this study, we determine the strength of the fire–grazing interaction by quantifying the influence of fire on ungulate site selection. We compare the preference for recently burned patches relative to the influence of other environmental factors that contribute to site selection; compare that preference between native and introduced ungulates; test relationships between area burned and herbivore preference; and determine forage quality and quantity as mechanisms of site selection. We used two large ungulate species at two grassland locations within the southern Great Plains, USA. At each location, spatially distinct patches were burned within larger areas through time, allowing animals to select among burned and unburned areas. Using fine scale ungulate location data, we estimated resource selection functions to examine environmental factors in site selection. Ungulates preferred recently burned areas and avoided areas with greater time since fire, regardless of the size of landscape, herbivore species, or proportion of area burned. Forage quality was inversely related to time since fire, while forage quantity was positively related. We show that fire is an important component of large ungulate behavior with a strong influence on site selection that drives the fire–grazing interaction. This interaction is an ecosystem process that supersedes fire and grazing as separate factors, shaping grassland landscapes. Inclusion of the fire–grazing interaction into ecological studies and conservation practices of fire-prone systems will aid in better understanding and managing these systems. PMID:22393490

  17. Historical comparisons reveal altered competitive interactions in a guild of crustose coralline algae.

    PubMed

    McCoy, S J; Pfister, C A

    2014-04-01

    As the ocean environment changes over time, a paucity of long-term data sets and historical comparisons limits the exploration of community dynamics over time in natural systems. Here, we used a long-term experimental data set to present evidence for a reversal of competitive dominance within a group of crustose coralline algae (CCA) from the 1980s to present time in the northeast Pacific Ocean. CCA are cosmopolitan species distributed globally, and dominant space holders in intertidal and subtidal systems. Competition experiments showed a markedly lower competitive ability of the previous competitively dominant species and a decreased response of competitive dynamics to grazer presence. Competitive networks obtained from survey data showed concordance between the 1980s and 2013, yet also revealed reductions in interaction strengths across the assemblage. We discuss the potential role of environmental change, including ocean acidification, in altered ecological dynamics in this system. © 2014 John Wiley & Sons Ltd/CNRS.

  18. Important factors stabilizing stacking interaction between 3-nitropyrrole and natural nucleobases revealed by ab initio calculations.

    PubMed

    Seio, Kohji; Ukawa, Hisashi; Shohda, Koh-ichiro; Sekine, Mitsuo

    2003-01-01

    Stacking energies between canonical nucleobases and a universal base, 3-nitropyrrole (3-NP), were estimated by use of molecular orbital (MO) and molecular mechanics (MM) calculations. The detailed analysis of the energy profiles revealed the importance of the London dispersion energy to stabilize the stacked dimers and electrostatic interactions to determine the orientation of 3-NP to the nucleobases in the dimers. Although the energy profiles of 3-NP/natural base dimers obtained by the MO and MM calculations were qualitatively correlated with each other, the correlations were poorer than those obtained for the stacking between natural bases. The origin of the difference between 3-NP and natural bases will be discussed to understand the possibility and limitation of the current MM calculations for the simulation and design of other universal bases.

  19. Multiple Strategies Reveal a Bidentate Interaction between the Nipah Virus Attachment and Fusion Glycoproteins

    PubMed Central

    Stone, Jacquelyn A.; Vemulapati, Bhadra M.; Bradel-Tretheway, Birgit

    2016-01-01

    ABSTRACT The paramyxoviral family contains many medically important viruses, including measles virus, mumps virus, parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the deadly zoonotic henipaviruses Hendra and Nipah virus (NiV). To both enter host cells and spread from cell to cell within infected hosts, the vast majority of paramyxoviruses utilize two viral envelope glycoproteins: the attachment glycoprotein (G, H, or hemagglutinin-neuraminidase [HN]) and the fusion glycoprotein (F). Binding of G/H/HN to a host cell receptor triggers structural changes in G/H/HN that in turn trigger F to undergo a series of conformational changes that result in virus-cell (viral entry) or cell-cell (syncytium formation) membrane fusion. The actual regions of G/H/HN and F that interact during the membrane fusion process remain relatively unknown though it is generally thought that the paramyxoviral G/H/HN stalk region interacts with the F head region. Studies to determine such interactive regions have relied heavily on coimmunoprecipitation approaches, whose limitations include the use of detergents and the micelle-mediated association of proteins. Here, we developed a flow-cytometric strategy capable of detecting membrane protein-protein interactions by interchangeably using the full-length form of G and a soluble form of F, or vice versa. Using both coimmunoprecipitation and flow-cytometric strategies, we found a bidentate interaction between NiV G and F, where both the stalk and head regions of NiV G interact with F. This is a new structural-biological finding for the paramyxoviruses. Additionally, our studies disclosed regions of the NiV G and F glycoproteins dispensable for the G and F interactions. IMPORTANCE Nipah virus (NiV) is a zoonotic paramyxovirus that causes high mortality rates in humans, with no approved treatment or vaccine available for human use. Viral entry into host cells relies on two viral envelope glycoproteins: the attachment (G

  20. Paradoxical Expectation: Oscillatory Brain Activity Reveals Social Interaction Impairment in Schizophrenia.

    PubMed

    Billeke, Pablo; Armijo, Alejandra; Castillo, Daniel; López, Tamara; Zamorano, Francisco; Cosmelli, Diego; Aboitiz, Francisco

    2015-09-15

    People with schizophrenia show social impairments that are related to functional outcomes. We tested the hypothesis that social interaction impairments in people with schizophrenia are related to alterations in the predictions of others' behavior and explored their underlying neurobiological mechanisms. Electroencephalography was performed in 20 patients with schizophrenia and 25 well-matched control subjects. Participants played as proposers in the repeated version of the Ultimatum Game believing that they were playing with another human or with a computer. The power of oscillatory brain activity was obtained by means of the wavelet transform. We performed a trial-by-trial correlation between the oscillatory activity and the risk of the offer. Control subjects adapted their offers when playing with computers and tended to maintain their offers when playing with humans, as such revealing learning and bargaining strategies, respectively. People with schizophrenia presented the opposite pattern of behavior in both games. During the anticipation of others' responses, the power of alpha oscillations correlated with the risk of the offers made, in a different way in both games. Patients with schizophrenia presented a greater correlation in computer games than in human games; control subjects showed the opposite pattern. The alpha activity correlated with positive symptoms. Our results reveal an alteration in social interaction in patients with schizophrenia that is related to oscillatory brain activity, suggesting maladjustment of expectation when patients face social and nonsocial agents. This alteration is related to psychotic symptoms and could guide further therapies for improving social functioning in patients with schizophrenia. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy

    PubMed Central

    Cardinale, Massimiliano

    2014-01-01

    No plant or cryptogam exists in nature without microorganisms associated with its tissues. Plants as microbial hosts are puzzles of different microhabitats, each of them colonized by specifically adapted microbiomes. The interactions with such microorganisms have drastic effects on the host fitness. Since the last 20 years, the combination of microscopic tools and molecular approaches contributed to new insights into microbe-host interactions. Particularly, confocal laser scanning microscopy (CLSM) facilitated the exploration of microbial habitats and allowed the observation of host-associated microorganisms in situ with an unprecedented accuracy. Here I present an overview of the progresses made in the study of the interactions between microorganisms and plants or plant-like organisms, focusing on the role of CLSM for the understanding of their significance. I critically discuss risks of misinterpretation when procedures of CLSM are not properly optimized. I also review approaches for quantitative and statistical analyses of CLSM images, the combination with other molecular and microscopic methods, and suggest the re-evaluation of natural autofluorescence. In this review, technical aspects were coupled with scientific outcomes, to facilitate the readers in identifying possible CLSM applications in their research or to expand their existing potential. The scope of this review is to highlight the importance of confocal microscopy in the study of plant-microbe interactions and also to be an inspiration for integrating microscopy with molecular techniques in future researches of microbial ecology. PMID:24639675

  2. Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy.

    PubMed

    Cardinale, Massimiliano

    2014-01-01

    No plant or cryptogam exists in nature without microorganisms associated with its tissues. Plants as microbial hosts are puzzles of different microhabitats, each of them colonized by specifically adapted microbiomes. The interactions with such microorganisms have drastic effects on the host fitness. Since the last 20 years, the combination of microscopic tools and molecular approaches contributed to new insights into microbe-host interactions. Particularly, confocal laser scanning microscopy (CLSM) facilitated the exploration of microbial habitats and allowed the observation of host-associated microorganisms in situ with an unprecedented accuracy. Here I present an overview of the progresses made in the study of the interactions between microorganisms and plants or plant-like organisms, focusing on the role of CLSM for the understanding of their significance. I critically discuss risks of misinterpretation when procedures of CLSM are not properly optimized. I also review approaches for quantitative and statistical analyses of CLSM images, the combination with other molecular and microscopic methods, and suggest the re-evaluation of natural autofluorescence. In this review, technical aspects were coupled with scientific outcomes, to facilitate the readers in identifying possible CLSM applications in their research or to expand their existing potential. The scope of this review is to highlight the importance of confocal microscopy in the study of plant-microbe interactions and also to be an inspiration for integrating microscopy with molecular techniques in future researches of microbial ecology.

  3. Amyloid plaque structure and cell surface interactions of β-amyloid fibrils revealed by electron tomography

    PubMed Central

    Han, Shen; Kollmer, Marius; Markx, Daniel; Claus, Stephanie; Walther, Paul; Fändrich, Marcus

    2017-01-01

    The deposition of amyloid fibrils as plaques is a key feature of several neurodegenerative diseases including in particular Alzheimer’s. This disease is characterized, if not provoked, by amyloid aggregates formed from Aβ peptide that deposit inside the brain or are toxic to neuronal cells. We here used scanning transmission electron microscopy (STEM) to determine the fibril network structure and interactions of Aβ fibrils within a cell culture model of Alzheimer’s disease. STEM images taken from the formed Aβ amyloid deposits revealed three main types of fibril network structures, termed amorphous meshwork, fibril bundle and amyloid star. All three were infiltrated by different types of lipid inclusions from small-sized exosome-like structures (50–100 nm diameter) to large-sized extracellular vesicles (up to 300 nm). The fibrils also presented strong interactions with the surrounding cells such that fibril bundles extended into tubular invaginations of the plasma membrane. Amyloid formation in the cell model was previously found to have an intracellular origin and we show here that it functionally destroys the integrity of the intracellular membranes as it leads to lysosomal leakage. These data provide a mechanistic link to explain why intracellular fibril formation is toxic to the cell. PMID:28240273

  4. Amyloid plaque structure and cell surface interactions of β-amyloid fibrils revealed by electron tomography.

    PubMed

    Han, Shen; Kollmer, Marius; Markx, Daniel; Claus, Stephanie; Walther, Paul; Fändrich, Marcus

    2017-02-27

    The deposition of amyloid fibrils as plaques is a key feature of several neurodegenerative diseases including in particular Alzheimer's. This disease is characterized, if not provoked, by amyloid aggregates formed from Aβ peptide that deposit inside the brain or are toxic to neuronal cells. We here used scanning transmission electron microscopy (STEM) to determine the fibril network structure and interactions of Aβ fibrils within a cell culture model of Alzheimer's disease. STEM images taken from the formed Aβ amyloid deposits revealed three main types of fibril network structures, termed amorphous meshwork, fibril bundle and amyloid star. All three were infiltrated by different types of lipid inclusions from small-sized exosome-like structures (50-100 nm diameter) to large-sized extracellular vesicles (up to 300 nm). The fibrils also presented strong interactions with the surrounding cells such that fibril bundles extended into tubular invaginations of the plasma membrane. Amyloid formation in the cell model was previously found to have an intracellular origin and we show here that it functionally destroys the integrity of the intracellular membranes as it leads to lysosomal leakage. These data provide a mechanistic link to explain why intracellular fibril formation is toxic to the cell.

  5. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop1[OPEN

    PubMed Central

    Shivhare, Devendra

    2017-01-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice (Oryza sativa) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca. Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. PMID:28546437

  6. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras.

    PubMed

    Wang, Tim; Yu, Haiyan; Hughes, Nicholas W; Liu, Bingxu; Kendirli, Arek; Klein, Klara; Chen, Walter W; Lander, Eric S; Sabatini, David M

    2017-02-23

    The genetic dependencies of human cancers widely vary. Here, we catalog this heterogeneity and use it to identify functional gene interactions and genotype-dependent liabilities in cancer. By using genome-wide CRISPR-based screens, we generate a gene essentiality dataset across 14 human acute myeloid leukemia (AML) cell lines. Sets of genes with correlated patterns of essentiality across the lines reveal new gene relationships, the essential substrates of enzymes, and the molecular functions of uncharacterized proteins. Comparisons of differentially essential genes between Ras-dependent and -independent lines uncover synthetic lethal partners of oncogenic Ras. Screens in both human AML and engineered mouse pro-B cells converge on a surprisingly small number of genes in the Ras processing and MAPK pathways and pinpoint PREX1 as an AML-specific activator of MAPK signaling. Our findings suggest general strategies for defining mammalian gene networks and synthetic lethal interactions by exploiting the natural genetic and epigenetic diversity of human cancer cells.

  7. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions.

    PubMed

    Katti, Sachin; Nyenhuis, Sarah B; Her, Bin; Srivastava, Atul K; Taylor, Alexander B; Hart, P John; Cafiso, David S; Igumenova, Tatyana I

    2017-06-27

    C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca(2+)-dependent manner. In these cases, membrane association is triggered by Ca(2+) binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd(2+), in lieu of Ca(2+) to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd(2+) binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd(2+) binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd(2+) to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd(2+) does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd(2+)-complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca(2+) further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca(2+) ion binding to the C2 domain loop regions.

  8. Genetic Interaction Landscape Reveals Critical Requirements for Schizosaccharomyces pombe Brc1 in DNA Damage Response Mutants

    PubMed Central

    Sánchez, Arancha; Roguev, Assen; Krogan, Nevan J.; Russell, Paul

    2015-01-01

    Brc1, which was first identified as a high-copy, allele-specific suppressor of a mutation impairing the Smc5-Smc6 holocomplex in Schizosaccharomyces pombe, protects genome integrity during normal DNA replication and when cells are exposed to toxic compounds that stall or collapse replication forks. The C-terminal tandem BRCT (BRCA1 C-terminus) domain of fission yeast Brc1 docks with phosphorylated histone H2A (γH2A)-marked chromatin formed by ATR/Rad3 checkpoint kinase at arrested and damaged replication forks; however, how Brc1 functions in relation to other genome protection modules remains unclear. Here, an epistatic mini-array profile reveals critical requirements for Brc1 in mutants that are defective in multiple DNA damage response pathways, including checkpoint signaling by Rad3-Rad26/ATR-ATRIP kinase, DNA repair by Smc5-Smc6 holocomplex, replication fork stabilization by Mrc1/claspin and Swi1-Swi3/Timeless-Tipin, and control of ubiquitin-regulated proteolysis by the COP9 signalosome (CSN). Exogenous genotoxins enhance these negative genetic interactions. Rad52 and RPA foci are increased in CSN-defective cells, and loss of γH2A increases genotoxin sensitivity, indicating a critical role for the γH2A-Brc1 module in stabilizing replication forks in CSN-defective cells. A negative genetic interaction with the Nse6 subunit of Smc5-Smc6 holocomplex indicates that the DNA repair functions of Brc1 and Smc5-Smc6 holocomplex are at least partially independent. Rtt107, the Brc1 homolog in Saccharomyces cerevisiae, has a very different pattern of genetic interactions, indicating evolutionary divergence of functions and DNA damage responses. PMID:25795664

  9. Intracellular molecular interactions of antitumor drug amsacrine (m-AMSA) as revealed by surface-enhanced Raman spectroscopy.

    PubMed

    Chourpa, I; Morjani, H; Riou, J F; Manfait, M

    1996-11-11

    Cytotoxicity of several classes of antitumor DNA intercalators is thought to result from disturbance of DNA metabolism following trapping of the nuclear enzyme DNA topoisomerase II as a covalent complex on DNA. Here, molecular interactions of the potent antitumor drug amsacrine (m-AMSA), an inhibitor of topoisomerase II, within living K562 cancer cells have been studied using surface-enhanced Raman (SER) spectroscopy. The work is based on data of the previously performed model SER experiments dealing with amsacrine/DNA, drug/topoisomerase II and drug/DNA/topoisomerase II complexes in aqueous buffer solutions. The SER data indicated two kinds of amsacrine interactions in the model complexes with topoisomerase II alone or within ternary complex: non-specific (via the acridine moiety) and specific to the enzyme conformation (via the side chain of the drug). These two types of interactions have been both revealed by the micro-SER spectra of amsacrine within living K562 cancer cells. Our data suppose the specific interactions of amsacrine with topoisomerase II via the side chain of the drug (particular feature of the drug/topoisomerase II and ternary complexes) to be crucial for its inhibitory activity.

  10. Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection

    NASA Astrophysics Data System (ADS)

    Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin

    2014-01-01

    Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.

  11. Hypernetworks Reveal Compound Variables That Capture Cooperative and Competitive Interactions in a Soccer Match.

    PubMed

    Ramos, João; Lopes, Rui J; Marques, Pedro; Araújo, Duarte

    2017-01-01

    The combination of sports sciences theorization and social networks analysis (SNA) has offered useful new insights for addressing team behavior. However, SNA typically represents the dynamics of team behavior during a match in dyadic interactions and in a single cumulative snapshot. This study aims to overcome these limitations by using hypernetworks to describe illustrative cases of team behavior dynamics at various other levels of analyses. Hypernetworks simultaneously access cooperative and competitive interactions between teammates and opponents across space and time during a match. Moreover, hypernetworks are not limited to dyadic relations, which are typically represented by edges in other types of networks. In a hypernetwork, n-ary relations (with n > 2) and their properties are represented with hyperedges connecting more than two players simultaneously (the so-called simplex-plural, simplices). Simplices can capture the interactions of sets of players that may include an arbitrary number of teammates and opponents. In this qualitative study, we first used the mathematical formalisms of hypernetworks to represent a multilevel team behavior dynamics, including micro (interactions between players), meso (dynamics of a given critical event, e.g., an attack interaction), and macro (interactions between sets of players) levels. Second, we investigated different features that could potentially explain the occurrence of critical events, such as, aggregation or disaggregation of simplices relative to goal proximity. Finally, we applied hypernetworks analysis to soccer games from the English premier league (season 2010-2011) by using two-dimensional player displacement coordinates obtained with a multiple-camera match analysis system provided by STATS (formerly Prozone). Our results show that (i) at micro level the most frequently occurring simplices configuration is 1vs.1 (one attacker vs. one defender); (ii) at meso level, the dynamics of simplices transformations

  12. Neuron-specific protein interactions of Drosophila CASK-β are revealed by mass spectrometry

    PubMed Central

    Mukherjee, Konark; Slawson, Justin B.; Christmann, Bethany L.; Griffith, Leslie C.

    2014-01-01

    Modular scaffolding proteins are designed to have multiple interactors. CASK, a member of the membrane-associated guanylate kinase (MAGUK) superfamily, has been shown to have roles in many tissues, including neurons and epithelia. It is likely that the set of proteins it interacts with is different in each of these diverse tissues. In this study we asked if within the Drosophila central nervous system, there were neuron-specific sets of CASK-interacting proteins. A YFP-tagged CASK-β transgene was expressed in genetically defined subsets of neurons in the Drosophila brain known to be important for CASK function, and proteins present in an anti-GFP immunoprecipitation were identified by mass spectrometry. Each subset of neurons had a distinct set of interacting proteins, suggesting that CASK participates in multiple protein networks and that these networks may be different in different neuronal circuits. One common set of proteins was associated with mitochondria, and we show here that endogenous CASK-β co-purifies with mitochondria. We also determined CASK-β posttranslational modifications for one cell type, supporting the idea that this technique can be used to assess cell- and circuit-specific protein modifications as well as protein interaction networks. PMID:25071438

  13. The Fragment Molecular Orbital Method Reveals New Insight into the Chemical Nature of GPCR-Ligand Interactions.

    PubMed

    Heifetz, Alexander; Chudyk, Ewa I; Gleave, Laura; Aldeghi, Matteo; Cherezov, Vadim; Fedorov, Dmitri G; Biggin, Philip C; Bodkin, Mike J

    2016-01-25

    Our interpretation of ligand-protein interactions is often informed by high-resolution structures, which represent the cornerstone of structure-based drug design. However, visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum Mechanics approaches are often too computationally expensive, but one method, Fragment Molecular Orbital (FMO), offers an excellent compromise and has the potential to reveal key interactions that would otherwise be hard to detect. To illustrate this, we have applied the FMO method to 18 Class A GPCR-ligand crystal structures, representing different branches of the GPCR genome. Our work reveals key interactions that are often omitted from structure-based descriptions, including hydrophobic interactions, nonclassical hydrogen bonds, and the involvement of backbone atoms. This approach provides a more comprehensive picture of receptor-ligand interactions than is currently used and should prove useful for evaluation of the chemical nature of ligand binding and to support structure-based drug design.

  14. Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response.

    PubMed

    Dinesh, Dhurvas Chandrasekaran; Kovermann, Michael; Gopalswamy, Mohanraj; Hellmuth, Antje; Calderón Villalobos, Luz Irina A; Lilie, Hauke; Balbach, Jochen; Abel, Steffen

    2015-05-12

    The plant hormone auxin activates primary response genes by facilitating proteolytic removal of auxin/indole-3-acetic acid (AUX/IAA)-inducible repressors, which directly bind to transcriptional auxin response factors (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼ 6.4 μM) were determined by isothermal titration calorimetry. In silico protein-protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein-protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression.

  15. Bovine embryo-oviduct interaction in vitro reveals an early cross talk mediated by BMP signaling.

    PubMed

    García, Elina V; Hamdi, Meriem; Barrera, Antonio D; Sánchez-Calabuig, María J; Gutiérrez-Adán, Alfonso; Rizos, Dimitrios

    2017-05-01

    Signaling components of bone morphogenetic proteins (BMPs) are expressed in an anatomically and temporally regulated fashion in bovine oviduct. However, a local response of this signaling to the presence of the embryo has yet to be elucidated. The aim of the present study was to evaluate if early embryo-oviduct interaction induces changes in the gene expression of BMP signaling components. For this purpose, we used an in vitro co-culture system to investigate the local interaction between bovine oviductal epithelial cells (BOEC) from the isthmus region with early embryos during two developmental periods: before (from the 2-cell to 8-cell stage) or during (from the 8-cell to 16-cell stage) the main phase of embryonic genome activation (EGA). Exposure to embryos, irrespective of the period, significantly reduced the relative abundance of BMPR1B, BMPR2, SMAD1, SMAD6 and ID2 mRNAs in BOEC. In contrast, embryos that interacted with BOEC before EGA showed a significant increase in the relative abundance of SMAD1 mRNA at the 8-cell stage compared to embryos cultured without BOEC. Moreover, embryos at the 16-cell stage that interacted with BOEC during EGA showed a significant increase in BMPR1B, BMPR2 and ID2 mRNA. These results demonstrate that embryo-oviduct interaction in vitro induces specific changes in the transcriptional levels of BMP signaling, causing a bidirectional response that reduces the expression levels of this signaling in the oviductal cells while increases them in the early embryo. This suggests that BMP signaling pathway could be involved in an early cross talk between the bovine embryo and the oviduct during the first stages of development.

  16. Energy Landscape of All-Atom Protein-Protein Interactions Revealed by Multiscale Enhanced Sampling

    PubMed Central

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2014-01-01

    Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape. PMID:25340714

  17. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling.

    PubMed

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2014-10-01

    Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape.

  18. Crystal structural characterization reveals novel oligomeric interactions of human voltage-dependent anion channel 1.

    PubMed

    Hosaka, Toshiaki; Okazaki, Masateru; Kimura-Someya, Tomomi; Ishizuka-Katsura, Yoshiko; Ito, Kaori; Yokoyama, Shigeyuki; Dodo, Kosuke; Sodeoka, Mikiko; Shirouzu, Mikako

    2017-09-01

    Voltage-dependent anion channel 1 (VDAC1), which is located in the outer mitochondrial membrane, plays important roles in various cellular processes. For example, oligomerization of VDAC1 is involved in the release of cytochrome c to the cytoplasm, leading to apoptosis. However, it is unknown how VDAC1 oligomerization occurs in the membrane. In the present study, we determined high-resolution crystal structures of oligomeric human VDAC1 (hVDAC1) prepared by using an Escherichia coli cell-free protein synthesis system, which avoided the need for denaturation and refolding of the protein. Broad-range screening using a bicelle crystallization method produced crystals in space groups C222 and P221 21 , which diffracted to a resolution of 3.10 and 3.15 Å, respectively. Each crystal contained two hVDAC1 protomers in the asymmetric unit. Dimer within the asymmetrical unit of the crystal in space group C222 were oriented parallel, whereas those of the crystal in space group P221 21 were oriented anti-parallel. From a model of the crystal in space group C222, which we constructed by using crystal symmetry operators, a heptameric structure with eight patterns of interaction between protomers, including hydrophobic interactions with β-strands, hydrophilic interactions with loop regions, and protein-lipid interactions, was observed. It is possible that by having multiple patterns of interaction, VDAC1 can form homo- or hetero-oligomers not only with other VDAC1 protomers but also with other proteins such as VDAC2, VDAC3 and apoptosis-regulating proteins in the Bcl-2 family. © 2017 The Protein Society.

  19. Analysis of the RelA:CBP/p300 Interaction Reveals Its Involvement in NF-κB-Driven Transcription

    PubMed Central

    Mukherjee, Sulakshana P.; Behar, Marcelo; Birnbaum, Harry A.; Hoffmann, Alexander; Wright, Peter E.; Ghosh, Gourisankar

    2013-01-01

    NF-κB plays a vital role in cellular immune and inflammatory response, survival, and proliferation by regulating the transcription of various genes involved in these processes. To activate transcription, RelA (a prominent NF-κB family member) interacts with transcriptional co-activators like CREB-binding protein (CBP) and its paralog p300 in addition to its cognate κB sites on the promoter/enhancer regions of DNA. The RelA:CBP/p300 complex is comprised of two components—first, DNA binding domain of RelA interacts with the KIX domain of CBP/p300, and second, the transcriptional activation domain (TAD) of RelA binds to the TAZ1 domain of CBP/p300. A phosphorylation event of a well-conserved RelA(Ser276) is prerequisite for the former interaction to occur and is considered a decisive factor for the overall RelA:CBP/p300 interaction. The role of the latter interaction in the transcription of RelA-activated genes remains unclear. Here we provide the solution structure of the latter component of the RelA:CBP complex by NMR spectroscopy. The structure reveals the folding of RelA–TA2 (a section of TAD) upon binding to TAZ1 through its well-conserved hydrophobic sites in a series of grooves on the TAZ1 surface. The structural analysis coupled with the mechanistic studies by mutational and isothermal calorimetric analyses allowed the design of RelA-mutants that selectively abrogated the two distinct components of the RelA:CBP/p300 interaction. Detailed studies of these RelA mutants using cell-based techniques, mathematical modeling, and genome-wide gene expression analysis showed that a major set of the RelA-activated genes, larger than previously believed, is affected by this interaction. We further show how the RelA:CBP/p300 interaction controls the nuclear response of NF-κB through the negative feedback loop of NF-κB pathway. Additionally, chromatin analyses of RelA target gene promoters showed constitutive recruitment of CBP/p300, thus indicating a possible role

  20. Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-κB-driven transcription.

    PubMed

    Mukherjee, Sulakshana P; Behar, Marcelo; Birnbaum, Harry A; Hoffmann, Alexander; Wright, Peter E; Ghosh, Gourisankar

    2013-09-01

    NF-κB plays a vital role in cellular immune and inflammatory response, survival, and proliferation by regulating the transcription of various genes involved in these processes. To activate transcription, RelA (a prominent NF-κB family member) interacts with transcriptional co-activators like CREB-binding protein (CBP) and its paralog p300 in addition to its cognate κB sites on the promoter/enhancer regions of DNA. The RelA:CBP/p300 complex is comprised of two components--first, DNA binding domain of RelA interacts with the KIX domain of CBP/p300, and second, the transcriptional activation domain (TAD) of RelA binds to the TAZ1 domain of CBP/p300. A phosphorylation event of a well-conserved RelA(Ser276) is prerequisite for the former interaction to occur and is considered a decisive factor for the overall RelA:CBP/p300 interaction. The role of the latter interaction in the transcription of RelA-activated genes remains unclear. Here we provide the solution structure of the latter component of the RelA:CBP complex by NMR spectroscopy. The structure reveals the folding of RelA-TA2 (a section of TAD) upon binding to TAZ1 through its well-conserved hydrophobic sites in a series of grooves on the TAZ1 surface. The structural analysis coupled with the mechanistic studies by mutational and isothermal calorimetric analyses allowed the design of RelA-mutants that selectively abrogated the two distinct components of the RelA:CBP/p300 interaction. Detailed studies of these RelA mutants using cell-based techniques, mathematical modeling, and genome-wide gene expression analysis showed that a major set of the RelA-activated genes, larger than previously believed, is affected by this interaction. We further show how the RelA:CBP/p300 interaction controls the nuclear response of NF-κB through the negative feedback loop of NF-κB pathway. Additionally, chromatin analyses of RelA target gene promoters showed constitutive recruitment of CBP/p300, thus indicating a possible role of

  1. Nano-optical imaging of WSe2 waveguide modes revealing light-exciton interactions

    DOE PAGES

    Fei, Z.; Scott, M. E.; Gosztola, D. J.; ...

    2016-08-01

    We report on a nano-optical imaging study of WSe2 thin flakes with scanning near-field optical microscopy (NSOM). The NSOM technique allows us to visualize in real space various waveguide photon modes inside WSe2. By tuning the excitation laser energy, we are able to map the entire dispersion of these waveguide modes both above and below the A exciton energy of WSe2. We found that all the modes interact strongly with WSe2 excitons. The outcome of the interaction is that the observed waveguide modes shift to higher momenta right below the A exciton energy. At higher energies, on the other hand,more » these modes are strongly damped due to adjacent B excitons or band-edge absorptions. Lastly, the mode-shifting phenomena are consistent with polariton formation in WSe2.« less

  2. Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy.

    PubMed

    Arsov, Zoran; Quaroni, Luca

    2007-11-01

    By using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and curve fitting we have examined temperature dependence and composition dependence of the shape of the carbonyl band in phosphatidylcholine/cholesterol model membranes. Membranes were hydrated either in excess water or in excess deuterated water. The studied binary mixtures exhibit different lipid phases at appropriate temperature and amount of cholesterol, among them also the so-called liquid-ordered phase. The results confirm that cholesterol has a significant indirect influence on the carbonyl band through conformational and hydration effects. This influence was interpreted in view of the known temperature composition phase diagrams for inspected binary mixtures. In addition, direct interaction was observed, which could point to the presence of hydrogen bond between cholesterol and carbonyl group. This direct interaction, though weak, might play at least a partial role in the stabilization of cholesterol-rich lipid domains in model and biological membranes.

  3. A systems biology approach using metabolomic data reveals genes and pathways interacting to modulate divergent growth in cattle

    PubMed Central

    2013-01-01

    Background Systems biology enables the identification of gene networks that modulate complex traits. Comprehensive metabolomic analyses provide innovative phenotypes that are intermediate between the initiator of genetic variability, the genome, and raw phenotypes that are influenced by a large number of environmental effects. The present study combines two concepts, systems biology and metabolic analyses, in an approach without prior functional hypothesis in order to dissect genes and molecular pathways that modulate differential growth at the onset of puberty in male cattle. Furthermore, this integrative strategy was applied to specifically explore distinctive gene interactions of non-SMC condensin I complex, subunit G (NCAPG) and myostatin (GDF8), known modulators of pre- and postnatal growth that are only partially understood for their molecular pathways affecting differential body weight. Results Our study successfully established gene networks and interacting partners affecting growth at the onset of puberty in cattle. We demonstrated the biological relevance of the created networks by comparison to randomly created networks. Our data showed that GnRH (Gonadotropin-releasing hormone) signaling is associated with divergent growth at the onset of puberty and revealed two highly connected hubs, BTC and DGKH, within the network. Both genes are known to directly interact with the GnRH signaling pathway. Furthermore, a gene interaction network for NCAPG containing 14 densely connected genes revealed novel information concerning the functional role of NCAPG in divergent growth. Conclusions Merging both concepts, systems biology and metabolomic analyses, successfully yielded new insights into gene networks and interacting partners affecting growth at the onset of puberty in cattle. Genetic modulation in GnRH signaling was identified as key modifier of differential cattle growth at the onset of puberty. In addition, the benefit of our innovative concept without prior

  4. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    PubMed Central

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  5. Multi-dimensional Co-separation Analysis Reveals Protein–Protein Interactions Defining Plasma Lipoprotein Subspecies*

    PubMed Central

    Gordon, Scott M.; Deng, Jingyuan; Tomann, Alex B.; Shah, Amy S.; Lu, L. Jason; Davidson, W. Sean

    2013-01-01

    The distribution of circulating lipoprotein particles affects the risk for cardiovascular disease (CVD) in humans. Lipoproteins are historically defined by their density, with low-density lipoproteins positively and high-density lipoproteins (HDLs) negatively associated with CVD risk in large populations. However, these broad definitions tend to obscure the remarkable heterogeneity within each class. Evidence indicates that each class is composed of physically (size, density, charge) and compositionally (protein and lipid) distinct subclasses exhibiting unique functionalities and differing effects on disease. HDLs in particular contain upward of 85 proteins of widely varying function that are differentially distributed across a broad range of particle diameters. We hypothesized that the plasma lipoproteins, particularly HDL, represent a continuum of phospholipid platforms that facilitate specific protein–protein interactions. To test this idea, we separated normal human plasma using three techniques that exploit different lipoprotein physicochemical properties (gel filtration chromatography, ionic exchange chromatography, and preparative isoelectric focusing). We then tracked the co-separation of 76 lipid-associated proteins via mass spectrometry and applied a summed correlation analysis to identify protein pairs that may co-reside on individual lipoproteins. The analysis produced 2701 pairing scores, with the top hits representing previously known protein–protein interactions as well as numerous unknown pairings. A network analysis revealed clusters of proteins with related functions, particularly lipid transport and complement regulation. The specific co-separation of protein pairs or clusters suggests the existence of stable lipoprotein subspecies that may carry out distinct functions. Further characterization of the composition and function of these subspecies may point to better targeted therapeutics aimed at CVD or other diseases. PMID:23882025

  6. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop.

    PubMed

    Shivhare, Devendra; Mueller-Cajar, Oliver

    2017-07-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice (Oryza sativa) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Study of Compton vs. Photoelectric Interactions

    SciTech Connect

    Gronberg, J B; Johnson, S C; Lange, D J; Wright, D M; Beiersdorfer, P

    2004-07-09

    We have studied how often incoming photons interact via a Compton interaction and/or a photoelectric interaction as a function of energy and detector material Results are using a 1m{sup 3} detector, and discrete energy photons from 0.1 MeV up to 10 MeV. Essentially all of the lower energy photons interact at least once in a detector of this size. This is not the case at higher energies. Each detector, photon energy combination was simulated with 2000 photons.

  8. Why study gene-environment interactions?

    USDA-ARS?s Scientific Manuscript database

    PURPOSE OF REVIEW: We examine the reasons for investigating gene-environment interactions and address recent reports evaluating interactions between genes and environmental modulators in relation to cardiovascular disease and its common risk factors. RECENT FINDINGS: Studies focusing on smoking, phy...

  9. Social Interaction: Reality Oriented Social Studies.

    ERIC Educational Resources Information Center

    Price, Tom

    1984-01-01

    Reasons why elementary teachers should use social interaction activities as the core of their social studies program are discussed. The two main vehicles for involving children in guided and purposeful social interaction are the real classroom social system and simulated real-life social activities. (RM)

  10. Interactive Videodisc Case Studies for Medical Education

    PubMed Central

    Harless, William G.; Zier, Marcia A.; Duncan, Robert C.

    1986-01-01

    The TIME Project of the Lister Hill National Center for Biomedical Communications is using interactive videodisc, microprocessor and voice recognition technology to create patient simulations for use in the training of medical students. These interactive case studies embody dramatic, lifelike portrayals of the social and medical conditions of a patient and allow uncued, verbal intervention by the student for independent clinical decisions.

  11. Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces.

    PubMed

    Das, Priyadip; Reches, Meital

    2016-08-18

    Catechol (1,2-dihydroxy benzene) moieties are being widely used today in new adhesive technologies. Understanding their mechanism of action is therefore of high importance for developing their applications in materials science. This paper describes a single-molecule study of the interactions between catechol-related amino acid residues and a well-defined titanium dioxide (TiO2) surface. It is the first quantified measurement of the adhesion of these residues with a well-defined TiO2 surface. Single-molecule force spectroscopy measurements with AFM determined the role of different substitutions of the catechol moiety on the aromatic ring in the adhesion to the surface. These results shed light on the nature of interactions between these residues and inorganic metal oxide surfaces. This information is important for the design and fabrication of catechol-based materials such as hydrogels, coatings, and composites. Specifically, the interaction with TiO2 is important for the development of solar cells.

  12. PRICKLE1 Interaction with SYNAPSIN I Reveals a Role in Autism Spectrum Disorders

    PubMed Central

    Paemka, Lily; Mahajan, Vinit B.; Skeie, Jessica M.; Sowers, Levi P.; Ehaideb, Salleh N.; Gonzalez-Alegre, Pedro; Sasaoka, Toshikuni; Tao, Hirotaka; Miyagi, Asuka; Ueno, Naoto; Takao, Keizo; Miyakawa, Tsuyoshi; Wu, Shu; Darbro, Benjamin W.; Ferguson, Polly J.; Pieper, Andrew A.; Britt, Jeremiah K.; Wemmie, John A.; Rudd, Danielle S.; Wassink, Thomas; El-Shanti, Hatem; Mefford, Heather C.; Carvill, Gemma L.; Manak, J. Robert; Bassuk, Alexander G.

    2013-01-01

    The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1+/− mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles. PMID:24312498

  13. Quantitative Analysis of Hsp90-Client Interactions Reveals Principles of Substrate Recognition

    PubMed Central

    Taipale, Mikko; Krykbaeva, Irina; Koeva, Martina; Kayatekin, Can; Westover, Kenneth D.; Karras, Georgios I.; Lindquist, Susan

    2013-01-01

    SUMMARY HSP90 is a molecular chaperone that associates with numerous substrate proteins called clients. It plays many important roles in human biology and medicine, but determinants of client recognition by HSP90 have remained frustratingly elusive. We systematically and quantitatively surveyed most human kinases, transcription factors, and E3 ligases for interaction with HSP90 and its cochaperone CDC37. Unexpectedly, many more kinases than transcription factors bound HSP90. CDC37 interacted with kinases, but not with transcription factors or E3 ligases. HSP90::kinase interactions varied continuously over a 100-fold range and provided a platform to study client protein recognition. In wild-type clients, HSP90 did not bind particular sequence motifs, but rather associated with intrinsically unstable kinases. Stabilization of the kinase in either its active or inactive conformation with diverse small molecules decreased HSP90 association. Our results establish HSP90 client recognition as a combinatorial process: CDC37 provides recognition of the kinase family, whereas thermodynamic parameters determine client binding within the family. PMID:22939624

  14. Integrated molecular analysis reveals complex interactions between genomic and epigenomic alterations in esophageal adenocarcinomas

    PubMed Central

    Peng, DunFa; Guo, Yan; Chen, Heidi; Zhao, Shilin; Washington, Kay; Hu, TianLing; Shyr, Yu; El-Rifai, Wael

    2017-01-01

    The incidence of esophageal adenocarcinoma (EAC) is rapidly rising in the United States and Western countries. In this study, we carried out an integrative molecular analysis to identify interactions between genomic and epigenomic alterations in regulating gene expression networks in EAC. We detected significant alterations in DNA copy numbers (CN), gene expression levels, and DNA methylation profiles. The integrative analysis demonstrated that altered expression of 1,755 genes was associated with changes in CN or methylation. We found that expression alterations in 84 genes were associated with changes in both CN and methylation. These data suggest a strong interaction between genetic and epigenetic events to modulate gene expression in EAC. Of note, bioinformatics analysis detected a prominent K-RAS signature and predicted activation of several important transcription factor networks, including β-catenin, MYB, TWIST1, SOX7, GATA3 and GATA6. Notably, we detected hypomethylation and overexpression of several pro-inflammatory genes such as COX2, IL8 and IL23R, suggesting an important role of epigenetic regulation of these genes in the inflammatory cascade associated with EAC. In summary, this integrative analysis demonstrates a complex interaction between genetic and epigenetic mechanisms providing several novel insights for our understanding of molecular events in EAC. PMID:28102292

  15. Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers

    PubMed Central

    Arumughan, Anup; Roske, Yvette; Barth, Carolin; Forero, Laura Lleras; Bravo-Rodriguez, Kenny; Redel, Alexandra; Kostova, Simona; McShane, Erik; Opitz, Robert; Faelber, Katja; Rau, Kirstin; Mielke, Thorsten; Daumke, Oliver; Selbach, Matthias; Sanchez-Garcia, Elsa; Rocks, Oliver; Panáková, Daniela; Heinemann, Udo; Wanker, Erich E.

    2016-01-01

    Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity. PMID:27762274

  16. Expression Profiles Reveal Parallel Evolution of Epistatic Interactions Involving the CRP Regulon in Escherichia coli

    PubMed Central

    Cooper, Tim F; Remold, Susanna K; Lenski, Richard E; Schneider, Dominique

    2008-01-01

    The extent and nature of epistatic interactions between mutations are issues of fundamental importance in evolutionary biology. However, they are difficult to study and their influence on adaptation remains poorly understood. Here, we use a systems-level approach to examine epistatic interactions that arose during the evolution of Escherichia coli in a defined environment. We used expression arrays to compare the effect on global patterns of gene expression of deleting a central regulatory gene, crp. Effects were measured in two lineages that had independently evolved for 20,000 generations and in their common ancestor. We found that deleting crp had a much more dramatic effect on the expression profile of the two evolved lines than on the ancestor. Because the sequence of the crp gene was unchanged during evolution, these differences indicate epistatic interactions between crp and mutations at other loci that accumulated during evolution. Moreover, a striking degree of parallelism was observed between the two independently evolved lines; 115 genes that were not crp-dependent in the ancestor became dependent on crp in both evolved lines. An analysis of changes in crp dependence of well-characterized regulons identified a number of regulatory genes as candidates for harboring beneficial mutations that could account for these parallel expression changes. Mutations within three of these genes have previously been found and shown to contribute to fitness. Overall, these findings indicate that epistasis has been important in the adaptive evolution of these lines, and they provide new insight into the types of genetic changes through which epistasis can evolve. More generally, we demonstrate that expression profiles can be profitably used to investigate epistatic interactions. PMID:18282111

  17. Brain spectrin (fodrin) interacts with phospholipids as revealed by intrinsic fluorescence quenching and monolayer experiments.

    PubMed Central

    Diakowski, W; Prychidny, A; Swistak, M; Nietubyć, M; Białkowska, K; Szopa, J; Sikorski, A F

    1999-01-01

    We demonstrate that phospholipid vesicles affect the intrinsic fluorescence of isolated brain spectrin. In the present studies we tested the effects of vesicles prepared from phosphatidylcholine (PtdCho) alone, in addition to vesicles containing PtdCho mixed with other phospholipids [phosphatidylethanolamine (PtdEtn) and phosphatidylserine] as well as from total lipid mixture extracted from brain membrane. The largest effect was observed with PtdEtn/PtdCho (3:2 molar ratio) vesicles; the effect was markedly smaller when vesicles were prepared from egg yolk PtdCho alone. Brain spectrin injected into a subphase induced a substantial increase in the surface pressure of monolayers prepared from phospholipids. Results obtained with this technique indicated that the largest effect is again observed with monolayers prepared from a PtdEtn/PtdCho mixture. The greatest effect was observed when the monolayer contained 50-60% PtdEtn in a PtdEtn/PtdCho mixture. This interaction occurred at salt and pH optima close to physiological conditions (0.15 M NaCl, pH7.5). Experiments with isolated spectrin subunits indicated that the effect of the beta subunit on the monolayer surface pressure resembled that measured with the whole molecule. Similarly to erythrocyte spectrin-membrane interactions, brain spectrin interactions with PtdEtn/PtdCho monolayer were competitively inhibited by isolated erythrocyte ankyrin. This also suggests that the major phospholipid-binding site is located in the beta subunit and indicates the possible physiological significance of this interaction. PMID:9931302

  18. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    NASA Astrophysics Data System (ADS)

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  19. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    PubMed Central

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-01-01

    The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed. PMID:25004977

  20. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    PubMed Central

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-01-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance. PMID:26582089

  1. Conversational Interaction in the Scanner: Mentalizing during Language Processing as Revealed by MEG.

    PubMed

    Bögels, Sara; Barr, Dale J; Garrod, Simon; Kessler, Klaus

    2015-09-01

    Humans are especially good at taking another's perspective-representing what others might be thinking or experiencing. This "mentalizing" capacity is apparent in everyday human interactions and conversations. We investigated its neural basis using magnetoencephalography. We focused on whether mentalizing was engaged spontaneously and routinely to understand an utterance's meaning or largely on-demand, to restore "common ground" when expectations were violated. Participants conversed with 1 of 2 confederate speakers and established tacit agreements about objects' names. In a subsequent "test" phase, some of these agreements were violated by either the same or a different speaker. Our analysis of the neural processing of test phase utterances revealed recruitment of neural circuits associated with language (temporal cortex), episodic memory (e.g., medial temporal lobe), and mentalizing (temporo-parietal junction and ventromedial prefrontal cortex). Theta oscillations (3-7 Hz) were modulated most prominently, and we observed phase coupling between functionally distinct neural circuits. The episodic memory and language circuits were recruited in anticipation of upcoming referring expressions, suggesting that context-sensitive predictions were spontaneously generated. In contrast, the mentalizing areas were recruited on-demand, as a means for detecting and resolving perceived pragmatic anomalies, with little evidence they were activated to make partner-specific predictions about upcoming linguistic utterances.

  2. Conversational Interaction in the Scanner: Mentalizing during Language Processing as Revealed by MEG

    PubMed Central

    Bögels, Sara; Barr, Dale J.; Garrod, Simon; Kessler, Klaus

    2015-01-01

    Humans are especially good at taking another's perspective—representing what others might be thinking or experiencing. This “mentalizing” capacity is apparent in everyday human interactions and conversations. We investigated its neural basis using magnetoencephalography. We focused on whether mentalizing was engaged spontaneously and routinely to understand an utterance's meaning or largely on-demand, to restore “common ground” when expectations were violated. Participants conversed with 1 of 2 confederate speakers and established tacit agreements about objects' names. In a subsequent “test” phase, some of these agreements were violated by either the same or a different speaker. Our analysis of the neural processing of test phase utterances revealed recruitment of neural circuits associated with language (temporal cortex), episodic memory (e.g., medial temporal lobe), and mentalizing (temporo-parietal junction and ventromedial prefrontal cortex). Theta oscillations (3–7 Hz) were modulated most prominently, and we observed phase coupling between functionally distinct neural circuits. The episodic memory and language circuits were recruited in anticipation of upcoming referring expressions, suggesting that context-sensitive predictions were spontaneously generated. In contrast, the mentalizing areas were recruited on-demand, as a means for detecting and resolving perceived pragmatic anomalies, with little evidence they were activated to make partner-specific predictions about upcoming linguistic utterances. PMID:24904076

  3. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    SciTech Connect

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-07-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed.

  4. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma.

    PubMed

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-19

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks' robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  5. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions.

    PubMed

    Chu, Ci; Qu, Kun; Zhong, Franklin L; Artandi, Steven E; Chang, Howard Y

    2011-11-18

    Long noncoding RNAs (lncRNAs) are key regulators of chromatin state, yet the nature and sites of RNA-chromatin interaction are mostly unknown. Here we introduce Chromatin Isolation by RNA Purification (ChIRP), where tiling oligonucleotides retrieve specific lncRNAs with bound protein and DNA sequences, which are enumerated by deep sequencing. ChIRP-seq of three lncRNAs reveal that RNA occupancy sites in the genome are focal, sequence-specific, and numerous. Drosophila roX2 RNA occupies male X-linked gene bodies with increasing tendency toward the 3' end, peaking at CES sites. Human telomerase RNA TERC occupies telomeres and Wnt pathway genes. HOTAIR lncRNA preferentially occupies a GA-rich DNA motif to nucleate broad domains of Polycomb occupancy and histone H3 lysine 27 trimethylation. HOTAIR occupancy occurs independently of EZH2, suggesting the order of RNA guidance of Polycomb occupancy. ChIRP-seq is generally applicable to illuminate the intersection of RNA and chromatin with newfound precision genome wide.

  6. A simple engineered platform reveals different modes of tumor-microenvironmental cell interaction

    PubMed Central

    Zhang, Chentian; Shenk, Elizabeth M; Blaha, Laura C; Ryu, Byungwoo; Alani, Rhoda M; Cabodi, Mario; Wong, Joyce Y

    2016-01-01

    How metastatic cancer lesions survive and grow in secondary locations is not fully understood. There is a growing appreciation for the importance of tumor components, i.e. microenvironmental cells, in this process. Here, we used a simple microfabricated dual cell culture platform with a 500 μm gap to assess interactions between two different metastatic melanoma cell lines (1205Lu isolated from a lung lesion established through a mouse xenograft; and WM852 derived from a stage III metastatic lesion of skin) and microenvironmental cells derived from either skin (fibroblasts), lung (epithelial cells) or liver (hepatocytes). We observed differential bi-directional migration between microenvironmental cells and melanoma, depending on the melanoma cell line. Lung epithelial cells and skin fibroblasts, but not hepatocytes, stimulated higher 1205Lu migration than without microenvironmental cells; in the opposite direction, 1205Lu cells induced hepatocytes to migrate, but had no effect on skin fibroblasts and slightly inhibited lung epithelial cells. In contrast, none of the microenvironments had a significant effect on WM852; in this case, skin fibroblasts and hepatocytes—but not lung epithelial cells—exhibited directed migration toward WM852. These observations reveal significant effects a given microenvironmental cell line has on the two different melanoma lines, as well as how melanoma effects different microenvironmental cell lines. Our simple platform thus has potential to provide complex insights into different strategies used by cancerous cells to survive in and colonize metastatic sites. PMID:26716792

  7. Distortion/Interaction analysis reveals the origins of selectivities in iridium-catalyzed C-H borylation of substituted arenes and 5-membered heterocycles.

    PubMed

    Green, Aaron G; Liu, Peng; Merlic, Craig A; Houk, K N

    2014-03-26

    The iridium-catalyzed borylation of mono- and disubstituted arenes and heteroarenes has been studied with density functional theory. The distortion/interaction model was employed to understand the origins of selectivities in these reactions. Computations revealed that the transition states for C-H oxidative addition are very late, resembling the aryl iridium hydride intermediate with a fully formed Ir-C bond. Consequently, the regioselectivity is mainly controlled by differences in the interaction energies between the iridium catalyst and arene carbon.

  8. Process-Based Species Pools Reveal the Hidden Signature of Biotic Interactions Amid the Influence of Temperature Filtering.

    PubMed

    Lessard, Jean-Philippe; Weinstein, Ben G; Borregaard, Michael K; Marske, Katharine A; Martin, Danny R; McGuire, Jimmy A; Parra, Juan L; Rahbek, Carsten; Graham, Catherine H

    2016-01-01

    A persistent challenge in ecology is to tease apart the influence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining species pools and permits assessment of the relative influence of the main processes thought to shape assemblage structure: environmental filtering, dispersal limitations, and biotic interactions. We illustrate our approach using data on the assemblage composition and geographic distribution of hummingbirds, a comprehensive phylogeny and morphological traits. The implementation of several process-based species pool definitions in null models suggests that temperature-but not precipitation or dispersal limitation-acts as the main regional filter of assemblage structure. Incorporating this environmental filter directly into the definition of assemblage-specific species pools revealed an otherwise hidden pattern of phylogenetic evenness, indicating that biotic interactions might further influence hummingbird assemblage structure. Such hidden patterns of assemblage structure call for a reexamination of a multitude of phylogenetic- and trait-based studies that did not explicitly consider potentially important processes in their definition of the species pool. Our heuristic approach provides a transparent way to explore patterns and refine interpretations of the underlying causes of assemblage structure.

  9. Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear Export.

    PubMed

    Port, Sarah A; Monecke, Thomas; Dickmanns, Achim; Spillner, Christiane; Hofele, Romina; Urlaub, Henning; Ficner, Ralf; Kehlenbach, Ralph H

    2015-10-27

    CRM1 is the major nuclear export receptor. During translocation through the nuclear pore, transport complexes transiently interact with phenylalanine-glycine (FG) repeats of multiple nucleoporins. On the cytoplasmic side of the nuclear pore, CRM1 tightly interacts with the nucleoporin Nup214. Here, we present the crystal structure of a 117-amino-acid FG-repeat-containing fragment of Nup214, in complex with CRM1, Snurportin 1, and RanGTP at 2.85 Å resolution. The structure reveals eight binding sites for Nup214 FG motifs on CRM1, with intervening stretches that are loosely attached to the transport receptor. Nup214 binds to N- and C-terminal regions of CRM1, thereby clamping CRM1 in a closed conformation and stabilizing the export complex. The role of conserved hydrophobic pockets for the recognition of FG motifs was analyzed in biochemical and cell-based assays. Comparative studies with RanBP3 and Nup62 shed light on specificities of CRM1-nucleoporin binding, which serves as a paradigm for transport receptor-nucleoporin interactions.

  10. Receptor binding and cell entry of Old World arenaviruses reveal novel aspects of virus-host interaction.

    PubMed

    Kunz, Stefan

    2009-05-10

    Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.

  11. Interactions of arsenic with calcite surfaces revealed by in-situ nanoscale imaging

    NASA Astrophysics Data System (ADS)

    Renard, Francois; Putnis, Christine; Montes-Hernandez, German; Ruiz-Agudo, Encarnacion; Hövelmann, Jörn; Sarret, Géraldine

    2015-04-01

    Arsenic dissolved in water represents a key environmental and health challenge because several million people are under the threat of contamination. In calcareous environments calcite may play an important role in arsenic solubility and transfer in water. Arsenic-calcite interactions remain controversial, especially for As(III) which was proposed to be either incorporated as such, or as As(V) after oxidation. Here, we provide the first time-lapse in-situ study of calcite dissolution and growth in the presence of solutions with various amounts of As(III) or As(V). This was performed at room temperature and pH range 6-9 using a flow through cell connected to an atomic force microscope (AFM), to study the evolution of the (10-14) calcite cleavage surface morphology. Reaction products were then characterized by Raman spectroscopy. In parallel, co-precipitation experiments with either As(III) or As(V) were performed in batch reactors, and the speciation of arsenic in the resulting solids was studied by X-ray absorption spectroscopy (XAS). For As(V), AFM results showed that it interacts strongly with the calcite surface, and XAS results showed that As(V) was mostly incorporated in the calcite structure. For As(III), AFM results showed much less impact on calcite growth and dissolution and less incorporation was observed. This was confirmed by XAS results that indicate that As(III) was partly oxidized into As(V) before being incorporated into calcite and the resulting calcite contained 36% As(III) and 64% As(V). All these experimental results confirm that As(V) has a much stronger interaction with calcite than As(III) and that calcite may represent an important reservoir for arsenic in various geological environments.

  12. Biomolecular interactions in HCV nucleocapsid-like particles as revealed by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Casado, Arantxa; Molina, Marina; Carmona, Pedro

    2007-05-01

    Hepatitis C virus (HCV) occurs in the form of 55-65 nm spherical particles, but the structure of the virion remains to be clarified. Structural studies of HCV have been hampered by the lack of an appropriate cell culture system. However, structural analyses of HCV components can provide an essential framework for understanding of the molecular mechanism of virion assembly. This article reviews the potential of vibrational spectroscopy aimed at the knowledge of HCV structural biology, particularly regarding biomolecular interactions in nucleocapsid-like particles obtained in vitro.

  13. Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception.

    PubMed

    Qian, Xiaoning; Yoon, Byung-Jun

    2011-02-15

    Human immunodeficiency virus type one (HIV-1) is the major pathogen that causes the acquired immune deficiency syndrome (AIDS). With the availability of large-scale protein-protein interaction (PPI) measurements, comparative network analysis can provide a promising way to study the host-virus interactions and their functional significance in the pathogenesis of AIDS. Until now, there have been a large number of HIV studies based on various animal models. In this paper, we present a novel framework for studying the host-HIV interactions through comparative network analysis across different species. Based on the proposed framework, we test our hypothesis that HIV-1 attacks essential biological pathways that are conserved across species. We selected the Homo sapiens and Mus musculus PPI networks with the largest coverage among the PPI networks that are available from public databases. By using a local network alignment algorithm based on hidden Markov models (HMMs), we first identified the pathways that are conserved in both networks. Next, we analyzed the HIV-1 susceptibility of these pathways, in comparison with random pathways in the human PPI network. Our analysis shows that the conserved pathways have a significantly higher probability of being intercepted by HIV-1. Furthermore, Gene Ontology (GO) enrichment analysis shows that most of the enriched GO terms are related to signal transduction, which has been conjectured to be one of the major mechanisms targeted by HIV-1 for the takeover of the host cell. This proof-of-concept study clearly shows that the comparative analysis of PPI networks across different species can provide important insights into the host-HIV interactions and the detailed mechanisms of HIV-1. We expect that comparative multiple network analysis of various species that have different levels of susceptibility to similar lentiviruses may provide a very effective framework for generating novel, and experimentally verifiable hypotheses on the

  14. Structure of Human Cytomegalovirus UL141 Binding to TRAIL-R2 Reveals Novel, Non-canonical Death Receptor Interactions

    PubMed Central

    Nemčovičová, Ivana; Benedict, Chris A.; Zajonc, Dirk M.

    2013-01-01

    The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways. PMID:23555243

  15. Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions.

    PubMed

    Nemčovičová, Ivana; Benedict, Chris A; Zajonc, Dirk M

    2013-03-01

    The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.

  16. Resident interactions at mealtime: an exploratory study.

    PubMed

    Curle, Leah; Keller, Heather

    2010-09-01

    Social interaction is thought to be important for psychological wellbeing and is necessary for developing relationships between older adults living in facilities. This study seeks to describe the social interaction that occurs amongst tablemates at mealtime in retirement homes, as well those things that influence resident-to-resident interaction. Fourteen lunch time periods were the basis for qualitative participant observation. Two or three researchers collected data in each period, with each observing two tables, resulting in 63 individual table observations at a retirement living facility dining room in a medium-sized city in Southern Ontario. Residents attending mealtime in the dining room were (~ 100). The type, extent and influences on social interactions amongst tablemates were recorded in detailed field notes. Qualitative thematic analysis, using a constant comparison procedure, was used to summarize and make sense of the data. A variety of social interactions occurred amongst tablemates including: making conversation, providing assistance, sharing, humouring, showing appreciation and affection, and rebuffing/ignoring/excluding. Interactions were influenced by tablemate roles, resident characteristics, and the social and physical environment, including staff. Social interactions or lack thereof are important for relationship development and mealtime environment. Describing the types of interaction and what influences them is a first step towards promoting social engagement which can enhance quality of life for residents. Further investigation through interviews with residents on the meaning of mealtime and companionship at meals will build a deeper understanding of the importance and influences on social interaction in this setting.

  17. Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging

    NASA Astrophysics Data System (ADS)

    Renard, François; Putnis, Christine V.; Montes-Hernandez, German; Ruiz-Agudo, Encarnacion; Hovelmann, Jörn; Sarret, Géraldine

    2015-06-01

    Arsenic dissolved in water represents a key environmental and health challenge because several million people are under the threat of contamination. In calcareous environments calcite may play an important role in arsenic solubility and transfer in water. Arsenic-calcite interactions remain controversial, especially for As(III) which was proposed to be either incorporated as such, or as As(V) after oxidation. Here, we provide the first time-lapse in situ study of the evolution of the (10-14) calcite cleavage surface morphology during dissolution and growth in the presence of solutions with various amounts of As(III) or As(V) at room temperature and pH range 6-11 using a flow-through cell connected to an atomic force microscope (AFM). Reaction products were then characterized by Raman spectroscopy. In parallel, co-precipitation experiments with either As(III) or As(V) were performed in batch reactors, and the speciation of arsenic in the resulting solids was studied by X-ray absorption spectroscopy (XAS). For As(V), AFM results showed that it interacts strongly with the calcite surface, and XAS results showed that As(V) was mostly incorporated in the calcite structure. For As(III), AFM results showed much less impact on calcite growth and dissolution and less incorporation was observed. This was confirmed by XAS results that indicate that As(III) was partly oxidized into As(V) before being incorporated into calcite and the resulting calcite contained 36% As(III) and 64% As(V). All these experimental results confirm that As(V) has a much stronger interaction with calcite than As(III) and that calcite may represent an important reservoir for arsenic in various geological environments.

  18. Revealing "flickering" of the interaction strength in pA collisions at the CERN LHC

    NASA Astrophysics Data System (ADS)

    Alvioli, M.; Frankfurt, L.; Guzey, V.; Strikman, M.

    2014-09-01

    Using the high-energy color fluctuation formalism to include inelastic diffractive processes and taking into account the collision geometry and short-range nucleon-nucleon correlations in nuclei, we assess various manifestations of "flickering" of the parton wave function of a rapid proton in pA interactions focusing at energies available at the CERN Large Hadron Collider (LHC) in soft QCD processes and in the special soft QCD processes accompanying hard processes. We evaluate the number of wounded nucleons, Ncoll—the number of inelastic collisions of projectiles—in these processes and find a nontrivial relation between the hard collision rate and centrality. We study the distribution over Ncoll for a hard trigger selecting configurations in the nucleon with the strength larger or smaller than the average one and argue that the pattern observed in the LHC pA measurements by CMS and ATLAS for jets carrying a large fraction of the proton momentum, xp, is consistent with the expectation that these configurations interact with the strength which is significantly smaller than the average one, a factor of two smaller for xp˜0.5. We also study the leading twist shadowing and the European Muon Collaboration effects for superdense nuclear matter configurations probed in the events with a larger-than-average number of wounded nucleons. We also argue that taking into account energy-momentum conservation does not change the distribution over Ncoll but suppresses hadron production at central rapidities.

  19. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations.

    PubMed

    Rai, Rajani; Kim, Jong Joo; Misra, Sanjeev; Kumar, Ashok; Mittal, Balraj

    2015-11-25

    Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactions contributing towards genetic susceptibility of GBC. Here, we performed Multifactor-Dimensionality Reduction (MDR) and Classification and Regression Tree Analysis (CRT) to investigate the gene-gene interactions and the combined effect of 14 SNPs in nine genes (DR4 (rs20576, rs6557634); FAS (rs2234767); FASL (rs763110); DCC (rs2229080, rs4078288, rs7504990, rs714); PSCA (rs2294008, rs2978974); ADRA2A (rs1801253); ADRB1 (rs1800544); ADRB3 (rs4994); CYP17 (rs2486758)) involved in various signaling pathways. Genotyping was accomplished by PCR-RFLP or Taqman allelic discrimination assays. SPSS software version 16.0 and MDR software version 2.0 were used for all the statistical analysis. Single locus investigation demonstrated significant association of DR4 (rs20576, rs6557634), DCC (rs714, rs2229080, rs4078288) and ADRB3 (rs4994) polymorphisms with GBC risk. MDR analysis revealed ADRB3 (rs4994) to be crucial candidate in GBC susceptibility that may act either alone (p < 0.0001, CVC = 10/10) or in combination with DCC (rs714 and rs2229080, p < 0.0001, CVC = 9/10). Our CRT results are in agreement with the above findings. Further, in-silico results of studied SNPs advocated their role in splicing, transcriptional and/or protein coding regulation. Overall, our result suggested complex interactions amongst the studied SNPs and ADRB3 rs4994 as candidate influencing GBC susceptibility.

  20. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations

    PubMed Central

    Rai, Rajani; Kim, Jong Joo; Misra, Sanjeev; Kumar, Ashok; Mittal, Balraj

    2015-01-01

    Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactions contributing towards genetic susceptibility of GBC. Here, we performed Multifactor-Dimensionality Reduction (MDR) and Classification and Regression Tree Analysis (CRT) to investigate the gene–gene interactions and the combined effect of 14 SNPs in nine genes (DR4 (rs20576, rs6557634); FAS (rs2234767); FASL (rs763110); DCC (rs2229080, rs4078288, rs7504990, rs714); PSCA (rs2294008, rs2978974); ADRA2A (rs1801253); ADRB1 (rs1800544); ADRB3 (rs4994); CYP17 (rs2486758)) involved in various signaling pathways. Genotyping was accomplished by PCR-RFLP or Taqman allelic discrimination assays. SPSS software version 16.0 and MDR software version 2.0 were used for all the statistical analysis. Single locus investigation demonstrated significant association of DR4 (rs20576, rs6557634), DCC (rs714, rs2229080, rs4078288) and ADRB3 (rs4994) polymorphisms with GBC risk. MDR analysis revealed ADRB3 (rs4994) to be crucial candidate in GBC susceptibility that may act either alone (p < 0.0001, CVC = 10/10) or in combination with DCC (rs714 and rs2229080, p < 0.0001, CVC = 9/10). Our CRT results are in agreement with the above findings. Further, in-silico results of studied SNPs advocated their role in splicing, transcriptional and/or protein coding regulation. Overall, our result suggested complex interactions amongst the studied SNPs and ADRB3 rs4994 as candidate influencing GBC susceptibility. PMID:26602921

  1. Revealing the potential pathogenesis of glioma by utilizing a glioma associated protein-protein interaction network.

    PubMed

    Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming

    2015-04-01

    This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

  2. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.

    PubMed

    Guo, Qing; Jureller, Justin E; Warren, Julia T; Solomaha, Elena; Florián, Jan; Tang, Wei-Jen

    2008-08-29

    Calmodulin (CaM), a eukaryotic calcium sensor that regulates diverse biological activities, consists of N- and C-terminal globular domains (N-CaM and C-CaM, respectively). CaM serves as the activator of CyaA, a 188-kDa adenylyl cyclase toxin secreted by Bordetella pertussis, which is the etiologic agent for whooping cough. Upon insertion of the N-terminal adenylyl cyclase domain (ACD) of CyaA to its targeted eukaryotic cells, CaM binds to this domain tightly ( approximately 200 pm affinity). This interaction activates the adenylyl cyclase activity of CyaA, leading to a rise in intracellular cAMP levels to disrupt normal cellular signaling. We recently solved the structure of CyaA-ACD in complex with C-CaM to elucidate the mechanism of catalytic activation. However, the structure of the interface between N-CaM and CyaA, the formation of which contributes a 400-fold increase of binding affinity between CyaA and CaM, remains elusive. Here, we used site-directed mutations and molecular dynamic simulations to generate several working models of CaM-bound CyaA-ACD. The validity of these models was evaluated by disulfide bond cross-linking, point mutations, and fluorescence resonance energy transfer experiments. Our study reveals that a beta-hairpin region (amino acids 259-273) of CyaA-ACD likely makes contacts with the second calcium binding motif of the extended CaM. This mode of interaction differs from the interaction of N-CaM with anthrax edema factor, which binds N-CaM via its helical domain. Thus, two structurally conserved, bacterial adenylyl cyclase toxins have evolved to utilize distinct binding surfaces and modes of activation in their interaction with CaM, a highly conserved eukaryotic signaling protein.

  3. Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid

    PubMed Central

    Asai, Shuta; Caillaud, Marie-Cécile; Furzer, Oliver J.; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D. G.

    2014-01-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome. PMID:25329884

  4. Star-disk interaction in classical T Tauri stars revealed using wavelet analysis

    NASA Astrophysics Data System (ADS)

    López-Santiago, J.; Crespo-Chacón, I.; Flaccomio, E.; Sciortino, S.; Micela, G.; Reale, F.

    2016-05-01

    Context. The extension of the corona of classical T Tauri stars (CTTS) is is being widely discussed. The standard model of magnetic configuration of CTTS predicts that coronal magnetic flux tubes connect the stellar atmosphere to the inner region of the disk. However, differential rotation may disrupt these long loops. The results from hydrodynamic modeling of X-ray flares observed in CTTS that confirm the star-disk connection hypothesis are still controversial. Some authors suggest the presence of the accretion disk prevents the stellar corona extending beyond the co-rotation radius, while others are simply not confident with the methods used to derive loop lengths. Aims: We use independent procedures to determine the length of flaring loops in stars of the Orion Nebula Cluster, which has previously been analyzed using hydrodynamic models. Our aim is to disentangle the two scenarios that have been proposed. Methods: We present a different approach for determining the length of flaring loops that is based on the oscillatory nature of the loops after strong flares. We use wavelet tools to reveal oscillations during several flares. The subsequent analysis of these oscillations is based on the physics of coronal seismology. Results: Our results likely confirm the large extension of the corona of CTTS and the hypothesis of star-disk magnetic interaction in at least three CTTS of the Orion Nebula Cluster. Conclusions: Analyzing oscillations in flaring events is a powerful tool to determine the physical characteristics of magnetic loops in coronae in stars other than the Sun. The results presented in this work confirm the star-disk magnetic connection in CTTS.

  5. Study of physical interaction mefenamic acid - isonicotinamide

    NASA Astrophysics Data System (ADS)

    Yuyun, Yonelian; Nugrahani, Ilma

    2015-09-01

    Solid-solid interaction in the form of physics and chemistry can occur in a combination of active ingredients with the active ingredient or active ingredients with excipients in a pharmaceutical preparation. Physical interactions can be classified into physical interaction system eutectic, peritectic, and molecular compounds based on the phase diagram of a mixture of two-component systems. The physical interaction between mefenamic acid and isonicotinamide not been reported previously. This study aims to examine the type of interaction of mefenamic acid (MA) with isonicotinamide (INA) and its interaction with the isolation methods by solvent drop grinding as the simplest method and easy to do. PXRD data showed the interaction of MA:INA mixture contained no new peaks, so the indicated MA:INA only form of eutectic interaction. There was founded new endothermic peak for DTA data at 149.5°C (SDG-Ethanol) and 148.4°C (SDG-EtAct). The results of infrared spectroscopy analysis indicated a shift in the NH stretch 3367 cm-1 to 3359 cm-1; and 3185 cm-1 to 3178 cm-1.

  6. Expressed proteins of Herbaspirillum seropedicae in maize (DKB240) roots-bacteria interaction revealed using proteomics.

    PubMed

    Ferrari, Cibele Santos; Amaral, Fernanda Plucani; Bueno, Jessica Cavalheiro Ferreira; Scariot, Mirella Christine; Valentim-Neto, Pedro Alexandre; Arisi, Ana Carolina Maisonnave

    2014-11-01

    Several molecular tools have been used to clarify the basis of plant-bacteria interaction; however, the mechanism behind the association is still unclear. In this study, we used a proteomic approach to investigate the root proteome of Zea mays (cv. DKB240) inoculated with Herbaspirillum seropedicae strain SmR1 grown in vitro and harvested 7 days after inoculation. Eighteen differentially accumulated proteins were observed in root samples, ten of which were identified by MALDI-TOF mass spectrometry peptide mass fingerprint. Among the identified proteins, we observed three proteins present exclusively in inoculated root samples and six upregulated proteins and one downregulated protein relative to control. Differentially expressed maize proteins were identified as hypothetical protein ZEAMMB73_483204, hypothetical protein ZEAMMB73_269466, and tubulin beta-7 chain. The following were identified as H. seropedicae proteins: peroxiredoxin protein, EF-Tu elongation factor protein, cation transport ATPase, NADPH:quinone oxidoreductase, dinitrogenase reductase, and type III secretion ATP synthase. Our results presented the first evidence of type III secretion ATP synthase expression during H. seropedicae-maize root interaction.

  7. Causal visual interactions as revealed by an information theoretic measure and fMRI.

    PubMed

    Hinrichs, H; Heinze, H J; Schoenfeld, M A

    2006-07-01

    In the present study, we evaluated the direction of the effective connectivity between fMRI activations in neural structures mediating preserved visual function in a patient with homonymous hemianopsia due to a posterior cerebral artery stroke. Although the lesion affected the primary visual cortex, the visual abilities of this patient included above-chance verbal reports of movement and color change as well as the discrimination of movement direction in his hemianopic field. These abilities were coupled with awareness (Riddoch syndrome). The strength and the direction of the interactions between visual regions were assessed by applying directed transinformation (T), a nonparametric information theoretic causal measure sensitive to linear as well as to nonlinear interactions. In the healthy hemisphere, T identified a strong flow of information from visual area V1 to V5 during stimulation by visual movement and from V1 to V4/V8 during stimulation by color change. In addition, during color change stimulation, a bi-directional flow was observed between V4/V8 and V5, suggesting crosstalk between these regions. In the lesioned hemisphere, the color change stimulation evoked a stronger flow from V5 to V4/V8 and a flow from V4/V8 to V2. These observations provide support for the hypothesis that visual information is mediated via subcortical pathways that bypass V1 and project first to higher-tier visual areas V5 and V4/V8 then subsequently to lower-tier area V2.

  8. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation

    PubMed Central

    Kimata, Naoki; Pope, Andreyah; Eilers, Markus; Opefi, Chikwado A.; Ziliox, Martine; Hirshfeld, Amiram; Zaitseva, Ekaterina; Vogel, Reiner; Sheves, Mordechai; Reeves, Philip J.; Smith, Steven O.

    2016-01-01

    The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation. PMID:27585742

  9. Mutation causing congenital myasthenia reveals acetylcholine receptor β/δ subunit interaction essential for assembly

    PubMed Central

    Quiram, Polly A.; Ohno, Kinji; Milone, Margherita; Patterson, Marc C.; Pruitt, Ned J.; Brengman, Joan M.; Sine, Steven M.; Engel, Andrew G.

    1999-01-01

    We describe a severe postsynaptic congenital myasthenic syndrome with marked endplate acetylcholine receptor (AChR) deficiency caused by 2 heteroallelic mutations in the β subunit gene. One mutation causes skipping of exon 8, truncating the β subunit before its M1 transmembrane domain, and abolishing surface expression of pentameric AChR. The other mutation, a 3-codon deletion (β426delEQE) in the long cytoplasmic loop between the M3 and M4 domains, curtails but does not abolish expression. By coexpressing β426delEQE with combinations of wild-type subunits in 293 HEK cells, we demonstrate that β426delEQE impairs AChR assembly by disrupting a specific interaction between β and δ subunits. Studies with related deletion and missense mutants indicate that secondary structure in this region of the β subunit is crucial for interaction with the δ subunit. The findings imply that the mutated residues are positioned at the interface between β and δ subunits and demonstrate contribution of this local region of the long cytoplasmic loop to AChR assembly. J. Clin. Invest. 104:1403–1410 (1999). PMID:10562302

  10. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction

    PubMed Central

    Tiwari, Prabhat; Malhotra, Vivek; VijayRaghavan, K.

    2015-01-01

    Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells. PMID:26488612

  11. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells

    PubMed Central

    Song, BenBen; Zhou, Jianhua; Wang, Tony T.

    2016-01-01

    Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP), UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1) and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection. PMID:26808496

  12. Microscopic study reveals the singular origins of growth

    NASA Astrophysics Data System (ADS)

    Yaari, G.; Nowak, A.; Rakocy, K.; Solomon, S.

    2008-04-01

    Anderson [Science 177, 293 (1972)] proposed the concept of complexity in order to describe the emergence and growth of macroscopic collective patterns out of the simple interactions of many microscopic agents. In the physical sciences this paradigm was implemented systematically and confirmed repeatedly by successful confrontation with reality. In the social sciences however, the possibilities to stage experiments to validate it are limited. During the 90's a series of dramatic political and economic events have provided the opportunity to do so. We exploit the resulting empirical evidence to validate a simple agent based alternative to the classical logistic dynamics. The post-liberalization empirical data from Poland confirm the theoretical prediction that the dynamics is dominated by singular rare events which insure the resilience and adaptability of the system. We have shown that growth is led by few singular “growth centers" (Fig. 1), that initially developed at a tremendous rate (Fig. 3), followed by a diffusion process to the rest of the country and leading to a positive growth rate uniform across the counties. In addition to the interdisciplinary unifying potential of our generic formal approach, the present work reveals the strong causal ties between the “softer" social conditions and their “hard" economic consequences.

  13. In vivo Host-Pathogen Interaction as Revealed by Global Proteomic Profiling of Zebrafish Larvae

    PubMed Central

    Díaz-Pascual, Francisco; Ortíz-Severín, Javiera; Varas, Macarena A.; Allende, Miguel L.; Chávez, Francisco P.

    2017-01-01

    The outcome of a host-pathogen interaction is determined by the conditions of the host, the pathogen, and the environment. Although numerous proteomic studies of in vitro-grown microbial pathogens have been performed, in vivo proteomic approaches are still rare. In addition, increasing evidence supports that in vitro studies inadequately reflect in vivo conditions. Choosing the proper host is essential to detect the expression of proteins from the pathogen in vivo. Numerous studies have demonstrated the suitability of zebrafish (Danio rerio) embryos as a model to in vivo studies of Pseudomonas aeruginosa infection. In most zebrafish-pathogen studies, infection is achieved by microinjection of bacteria into the larvae. However, few reports using static immersion of bacterial pathogens have been published. In this study we infected 3 days post-fertilization (DPF) zebrafish larvae with P. aeruginosa PAO1 by immersion and injection and tracked the in vivo immune response by the zebrafish. Additionally, by using non-isotopic (Q-exactive) metaproteomics we simultaneously evaluated the proteomic response of the pathogen (P. aeruginosa PAO1) and the host (zebrafish). We found some zebrafish metabolic pathways, such as hypoxia response via HIF activation pathway, were exclusively enriched in the larvae exposed by static immersion. In contrast, we found that inflammation mediated by chemokine and cytokine signaling pathways was exclusively enriched in the larvae exposed by injection, while the integrin signaling pathway and angiogenesis were solely enriched in the larvae exposed by immersion. We also found important virulence factors from P. aeruginosa that were enriched only after exposure by injection, such as the Type-III secretion system and flagella-associated proteins. On the other hand, P. aeruginosa proteins involved in processes like biofilm formation, and cellular responses to antibiotic and starvation were enriched exclusively after exposure by immersion. We

  14. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  15. Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits

    PubMed Central

    Kollmer, Marius; Meinhardt, Katrin; Haupt, Christian; Liberta, Falk; Wulff, Melanie; Linder, Julia; Handl, Lisa; Heinrich, Liesa; Loos, Cornelia; Schmidt, Matthias; Syrovets, Tatiana; Simmet, Thomas; Westermark, Per; Westermark, Gunilla T.; Horn, Uwe; Schmidt, Volker; Walther, Paul; Fändrich, Marcus

    2016-01-01

    Electron tomography is an increasingly powerful method to study the detailed architecture of macromolecular complexes or cellular structures. Applied to amyloid deposits formed in a cell culture model of systemic amyloid A amyloidosis, we could determine the structural morphology of the fibrils directly in the deposit. The deposited fibrils are arranged in different networks, and depending on the relative fibril orientation, we can distinguish between fibril meshworks, fibril bundles, and amyloid stars. These networks are frequently infiltrated by vesicular lipid inclusions that may originate from the death of the amyloid-forming cells. Our data support the role of nonfibril components for constructing fibril deposits and provide structural views of different types of lipid–fibril interactions. PMID:27140609

  16. Space Operations Center: Shuttle interaction study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The implication of using the Shuttle with the Space Operation Center (SOC), including constraints that the Shuttle will place upon the SOC design. The study identifies the considerations involved in the use of the Shuttle as a part of the SOC concept, and also identifies the constraints to the SOC imposed by the Shuttle in its interactions with the SOC, and on the design or technical solutions which allow satisfactory accomplishment of the interactions.

  17. Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.

    PubMed

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical "noise" that warrant further analysis for causal variants.

  18. Protein Interaction Networks Reveal Novel Autism Risk Genes within GWAS Statistical Noise

    PubMed Central

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M.

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical “noise” that warrant further analysis for causal variants. PMID:25409314

  19. Flow motifs reveal limitations of the static framework to represent human interactions

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Blondel, Vincent D.

    2013-04-01

    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.

  20. Genetic factors in nonsmokers with age-related macular degeneration revealed through genome-wide gene-environment interaction analysis.

    PubMed

    Naj, Adam C; Scott, William K; Courtenay, Monique D; Cade, William H; Schwartz, Stephen G; Kovach, Jaclyn L; Agarwal, Anita; Wang, Gaofeng; Haines, Jonathan L; Pericak-Vance, Margaret A

    2013-05-01

    Relatively little is known about the interaction between genes and environment in the complex etiology of age-related macular degeneration (AMD). This study aimed to identify novel factors associated with AMD by analyzing gene-smoking interactions in a genome-wide association study of 1207 AMD cases and 686 controls of Caucasian background with genotype data on 668,238 single nucleotide polymorphisms (SNPs) after quality control. Participants' history of smoking at least 100 cigarettes lifetime was determined by a self-administered questionnaire. SNP associations modeled the effect of the minor allele additively on AMD using logistic regression, with adjustment for age, sex, and ever/never smoking. Joint effects of SNPs and smoking were examined comparing a null model containing only age, sex, and smoking against an extended model including genotypic and interaction terms. Genome-wide significant main effects were detected at three known AMD loci: CFH (P = 7.51×10(-30) ), ARMS2 (P = 1.94×10(-23) ), and RDBP/CFB/C2 (P = 4.37×10(-10) ), while joint effects analysis revealed three genomic regions with P < 10(-5) . Analyses stratified by smoking found genetic associations largely restricted to nonsmokers, with one notable exception: the chromosome 18q22.1 intergenic SNP rs17073641 (between SERPINB8 and CDH7), more strongly associated in nonsmokers (OR = 0.57, P = 2.73 × 10(-5) ), with an inverse association among smokers (OR = 1.42, P = 0.00228), suggesting that smoking modifies the effect of some genetic polymorphisms on AMD risk.

  1. Replication Study: Melanoma genome sequencing reveals frequent PREX2 mutations

    PubMed Central

    Horrigan, Stephen K; Courville, Pascal; Sampey, Darryl; Zhou, Faren; Cai, Steve

    2017-01-01

    In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Chroscinski et al., 2014) that described how we intended to replicate selected experiments from the paper "Melanoma genome sequencing reveals frequent PREX2 mutations" (Berger et al., 2012). Here we report the results of those experiments. We regenerated cells stably expressing ectopic wild-type and mutant phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 (PREX2) using the same immortalized human NRASG12D melanocytes as the original study. Evaluation of PREX2 expression in these newly generated stable cells revealed varying levels of expression among the PREX2 isoforms, which was also observed in the stable cells made in the original study (Figure S6A; Berger et al., 2012). Additionally, ectopically expressed PREX2 was found to be at least 5 times above endogenous PREX2 expression. The monitoring of tumor formation of these stable cells in vivo resulted in no statistically significant difference in tumor-free survival driven by PREX2 variants, whereas the original study reported that these PREX2 mutations increased the rate of tumor incidence compared to controls (Figure 3B and S6B; Berger et al., 2012). Surprisingly, the median tumor-free survival was 1 week in this replication attempt, while 70% of the control mice were reported to be tumor-free after 9 weeks in the original study. The rapid tumor onset observed in this replication attempt, compared to the original study, makes the detection of accelerated tumor growth in PREX2 expressing NRASG12D melanocytes extremely difficult. Finally, we report meta-analyses for each result. DOI: http://dx.doi.org/10.7554/eLife.21634.001 PMID:28100394

  2. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel.

    PubMed

    Dey, Neelendu; Wagner, Vitas E; Blanton, Laura V; Cheng, Jiye; Fontana, Luigi; Haque, Rashidul; Ahmed, Tahmeed; Gordon, Jeffrey I

    2015-09-24

    To understand how different diets, the consumers' gut microbiota, and the enteric nervous system (ENS) interact to regulate gut motility, we developed a gnotobiotic mouse model that mimics short-term dietary changes that happen when humans are traveling to places with different culinary traditions. Studying animals transplanted with the microbiota from humans representing diverse culinary traditions and fed a sequence of diets representing those of all donors, we found that correlations between bacterial species abundances and transit times are diet dependent. However, the levels of unconjugated bile acids-generated by bacterial bile salt hydrolases (BSH)-correlated with faster transit, including during consumption of a Bangladeshi diet. Mice harboring a consortium of sequenced cultured bacterial strains from the Bangladeshi donor's microbiota and fed a Bangladeshi diet revealed that the commonly used cholekinetic spice, turmeric, affects gut motility through a mechanism that reflects bacterial BSH activity and Ret signaling in the ENS. These results demonstrate how a single food ingredient interacts with a functional microbiota trait to regulate host physiology.

  3. Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes*

    PubMed Central

    Ohta, Shinya; Montaño-Gutierrez, Luis F.; de Lima Alves, Flavia; Ogawa, Hiromi; Toramoto, Iyo; Sato, Nobuko; Morrison, Ciaran G.; Takeda, Shunichi; Hudson, Damien F.; Earnshaw, William C.

    2016-01-01

    Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression. PMID:27231315

  4. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions

    PubMed Central

    Bellas, Christopher M.; Anesio, Alexandre M.; Barker, Gary

    2015-01-01

    Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts

  5. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions.

    PubMed

    Bellas, Christopher M; Anesio, Alexandre M; Barker, Gary

    2015-01-01

    Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts.

  6. A systematic, family-wide investigation reveals that ~30% of mammalian PDZ domains engage in PDZ-PDZ interactions

    PubMed Central

    Chang, Bryan H.; Gujral, Taranjit S.; Karp, Ethan S.; BuKhalid, Raghida; Grantcharova, Viara P.; MacBeath, Gavin

    2012-01-01

    Summary PDZ domains are independently folded modules that typically mediate protein-protein interactions by binding to the C-termini of their target proteins. In a few instances, however, PDZ domains have been reported to dimerize with other PDZ domains. To investigate this noncanonical binding mode further, we used protein microarrays comprising virtually every mouse PDZ domain to systematically query all possible PDZ-PDZ pairs. We then used fluorescence polarization to retest and quantify novel interactions and co-affinity purification to test biophysically validated interactions in the context of their full-length proteins. Overall, we discovered 37 PDZ-PDZ interactions involving 46 PDZ domains (~30% of all PDZ domains tested), revealing that dimerization is a more frequently used binding mode than was previously appreciated. This suggests that many PDZ domains evolved to form multiprotein complexes by simultaneously interacting with more than one ligand. PMID:21944753

  7. Ethiopian Population Dermatoglyphic Study Reveals Linguistic Stratification of Diversity

    PubMed Central

    2015-01-01

    The manifestation of ethnic, blood type, & gender-wise population variations regarding Dermatoglyphic manifestations are of interest to assess intra-group diversity and differentiation. The present study reports on the analysis of qualitaive and quantitative finger Dermatoglyphic traits of 382 individuals cross-sectionally sampled from an administrative region of Ethiopia, consisting of five ethnic cohorts from the Afro-Asiatic & Nilo-Saharan affiliations. These Dermatoglyphic parameters were then applied in the assessment of diversity & differentiation, including Heterozygosity, Fixation, Panmixia, Wahlund’s variance, Nei’s measure of genetic diversity, and thumb & finger pattern genotypes, which were inturn used in homology inferences as summarized by a Neighbour-Joining tree constructed from Nei’s standard genetic distance. Results revealed significant correlation between Dermatoglyphics & population parameters that were further found to be in concordance with the historical accounts of the ethnic groups. Such inductions as the ancient north-eastern presence and subsequent admixure events of the Oromos (PII= 15.01), the high diversity of the Amharas (H= 0.1978, F= 0.6453, and P= 0.4144), and the Nilo-Saharan origin of the Berta group (PII= 10.66) are evidences to this. The study has further tested the possibility of applying Dermatoglyphics in population genetic & anthropologic research, highlighting on the prospect of developing a method to trace back population origins & ancient movement patterns. Additionally, linguistic clustering was deemed significant for the Ethiopian population, coinciding with recent genome wide studies that have ascertained that linguistic clustering as to being more crucial than the geographical patterning in the Ethiopian context. Finally, Dermatoglyphic markers have been proven to be endowed with a strong potential as non-invasive preliminary tools applicable prior to genetic studies to analyze ethnically sub

  8. Ethiopian population dermatoglyphic study reveals linguistic stratification of diversity.

    PubMed

    Yohannes, Seile; Bekele, Endashaw

    2015-01-01

    The manifestation of ethnic, blood type, & gender-wise population variations regarding Dermatoglyphic manifestations are of interest to assess intra-group diversity and differentiation. The present study reports on the analysis of qualitaive and quantitative finger Dermatoglyphic traits of 382 individuals cross-sectionally sampled from an administrative region of Ethiopia, consisting of five ethnic cohorts from the Afro-Asiatic & Nilo-Saharan affiliations. These Dermatoglyphic parameters were then applied in the assessment of diversity & differentiation, including Heterozygosity, Fixation, Panmixia, Wahlund's variance, Nei's measure of genetic diversity, and thumb & finger pattern genotypes, which were inturn used in homology inferences as summarized by a Neighbour-Joining tree constructed from Nei's standard genetic distance. Results revealed significant correlation between Dermatoglyphics & population parameters that were further found to be in concordance with the historical accounts of the ethnic groups. Such inductions as the ancient north-eastern presence and subsequent admixure events of the Oromos (PII= 15.01), the high diversity of the Amharas (H= 0.1978, F= 0.6453, and P= 0.4144), and the Nilo-Saharan origin of the Berta group (PII= 10.66) are evidences to this. The study has further tested the possibility of applying Dermatoglyphics in population genetic & anthropologic research, highlighting on the prospect of developing a method to trace back population origins & ancient movement patterns. Additionally, linguistic clustering was deemed significant for the Ethiopian population, coinciding with recent genome wide studies that have ascertained that linguistic clustering as to being more crucial than the geographical patterning in the Ethiopian context. Finally, Dermatoglyphic markers have been proven to be endowed with a strong potential as non-invasive preliminary tools applicable prior to genetic studies to analyze ethnically sub-divided populations and

  9. SPIV study of two interactive fire whirls

    NASA Astrophysics Data System (ADS)

    Hartl, Katherine; Smits, Alexander

    2015-11-01

    Fire whirls are buoyancy-driven standing vortex structures that often form in forest fires. Capable of lifting and ejecting flaming debris, fire whirls can hasten the spread of fire lines and start fires in new places. Here we study the interaction of two jets in an externally applied circulation as an introduction to the study of two interacting fire whirls. To study this interaction we use two burner flames supplied with DME and induce swirl by entraining air through a split cylinder that surrounds both burners. Three components of velocity are measured using Stereo Particle Image Velocimetry both inside and outside the fire whirl core, at the base, midsection, and above the top of the fire whirls. The effects on the height and circulation on the distance between the burners, the rate of fuel supplied to the burners, and the gap size, are examined.

  10. Differential proteomics reveals novel insights into Nosema-honey bee interactions.

    PubMed

    Kurze, Christoph; Dosselli, Ryan; Grassl, Julia; Le Conte, Yves; Kryger, Per; Baer, Boris; Moritz, Robin F A

    2016-12-01

    Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail.

  11. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1.

    PubMed

    Walsh, Naomi M; Wuthrich, Marcel; Wang, Huafeng; Klein, Bruce; Hull, Christina M

    2017-01-01

    Phagocytosis by innate immune cells is an important process for protection against multiple pathologies and is particularly important for resistance to infection. However, phagocytosis has also been implicated in the progression of some diseases, including the dissemination of the human fungal pathogen, Cryptococcus neoformans. Previously, we identified Dectin-1 as a likely phagocytic receptor for C. neoformans spores through the use of soluble components in receptor-ligand blocking experiments. In this study, we used gain-of-function and loss-of-function assays with intact cells to evaluate the in vivo role of Dectin-1 and other C-type lectins in interactions with C. neoformans spores and discovered stark differences in outcome when compared with previous assays. First, we found that non-phagocytic cells expressing Dectin-1 were unable to bind spores and that highly sensitive reporter cells expressing Dectin-1 were not stimulated by spores. Second, we determined that some phagocytes from Dectin-1-/- mice interacted with spores differently than wild type (WT) cells, but the effects varied among assays and were modest overall. Third, while we detected small but statistically significant reductions in phagocytosis by primary alveolar macrophages from Dectin-1-/- mice compared to WT, we found no differences in survival between WT and Dectin-1-/- mice challenged with spores. Further analyses to assess the roles of other C-type lectins and their adapters revealed very weak stimulation of Dectin-2 reporter cells by spores and modest differences in binding and phagocytosis by Dectin-2-/- bone marrow-derived phagocytes. There were no discernable defects in binding or phagocytosis by phagocytes lacking Mannose Receptor, Mincle, Card-9, or FcRγ. Taken together, these results lead to the conclusion that Dectin-1 and other C-type lectins do not individually play a major roles in phagocytosis and innate defense by phagocytes against C. neoformans spores and highlight

  12. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1

    PubMed Central

    Walsh, Naomi M.; Wuthrich, Marcel; Wang, Huafeng; Klein, Bruce; Hull, Christina M.

    2017-01-01

    Phagocytosis by innate immune cells is an important process for protection against multiple pathologies and is particularly important for resistance to infection. However, phagocytosis has also been implicated in the progression of some diseases, including the dissemination of the human fungal pathogen, Cryptococcus neoformans. Previously, we identified Dectin-1 as a likely phagocytic receptor for C. neoformans spores through the use of soluble components in receptor-ligand blocking experiments. In this study, we used gain-of-function and loss-of-function assays with intact cells to evaluate the in vivo role of Dectin-1 and other C-type lectins in interactions with C. neoformans spores and discovered stark differences in outcome when compared with previous assays. First, we found that non-phagocytic cells expressing Dectin-1 were unable to bind spores and that highly sensitive reporter cells expressing Dectin-1 were not stimulated by spores. Second, we determined that some phagocytes from Dectin-1-/- mice interacted with spores differently than wild type (WT) cells, but the effects varied among assays and were modest overall. Third, while we detected small but statistically significant reductions in phagocytosis by primary alveolar macrophages from Dectin-1-/- mice compared to WT, we found no differences in survival between WT and Dectin-1-/- mice challenged with spores. Further analyses to assess the roles of other C-type lectins and their adapters revealed very weak stimulation of Dectin-2 reporter cells by spores and modest differences in binding and phagocytosis by Dectin-2-/- bone marrow-derived phagocytes. There were no discernable defects in binding or phagocytosis by phagocytes lacking Mannose Receptor, Mincle, Card-9, or FcRγ. Taken together, these results lead to the conclusion that Dectin-1 and other C-type lectins do not individually play a major roles in phagocytosis and innate defense by phagocytes against C. neoformans spores and highlight

  13. Interdisciplinary Studies of Magma-Tectonic Interactions

    NASA Astrophysics Data System (ADS)

    LaFemina, Peter; Stix, John; Saballos, Armando

    2013-08-01

    The Pan-American Advanced Studies Institute (PASI) Magma-Tectonic Interactions in the Americas brought together researchers, postdoctoral fellows, and graduate students from every country in the Americas with active volcanoes and one participant from Iceland. Lecturers presented the latest geochemical and geophysical approaches to studying magma-tectonic interactions. Participants were introduced to the tectonics and volcanism of Nicaragua through a daylong field trip and given opportunities to collect and analyze their own data, including seismic, geodetic, and geochemical data, at the Cerro Negro volcano.

  14. Electrostatic interactions in phospholipid membranes revealed by coherent 2D IR spectroscopy

    PubMed Central

    Volkov, V. V.; Chelli, R.; Zhuang, W.; Nuti, F.; Takaoka, Y.; Papini, A. M.; Mukamel, S.; Righini, R.

    2007-01-01

    The inter- and intramolecular interactions of the carbonyl moieties at the polar interface of a phospholipid membrane are probed by using nonlinear femtosecond infrared spectroscopy. Two-dimensional IR correlation spectra separate homogeneous and inhomogeneous broadenings and show a distinct cross-peak pattern controlled by electrostatic interactions. The inter- and intramolecular electrostatic interactions determine the inhomogeneous character of the optical response. Using molecular dynamics simulation and the nonlinear exciton equations approach, we extract from the spectra short-range structural correlations between carbonyls at the interface. PMID:17881567

  15. Quantitative analyses of RAG-RSS interactions and conformations revealed by atomic force microscopy.

    PubMed

    Pavlicek, Jeffrey W; Lyubchenko, Yuri L; Chang, Yung

    2008-10-28

    During V(D)J recombination, site specific DNA excision is dictated by the binding of RAG1/2 proteins to the conserved recombination signal sequence (RSS) within the genome. The interaction between RAG1/2 and RSS is thought to involve a large DNA distortion that is permissive for DNA cleavage. In this study, using atomic force microscopy imaging (AFM), we analyzed individual RAG-RSS complexes, in which the bending angle of RAG-associated RSS substrates could be visualized and quantified. We provided the quantitative measurement on the conformations of specific RAG-12RSS complexes. Previous data indicating the necessity of RAG2 for recombination implies a structural role in the RAG-RSS complex. Surprisingly, however, no significant difference was observed in conformational bending with AFM between RAG1-12RSS and RAG1/2-12RSS. RAG1 was found sufficient to induce DNA bending, and the addition of RAG2 did not change the bending profile. In addition, a prenicked 12RSS bound by RAG1/2 proteins displayed a conformation similar to the one observed with the intact 12RSS, implying that no greater DNA bending occurs after the nicking step in the signal complex. Taken together, the quantitative AFM results on the components of the recombinase emphasize a tightly held complex with a bend angle value near 60 degrees , which may be a prerequisite step for the site-specific nicking by the V(D)J recombinase.

  16. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity.

    PubMed

    Laing, Mark; Rees, Adrian; Vuong, Quoc C

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  17. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    PubMed Central

    Laing, Mark; Rees, Adrian; Vuong, Quoc C.

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies. PMID:26483710

  18. A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway.

    PubMed

    Salašová, Alena; Yokota, Chika; Potěšil, David; Zdráhal, Zbyněk; Bryja, Vítězslav; Arenas, Ernest

    2017-07-11

    Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. Our study shows for the first time that LRRK2 activates the WNT

  19. Electrostatic interaction between nonuniformly charged colloids: experimental and numerical study.

    PubMed

    Derot, Claire; Porcar, Lionel; Lee, YongJin; Pincus, Phillip A; Jho, YongSeok; In, Martin

    2015-02-10

    The influence of the surface charge distribution on the interaction between nanosized particles in water is reported. The distribution of charges at the surface of initially neutral microemulsion droplets has been modulated by additions of various oligomeric cationic surfactants. The osmotic compressibility of the doped microemulsions was measured by light and small-angle neutrons scattering and reveals that the overall effective interaction induced by the ionic groups is repulsive. However, particular charge distributions decrease the osmotic compressibility much less than others. Independent measurements of the activity of the bromide counterions with specific electrodes evidence a significant decrease in the effective charge, which, however, cannot account for the osmotic compressibility in the framework of the primitive model. The q dependence of the structure factor reveals an attractive contribution over a short distance. Numerical studies assign this attractive contribution to the overlap of hydration shells that are extended as a result of the charge localization.

  20. Ca(2+) modulating α-synuclein membrane transient interactions revealed by solution NMR spectroscopy.

    PubMed

    Zhang, Zeting; Dai, Chenye; Bai, Jia; Xu, Guohua; Liu, Maili; Li, Conggang

    2014-03-01

    α-Synuclein is involved in Parkinson's disease and its interaction with cell membrane is crucial to its pathological and physiological functions. Membrane properties, such as curvature and lipid composition, have been shown to affect the interactions by various techniques, but ion effects on α-synuclein membrane interactions remain elusive. Ca(2+) dynamic fluctuation in neurons plays important roles in the onset of Parkinson's disease and its influx is considered as one of the reasons to cause cell death. Using solution Nuclear Magnetic Resonance (NMR) spectroscopy, here we show that Ca(2+) can modulate α-synuclein membrane interactions through competitive binding to anionic lipids, resulting in dissociation of α-synuclein from membranes. These results suggest a negative modulatory effect of Ca(2+) on membrane mediated normal function of α-synuclein, which may provide a clue, to their dysfunction in neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Protein interaction patterns in different cellular environments are revealed by in-cell NMR

    PubMed Central

    Barbieri, Letizia; Luchinat, Enrico; Banci, Lucia

    2015-01-01

    In-cell NMR allows obtaining atomic-level information on biological macromolecules in their physiological environment. Soluble proteins may interact with the cellular environment in different ways: either specifically, with their functional partners, or non-specifically, with other cellular components. Such behaviour often causes the disappearance of the NMR signals. Here we show that by introducing mutations on the human protein profilin 1, used here as a test case, the in-cell NMR signals can be recovered. In human cells both specific and non-specific interactions are present, while in bacterial cells only the effect of non-specific interactions is observed. By comparing the NMR signal recovery pattern in human and bacterial cells, the relative contribution of each type of interaction can be assessed. This strategy allows detecting solution in-cell NMR spectra of soluble proteins without altering their fold, thus extending the applicability of in-cell NMR to a wider range of proteins. PMID:26399546

  2. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence.

    PubMed

    Quinn, Robert A; Vermeij, Mark J A; Hartmann, Aaron C; Galtier d'Auriac, Ines; Benler, Sean; Haas, Andreas; Quistad, Steven D; Lim, Yan Wei; Little, Mark; Sandin, Stuart; Smith, Jennifer E; Dorrestein, Pieter C; Rohwer, Forest

    2016-04-27

    Holobionts are assemblages of microbial symbionts and their macrobial host. As extant representatives of some of the oldest macro-organisms, corals and algae are important for understanding how holobionts develop and interact with one another. Using untargeted metabolomics, we show that non-self interactions altered the coral metabolome more than self-interactions (i.e. different or same genus, respectively). Platelet activating factor (PAF) and Lyso-PAF, central inflammatory modulators in mammals, were major lipid components of the coral holobionts. When corals were damaged during competitive interactions with algae, PAF increased along with expression of the gene encoding Lyso-PAF acetyltransferase; the protein responsible for converting Lyso-PAF to PAF. This shows that self and non-self recognition among some of the oldest extant holobionts involve bioactive lipids identical to those in highly derived taxa like humans. This further strengthens the hypothesis that major players of the immune response evolved during the pre-Cambrian.

  3. Complex evolutionary history of the Aeromonas veronii group revealed by host interaction and DNA sequence data.

    PubMed

    Silver, Adam C; Williams, David; Faucher, Joshua; Horneman, Amy J; Gogarten, J Peter; Graf, Joerg

    2011-02-16

    Aeromonas veronii biovar sobria, Aeromonas veronii biovar veronii, and Aeromonas allosaccharophila are a closely related group of organisms, the Aeromonas veronii Group, that inhabit a wide range of host animals as a symbiont or pathogen. In this study, the ability of various strains to colonize the medicinal leech as a model for beneficial symbiosis and to kill wax worm larvae as a model for virulence was determined. Isolates cultured from the leech out-competed other strains in the leech model, while most strains were virulent in the wax worms. Three housekeeping genes, recA, dnaJ and gyrB, the gene encoding chitinase, chiA, and four loci associated with the type three secretion system, ascV, ascFG, aexT, and aexU were sequenced. The phylogenetic reconstruction failed to produce one consensus tree that was compatible with most of the individual genes. The Approximately Unbiased test and the Genetic Algorithm for Recombination Detection both provided further support for differing evolutionary histories among this group of genes. Two contrasting tests detected recombination within aexU, ascFG, ascV, dnaJ, and gyrB but not in aexT or chiA. Quartet decomposition analysis indicated a complex recent evolutionary history for these strains with a high frequency of horizontal gene transfer between several but not among all strains. In this study we demonstrate that at least for some strains, horizontal gene transfer occurs at a sufficient frequency to blur the signal from vertically inherited genes, despite strains being adapted to distinct niches. Simply increasing the number of genes included in the analysis is unlikely to overcome this challenge in organisms that occupy multiple niches and can exchange DNA between strains specialized to different niches. Instead, the detection of genes critical in the adaptation to specific niches may help to reveal the physiological specialization of these strains.

  4. Complex Evolutionary History of the Aeromonas veronii Group Revealed by Host Interaction and DNA Sequence Data

    PubMed Central

    Faucher, Joshua; Horneman, Amy J.; Gogarten, J. Peter; Graf, Joerg

    2011-01-01

    Aeromonas veronii biovar sobria, Aeromonas veronii biovar veronii, and Aeromonas allosaccharophila are a closely related group of organisms, the Aeromonas veronii Group, that inhabit a wide range of host animals as a symbiont or pathogen. In this study, the ability of various strains to colonize the medicinal leech as a model for beneficial symbiosis and to kill wax worm larvae as a model for virulence was determined. Isolates cultured from the leech out-competed other strains in the leech model, while most strains were virulent in the wax worms. Three housekeeping genes, recA, dnaJ and gyrB, the gene encoding chitinase, chiA, and four loci associated with the type three secretion system, ascV, ascFG, aexT, and aexU were sequenced. The phylogenetic reconstruction failed to produce one consensus tree that was compatible with most of the individual genes. The Approximately Unbiased test and the Genetic Algorithm for Recombination Detection both provided further support for differing evolutionary histories among this group of genes. Two contrasting tests detected recombination within aexU, ascFG, ascV, dnaJ, and gyrB but not in aexT or chiA. Quartet decomposition analysis indicated a complex recent evolutionary history for these strains with a high frequency of horizontal gene transfer between several but not among all strains. In this study we demonstrate that at least for some strains, horizontal gene transfer occurs at a sufficient frequency to blur the signal from vertically inherited genes, despite strains being adapted to distinct niches. Simply increasing the number of genes included in the analysis is unlikely to overcome this challenge in organisms that occupy multiple niches and can exchange DNA between strains specialized to different niches. Instead, the detection of genes critical in the adaptation to specific niches may help to reveal the physiological specialization of these strains. PMID:21359176

  5. Spatiotemporal Molecular Analysis of Cyanobacteria Blooms Reveals Microcystis-Aphanizomenon Interactions

    PubMed Central

    Miller, Todd R.; Beversdorf, Lucas; Chaston, Sheena D.; McMahon, Katherine D.

    2013-01-01

    Spatial and temporal variability in cyanobacterial community composition (CCC) within and between eutrophic lakes is not well-described using culture independent molecular methods. We analyzed CCC across twelve locations in four eutrophic lakes and within-lake locations in the Yahara Watershed, WI, on a weekly basis, for 5 months. Taxa were discriminated by length of MspI-digested cpcB/A intergenic spacer gene sequences and identified by comparison to a PCR-based clone library. CCC across all stations was spatially segregated by depth of sampling locations (ANOSIM R = 0.23, p < 0.001). Accordingly, CCC was correlated with thermal stratification, nitrate and soluble reactive phosphorus (SRP, R = 0.2-0.3). Spatial variability in CCC and temporal trends in taxa abundances were rarely correlative between sampling locations in the same lake indicating significant within lake spatiotemporal heterogeneity. Across all stations, a total of 37 bloom events were observed based on distinct increases in phycocyanin. Out of 97 taxa, a single Microcystis, and two different Aphanizomenon taxa were the dominant cyanobacteria detected during bloom events. The Microcystis and Aphanizomenon taxa rarely bloomed together and were significantly anti-correlated with each other at 9 of 12 stations with Pearson R values of -0.6 to -0.9 (p < 0.001). Of all environmental variables measured, nutrients, especially nitrate were significantly greater during periods of Aphanizomenon dominance while the nitrate+nitrite:SRP ratio was lower. This study shows significant spatial variability in CCC within and between lakes structured by depth of the sampling location. Furthermore, our study reveals specific genotypes involved in bloom formation. More in-depth characterization of these genotypes should lead to a better understanding of factors promoting bloom events in these lakes and more reliable bloom prediction models. PMID:24086400

  6. Genome-wide interaction analysis reveals replicated epistatic effects on brain structure

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Jahanshad, Neda; Kohannim, Omid; Hua, Xue; Toga, Arthur W.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Weiner, Michael W.; Thompson, Paul M.

    2015-01-01

    The discovery of several genes that affect risk for Alzheimer's disease ignited a worldwide search for Single Nucleotide Polymorphisms (SNPs), common genetic variants that affect the brain. Genome-wide search of all possible SNP-SNP interactions is challenging and rarely attempted, due to the complexity of conducting ∼1011 pairwise statistical tests. However, recent advances in machine learning, e.g., iterative sure independence screening (SIS), make it possible to analyze datasets with vastly more predictors than observations. Using an implementation of the SIS algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all possible SNP-SNP interactions affecting regional brain volumes measured on MRI and mapped using tensor-based morphometry. We identified a significant SNP-SNP interaction between rs1345203 and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We mapped the whole-brain, voxelwise effects of the interaction in the ADNI dataset and separately in an independent replication dataset of healthy twins (QTIM). Each additional loading in the interaction effect was associated with ∼5% greater brain regional brain volume (a protective effect) in both ADNI and QTIM samples. PMID:25264344

  7. An Oral Contraceptive Drug Interaction Study

    ERIC Educational Resources Information Center

    Bradstreet, Thomas E.; Panebianco, Deborah L.

    2004-01-01

    This article focuses on a two treatment, two period, two treatment sequence crossover drug interaction study of a new drug and a standard oral contraceptive therapy. Both normal theory and distribution-free statistical analyses are provided along with a notable amount of graphical insight into the dataset. For one of the variables, the decision on…

  8. NACASETAC BAY: AN INTERACTIVE CASE STUDY

    EPA Science Inventory

    This interactive case study or "game" was created to provide a "hands on" experience in the application of a weight of evidence approach to sediment assessment. The game proceeds in two phases. In each phase the players work together as a group. A scenario is presented, and the g...

  9. An Oral Contraceptive Drug Interaction Study

    ERIC Educational Resources Information Center

    Bradstreet, Thomas E.; Panebianco, Deborah L.

    2004-01-01

    This article focuses on a two treatment, two period, two treatment sequence crossover drug interaction study of a new drug and a standard oral contraceptive therapy. Both normal theory and distribution-free statistical analyses are provided along with a notable amount of graphical insight into the dataset. For one of the variables, the decision on…

  10. NACASETAC BAY: AN INTERACTIVE CASE STUDY

    EPA Science Inventory

    This interactive case study or "game" was created to provide a "hands on" experience in the application of a weight of evidence approach to sediment assessment. The game proceeds in two phases. In each phase the players work together as a group. A scenario is presented, and the g...

  11. A Study of Multiplicities in Hadronic Interactions

    SciTech Connect

    Estrada Tristan, Nora Patricia; /San Luis Potosi U.

    2006-02-01

    Using data from the SELEX (Fermilab E781) experiment obtained with a minimum-bias trigger, we study multiplicity and angular distributions of secondary particles produced in interactions in the experimental targets. We observe interactions of {Sigma}{sup -}, proton, {pi}{sup -}, and {pi}{sup +}, at beam momenta between 250 GeV/c and 650 GeV/c, in copper, polyethylene, graphite, and beryllium targets. We show that the multiplicity and angular distributions for meson and baryon beams at the same momentum are identical. We also show that the mean multiplicity increases with beam momentum, and presents only small variations with the target material.

  12. Specific and Nonspecific Interactions in Ultraweak Protein–Protein Associations Revealed by Solvent Paramagnetic Relaxation Enhancements

    PubMed Central

    2015-01-01

    Weak and transient protein–protein interactions underlie numerous biological processes. However, the location of the interaction sites of the specific complexes and the effect of transient, nonspecific protein–protein interactions often remain elusive. We have investigated the weak self-association of human growth hormone (hGH, KD = 0.90 ± 0.03 mM) at neutral pH by the paramagnetic relaxation enhancement (PRE) of the amide protons induced by the soluble paramagnetic relaxation agent, gadodiamide (Gd(DTPA-BMA)). Primarily, it was found that the PREs are in agreement with the general Hwang-Freed model for relaxation by translational diffusion (J. Chem. Phys.1975, 63, 4017–4025), only if crowding effects on the diffusion in the protein solution are taken into account. Second, by measuring the PREs of the amide protons at increasing hGH concentrations and a constant concentration of the relaxation agent, it is shown that a distinction can be made between residues that are affected only by transient, nonspecific protein–protein interactions and residues that are involved in specific protein–protein associations. Thus, the PREs of the former residues increase linearly with the hGH concentration in the entire concentration range because of a reduction of the diffusion caused by the transient, nonspecific protein–protein interactions, while the PREs of the latter residues increase only at the lower hGH concentrations but decrease at the higher concentrations because of specific protein–protein associations that impede the access of gadodiamide to the residues of the interaction surface. Finally, it is found that the ultraweak aggregation of hGH involves several interaction sites that are located in patches covering a large part of the protein surface. PMID:24969589

  13. Cog5–Cog7 crystal structure reveals interactions essential for the function of a multisubunit tethering complex

    PubMed Central

    Ha, Jun Yong; Pokrovskaya, Irina D.; Climer, Leslie K.; Shimamura, Gregory R.; Kudlyk, Tetyana; Jeffrey, Philip D.; Lupashin, Vladimir V.; Hughson, Frederick M.

    2014-01-01

    The conserved oligomeric Golgi (COG) complex is required, along with SNARE and Sec1/Munc18 (SM) proteins, for vesicle docking and fusion at the Golgi. COG, like other multisubunit tethering complexes (MTCs), is thought to function as a scaffold and/or chaperone to direct the assembly of productive SNARE complexes at the sites of membrane fusion. Reflecting this essential role, mutations in the COG complex can cause congenital disorders of glycosylation. A deeper understanding of COG function and dysfunction will likely depend on elucidating its molecular structure. Despite some progress toward this goal, including EM studies of COG lobe A (subunits 1–4) and higher-resolution structures of portions of Cog2 and Cog4, the structures of COG’s eight subunits and the principles governing their assembly are mostly unknown. Here, we report the crystal structure of a complex between two lobe B subunits, Cog5 and Cog7. The structure reveals that Cog5 is a member of the complexes associated with tethering containing helical rods (CATCHR) fold family, with homology to subunits of other MTCs including the Dsl1, exocyst, and Golgi-associated retrograde protein (GARP) complexes. The Cog5–Cog7 interaction is analyzed in relation to the Dsl1 complex, the only other CATCHR-family MTC for which subunit interactions have been characterized in detail. Biochemical and functional studies validate the physiological relevance of the observed Cog5–Cog7 interface, indicate that it is conserved from yeast to humans, and demonstrate that its disruption in human cells causes defects in trafficking and glycosylation. PMID:25331899

  14. Ryanodine receptor point mutant E4032A reveals an allosteric interaction with ryanodine.

    PubMed

    Fessenden, J D; Chen, L; Wang, Y; Paolini, C; Franzini-Armstrong, C; Allen, P D; Pessah, I N

    2001-02-27

    The ryanodine receptor (RyR) family of proteins constitutes a unique type of calcium channel that mediates Ca(2+) release from endoplasmic reticulum/sarcoplasmic reticulum stores. Ryanodine has been widely used to identify contributions made by the RyR to signaling in both muscle and nonmuscle cells. Ryanodine, through binding to high- and low-affinity sites, has been suggested to block the channel pore based on its ability to induce partial conductance states and irreversible inhibition. We examined the effect of ryanodine on an RyR type 1 (RyR1) point mutant (E4032A) that exhibits a severely compromised phenotype. When expressed in 1B5 (RyR null/dyspedic) myotubes, E4032A is relatively unresponsive to stimulation by cell membrane depolarization or RyR agonists, although the full-length protein is correctly targeted to junctions and interacts with dihydropyridine receptors (DHPRs) inducing their arrangement into tetrads. However, treatment of E4032A-expressing cells with 200-500 microM ryanodine, concentrations that rapidly activate and then inhibit wild-type (wt) RyR1, restores the responsiveness of E4032A-expressing myotubes to depolarization and RyR agonists. Moreover, the restored E4032A channels remain resistant to subsequent exposure to ryanodine. In single-channel studies, E4032A exhibits infrequent (channel-open probability, P(o) < 0.005) and brief (<250 micros) gating events and insensitivity to Ca(2+). Addition of ryanodine restores Ca(2+)-dependent channel activity exhibiting full, 3/4, 1/2, and 1/4 substates. This evidence suggests that, whereas ryanodine does not occlude the RyR pore, it does bind to sites that allosterically induce substantial conformational changes in the RyR. In the case of E4032A, these changes overcome unfavorable energy barriers introduced by the E4032A mutation to restore channel function.

  15. Ryanodine receptor point mutant E4032A reveals an allosteric interaction with ryanodine

    PubMed Central

    Fessenden, James D.; Chen, Lili; Wang, Yaming; Paolini, Cecilia; Franzini-Armstrong, Clara; Allen, Paul D.; Pessah, Isaac N.

    2001-01-01

    The ryanodine receptor (RyR) family of proteins constitutes a unique type of calcium channel that mediates Ca2+ release from endoplasmic reticulum/sarcoplasmic reticulum stores. Ryanodine has been widely used to identify contributions made by the RyR to signaling in both muscle and nonmuscle cells. Ryanodine, through binding to high- and low-affinity sites, has been suggested to block the channel pore based on its ability to induce partial conductance states and irreversible inhibition. We examined the effect of ryanodine on an RyR type 1 (RyR1) point mutant (E4032A) that exhibits a severely compromised phenotype. When expressed in 1B5 (RyR null/dyspedic) myotubes, E4032A is relatively unresponsive to stimulation by cell membrane depolarization or RyR agonists, although the full-length protein is correctly targeted to junctions and interacts with dihydropyridine receptors (DHPRs) inducing their arrangement into tetrads. However, treatment of E4032A-expressing cells with 200–500 μM ryanodine, concentrations that rapidly activate and then inhibit wild-type (wt) RyR1, restores the responsiveness of E4032A-expressing myotubes to depolarization and RyR agonists. Moreover, the restored E4032A channels remain resistant to subsequent exposure to ryanodine. In single-channel studies, E4032A exhibits infrequent (channel-open probability, Po < 0.005) and brief (<250 μs) gating events and insensitivity to Ca2+. Addition of ryanodine restores Ca2+-dependent channel activity exhibiting full, 3/4, 1/2, and 1/4 substates. This evidence suggests that, whereas ryanodine does not occlude the RyR pore, it does bind to sites that allosterically induce substantial conformational changes in the RyR. In the case of E4032A, these changes overcome unfavorable energy barriers introduced by the E4032A mutation to restore channel function. PMID:11226332

  16. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array

    DOE PAGES

    Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; ...

    2014-10-27

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during themore » morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.« less

  17. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array

    NASA Astrophysics Data System (ADS)

    Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; Jensen, Michael P.; McCoy, Renata; Zhang, Minghua

    2014-10-01

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during the morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. Sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.

  18. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array

    SciTech Connect

    Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; Jensen, Michael P.; McCoy, Renata; Zhang, Minghua

    2014-10-27

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during the morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.

  19. Systems interaction study of a Westinghouse PWR

    SciTech Connect

    Youngblood, R.; Hanan, N.; Fitzpatrick, R.; Xue, D.; Bozoki, G.; Fresco, A.; Papazoglou, I.A.

    1985-01-01

    This paper presents methods and findings of a systems interaction study of Indian Point 3. The study was carried out in support of the resolution of Unresolved Safety Issue A-17 on Systems Interactions. Fault tree methods were employed. Among the study's findings is a single active failure in the low pressure injection function; this discovery led to a plant modification. In addition to providing support to the staff in resolving USI A-17, the project discovered an important new class of failure modes which led the utility to implement a hardware modification. The scope of the project is indicated, key features of the method are highlighted findings are discussed, and comments are offered on the usefulness of this type of, principal study. 9 refs., 1 fig., 1 tab.

  20. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions.

    PubMed

    Lin, Aijing; Liu, Kang K L; Bartsch, Ronny P; Ivanov, Plamen Ch

    2016-05-13

    Within the framework of 'Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. © 2016 The Author(s).

  1. Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions

    SciTech Connect

    Deng, Ye; Zhou, Jizhong; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-05-17

    Biodiversity and its responses to environmental changes is a central issue in ecology, and for society. Almost all microbial biodiversity researches focus on species richness and abundance but ignore the interactions among different microbial species/populations. However, determining the interactions and their relationships to environmental changes in microbial communities is a grand challenge, primarily due to the lack of information on the network structure among different microbial species/populations. Here, a novel random matrix theory (RMT)-based conceptual framework for identifying functional ecological gene networks (fEGNs) is developed with the high throughput functional gene array hybridization data from the grassland microbial communities in a long-term FACE (Free Air CO2 Enrichment) experiment. Both fEGNs under elevated CO2 (eCO2) and ambient CO2 (aCO2) possessed general characteristics of many complex systems such as scale-free, small-world, modular and hierarchical. However, the topological structure of the fEGNs is distinctly different between eCO2 and aCO2, suggesting that eCO2 dramatically altered the interactions among different microbial functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen dynamics, and plant productivity, indicating the potential importance of network interactions in ecosystem functioning. Elucidating network interactions in microbial communities and their responses to environmental changes are fundamentally important for research in microbial ecology, systems microbiology, and global change.

  2. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    NASA Astrophysics Data System (ADS)

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-05-01

    Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.

  3. A comprehensive Plasmodium falciparum protein interaction map reveals a distinct architecture of a core interactome

    PubMed Central

    Wuchty, Stefan; Adams, John H.; Ferdig, Michael T.

    2011-01-01

    We derive a map of protein interactions in the parasite P. falciparum from conserved interactions in S. cerevisiae, C. elegans, D. melanogaster and E. coli and pool them with experimental interaction data. The application of a clique-percolation algorithm allows us to find overlapping clusters, strongly correlated with yeast specific conserved protein complexes. Such clusters contain core activities that govern gene expression, largely dominated by components of protein production and degradation processes as well as RNA metabolism. A critical role of protein hubs in the interactome of P. falciparum is supported by their appearance in multiple clusters and the tendencies of their interactions to reach into many distinct protein clusters. Parasite proteins with a human ortholog tend to appear in single complexes. Annotating each protein with the stage where it is maximally expressed we observe a high level of cluster integrity in the ring stage. While we find no signal in the trophozoite phase, expression patterns are reversed in the schizont phase, implying a preponderance of parasite specific functions in this late, invasive schizont stage. As such, the inference of potential protein interactions and their analysis contributes to our understanding of the parasite, indicating basic pathways and processes as unique targets for therapeutic intervention. PMID:19333996

  4. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2015-01-02

    Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance.

  5. Ghost-in-the-Machine reveals human social signals for human-robot interaction.

    PubMed

    Loth, Sebastian; Jettka, Katharina; Giuliani, Manuel; de Ruiter, Jan P

    2015-01-01

    We used a new method called "Ghost-in-the-Machine" (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer's requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human-robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience.

  6. Ghost-in-the-Machine reveals human social signals for human–robot interaction

    PubMed Central

    Loth, Sebastian; Jettka, Katharina; Giuliani, Manuel; de Ruiter, Jan P.

    2015-01-01

    We used a new method called “Ghost-in-the-Machine” (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer’s requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human–robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience. PMID:26582998

  7. Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin

    PubMed Central

    Rynkiewicz, Michael J.; Schott, Veronika; Orzechowski, Marek

    2015-01-01

    Azimuthal movement of tropomyosin around the F-actin thin filament is responsible for muscle activation and relaxation. Recently a model of αα-tropomyosin, derived from molecular-mechanics and electron microscopy of different contractile states, showed that tropomyosin is rather stiff and pre-bent to present one specific face to F-actin during azimuthal transitions. However, a new model based on cryo-EM of troponin- and myosin-free filaments proposes that the interacting-face of tropomyosin can differ significantly from that in the original model. Because resolution was insufficient to assign tropomyosin side-chains, the interacting-face could not be unambiguously determined. Here, we use structural analysis and energy landscapes to further examine the proposed models. The observed bend in seven crystal structures of tropomyosin is much closer in direction and extent to the original model than to the new model. Additionally, we computed the interaction map for repositioning tropomyosin over the F-actin surface, but now extended over a much larger surface than previously (using the original interacting-face). This map shows two energy minima— one corresponding to the “blocked-state” as in the original model, and the other related by a simple 24 Å translation of tropomyosin parallel to the F-actin axis. The tropomyosinactin complex defined by the second minimum fits perfectly into the recent cryo-EM density, without requiring any change in the interacting-face. Together, these data suggest that movement of tropomyosin between regulatory states does not require interacting-face rotation. Further, they imply that thin filament assembly may involve an interplay between initially seeded tropomyosin molecules growing from distinct binding-site regions on actin. PMID:26286845

  8. Serum carotenoid interactions in premenopausal women reveal α-carotene is negatively impacted by body fat.

    PubMed

    Nuss, Emily Taylor; Valentine, Ashley R; Zhang, Zhumin; Lai, HuiChuan Jennifer; Tanumihardjo, Sherry A

    2017-01-01

    Increasing body mass indices (BMIs) across the globe reflect pandemic shifts towards habitual positive energy imbalances. Excess body fat in individuals is often associated with high-energy and high-fat diets scanty in fresh produce. Carotenoids are fat-soluble pigments plentiful in many fruits and vegetables. They are well-known for provitamin A and antioxidant functions, but little research has been done related to carotenoid-body mass interactions. Serum carotenoids were analyzed relative to body fat to determine correlations between major serum carotenoids, retinol, BMI, fat mass, and lean mass. Healthy women ( n = 76), 19-50 years old, were categorized into two comparison groups determined by percent body fat measured by air displacement plethysomography (BOD POD®), i.e. <31% and ≥31% fat mass. Anthropometric and three-day diet records were completed for BMI and nutrient intake calculations, respectively. Serum α-carotene concentrations were strongly inversely associated with all measures of body composition ( P < 0.001 α-carotene) controlling for dietary intake and age, while β-carotene, lutein, and lycopene were not ( P > 0.05). Dietary intake between groups did not differ, including carrot consumption (a high dietary source of α-carotene). These results confirm previous carotenoid-health research and propose the need for further investigation of potential protective roles that α-carotene may perform for optimal health. Serum α-carotene may provide a deeper and clinically relevant purpose, beyond previous suggestions for its use as a biomarker for fruit and vegetable consumption, in that α-carotene may be a biomarker for chronic disease risk frequently linked with obesity. Impact statement Carotenoids are important pigments in fruit and vegetables and found in human serum. This study isolated a negative relationship between serum α-carotene and body fatness. As humans begin to live over a century, determining biomarkers of ultimate

  9. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk

    PubMed Central

    Shi, Lei; Pigeonneau, Nathalie; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2014-01-01

    Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis. PMID:25374563

  10. Synchrotron X-ray microscopy reveals early calcium and iron interaction with crocidolite fibers in the lung of exposed mice.

    PubMed

    Pascolo, Lorella; Zabucchi, Giuliano; Gianoncelli, Alessandra; Kourousias, George; Trevisan, Elisa; Pascotto, Ernesto; Casarsa, Claudia; Ryan, Chris; Lucattelli, Monica; Lungarella, Giuseppe; Cavarra, Eleonora; Bartalesi, Barbara; Zweyer, Marina; Cammisuli, Francesca; Melato, Mauro; Borelli, Violetta

    2016-01-22

    Human exposure to asbestos can cause a wide variety of lung diseases that are still a current major health concern, even if asbestos has been banned in many countries. It has been shown in many studies that asbestos fibers, ingested by alveolar macrophages, disrupt lung iron homeostasis by sequestering iron. Calcium can also be deposited on the fibers. The pathways along which iron and above all calcium interact with fibers are still unknown. Our aim was that of investigating if the iron accumulation induced by the inhaled asbestos fibers also involves calcium ions accumulation. Lung sections of asbestos-exposed mice were analyzed using an extremely sensitive procedure available at the synchrotron facilities, that provides morphological and chemical information based on X-ray fluorescence microspectroscopy (μ-XRF). In this study we show that (1) where conventional histochemical procedures revealed only weak deposits of iron and calcium, μ-XRF analysis is able to detect significant deposits of both iron and calcium on the inhaled asbestos fibers; (2) the extent of the deposition of these ions is proportionally directly related and (3) iron and calcium deposition on inhaled asbestos fibers is concomitant with the appearance of inflammatory and hyperplastic reactions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Interaction of Rio1 Kinase with Toyocamycin Reveals a Conformational Switch That Controls Oligomeric State and Catalytic Activity

    SciTech Connect

    Kiburu, Irene N.; LaRonde-LeBlanc, Nicole

    2012-10-10

    Rio1 kinase is an essential ribosome-processing factor required for proper maturation of 40 S ribosomal subunit. Although its structure is known, several questions regarding its functional remain to be addressed. We report that both Archaeoglobus fulgidus and human Rio1 bind more tightly to an adenosine analog, toyocamycin, than to ATP. Toyocamycin has antibiotic, antiviral and cytotoxic properties, and is known to inhibit ribosome biogenesis, specifically the maturation of 40 S. We determined the X-ray crystal structure of toyocamycin bound to Rio1 at 2.0 {angstrom} and demonstrated that toyocamycin binds in the ATP binding pocket of the protein. Despite this, measured steady state kinetics were inconsistent with strict competitive inhibition by toyocamycin. In analyzing this interaction, we discovered that Rio1 is capable of accessing multiple distinct oligomeric states and that toyocamycin may inhibit Rio1 by stabilizing a less catalytically active oligomer. We also present evidence of substrate inhibition by high concentrations of ATP for both archaeal and human Rio1. Oligomeric state studies show both proteins access a higher order oligomeric state in the presence of ATP. The study revealed that autophosphorylation by Rio1 reduces oligomer formation and promotes monomerization, resulting in the most active species. Taken together, these results suggest the activity of Rio1 may be modulated by regulating its oligomerization properties in a conserved mechanism, identifies the first ribosome processing target of toyocamycin and presents the first small molecule inhibitor of Rio1 kinase activity.

  12. Network-Based Study Reveals Potential Infection Pathways of Hepatitis-C Leading to Various Diseases

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal

    2014-01-01

    Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement. PMID:24743187

  13. A Trade-Off Study Revealing Nested Timescales of Constraint

    PubMed Central

    Wijnants, M. L.; Cox, R. F. A.; Hasselman, F.; Bosman, A. M. T.; Van Orden, G.

    2012-01-01

    This study investigates human performance in a cyclic Fitts task at three different scales of observation, either in the presence (difficult condition) or in the absence (easy condition) of a speed–accuracy trade-off. At the fastest scale, the harmonicity of the back and forth movements, which reflects the dissipation of mechanical energy, was measured within the timeframe of single trials. At an intermediate scale, speed and accuracy measures were determined over a trial. The slowest scale pertains to the temporal structure of movement variability, which evolves over multiple trials. In the difficult condition, reliable correlations across each of the measures corroborated a coupling of nested scales of performance. Participants who predominantly emphasized the speed-side of the trade-off (despite the instruction to be both fast and accurate) produced more harmonic movements and clearer 1/f scaling in the produced movement time series, but were less accurate and produced more random variability in the produced movement amplitudes (vice versa for more accurate participants). This implied that speed–accuracy trade-off was accompanied by a trade-off between temporal and spatial streams of 1/f scaling, as confirmed by entropy measures. In the easy condition, however, no trade-offs nor couplings among scales of performance were observed. Together, these results suggest that 1/f scaling is more than just a byproduct of cognition. These findings rather support the claim that interaction-dominant dynamics constitute a coordinative basis for goal-directed behavior. PMID:22654760

  14. Single molecule studies reveal new mechanisms for microtubule severing

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer; Diaz-Valencia, Juan Daniel; Morelli, Margaret; Zhang, Dong; Sharp, David

    2011-03-01

    Microtubule-severing enzymes are hexameric complexes made from monomeric enzyme subunits that remove tubulin dimers from the microtubule lattice. Severing proteins are known to remodel the cytoskeleton during interphase and mitosis, and are required in proper axon morphology and mammalian bone and cartilage development. We have performed the first single molecule imaging to determine where and how severing enzymes act to cut microtubules. We have focused on the original member of the group, katanin, and the newest member, fidgetin to compare their biophysical activities in vitro. We find that, as expected, severing proteins localize to areas of activity. Interestingly, the association is very brief: they do not stay bound nor do they bind cooperatively at active sites. The association duration changes with the nucleotide content, implying that the state in the catalytic cycle dictates binding affinity with the microtubule. We also discovered that, at lower concentrations, both katanin and fidgetin can depolymerize taxol-stabilized microtubules by removing terminal dimers. These studies reveal the physical regulation schemes to control severing activity in cells, and ultimately regulate cytoskeletal architecture. This work is supported by the March of Dimes Grant #5-FY09-46.

  15. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers.

    PubMed

    Luchini, Alessandra; Gerelli, Yuri; Fragneto, Giovanna; Nylander, Tommy; Pálsson, Gunnar K; Appavou, Marie-Sousai; Paduano, Luigi

    2017-03-01

    The safe application of nanotechnology devices in biomedicine requires fundamental understanding on how they interact with and affect the different components of biological systems. In this respect, the cellular membrane, the cell envelope, certainly represents an important target or barrier for nanosystems. Here we report on the interaction between functionalized SuperParamagnetic Iron Oxide Nanoparticles (SPIONs), promising contrast agents for Magnetic Resonance Imaging (MRI), and lipid bilayers that mimic the plasma membrane. Neutron Reflectometry, supported by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) experiments, was used to characterize this interaction by varying both SPION coating and lipid bilayer composition. In particular, the interaction of two different SPIONs, functionalized with a cationic surfactant and a zwitterionic phospholipid, and lipid bilayers, containing different amount of cholesterol, were compared. The obtained results were further validated by Dynamic Light Scattering (DLS) measurements and Cryogenic Transmission Electron Microscopy (Cryo-TEM) images. None of the investigated functionalized SPIONs were found to disrupt the lipid membrane. However, in all case we observed the attachment of the functionalized SPIONs onto the surface of the bilayers, which was affected by the bilayer rigidity, i.e. the cholesterol concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Unraveling the genetics of wheat-necrotrophic pathogen interactions reveals a conundrum

    USDA-ARS?s Scientific Manuscript database

    Interactions between wheat and the necrotrophic pathogens Parastagonospora nodorum (Pn) and Pyrenophora tritici-repentis (Ptr), which cause the foliar diseases Septoria nodorum blotch (SNB) and tan spot, respectively, involve host genes that recognize pathogen-produced necrotrophic effectors (NEs) i...

  17. Gene replacement reveals that p115/SNARE interactions are essential for Golgi biogenesis

    PubMed Central

    Puthenveedu, Manojkumar A.; Linstedt, Adam D.

    2004-01-01

    Functional characterization of protein interactions in mammalian systems has been hindered by the inability to perform complementation analyses in vivo. Here, we use functional replacement of the vesicle docking protein p115 to separate its essential from its nonessential interactions. p115 is required for biogenesis of the Golgi apparatus, but it is unclear whether its mechanism of action requires its golgin and/or SNARE interactions. Short interfering RNA-mediated knockdown of p115 induced extensive Golgi fragmentation and impaired secretory traffic. Reassembly of a structurally and functionally normal Golgi occurred on expression of a p115 homologue not recognized by the short interfering RNA. Strikingly, versions of p115 lacking its phosphorylation site and the golgin-binding domains also restored the Golgi apparatus in cells lacking endogenous p115. In contrast, the p115 SNARE-interacting domain was required for Golgi biogenesis. This suggests that p115 acts directly, rather than via a tether, to catalyze trans-SNARE complex formation preceding membrane fusion. PMID:14736916

  18. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence

    PubMed Central

    Vermeij, Mark J. A.; Hartmann, Aaron C.; Galtier d'Auriac, Ines; Benler, Sean; Haas, Andreas; Quistad, Steven D.; Lim, Yan Wei; Little, Mark; Sandin, Stuart; Smith, Jennifer E.; Dorrestein, Pieter C.; Rohwer, Forest

    2016-01-01

    Holobionts are assemblages of microbial symbionts and their macrobial host. As extant representatives of some of the oldest macro-organisms, corals and algae are important for understanding how holobionts develop and interact with one another. Using untargeted metabolomics, we show that non-self interactions altered the coral metabolome more than self-interactions (i.e. different or same genus, respectively). Platelet activating factor (PAF) and Lyso-PAF, central inflammatory modulators in mammals, were major lipid components of the coral holobionts. When corals were damaged during competitive interactions with algae, PAF increased along with expression of the gene encoding Lyso-PAF acetyltransferase; the protein responsible for converting Lyso-PAF to PAF. This shows that self and non-self recognition among some of the oldest extant holobionts involve bioactive lipids identical to those in highly derived taxa like humans. This further strengthens the hypothesis that major players of the immune response evolved during the pre-Cambrian. PMID:27122568

  19. Systematic Mapping of WNT-FZD Protein Interactions Reveals Functional Selectivity by Distinct WNT-FZD Pairs*

    PubMed Central

    Dijksterhuis, Jacomijn P.; Baljinnyam, Bolormaa; Stanger, Karen; Sercan, Hakki O.; Ji, Yun; Andres, Osler; Rubin, Jeffrey S.; Hannoush, Rami N.; Schulte, Gunnar

    2015-01-01

    The seven-transmembrane-spanning receptors of the FZD1–10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs. PMID:25605717

  20. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    PubMed Central

    Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.

    2014-01-01

    Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root

  1. Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions

    PubMed Central

    2013-01-01

    Background The microsporidia parasite Nosema contributes to the steep global decline of honey bees that are critical pollinators of food crops. There are two species of Nosema that have been found to infect honey bees, Nosema apis and N. ceranae. Genome sequencing of N. apis and comparative genome analysis with N. ceranae, a fully sequenced microsporidia species, reveal novel insights into host-parasite interactions underlying the parasite infections. Results We applied the whole-genome shotgun sequencing approach to sequence and assemble the genome of N. apis which has an estimated size of 8.5 Mbp. We predicted 2,771 protein- coding genes and predicted the function of each putative protein using the Gene Ontology. The comparative genomic analysis led to identification of 1,356 orthologs that are conserved between the two Nosema species and genes that are unique characteristics of the individual species, thereby providing a list of virulence factors and new genetic tools for studying host-parasite interactions. We also identified a highly abundant motif in the upstream promoter regions of N. apis genes. This motif is also conserved in N. ceranae and other microsporidia species and likely plays a role in gene regulation across the microsporidia. Conclusions The availability of the N. apis genome sequence is a significant addition to the rapidly expanding body of microsprodian genomic data which has been improving our understanding of eukaryotic genome diversity and evolution in a broad sense. The predicted virulent genes and transcriptional regulatory elements are potential targets for innovative therapeutics to break down the life cycle of the parasite. PMID:23829473

  2. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    PubMed

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent

  3. A Bird’s Eye View of Discard Reforms: Bird-Borne Cameras Reveal Seabird/Fishery Interactions

    PubMed Central

    Votier, Stephen C.; Bicknell, Anthony; Cox, Samantha L.; Scales, Kylie L.; Patrick, Samantha C.

    2013-01-01

    Commercial capture fisheries produce huge quantities of offal, as well as undersized and unwanted catch in the form of discards. Declines in global catches and legislation to ban discarding will significantly reduce discards, but this subsidy supports a large scavenger community. Understanding the potential impact of declining discards for scavengers should feature in an eco-system based approach to fisheries management, but requires greater knowledge of scavenger/fishery interactions. Here we use bird-borne cameras, in tandem with GPS loggers, to provide a unique view of seabird/fishery interactions. 20,643 digital images (one min−1) from ten bird-borne cameras deployed on central place northern gannets Morus bassanus revealed that all birds photographed fishing vessels. These were large (>15 m) boats, with no small-scale vessels. Virtually all vessels were trawlers, and gannets were almost always accompanied by other scavenging birds. All individuals exhibited an Area-Restricted Search (ARS) during foraging, but only 42% of ARS were associated with fishing vessels, indicating much ‘natural’ foraging. The proportion of ARS behaviours associated with fishing boats were higher for males (81%) than females (30%), although the reasons for this are currently unclear. Our study illustrates that fisheries form a very important component of the prey-landscape for foraging gannets and that a discard ban, such as that proposed under reforms of the EU Common Fisheries Policy, may have a significant impact on gannet behaviour, particularly males. However, a continued reliance on ‘natural’ foraging suggests the ability to switch away from scavenging, but only if there is sufficient food to meet their needs in the absence of a discard subsidy. PMID:23483906

  4. Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions.

    PubMed

    Chen, Yan ping; Pettis, Jeffery S; Zhao, Yan; Liu, Xinyue; Tallon, Luke J; Sadzewicz, Lisa D; Li, Renhua; Zheng, Huoqing; Huang, Shaokang; Zhang, Xuan; Hamilton, Michele C; Pernal, Stephen F; Melathopoulos, Andony P; Yan, Xianghe; Evans, Jay D

    2013-07-05

    The microsporidia parasite Nosema contributes to the steep global decline of honey bees that are critical pollinators of food crops. There are two species of Nosema that have been found to infect honey bees, Nosema apis and N. ceranae. Genome sequencing of N. apis and comparative genome analysis with N. ceranae, a fully sequenced microsporidia species, reveal novel insights into host-parasite interactions underlying the parasite infections. We applied the whole-genome shotgun sequencing approach to sequence and assemble the genome of N. apis which has an estimated size of 8.5 Mbp. We predicted 2,771 protein- coding genes and predicted the function of each putative protein using the Gene Ontology. The comparative genomic analysis led to identification of 1,356 orthologs that are conserved between the two Nosema species and genes that are unique characteristics of the individual species, thereby providing a list of virulence factors and new genetic tools for studying host-parasite interactions. We also identified a highly abundant motif in the upstream promoter regions of N. apis genes. This motif is also conserved in N. ceranae and other microsporidia species and likely plays a role in gene regulation across the microsporidia. The availability of the N. apis genome sequence is a significant addition to the rapidly expanding body of microsprodian genomic data which has been improving our understanding of eukaryotic genome diversity and evolution in a broad sense. The predicted virulent genes and transcriptional regulatory elements are potential targets for innovative therapeutics to break down the life cycle of the parasite.

  5. In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins

    PubMed Central

    Athmer, Jeremiah; Fehr, Anthony R.; Grunewald, Matthew; Smith, Everett Clinton; Denison, Mark R.

    2017-01-01

    ABSTRACT Coronavirus (CoV) replication and transcription are carried out in close proximity to restructured endoplasmic reticulum (ER) membranes in replication/transcription complexes (RTC). Many of the CoV nonstructural proteins (nsps) are required for RTC function; however, not all of their functions are known. nsp15 contains an endoribonuclease domain that is conserved in the CoV family. While the enzymatic activity and crystal structure of nsp15 are well defined, its role in replication remains elusive. nsp15 localizes to sites of RNA replication, but whether it acts independently or requires additional interactions for its function remains unknown. To begin to address these questions, we created an in situ tagged form of nsp15 using the prototypic CoV, mouse hepatitis virus (MHV). In MHV, nsp15 contains the genomic RNA packaging signal (P/S), a 95-bp RNA stem-loop structure that is not required for viral replication or nsp15 function. Utilizing this knowledge, we constructed an internal hemagglutinin (HA) tag that replaced the P/S. We found that nsp15-HA was localized to discrete perinuclear puncta and strongly colocalized with nsp8 and nsp12, both well-defined members of the RTC, but not the membrane (M) protein, involved in virus assembly. Finally, we found that nsp15 interacted with RTC-associated proteins nsp8 and nsp12 during infection, and this interaction was RNA independent. From this, we conclude that nsp15 localizes and interacts with CoV proteins in the RTC, suggesting it plays a direct or indirect role in virus replication. Furthermore, the use of in situ epitope tags could be used to determine novel nsp-nsp interactions in coronaviruses. PMID:28143984

  6. Novel interactions between actin and the proteasome revealed by complex haploinsufficiency.

    PubMed

    Haarer, Brian; Aggeli, Dimitra; Viggiano, Susan; Burke, Daniel J; Amberg, David C

    2011-09-01

    Saccharomyces cerevisiae has been a powerful model for uncovering the landscape of binary gene interactions through whole-genome screening. Complex heterozygous interactions are potentially important to human genetic disease as loss-of-function alleles are common in human genomes. We have been using complex haploinsufficiency (CHI) screening with the actin gene to identify genes related to actin function and as a model to determine the prevalence of CHI interactions in eukaryotic genomes. Previous CHI screening between actin and null alleles for non-essential genes uncovered ∼240 deleterious CHI interactions. In this report, we have extended CHI screening to null alleles for essential genes by mating a query strain to sporulations of heterozygous knock-out strains. Using an act1Δ query, knock-outs of 60 essential genes were found to be CHI with actin. Enriched in this collection were functional categories found in the previous screen against non-essential genes, including genes involved in cytoskeleton function and chaperone complexes that fold actin and tubulin. Novel to this screen was the identification of genes for components of the TFIID transcription complex and for the proteasome. We investigated a potential role for the proteasome in regulating the actin cytoskeleton and found that the proteasome physically associates with actin filaments in vitro and that some conditional mutations in proteasome genes have gross defects in actin organization. Whole-genome screening with actin as a query has confirmed that CHI interactions are important phenotypic drivers. Furthermore, CHI screening is another genetic tool to uncover novel functional connections. Here we report a previously unappreciated role for the proteasome in affecting actin organization and function.

  7. Highly asymmetric interactions between globin chains during hemoglobin assembly revealed by electrospray ionization mass spectrometry.

    PubMed

    Griffith, Wendell P; Kaltashov, Igor A

    2003-08-26

    chains in the assembly process is surprising, given a rather high sequence homology (ca. 43%) and highlights functional importance of intrinsic protein disorder. The study also demonstrates a tremendous potential of mass spectrometry as an analytical tool capable of elucidating protein interaction mechanisms in highly heterogeneous systems.

  8. The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis.

    PubMed

    Franzellitti, Silvia; Buratti, Sara; Valbonesi, Paola; Fabbri, Elena

    2013-09-15

    Aquatic organisms are unintentionally exposed to a large number of pharmaceutical residues in their natural habitats. Ecotoxicological studies have agreed that these compounds are not harmful to aquatic organisms, as their environmental concentrations are typically too low. However, recent reports have shown biological effects at such low concentrations when biological endpoints related to the therapeutic effects are assessed. Therefore, conservation of molecular targets is now addressed as a key aspect for the development of more efficient test strategies for pharmaceutical environmental risk assessment, providing the rationale for the mode of action (MOA) approach. In the present study the MOA approach was used to investigate the interactive effects of fluoxetine (FX) and propranolol (PROP) on the Mediterranean mussels (Mytilus galloprovincialis). Indeed, organisms in the environment are exposed to pharmaceutical mixtures throughout their lifetime, and particular combinations may be of concern. The antidepressant FX increases serotonin (5-HT) levels in the synaptic cleft by inhibiting 5-HT reuptake. PROP, a prototypical β-adrenoceptor antagonist, also blocks 5-HT1 receptors, which are negatively coupled to cAMP-mediated signaling. Cell signaling alterations potentially triggered by 5-HT1 receptor occupation were therefore assessed after a 7-day mussel exposure to FX or PROP, alone or in combination, each at 0.3 ng/L concentration. FX decreased cAMP levels and PKA activities in digestive gland and mantle/gonads, in agreement with an increased occupation of 5-HT1 receptors. PROP caused a decrease in cAMP levels and PKA activities in digestive gland and an increase in cAMP levels in mantle/gonads, consistent with a differential expression of adrenergic and 5-HT receptors in the two tissues. Co-exposure to FX and PROP provides significant indications for antagonistic effects of the pharmaceuticals, consistent with a direct (PROP) and indirect (FX) action on the same

  9. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80.

    PubMed

    Kern, David M; Monda, Julie K; Su, Kuan-Chung; Wilson-Kubalek, Elizabeth M; Cheeseman, Iain M

    2017-08-25

    Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions.

  10. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80

    PubMed Central

    Kern, David M; Wilson-Kubalek, Elizabeth M

    2017-01-01

    Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions. PMID:28841134

  11. Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy

    PubMed Central

    Umeyama, Tomokazu; Baek, Jinseok; Sato, Yuta; Suenaga, Kazu; Abou-Chahine, Fawzi; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Imahori, Hiroshi

    2015-01-01

    The close solid-state structure–property relationships of organic π−aromatic molecules have attracted interest due to their implications for the design of organic functional materials. In particular, a dimeric structure, that is, a unit consisting of two molecules, is required for precisely evaluating intermolecular interactions. Here, we show that the sidewall of a single-walled carbon nanotube (SWNT) represents a unique molecular dimer platform that can be directly visualized using high-resolution transmission electron microscopy. Pyrene is chosen as the π−aromatic molecule; its dimer is covalently linked to the SWNT sidewalls by aryl addition. Reflecting the orientation and separation of the two molecules, the pyrene dimer on the SWNT exhibits characteristic optical and photophysical properties. The methodology discussed here—form and probe molecular dimers—is highly promising for the creation of unique models and provides indispensable and fundamental information regarding molecular interactions. PMID:26173983

  12. Interactive Radio for Supporting Distance Education: An Evaluation Study.

    ERIC Educational Resources Information Center

    Bansal, Kiron; Chaudhary, Sohanvir S.

    1999-01-01

    Indira Gandhi National Open University (IGNOU) started an interactive radio project with the objective of interacting with students in their own languages and sharing experiences with them. Findings revealed that students appreciated the interactive radio sessions for helping accomplish course objectives, and that students' participation in the…

  13. Topological surface states interacting with bulk excitations in the Kondo insulator SmB6 revealed via planar tunneling spectroscopy.

    PubMed

    Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H

    2016-06-14

    Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3 Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6 The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6.

  14. Topological surface states interacting with bulk excitations in the Kondo insulator SmB6 revealed via planar tunneling spectroscopy

    PubMed Central

    Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H.

    2016-01-01

    Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3. Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6. The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6. PMID:27233936

  15. System-Wide Analysis Reveals a Complex Network of Tumor-Fibroblast Interactions Involved in Tumorigenicity

    PubMed Central

    Rajaram, Megha; Li, Jinyu; Egeblad, Mikala; Powers, R. Scott

    2013-01-01

    Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five) played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8) or minimally (STC1) significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti-stromal therapeutic strategies

  16. Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction.

    PubMed

    Torriani, Giulia; Galan-Navarro, Clara; Kunz, Stefan

    2017-02-15

    Viral entry represents the first step of every viral infection and is a determinant for the host range and disease potential of a virus. Here, we review the latest developments on cell entry of the highly pathogenic Old World arenavirus Lassa virus, providing novel insights into the complex virus-host cell interaction of this important human pathogen. We will cover new discoveries on the molecular mechanisms of receptor recognition, endocytosis, and the use of late endosomal entry factors.

  17. Mutational analysis of Trypanosoma brucei RNA editing ligase reveals regions critical for interaction with KREPA2.

    PubMed

    Mehta, Vaibhav; Sen, Rajashree; Moshiri, Houtan; Salavati, Reza

    2015-01-01

    The Trypanosoma brucei parasite causes the vector-borne disease African sleeping sickness. Mitochondrial mRNAs of T. brucei undergo posttranscriptional RNA editing to make mature, functional mRNAs. The final step of this process is catalyzed by the essential ligase, T. brucei RNA Editing Ligase 1 (TbREL1) and the closely related T. brucei RNA Editing Ligase 2 (TbREL2). While other ligases such as T7 DNA ligase have both a catalytic and an oligonucleotide/oligosaccharide-binding (OB)-fold domain, T. brucei RNA editing ligases contain only the catalytic domain. The OB-fold domain, which is required for interaction with the substrate RNA, is provided in trans by KREPA2 (for TbREL1) and KREPA1 (for TbREL2). KREPA2 enhancement of TbREL1 ligase activity is presumed to occur via an OB-fold-mediated increase in substrate specificity and catalysis. We characterized the interaction between TbREL1 and KREPA2 in vitro using full-length, truncated, and point-mutated ligases. As previously shown, our data indicate strong, specific stimulation of TbREL1 catalytic activity by KREPA2. We narrowed the region of contact to the final 59 C-terminal residues of TbREL1. Specifically, the TbREL1 C-terminal KWKE (441-444) sequence appear to coordinate the KREPA2-mediated enhancement of TbREL1 activities. N-terminal residues F206, T264 and Y275 are crucial for the overall activity of TbREL1, particularly for F206, a mutation of this residue also disrupts KREPA2 interaction. Thus, we have identified the critical TbREL1 regions and amino acids that mediate the KREPA2 interaction.

  18. Large-scale interaction effects reveal missing heritability in schizophrenia, bipolar disorder and posttraumatic stress disorder

    PubMed Central

    Woo, H J; Yu, C; Kumar, K; Reifman, J

    2017-01-01

    Genetic susceptibility factors behind psychiatric disorders typically contribute small effects individually. A possible explanation for the missing heritability is that the effects of common variants are not only polygenic but also non-additive, appearing only when interactions within large groups are taken into account. Here, we tested this hypothesis for schizophrenia (SZ) and bipolar disorder (BP) disease risks, and identified genetic factors shared with posttraumatic stress disorder (PTSD). When considered independently, few single-nucleotide polymorphisms (SNPs) reached genome-wide significance. In contrast, when SNPs were selected in groups (containing up to thousands each) and the collective effects of all interactions were estimated, the association strength for SZ/BP rose dramatically with a combined sample size of 7187 cases and 8309 controls. We identified a large number of genes and pathways whose association was significant only when interaction effects were included. The gene with highest association was CSMD1, which encodes a negative regulator of complement activation. Pathways for glycosaminoglycan (GAG) synthesis exhibited strong association in multiple contexts. Taken together, highly associated pathways suggested a pathogenesis mechanism where maternal immune activation causes disruption of neurogenesis (compounded by impaired cell cycle, DNA repair and neuronal migration) and deficits in cortical interneurons, leading to symptoms triggered by synaptic pruning. Increased risks arise from GAG deficiencies causing complement activation and excessive microglial action. Analysis of PTSD data sets suggested an etiology common to SZ/BP: interneuron deficiency can also lead to impaired control of fear responses triggered by trauma. We additionally found PTSD risk factors affecting synaptic plasticity and fatty acid signaling, consistent with the fear extinction model. Our results suggest that much of the missing heritability of psychiatric disorders

  19. Alluvial Fans on Titan Reveal Atmosphere and Surface Interactions and Material Transport

    NASA Astrophysics Data System (ADS)

    Radebaugh, J.; Ventra, D.; Lorenz, R. D.; Farr, T. G.; Kirk, R. L.; Hayes, A.; Malaska, M. J.; Birch, S.; Liu, Z. Y. C.; Lunine, J. I.; Barnes, J. W.; Le Gall, A. A.; Lopes, R. M. C.; Stofan, E. R.; Wall, S. D.; Paillou, P.

    2015-12-01

    Alluvial fans, important depositional systems that record how sediment is stored and moved on planetary surfaces, are found on the surface of Titan, a body of significantly different materials and process rates than Earth. As seen by Cassini's Synthetic Aperture Radar (SAR) images at 350 m resolution, fans on Titan are found globally and are variable in size, shape and relationship to adjacent landforms. Their morphologies and SAR characteristics, which reveal roughness, textural patterns and other material properties, show similarities with fans in Death Valley seen by SAR and indicate there are regions of high relative relief locally, in the Ganesa, Xanadu and equatorial mountain belt regions. The Leilah Fluctus fans near Ganesa are ~30 km x 15 km, similar to the largest Death Valley fans, and revealing mountainous topography adjacent to plains. Others have gentle slopes over hundreds of kilometers, as in the high southern latitude lakes regions or the Mezzoramia southern midlatitudes, where a fan system is 200 km x 150 km, similar to the Qarn Alam fan emerging into the Rub al Khali in Oman. Additionally, there is evidence for a range of particle sizes, from relatively coarse (~2 cm or more) to fine, revealing long-term duration and variability in erosion by methane rainfall and transport. Some features have morphologies consistent with proximality to high-relief source areas and highly ephemeral runoff, while others appear to draw larger catchment areas and are perhaps characterized by more prolonged episodes of flow. The presence of many fans indicates the longevity of rainfall and erosion in Titan's surface processes and reveals that sediment transport and the precipitation that drives it are strongly episodic. Alluvial fans join rivers, lakes, eroded mountains, sand dunes and dissolution features in the list of surface morphologies derived from atmospheric and fluvial processes similar to those on Earth, strengthening comparisons between the two planetary

  20. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci.

    PubMed

    Martin, Paul; McGovern, Amanda; Orozco, Gisela; Duffus, Kate; Yarwood, Annie; Schoenfelder, Stefan; Cooper, Nicholas J; Barton, Anne; Wallace, Chris; Fraser, Peter; Worthington, Jane; Eyre, Steve

    2015-11-30

    Genome-wide association studies have been tremendously successful in identifying genetic variants associated with complex diseases. The majority of association signals are intergenic and evidence is accumulating that a high proportion of signals lie in enhancer regions. We use Capture Hi-C to investigate, for the first time, the interactions between associated variants for four autoimmune diseases and their functional targets in B- and T-cell lines. Here we report numerous looping interactions and provide evidence that only a minority of interactions are common to both B- and T-cell lines, suggesting interactions may be highly cell-type specific; some disease-associated SNPs do not interact with the nearest gene but with more compelling candidate genes (for example, FOXO1, AZI2) often situated several megabases away; and finally, regions associated with different autoimmune diseases interact with each other and the same promoter suggesting common autoimmune gene targets (for example, PTPRC, DEXI and ZFP36L1).

  1. Phagosome maturation during endosome interaction revealed by partial rhodopsin processing in retinal pigment epithelium

    PubMed Central

    Wavre-Shapton, Silène T.; Meschede, Ingrid P.; Seabra, Miguel C.; Futter, Clare E.

    2014-01-01

    ABSTRACT Defects in phagocytosis and degradation of photoreceptor outer segments (POS) by the retinal pigment epithelium (RPE) are associated with aging and retinal disease. The daily burst of rod outer segment (ROS) phagocytosis by the RPE provides a unique opportunity to analyse phagosome processing in vivo. In mouse retinae, phagosomes containing stacked rhodopsin-rich discs were identified by immuno-electron microscopy. Early apical phagosomes stained with antibodies against both cytoplasmic and intradiscal domains of rhodopsin. During phagosome maturation, a remarkably synchronised loss of the cytoplasmic epitope coincided with movement to the cell body and preceded phagosome–lysosome fusion and disc degradation. Loss of the intradiscal rhodopsin epitope and disc digestion occurred upon fusion with cathepsin-D-positive lysosomes. The same sequential stages of phagosome maturation were identified in cultured RPE and macrophages challenged with isolated POS. Loss of the cytoplasmic rhodopsin epitope was insensitive to pH but sensitive to protease inhibition and coincided with the interaction of phagosomes with endosomes. Thus, during pre-lysosomal maturation of ROS-containing phagosomes, limited rhodopsin processing occurs upon interaction with endosomes. This potentially provides a sensitive readout of phagosome–endosome interactions that is applicable to multiple phagocytes. PMID:25074813

  2. NMR spectroscopic approach reveals metabolic diversity of human blood plasma associated with protein-drug interaction.

    PubMed

    Du, Yuanyuan; Lan, Wenxian; Ji, Zhusheng; Zhang, Xu; Jiang, Bin; Zhou, Xin; Li, Conggang; Liu, Maili

    2013-09-17

    Although blood plasma has been used to diagnose diseases and to evaluate physiological conditions, it is not easy to establish a global normal concentration range for the targeting components in the plasma due to the inherent metabolic diversity. We show here that NMR spectroscopy coupled with principal component analysis (PCA) may provide a useful method for quantitatively characterizing the metabolic diversity of human blood plasma. We analyzed 70 human blood plasma samples with and without addition of ibuprofen. By defining the PC score values as diversity index (I(div)) and the drug-induced PC score value change as interaction index (I(dist)), we find that the two indexes are highly correlated (P < 0.0001). Triglycerides, choline-containing phospholipids, lactate, and pyruvate are associated with both indexes (P < 0.0001), respectively. In addition, a significant amount of lactate and pyruvate are in the NMR "invisible" bound forms and can be replaced by ibuprofen. The diffusion and transverse relaxation time weighted NMR approaches gave rise to a better characterization of the diversity and the interaction than that of the one acquired using NOESYPR1D with 100 ms mixing time. These results might be useful for understanding the blood plasma-drug interaction and personalized therapy.

  3. Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions.

    PubMed

    Akiba, Hiroki; Tsumoto, Kouhei

    2015-07-01

    Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Real-Time Quantum Dynamics Reveals Complex, Many-Body Interactions in Solvated Nanodroplets.

    PubMed

    Oviedo, M Belén; Wong, Bryan M

    2016-04-12

    Electronic excitations in the liquid phase are surprisingly rich and considerably more complex than either gas-phase or solid-state systems. While the majority of physical and biological processes take place in solvent, our understanding of nonequilibrium excited-state processes in these condensed phase environments remains far from complete. A central and long-standing issue in these solvated environments is the assessment of many-body interactions, particularly when the entire system is out of equilibrium and many quantum states participate in the overall process. Here we present a microscopic picture of solute-solvent electron dynamics and solvatochromic effects, which we uncover using a new real-time quantum dynamics approach for extremely large solvated nanodroplets. In particular, we find that a complex interplay of quantum interactions underlies our observations of solute-solvent effects, and simple macroscopic solvatochromic shifts can even be qualitatively different at the microscopic molecular level in these systems. By treating both the solvent and the solute on the same footing at a quantum-mechanical level, we demonstrate that the electron dynamics in these systems are surprisingly complex, and the emergence of many-body interactions underlies the dynamics in these solvated systems.

  5. DNA Interaction Studies of Selected Polyamine Conjugates

    PubMed Central

    Szumilak, Marta; Merecz, Anna; Strek, Malgorzata; Stanczak, Andrzej; Inglot, Tadeusz W.; Karwowski, Boleslaw T.

    2016-01-01

    The interaction of polyamine conjugates with DNA double helix has been studied. Binding properties were examined by ethidium bromide (EtBr) displacement and DNA unwinding/topoisomerase I/II (Topo I/II) activity assays, as well as dsDNA thermal stability studies and circular dichroism spectroscopy. Genotoxicity of the compounds was estimated by a comet assay. It has been shown that only compound 2a can interact with dsDNA via an intercalative binding mode as it displaced EtBr from the dsDNA-dye complex, with Kapp = 4.26 × 106 M−1; caused an increase in melting temperature; changed the circular dichroism spectrum of dsDNA; converted relaxed plasmid DNA into a supercoiled molecule in the presence of Topo I and reduced the amount of short oligonucleotide fragments in the comet tail. Furthermore, preliminary theoretical study has shown that interaction of the discussed compounds with dsDNA depends on molecule linker length and charge distribution over terminal aromatic chromophores. PMID:27657041

  6. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins

    PubMed Central

    Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua

    2016-01-01

    Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 103 times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state. PMID:27181651

  7. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua

    2016-05-01

    Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 103 times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state.

  8. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions.

    PubMed

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E; Levesque, Brié; Pedersen, Stine B; Bartels, Lina; Wapenaar, Hannah; Ye, Fei; Zhang, Mingjie; Bowen, Mark E; Strømgaard, Kristian

    2017-09-15

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effect of phosphorylation on PSD-95, we used semisynthetic strategies to introduce phosphorylated amino acids at four positions within the PDZ domains and examined the effects on interactions with a large set of binding partners. We observed complex effects on affinity. Most notably, phosphorylation at Y397 induced a significant increase in affinity for stargazin, as confirmed by NMR and single molecule FRET. Additionally, we compared the effects of phosphorylation to phosphomimetic mutations, which revealed that phosphomimetics are ineffective substitutes for tyrosine phosphorylation. Our strategy to generate site-specifically phosphorylated PDZ domains provides a detailed understanding of the role of phosphorylation in the regulation of PSD-95 interactions.

  9. Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy.

    PubMed

    Del Corro, E; Botello-Méndez, A; Gillet, Y; Elias, A L; Terrones, H; Feng, S; Fantini, C; Rhodes, Daniel; Pradhan, N; Balicas, L; Gonze, X; Charlier, J-C; Terrones, M; Pimenta, M A

    2016-04-13

    Resonant Raman spectroscopy is a powerful tool for providing information about excitons and exciton-phonon coupling in two-dimensional materials. We present here resonant Raman experiments of single-layered WS2 and WSe2 using more than 25 laser lines. The Raman excitation profiles of both materials show unexpected differences. All Raman features of WS2 monolayers are enhanced by the first-optical excitations (with an asymmetric response for the spin-orbit related XA and XB excitons), whereas Raman bands of WSe2 are not enhanced at XA/B energies. Such an intriguing phenomenon is addressed by DFT calculations and by solving the Bethe-Salpeter equation. These two materials are very similar. They prefer the same crystal arrangement, and their electronic structure is akin, with comparable spin-orbit coupling. However, we reveal that WS2 and WSe2 exhibit quite different exciton-phonon interactions. In this sense, we demonstrate that the interaction between XC and XA excitons with phonons explains the different Raman responses of WS2 and WSe2, and the absence of Raman enhancement for the WSe2 modes at XA/B energies. These results reveal unusual exciton-phonon interactions and open new avenues for understanding the two-dimensional materials physics, where weak interactions play a key role coupling different degrees of freedom (spin, optic, and electronic).

  10. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.

    PubMed

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F Jerry; Glöckner, Frank O; Crowley, Susan P; O'Sullivan, Orla; Cotter, Paul D; Adams, Claire; Dobson, Alan D W; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  11. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus

    PubMed Central

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F. Jerry; Glöckner, Frank O.; Crowley, Susan P.; O'Sullivan, Orla; Cotter, Paul D.; Adams, Claire; Dobson, Alan D. W.; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  12. Combining Natural Sequence Variation with High Throughput Mutational Data to Reveal Protein Interaction Sites

    PubMed Central

    Melamed, Daniel; Young, David L.; Miller, Christina R.; Fields, Stanley

    2015-01-01

    Many protein interactions are conserved among organisms despite changes in the amino acid sequences that comprise their contact sites, a property that has been used to infer the location of these sites from protein homology. In an inter-species complementation experiment, a sequence present in a homologue is substituted into a protein and tested for its ability to support function. Therefore, substitutions that inhibit function can identify interaction sites that changed over evolution. However, most of the sequence differences within a protein family remain unexplored because of the small-scale nature of these complementation approaches. Here we use existing high throughput mutational data on the in vivo function of the RRM2 domain of the Saccharomyces cerevisiae poly(A)-binding protein, Pab1, to analyze its sites of interaction. Of 197 single amino acid differences in 52 Pab1 homologues, 17 reduce the function of Pab1 when substituted into the yeast protein. The majority of these deleterious mutations interfere with the binding of the RRM2 domain to eIF4G1 and eIF4G2, isoforms of a translation initiation factor. A large-scale mutational analysis of the RRM2 domain in a two-hybrid assay for eIF4G1 binding supports these findings and identifies peripheral residues that make a smaller contribution to eIF4G1 binding. Three single amino acid substitutions in yeast Pab1 corresponding to residues from the human orthologue are deleterious and eliminate binding to the yeast eIF4G isoforms. We create a triple mutant that carries these substitutions and other humanizing substitutions that collectively support a switch in binding specificity of RRM2 from the yeast eIF4G1 to its human orthologue. Finally, we map other deleterious substitutions in Pab1 to inter-domain (RRM2–RRM1) or protein-RNA (RRM2–poly(A)) interaction sites. Thus, the combined approach of large-scale mutational data and evolutionary conservation can be used to characterize interaction sites at single

  13. Systematic Analysis Reveals Elongation Factor 2 and α-Enolase as Novel Interaction Partners of AKT2

    PubMed Central

    Bottermann, Katharina; Reinartz, Michael; Barsoum, Marian; Kötter, Sebastian; Gödecke, Axel

    2013-01-01

    AKT2 is one of the three isoforms of the protein kinase AKT being involved in the modulation of cellular metabolism. Since protein-protein interactions are one possibility to convey specificity in signal transduction, we performed AKT2-protein interaction analysis to elucidate their relevance for AKT2-dependent cellular functions. We identified heat shock protein 90 kDa (HSP90), Cdc37, heat shock protein 70 kDa (HSP70), 78 kDa glucose regulated protein (GRP78), tubulin, GAPDH, α-enolase and elongation factor 2 (EF2) as AKT2-interacting proteins by a combination of tandem affinity purification and mass spectrometry in HEK293T cells. Quantitative MS-analysis using stable isotope labeling by amino acids in cell culture (SILAC) revealed that only HSP90 and Cdc37 interact stably with AKT2, whereas the other proteins interact with low affinity with AKT2. The interactions of AKT2 with α-enolase and EF2 were further analyzed in order to uncover the functional relevance of these newly discovered binding partners. Despite the interaction of AKT2 and α-enolase, which was additionally validated by proximity ligation assay (PLA), no significant impact of AKT on α-enolase activity was detected in activity measurements. AKT stimulation via insulin and/or inhibition with the ATP-competitive inhibitor CCT128930 did not alter enzymatic activity of α-enolase. Interestingly, the direct interaction of AKT2 and EF2 was found to be dynamically regulated in embryonic rat cardiomyocytes. Treatment with the PI3-kinase inhibitor LY294002 before stimulation with several hormones stabilized the complex, whereas stimulation alone led to complex dissociation which was analyzed in situ with PLA. Taken together, these findings point to new aspects of AKT2-mediated signal transduction in protein synthesis and glucose metabolism. PMID:23823123

  14. Francium Spectroscopy for Weak Interaction Studies

    NASA Astrophysics Data System (ADS)

    Orozco, Luis

    2014-05-01

    Francium, a radioactive element, is the heaviest alkali. Its atomic and nuclear structure makes it an ideal laboratory to study the weak interaction. Laser trapping and cooling in-line with the superconducting LINAC accelerator at Stony Brook opened the precision study of its atomic structure. I will present our proposal and progress towards weak interaction measurements at TRIUMF, the National Canadian Accelerator in Vancouver. These include the commissioning run of the Francium Trapping Facility, hyperfine anomaly measurements on a chain of Fr isotopes, the nuclear anapole moment through parity non-conserving transitions in the ground state hyperfine manifold. These measurements should shed light on the nucleon-nucleon weak interaction. This work is done by the FrPNC collaboration: S. Aubin College of William and Mary, J. A. Behr TRIUMF, R. Collister U. Manitoba, E. Gomez UASLP, G. Gwinner U. Manitoba, M. R. Pearson TRIUMF, L. A. Orozco UMD, M. Tandecki TRIUMF, J. Zhang UMD Supported by NSF and DOE from the USA; TRIUMF, NRC and NSERC from Canada; and CONACYT from Mexico

  15. Insights on the Interactions of Synthetic Amphipathic Peptides with Model Membranes as Revealed by 31P and 2H Solid-State NMR and Infrared Spectroscopies

    PubMed Central

    Ouellet, Marise; Bernard, Geneviève; Voyer, Normand; Auger, Michèle

    2006-01-01

    We studied the interaction between synthetic amphipathic peptides and model membranes by solid-state NMR and infrared spectroscopies. Peptides with 14 and 21 amino acids composed of leucines and phenylalanines modified by the addition of crown ethers were synthesized. The 14-mer and 21-mer peptides both possess a helical amphipathic structure. To shed light on their membrane interaction, 31P and 2H solid-state NMR experiments were performed on both peptides in interaction with dimyristoylphosphatidylcholine vesicles in the absence and presence of cholesterol, dimyristoylphosphatidylglycerol vesicles, and oriented bicelles. 31P NMR experiments on multilamellar vesicles reveal that the dynamics and/or orientation of the polar headgroups are weakly yet markedly affected by the presence of the peptides, whereas 31P NMR experiments on bicelles indicate no significant changes in the morphology and orientation of the bicelles. On the other hand, 2H NMR experiments on vesicles reveal that the acyl chain order is affected differently depending on the membrane lipidic composition and on the peptide hydrophobic length. Finally, infrared spectroscopy was used to study the interfacial region of the bilayer. Based on these studies, mechanisms of membrane perturbation are proposed for the 14-mer and 21-mer peptides in interaction with model membranes depending on the bilayer composition and peptide length. PMID:16533836

  16. Structural analysis of mitochondrial mutations reveals a role for bigenomic protein interactions in human disease.

    PubMed

    Lloyd, Rhiannon E; McGeehan, John E

    2013-01-01

    Mitochondria are the energy producing organelles of the cell, and mutations within their genome can cause numerous and often severe human diseases. At the heart of every mitochondrion is a set of five large multi-protein machines collectively known as the mitochondrial respiratory chain (MRC). This cellular machinery is central to several processes important for maintaining homeostasis within cells, including the production of ATP. The MRC is unique due to the bigenomic origin of its interacting proteins, which are encoded in the nucleus and mitochondria. It is this, in combination with the sheer number of protein-protein interactions that occur both within and between the MRC complexes, which makes the prediction of function and pathological outcome from primary sequence mutation data extremely challenging. Here we demonstrate how 3D structural analysis can be employed to predict the functional importance of mutations in mtDNA protein-coding genes. We mined the MITOMAP database and, utilizing the latest structural data, classified mutation sites based on their location within the MRC complexes III and IV. Using this approach, four structural classes of mutation were identified, including one underexplored class that interferes with nuclear-mitochondrial protein interactions. We demonstrate that this class currently eludes existing predictive approaches that do not take into account the quaternary structural organization inherent within and between the MRC complexes. The systematic and detailed structural analysis of disease-associated mutations in the mitochondrial Complex III and IV genes significantly enhances the predictive power of existing approaches and our understanding of how such mutations contribute to various pathologies. Given the general lack of any successful therapeutic approaches for disorders of the MRC, these findings may inform the development of new diagnostic and prognostic biomarkers, as well as new drugs and targets for gene therapy.

  17. Revealing equilibrium and rate constants of weak and fast noncovalent interactions.

    PubMed

    Mironov, Gleb G; Okhonin, Victor; Gorelsky, Serge I; Berezovski, Maxim V

    2011-03-15

    Rate and equilibrium constants of weak noncovalent molecular interactions are extremely difficult to measure. Here, we introduced a homogeneous approach called equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM) to determine k(on), k(off), and K(d) of weak (K(d) > 1 μM) and fast kinetics (relaxation time, τ < 0.1 s) in quasi-equilibrium for multiple unlabeled ligands simultaneously in one microreactor. Conceptually, an equilibrium mixture (EM) of a ligand (L), target (T), and a complex (C) is prepared. The mixture is introduced into the beginning of a capillary reactor with aspect ratio >1000 filled with T. Afterward, differential mobility of L, T, and C along the reactor is induced by an electric field. The combination of differential mobility of reactants and their interactions leads to a change of the EM peak shape. This change is a function of rate constants, so the rate and equilibrium constants can be directly determined from the analysis of the EM peak shape (width and symmetry) and propagation pattern along the reactor. We proved experimentally the use of ECEEM for multiplex determination of kinetic parameters describing weak (3 mM > K(d) > 80 μM) and fast (0.25 s ≥ τ ≥ 0.9 ms) noncovalent interactions between four small molecule drugs (ibuprofen, S-flurbiprofen, salicylic acid and phenylbutazone) and α- and β-cyclodextrins. The affinity of the drugs was significantly higher for β-cyclodextrin than α-cyclodextrin and mostly determined by the rate constant of complex formation.

  18. The Computational Studies of Plasmon Interaction

    NASA Astrophysics Data System (ADS)

    Demchuk, Antonina; Bolesta, Ivan; Kushnir, Oleksii; Kolych, Ihor

    2017-04-01

    In this paper, an interaction of metal nanoparticles that appears in the extinction spectra was investigated. The mutual coupling between the nanoparticles, the effect of size difference, and the interparticle separation in silver nanoparticle dimers are studied by computer discrete dipole approximation methods. The obtained results show that nanoparticle interaction results in the distinct collective modes, known as the low-energy bonding modes and the higher-energy antibounding modes. The spectral position of the modes is analyzed as a function of the ratio of interparticle distance to particle size that reduces the dependency on the particle size itself. The optical spectra of nanoparticles that form the fractal cluster were investigated. It was found that the number of spectral bands increase with the growth of the number of nanoparticles in the fractal cluster, which are described within the plasmon hybridization model.

  19. Molecular interaction studies using microscale thermophoresis.

    PubMed

    Jerabek-Willemsen, Moran; Wienken, Chistoph J; Braun, Dieter; Baaske, Philipp; Duhr, Stefan

    2011-08-01

    Abstract The use of infrared laser sources for creation of localized temperature fields has opened new possibilities for basic research and drug discovery. A recently developed technology, Microscale Thermophoresis (MST), uses this temperature field to perform biomolecular interaction studies. Thermophoresis, the motion of molecules in temperature fields, is very sensitive to changes in size, charge, and solvation shell of a molecule and thus suited for bioanalytics. This review focuses on the theoretical background of MST and gives a detailed overview on various applications to demonstrate the broad applicability. Experiments range from the quantification of the affinity of low-molecular-weight binders using fluorescently labeled proteins, to interactions between macromolecules and multi-component complexes like receptor containing liposomes. Information regarding experiment and experimental setup is based on the Monolith NT.115 instrument (NanoTemper Technologies GmbH).

  20. The Computational Studies of Plasmon Interaction.

    PubMed

    Demchuk, Antonina; Bolesta, Ivan; Kushnir, Oleksii; Kolych, Ihor

    2017-12-01

    In this paper, an interaction of metal nanoparticles that appears in the extinction spectra was investigated. The mutual coupling between the nanoparticles, the effect of size difference, and the interparticle separation in silver nanoparticle dimers are studied by computer discrete dipole approximation methods. The obtained results show that nanoparticle interaction results in the distinct collective modes, known as the low-energy bonding modes and the higher-energy antibounding modes. The spectral position of the modes is analyzed as a function of the ratio of interparticle distance to particle size that reduces the dependency on the particle size itself. The optical spectra of nanoparticles that form the fractal cluster were investigated. It was found that the number of spectral bands increase with the growth of the number of nanoparticles in the fractal cluster, which are described within the plasmon hybridization model.

  1. Molecular Interaction Studies Using Microscale Thermophoresis

    PubMed Central

    Jerabek-Willemsen, Moran; Wienken, Chistoph J.; Braun, Dieter; Baaske, Philipp

    2011-01-01

    Abstract The use of infrared laser sources for creation of localized temperature fields has opened new possibilities for basic research and drug discovery. A recently developed technology, Microscale Thermophoresis (MST), uses this temperature field to perform biomolecular interaction studies. Thermophoresis, the motion of molecules in temperature fields, is very sensitive to changes in size, charge, and solvation shell of a molecule and thus suited for bioanalytics. This review focuses on the theoretical background of MST and gives a detailed overview on various applications to demonstrate the broad applicability. Experiments range from the quantification of the affinity of low-molecular-weight binders using fluorescently labeled proteins, to interactions between macromolecules and multi-component complexes like receptor containing liposomes. Information regarding experiment and experimental setup is based on the Monolith NT.115 instrument (NanoTemper Technologies GmbH). PMID:21812660

  2. Interaction study between remoxipride and biperiden.

    PubMed

    Yisak, W; Farde, L; von Bahr, C; Nilsson, L B; Fredriksson, G; Ogenstad, S

    1993-01-01

    Twelve healthy male volunteers took part in a double-blind randomised cross-over study composed of three treatment sessions: remoxipride 100 mg; remoxipride 100 mg plus biperiden 4 mg; and biperiden 4 mg. Plasma and urine concentrations of remoxipride and biperiden, plasma prolactin levels, salivary flow and adverse events were recorded to assess pharmacodynamic interactions. Remoxipride and biperiden had no effect on each other's plasma concentrations. Biperiden did not affect the urinary recovery or renal clearance of remoxipride. Prolactin levels were unaffected by biperiden but increased following remoxipride administration. Differences in prolactin Cmax and tmax following remoxipride versus concomitant (remoxipride + biperiden) treatment were not statistically significant. However, a slight but statistically significant (P = 0.04) increase in prolactin AUC was observed after concomitant treatment. No significant differences could be observed between the recorded salivary flow in all the treatment sessions. Single doses of remoxipride and biperiden showed no pharmacokinetic or pharmacodynamic interaction.

  3. Revealing long-range interconnected hubs in human chromatin interaction data using graph theory.

    PubMed

    Boulos, R E; Arneodo, A; Jensen, P; Audit, B

    2013-09-13

    We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome--"master" replication origins--corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.

  4. Revealing Long-Range Interconnected Hubs in Human Chromatin Interaction Data Using Graph Theory

    NASA Astrophysics Data System (ADS)

    Boulos, R. E.; Arneodo, A.; Jensen, P.; Audit, B.

    2013-09-01

    We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome—“master” replication origins—corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.

  5. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy.

    PubMed

    Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy

    2017-06-06

    A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 310-helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Genomic context analysis reveals dense interaction network between vertebrate ultraconserved non-coding elements

    PubMed Central

    Dimitrieva, Slavica; Bucher, Philipp

    2012-01-01

    Motivation: Genomic context analysis, also known as phylogenetic profiling, is widely used to infer functional interactions between proteins but rarely applied to non-coding cis-regulatory DNA elements. We were wondering whether this approach could provide insights about utlraconserved non-coding elements (UCNEs). These elements are organized as large clusters, so-called gene regulatory blocks (GRBs) around key developmental genes. Their molecular functions and the reasons for their high degree of conservation remain enigmatic. Results: In a special setting of genomic context analysis, we analyzed the fate of GRBs after a whole-genome duplication event in five fish genomes. We found that in most cases all UCNEs were retained together as a single block, whereas the corresponding target genes were often retained in two copies, one completely devoid of UCNEs. This ‘winner-takes-all’ pattern suggests that UCNEs of a GRB function in a highly cooperative manner. We propose that the multitude of interactions between UCNEs is the reason for their extreme sequence conservation. Supplementary information: Supplementary data are available at Bioinformatics online and at http://ccg.vital-it.ch/ucne/ PMID:22962458

  7. Adaptation to real motion reveals direction-selective interactions between real and implied motion processing.

    PubMed

    Lorteije, Jeannette A M; Kenemans, J Leon; Jellema, Tjeerd; van der Lubbe, Rob H J; Lommers, Marjolein W; van Wezel, Richard J A

    2007-08-01

    Viewing static pictures of running humans evokes neural activity in the dorsal motion-sensitive cortex. To establish whether this response arises from direction-selective neurons that are also involved in real motion processing, we measured the visually evoked potential to implied motion following adaptation to static or moving random dot patterns. The implied motion response was defined as the difference between evoked potentials to pictures with and without implied motion. Interaction between real and implied motion was found as a modulation of this difference response by the preceding motion adaptation. The amplitude of the implied motion response was significantly reduced after adaptation to motion in the same direction as the implied motion, compared to motion in the opposite direction. At 280 msec after stimulus onset, the average difference in amplitude reduction between opposite and same adapted direction was 0.5 muV on an average implied motion amplitude of 2.0 muV. These results indicate that the response to implied motion arises from direction-selective motion-sensitive neurons. This is consistent with interactions between real and implied motion processing at a neuronal level.

  8. A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43

    PubMed Central

    Lanson, Nicholas A.; Maltare, Astha; King, Hanna; Smith, Rebecca; Kim, Ji Han; Taylor, J. Paul; Lloyd, Thomas E.; Pandey, Udai Bhan

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder characterized by the loss of motor neurons. Fused in sarcoma/translated in liposarcoma (FUS/TLS) and TAR DNA-binding protein (TDP)-43 are DNA/RNA-binding proteins found to be mutated in sporadic and familial forms of ALS. Ectopic expression of human ALS-causing FUS/TLS mutations in Drosophila caused an accumulation of ubiquitinated proteins, neurodegeneration, larval-crawling defect and early lethality. Mutant FUS/TLS localized to both the cytoplasm and nucleus, whereas wild-type FUS/TLS localized only to the nucleus, suggesting that the cytoplasmic localization of FUS/TLS is required for toxicity. Furthermore, we found that deletion of the nuclear export signal strongly suppressed toxicity, suggesting that cytoplasmic localization is necessary for neurodegeneration. Interestingly, we observed that FUS/TLS genetically interacts with TDP-43 in a mutation-dependent fashion to cause neurodegeneration in vivo. In summary, we demonstrate that ALS-associated mutations in FUS/TLS cause adult-onset neurodegeneration via a gain-of-toxicity mechanism that involves redistribution of the protein from the nucleus to the cytoplasm and is likely to involve an interaction with TDP-43. PMID:21487023

  9. Modified inoculation and disease assessment methods reveal host specificity in Erwinia tracheiphila-Cucurbitaceae interactions.

    PubMed

    Nazareno, Eric S; Dumenyo, C Korsi

    2015-12-01

    We conducted a greenhouse trial to determine specific compatible interactions between Erwinia tracheiphila strains and cucurbit host species. Using a modified inoculation system, E. tracheiphila strains HCa1-5N, UnisCu1-1N, and MISpSq-N were inoculated to cucumber (Cucumis sativus) cv. 'Sweet Burpless', melon (Cucumis melo) cv. 'Athena Hybrid', and squash (Cucubita pepo) cv. 'Early Summer Crookneck'. We observed symptoms and disease progression for 30 days; recorded the number of days to wilting of the inoculated leaf (DWIL), days to wilting of the whole plant (DWWP), and days to death of the plant (DDP). We found significant interactions between host cultivar and pathogen strains, which imply host specificity. Pathogen strains HCa1-5N and UnisCu1-1N isolated from Cucumis species exhibited more virulence in cucumber and melon than in squash, while the reverse was true for strain MISpSq-N, an isolate from Cucurbita spp. Our observations confirm a previous finding that E. tracheiphila strains isolated from Cucumis species were more virulent on Cucumis hosts and those from Cucubita were more virulent on Cucubita hosts. This confirmation helps in better understanding the pathosystem and provides baseline information for the subsequent development of new disease management strategies for bacterial wilt. We also demonstrated the efficiency of our modified inoculation and disease scoring methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Light scattered by model phantom bacteria reveals molecular interactions at their surface

    NASA Astrophysics Data System (ADS)

    Ghetta, A.; Prosperi, D.; Mantegazza, F.; Panza, L.; Riva, S.; Bellini, T.

    2005-11-01

    Testing molecular interactions is an ubiquitous need in modern biology and molecular medicine. Here, we present a qualitative and quantitative method rooted in the basic properties of the scattering of light, enabling detailed measurement of ligand-receptor interactions occurring on the surface of colloids. The key factor is the use of receptor-coated nanospheres matched in refractive index with water and therefore optically undetectable ("phantom") when not involved in adhesion processes. At the occurrence of ligand binding at the receptor sites, optically unmatched material adsorbs on the nanoparticle surface, giving rise to an increment in their scattering cross section up to a maximum corresponding to saturated binding sites. The analysis of the scattering growth pattern enables extracting the binding affinity. This label-free method has been assessed through the determination of the binding constant of the antibiotic vancomycin with the tripeptide L-Lys-D-Ala-D-Ala and of the vancomycin dimerization constant. We shed light on the role of chelate effect and molecular hindrance in the activity of this glycopeptide. binding affinity | nanoparticles | vancomycin | ligand-receptor recognition

  11. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions

    PubMed Central

    Seitz, Stefan; Urban, Stephan; Antoni, Christoph; Böttcher, Bettina

    2007-01-01

    Hepatitis B virus (HBV) is a major human pathogen causing about 750 000 deaths per year. The virion consists of a nucleocapsid and an envelope formed by lipids, and three integral membrane proteins. Although we have detailed structural insights into the organization of the HBV core, the arrangement of the envelope in virions and its interaction with the nucleocapsid is elusive. Here we show the ultrastructure of hepatitis B virions purified from patient serum. We identified two morphological phenotypes, which appear as compact and gapped particles with nucleocapsids in distinguishable conformations. The overall structures of these nucleocapsids resemble recombinant cores with two α-helical spikes per asymmetric unit. At the charged tips the spikes are contacted by defined protrusions of the envelope proteins, probably via electrostatic interactions. The HBV envelope in the two morphotypes is to some extent variable, but the surface proteins follow a general packing scheme with up to three surface protein dimers per asymmetric unit. The variability in the structure of the envelope indicates that the nucleocapsid does not firmly constrain the arrangement of the surface proteins, but provides a general template for the packing. PMID:17762862

  12. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways

    PubMed Central

    Taipale, Mikko; Tucker, George; Peng, Jian; Krykbaeva, Irina; Lin, Zhen-Yuan; Larsen, Brett; Choi, Hyungwon; Berger, Bonnie; Gingras, Anne-Claude; Lindquist, Susan

    2014-01-01

    Chaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of co-factors (co-chaperones) that regulate their specificity and function. However, how these co-chaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We have combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone/co-chaperone/client interaction network in human cells. We uncover hundreds of novel chaperone clients, delineate their participation in specific co-chaperone complexes, and establish a surprisingly distinct network of protein/protein interactions for co-chaperones. As a salient example of the power of such analysis, we establish that NUDC family co-chaperones specifically associate with structurally related but evolutionarily distinct β-propeller folds. We provide a framework for deciphering the proteostasis network, its regulation in development and disease, and expand the use of chaperones as sensors for drug/target engagement. PMID:25036637

  13. Gene Regulation by the AGL15 Transcription Factor Reveals Hormone Interactions in Somatic Embryogenesis1[OPEN

    PubMed Central

    Zheng, Qiaolin; Zheng, Yumei; Ji, Huihua; Burnie, Whitney

    2016-01-01

    The MADS box transcription factor Arabidopsis (Arabidopsis thaliana) AGAMOUS-LIKE15 (AGL15) and a putative ortholog from soybean (Glycine max), GmAGL15, are able to promote somatic embryogenesis (SE) in these plants when ectopically expressed. SE is an important means of plant regeneration, but many plants, or even particular cultivars, are recalcitrant for this process. Understanding how (Gm)AGL15 promotes SE by identifying and characterizing direct and indirect downstream regulated genes can provide means to improve regeneration by SE for crop improvement and to perform molecular tests of genes. Conserved transcription factors and the genes they regulate in common between species may provide the most promising avenue to identify targets for SE improvement. We show that (Gm)AGL15 negatively regulates auxin signaling in both Arabidopsis and soybean at many levels of the pathway, including the repression of AUXIN RESPONSE FACTOR6 (ARF6) and ARF8 and TRANSPORT INHIBITOR RESPONSE1 as well as the indirect control of components via direct expression of a microRNA-encoding gene. We demonstrate interaction between auxin and gibberellic acid in the promotion of SE and document an inverse correlation between bioactive gibberellic acid and SE in soybean, a difficult crop to transform. Finally, we relate hormone accumulation to transcript accumulation of important soybean embryo regulatory factors such as ABSCISIC ACID INSENSITIVE3 and FUSCA3 and provide a working model of hormone and transcription factor interaction in the control of SE. PMID:27794101

  14. Computational Phenotyping of Two-Person Interactions Reveals Differential Neural Response to Depth-of-Thought

    PubMed Central

    Xiang, Ting; Ray, Debajyoti; Lohrenz, Terry; Dayan, Peter; Montague, P. Read

    2012-01-01

    Reciprocating exchange with other humans requires individuals to infer the intentions of their partners. Despite the importance of this ability in healthy cognition and its impact in disease, the dimensions employed and computations involved in such inferences are not clear. We used a computational theory-of-mind model to classify styles of interaction in 195 pairs of subjects playing a multi-round economic exchange game. This classification produces an estimate of a subject's depth-of-thought in the game (low, medium, high), a parameter that governs the richness of the models they build of their partner. Subjects in each category showed distinct neural correlates of learning signals associated with different depths-of-thought. The model also detected differences in depth-of-thought between two groups of healthy subjects: one playing patients with psychiatric disease and the other playing healthy controls. The neural response categories identified by this computational characterization of theory-of-mind may yield objective biomarkers useful in the identification and characterization of pathologies that perturb the capacity to model and interact with other humans. PMID:23300423

  15. Superresolution Fluorescence Imaging of Mitochondrial Nucleoids Reveals Their Spatial Range, Limits, and Membrane Interaction ▿ †

    PubMed Central

    Brown, Timothy A.; Tkachuk, Ariana N.; Shtengel, Gleb; Kopek, Benjamin G.; Bogenhagen, Daniel F.; Hess, Harald F.; Clayton, David A.

    2011-01-01

    A fundamental objective in molecular biology is to understand how DNA is organized in concert with various proteins, RNA, and biological membranes. Mitochondria maintain and express their own DNA (mtDNA), which is arranged within structures called nucleoids. Their functions, dimensions, composition, and precise locations relative to other mitochondrial structures are poorly defined. Superresolution fluorescence microscopy techniques that exceed the previous limits of imaging within the small and highly compartmentalized mitochondria have been recently developed. We have improved and employed both two- and three-dimensional applications of photoactivated localization microscopy (PALM and iPALM, respectively) to visualize the core dimensions and relative locations of mitochondrial nucleoids at an unprecedented resolution. PALM reveals that nucleoids differ greatly in size and shape. Three-dimensional volumetric analysis indicates that, on average, the mtDNA within ellipsoidal nucleoids is extraordinarily condensed. Two-color PALM shows that the freely diffusible mitochondrial matrix protein is largely excluded from the nucleoid. In contrast, nucleoids are closely associated with the inner membrane and often appear to be wrapped around cristae or crista-like inner membrane invaginations. Determinations revealing high packing density, separation from the matrix, and tight association with the inner membrane underscore the role of mechanisms that regulate access to mtDNA and that remain largely unknown. PMID:22006021

  16. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells

    NASA Astrophysics Data System (ADS)

    Honigmann, Alf; Mueller, Veronika; Ta, Haisen; Schoenle, Andreas; Sezgin, Erdinc; Hell, Stefan W.; Eggeling, Christian

    2014-11-01

    The interaction of lipids and proteins plays an important role in plasma membrane bioactivity, and much can be learned from their diffusion characteristics. Here we present the combination of super-resolution STED microscopy with scanning fluorescence correlation spectroscopy (scanning STED-FCS, sSTED-FCS) to characterize the spatial and temporal heterogeneity of lipid interactions. sSTED-FCS reveals transient molecular interaction hotspots for a fluorescent sphingolipid analogue. The interaction sites are smaller than 80 nm in diameter and lipids are transiently trapped for several milliseconds in these areas. In comparison, newly developed fluorescent phospholipid and cholesterol analogues with improved phase-partitioning properties show more homogenous diffusion, independent of the preference for liquid-ordered or disordered membrane environments. Our results do not support the presence of nanodomains based on lipid-phase separation in the basal membrane of our cultured nonstimulated cells, and show that alternative interactions are responsible for the strong local trapping of our sphingolipid analogue.

  17. The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins

    PubMed Central

    Yan, Jing; Pan, Lifeng; Chen, Xiuye; Wu, Lin; Zhang, Mingjie

    2010-01-01

    The hereditary hearing-vision loss disease, Usher syndrome I (USH1), is caused by defects in several proteins that can interact with each other in vitro. Defects in USH1 proteins are thought to be responsible for the developmental and functional impairments of sensory cells in the retina and inner ear. Harmonin/USH1C and Sans/USH1G are two of the USH1 proteins that interact with each other. Harmonin also binds to other USH1 proteins such as cadherin 23 (CDH23) and protocadherin 15 (PCDH15). However, the molecular basis governing the harmonin and Sans interaction is largely unknown. Here, we report an unexpected assembly mode between harmonin and Sans. We demonstrate that the N-terminal domain and the first PDZ domain of harmonin are tethered by a small-domain C-terminal to PDZ1 to form a structural and functional supramodule responsible for binding to Sans. We discover that the SAM domain of Sans, specifically, binds to the PDZ domain of harmonin, revealing previously unknown interaction modes for both PDZ and SAM domains. We further show that the synergistic PDZ1/SAM and PDZ1/carboxyl PDZ binding-motif interactions, between harmonin and Sans, lock the two scaffold proteins into a highly stable complex. Mutations in harmonin and Sans found in USH1 patients are shown to destabilize the complex formation of the two proteins. PMID:20142502

  18. Salts of hexamethylenetetramine with organic acids: Enhanced anomeric interactions with a lowering of molecular symmetry revealed by crystal structures

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Sosale; Mukherjee, Somnath

    2015-02-01

    The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system.

  19. Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function.

    PubMed

    Zhang, Tingting; Du, Wei; Wilson, Andrew F; Namekawa, Satoshi H; Andreassen, Paul R; Meetei, Amom Ruhikanta; Pang, Qishen

    2017-04-05

    Fancd2 is a component of the Fanconi anemia (FA) DNA repair pathway, which is frequently found defective in human cancers. The full repertoire of Fancd2 functions in normal development and tumorigenesis remains to be determined. Here we developed a Flag- and hemagglutinin-tagged Fancd2 knock-in mouse strain that allowed a high throughput mass spectrometry approach to search for Fancd2-binding proteins in different mouse organs. In addition to DNA repair partners, we observed that many Fancd2-interacting proteins are mitochondrion-specific. Fancd2 localizes in the mitochondrion and associates with the nucleoid complex components Atad3 and Tufm. The Atad3-Tufm complex is disrupted in Fancd2-/- mice and those deficient for the FA core component Fanca. Fancd2 mitochondrial localization requires Atad3. Collectively, these findings provide evidence for Fancd2 as a crucial regulator of mitochondrion biosynthesis, and of a molecular link between FA and mitochondrial homeostasis.

  20. Insights into protein interaction networks reveal non-receptor kinases as significant druggable targets for psoriasis.

    PubMed

    Sundarrajan, Sudharsana; Lulu, Sajitha; Arumugam, Mohanapriya

    2015-07-25

    Psoriasis is a chronic disease of the skin characterized by hyper proliferation and inflammation of the epidermis and dermal components of the skin. T-cell-dependent inflammatory process in skin governs the pathogenesis of psoriasis. An in-silico search strategy was utilized to identify psoriatic therapeutic drug targets. The gene expression profiling of psoriatic skin identified a total of 427 differentially expressed genes (DEGs). Gene ontology investigation of DEGs identified genes involved in calcium binding, apoptosis, keratinisation, lipid transportation and homeostasis apart from immune mediated processes. The protein interaction networks identified proteins involved in various signaling mechanisms with high degree of interconnections. The gene modules derived from the main network were enriched with rich kinome. These sub-networks were dominated by the presence of non-receptor kinase family members which are major signal transmitters in immune response. The computational approach has aided in the identification of non-receptor kinases as potential targets for psoriasis drug development.

  1. Eddy-Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Ju; Andres, Magdalena; Jan, Sen; Mensah, Vigan; Sanford, Thomas B.; Lien, Ren-Chieh; Lee, Craig M.

    2015-10-01

    The influence and fate of westward propagating eddies that impinge on the Kuroshio were observed with pressure sensor-equipped inverted echo sounders (PIESs) deployed east of Taiwan and northeast of Luzon. Zero lag correlations between PIES-measured acoustic travel times and satellite-measured sea surface height anomalies (SSHa), which are normally negative, have lower magnitude toward the west, suggesting the eddy-influence is weakened across the Kuroshio. The observational data reveal that impinging eddies lead to seesaw-like SSHa and pycnocline depth changes across the Kuroshio east of Taiwan, whereas analogous responses are not found in the Kuroshio northeast of Luzon. Anticyclones intensify sea surface and pycnocline slopes across the Kuroshio, while cyclones weaken these slopes, particularly east of Taiwan. During the 6 month period of overlap between the two PIES arrays, only one anticyclone affected the pycnocline depth first at the array northeast of Luzon and 21 days later in the downstream Kuroshio east of Taiwan.

  2. Polymorphism of DNA-anionic liposome complexes reveals hierarchy of ion-mediated interactions.

    PubMed

    Liang, Hongjun; Harries, Daniel; Wong, Gerard C L

    2005-08-09

    Self-assembled DNA delivery systems based on anionic lipids (ALs) complexed with DNA mediated by divalent cations have been recently introduced as an alternative to cationic lipid-DNA complexes because of their low cytotoxicity. We investigate AL-DNA complexes induced by different cations by using synchrotron small angle x-ray scattering and confocal microscopy to show how different ion-mediated interactions are expressed in the self-assembled structures and phase behavior of AL-DNA complexes. The governing interactions in AL-DNA systems are complex: divalent ions can mediate strong attractions between different combinations of the components (such as DNA-DNA and membrane-membrane). Moreover, divalent cations can coordinate non-electrostatically with lipids and modify the resultant membrane structure. We find that at low membrane charge densities AL-DNA complexes organize into a lamellar structure of alternating DNA and membrane layers crosslinked by ions. At high membrane charge densities, a new phase with no analog in cationic lipid-DNA systems is observed: DNA is expelled from the complex, and a lamellar stack of membranes and intercalated ions is formed. For a subset of the ionic species, high ion concentrations generate an inverted hexagonal phase comprised of DNA strands wrapped by ion-coated lipid tubes. A simple theoretical model that takes into account the electrostatic and membrane elastic contributions to the free energy shows that this transition is consistent with an ion-induced change in the membrane spontaneous curvature, c0. Moreover, the crossover between the lamellar and inverted hexagonal phases occurs at a critical c0 that agrees well with experimental values.

  3. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    PubMed Central

    Chow, Cheryl-Emiliane T.; Winget, Danielle M.; White, Richard A.; Hallam, Steven J.; Suttle, Curtis A.

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant “nr” database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  4. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes.

    PubMed

    Tetlow, Ian J; Beisel, Kim G; Cameron, Scott; Makhmoudova, Amina; Liu, Fushan; Bresolin, Nicole S; Wait, Robin; Morell, Matthew K; Emes, Michael J

    2008-04-01

    Protein-protein interactions among enzymes of amylopectin biosynthesis were investigated in developing wheat (Triticum aestivum) endosperm. Physical interactions between starch branching enzymes (SBEs) and starch synthases (SSs) were identified from endosperm amyloplasts during the active phase of starch deposition in the developing grain using immunoprecipitation and cross-linking strategies. Coimmunoprecipitation experiments using peptide-specific antibodies indicate that at least two distinct complexes exist containing SSI, SSIIa, and either of SBEIIa or SBEIIb. Chemical cross linking was used to identify protein complexes containing SBEs and SSs from amyloplast extracts. Separation of extracts by gel filtration chromatography demonstrated the presence of SBE and SS forms in protein complexes of around 260 kD and that SBEII forms may also exist as homodimers. Analysis of cross-linked 260-kD aggregation products from amyloplast lysates by mass spectrometry confirmed SSI, SSIIa, and SBEII forms as components of one or more protein complexes in amyloplasts. In vitro phosphorylation experiments with gamma-(32)P-ATP indicated that SSII and both forms of SBEII are phosphorylated. Treatment of the partially purified 260-kD SS-SBE complexes with alkaline phosphatase caused dissociation of the assembly into the respective monomeric proteins, indicating that formation of SS-SBE complexes is phosphorylation dependent. The 260-kD SS-SBEII protein complexes are formed around 10 to 15 d after pollination and were shown to be catalytically active with respect to both SS and SBE activities. Prior to this developmental stage, SSI, SSII, and SBEII forms were detectable only in monomeric form. High molecular weight forms of SBEII demonstrated a higher affinity for in vitro glucan substrates than monomers. These results provide direct evidence for the existence of protein complexes involved in amylopectin biosynthesis.

  5. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance.

    PubMed

    Schwartz, Phillip A; Kuzmic, Petr; Solowiej, James; Bergqvist, Simon; Bolanos, Ben; Almaden, Chau; Nagata, Asako; Ryan, Kevin; Feng, Junli; Dalvie, Deepak; Kath, John C; Xu, Meirong; Wani, Revati; Murray, Brion William

    2014-01-07

    Covalent inhibition is a reemerging paradigm in kinase drug design, but the roles of inhibitor binding affinity and chemical reactivity in overall potency are not well-understood. To characterize the underlying molecular processes at a microscopic level and determine the appropriate kinetic constants, specialized experimental design and advanced numerical integration of differential equations are developed. Previously uncharacterized investigational covalent drugs reported here are shown to be extremely effective epidermal growth factor receptor (EGFR) inhibitors (kinact/Ki in the range 10(5)-10(7) M(-1)s(-1)), despite their low specific reactivity (kinact ≤ 2.1 × 10(-3) s(-1)), which is compensated for by high binding affinities (Ki < 1 nM). For inhibitors relying on reactivity to achieve potency, noncovalent enzyme-inhibitor complex partitioning between inhibitor dissociation and bond formation is central. Interestingly, reversible binding affinity of EGFR covalent inhibitors is highly correlated with antitumor cell potency. Furthermore, cellular potency for a subset of covalent inhibitors can be accounted for solely through reversible interactions. One reversible interaction is between EGFR-Cys797 nucleophile and the inhibitor's reactive group, which may also contribute to drug resistance. Because covalent inhibitors target a cysteine residue, the effects of its oxidation on enzyme catalysis and inhibitor pharmacology are characterized. Oxidation of the EGFR cysteine nucleophile does not alter catalysis but has widely varied effects on inhibitor potency depending on the EGFR context (e.g., oncogenic mutations), type of oxidation (sulfinylation or glutathiolation), and inhibitor architecture. These methods, parameters, and insights provide a rational framework for assessing and designing effective covalent inhibitors.

  6. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance

    PubMed Central

    Schwartz, Phillip A.; Kuzmic, Petr; Solowiej, James; Bergqvist, Simon; Bolanos, Ben; Almaden, Chau; Nagata, Asako; Ryan, Kevin; Feng, Junli; Dalvie, Deepak; Kath, John C.; Xu, Meirong; Wani, Revati; Murray, Brion William

    2014-01-01

    Covalent inhibition is a reemerging paradigm in kinase drug design, but the roles of inhibitor binding affinity and chemical reactivity in overall potency are not well-understood. To characterize the underlying molecular processes at a microscopic level and determine the appropriate kinetic constants, specialized experimental design and advanced numerical integration of differential equations are developed. Previously uncharacterized investigational covalent drugs reported here are shown to be extremely effective epidermal growth factor receptor (EGFR) inhibitors (kinact/Ki in the range 105–107 M−1s−1), despite their low specific reactivity (kinact ≤ 2.1 × 10−3 s−1), which is compensated for by high binding affinities (Ki < 1 nM). For inhibitors relying on reactivity to achieve potency, noncovalent enzyme–inhibitor complex partitioning between inhibitor dissociation and bond formation is central. Interestingly, reversible binding affinity of EGFR covalent inhibitors is highly correlated with antitumor cell potency. Furthermore, cellular potency for a subset of covalent inhibitors can be accounted for solely through reversible interactions. One reversible interaction is between EGFR-Cys797 nucleophile and the inhibitor’s reactive group, which may also contribute to drug resistance. Because covalent inhibitors target a cysteine residue, the effects of its oxidation on enzyme catalysis and inhibitor pharmacology are characterized. Oxidation of the EGFR cysteine nucleophile does not alter catalysis but has widely varied effects on inhibitor potency depending on the EGFR context (e.g., oncogenic mutations), type of oxidation (sulfinylation or glutathiolation), and inhibitor architecture. These methods, parameters, and insights provide a rational framework for assessing and designing effective covalent inhibitors. PMID:24347635

  7. Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Doi, Kazutaka; Tani, Shusuke; Ishikawa, Ken-ichi; Yamashita, Satoshi; Ushijima, Toshikazu; Imai, Takashi; Shimada, Yoshiya

    2014-04-01

    Although various mechanisms have been inferred for combinatorial actions of multiple carcinogens, these mechanisms have not been well demonstrated in experimental carcinogenesis models. We evaluated mammary carcinogenesis initiated by combined exposure to various doses of radiation and chemical carcinogens. Female rats at 7 weeks of age were γ-irradiated (0.2-2 Gy) and/or exposed to 1-methyl-1-nitrosourea (MNU) (20 or 40 mg/kg, single intraperitoneal injection) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (40 mg/kg/day by gavage for 10 days) and were observed until 50 weeks of age. The incidence of mammary carcinoma increased steadily as a function of radiation dose in the absence of chemicals; mathematical analysis supported an additive increase when radiation was combined with a chemical carcinogen, irrespective of the chemical species and its dose. Hras mutations were characteristic of carcinomas that developed after chemical carcinogen treatments and were overrepresented in carcinomas induced by the combination of radiation and MNU (but not PhIP), indicating an interaction of radiation and MNU at the level of initiation. The expression profiles of seven classifier genes, previously shown to distinguish two classes of rat mammary carcinomas, categorized almost all examined carcinomas that developed after individual or combined treatments with radiation (1 Gy) and chemicals as belonging to a single class; more comprehensive screening using microarrays and a separate test sample set failed to identify differences in gene expression profiles among these carcinomas. These results suggest that a complex, multilevel interaction underlies the combinatorial action of radiation and chemical carcinogens in the experimental model.

  8. Single-cell genomics reveals co-metabolic interactions within uncultivated Marine Group A bacteria

    NASA Astrophysics Data System (ADS)

    Hawley, A. K.; Hallam, S. J.

    2016-02-01

    Marine Group A (MGA) bacteria represent a ubiquitous and abundant candidate phylum enriched in oxygen minimum zones (OMZs) and the deep ocean. Despite MGA prevalence little is known about their ecology and biogeochemistry. Here we chart the metabolic potential of 26 MGA single-cell amplified genomes sourced from different environments spanning ecothermodynamic gradients including open ocean waters, OMZs and methanogenic environments including a terephthalate-degrading bioreactor. Metagenomic contig recruitment to SAGs combined with tetra-nucleotide frequency distribution patterns resolved nine MGA population genome bins. All population genomes exhibited genomic streamlining with open ocean MGA being the most reduced. Different strategies for carbohydrate utilization, carbon fixation energy metabolism and respiratory pathways were identified between population genome bins, including various roles in the nitrogen and sulfur cycles. MGA inhabiting OMZ oxyclines encoded genes for partial denitrification with potential to feed into anammox and nitrification as well as a polysulfide reductase with a potential role in the cryptic sulfur cycle. MGA inhabiting anoxic waters, encoded NiFe hydrogenase and nitrous oxide reductase with the potential to complete partial denitrification pathways previously linked to sulfur oxidation in SUP05 bacteria. MGA from methanogenic environments encoded genes mediating cascading syntrophic interactions with fatty acid degraders and methanogens including reverse electron transport potential. The MGA phylum appears to have evolved alternative metabolic innovations adapting specific subgroups to occupy specific niches along ecothermodynamic gradients. Additionally, expression of MGA genes from different OMZ environments supports that these subgroups manifest an increasing propensity for co-metabolic interactions under energy limiting conditions that mandates a cooperative mode of existence with important implications for C, N and S cycling in

  9. Human Lung Tissue Explants Reveal Novel Interactions during Legionella pneumophila Infections

    PubMed Central

    Jäger, Jens; Marwitz, Sebastian; Tiefenau, Jana; Rasch, Janine; Shevchuk, Olga; Kugler, Christian

    2014-01-01

    Histological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model for Legionella pneumophila infection comprising living human lung tissue. We stimulated lung explants with L. pneumophila strains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion of L. pneumophila to the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA− strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context of L. pneumophila infections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations. PMID:24166955

  10. Revealing Stepwise Mechanisms in Dipolar Cycloaddition Reactions: Computational Study of the Reaction between Nitrones and Isocyanates.

    PubMed

    Darù, Andrea; Roca-López, David; Tejero, Tomás; Merino, Pedro

    2016-01-15

    The mechanism of cycloaddition reactions of nitrones with isocyanates has been studied using density functional theory (DFT) methods at the M06-2X/cc-pVTZ level of theory. The exploration of the potential energy surfaces associated with two reactive channels leading to 1,2,4-oxadiazolidin-5-ones and 1,4,2-dioxazolidines revealed that the cycloaddition reaction takes place through a concerted mechanism in gas phase and in apolar solvents but a stepwise mechanism in polar solvents. In stepwise mechanisms, the first step of the reaction is a rare case in which the nitrone oxygen acts as a nucleophile by attacking the central carbon atom of the isocyanate (interacting with the π-system of the C═O bond) to give an intermediate. The corresponding transition structure is stabilized by an attractive electrostatic interaction favored in a polar medium. The second step of the reaction is the rate-limiting one in which the formation of 1,2,4-oxadiazolidin-5-ones or 1,4,2-dioxazolidines is decided. Calculations indicate that formation of 1,2,4-oxadiazolidin-5-ones is favored both kinetically and thermodynamically independently of the solvent, in agreement with experimental observations. Noncovalent interactions (NCI) and topological analysis of the gradient field of electron localization function (ELF) bonding confirmed the observed interactions.

  11. Dynamic migration and cell-cell interactions of early reprogramming revealed by high resolution time-lapse imaging

    PubMed Central

    Megyola, Cynthia M.; Gao, Yuan; Teixeira, Alexandra M.; Cheng, Jijun; Heydari, Kartoosh; Cheng, Ee-chun; Nottoli, Timothy; Krause, Diane S.; Lu, Jun; Guo, Shangqin

    2014-01-01

    Discovery of the cellular and molecular mechanisms of induced pluripotency has been hampered by its low efficiency and slow kinetics. Here, we report an experimental system with multi-color time-lapse microscopy that permits direct observation of pluripotency induction at single cell resolution, with temporal intervals as short as five minutes. Using granulocyte-monocyte progenitors as source cells, we visualized nascent pluripotent cells emerge from a hematopoietic state. We engineered a suite of image processing and analysis software to annotate the behaviors of the reprogramming cells, which revealed the highly dynamic cell-cell interactions associated with early reprogramming. We observed frequent cell migration, which can lead to sister colonies, satellite colonies and colonies of mixed genetic makeup. In addition, we discovered a previously unknown morphologically distinct 2-cell intermediate of reprogramming, which occurs prior to other reprogramming landmarks. By directly visualizing the reprogramming process with E-cadherin inhibition, we demonstrate the requirement of E-cadherin for proper cellular interactions from an early stage of reprogramming, including the 2-cell intermediate. The detailed cell-cell interactions revealed by this imaging platform shed light on previously unappreciated early reprogramming dynamics. This experimental system could serve as a powerful tool to dissect the complex mechanisms of early reprogramming by focusing on the relevant but rare cells with superb temporal and spatial resolution. PMID:23335078

  12. Spacelab data analysis and interactive control study

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Drake, J. F.

    1980-01-01

    The study consisted of two main tasks, a series of interviews of Spacelab users and a survey of data processing and display equipment. Findings from the user interviews on questions of interactive control, downlink data formats, and Spacelab computer software development are presented. Equipment for quick look processing and display of scientific data in the Spacelab Payload Operations Control Center (POCC) was surveyed. Results of this survey effort are discussed in detail, along with recommendations for NASA development of several specific display systems which meet common requirements of many Spacelab experiments.

  13. Study of Laser Interaction with Thin Targets

    SciTech Connect

    Boley, C D; Cutter, K P; Fochs, S N; Pax, P H; Rotter, M D; Rubenchik, A M; Yamamoto, R M

    2009-03-06

    For many targets of interest, the thickness is small compared to the conduction length during the engagement. In addition, the laser-material interaction region can be treated as flat. We have studied this regime with our 25 kW solid-state laser. We have demonstrated that airflow can reduce by approximately 40% the energy required to break through a thin target. This reduction is caused by the bulging of the softened material and the tearing and removal of the material by aerodynamic forces. We present elastic modeling which explains these results.

  14. Genome-wide Hi-C analyses in wild type and mutants reveal high-resolution chromatin interactions in Arabidopsis

    PubMed Central

    Feng, Suhua; Cokus, Shawn J.; Schubert, Veit; Zhai, Jixian; Pellegrini, Matteo; Jacobsen, Steven E.

    2015-01-01

    SUMMARY Chromosomes form three-dimensional structures that are critical to the regulation of cellular and genetic processes. Here, we present a study of global chromatin interaction patterns in Arabidopsis thaliana. Our genome-wide approach confirmed interactions that were previously observed by other methods as well as uncovered previously unknown long-range interactions such as those among small heterochromatic regions embedded in euchromatic arms. We also found that interactions are correlated with various epigenetic marks that are localized in active or silenced chromatin. Arabidopsis chromosomes do not contain large local interactive domains that resemble the topological domains described in animals, but instead contain relatively small interactive regions scattered around the genome that contain H3K27me3 or H3K9me2. We generated interaction maps in mutants that are defective in specific epigenetic pathways and found altered interaction patterns that correlate with changes in the epigenome. These analyses provide further insights into molecular mechanisms of epigenetic regulation of the genome. PMID:25132175

  15. Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function

    PubMed Central

    Zhang, Tingting; Du, Wei; Wilson, Andrew F.; Namekawa, Satoshi H.; Andreassen, Paul R.; Meetei, Amom Ruhikanta; Pang, Qishen

    2017-01-01

    Fancd2 is a component of the Fanconi anemia (FA) DNA repair pathway, which is frequently found defective in human cancers. The full repertoire of Fancd2 functions in normal development and tumorigenesis remains to be determined. Here we developed a Flag- and hemagglutinin-tagged Fancd2 knock-in mouse strain that allowed a high throughput mass spectrometry approach to search for Fancd2-binding proteins in different mouse organs. In addition to DNA repair partners, we observed that many Fancd2-interacting proteins are mitochondrion-specific. Fancd2 localizes in the mitochondrion and associates with the nucleoid complex components Atad3 and Tufm. The Atad3-Tufm complex is disrupted in Fancd2−/− mice and those deficient for the FA core component Fanca. Fancd2 mitochondrial localization requires Atad3. Collectively, these findings provide evidence for Fancd2 as a crucial regulator of mitochondrion biosynthesis, and of a molecular link between FA and mitochondrial homeostasis. PMID:28378742

  16. A simple strategy for detecting moving objects during locomotion revealed by animal-robot interactions.

    PubMed

    Zabala, Francisco; Polidoro, Peter; Robie, Alice; Branson, Kristin; Perona, Pietro; Dickinson, Michael H

    2012-07-24

    An important role of visual systems is to detect nearby predators, prey, and potential mates, which may be distinguished in part by their motion. When an animal is at rest, an object moving in any direction may easily be detected by motion-sensitive visual circuits. During locomotion, however, this strategy is compromised because the observer must detect a moving object within the pattern of optic flow created by its own motion through the stationary background. However, objects that move creating back-to-front (regressive) motion may be unambiguously distinguished from stationary objects because forward locomotion creates only front-to-back (progressive) optic flow. Thus, moving animals should exhibit an enhanced sensitivity to regressively moving objects. We explicitly tested this hypothesis by constructing a simple fly-sized robot that was programmed to interact with a real fly. Our measurements indicate that whereas walking female flies freeze in response to a regressively moving object, they ignore a progressively moving one. Regressive motion salience also explains observations of behaviors exhibited by pairs of walking flies. Because the assumptions underlying the regressive motion salience hypothesis are general, we suspect that the behavior we have observed in Drosophila may be widespread among eyed, motile organisms.

  17. A simple strategy for detecting moving objects during locomotion revealed by animal-robot interactions

    PubMed Central

    Zabala, Francisco; Polidoro, Peter; Robie, Alice; Branson, Kristin; Perona, Pietro; Dickinson, Michael H.

    2015-01-01

    An important role of visual systems is to detect nearby predators, prey and potential mates[1], which may be distinguished in part by their motion. When an animal is at rest, an object moving in any direction may easily be detected by motion-sensitive visual circuits[2, 3]. During locomotion, however, this strategy is compromised because the observer must detect a moving object within the pattern of optic flow created by its own motion through the stationary background. However, objects that move so as to create back-to-front (regressive) motion may be unambiguously distinguished from stationary objects because forward locomotion creates only front-to-back (progressive) optic flow. Thus, moving animals ought to exhibit an enhanced sensitivity to regressively moving objects. We explicitly tested this hypothesis by constructing a simple fly-sized robot that was programmed to interact with a real fly. Our measurements indicate that whereas walking female flies freeze in response to a regressively moving object, they ignore a progressively moving one. Regressive motion salience also explains observations of behaviors exhibited by pairs of walking flies. Because the assumptions underlying the regressive motion salience hypothesis are general, we suspect that the behavior we have observed in Drosophila may be widespread among eyed, motile organisms. PMID:22727703

  18. PDF Receptor Expression Reveals Direct Interactions between Circadian Oscillators in Drosophila

    PubMed Central

    Im, Seol Hee; Taghert, Paul H.

    2010-01-01

    Daily rhythms of behavior are controlled by a circuit of circadian pacemaking neurons. In Drosophila, 150 pacemakers participate in this network, and recent observations suggest the network is divisible into M and E oscillators which normally interact and synchronize. Sixteen oscillator neurons (the small and large LNvs) express a neuropeptide called pigment dispersing factor (PDF) whose signaling is often equated with M oscillator output. Given the significance of PDF signaling to numerous aspects of behavioral and molecular rhythms, determining precisely where and how signaling via the PDF receptor (PDFR) occurs is now a central question in the field. Here we show that GAL4-mediated rescue of pdfr phenotypes using a UAS-PDFR transgene is insufficient to provide complete behavioral rescue. In contrast, we describe a ~70 kB PDF receptor (pdfr) transgene which does rescue the entire pdfr circadian behavioral phenotype. The transgene is widely but heterogeneously expressed among pacemakers, and also among a limited number of non-pacemakers. Our results support an important hypothesis: the small LNv cells directly target a subset of the other crucial pacemaker neurons cells. Furthermore, expression of the transgene confirms an autocrine feedback signaling by PDF back to PDF-expressing cells. Finally, the results present an unexpected PDF receptor site: the large LNv cells appear to target a population of non-neuronal cells that resides at the base of the eye. PMID:20394051

  19. PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila.

    PubMed

    Im, Seol Hee; Taghert, Paul H

    2010-06-01

    Daily rhythms of behavior are controlled by a circuit of circadian pacemaking neurons. In Drosophila, 150 pacemakers participate in this network, and recent observations suggest that the network is divisible into M and E oscillators, which normally interact and synchronize. Sixteen oscillator neurons (the small and large lateral neurons [LNvs]) express a neuropeptide called pigment-dispersing factor (PDF) whose signaling is often equated with M oscillator output. Given the significance of PDF signaling to numerous aspects of behavioral and molecular rhythms, determining precisely where and how signaling via the PDF receptor (PDFR) occurs is now a central question in the field. Here we show that GAL4-mediated rescue of pdfr phenotypes using a UAS-PDFR transgene is insufficient to provide complete behavioral rescue. In contrast, we describe a approximately 70-kB PDF receptor (pdfr) transgene that does rescue the entire pdfr circadian behavioral phenotype. The transgene is widely but heterogeneously expressed among pacemakers, and also among a limited number of non-pacemakers. Our results support an important hypothesis: the small LNv cells directly target a subset of the other crucial pacemaker neurons cells. Furthermore, expression of the transgene confirms an autocrine feedback signaling by PDF back to PDF-expressing cells. Finally, the results present an unexpected PDF receptor site: the large LNv cells appear to target a population of non-neuronal cells that resides at the base of the eye. (c) 2009 Wiley-Liss, Inc.

  20. Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions.

    PubMed

    Okada, Miki; Lanzatella, Christina; Saha, Malay C; Bouton, Joe; Wu, Rongling; Tobias, Christian M

    2010-07-01

    Polyploidy is an important aspect of the evolution of flowering plants. The potential of gene copies to diverge and evolve new functions is influenced by meiotic behavior of chromosomes leading to segregation as a single locus or duplicated loci. Switchgrass (Panicum virgatum) linkage maps were constructed using a full-sib population of 238 plants and SSR and STS markers to access the degree of preferential pairing and the structure of the tetraploid genome and as a step toward identification of loci underlying biomass feedstock quality and yield. The male and female framework map lengths were 1645 and 1376 cM with 97% of the genome estimated to be within 10 cM of a mapped marker in both maps. Each map coalesced into 18 linkage groups arranged into nine homeologous pairs. Comparative analysis of each homology group to the diploid sorghum genome identified clear syntenic relationships and collinear tracts. The number of markers with PCR amplicons that mapped across subgenomes was significantly fewer than expected, suggesting substantial subgenome divergence, while both the ratio of coupling to repulsion phase linkages and pattern of marker segregation indicated complete or near complete disomic inheritance. The proportion of transmission ratio distorted markers was relatively low, but the male map was more extensively affected by distorted transmission ratios and multilocus interactions, associated with spurious linkages.

  1. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.

    PubMed

    Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-09-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. Chemical genomic interaction profiling reveals determinants of intrinsic antibiotic resistance in Mycobacterium tuberculosis.

    PubMed

    Xu, Weizhen; DeJesus, Michael A; Rücker, Nadine; Engelhart, Curtis A; Wright, Meredith G; Healy, Claire; Lin, Kan; Wang, Ruojun; Park, Sae Woong; Ioerger, Thomas R; Schnappinger, Dirk; Ehrt, Sabine

    2017-09-11

    Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis (Mtb) we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially-inhibitory concentrations of rifampicin, ethambutol, isoniazid, vancomycin and meropenem, antibiotics of diverse mechanisms-of-action. This screen identified Mtb's cell envelope as a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron-dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low iron medium, and instead functioned as a critical mediator of envelope integrity. Copyright © 2017 American Society for Microbiology.

  3. Hybridization between genetically modified Atlantic salmon and wild brown trout reveals novel ecological interactions

    PubMed Central

    Oke, Krista B.; Westley, Peter A. H.; Moreau, Darek T. R.; Fleming, Ian A.

    2013-01-01

    Interspecific hybridization is a route for transgenes from genetically modified (GM) animals to invade wild populations, yet the ecological effects and potential risks that may emerge from such hybridization are unknown. Through experimental crosses, we demonstrate transmission of a growth hormone transgene via hybridization between a candidate for commercial aquaculture production, GM Atlantic salmon (Salmo salar) and closely related wild brown trout (Salmo trutta). Transgenic hybrids were viable and grew more rapidly than transgenic salmon and other non-transgenic crosses in hatchery-like conditions. In stream mesocosms designed to more closely emulate natural conditions, transgenic hybrids appeared to express competitive dominance and suppressed the growth of transgenic and non-transgenic (wild-type) salmon by 82 and 54 per cent, respectively. To the best of our knowledge, this is the first demonstration of environmental impacts of hybridization between a GM animal and a closely related species. These results provide empirical evidence of the first steps towards introgression of foreign transgenes into the genomes of new species and contribute to the growing evidence that transgenic animals have complex and context-specific interactions with wild populations. We suggest that interspecific hybridization be explicitly considered when assessing the environmental consequences should transgenic animals escape to nature. PMID:23720549

  4. Temporal Frequency Tuning Reveals Interactions between the Dorsal and Ventral Visual Streams

    PubMed Central

    Kristensen, Stephanie; Garcea, Frank E.; Mahon, Bradford Z.; Almeida, Jorge

    2016-01-01

    Visual processing of complex objects is supported by the ventral visual pathway in the service of object identification and by the dorsal visual pathway in the service of object-directed reaching and grasping. Here, we address how these two streams interact during tool processing, by exploiting the known asymmetry in projections of subcortical magnocellular and parvocellular inputs to the dorsal and ventral streams. The ventral visual pathway receives both parvocellular and magnocellular input, whereas the dorsal visual pathway receives largely magnocellular input. We used fMRI to measure tool preferences in parietal cortex when the images were presented at either high or low temporal frequencies, exploiting the fact that parvocellular channels project principally to the ventral but not dorsal visual pathway. We reason that regions of parietal cortex that exhibit tool preferences for stimuli presented at frequencies characteristic of the parvocellular pathway receive their inputs from the ventral stream. We found that the left inferior parietal lobule, in the vicinity of the supramarginal gyrus, exhibited tool preferences for images presented at low temporal frequencies, whereas superior and posterior parietal regions exhibited tool preferences for images present at high temporal frequencies. These data indicate that object identity, processed within the ventral stream, is communicated to the left inferior parietal lobule and may there combine with inputs from the dorsal visual pathway to allow for functionally appropriate object manipulation. PMID:27082048

  5. Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA.

    PubMed

    Niewiadomski, Pawel; Zhujiang, Annie; Youssef, Mary; Waschek, James A

    2013-11-01

    Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (cGCPs) and its aberrant activation causes a cerebellar cancer medulloblastoma. Pituitary adenylate cyclase activating polypeptide (PACAP) inhibits Shh-driven proliferation of cGCPs and acts as tumor suppressor in murine medulloblastoma. We show that PACAP blocks canonical Shh signaling by a mechanism that involves activation of protein kinase A (PKA) and inhibition of the translocation of the Shh-dependent transcription factor Gli2 into the primary cilium. PKA is shown to play an essential role in inhibiting gene transcription in the absence of Shh, but global PKA activity levels are found to be a poor predictor of the degree of Shh pathway activation. We propose that the core Shh pathway regulates a small compartmentalized pool of PKA in the vicinity of primary cilia. GPCRs that affect global PKA activity levels, such as the PACAP receptor, cooperate with the canonical Shh signal to regulate Gli protein phosphorylation by PKA. This interaction serves to fine-tune the transcriptional and physiological function of the Shh pathway.

  6. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions

    PubMed Central

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.

    2016-01-01

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111

  7. The dynamic interacting landscape of MAPL reveals essential functions for SUMOylation in innate immunity.

    PubMed

    Doiron, Karine; Goyon, Vanessa; Coyaud, Etienne; Rajapakse, Sanjeeva; Raught, Brian; McBride, Heidi M

    2017-12-01

    Activation of the innate immune response triggered by dsRNA viruses occurs through the assembly of the Mitochondrial Anti-Viral Signaling (MAVS) complex. Upon recognition of viral dsRNA, the cytosolic receptor RIG-I is activated and recruited to MAVS to activate the immune signaling response. We here demonstrate a strict requirement for a mitochondrial anchored protein ligase, MAPL (also called MUL1) in the signaling events that drive the transcriptional activation of antiviral genes downstream of Sendai virus infection, both in vivo and in vitro. A biotin environment scan of MAPL interacting polypeptides identified a series of proteins specific to Sendai virus infection; including RIG-I, IFIT1, IFIT2, HERC5 and others. Upon infection, RIG-I is SUMOylated in a MAPL-dependent manner, a conjugation step that is required for its activation. Consistent with this, MAPL was not required for signaling downstream of a constitutively activated form of RIG-I. These data highlight a critical role for MAPL and mitochondrial SUMOylation in the early steps of antiviral signaling.

  8. Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners.

    PubMed

    Gemperle, Jakub; Hexnerová, Rozálie; Lepšík, Martin; Tesina, Petr; Dibus, Michal; Novotný, Marian; Brábek, Jan; Veverka, Václav; Rosel, Daniel

    2017-08-14

    CAS is a docking protein downstream of the proto-oncogene Src with a role in invasion and metastasis of cancer cells. The CAS SH3 domain is indispensable for CAS-mediated signaling, but structural aspects of CAS SH3 ligand binding and regulation are not well understood. Here, we identified the consensus CAS SH3 binding motif and structurally characterized the CAS SH3 domain in complex with ligand. We revealed the requirement for an uncommon centrally localized lysine residue at position +2 of CAS SH3 ligands and two rather dissimilar optional anchoring residues, leucine and arginine, at position +5. We further expanded the knowledge of CAS SH3 ligand binding regulation by manipulating tyrosine 12 phosphorylation and confirmed the negative role of this phosphorylation on CAS SH3 ligand binding. Finally, by exploiting the newly identified binding requirements of the CAS SH3 domain, we predicted and experimentally verified two novel CAS SH3 binding partners, DOK7 and GLIS2.

  9. Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species

    PubMed Central

    Cao, Hieu X.; Schmutzer, Thomas; Scholz, Uwe; Pecinka, Ales; Schubert, Ingo; Vu, Giang T. H.

    2015-01-01

    In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes frequently occurs in Genlisea's leaf-derived traps without clear relevance for Genlisea carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of 19 phyla present in more than one sample. Microbes from 16 of these phyla including proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of 438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling those of metazoans, ciliates and green algae, were found. Compared to aerial leaves, Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases generating reactive oxygen species as well as of acid phosphatases for prey digestion. A leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and implies the need to protect trap cells against oxidative stress. The analysis elucidates a complex food web inside the Genlisea traps, and suggests ecological relationships between this plant genus and its entrapped microbiome. PMID:26236284

  10. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    SciTech Connect

    S Truschel; D Sengupta; A Foote; A Heroux; M Macbeth; A Linstedt

    2011-12-31

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  11. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    SciTech Connect

    Truschel, S.T.; Heroux, A.; Sengupta, D.; Foote, A.; Macbeth, M. R.; Linstedt, A. D.

    2011-06-10

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  12. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions.

    PubMed

    Cory, Seth A; Van Vranken, Jonathan G; Brignole, Edward J; Patra, Shachin; Winge, Dennis R; Drennan, Catherine L; Rutter, Jared; Barondeau, David P

    2017-07-03

    In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.

  13. Adipose tissue RNASeq reveals novel gene-nutrient interactions following n-3 PUFA supplementation and evoked inflammation in humans.

    PubMed

    Ferguson, Jane F; Xue, Chenyi; Hu, Yu; Li, Mingyao; Reilly, Muredach P

    2016-04-01

    Dietary consumption of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against cardiometabolic disease through modulation of systemic and adipose inflammation. However, it is often difficult to detect the subtle effects of n-3 PUFA on inflammatory biomarkers in traditional intervention studies. We aimed to identify novel n-3 PUFA modulated gene expression using unbiased adipose transcriptomics during evoked endotoxemia in a clinical trial of n-3 PUFA supplementation. We analyzed adipose gene expression using RNA sequencing in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) trial of healthy individuals at three timepoints: before and after n-3 PUFA supplementation (n=8; 3600mg/day EPA/DHA) for 6weeks compared with placebo (n=6), as well as during a subsequent evoked inflammatory challenge (lipopolysaccharide 0.6ng/kg i.v.). As expected, supplementation with n-3 PUFA vs. placebo alone had only modest effects on adipose tissue gene expression, e.g., increased expression of immediate early response IER2. In contrast, the transcriptomic response to evoked endotoxemia was significantly modified by n-3 PUFA supplementation, with several genes demonstrating significant n-3 PUFA gene-nutrient interactions, e.g., enhanced transcriptional responses in specific immune genes IER5L, HES1, IL1RN, CCL18, IL1RN, IL7R, IL8, CCL3 and others. These data highlight potential mechanisms whereby n-3 PUFA consumption may enhance the immune response to an inflammatory challenge. In conclusion, unbiased transcriptomics during evoked inflammation reveals novel immune modulating functions of n-3 PUFA nutritional intervention in a dynamic pathophysiological setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts.

    PubMed

    Sadoudi, Mohand; Tourdot-Maréchal, Raphaëlle; Rousseaux, Sandrine; Steyer, Damien; Gallardo-Chacón, Joan-Josep; Ballester, Jordi; Vichi, Stefania; Guérin-Schneider, Rémi; Caixach, Josep; Alexandre, Hervé

    2012-12-01

    There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions.

  15. Stone tools from the ancient Tongan state reveal prehistoric interaction centers in the Central Pacific

    PubMed Central

    Clark, Geoffrey R.; Reepmeyer, Christian; Melekiola, Nivaleti; Woodhead, Jon; Dickinson, William R.; Martinsson-Wallin, Helene

    2014-01-01

    Tonga was unique in the prehistoric Pacific for developing a maritime state that integrated the archipelago under a centralized authority and for undertaking long-distance economic and political exchanges in the second millennium A.D. To establish the extent of Tonga’s maritime polity, we geochemically analyzed stone tools excavated from the central places of the ruling paramounts, particularly lithic artifacts associated with stone-faced chiefly tombs. The lithic networks of the Tongan state focused on Samoa and Fiji, with one adze sourced to the Society Islands 2,500 km from Tongatapu. To test the hypothesis that nonlocal lithics were especially valued by Tongan elites and were an important source of political capital, we analyzed prestate lithics from Tongatapu and stone artifacts from Samoa. In the Tongan state, 66% of worked stone tools were long-distance imports, indicating that interarchipelago connections intensified with the development of the Tongan polity after A.D. 1200. In contrast, stone tools found in Samoa were from local sources, including tools associated with a monumental structure contemporary with the Tongan state. Network analysis of lithics entering the Tongan state and of the distribution of Samoan adzes in the Pacific identified a centralized polity and the products of specialized lithic workshops, respectively. These results indicate that a significant consequence of social complexity was the establishment of new types of specialized sites in distant geographic areas. Specialized sites were loci of long-distance interaction and formed important centers for the transmission of information, people, and materials in prehistoric Oceania. PMID:25002481

  16. Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of Eucalyptus.

    PubMed

    Turner, Neil C; Schulze, Ernst-Detlef; Nicolle, Dean; Kuhlmann, Iris

    2010-06-01

    One-year-old sun leaves of 60 species of Eucalyptus were collected in August 2005 at an arboretum in South Australia with a mean annual rainfall of 427 mm, and 14 of the same species were sampled at an arboretum in Western Australia with a mean annual rainfall of 216 mm. We determined the genetic and phenotypic variation in carbon isotope composition (delta13C), specific leaf area (SLA) and nitrogen content per unit area of the species at each site. There were very significant (P < 0.001) differences in delta13C among the species at both sites. The mean delta13C of the 60 species at the wetter site was -27.6 per thousand (from -25.8 per thousand in Eucalyptus youngiana to -29.9 per thousand in Eucalyptus salicola) and of the 14 species at the drier site was -25.3 per thousand (from -23.7 per thousand in Eucalyptus ravida to -27.3 per thousand in Eucalyptus ewartiana). Of the 14 species common to both sites, four species had similar values of delta13C at the two sites despite the differences in rainfall, whereas in others the values of delta13C were significantly (P < 0.001) lower (more negative) at the wet than at the dry site. The SLA and nitrogen content per unit leaf area also differed significantly among the species (P < 0.001), but there was not a common relationship between delta13C and SLA or between delta13C and nitrogen content at the two sites. The strong species by environment interaction resulted from some species demonstrating phenotypic plasticity for delta13C, while others were inherently stable across environments.

  17. Brain-heart interactions reveal consciousness in non-communicating patients.

    PubMed

    Raimondo, Federico; Rohaut, Benjamin; Demertzi, Athena; Valente, Melanie; Engemann, Denis; Salti, Moti; Fernandez Slezak, Diego; Naccache, Lionel; Sitt, Jacobo D

    2017-09-11

    Objective We here aimed at characterizing heart-brain interactions in patients with disorders of consciousness. We tested how this information impacts data-driven classification between unresponsive and minimally conscious patients. Methods A cohort of 127 patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS, n=70) and minimally conscious state (MCS, n=57) were presented with the 'Local-Global' auditory oddball paradigm, which distinguishes two levels of processing: short-term deviation of local auditory regularities and global long-term rule violations. In addition to previously validated markers of consciousness extracted from electroencephalograms (EEG), we computed autonomic cardiac markers, such as heart rate and variability (HR, HRV), and cardiac cycle phase-shifts triggered by the processing of the auditory stimuli. Results HR and HRV were similar in patients across groups. The cardiac cycle was not sensitive to the processing of local regularities in either the VS/UWS or MCS patients. In contrast, global regularities induced a phase-shift of the cardiac cycle exclusively in the MCS group. The interval between the auditory stimulation and the following R-peak was significantly shortened in MCS when the auditory rule was violated. When the information of the cardiac cycle modulations and other consciousness-related EEG markers were combined, single-patient classification performance was enhanced compared to classification with solely EEG markers. Interpretation Our work shows a link between residual cognitive processing and the modulation of autonomic somatic markers. These results open a new window to evaluate patients with disorders of consciousness via the embodied paradigm, according to which body-brain functions contribute to a holistic approach to conscious processing. This article is protected by copyright. All rights reserved. © 2017 American Neurological Association.

  18. Specific interactions of mercury chloride with membranes and other ligands as revealed by mercury-NMR.

    PubMed

    Delnomdedieu, M; Boudou, A; Georgescauld, D; Dufourc, E J

    1992-02-01

    High resolution mercury nuclear magnetic resonance (199Hg-NMR) experiments have been performed in order to monitor mercury chemical speciation when HgCl2 is added to water solutions and follow mercury binding properties towards biomembranes or other ligands. Variations of 199Hg chemical shifts by several hundred ppm depending upon pH and/or pCl changes or upon ligand or membrane addition afforded to determine the thermodynamic parameters which describe the equilibria between the various species in solution. By comparison to an external reference, the decrease in concentration of mercury species in solution allowed to estimate the amount as well as the thermodynamic parameters of unlabile mercury-ligand or mercury-membrane complexes. Hence, some buffer molecules can be classified in a scale of increasing complexing power towards Hg(II): EGTA greater than Tris greater than HEPES. In contrast, MOPS, Borax, phosphates and acetates show little complexation properties for mercury, in our experimental conditions. Evidence for complexation with phosphatidylethanolamine (PE), phosphatidylserine (PS) and human erythrocyte membranes has been found. Hg(II) does not form complexes with egg phosphatidylcholine membranes. Interaction with PE and PS model membranes can be described by the presence of two mercury sites, one labile, the other unlabile, in the NMR time scale. In the labile site Hg(PE) and Hg(PS)2 would be formed whereas in the unlabile site Hg(II) would establish bridges between three PE or PS molecules. Calculated thermodynamic data clearly indicate that PE is a better complexing agent than PS. Evidence is also found that complexation with lipids uses at first the HgCl2 species. Interestingly, mercury complexation with ligands or membranes can be completely reversed by addition of decimolar NaCl solutions. Minute mechanisms for mercury complexation with the primary amine of PE or PS membrane head groups are discussed.

  19. Stone tools from the ancient Tongan state reveal prehistoric interaction centers in the Central Pacific.

    PubMed

    Clark, Geoffrey R; Reepmeyer, Christian; Melekiola, Nivaleti; Woodhead, Jon; Dickinson, William R; Martinsson-Wallin, Helene

    2014-07-22

    Tonga was unique in the prehistoric Pacific for developing a maritime state that integrated the archipelago under a centralized authority and for undertaking long-distance economic and political exchanges in the second millennium A.D. To establish the extent of Tonga's maritime polity, we geochemically analyzed stone tools excavated from the central places of the ruling paramounts, particularly lithic artifacts associated with stone-faced chiefly tombs. The lithic networks of the Tongan state focused on Samoa and Fiji, with one adze sourced to the Society Islands 2,500 km from Tongatapu. To test the hypothesis that nonlocal lithics were especially valued by Tongan elites and were an important source of political capital, we analyzed prestate lithics from Tongatapu and stone artifacts from Samoa. In the Tongan state, 66% of worked stone tools were long-distance imports, indicating that interarchipelago connections intensified with the development of the Tongan polity after A.D. 1200. In contrast, stone tools found in Samoa were from local sources, including tools associated with a monumental structure contemporary with the Tongan state. Network analysis of lithics entering the Tongan state and of the distribution of Samoan adzes in the Pacific identified a centralized polity and the products of specialized lithic workshops, respectively. These results indicate that a significant consequence of social complexity was the establishment of new types of specialized sites in distant geographic areas. Specialized sites were loci of long-distance interaction and formed important centers for the transmission of information, people, and materials in prehistoric Oceania.

  20. Stone tools from the ancient Tongan state reveal prehistoric interaction centers in the Central Pacific

    NASA Astrophysics Data System (ADS)

    Clark, Geoffrey R.; Reepmeyer, Christian; Melekiola, Nivaleti; Woodhead, Jon; Dickinson, William R.; Martinsson-Wallin, Helene

    2014-07-01

    Tonga was unique in the prehistoric Pacific for developing a maritime state that integrated the archipelago under a centralized authority and for undertaking long-distance economic and political exchanges in the second millennium A.D. To establish the extent of Tonga's maritime polity, we geochemically analyzed stone tools excavated from the central places of the ruling paramounts, particularly lithic artifacts associated with stone-faced chiefly tombs. The lithic networks of the Tongan state focused on Samoa and Fiji, with one adze sourced to the Society Islands 2,500 km from Tongatapu. To test the hypothesis that nonlocal lithics were especially valued by Tongan elites and were an important source of political capital, we analyzed prestate lithics from Tongatapu and stone artifacts from Samoa. In the Tongan state, 66% of worked stone tools were long-distance imports, indicating that interarchipelago connections intensified with the development of the Tongan polity after A.D. 1200. In contrast, stone tools found in Samoa were from local sources, including tools associated with a monumental structure contemporary with the Tongan state. Network analysis of lithics entering the Tongan state and of the distribution of Samoan adzes in the Pacific identified a centralized polity and the products of specialized lithic workshops, respectively. These results indicate that a significant consequence of social complexity was the establishment of new types of specialized sites in distant geographic areas. Specialized sites were loci of long-distance interaction and formed important centers for the transmission of information, people, and materials in prehistoric Oceania.

  1. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    SciTech Connect

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  2. Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO2 transport.

    PubMed

    Hsu, Kate; Lee, Ting-Ying; Periasamy, Ammasi; Kao, Fu-Jen; Li, Li-Tzu; Lin, Chuang-Yu; Lin, Hui-Ju; Lin, Marie

    2017-10-01

    Human CO2 respiration requires rapid conversion between CO2 and HCO3(-) Carbonic anhydrase II facilitates this reversible reaction inside red blood cells, and band 3 [anion exchanger 1 (AE1)] provides a passage for HCO3(-) flux across the cell membrane. These 2 proteins are core components of the CO2 transport metabolon. Intracellular H2O is necessary for CO2/HCO3(-) conversion. However, abundantly expressed aquaporin 1 (AQP1) in erythrocytes is thought not to be part of band 3 complexes or the CO2 transport metabolon. To solve this conundrum, we used Förster resonance energy transfer (FRET) measured by fluorescence lifetime imaging (FLIM-FRET) and identified interaction between aquaporin-1 and band 3 at a distance of 8 nm, within the range of dipole-dipole interaction. Notably, their interaction was adaptable to membrane tonicity changes. This suggests that the function of AQP1 in tonicity response could be coupled or correlated to its function in band 3-mediated CO2/HCO3(-) exchange. By demonstrating AQP1 as a mobile component of the CO2 transport metabolon, our results uncover a potential role of water channel in blood CO2 transport and respiration.-Hsu, K., Lee, T.-Y., Periasamy, A., Kao, F.-J., Li, L.-T., Lin, C.-Y., Lin, H.-J., Lin, M. Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO2 transport. © FASEB.

  3. Free-energy calculations reveal the subtle differences in the interactions of DNA bases with α-hemolysin.

    PubMed

    Manara, Richard M A; Guy, Andrew T; Wallace, E Jayne; Khalid, Syma

    2015-02-10

    Next generation DNA sequencing methods that utilize protein nanopores have the potential to revolutionize this area of biotechnology. While the technique is underpinned by simple physics, the wild-type protein pores do not have all of the desired properties for efficient and accurate DNA sequencing. Much of the research efforts have focused on protein nanopores, such as α-hemolysin from Staphylococcus aureus. However, the speed of DNA translocation has historically been an issue, hampered in part by incomplete knowledge of the energetics of translocation. Here we have utilized atomistic molecular dynamics simulations of nucleotide fragments in order to calculate the potential of mean force (PMF) through α-hemolysin. Our results reveal specific regions within the pore that play a key role in the interaction with DNA. In particular, charged residues such as D127 and K131 provide stabilizing interactions with the anionic DNA and therefore are likely to reduce the speed of translocation. These regions provide rational targets for pore optimization. Furthermore, we show that the energetic contributions to the protein-DNA interactions are a complex combination of electrostatics and short-range interactions, often mediated by water molecules.

  4. Content-Related Interactions in Self-initiated Study Groups

    NASA Astrophysics Data System (ADS)

    Christian, Karen; Talanquer, Vicente

    2012-09-01

    The central goal of the present exploratory study was to investigate the nature of the content-related interactions in study groups independently organized by college organic chemistry students. We were particularly interested in the identification of the different factors that affected the emergence of opportunities for students to co-construct understanding and engage in higher levels of cognitive processing. Our results are based on the analysis of in situ observations of 34 self-initiated study sessions involving over a 100 students in three academic semesters. The investigation revealed three major types of social regulation processes, teaching, tutoring, and co-construction in the observed study sessions. However, the extent to which students engaged in each of them varied widely from one session to another. This variability was mostly determined by the specific composition of the study groups and the nature of the study tasks in which they were engaged. Decisions about how to organize the study session, the relative content knowledge and conceptual understanding expressed by the participants, as well as the cognitive level of the problems that guided group work had a strong impact on the nature of student interactions. Nevertheless, group talk in the observed study groups was mostly focused on low-level cognitive processes. The results of our work provide insights on how to better support students' productive engagement in study groups.

  5. Interactivity with the Interactive Whiteboard in Traditional and Innovative Primary Schools: An Exploratory Study

    ERIC Educational Resources Information Center

    de Koster, Sandra; Volman, Monique; Kuiper, Els

    2013-01-01

    One of the main affordances of the interactive whiteboard (IWB) is its potential for increasing classroom interactivity, yet little is known about the interactivity it supports in schools with different educational concepts. In this study we analysed what types of whole-class interactivity the IWB supports in schools with either a…

  6. Dispersion interactions of carbohydrates with condensate aromatic moieties: theoretical study on the CH-π interaction additive properties.

    PubMed

    Kozmon, Stanislav; Matuška, Radek; Spiwok, Vojtěch; Koča, Jaroslav

    2011-08-21

    In this article we present the first systematic study of the additive properties (i.e. degree of additivity) of the carbohydrate-aromatic moiety CH-π dispersion interaction. The additive properties were studied on the β-D-glucopyranose, β-D-mannopyranose and α-L-fucopyranose complexes with the naphthalene molecule by comparing the monodentate (single CH-π) and bidentate (two CH-π) complexes. All model complexes were optimized using the DFT-D approach, at the BP/def2-TZVPP level of theory. The interaction energies were refined using single point calculations at highly correlated ab initio methods at the CCSD(T)/CBS level, calculated as E + (E(CCSD(T))-E(MP2))(Small Basis). Bidentate complexes show very strong interactions in the range from -10.79 up to -7.15 and -8.20 up to -6.14 kcal mol(-1) for the DFT-D and CCSD(T)/CBS level, respectively. These values were compared with the sum of interaction energies of the appropriate monodentate carbohydrate-naphthalene complexes. The comparison reveals that the bidentate complex interaction energy is higher (interaction is weaker) than the sum of monodentate complex interaction energies. Bidentate complex interaction energy corresponds to 2/3 of the sum of the appropriate monodentate complex interaction energies (averaging over all modeled carbohydrate complexes). The observed interaction energies were also compared with the sum of interaction energies of the corresponding previously published carbohydrate-benzene complexes. Also in this case the interaction energy of the bidentate complex was higher (i.e. weaker interaction) than the sum of interaction energies of the corresponding benzene complexes. However, the obtained difference is lower than before, while the bidentate complex interaction energy corresponds to 4/5 of the sum of interaction energy of the benzene complexes, averaged over all structures. The mentioned comparison might aid protein engineering efforts where amino acid residues phenylalanine or

  7. Magma-tectonic interactions at Kilauea volcano revealed by the modeling of geodetic and seismic data

    NASA Astrophysics Data System (ADS)

    Wauthier, C.; Roman, D. C.; Poland, M. P.; Miklius, A.; Hooper, A. J.; Fukushima, Y.; Cayol, V.

    2013-12-01

    InSAR (Interferometric Synthetic Aperture Radar) provides high-spatial-resolution measurements of surface deformation with centimeter-scale accuracy. At Kilauea Volcano, Hawai'i, volcano-tectonic earthquakes (VTs) occur in conjunction with stronger tectonic earthquakes due to interaction between existing fault structures and magmatic and tectonic processes. In particular, Kilauea's southern flank is sliding seaward along a large crustal detachment fault (décollement), located at the interface between the volcano and the preexisting ocean floor at about 9-12 km depth, that occasionally produces large-magnitude and destructive earthquakes. In contrast, swarms of low-magnitude earthquakes (

  8. Earthquake behavior of the Enriquillo fault zone, Haiti revealed by interactive terrain visualization

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.

    2010-12-01

    The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and

  9. Role of chronic toxicology studies in revealing new toxicities.

    PubMed

    Galijatovic-Idrizbegovic, Alema; Miller, Judith E; Cornell, Wendy D; Butler, James A; Wollenberg, Gordon K; Sistare, Frank D; DeGeorge, Joseph J

    2016-12-01

    Chronic (>3 months) preclinical toxicology studies are conducted to support the safe conduct of clinical trials exceeding 3 months in duration. We have conducted a review of 32 chronic toxicology studies in non-rodents (22 studies in dogs and 10 in non-human primates) and 27 chronic toxicology studies in rats dosed with Merck compounds to determine the frequency at which additional target organ toxicities are observed in chronic toxicology studies as compared to subchronic studies of 3 months in duration. Our review shows that majority of the findings are observed in the subchronic studies since additional target organs were not observed in 24 chronic non rodent studies and in 21 chronic rodent studies. However, 6 studies in non rodents and 6 studies in rodents yielded new findings that were not seen in studies of 3-month or shorter duration. For 3 compounds the new safety findings did contribute to termination of clinical development plans. Although the incidence of compound termination associated with chronic toxicology study observations is low (∼10%), the observations made in these studies can be important for evaluating human safety risk.

  10. Interaction Between Words and Symbolic Gestures as Revealed By N400.

    PubMed

    Fabbri-Destro, Maddalena; Avanzini, Pietro; De Stefani, Elisa; Innocenti, Alessandro; Campi, Cristina; Gentilucci, Maurizio

    2015-07-01

    What happens if you see a person pronouncing the word "go" after having gestured "stop"? Differently from iconic gestures, that must necessarily be accompanied by verbal language in order to be unambiguously understood, symbolic gestures are so conventionalized that they can be effortlessly understood in the absence of speech. Previous studies proposed that gesture and speech belong to a unique communication system. From an electrophysiological perspective the N400 modulation was considered the main variable indexing the interplay between two stimuli. However, while many studies tested this effect between iconic gestures and speech, little is known about the capability of an emblem to modulate the neural response to subsequently presented words. Using high-density EEG, the present study aimed at evaluating the presence of an N400 effect and its spatiotemporal dynamics, in terms of cortical activations, when emblems primed the observation of words. Participants were presented with symbolic gestures followed by a semantically congruent or incongruent verb. A N400 modulation was detected, showing larger negativity when gesture and words were incongruent. The source localization during N400 time window evidenced the activation of different portions of temporal cortex according to the gesture and word congruence. Our data provide further evidence of how the observation of an emblem influences verbal language perception, and of how this interplay is mainly instanced by different portions of the temporal cortex.

  11. Interaction Between Flames and Electric Fields Studied

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  12. Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype.

    PubMed

    Gagneur, Julien; Stegle, Oliver; Zhu, Chenchen; Jakob, Petra; Tekkedil, Manu M; Aiyar, Raeka S; Schuon, Ann-Kathrin; Pe'er, Dana; Steinmetz, Lars M

    2013-01-01

    Unraveling the molecular processes that lead from genotype to phenotype is crucial for the understanding and effective treatment of genetic diseases. Knowledge of the causative genetic defect most often does not enable treatment; therefore, causal intermediates between genotype and phenotype constitute valuable candidates for molecular intervention points that can be therapeutically targeted. Mapping genetic determinants of gene expression levels (also known as expression quantitative trait loci or eQTL studies) is frequently used for this purpose, yet distinguishing causation from correlation remains a significant challenge. Here, we address this challenge using extensive, multi-environment gene expression and fitness profiling of hundreds of genetically diverse yeast strains, in order to identify truly causal intermediate genes that condition fitness in a given environment. Using functional genomics assays, we show that the predictive power of eQTL studies for inferring causal intermediate genes is poor unless performed across multiple environments. Surprisingly, although the effects of genotype on fitness depended strongly on environment, causal intermediates could be most reliably predicted from genetic effects on expression present in all environments. Our results indicate a mechanism explaining this apparent paradox, whereby immediate molecular consequences of genetic variation are shared across environments, and environment-dependent phenotypic effects result from downstream integration of environmental signals. We developed a statistical model to predict causal intermediates that leverages this insight, yielding over 400 transcripts, for the majority of which we experimentally validated their role in conditioning fitness. Our findings have implications for the design and analysis of clinical omics studies aimed at discovering personalized targets for molecular intervention, suggesting that inferring causation in a single cellular context can benefit from

  13. [Study on the interaction of doxycycline with human serum albumin].

    PubMed

    Hu, Tao-Ying; Chen, Lin; Liu, Ying

    2014-05-01

    The present study was designed to investigate the interaction of doxycycline (DC) with human serum albumin (HSA) by the inner filter effects, displacement experiments and molecular docking methods, based on classic multi-spectroscopy. With fluorescence quenching method at 298 and 310 K, the binding constants Ka, were determined to be 2. 73 X 10(5) and 0. 74X 10(5) L mol-1, respectively, and there was one binding site between DC and HSA, indicating that the binding of DC to HSA was strong, and the quenching mechanism was a static quenching. The thermodynamic parameters (enthalpy change, AH and enthropy change, delta S) were calculated to be -83. 55 kJ mol-1 and -176. 31 J mol-1 K-1 via the Vant' Hoff equation, which indicated that the interaction of DC with HSA was driven mainly by hydrogen bonding and van der Waals forces. Based on the Föster's theory of non-radiation energy transfer, the specific binding distance between Trp-214 (acceptor) and DC (donor) was 4. 98 nm, which was similar to the result confirmed by molecular docking. Through displacement experiments, sub-domain IIA of HSA was assigned to possess the high-affinity binding site of DC. Three-dimensional fluorescence spectra indicated that the binding of DC to HSA induced the conformation change of HSA and increased the disclosure of some part of hydrophobic regions that had been buried before. The results of FTIR spectroscopy showed that DC bound to HSA led to the slight unfolding of the polypeptide chain of HSA. Furthermore, the binding details between DC and HSA were further confirmed by molecular docking methods, which revealed that DC was bound at sub-domain IIA through multiple interactions, such as hydrophobic effect, polar forces and pi-pi interactions. The experimental results provide theoretical basis and reliable data for the study of the interaction between small drug molecule and human serum albumin

  14. Study of electron-positron interactions

    SciTech Connect

    Abashian, A.; Gotow, K.; Philonen, L.

    1990-09-15

    For the past seven years, this group has been interested in the study of tests of the Standard Model of Electroweak interactions. The program has centered about the AMY experiment which examines the nature of the final state products in electron-positron collisions in the center of mass energy range near 60 GeV. Results of these measurements have shown a remarkable consistency with the predictions of the minimal model of 3 quark and lepton generations and single charged and neutral intermediate bosons. No new particles or excited states have been observed nor has any evidence for departures in cross sections or angular asymmetries from expectations been observed. These conclusions have been even more firmly established by the higher energy results from the LEP and SLC colliders at center of mass energies of about 90 GeV. Our focus is shifting to the neutrino as a probe to electroweak interactions. The relative merit of attempting to observe neutrinos from point sources versus observing neutrinos generally is not easy to predict. The improved ability to interpret is offset by the probably episodic nature of the emission and irreproducibility of the results. In this phase of development, it is best to be sensitive to both sources of neutrinos. As a second phase of our program at Virginia Tech, we are studying the feasibility of detecting cosmic ray neutrinos in a proposed experiment which we have called NOVA. the results of the test setup will be instrumental in developing an optimum design. A third program we are involved in is the MEGA experiment at Los Alamos, an experiment to place a limit on the rate of muon decay to electron plus photon which is forbidden by the Standard Model.

  15. Single micelle force microscopy reveals the coordination interaction between catechol and Fe33+

    NASA Astrophysics Data System (ADS)

    Li, Yiran; Cao, Yi; Wang, Wei

    Metal coordination bonds are widely found in natural adhesive, load-bearing, and protective materials, which are thought to be responsible for their high strength and toughness. However, it remains unknown how the metal-ligand complexes could give rise to such superb mechanical properties. Here, combining single molecule force spectroscopy and quantum calculation, we study the mechanical properties of individual catechol-Fe3 + complexes, the key elements accounting for the high toughness and extensibility of byssal threads of marine mussels. We find that catechol-Fe3 + complexes possess a unique combination of mechanical features, including high mechanical stability, fast reformation kinetics, and stoichiometry-dependent mechanics. Therefore, they can serve as sacrificial bonds to efficiently dissipate energy in the material, quickly recover the mechanical properties when load is released, and be responsive to environmental conditions. Our study provides the mechanistic understanding of the coordination bond-mediated mechanical properties of biogenetic materials, and could guide future rational design and regulation of the mechanical properties of synthetic materials.

  16. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction.

    PubMed

    Patel, Trushar R; Nikodemus, Denise; Besong, Tabot M D; Reuten, Raphael; Meier, Markus; Harding, Stephen E; Winzor, Donald J; Koch, Manuel; Stetefeld, Jörg

    2016-01-01

    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1N), α-5 (hLM α-5N) and β-3 (hLM β-3N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function.

  17. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.

  18. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  19. Reverse Chemical Genetics: Comprehensive Fitness Profiling Reveals the Spectrum of Drug Target Interactions

    PubMed Central

    Sinha, Sunita; Bergeron, Julien R.; Mellor, Joseph C.; Giaever, Guri; Nislow, Corey

    2016-01-01

    The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development. PMID:27588687

  20. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci

    PubMed Central

    Martin, Paul; McGovern, Amanda; Orozco, Gisela; Duffus, Kate; Yarwood, Annie; Schoenfelder, Stefan; Cooper, Nicholas J.; Barton, Anne; Wallace, Chris; Fraser, Peter; Worthington, Jane; Eyre, Steve

    2015-01-01

    Genome-wide association studies have been tremendously successful in identifying genetic variants associated with complex diseases. The majority of association signals are intergenic and evidence is accumulating that a high proportion of signals lie in enhancer regions. We use Capture Hi-C to investigate, for the first time, the interactions between associated variants for four autoimmune diseases and their functional targets in B- and T-cell lines. Here we report numerous looping interactions and provide evidence that only a minority of interactions are common to both B- and T-cell lines, suggesting interactions may be highly cell-type specific; some disease-associated SNPs do not interact with the nearest gene but with more compelling candidate genes (for example, FOXO1, AZI2) often situated several megabases away; and finally, regions associated with different autoimmune diseases interact with each other and the same promoter suggesting common autoimmune gene targets (for example, PTPRC, DEXI and ZFP36L1). PMID:26616563

  1. Brain transcriptome-wide screen for HIV-1 Nef protein interaction partners reveals various membrane-associated proteins.

    PubMed

    Kammula, Ellen C; Mötter, Jessica; Gorgels, Alexandra; Jonas, Esther; Hoffmann, Silke; Willbold, Dieter

    2012-01-01

    HIV-1 Nef protein contributes essentially to the pathology of AIDS by a variety of protein-protein-interactions within the host cell. The versatile functionality of Nef is partially attributed to different conformational states and posttranslational modifications, such as myristoylation. Up to now, many interaction partners of Nef have been identified using classical yeast two-hybrid screens. Such screens rely on transcriptional activation of reporter genes in the nucleus to detect interactions. Thus, the identification of Nef interaction partners that are integral membrane proteins, membrane-associated proteins or other proteins that do not translocate into the nucleus is hampered. In the present study, a split-ubiquitin based yeast two-hybrid screen was used to identify novel membrane-localized interaction partners of Nef. More than 80% of the hereby identified interaction partners of Nef are transmembrane proteins. The identified hits are GPM6B, GPM6A, BAP31, TSPAN7, CYB5B, CD320/TCblR, VSIG4, PMEPA1, OCIAD1, ITGB1, CHN1, PH4, CLDN10, HSPA9, APR-3, PEBP1 and B3GNT, which are involved in diverse cellular processes like signaling, apoptosis, neurogenesis, cell adhesion and protein trafficking or quality control. For a subfraction of the hereby identified proteins we present data supporting their direct interaction with HIV-1 Nef. We discuss the results with respect to many phenotypes observed in HIV infected cells and patients. The identified Nef interaction partners may help to further elucidate the molecular basis of HIV-related diseases.

  2. De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel

    PubMed Central

    2013-01-01

    Background The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penicillium digitatum. Results More than 26 million sequencing reads were assembled into 9,674 unigenes. Approximately 50% of the unigenes could be annotated based on homology matches in the NCBI database. Based on homology, sequences were annotated with a gene description, gene ontology (GO term), and clustered into functional groups. An analysis of differential expression when the yeast was interacting with the fruit vs. the pathogen revealed more than 250 genes with specific expression responses. In the antagonist-pathogen interaction, genes related to transmembrane, multidrug transport and to amino acid metabolism were induced. In the antagonist-fruit interaction, expression of genes involved in oxidative stress, iron homeostasis, zinc homeostasis, and lipid metabolism were induced. Patterns of gene expression in the two interactions were examined at the individual transcript level by quantitative real-time PCR analysis (RT-qPCR). Conclusion This study provides new insight into the biology of the tritrophic interactions that occur in a biocontrol system such as the use of the yeast, M. fructicola for the control of green mold on citrus caused by P. digitatum. PMID:23496978

  3. Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging

    NASA Astrophysics Data System (ADS)

    Shagaghi, Nadin; Bhave, Mrinal; Palombo, Enzo A.; Clayton, Andrew H. A.

    2017-03-01

    To determine the mechanism(s) of action of antimicrobial peptides (AMPs) it is desirable to provide details of their interaction kinetics with cellular, sub-cellular and molecular targets. The synthetic peptide, PuroA, displays potent antimicrobial activities which have been attributed to peptide-induced membrane destabilization, or intracellular mechanisms of action (DNA-binding) or both. We used time-lapse fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM) to directly monitor the localization and interaction kinetics of a FITC- PuroA peptide on single Candida albicans cells in real time. Our results reveal the sequence of events leading to cell death. Within 1 minute, FITC-PuroA was observed to interact with SYTO-labelled nucleic acids, resulting in a noticeable quenching in the fluorescence lifetime of the peptide label at the nucleus of yeast cells, and cell-cycle arrest. A propidium iodide (PI) influx assay confirmed that peptide translocation itself did not disrupt